1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   auto *BV = dyn_cast<BuildVectorSDNode>(N);
143   if (!BV)
144     return false;
145 
146   APInt SplatUndef;
147   unsigned SplatBitSize;
148   bool HasUndefs;
149   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
150   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
151                              EltSize) &&
152          EltSize == SplatBitSize;
153 }
154 
155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
156 // specializations of the more general isConstantSplatVector()?
157 
158 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
159   // Look through a bit convert.
160   while (N->getOpcode() == ISD::BITCAST)
161     N = N->getOperand(0).getNode();
162 
163   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
164 
165   unsigned i = 0, e = N->getNumOperands();
166 
167   // Skip over all of the undef values.
168   while (i != e && N->getOperand(i).isUndef())
169     ++i;
170 
171   // Do not accept an all-undef vector.
172   if (i == e) return false;
173 
174   // Do not accept build_vectors that aren't all constants or which have non-~0
175   // elements. We have to be a bit careful here, as the type of the constant
176   // may not be the same as the type of the vector elements due to type
177   // legalization (the elements are promoted to a legal type for the target and
178   // a vector of a type may be legal when the base element type is not).
179   // We only want to check enough bits to cover the vector elements, because
180   // we care if the resultant vector is all ones, not whether the individual
181   // constants are.
182   SDValue NotZero = N->getOperand(i);
183   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
184   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
185     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
186       return false;
187   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
188     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
189       return false;
190   } else
191     return false;
192 
193   // Okay, we have at least one ~0 value, check to see if the rest match or are
194   // undefs. Even with the above element type twiddling, this should be OK, as
195   // the same type legalization should have applied to all the elements.
196   for (++i; i != e; ++i)
197     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
198       return false;
199   return true;
200 }
201 
202 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
203   // Look through a bit convert.
204   while (N->getOpcode() == ISD::BITCAST)
205     N = N->getOperand(0).getNode();
206 
207   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
208 
209   bool IsAllUndef = true;
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     IsAllUndef = false;
214     // Do not accept build_vectors that aren't all constants or which have non-0
215     // elements. We have to be a bit careful here, as the type of the constant
216     // may not be the same as the type of the vector elements due to type
217     // legalization (the elements are promoted to a legal type for the target
218     // and a vector of a type may be legal when the base element type is not).
219     // We only want to check enough bits to cover the vector elements, because
220     // we care if the resultant vector is all zeros, not whether the individual
221     // constants are.
222     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
223     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
224       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
225         return false;
226     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
227       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
228         return false;
229     } else
230       return false;
231   }
232 
233   // Do not accept an all-undef vector.
234   if (IsAllUndef)
235     return false;
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
253   if (N->getOpcode() != ISD::BUILD_VECTOR)
254     return false;
255 
256   for (const SDValue &Op : N->op_values()) {
257     if (Op.isUndef())
258       continue;
259     if (!isa<ConstantFPSDNode>(Op))
260       return false;
261   }
262   return true;
263 }
264 
265 bool ISD::allOperandsUndef(const SDNode *N) {
266   // Return false if the node has no operands.
267   // This is "logically inconsistent" with the definition of "all" but
268   // is probably the desired behavior.
269   if (N->getNumOperands() == 0)
270     return false;
271   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
272 }
273 
274 bool ISD::matchUnaryPredicate(SDValue Op,
275                               std::function<bool(ConstantSDNode *)> Match,
276                               bool AllowUndefs) {
277   // FIXME: Add support for scalar UNDEF cases?
278   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
279     return Match(Cst);
280 
281   // FIXME: Add support for vector UNDEF cases?
282   if (ISD::BUILD_VECTOR != Op.getOpcode())
283     return false;
284 
285   EVT SVT = Op.getValueType().getScalarType();
286   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
287     if (AllowUndefs && Op.getOperand(i).isUndef()) {
288       if (!Match(nullptr))
289         return false;
290       continue;
291     }
292 
293     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
294     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
295       return false;
296   }
297   return true;
298 }
299 
300 bool ISD::matchBinaryPredicate(
301     SDValue LHS, SDValue RHS,
302     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
303     bool AllowUndefs, bool AllowTypeMismatch) {
304   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
305     return false;
306 
307   // TODO: Add support for scalar UNDEF cases?
308   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
309     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
310       return Match(LHSCst, RHSCst);
311 
312   // TODO: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
314       ISD::BUILD_VECTOR != RHS.getOpcode())
315     return false;
316 
317   EVT SVT = LHS.getValueType().getScalarType();
318   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
319     SDValue LHSOp = LHS.getOperand(i);
320     SDValue RHSOp = RHS.getOperand(i);
321     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
322     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
323     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
324     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
325     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
326       return false;
327     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
328                                LHSOp.getValueType() != RHSOp.getValueType()))
329       return false;
330     if (!Match(LHSCst, RHSCst))
331       return false;
332   }
333   return true;
334 }
335 
336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
337   switch (VecReduceOpcode) {
338   default:
339     llvm_unreachable("Expected VECREDUCE opcode");
340   case ISD::VECREDUCE_FADD:
341   case ISD::VECREDUCE_SEQ_FADD:
342     return ISD::FADD;
343   case ISD::VECREDUCE_FMUL:
344   case ISD::VECREDUCE_SEQ_FMUL:
345     return ISD::FMUL;
346   case ISD::VECREDUCE_ADD:
347     return ISD::ADD;
348   case ISD::VECREDUCE_MUL:
349     return ISD::MUL;
350   case ISD::VECREDUCE_AND:
351     return ISD::AND;
352   case ISD::VECREDUCE_OR:
353     return ISD::OR;
354   case ISD::VECREDUCE_XOR:
355     return ISD::XOR;
356   case ISD::VECREDUCE_SMAX:
357     return ISD::SMAX;
358   case ISD::VECREDUCE_SMIN:
359     return ISD::SMIN;
360   case ISD::VECREDUCE_UMAX:
361     return ISD::UMAX;
362   case ISD::VECREDUCE_UMIN:
363     return ISD::UMIN;
364   case ISD::VECREDUCE_FMAX:
365     return ISD::FMAXNUM;
366   case ISD::VECREDUCE_FMIN:
367     return ISD::FMINNUM;
368   }
369 }
370 
371 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
372   switch (ExtType) {
373   case ISD::EXTLOAD:
374     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
375   case ISD::SEXTLOAD:
376     return ISD::SIGN_EXTEND;
377   case ISD::ZEXTLOAD:
378     return ISD::ZERO_EXTEND;
379   default:
380     break;
381   }
382 
383   llvm_unreachable("Invalid LoadExtType");
384 }
385 
386 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
387   // To perform this operation, we just need to swap the L and G bits of the
388   // operation.
389   unsigned OldL = (Operation >> 2) & 1;
390   unsigned OldG = (Operation >> 1) & 1;
391   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
392                        (OldL << 1) |       // New G bit
393                        (OldG << 2));       // New L bit.
394 }
395 
396 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
397   unsigned Operation = Op;
398   if (isIntegerLike)
399     Operation ^= 7;   // Flip L, G, E bits, but not U.
400   else
401     Operation ^= 15;  // Flip all of the condition bits.
402 
403   if (Operation > ISD::SETTRUE2)
404     Operation &= ~8;  // Don't let N and U bits get set.
405 
406   return ISD::CondCode(Operation);
407 }
408 
409 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
410   return getSetCCInverseImpl(Op, Type.isInteger());
411 }
412 
413 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
414                                                bool isIntegerLike) {
415   return getSetCCInverseImpl(Op, isIntegerLike);
416 }
417 
418 /// For an integer comparison, return 1 if the comparison is a signed operation
419 /// and 2 if the result is an unsigned comparison. Return zero if the operation
420 /// does not depend on the sign of the input (setne and seteq).
421 static int isSignedOp(ISD::CondCode Opcode) {
422   switch (Opcode) {
423   default: llvm_unreachable("Illegal integer setcc operation!");
424   case ISD::SETEQ:
425   case ISD::SETNE: return 0;
426   case ISD::SETLT:
427   case ISD::SETLE:
428   case ISD::SETGT:
429   case ISD::SETGE: return 1;
430   case ISD::SETULT:
431   case ISD::SETULE:
432   case ISD::SETUGT:
433   case ISD::SETUGE: return 2;
434   }
435 }
436 
437 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
438                                        EVT Type) {
439   bool IsInteger = Type.isInteger();
440   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
441     // Cannot fold a signed integer setcc with an unsigned integer setcc.
442     return ISD::SETCC_INVALID;
443 
444   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
445 
446   // If the N and U bits get set, then the resultant comparison DOES suddenly
447   // care about orderedness, and it is true when ordered.
448   if (Op > ISD::SETTRUE2)
449     Op &= ~16;     // Clear the U bit if the N bit is set.
450 
451   // Canonicalize illegal integer setcc's.
452   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
453     Op = ISD::SETNE;
454 
455   return ISD::CondCode(Op);
456 }
457 
458 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
459                                         EVT Type) {
460   bool IsInteger = Type.isInteger();
461   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
462     // Cannot fold a signed setcc with an unsigned setcc.
463     return ISD::SETCC_INVALID;
464 
465   // Combine all of the condition bits.
466   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
467 
468   // Canonicalize illegal integer setcc's.
469   if (IsInteger) {
470     switch (Result) {
471     default: break;
472     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
473     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
474     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
475     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
476     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
477     }
478   }
479 
480   return Result;
481 }
482 
483 //===----------------------------------------------------------------------===//
484 //                           SDNode Profile Support
485 //===----------------------------------------------------------------------===//
486 
487 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
488 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
489   ID.AddInteger(OpC);
490 }
491 
492 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
493 /// solely with their pointer.
494 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
495   ID.AddPointer(VTList.VTs);
496 }
497 
498 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
499 static void AddNodeIDOperands(FoldingSetNodeID &ID,
500                               ArrayRef<SDValue> Ops) {
501   for (auto& Op : Ops) {
502     ID.AddPointer(Op.getNode());
503     ID.AddInteger(Op.getResNo());
504   }
505 }
506 
507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
508 static void AddNodeIDOperands(FoldingSetNodeID &ID,
509                               ArrayRef<SDUse> Ops) {
510   for (auto& Op : Ops) {
511     ID.AddPointer(Op.getNode());
512     ID.AddInteger(Op.getResNo());
513   }
514 }
515 
516 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
517                           SDVTList VTList, ArrayRef<SDValue> OpList) {
518   AddNodeIDOpcode(ID, OpC);
519   AddNodeIDValueTypes(ID, VTList);
520   AddNodeIDOperands(ID, OpList);
521 }
522 
523 /// If this is an SDNode with special info, add this info to the NodeID data.
524 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
525   switch (N->getOpcode()) {
526   case ISD::TargetExternalSymbol:
527   case ISD::ExternalSymbol:
528   case ISD::MCSymbol:
529     llvm_unreachable("Should only be used on nodes with operands");
530   default: break;  // Normal nodes don't need extra info.
531   case ISD::TargetConstant:
532   case ISD::Constant: {
533     const ConstantSDNode *C = cast<ConstantSDNode>(N);
534     ID.AddPointer(C->getConstantIntValue());
535     ID.AddBoolean(C->isOpaque());
536     break;
537   }
538   case ISD::TargetConstantFP:
539   case ISD::ConstantFP:
540     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
541     break;
542   case ISD::TargetGlobalAddress:
543   case ISD::GlobalAddress:
544   case ISD::TargetGlobalTLSAddress:
545   case ISD::GlobalTLSAddress: {
546     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
547     ID.AddPointer(GA->getGlobal());
548     ID.AddInteger(GA->getOffset());
549     ID.AddInteger(GA->getTargetFlags());
550     break;
551   }
552   case ISD::BasicBlock:
553     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
554     break;
555   case ISD::Register:
556     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
557     break;
558   case ISD::RegisterMask:
559     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
560     break;
561   case ISD::SRCVALUE:
562     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
563     break;
564   case ISD::FrameIndex:
565   case ISD::TargetFrameIndex:
566     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
567     break;
568   case ISD::LIFETIME_START:
569   case ISD::LIFETIME_END:
570     if (cast<LifetimeSDNode>(N)->hasOffset()) {
571       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
572       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
573     }
574     break;
575   case ISD::JumpTable:
576   case ISD::TargetJumpTable:
577     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
578     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
579     break;
580   case ISD::ConstantPool:
581   case ISD::TargetConstantPool: {
582     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
583     ID.AddInteger(CP->getAlign().value());
584     ID.AddInteger(CP->getOffset());
585     if (CP->isMachineConstantPoolEntry())
586       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
587     else
588       ID.AddPointer(CP->getConstVal());
589     ID.AddInteger(CP->getTargetFlags());
590     break;
591   }
592   case ISD::TargetIndex: {
593     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
594     ID.AddInteger(TI->getIndex());
595     ID.AddInteger(TI->getOffset());
596     ID.AddInteger(TI->getTargetFlags());
597     break;
598   }
599   case ISD::LOAD: {
600     const LoadSDNode *LD = cast<LoadSDNode>(N);
601     ID.AddInteger(LD->getMemoryVT().getRawBits());
602     ID.AddInteger(LD->getRawSubclassData());
603     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
604     break;
605   }
606   case ISD::STORE: {
607     const StoreSDNode *ST = cast<StoreSDNode>(N);
608     ID.AddInteger(ST->getMemoryVT().getRawBits());
609     ID.AddInteger(ST->getRawSubclassData());
610     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
611     break;
612   }
613   case ISD::MLOAD: {
614     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
615     ID.AddInteger(MLD->getMemoryVT().getRawBits());
616     ID.AddInteger(MLD->getRawSubclassData());
617     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
618     break;
619   }
620   case ISD::MSTORE: {
621     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
622     ID.AddInteger(MST->getMemoryVT().getRawBits());
623     ID.AddInteger(MST->getRawSubclassData());
624     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::MGATHER: {
628     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
629     ID.AddInteger(MG->getMemoryVT().getRawBits());
630     ID.AddInteger(MG->getRawSubclassData());
631     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
632     break;
633   }
634   case ISD::MSCATTER: {
635     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
636     ID.AddInteger(MS->getMemoryVT().getRawBits());
637     ID.AddInteger(MS->getRawSubclassData());
638     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
639     break;
640   }
641   case ISD::ATOMIC_CMP_SWAP:
642   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
643   case ISD::ATOMIC_SWAP:
644   case ISD::ATOMIC_LOAD_ADD:
645   case ISD::ATOMIC_LOAD_SUB:
646   case ISD::ATOMIC_LOAD_AND:
647   case ISD::ATOMIC_LOAD_CLR:
648   case ISD::ATOMIC_LOAD_OR:
649   case ISD::ATOMIC_LOAD_XOR:
650   case ISD::ATOMIC_LOAD_NAND:
651   case ISD::ATOMIC_LOAD_MIN:
652   case ISD::ATOMIC_LOAD_MAX:
653   case ISD::ATOMIC_LOAD_UMIN:
654   case ISD::ATOMIC_LOAD_UMAX:
655   case ISD::ATOMIC_LOAD:
656   case ISD::ATOMIC_STORE: {
657     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
658     ID.AddInteger(AT->getMemoryVT().getRawBits());
659     ID.AddInteger(AT->getRawSubclassData());
660     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
661     break;
662   }
663   case ISD::PREFETCH: {
664     const MemSDNode *PF = cast<MemSDNode>(N);
665     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
666     break;
667   }
668   case ISD::VECTOR_SHUFFLE: {
669     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
670     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
671          i != e; ++i)
672       ID.AddInteger(SVN->getMaskElt(i));
673     break;
674   }
675   case ISD::TargetBlockAddress:
676   case ISD::BlockAddress: {
677     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
678     ID.AddPointer(BA->getBlockAddress());
679     ID.AddInteger(BA->getOffset());
680     ID.AddInteger(BA->getTargetFlags());
681     break;
682   }
683   } // end switch (N->getOpcode())
684 
685   // Target specific memory nodes could also have address spaces to check.
686   if (N->isTargetMemoryOpcode())
687     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
688 }
689 
690 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
691 /// data.
692 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
693   AddNodeIDOpcode(ID, N->getOpcode());
694   // Add the return value info.
695   AddNodeIDValueTypes(ID, N->getVTList());
696   // Add the operand info.
697   AddNodeIDOperands(ID, N->ops());
698 
699   // Handle SDNode leafs with special info.
700   AddNodeIDCustom(ID, N);
701 }
702 
703 //===----------------------------------------------------------------------===//
704 //                              SelectionDAG Class
705 //===----------------------------------------------------------------------===//
706 
707 /// doNotCSE - Return true if CSE should not be performed for this node.
708 static bool doNotCSE(SDNode *N) {
709   if (N->getValueType(0) == MVT::Glue)
710     return true; // Never CSE anything that produces a flag.
711 
712   switch (N->getOpcode()) {
713   default: break;
714   case ISD::HANDLENODE:
715   case ISD::EH_LABEL:
716     return true;   // Never CSE these nodes.
717   }
718 
719   // Check that remaining values produced are not flags.
720   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
721     if (N->getValueType(i) == MVT::Glue)
722       return true; // Never CSE anything that produces a flag.
723 
724   return false;
725 }
726 
727 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
728 /// SelectionDAG.
729 void SelectionDAG::RemoveDeadNodes() {
730   // Create a dummy node (which is not added to allnodes), that adds a reference
731   // to the root node, preventing it from being deleted.
732   HandleSDNode Dummy(getRoot());
733 
734   SmallVector<SDNode*, 128> DeadNodes;
735 
736   // Add all obviously-dead nodes to the DeadNodes worklist.
737   for (SDNode &Node : allnodes())
738     if (Node.use_empty())
739       DeadNodes.push_back(&Node);
740 
741   RemoveDeadNodes(DeadNodes);
742 
743   // If the root changed (e.g. it was a dead load, update the root).
744   setRoot(Dummy.getValue());
745 }
746 
747 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
748 /// given list, and any nodes that become unreachable as a result.
749 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
750 
751   // Process the worklist, deleting the nodes and adding their uses to the
752   // worklist.
753   while (!DeadNodes.empty()) {
754     SDNode *N = DeadNodes.pop_back_val();
755     // Skip to next node if we've already managed to delete the node. This could
756     // happen if replacing a node causes a node previously added to the node to
757     // be deleted.
758     if (N->getOpcode() == ISD::DELETED_NODE)
759       continue;
760 
761     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
762       DUL->NodeDeleted(N, nullptr);
763 
764     // Take the node out of the appropriate CSE map.
765     RemoveNodeFromCSEMaps(N);
766 
767     // Next, brutally remove the operand list.  This is safe to do, as there are
768     // no cycles in the graph.
769     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
770       SDUse &Use = *I++;
771       SDNode *Operand = Use.getNode();
772       Use.set(SDValue());
773 
774       // Now that we removed this operand, see if there are no uses of it left.
775       if (Operand->use_empty())
776         DeadNodes.push_back(Operand);
777     }
778 
779     DeallocateNode(N);
780   }
781 }
782 
783 void SelectionDAG::RemoveDeadNode(SDNode *N){
784   SmallVector<SDNode*, 16> DeadNodes(1, N);
785 
786   // Create a dummy node that adds a reference to the root node, preventing
787   // it from being deleted.  (This matters if the root is an operand of the
788   // dead node.)
789   HandleSDNode Dummy(getRoot());
790 
791   RemoveDeadNodes(DeadNodes);
792 }
793 
794 void SelectionDAG::DeleteNode(SDNode *N) {
795   // First take this out of the appropriate CSE map.
796   RemoveNodeFromCSEMaps(N);
797 
798   // Finally, remove uses due to operands of this node, remove from the
799   // AllNodes list, and delete the node.
800   DeleteNodeNotInCSEMaps(N);
801 }
802 
803 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
804   assert(N->getIterator() != AllNodes.begin() &&
805          "Cannot delete the entry node!");
806   assert(N->use_empty() && "Cannot delete a node that is not dead!");
807 
808   // Drop all of the operands and decrement used node's use counts.
809   N->DropOperands();
810 
811   DeallocateNode(N);
812 }
813 
814 void SDDbgInfo::erase(const SDNode *Node) {
815   DbgValMapType::iterator I = DbgValMap.find(Node);
816   if (I == DbgValMap.end())
817     return;
818   for (auto &Val: I->second)
819     Val->setIsInvalidated();
820   DbgValMap.erase(I);
821 }
822 
823 void SelectionDAG::DeallocateNode(SDNode *N) {
824   // If we have operands, deallocate them.
825   removeOperands(N);
826 
827   NodeAllocator.Deallocate(AllNodes.remove(N));
828 
829   // Set the opcode to DELETED_NODE to help catch bugs when node
830   // memory is reallocated.
831   // FIXME: There are places in SDag that have grown a dependency on the opcode
832   // value in the released node.
833   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
834   N->NodeType = ISD::DELETED_NODE;
835 
836   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
837   // them and forget about that node.
838   DbgInfo->erase(N);
839 }
840 
841 #ifndef NDEBUG
842 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
843 static void VerifySDNode(SDNode *N) {
844   switch (N->getOpcode()) {
845   default:
846     break;
847   case ISD::BUILD_PAIR: {
848     EVT VT = N->getValueType(0);
849     assert(N->getNumValues() == 1 && "Too many results!");
850     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
851            "Wrong return type!");
852     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
853     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
854            "Mismatched operand types!");
855     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
856            "Wrong operand type!");
857     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
858            "Wrong return type size");
859     break;
860   }
861   case ISD::BUILD_VECTOR: {
862     assert(N->getNumValues() == 1 && "Too many results!");
863     assert(N->getValueType(0).isVector() && "Wrong return type!");
864     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
865            "Wrong number of operands!");
866     EVT EltVT = N->getValueType(0).getVectorElementType();
867     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
868       assert((I->getValueType() == EltVT ||
869              (EltVT.isInteger() && I->getValueType().isInteger() &&
870               EltVT.bitsLE(I->getValueType()))) &&
871             "Wrong operand type!");
872       assert(I->getValueType() == N->getOperand(0).getValueType() &&
873              "Operands must all have the same type");
874     }
875     break;
876   }
877   }
878 }
879 #endif // NDEBUG
880 
881 /// Insert a newly allocated node into the DAG.
882 ///
883 /// Handles insertion into the all nodes list and CSE map, as well as
884 /// verification and other common operations when a new node is allocated.
885 void SelectionDAG::InsertNode(SDNode *N) {
886   AllNodes.push_back(N);
887 #ifndef NDEBUG
888   N->PersistentId = NextPersistentId++;
889   VerifySDNode(N);
890 #endif
891   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
892     DUL->NodeInserted(N);
893 }
894 
895 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
896 /// correspond to it.  This is useful when we're about to delete or repurpose
897 /// the node.  We don't want future request for structurally identical nodes
898 /// to return N anymore.
899 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
900   bool Erased = false;
901   switch (N->getOpcode()) {
902   case ISD::HANDLENODE: return false;  // noop.
903   case ISD::CONDCODE:
904     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
905            "Cond code doesn't exist!");
906     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
907     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
908     break;
909   case ISD::ExternalSymbol:
910     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
911     break;
912   case ISD::TargetExternalSymbol: {
913     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
914     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
915         ESN->getSymbol(), ESN->getTargetFlags()));
916     break;
917   }
918   case ISD::MCSymbol: {
919     auto *MCSN = cast<MCSymbolSDNode>(N);
920     Erased = MCSymbols.erase(MCSN->getMCSymbol());
921     break;
922   }
923   case ISD::VALUETYPE: {
924     EVT VT = cast<VTSDNode>(N)->getVT();
925     if (VT.isExtended()) {
926       Erased = ExtendedValueTypeNodes.erase(VT);
927     } else {
928       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
929       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
930     }
931     break;
932   }
933   default:
934     // Remove it from the CSE Map.
935     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
936     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
937     Erased = CSEMap.RemoveNode(N);
938     break;
939   }
940 #ifndef NDEBUG
941   // Verify that the node was actually in one of the CSE maps, unless it has a
942   // flag result (which cannot be CSE'd) or is one of the special cases that are
943   // not subject to CSE.
944   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
945       !N->isMachineOpcode() && !doNotCSE(N)) {
946     N->dump(this);
947     dbgs() << "\n";
948     llvm_unreachable("Node is not in map!");
949   }
950 #endif
951   return Erased;
952 }
953 
954 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
955 /// maps and modified in place. Add it back to the CSE maps, unless an identical
956 /// node already exists, in which case transfer all its users to the existing
957 /// node. This transfer can potentially trigger recursive merging.
958 void
959 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
960   // For node types that aren't CSE'd, just act as if no identical node
961   // already exists.
962   if (!doNotCSE(N)) {
963     SDNode *Existing = CSEMap.GetOrInsertNode(N);
964     if (Existing != N) {
965       // If there was already an existing matching node, use ReplaceAllUsesWith
966       // to replace the dead one with the existing one.  This can cause
967       // recursive merging of other unrelated nodes down the line.
968       ReplaceAllUsesWith(N, Existing);
969 
970       // N is now dead. Inform the listeners and delete it.
971       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
972         DUL->NodeDeleted(N, Existing);
973       DeleteNodeNotInCSEMaps(N);
974       return;
975     }
976   }
977 
978   // If the node doesn't already exist, we updated it.  Inform listeners.
979   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
980     DUL->NodeUpdated(N);
981 }
982 
983 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
984 /// were replaced with those specified.  If this node is never memoized,
985 /// return null, otherwise return a pointer to the slot it would take.  If a
986 /// node already exists with these operands, the slot will be non-null.
987 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
988                                            void *&InsertPos) {
989   if (doNotCSE(N))
990     return nullptr;
991 
992   SDValue Ops[] = { Op };
993   FoldingSetNodeID ID;
994   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
995   AddNodeIDCustom(ID, N);
996   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
997   if (Node)
998     Node->intersectFlagsWith(N->getFlags());
999   return Node;
1000 }
1001 
1002 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1003 /// were replaced with those specified.  If this node is never memoized,
1004 /// return null, otherwise return a pointer to the slot it would take.  If a
1005 /// node already exists with these operands, the slot will be non-null.
1006 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1007                                            SDValue Op1, SDValue Op2,
1008                                            void *&InsertPos) {
1009   if (doNotCSE(N))
1010     return nullptr;
1011 
1012   SDValue Ops[] = { Op1, Op2 };
1013   FoldingSetNodeID ID;
1014   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1015   AddNodeIDCustom(ID, N);
1016   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1017   if (Node)
1018     Node->intersectFlagsWith(N->getFlags());
1019   return Node;
1020 }
1021 
1022 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1023 /// were replaced with those specified.  If this node is never memoized,
1024 /// return null, otherwise return a pointer to the slot it would take.  If a
1025 /// node already exists with these operands, the slot will be non-null.
1026 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1027                                            void *&InsertPos) {
1028   if (doNotCSE(N))
1029     return nullptr;
1030 
1031   FoldingSetNodeID ID;
1032   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1033   AddNodeIDCustom(ID, N);
1034   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1035   if (Node)
1036     Node->intersectFlagsWith(N->getFlags());
1037   return Node;
1038 }
1039 
1040 Align SelectionDAG::getEVTAlign(EVT VT) const {
1041   Type *Ty = VT == MVT::iPTR ?
1042                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1043                    VT.getTypeForEVT(*getContext());
1044 
1045   return getDataLayout().getABITypeAlign(Ty);
1046 }
1047 
1048 // EntryNode could meaningfully have debug info if we can find it...
1049 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1050     : TM(tm), OptLevel(OL),
1051       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1052       Root(getEntryNode()) {
1053   InsertNode(&EntryNode);
1054   DbgInfo = new SDDbgInfo();
1055 }
1056 
1057 void SelectionDAG::init(MachineFunction &NewMF,
1058                         OptimizationRemarkEmitter &NewORE,
1059                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1060                         LegacyDivergenceAnalysis * Divergence,
1061                         ProfileSummaryInfo *PSIin,
1062                         BlockFrequencyInfo *BFIin) {
1063   MF = &NewMF;
1064   SDAGISelPass = PassPtr;
1065   ORE = &NewORE;
1066   TLI = getSubtarget().getTargetLowering();
1067   TSI = getSubtarget().getSelectionDAGInfo();
1068   LibInfo = LibraryInfo;
1069   Context = &MF->getFunction().getContext();
1070   DA = Divergence;
1071   PSI = PSIin;
1072   BFI = BFIin;
1073 }
1074 
1075 SelectionDAG::~SelectionDAG() {
1076   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   delete DbgInfo;
1080 }
1081 
1082 bool SelectionDAG::shouldOptForSize() const {
1083   return MF->getFunction().hasOptSize() ||
1084       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1085 }
1086 
1087 void SelectionDAG::allnodes_clear() {
1088   assert(&*AllNodes.begin() == &EntryNode);
1089   AllNodes.remove(AllNodes.begin());
1090   while (!AllNodes.empty())
1091     DeallocateNode(&AllNodes.front());
1092 #ifndef NDEBUG
1093   NextPersistentId = 0;
1094 #endif
1095 }
1096 
1097 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1098                                           void *&InsertPos) {
1099   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1100   if (N) {
1101     switch (N->getOpcode()) {
1102     default: break;
1103     case ISD::Constant:
1104     case ISD::ConstantFP:
1105       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1106                        "debug location.  Use another overload.");
1107     }
1108   }
1109   return N;
1110 }
1111 
1112 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1113                                           const SDLoc &DL, void *&InsertPos) {
1114   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1115   if (N) {
1116     switch (N->getOpcode()) {
1117     case ISD::Constant:
1118     case ISD::ConstantFP:
1119       // Erase debug location from the node if the node is used at several
1120       // different places. Do not propagate one location to all uses as it
1121       // will cause a worse single stepping debugging experience.
1122       if (N->getDebugLoc() != DL.getDebugLoc())
1123         N->setDebugLoc(DebugLoc());
1124       break;
1125     default:
1126       // When the node's point of use is located earlier in the instruction
1127       // sequence than its prior point of use, update its debug info to the
1128       // earlier location.
1129       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1130         N->setDebugLoc(DL.getDebugLoc());
1131       break;
1132     }
1133   }
1134   return N;
1135 }
1136 
1137 void SelectionDAG::clear() {
1138   allnodes_clear();
1139   OperandRecycler.clear(OperandAllocator);
1140   OperandAllocator.Reset();
1141   CSEMap.clear();
1142 
1143   ExtendedValueTypeNodes.clear();
1144   ExternalSymbols.clear();
1145   TargetExternalSymbols.clear();
1146   MCSymbols.clear();
1147   SDCallSiteDbgInfo.clear();
1148   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1149             static_cast<CondCodeSDNode*>(nullptr));
1150   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1151             static_cast<SDNode*>(nullptr));
1152 
1153   EntryNode.UseList = nullptr;
1154   InsertNode(&EntryNode);
1155   Root = getEntryNode();
1156   DbgInfo->clear();
1157 }
1158 
1159 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1160   return VT.bitsGT(Op.getValueType())
1161              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1162              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1163 }
1164 
1165 std::pair<SDValue, SDValue>
1166 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1167                                        const SDLoc &DL, EVT VT) {
1168   assert(!VT.bitsEq(Op.getValueType()) &&
1169          "Strict no-op FP extend/round not allowed.");
1170   SDValue Res =
1171       VT.bitsGT(Op.getValueType())
1172           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1173           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1174                     {Chain, Op, getIntPtrConstant(0, DL)});
1175 
1176   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1177 }
1178 
1179 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1180   return VT.bitsGT(Op.getValueType()) ?
1181     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1182     getNode(ISD::TRUNCATE, DL, VT, Op);
1183 }
1184 
1185 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1186   return VT.bitsGT(Op.getValueType()) ?
1187     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1188     getNode(ISD::TRUNCATE, DL, VT, Op);
1189 }
1190 
1191 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1192   return VT.bitsGT(Op.getValueType()) ?
1193     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1194     getNode(ISD::TRUNCATE, DL, VT, Op);
1195 }
1196 
1197 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1198                                         EVT OpVT) {
1199   if (VT.bitsLE(Op.getValueType()))
1200     return getNode(ISD::TRUNCATE, SL, VT, Op);
1201 
1202   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1203   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1204 }
1205 
1206 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1207   EVT OpVT = Op.getValueType();
1208   assert(VT.isInteger() && OpVT.isInteger() &&
1209          "Cannot getZeroExtendInReg FP types");
1210   assert(VT.isVector() == OpVT.isVector() &&
1211          "getZeroExtendInReg type should be vector iff the operand "
1212          "type is vector!");
1213   assert((!VT.isVector() ||
1214           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1215          "Vector element counts must match in getZeroExtendInReg");
1216   assert(VT.bitsLE(OpVT) && "Not extending!");
1217   if (OpVT == VT)
1218     return Op;
1219   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1220                                    VT.getScalarSizeInBits());
1221   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1222 }
1223 
1224 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1225   // Only unsigned pointer semantics are supported right now. In the future this
1226   // might delegate to TLI to check pointer signedness.
1227   return getZExtOrTrunc(Op, DL, VT);
1228 }
1229 
1230 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1231   // Only unsigned pointer semantics are supported right now. In the future this
1232   // might delegate to TLI to check pointer signedness.
1233   return getZeroExtendInReg(Op, DL, VT);
1234 }
1235 
1236 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1237 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1238   EVT EltVT = VT.getScalarType();
1239   SDValue NegOne =
1240     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1241   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1242 }
1243 
1244 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1245   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1246   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1247 }
1248 
1249 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1250                                       EVT OpVT) {
1251   if (!V)
1252     return getConstant(0, DL, VT);
1253 
1254   switch (TLI->getBooleanContents(OpVT)) {
1255   case TargetLowering::ZeroOrOneBooleanContent:
1256   case TargetLowering::UndefinedBooleanContent:
1257     return getConstant(1, DL, VT);
1258   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1259     return getAllOnesConstant(DL, VT);
1260   }
1261   llvm_unreachable("Unexpected boolean content enum!");
1262 }
1263 
1264 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1265                                   bool isT, bool isO) {
1266   EVT EltVT = VT.getScalarType();
1267   assert((EltVT.getSizeInBits() >= 64 ||
1268          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1269          "getConstant with a uint64_t value that doesn't fit in the type!");
1270   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1271 }
1272 
1273 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1274                                   bool isT, bool isO) {
1275   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1276 }
1277 
1278 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1279                                   EVT VT, bool isT, bool isO) {
1280   assert(VT.isInteger() && "Cannot create FP integer constant!");
1281 
1282   EVT EltVT = VT.getScalarType();
1283   const ConstantInt *Elt = &Val;
1284 
1285   // In some cases the vector type is legal but the element type is illegal and
1286   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1287   // inserted value (the type does not need to match the vector element type).
1288   // Any extra bits introduced will be truncated away.
1289   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1290       TargetLowering::TypePromoteInteger) {
1291    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1292    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1293    Elt = ConstantInt::get(*getContext(), NewVal);
1294   }
1295   // In other cases the element type is illegal and needs to be expanded, for
1296   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1297   // the value into n parts and use a vector type with n-times the elements.
1298   // Then bitcast to the type requested.
1299   // Legalizing constants too early makes the DAGCombiner's job harder so we
1300   // only legalize if the DAG tells us we must produce legal types.
1301   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1302            TLI->getTypeAction(*getContext(), EltVT) ==
1303            TargetLowering::TypeExpandInteger) {
1304     const APInt &NewVal = Elt->getValue();
1305     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1306     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1307     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1308     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1309 
1310     // Check the temporary vector is the correct size. If this fails then
1311     // getTypeToTransformTo() probably returned a type whose size (in bits)
1312     // isn't a power-of-2 factor of the requested type size.
1313     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1314 
1315     SmallVector<SDValue, 2> EltParts;
1316     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1317       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1318                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1319                                      ViaEltVT, isT, isO));
1320     }
1321 
1322     // EltParts is currently in little endian order. If we actually want
1323     // big-endian order then reverse it now.
1324     if (getDataLayout().isBigEndian())
1325       std::reverse(EltParts.begin(), EltParts.end());
1326 
1327     // The elements must be reversed when the element order is different
1328     // to the endianness of the elements (because the BITCAST is itself a
1329     // vector shuffle in this situation). However, we do not need any code to
1330     // perform this reversal because getConstant() is producing a vector
1331     // splat.
1332     // This situation occurs in MIPS MSA.
1333 
1334     SmallVector<SDValue, 8> Ops;
1335     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1336       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1337 
1338     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1339     return V;
1340   }
1341 
1342   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1343          "APInt size does not match type size!");
1344   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1345   FoldingSetNodeID ID;
1346   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1347   ID.AddPointer(Elt);
1348   ID.AddBoolean(isO);
1349   void *IP = nullptr;
1350   SDNode *N = nullptr;
1351   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1352     if (!VT.isVector())
1353       return SDValue(N, 0);
1354 
1355   if (!N) {
1356     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1357     CSEMap.InsertNode(N, IP);
1358     InsertNode(N);
1359     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1360   }
1361 
1362   SDValue Result(N, 0);
1363   if (VT.isScalableVector())
1364     Result = getSplatVector(VT, DL, Result);
1365   else if (VT.isVector())
1366     Result = getSplatBuildVector(VT, DL, Result);
1367 
1368   return Result;
1369 }
1370 
1371 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1372                                         bool isTarget) {
1373   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1374 }
1375 
1376 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1377                                              const SDLoc &DL, bool LegalTypes) {
1378   assert(VT.isInteger() && "Shift amount is not an integer type!");
1379   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1380   return getConstant(Val, DL, ShiftVT);
1381 }
1382 
1383 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1384                                            bool isTarget) {
1385   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1386 }
1387 
1388 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1389                                     bool isTarget) {
1390   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1391 }
1392 
1393 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1394                                     EVT VT, bool isTarget) {
1395   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1396 
1397   EVT EltVT = VT.getScalarType();
1398 
1399   // Do the map lookup using the actual bit pattern for the floating point
1400   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1401   // we don't have issues with SNANs.
1402   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1403   FoldingSetNodeID ID;
1404   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1405   ID.AddPointer(&V);
1406   void *IP = nullptr;
1407   SDNode *N = nullptr;
1408   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1409     if (!VT.isVector())
1410       return SDValue(N, 0);
1411 
1412   if (!N) {
1413     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1414     CSEMap.InsertNode(N, IP);
1415     InsertNode(N);
1416   }
1417 
1418   SDValue Result(N, 0);
1419   if (VT.isScalableVector())
1420     Result = getSplatVector(VT, DL, Result);
1421   else if (VT.isVector())
1422     Result = getSplatBuildVector(VT, DL, Result);
1423   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1424   return Result;
1425 }
1426 
1427 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1428                                     bool isTarget) {
1429   EVT EltVT = VT.getScalarType();
1430   if (EltVT == MVT::f32)
1431     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1432   else if (EltVT == MVT::f64)
1433     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1434   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1435            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1436     bool Ignored;
1437     APFloat APF = APFloat(Val);
1438     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1439                 &Ignored);
1440     return getConstantFP(APF, DL, VT, isTarget);
1441   } else
1442     llvm_unreachable("Unsupported type in getConstantFP");
1443 }
1444 
1445 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1446                                        EVT VT, int64_t Offset, bool isTargetGA,
1447                                        unsigned TargetFlags) {
1448   assert((TargetFlags == 0 || isTargetGA) &&
1449          "Cannot set target flags on target-independent globals");
1450 
1451   // Truncate (with sign-extension) the offset value to the pointer size.
1452   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1453   if (BitWidth < 64)
1454     Offset = SignExtend64(Offset, BitWidth);
1455 
1456   unsigned Opc;
1457   if (GV->isThreadLocal())
1458     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1459   else
1460     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1461 
1462   FoldingSetNodeID ID;
1463   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1464   ID.AddPointer(GV);
1465   ID.AddInteger(Offset);
1466   ID.AddInteger(TargetFlags);
1467   void *IP = nullptr;
1468   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1469     return SDValue(E, 0);
1470 
1471   auto *N = newSDNode<GlobalAddressSDNode>(
1472       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1473   CSEMap.InsertNode(N, IP);
1474     InsertNode(N);
1475   return SDValue(N, 0);
1476 }
1477 
1478 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1479   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1480   FoldingSetNodeID ID;
1481   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1482   ID.AddInteger(FI);
1483   void *IP = nullptr;
1484   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1485     return SDValue(E, 0);
1486 
1487   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1488   CSEMap.InsertNode(N, IP);
1489   InsertNode(N);
1490   return SDValue(N, 0);
1491 }
1492 
1493 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1494                                    unsigned TargetFlags) {
1495   assert((TargetFlags == 0 || isTarget) &&
1496          "Cannot set target flags on target-independent jump tables");
1497   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1498   FoldingSetNodeID ID;
1499   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1500   ID.AddInteger(JTI);
1501   ID.AddInteger(TargetFlags);
1502   void *IP = nullptr;
1503   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1504     return SDValue(E, 0);
1505 
1506   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1507   CSEMap.InsertNode(N, IP);
1508   InsertNode(N);
1509   return SDValue(N, 0);
1510 }
1511 
1512 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1513                                       MaybeAlign Alignment, int Offset,
1514                                       bool isTarget, unsigned TargetFlags) {
1515   assert((TargetFlags == 0 || isTarget) &&
1516          "Cannot set target flags on target-independent globals");
1517   if (!Alignment)
1518     Alignment = shouldOptForSize()
1519                     ? getDataLayout().getABITypeAlign(C->getType())
1520                     : getDataLayout().getPrefTypeAlign(C->getType());
1521   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1522   FoldingSetNodeID ID;
1523   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1524   ID.AddInteger(Alignment->value());
1525   ID.AddInteger(Offset);
1526   ID.AddPointer(C);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1533                                           TargetFlags);
1534   CSEMap.InsertNode(N, IP);
1535   InsertNode(N);
1536   SDValue V = SDValue(N, 0);
1537   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1538   return V;
1539 }
1540 
1541 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1542                                       MaybeAlign Alignment, int Offset,
1543                                       bool isTarget, unsigned TargetFlags) {
1544   assert((TargetFlags == 0 || isTarget) &&
1545          "Cannot set target flags on target-independent globals");
1546   if (!Alignment)
1547     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1548   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1549   FoldingSetNodeID ID;
1550   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1551   ID.AddInteger(Alignment->value());
1552   ID.AddInteger(Offset);
1553   C->addSelectionDAGCSEId(ID);
1554   ID.AddInteger(TargetFlags);
1555   void *IP = nullptr;
1556   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1557     return SDValue(E, 0);
1558 
1559   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1560                                           TargetFlags);
1561   CSEMap.InsertNode(N, IP);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1567                                      unsigned TargetFlags) {
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1570   ID.AddInteger(Index);
1571   ID.AddInteger(Offset);
1572   ID.AddInteger(TargetFlags);
1573   void *IP = nullptr;
1574   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1575     return SDValue(E, 0);
1576 
1577   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1578   CSEMap.InsertNode(N, IP);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1584   FoldingSetNodeID ID;
1585   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1586   ID.AddPointer(MBB);
1587   void *IP = nullptr;
1588   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1589     return SDValue(E, 0);
1590 
1591   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1592   CSEMap.InsertNode(N, IP);
1593   InsertNode(N);
1594   return SDValue(N, 0);
1595 }
1596 
1597 SDValue SelectionDAG::getValueType(EVT VT) {
1598   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1599       ValueTypeNodes.size())
1600     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1601 
1602   SDNode *&N = VT.isExtended() ?
1603     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1604 
1605   if (N) return SDValue(N, 0);
1606   N = newSDNode<VTSDNode>(VT);
1607   InsertNode(N);
1608   return SDValue(N, 0);
1609 }
1610 
1611 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1612   SDNode *&N = ExternalSymbols[Sym];
1613   if (N) return SDValue(N, 0);
1614   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1615   InsertNode(N);
1616   return SDValue(N, 0);
1617 }
1618 
1619 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1620   SDNode *&N = MCSymbols[Sym];
1621   if (N)
1622     return SDValue(N, 0);
1623   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1624   InsertNode(N);
1625   return SDValue(N, 0);
1626 }
1627 
1628 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1629                                               unsigned TargetFlags) {
1630   SDNode *&N =
1631       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1632   if (N) return SDValue(N, 0);
1633   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1634   InsertNode(N);
1635   return SDValue(N, 0);
1636 }
1637 
1638 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1639   if ((unsigned)Cond >= CondCodeNodes.size())
1640     CondCodeNodes.resize(Cond+1);
1641 
1642   if (!CondCodeNodes[Cond]) {
1643     auto *N = newSDNode<CondCodeSDNode>(Cond);
1644     CondCodeNodes[Cond] = N;
1645     InsertNode(N);
1646   }
1647 
1648   return SDValue(CondCodeNodes[Cond], 0);
1649 }
1650 
1651 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1652 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1653 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1654   std::swap(N1, N2);
1655   ShuffleVectorSDNode::commuteMask(M);
1656 }
1657 
1658 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1659                                        SDValue N2, ArrayRef<int> Mask) {
1660   assert(VT.getVectorNumElements() == Mask.size() &&
1661            "Must have the same number of vector elements as mask elements!");
1662   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1663          "Invalid VECTOR_SHUFFLE");
1664 
1665   // Canonicalize shuffle undef, undef -> undef
1666   if (N1.isUndef() && N2.isUndef())
1667     return getUNDEF(VT);
1668 
1669   // Validate that all indices in Mask are within the range of the elements
1670   // input to the shuffle.
1671   int NElts = Mask.size();
1672   assert(llvm::all_of(Mask,
1673                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1674          "Index out of range");
1675 
1676   // Copy the mask so we can do any needed cleanup.
1677   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1678 
1679   // Canonicalize shuffle v, v -> v, undef
1680   if (N1 == N2) {
1681     N2 = getUNDEF(VT);
1682     for (int i = 0; i != NElts; ++i)
1683       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1684   }
1685 
1686   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1687   if (N1.isUndef())
1688     commuteShuffle(N1, N2, MaskVec);
1689 
1690   if (TLI->hasVectorBlend()) {
1691     // If shuffling a splat, try to blend the splat instead. We do this here so
1692     // that even when this arises during lowering we don't have to re-handle it.
1693     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1694       BitVector UndefElements;
1695       SDValue Splat = BV->getSplatValue(&UndefElements);
1696       if (!Splat)
1697         return;
1698 
1699       for (int i = 0; i < NElts; ++i) {
1700         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1701           continue;
1702 
1703         // If this input comes from undef, mark it as such.
1704         if (UndefElements[MaskVec[i] - Offset]) {
1705           MaskVec[i] = -1;
1706           continue;
1707         }
1708 
1709         // If we can blend a non-undef lane, use that instead.
1710         if (!UndefElements[i])
1711           MaskVec[i] = i + Offset;
1712       }
1713     };
1714     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1715       BlendSplat(N1BV, 0);
1716     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1717       BlendSplat(N2BV, NElts);
1718   }
1719 
1720   // Canonicalize all index into lhs, -> shuffle lhs, undef
1721   // Canonicalize all index into rhs, -> shuffle rhs, undef
1722   bool AllLHS = true, AllRHS = true;
1723   bool N2Undef = N2.isUndef();
1724   for (int i = 0; i != NElts; ++i) {
1725     if (MaskVec[i] >= NElts) {
1726       if (N2Undef)
1727         MaskVec[i] = -1;
1728       else
1729         AllLHS = false;
1730     } else if (MaskVec[i] >= 0) {
1731       AllRHS = false;
1732     }
1733   }
1734   if (AllLHS && AllRHS)
1735     return getUNDEF(VT);
1736   if (AllLHS && !N2Undef)
1737     N2 = getUNDEF(VT);
1738   if (AllRHS) {
1739     N1 = getUNDEF(VT);
1740     commuteShuffle(N1, N2, MaskVec);
1741   }
1742   // Reset our undef status after accounting for the mask.
1743   N2Undef = N2.isUndef();
1744   // Re-check whether both sides ended up undef.
1745   if (N1.isUndef() && N2Undef)
1746     return getUNDEF(VT);
1747 
1748   // If Identity shuffle return that node.
1749   bool Identity = true, AllSame = true;
1750   for (int i = 0; i != NElts; ++i) {
1751     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1752     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1753   }
1754   if (Identity && NElts)
1755     return N1;
1756 
1757   // Shuffling a constant splat doesn't change the result.
1758   if (N2Undef) {
1759     SDValue V = N1;
1760 
1761     // Look through any bitcasts. We check that these don't change the number
1762     // (and size) of elements and just changes their types.
1763     while (V.getOpcode() == ISD::BITCAST)
1764       V = V->getOperand(0);
1765 
1766     // A splat should always show up as a build vector node.
1767     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1768       BitVector UndefElements;
1769       SDValue Splat = BV->getSplatValue(&UndefElements);
1770       // If this is a splat of an undef, shuffling it is also undef.
1771       if (Splat && Splat.isUndef())
1772         return getUNDEF(VT);
1773 
1774       bool SameNumElts =
1775           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1776 
1777       // We only have a splat which can skip shuffles if there is a splatted
1778       // value and no undef lanes rearranged by the shuffle.
1779       if (Splat && UndefElements.none()) {
1780         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1781         // number of elements match or the value splatted is a zero constant.
1782         if (SameNumElts)
1783           return N1;
1784         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1785           if (C->isNullValue())
1786             return N1;
1787       }
1788 
1789       // If the shuffle itself creates a splat, build the vector directly.
1790       if (AllSame && SameNumElts) {
1791         EVT BuildVT = BV->getValueType(0);
1792         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1793         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1794 
1795         // We may have jumped through bitcasts, so the type of the
1796         // BUILD_VECTOR may not match the type of the shuffle.
1797         if (BuildVT != VT)
1798           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1799         return NewBV;
1800       }
1801     }
1802   }
1803 
1804   FoldingSetNodeID ID;
1805   SDValue Ops[2] = { N1, N2 };
1806   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1807   for (int i = 0; i != NElts; ++i)
1808     ID.AddInteger(MaskVec[i]);
1809 
1810   void* IP = nullptr;
1811   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1812     return SDValue(E, 0);
1813 
1814   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1815   // SDNode doesn't have access to it.  This memory will be "leaked" when
1816   // the node is deallocated, but recovered when the NodeAllocator is released.
1817   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1818   llvm::copy(MaskVec, MaskAlloc);
1819 
1820   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1821                                            dl.getDebugLoc(), MaskAlloc);
1822   createOperands(N, Ops);
1823 
1824   CSEMap.InsertNode(N, IP);
1825   InsertNode(N);
1826   SDValue V = SDValue(N, 0);
1827   NewSDValueDbgMsg(V, "Creating new node: ", this);
1828   return V;
1829 }
1830 
1831 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1832   EVT VT = SV.getValueType(0);
1833   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1834   ShuffleVectorSDNode::commuteMask(MaskVec);
1835 
1836   SDValue Op0 = SV.getOperand(0);
1837   SDValue Op1 = SV.getOperand(1);
1838   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1839 }
1840 
1841 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1842   FoldingSetNodeID ID;
1843   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1844   ID.AddInteger(RegNo);
1845   void *IP = nullptr;
1846   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1847     return SDValue(E, 0);
1848 
1849   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1850   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1857   FoldingSetNodeID ID;
1858   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1859   ID.AddPointer(RegMask);
1860   void *IP = nullptr;
1861   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1862     return SDValue(E, 0);
1863 
1864   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1865   CSEMap.InsertNode(N, IP);
1866   InsertNode(N);
1867   return SDValue(N, 0);
1868 }
1869 
1870 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1871                                  MCSymbol *Label) {
1872   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1873 }
1874 
1875 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1876                                    SDValue Root, MCSymbol *Label) {
1877   FoldingSetNodeID ID;
1878   SDValue Ops[] = { Root };
1879   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1880   ID.AddPointer(Label);
1881   void *IP = nullptr;
1882   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1883     return SDValue(E, 0);
1884 
1885   auto *N =
1886       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1887   createOperands(N, Ops);
1888 
1889   CSEMap.InsertNode(N, IP);
1890   InsertNode(N);
1891   return SDValue(N, 0);
1892 }
1893 
1894 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1895                                       int64_t Offset, bool isTarget,
1896                                       unsigned TargetFlags) {
1897   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1898 
1899   FoldingSetNodeID ID;
1900   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1901   ID.AddPointer(BA);
1902   ID.AddInteger(Offset);
1903   ID.AddInteger(TargetFlags);
1904   void *IP = nullptr;
1905   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1906     return SDValue(E, 0);
1907 
1908   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1909   CSEMap.InsertNode(N, IP);
1910   InsertNode(N);
1911   return SDValue(N, 0);
1912 }
1913 
1914 SDValue SelectionDAG::getSrcValue(const Value *V) {
1915   FoldingSetNodeID ID;
1916   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1917   ID.AddPointer(V);
1918 
1919   void *IP = nullptr;
1920   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1921     return SDValue(E, 0);
1922 
1923   auto *N = newSDNode<SrcValueSDNode>(V);
1924   CSEMap.InsertNode(N, IP);
1925   InsertNode(N);
1926   return SDValue(N, 0);
1927 }
1928 
1929 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1930   FoldingSetNodeID ID;
1931   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1932   ID.AddPointer(MD);
1933 
1934   void *IP = nullptr;
1935   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1936     return SDValue(E, 0);
1937 
1938   auto *N = newSDNode<MDNodeSDNode>(MD);
1939   CSEMap.InsertNode(N, IP);
1940   InsertNode(N);
1941   return SDValue(N, 0);
1942 }
1943 
1944 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1945   if (VT == V.getValueType())
1946     return V;
1947 
1948   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1949 }
1950 
1951 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1952                                        unsigned SrcAS, unsigned DestAS) {
1953   SDValue Ops[] = {Ptr};
1954   FoldingSetNodeID ID;
1955   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1956   ID.AddInteger(SrcAS);
1957   ID.AddInteger(DestAS);
1958 
1959   void *IP = nullptr;
1960   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1961     return SDValue(E, 0);
1962 
1963   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1964                                            VT, SrcAS, DestAS);
1965   createOperands(N, Ops);
1966 
1967   CSEMap.InsertNode(N, IP);
1968   InsertNode(N);
1969   return SDValue(N, 0);
1970 }
1971 
1972 SDValue SelectionDAG::getFreeze(SDValue V) {
1973   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1974 }
1975 
1976 /// getShiftAmountOperand - Return the specified value casted to
1977 /// the target's desired shift amount type.
1978 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1979   EVT OpTy = Op.getValueType();
1980   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1981   if (OpTy == ShTy || OpTy.isVector()) return Op;
1982 
1983   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1984 }
1985 
1986 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1987   SDLoc dl(Node);
1988   const TargetLowering &TLI = getTargetLoweringInfo();
1989   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1990   EVT VT = Node->getValueType(0);
1991   SDValue Tmp1 = Node->getOperand(0);
1992   SDValue Tmp2 = Node->getOperand(1);
1993   const MaybeAlign MA(Node->getConstantOperandVal(3));
1994 
1995   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1996                                Tmp2, MachinePointerInfo(V));
1997   SDValue VAList = VAListLoad;
1998 
1999   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2000     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2001                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2002 
2003     VAList =
2004         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2005                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2006   }
2007 
2008   // Increment the pointer, VAList, to the next vaarg
2009   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2010                  getConstant(getDataLayout().getTypeAllocSize(
2011                                                VT.getTypeForEVT(*getContext())),
2012                              dl, VAList.getValueType()));
2013   // Store the incremented VAList to the legalized pointer
2014   Tmp1 =
2015       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2016   // Load the actual argument out of the pointer VAList
2017   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2018 }
2019 
2020 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2021   SDLoc dl(Node);
2022   const TargetLowering &TLI = getTargetLoweringInfo();
2023   // This defaults to loading a pointer from the input and storing it to the
2024   // output, returning the chain.
2025   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2026   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2027   SDValue Tmp1 =
2028       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2029               Node->getOperand(2), MachinePointerInfo(VS));
2030   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2031                   MachinePointerInfo(VD));
2032 }
2033 
2034 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2035   const DataLayout &DL = getDataLayout();
2036   Type *Ty = VT.getTypeForEVT(*getContext());
2037   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2038 
2039   if (TLI->isTypeLegal(VT) || !VT.isVector())
2040     return RedAlign;
2041 
2042   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2043   const Align StackAlign = TFI->getStackAlign();
2044 
2045   // See if we can choose a smaller ABI alignment in cases where it's an
2046   // illegal vector type that will get broken down.
2047   if (RedAlign > StackAlign) {
2048     EVT IntermediateVT;
2049     MVT RegisterVT;
2050     unsigned NumIntermediates;
2051     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2052                                 NumIntermediates, RegisterVT);
2053     Ty = IntermediateVT.getTypeForEVT(*getContext());
2054     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2055     if (RedAlign2 < RedAlign)
2056       RedAlign = RedAlign2;
2057   }
2058 
2059   return RedAlign;
2060 }
2061 
2062 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2063   MachineFrameInfo &MFI = MF->getFrameInfo();
2064   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2065   int StackID = 0;
2066   if (Bytes.isScalable())
2067     StackID = TFI->getStackIDForScalableVectors();
2068   // The stack id gives an indication of whether the object is scalable or
2069   // not, so it's safe to pass in the minimum size here.
2070   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2071                                        false, nullptr, StackID);
2072   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2073 }
2074 
2075 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2076   Type *Ty = VT.getTypeForEVT(*getContext());
2077   Align StackAlign =
2078       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2079   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2080 }
2081 
2082 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2083   TypeSize VT1Size = VT1.getStoreSize();
2084   TypeSize VT2Size = VT2.getStoreSize();
2085   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2086          "Don't know how to choose the maximum size when creating a stack "
2087          "temporary");
2088   TypeSize Bytes =
2089       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2090 
2091   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2092   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2093   const DataLayout &DL = getDataLayout();
2094   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2095   return CreateStackTemporary(Bytes, Align);
2096 }
2097 
2098 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2099                                 ISD::CondCode Cond, const SDLoc &dl) {
2100   EVT OpVT = N1.getValueType();
2101 
2102   // These setcc operations always fold.
2103   switch (Cond) {
2104   default: break;
2105   case ISD::SETFALSE:
2106   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2107   case ISD::SETTRUE:
2108   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2109 
2110   case ISD::SETOEQ:
2111   case ISD::SETOGT:
2112   case ISD::SETOGE:
2113   case ISD::SETOLT:
2114   case ISD::SETOLE:
2115   case ISD::SETONE:
2116   case ISD::SETO:
2117   case ISD::SETUO:
2118   case ISD::SETUEQ:
2119   case ISD::SETUNE:
2120     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2121     break;
2122   }
2123 
2124   if (OpVT.isInteger()) {
2125     // For EQ and NE, we can always pick a value for the undef to make the
2126     // predicate pass or fail, so we can return undef.
2127     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2128     // icmp eq/ne X, undef -> undef.
2129     if ((N1.isUndef() || N2.isUndef()) &&
2130         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2131       return getUNDEF(VT);
2132 
2133     // If both operands are undef, we can return undef for int comparison.
2134     // icmp undef, undef -> undef.
2135     if (N1.isUndef() && N2.isUndef())
2136       return getUNDEF(VT);
2137 
2138     // icmp X, X -> true/false
2139     // icmp X, undef -> true/false because undef could be X.
2140     if (N1 == N2)
2141       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2142   }
2143 
2144   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2145     const APInt &C2 = N2C->getAPIntValue();
2146     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2147       const APInt &C1 = N1C->getAPIntValue();
2148 
2149       switch (Cond) {
2150       default: llvm_unreachable("Unknown integer setcc!");
2151       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2152       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2153       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2154       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2155       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2156       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2157       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2158       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2159       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2160       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2161       }
2162     }
2163   }
2164 
2165   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2166   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2167 
2168   if (N1CFP && N2CFP) {
2169     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2170     switch (Cond) {
2171     default: break;
2172     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2173                         return getUNDEF(VT);
2174                       LLVM_FALLTHROUGH;
2175     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2176                                              OpVT);
2177     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2178                         return getUNDEF(VT);
2179                       LLVM_FALLTHROUGH;
2180     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2181                                              R==APFloat::cmpLessThan, dl, VT,
2182                                              OpVT);
2183     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2184                         return getUNDEF(VT);
2185                       LLVM_FALLTHROUGH;
2186     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2187                                              OpVT);
2188     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2189                         return getUNDEF(VT);
2190                       LLVM_FALLTHROUGH;
2191     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2192                                              VT, OpVT);
2193     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2194                         return getUNDEF(VT);
2195                       LLVM_FALLTHROUGH;
2196     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2197                                              R==APFloat::cmpEqual, dl, VT,
2198                                              OpVT);
2199     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2200                         return getUNDEF(VT);
2201                       LLVM_FALLTHROUGH;
2202     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2203                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2204     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2205                                              OpVT);
2206     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2207                                              OpVT);
2208     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2209                                              R==APFloat::cmpEqual, dl, VT,
2210                                              OpVT);
2211     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2212                                              OpVT);
2213     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2214                                              R==APFloat::cmpLessThan, dl, VT,
2215                                              OpVT);
2216     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2217                                              R==APFloat::cmpUnordered, dl, VT,
2218                                              OpVT);
2219     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2220                                              VT, OpVT);
2221     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2222                                              OpVT);
2223     }
2224   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2225     // Ensure that the constant occurs on the RHS.
2226     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2227     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2228       return SDValue();
2229     return getSetCC(dl, VT, N2, N1, SwappedCond);
2230   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2231              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2232     // If an operand is known to be a nan (or undef that could be a nan), we can
2233     // fold it.
2234     // Choosing NaN for the undef will always make unordered comparison succeed
2235     // and ordered comparison fails.
2236     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2237     switch (ISD::getUnorderedFlavor(Cond)) {
2238     default:
2239       llvm_unreachable("Unknown flavor!");
2240     case 0: // Known false.
2241       return getBoolConstant(false, dl, VT, OpVT);
2242     case 1: // Known true.
2243       return getBoolConstant(true, dl, VT, OpVT);
2244     case 2: // Undefined.
2245       return getUNDEF(VT);
2246     }
2247   }
2248 
2249   // Could not fold it.
2250   return SDValue();
2251 }
2252 
2253 /// See if the specified operand can be simplified with the knowledge that only
2254 /// the bits specified by DemandedBits are used.
2255 /// TODO: really we should be making this into the DAG equivalent of
2256 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2257 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2258   EVT VT = V.getValueType();
2259 
2260   if (VT.isScalableVector())
2261     return SDValue();
2262 
2263   APInt DemandedElts = VT.isVector()
2264                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2265                            : APInt(1, 1);
2266   return GetDemandedBits(V, DemandedBits, DemandedElts);
2267 }
2268 
2269 /// See if the specified operand can be simplified with the knowledge that only
2270 /// the bits specified by DemandedBits are used in the elements specified by
2271 /// DemandedElts.
2272 /// TODO: really we should be making this into the DAG equivalent of
2273 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2274 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2275                                       const APInt &DemandedElts) {
2276   switch (V.getOpcode()) {
2277   default:
2278     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2279                                                 *this, 0);
2280   case ISD::Constant: {
2281     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2282     APInt NewVal = CVal & DemandedBits;
2283     if (NewVal != CVal)
2284       return getConstant(NewVal, SDLoc(V), V.getValueType());
2285     break;
2286   }
2287   case ISD::SRL:
2288     // Only look at single-use SRLs.
2289     if (!V.getNode()->hasOneUse())
2290       break;
2291     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2292       // See if we can recursively simplify the LHS.
2293       unsigned Amt = RHSC->getZExtValue();
2294 
2295       // Watch out for shift count overflow though.
2296       if (Amt >= DemandedBits.getBitWidth())
2297         break;
2298       APInt SrcDemandedBits = DemandedBits << Amt;
2299       if (SDValue SimplifyLHS =
2300               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2301         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2302                        V.getOperand(1));
2303     }
2304     break;
2305   }
2306   return SDValue();
2307 }
2308 
2309 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2310 /// use this predicate to simplify operations downstream.
2311 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2312   unsigned BitWidth = Op.getScalarValueSizeInBits();
2313   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2314 }
2315 
2316 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2317 /// this predicate to simplify operations downstream.  Mask is known to be zero
2318 /// for bits that V cannot have.
2319 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2320                                      unsigned Depth) const {
2321   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2322 }
2323 
2324 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2325 /// DemandedElts.  We use this predicate to simplify operations downstream.
2326 /// Mask is known to be zero for bits that V cannot have.
2327 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2328                                      const APInt &DemandedElts,
2329                                      unsigned Depth) const {
2330   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2331 }
2332 
2333 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2334 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2335                                         unsigned Depth) const {
2336   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2337 }
2338 
2339 /// isSplatValue - Return true if the vector V has the same value
2340 /// across all DemandedElts. For scalable vectors it does not make
2341 /// sense to specify which elements are demanded or undefined, therefore
2342 /// they are simply ignored.
2343 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2344                                 APInt &UndefElts) {
2345   EVT VT = V.getValueType();
2346   assert(VT.isVector() && "Vector type expected");
2347 
2348   if (!VT.isScalableVector() && !DemandedElts)
2349     return false; // No demanded elts, better to assume we don't know anything.
2350 
2351   // Deal with some common cases here that work for both fixed and scalable
2352   // vector types.
2353   switch (V.getOpcode()) {
2354   case ISD::SPLAT_VECTOR:
2355     UndefElts = V.getOperand(0).isUndef()
2356                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2357                     : APInt(DemandedElts.getBitWidth(), 0);
2358     return true;
2359   case ISD::ADD:
2360   case ISD::SUB:
2361   case ISD::AND: {
2362     APInt UndefLHS, UndefRHS;
2363     SDValue LHS = V.getOperand(0);
2364     SDValue RHS = V.getOperand(1);
2365     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2366         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2367       UndefElts = UndefLHS | UndefRHS;
2368       return true;
2369     }
2370     break;
2371   }
2372   case ISD::TRUNCATE:
2373   case ISD::SIGN_EXTEND:
2374   case ISD::ZERO_EXTEND:
2375     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2376   }
2377 
2378   // We don't support other cases than those above for scalable vectors at
2379   // the moment.
2380   if (VT.isScalableVector())
2381     return false;
2382 
2383   unsigned NumElts = VT.getVectorNumElements();
2384   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2385   UndefElts = APInt::getNullValue(NumElts);
2386 
2387   switch (V.getOpcode()) {
2388   case ISD::BUILD_VECTOR: {
2389     SDValue Scl;
2390     for (unsigned i = 0; i != NumElts; ++i) {
2391       SDValue Op = V.getOperand(i);
2392       if (Op.isUndef()) {
2393         UndefElts.setBit(i);
2394         continue;
2395       }
2396       if (!DemandedElts[i])
2397         continue;
2398       if (Scl && Scl != Op)
2399         return false;
2400       Scl = Op;
2401     }
2402     return true;
2403   }
2404   case ISD::VECTOR_SHUFFLE: {
2405     // Check if this is a shuffle node doing a splat.
2406     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2407     int SplatIndex = -1;
2408     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2409     for (int i = 0; i != (int)NumElts; ++i) {
2410       int M = Mask[i];
2411       if (M < 0) {
2412         UndefElts.setBit(i);
2413         continue;
2414       }
2415       if (!DemandedElts[i])
2416         continue;
2417       if (0 <= SplatIndex && SplatIndex != M)
2418         return false;
2419       SplatIndex = M;
2420     }
2421     return true;
2422   }
2423   case ISD::EXTRACT_SUBVECTOR: {
2424     // Offset the demanded elts by the subvector index.
2425     SDValue Src = V.getOperand(0);
2426     uint64_t Idx = V.getConstantOperandVal(1);
2427     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2428     APInt UndefSrcElts;
2429     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2430     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2431       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2432       return true;
2433     }
2434     break;
2435   }
2436   }
2437 
2438   return false;
2439 }
2440 
2441 /// Helper wrapper to main isSplatValue function.
2442 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2443   EVT VT = V.getValueType();
2444   assert(VT.isVector() && "Vector type expected");
2445 
2446   APInt UndefElts;
2447   APInt DemandedElts;
2448 
2449   // For now we don't support this with scalable vectors.
2450   if (!VT.isScalableVector())
2451     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2452   return isSplatValue(V, DemandedElts, UndefElts) &&
2453          (AllowUndefs || !UndefElts);
2454 }
2455 
2456 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2457   V = peekThroughExtractSubvectors(V);
2458 
2459   EVT VT = V.getValueType();
2460   unsigned Opcode = V.getOpcode();
2461   switch (Opcode) {
2462   default: {
2463     APInt UndefElts;
2464     APInt DemandedElts;
2465 
2466     if (!VT.isScalableVector())
2467       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2468 
2469     if (isSplatValue(V, DemandedElts, UndefElts)) {
2470       if (VT.isScalableVector()) {
2471         // DemandedElts and UndefElts are ignored for scalable vectors, since
2472         // the only supported cases are SPLAT_VECTOR nodes.
2473         SplatIdx = 0;
2474       } else {
2475         // Handle case where all demanded elements are UNDEF.
2476         if (DemandedElts.isSubsetOf(UndefElts)) {
2477           SplatIdx = 0;
2478           return getUNDEF(VT);
2479         }
2480         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2481       }
2482       return V;
2483     }
2484     break;
2485   }
2486   case ISD::SPLAT_VECTOR:
2487     SplatIdx = 0;
2488     return V;
2489   case ISD::VECTOR_SHUFFLE: {
2490     if (VT.isScalableVector())
2491       return SDValue();
2492 
2493     // Check if this is a shuffle node doing a splat.
2494     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2495     // getTargetVShiftNode currently struggles without the splat source.
2496     auto *SVN = cast<ShuffleVectorSDNode>(V);
2497     if (!SVN->isSplat())
2498       break;
2499     int Idx = SVN->getSplatIndex();
2500     int NumElts = V.getValueType().getVectorNumElements();
2501     SplatIdx = Idx % NumElts;
2502     return V.getOperand(Idx / NumElts);
2503   }
2504   }
2505 
2506   return SDValue();
2507 }
2508 
2509 SDValue SelectionDAG::getSplatValue(SDValue V) {
2510   int SplatIdx;
2511   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2512     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2513                    SrcVector.getValueType().getScalarType(), SrcVector,
2514                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2515   return SDValue();
2516 }
2517 
2518 const APInt *
2519 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2520                                           const APInt &DemandedElts) const {
2521   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2522           V.getOpcode() == ISD::SRA) &&
2523          "Unknown shift node");
2524   unsigned BitWidth = V.getScalarValueSizeInBits();
2525   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2526     // Shifting more than the bitwidth is not valid.
2527     const APInt &ShAmt = SA->getAPIntValue();
2528     if (ShAmt.ult(BitWidth))
2529       return &ShAmt;
2530   }
2531   return nullptr;
2532 }
2533 
2534 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2535     SDValue V, const APInt &DemandedElts) const {
2536   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2537           V.getOpcode() == ISD::SRA) &&
2538          "Unknown shift node");
2539   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2540     return ValidAmt;
2541   unsigned BitWidth = V.getScalarValueSizeInBits();
2542   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2543   if (!BV)
2544     return nullptr;
2545   const APInt *MinShAmt = nullptr;
2546   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2547     if (!DemandedElts[i])
2548       continue;
2549     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2550     if (!SA)
2551       return nullptr;
2552     // Shifting more than the bitwidth is not valid.
2553     const APInt &ShAmt = SA->getAPIntValue();
2554     if (ShAmt.uge(BitWidth))
2555       return nullptr;
2556     if (MinShAmt && MinShAmt->ule(ShAmt))
2557       continue;
2558     MinShAmt = &ShAmt;
2559   }
2560   return MinShAmt;
2561 }
2562 
2563 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2564     SDValue V, const APInt &DemandedElts) const {
2565   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2566           V.getOpcode() == ISD::SRA) &&
2567          "Unknown shift node");
2568   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2569     return ValidAmt;
2570   unsigned BitWidth = V.getScalarValueSizeInBits();
2571   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2572   if (!BV)
2573     return nullptr;
2574   const APInt *MaxShAmt = nullptr;
2575   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2576     if (!DemandedElts[i])
2577       continue;
2578     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2579     if (!SA)
2580       return nullptr;
2581     // Shifting more than the bitwidth is not valid.
2582     const APInt &ShAmt = SA->getAPIntValue();
2583     if (ShAmt.uge(BitWidth))
2584       return nullptr;
2585     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2586       continue;
2587     MaxShAmt = &ShAmt;
2588   }
2589   return MaxShAmt;
2590 }
2591 
2592 /// Determine which bits of Op are known to be either zero or one and return
2593 /// them in Known. For vectors, the known bits are those that are shared by
2594 /// every vector element.
2595 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2596   EVT VT = Op.getValueType();
2597 
2598   // TOOD: Until we have a plan for how to represent demanded elements for
2599   // scalable vectors, we can just bail out for now.
2600   if (Op.getValueType().isScalableVector()) {
2601     unsigned BitWidth = Op.getScalarValueSizeInBits();
2602     return KnownBits(BitWidth);
2603   }
2604 
2605   APInt DemandedElts = VT.isVector()
2606                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2607                            : APInt(1, 1);
2608   return computeKnownBits(Op, DemandedElts, Depth);
2609 }
2610 
2611 /// Determine which bits of Op are known to be either zero or one and return
2612 /// them in Known. The DemandedElts argument allows us to only collect the known
2613 /// bits that are shared by the requested vector elements.
2614 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2615                                          unsigned Depth) const {
2616   unsigned BitWidth = Op.getScalarValueSizeInBits();
2617 
2618   KnownBits Known(BitWidth);   // Don't know anything.
2619 
2620   // TOOD: Until we have a plan for how to represent demanded elements for
2621   // scalable vectors, we can just bail out for now.
2622   if (Op.getValueType().isScalableVector())
2623     return Known;
2624 
2625   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2626     // We know all of the bits for a constant!
2627     Known.One = C->getAPIntValue();
2628     Known.Zero = ~Known.One;
2629     return Known;
2630   }
2631   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2632     // We know all of the bits for a constant fp!
2633     Known.One = C->getValueAPF().bitcastToAPInt();
2634     Known.Zero = ~Known.One;
2635     return Known;
2636   }
2637 
2638   if (Depth >= MaxRecursionDepth)
2639     return Known;  // Limit search depth.
2640 
2641   KnownBits Known2;
2642   unsigned NumElts = DemandedElts.getBitWidth();
2643   assert((!Op.getValueType().isVector() ||
2644           NumElts == Op.getValueType().getVectorNumElements()) &&
2645          "Unexpected vector size");
2646 
2647   if (!DemandedElts)
2648     return Known;  // No demanded elts, better to assume we don't know anything.
2649 
2650   unsigned Opcode = Op.getOpcode();
2651   switch (Opcode) {
2652   case ISD::BUILD_VECTOR:
2653     // Collect the known bits that are shared by every demanded vector element.
2654     Known.Zero.setAllBits(); Known.One.setAllBits();
2655     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2656       if (!DemandedElts[i])
2657         continue;
2658 
2659       SDValue SrcOp = Op.getOperand(i);
2660       Known2 = computeKnownBits(SrcOp, Depth + 1);
2661 
2662       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2663       if (SrcOp.getValueSizeInBits() != BitWidth) {
2664         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2665                "Expected BUILD_VECTOR implicit truncation");
2666         Known2 = Known2.trunc(BitWidth);
2667       }
2668 
2669       // Known bits are the values that are shared by every demanded element.
2670       Known = KnownBits::commonBits(Known, Known2);
2671 
2672       // If we don't know any bits, early out.
2673       if (Known.isUnknown())
2674         break;
2675     }
2676     break;
2677   case ISD::VECTOR_SHUFFLE: {
2678     // Collect the known bits that are shared by every vector element referenced
2679     // by the shuffle.
2680     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2681     Known.Zero.setAllBits(); Known.One.setAllBits();
2682     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2683     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2684     for (unsigned i = 0; i != NumElts; ++i) {
2685       if (!DemandedElts[i])
2686         continue;
2687 
2688       int M = SVN->getMaskElt(i);
2689       if (M < 0) {
2690         // For UNDEF elements, we don't know anything about the common state of
2691         // the shuffle result.
2692         Known.resetAll();
2693         DemandedLHS.clearAllBits();
2694         DemandedRHS.clearAllBits();
2695         break;
2696       }
2697 
2698       if ((unsigned)M < NumElts)
2699         DemandedLHS.setBit((unsigned)M % NumElts);
2700       else
2701         DemandedRHS.setBit((unsigned)M % NumElts);
2702     }
2703     // Known bits are the values that are shared by every demanded element.
2704     if (!!DemandedLHS) {
2705       SDValue LHS = Op.getOperand(0);
2706       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2707       Known = KnownBits::commonBits(Known, Known2);
2708     }
2709     // If we don't know any bits, early out.
2710     if (Known.isUnknown())
2711       break;
2712     if (!!DemandedRHS) {
2713       SDValue RHS = Op.getOperand(1);
2714       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2715       Known = KnownBits::commonBits(Known, Known2);
2716     }
2717     break;
2718   }
2719   case ISD::CONCAT_VECTORS: {
2720     // Split DemandedElts and test each of the demanded subvectors.
2721     Known.Zero.setAllBits(); Known.One.setAllBits();
2722     EVT SubVectorVT = Op.getOperand(0).getValueType();
2723     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2724     unsigned NumSubVectors = Op.getNumOperands();
2725     for (unsigned i = 0; i != NumSubVectors; ++i) {
2726       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2727       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2728       if (!!DemandedSub) {
2729         SDValue Sub = Op.getOperand(i);
2730         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2731         Known = KnownBits::commonBits(Known, Known2);
2732       }
2733       // If we don't know any bits, early out.
2734       if (Known.isUnknown())
2735         break;
2736     }
2737     break;
2738   }
2739   case ISD::INSERT_SUBVECTOR: {
2740     // Demand any elements from the subvector and the remainder from the src its
2741     // inserted into.
2742     SDValue Src = Op.getOperand(0);
2743     SDValue Sub = Op.getOperand(1);
2744     uint64_t Idx = Op.getConstantOperandVal(2);
2745     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2746     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2747     APInt DemandedSrcElts = DemandedElts;
2748     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2749 
2750     Known.One.setAllBits();
2751     Known.Zero.setAllBits();
2752     if (!!DemandedSubElts) {
2753       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2754       if (Known.isUnknown())
2755         break; // early-out.
2756     }
2757     if (!!DemandedSrcElts) {
2758       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2759       Known = KnownBits::commonBits(Known, Known2);
2760     }
2761     break;
2762   }
2763   case ISD::EXTRACT_SUBVECTOR: {
2764     // Offset the demanded elts by the subvector index.
2765     SDValue Src = Op.getOperand(0);
2766     // Bail until we can represent demanded elements for scalable vectors.
2767     if (Src.getValueType().isScalableVector())
2768       break;
2769     uint64_t Idx = Op.getConstantOperandVal(1);
2770     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2771     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2772     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2773     break;
2774   }
2775   case ISD::SCALAR_TO_VECTOR: {
2776     // We know about scalar_to_vector as much as we know about it source,
2777     // which becomes the first element of otherwise unknown vector.
2778     if (DemandedElts != 1)
2779       break;
2780 
2781     SDValue N0 = Op.getOperand(0);
2782     Known = computeKnownBits(N0, Depth + 1);
2783     if (N0.getValueSizeInBits() != BitWidth)
2784       Known = Known.trunc(BitWidth);
2785 
2786     break;
2787   }
2788   case ISD::BITCAST: {
2789     SDValue N0 = Op.getOperand(0);
2790     EVT SubVT = N0.getValueType();
2791     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2792 
2793     // Ignore bitcasts from unsupported types.
2794     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2795       break;
2796 
2797     // Fast handling of 'identity' bitcasts.
2798     if (BitWidth == SubBitWidth) {
2799       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2800       break;
2801     }
2802 
2803     bool IsLE = getDataLayout().isLittleEndian();
2804 
2805     // Bitcast 'small element' vector to 'large element' scalar/vector.
2806     if ((BitWidth % SubBitWidth) == 0) {
2807       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2808 
2809       // Collect known bits for the (larger) output by collecting the known
2810       // bits from each set of sub elements and shift these into place.
2811       // We need to separately call computeKnownBits for each set of
2812       // sub elements as the knownbits for each is likely to be different.
2813       unsigned SubScale = BitWidth / SubBitWidth;
2814       APInt SubDemandedElts(NumElts * SubScale, 0);
2815       for (unsigned i = 0; i != NumElts; ++i)
2816         if (DemandedElts[i])
2817           SubDemandedElts.setBit(i * SubScale);
2818 
2819       for (unsigned i = 0; i != SubScale; ++i) {
2820         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2821                          Depth + 1);
2822         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2823         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2824         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2825       }
2826     }
2827 
2828     // Bitcast 'large element' scalar/vector to 'small element' vector.
2829     if ((SubBitWidth % BitWidth) == 0) {
2830       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2831 
2832       // Collect known bits for the (smaller) output by collecting the known
2833       // bits from the overlapping larger input elements and extracting the
2834       // sub sections we actually care about.
2835       unsigned SubScale = SubBitWidth / BitWidth;
2836       APInt SubDemandedElts(NumElts / SubScale, 0);
2837       for (unsigned i = 0; i != NumElts; ++i)
2838         if (DemandedElts[i])
2839           SubDemandedElts.setBit(i / SubScale);
2840 
2841       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2842 
2843       Known.Zero.setAllBits(); Known.One.setAllBits();
2844       for (unsigned i = 0; i != NumElts; ++i)
2845         if (DemandedElts[i]) {
2846           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2847           unsigned Offset = (Shifts % SubScale) * BitWidth;
2848           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2849           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2850           // If we don't know any bits, early out.
2851           if (Known.isUnknown())
2852             break;
2853         }
2854     }
2855     break;
2856   }
2857   case ISD::AND:
2858     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2859     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2860 
2861     Known &= Known2;
2862     break;
2863   case ISD::OR:
2864     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2865     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2866 
2867     Known |= Known2;
2868     break;
2869   case ISD::XOR:
2870     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2871     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2872 
2873     Known ^= Known2;
2874     break;
2875   case ISD::MUL: {
2876     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2877     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2878     Known = KnownBits::computeForMul(Known, Known2);
2879     break;
2880   }
2881   case ISD::UDIV: {
2882     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2883     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2884     Known = KnownBits::udiv(Known, Known2);
2885     break;
2886   }
2887   case ISD::SELECT:
2888   case ISD::VSELECT:
2889     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2890     // If we don't know any bits, early out.
2891     if (Known.isUnknown())
2892       break;
2893     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2894 
2895     // Only known if known in both the LHS and RHS.
2896     Known = KnownBits::commonBits(Known, Known2);
2897     break;
2898   case ISD::SELECT_CC:
2899     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2900     // If we don't know any bits, early out.
2901     if (Known.isUnknown())
2902       break;
2903     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2904 
2905     // Only known if known in both the LHS and RHS.
2906     Known = KnownBits::commonBits(Known, Known2);
2907     break;
2908   case ISD::SMULO:
2909   case ISD::UMULO:
2910   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2911     if (Op.getResNo() != 1)
2912       break;
2913     // The boolean result conforms to getBooleanContents.
2914     // If we know the result of a setcc has the top bits zero, use this info.
2915     // We know that we have an integer-based boolean since these operations
2916     // are only available for integer.
2917     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2918             TargetLowering::ZeroOrOneBooleanContent &&
2919         BitWidth > 1)
2920       Known.Zero.setBitsFrom(1);
2921     break;
2922   case ISD::SETCC:
2923   case ISD::STRICT_FSETCC:
2924   case ISD::STRICT_FSETCCS: {
2925     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2926     // If we know the result of a setcc has the top bits zero, use this info.
2927     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2928             TargetLowering::ZeroOrOneBooleanContent &&
2929         BitWidth > 1)
2930       Known.Zero.setBitsFrom(1);
2931     break;
2932   }
2933   case ISD::SHL:
2934     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2935     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2936     Known = KnownBits::shl(Known, Known2);
2937 
2938     // Minimum shift low bits are known zero.
2939     if (const APInt *ShMinAmt =
2940             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2941       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2942     break;
2943   case ISD::SRL:
2944     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2945     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2946     Known = KnownBits::lshr(Known, Known2);
2947 
2948     // Minimum shift high bits are known zero.
2949     if (const APInt *ShMinAmt =
2950             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2951       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2952     break;
2953   case ISD::SRA:
2954     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2955     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2956     Known = KnownBits::ashr(Known, Known2);
2957     // TODO: Add minimum shift high known sign bits.
2958     break;
2959   case ISD::FSHL:
2960   case ISD::FSHR:
2961     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2962       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2963 
2964       // For fshl, 0-shift returns the 1st arg.
2965       // For fshr, 0-shift returns the 2nd arg.
2966       if (Amt == 0) {
2967         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2968                                  DemandedElts, Depth + 1);
2969         break;
2970       }
2971 
2972       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2973       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2974       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2975       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2976       if (Opcode == ISD::FSHL) {
2977         Known.One <<= Amt;
2978         Known.Zero <<= Amt;
2979         Known2.One.lshrInPlace(BitWidth - Amt);
2980         Known2.Zero.lshrInPlace(BitWidth - Amt);
2981       } else {
2982         Known.One <<= BitWidth - Amt;
2983         Known.Zero <<= BitWidth - Amt;
2984         Known2.One.lshrInPlace(Amt);
2985         Known2.Zero.lshrInPlace(Amt);
2986       }
2987       Known.One |= Known2.One;
2988       Known.Zero |= Known2.Zero;
2989     }
2990     break;
2991   case ISD::SIGN_EXTEND_INREG: {
2992     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2993     unsigned EBits = EVT.getScalarSizeInBits();
2994 
2995     // Sign extension.  Compute the demanded bits in the result that are not
2996     // present in the input.
2997     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2998 
2999     APInt InSignMask = APInt::getSignMask(EBits);
3000     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3001 
3002     // If the sign extended bits are demanded, we know that the sign
3003     // bit is demanded.
3004     InSignMask = InSignMask.zext(BitWidth);
3005     if (NewBits.getBoolValue())
3006       InputDemandedBits |= InSignMask;
3007 
3008     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3009     Known.One &= InputDemandedBits;
3010     Known.Zero &= InputDemandedBits;
3011 
3012     // If the sign bit of the input is known set or clear, then we know the
3013     // top bits of the result.
3014     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3015       Known.Zero |= NewBits;
3016       Known.One  &= ~NewBits;
3017     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3018       Known.One  |= NewBits;
3019       Known.Zero &= ~NewBits;
3020     } else {                              // Input sign bit unknown
3021       Known.Zero &= ~NewBits;
3022       Known.One  &= ~NewBits;
3023     }
3024     break;
3025   }
3026   case ISD::CTTZ:
3027   case ISD::CTTZ_ZERO_UNDEF: {
3028     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3029     // If we have a known 1, its position is our upper bound.
3030     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3031     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3032     Known.Zero.setBitsFrom(LowBits);
3033     break;
3034   }
3035   case ISD::CTLZ:
3036   case ISD::CTLZ_ZERO_UNDEF: {
3037     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3038     // If we have a known 1, its position is our upper bound.
3039     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3040     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3041     Known.Zero.setBitsFrom(LowBits);
3042     break;
3043   }
3044   case ISD::CTPOP: {
3045     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3046     // If we know some of the bits are zero, they can't be one.
3047     unsigned PossibleOnes = Known2.countMaxPopulation();
3048     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3049     break;
3050   }
3051   case ISD::PARITY: {
3052     // Parity returns 0 everywhere but the LSB.
3053     Known.Zero.setBitsFrom(1);
3054     break;
3055   }
3056   case ISD::LOAD: {
3057     LoadSDNode *LD = cast<LoadSDNode>(Op);
3058     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3059     if (ISD::isNON_EXTLoad(LD) && Cst) {
3060       // Determine any common known bits from the loaded constant pool value.
3061       Type *CstTy = Cst->getType();
3062       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3063         // If its a vector splat, then we can (quickly) reuse the scalar path.
3064         // NOTE: We assume all elements match and none are UNDEF.
3065         if (CstTy->isVectorTy()) {
3066           if (const Constant *Splat = Cst->getSplatValue()) {
3067             Cst = Splat;
3068             CstTy = Cst->getType();
3069           }
3070         }
3071         // TODO - do we need to handle different bitwidths?
3072         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3073           // Iterate across all vector elements finding common known bits.
3074           Known.One.setAllBits();
3075           Known.Zero.setAllBits();
3076           for (unsigned i = 0; i != NumElts; ++i) {
3077             if (!DemandedElts[i])
3078               continue;
3079             if (Constant *Elt = Cst->getAggregateElement(i)) {
3080               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3081                 const APInt &Value = CInt->getValue();
3082                 Known.One &= Value;
3083                 Known.Zero &= ~Value;
3084                 continue;
3085               }
3086               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3087                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3088                 Known.One &= Value;
3089                 Known.Zero &= ~Value;
3090                 continue;
3091               }
3092             }
3093             Known.One.clearAllBits();
3094             Known.Zero.clearAllBits();
3095             break;
3096           }
3097         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3098           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3099             const APInt &Value = CInt->getValue();
3100             Known.One = Value;
3101             Known.Zero = ~Value;
3102           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3103             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3104             Known.One = Value;
3105             Known.Zero = ~Value;
3106           }
3107         }
3108       }
3109     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3110       // If this is a ZEXTLoad and we are looking at the loaded value.
3111       EVT VT = LD->getMemoryVT();
3112       unsigned MemBits = VT.getScalarSizeInBits();
3113       Known.Zero.setBitsFrom(MemBits);
3114     } else if (const MDNode *Ranges = LD->getRanges()) {
3115       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3116         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3117     }
3118     break;
3119   }
3120   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3121     EVT InVT = Op.getOperand(0).getValueType();
3122     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3123     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3124     Known = Known.zext(BitWidth);
3125     break;
3126   }
3127   case ISD::ZERO_EXTEND: {
3128     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3129     Known = Known.zext(BitWidth);
3130     break;
3131   }
3132   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3133     EVT InVT = Op.getOperand(0).getValueType();
3134     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3135     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3136     // If the sign bit is known to be zero or one, then sext will extend
3137     // it to the top bits, else it will just zext.
3138     Known = Known.sext(BitWidth);
3139     break;
3140   }
3141   case ISD::SIGN_EXTEND: {
3142     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3143     // If the sign bit is known to be zero or one, then sext will extend
3144     // it to the top bits, else it will just zext.
3145     Known = Known.sext(BitWidth);
3146     break;
3147   }
3148   case ISD::ANY_EXTEND_VECTOR_INREG: {
3149     EVT InVT = Op.getOperand(0).getValueType();
3150     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3151     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3152     Known = Known.anyext(BitWidth);
3153     break;
3154   }
3155   case ISD::ANY_EXTEND: {
3156     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157     Known = Known.anyext(BitWidth);
3158     break;
3159   }
3160   case ISD::TRUNCATE: {
3161     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3162     Known = Known.trunc(BitWidth);
3163     break;
3164   }
3165   case ISD::AssertZext: {
3166     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3167     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3168     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3169     Known.Zero |= (~InMask);
3170     Known.One  &= (~Known.Zero);
3171     break;
3172   }
3173   case ISD::AssertAlign: {
3174     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3175     assert(LogOfAlign != 0);
3176     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3177     // well as clearing one bits.
3178     Known.Zero.setLowBits(LogOfAlign);
3179     Known.One.clearLowBits(LogOfAlign);
3180     break;
3181   }
3182   case ISD::FGETSIGN:
3183     // All bits are zero except the low bit.
3184     Known.Zero.setBitsFrom(1);
3185     break;
3186   case ISD::USUBO:
3187   case ISD::SSUBO:
3188     if (Op.getResNo() == 1) {
3189       // If we know the result of a setcc has the top bits zero, use this info.
3190       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3191               TargetLowering::ZeroOrOneBooleanContent &&
3192           BitWidth > 1)
3193         Known.Zero.setBitsFrom(1);
3194       break;
3195     }
3196     LLVM_FALLTHROUGH;
3197   case ISD::SUB:
3198   case ISD::SUBC: {
3199     assert(Op.getResNo() == 0 &&
3200            "We only compute knownbits for the difference here.");
3201 
3202     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3203     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3204     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3205                                         Known, Known2);
3206     break;
3207   }
3208   case ISD::UADDO:
3209   case ISD::SADDO:
3210   case ISD::ADDCARRY:
3211     if (Op.getResNo() == 1) {
3212       // If we know the result of a setcc has the top bits zero, use this info.
3213       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3214               TargetLowering::ZeroOrOneBooleanContent &&
3215           BitWidth > 1)
3216         Known.Zero.setBitsFrom(1);
3217       break;
3218     }
3219     LLVM_FALLTHROUGH;
3220   case ISD::ADD:
3221   case ISD::ADDC:
3222   case ISD::ADDE: {
3223     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3224 
3225     // With ADDE and ADDCARRY, a carry bit may be added in.
3226     KnownBits Carry(1);
3227     if (Opcode == ISD::ADDE)
3228       // Can't track carry from glue, set carry to unknown.
3229       Carry.resetAll();
3230     else if (Opcode == ISD::ADDCARRY)
3231       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3232       // the trouble (how often will we find a known carry bit). And I haven't
3233       // tested this very much yet, but something like this might work:
3234       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3235       //   Carry = Carry.zextOrTrunc(1, false);
3236       Carry.resetAll();
3237     else
3238       Carry.setAllZero();
3239 
3240     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3241     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3242     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3243     break;
3244   }
3245   case ISD::SREM: {
3246     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3247     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3248     Known = KnownBits::srem(Known, Known2);
3249     break;
3250   }
3251   case ISD::UREM: {
3252     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3253     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3254     Known = KnownBits::urem(Known, Known2);
3255     break;
3256   }
3257   case ISD::EXTRACT_ELEMENT: {
3258     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3259     const unsigned Index = Op.getConstantOperandVal(1);
3260     const unsigned EltBitWidth = Op.getValueSizeInBits();
3261 
3262     // Remove low part of known bits mask
3263     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3264     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3265 
3266     // Remove high part of known bit mask
3267     Known = Known.trunc(EltBitWidth);
3268     break;
3269   }
3270   case ISD::EXTRACT_VECTOR_ELT: {
3271     SDValue InVec = Op.getOperand(0);
3272     SDValue EltNo = Op.getOperand(1);
3273     EVT VecVT = InVec.getValueType();
3274     // computeKnownBits not yet implemented for scalable vectors.
3275     if (VecVT.isScalableVector())
3276       break;
3277     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3278     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3279 
3280     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3281     // anything about the extended bits.
3282     if (BitWidth > EltBitWidth)
3283       Known = Known.trunc(EltBitWidth);
3284 
3285     // If we know the element index, just demand that vector element, else for
3286     // an unknown element index, ignore DemandedElts and demand them all.
3287     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3288     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3289     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3290       DemandedSrcElts =
3291           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3292 
3293     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3294     if (BitWidth > EltBitWidth)
3295       Known = Known.anyext(BitWidth);
3296     break;
3297   }
3298   case ISD::INSERT_VECTOR_ELT: {
3299     // If we know the element index, split the demand between the
3300     // source vector and the inserted element, otherwise assume we need
3301     // the original demanded vector elements and the value.
3302     SDValue InVec = Op.getOperand(0);
3303     SDValue InVal = Op.getOperand(1);
3304     SDValue EltNo = Op.getOperand(2);
3305     bool DemandedVal = true;
3306     APInt DemandedVecElts = DemandedElts;
3307     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3308     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3309       unsigned EltIdx = CEltNo->getZExtValue();
3310       DemandedVal = !!DemandedElts[EltIdx];
3311       DemandedVecElts.clearBit(EltIdx);
3312     }
3313     Known.One.setAllBits();
3314     Known.Zero.setAllBits();
3315     if (DemandedVal) {
3316       Known2 = computeKnownBits(InVal, Depth + 1);
3317       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3318     }
3319     if (!!DemandedVecElts) {
3320       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3321       Known = KnownBits::commonBits(Known, Known2);
3322     }
3323     break;
3324   }
3325   case ISD::BITREVERSE: {
3326     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3327     Known = Known2.reverseBits();
3328     break;
3329   }
3330   case ISD::BSWAP: {
3331     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3332     Known = Known2.byteSwap();
3333     break;
3334   }
3335   case ISD::ABS: {
3336     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known2.abs();
3338     break;
3339   }
3340   case ISD::UMIN: {
3341     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3342     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3343     Known = KnownBits::umin(Known, Known2);
3344     break;
3345   }
3346   case ISD::UMAX: {
3347     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3348     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3349     Known = KnownBits::umax(Known, Known2);
3350     break;
3351   }
3352   case ISD::SMIN:
3353   case ISD::SMAX: {
3354     // If we have a clamp pattern, we know that the number of sign bits will be
3355     // the minimum of the clamp min/max range.
3356     bool IsMax = (Opcode == ISD::SMAX);
3357     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3358     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3359       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3360         CstHigh =
3361             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3362     if (CstLow && CstHigh) {
3363       if (!IsMax)
3364         std::swap(CstLow, CstHigh);
3365 
3366       const APInt &ValueLow = CstLow->getAPIntValue();
3367       const APInt &ValueHigh = CstHigh->getAPIntValue();
3368       if (ValueLow.sle(ValueHigh)) {
3369         unsigned LowSignBits = ValueLow.getNumSignBits();
3370         unsigned HighSignBits = ValueHigh.getNumSignBits();
3371         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3372         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3373           Known.One.setHighBits(MinSignBits);
3374           break;
3375         }
3376         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3377           Known.Zero.setHighBits(MinSignBits);
3378           break;
3379         }
3380       }
3381     }
3382 
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     if (Known.isUnknown()) break; // Early-out
3385     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3386     if (IsMax)
3387       Known = KnownBits::smax(Known, Known2);
3388     else
3389       Known = KnownBits::smin(Known, Known2);
3390     break;
3391   }
3392   case ISD::FrameIndex:
3393   case ISD::TargetFrameIndex:
3394     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3395                                        Known, getMachineFunction());
3396     break;
3397 
3398   default:
3399     if (Opcode < ISD::BUILTIN_OP_END)
3400       break;
3401     LLVM_FALLTHROUGH;
3402   case ISD::INTRINSIC_WO_CHAIN:
3403   case ISD::INTRINSIC_W_CHAIN:
3404   case ISD::INTRINSIC_VOID:
3405     // Allow the target to implement this method for its nodes.
3406     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3407     break;
3408   }
3409 
3410   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3411   return Known;
3412 }
3413 
3414 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3415                                                              SDValue N1) const {
3416   // X + 0 never overflow
3417   if (isNullConstant(N1))
3418     return OFK_Never;
3419 
3420   KnownBits N1Known = computeKnownBits(N1);
3421   if (N1Known.Zero.getBoolValue()) {
3422     KnownBits N0Known = computeKnownBits(N0);
3423 
3424     bool overflow;
3425     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3426     if (!overflow)
3427       return OFK_Never;
3428   }
3429 
3430   // mulhi + 1 never overflow
3431   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3432       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3433     return OFK_Never;
3434 
3435   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3436     KnownBits N0Known = computeKnownBits(N0);
3437 
3438     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3439       return OFK_Never;
3440   }
3441 
3442   return OFK_Sometime;
3443 }
3444 
3445 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3446   EVT OpVT = Val.getValueType();
3447   unsigned BitWidth = OpVT.getScalarSizeInBits();
3448 
3449   // Is the constant a known power of 2?
3450   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3451     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3452 
3453   // A left-shift of a constant one will have exactly one bit set because
3454   // shifting the bit off the end is undefined.
3455   if (Val.getOpcode() == ISD::SHL) {
3456     auto *C = isConstOrConstSplat(Val.getOperand(0));
3457     if (C && C->getAPIntValue() == 1)
3458       return true;
3459   }
3460 
3461   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3462   // one bit set.
3463   if (Val.getOpcode() == ISD::SRL) {
3464     auto *C = isConstOrConstSplat(Val.getOperand(0));
3465     if (C && C->getAPIntValue().isSignMask())
3466       return true;
3467   }
3468 
3469   // Are all operands of a build vector constant powers of two?
3470   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3471     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3472           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3473             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3474           return false;
3475         }))
3476       return true;
3477 
3478   // More could be done here, though the above checks are enough
3479   // to handle some common cases.
3480 
3481   // Fall back to computeKnownBits to catch other known cases.
3482   KnownBits Known = computeKnownBits(Val);
3483   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3484 }
3485 
3486 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3487   EVT VT = Op.getValueType();
3488 
3489   // TODO: Assume we don't know anything for now.
3490   if (VT.isScalableVector())
3491     return 1;
3492 
3493   APInt DemandedElts = VT.isVector()
3494                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3495                            : APInt(1, 1);
3496   return ComputeNumSignBits(Op, DemandedElts, Depth);
3497 }
3498 
3499 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3500                                           unsigned Depth) const {
3501   EVT VT = Op.getValueType();
3502   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3503   unsigned VTBits = VT.getScalarSizeInBits();
3504   unsigned NumElts = DemandedElts.getBitWidth();
3505   unsigned Tmp, Tmp2;
3506   unsigned FirstAnswer = 1;
3507 
3508   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3509     const APInt &Val = C->getAPIntValue();
3510     return Val.getNumSignBits();
3511   }
3512 
3513   if (Depth >= MaxRecursionDepth)
3514     return 1;  // Limit search depth.
3515 
3516   if (!DemandedElts || VT.isScalableVector())
3517     return 1;  // No demanded elts, better to assume we don't know anything.
3518 
3519   unsigned Opcode = Op.getOpcode();
3520   switch (Opcode) {
3521   default: break;
3522   case ISD::AssertSext:
3523     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3524     return VTBits-Tmp+1;
3525   case ISD::AssertZext:
3526     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3527     return VTBits-Tmp;
3528 
3529   case ISD::BUILD_VECTOR:
3530     Tmp = VTBits;
3531     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3532       if (!DemandedElts[i])
3533         continue;
3534 
3535       SDValue SrcOp = Op.getOperand(i);
3536       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3537 
3538       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3539       if (SrcOp.getValueSizeInBits() != VTBits) {
3540         assert(SrcOp.getValueSizeInBits() > VTBits &&
3541                "Expected BUILD_VECTOR implicit truncation");
3542         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3543         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3544       }
3545       Tmp = std::min(Tmp, Tmp2);
3546     }
3547     return Tmp;
3548 
3549   case ISD::VECTOR_SHUFFLE: {
3550     // Collect the minimum number of sign bits that are shared by every vector
3551     // element referenced by the shuffle.
3552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3553     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3554     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3555     for (unsigned i = 0; i != NumElts; ++i) {
3556       int M = SVN->getMaskElt(i);
3557       if (!DemandedElts[i])
3558         continue;
3559       // For UNDEF elements, we don't know anything about the common state of
3560       // the shuffle result.
3561       if (M < 0)
3562         return 1;
3563       if ((unsigned)M < NumElts)
3564         DemandedLHS.setBit((unsigned)M % NumElts);
3565       else
3566         DemandedRHS.setBit((unsigned)M % NumElts);
3567     }
3568     Tmp = std::numeric_limits<unsigned>::max();
3569     if (!!DemandedLHS)
3570       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3571     if (!!DemandedRHS) {
3572       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3573       Tmp = std::min(Tmp, Tmp2);
3574     }
3575     // If we don't know anything, early out and try computeKnownBits fall-back.
3576     if (Tmp == 1)
3577       break;
3578     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3579     return Tmp;
3580   }
3581 
3582   case ISD::BITCAST: {
3583     SDValue N0 = Op.getOperand(0);
3584     EVT SrcVT = N0.getValueType();
3585     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3586 
3587     // Ignore bitcasts from unsupported types..
3588     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3589       break;
3590 
3591     // Fast handling of 'identity' bitcasts.
3592     if (VTBits == SrcBits)
3593       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3594 
3595     bool IsLE = getDataLayout().isLittleEndian();
3596 
3597     // Bitcast 'large element' scalar/vector to 'small element' vector.
3598     if ((SrcBits % VTBits) == 0) {
3599       assert(VT.isVector() && "Expected bitcast to vector");
3600 
3601       unsigned Scale = SrcBits / VTBits;
3602       APInt SrcDemandedElts(NumElts / Scale, 0);
3603       for (unsigned i = 0; i != NumElts; ++i)
3604         if (DemandedElts[i])
3605           SrcDemandedElts.setBit(i / Scale);
3606 
3607       // Fast case - sign splat can be simply split across the small elements.
3608       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3609       if (Tmp == SrcBits)
3610         return VTBits;
3611 
3612       // Slow case - determine how far the sign extends into each sub-element.
3613       Tmp2 = VTBits;
3614       for (unsigned i = 0; i != NumElts; ++i)
3615         if (DemandedElts[i]) {
3616           unsigned SubOffset = i % Scale;
3617           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3618           SubOffset = SubOffset * VTBits;
3619           if (Tmp <= SubOffset)
3620             return 1;
3621           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3622         }
3623       return Tmp2;
3624     }
3625     break;
3626   }
3627 
3628   case ISD::SIGN_EXTEND:
3629     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3630     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3631   case ISD::SIGN_EXTEND_INREG:
3632     // Max of the input and what this extends.
3633     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3634     Tmp = VTBits-Tmp+1;
3635     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3636     return std::max(Tmp, Tmp2);
3637   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3638     SDValue Src = Op.getOperand(0);
3639     EVT SrcVT = Src.getValueType();
3640     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3641     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3642     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3643   }
3644   case ISD::SRA:
3645     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3646     // SRA X, C -> adds C sign bits.
3647     if (const APInt *ShAmt =
3648             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3649       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3650     return Tmp;
3651   case ISD::SHL:
3652     if (const APInt *ShAmt =
3653             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3654       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3655       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3656       if (ShAmt->ult(Tmp))
3657         return Tmp - ShAmt->getZExtValue();
3658     }
3659     break;
3660   case ISD::AND:
3661   case ISD::OR:
3662   case ISD::XOR:    // NOT is handled here.
3663     // Logical binary ops preserve the number of sign bits at the worst.
3664     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3665     if (Tmp != 1) {
3666       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3667       FirstAnswer = std::min(Tmp, Tmp2);
3668       // We computed what we know about the sign bits as our first
3669       // answer. Now proceed to the generic code that uses
3670       // computeKnownBits, and pick whichever answer is better.
3671     }
3672     break;
3673 
3674   case ISD::SELECT:
3675   case ISD::VSELECT:
3676     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3677     if (Tmp == 1) return 1;  // Early out.
3678     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3679     return std::min(Tmp, Tmp2);
3680   case ISD::SELECT_CC:
3681     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3682     if (Tmp == 1) return 1;  // Early out.
3683     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3684     return std::min(Tmp, Tmp2);
3685 
3686   case ISD::SMIN:
3687   case ISD::SMAX: {
3688     // If we have a clamp pattern, we know that the number of sign bits will be
3689     // the minimum of the clamp min/max range.
3690     bool IsMax = (Opcode == ISD::SMAX);
3691     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3692     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3693       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3694         CstHigh =
3695             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3696     if (CstLow && CstHigh) {
3697       if (!IsMax)
3698         std::swap(CstLow, CstHigh);
3699       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3700         Tmp = CstLow->getAPIntValue().getNumSignBits();
3701         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3702         return std::min(Tmp, Tmp2);
3703       }
3704     }
3705 
3706     // Fallback - just get the minimum number of sign bits of the operands.
3707     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3708     if (Tmp == 1)
3709       return 1;  // Early out.
3710     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3711     return std::min(Tmp, Tmp2);
3712   }
3713   case ISD::UMIN:
3714   case ISD::UMAX:
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3716     if (Tmp == 1)
3717       return 1;  // Early out.
3718     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3719     return std::min(Tmp, Tmp2);
3720   case ISD::SADDO:
3721   case ISD::UADDO:
3722   case ISD::SSUBO:
3723   case ISD::USUBO:
3724   case ISD::SMULO:
3725   case ISD::UMULO:
3726     if (Op.getResNo() != 1)
3727       break;
3728     // The boolean result conforms to getBooleanContents.  Fall through.
3729     // If setcc returns 0/-1, all bits are sign bits.
3730     // We know that we have an integer-based boolean since these operations
3731     // are only available for integer.
3732     if (TLI->getBooleanContents(VT.isVector(), false) ==
3733         TargetLowering::ZeroOrNegativeOneBooleanContent)
3734       return VTBits;
3735     break;
3736   case ISD::SETCC:
3737   case ISD::STRICT_FSETCC:
3738   case ISD::STRICT_FSETCCS: {
3739     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3740     // If setcc returns 0/-1, all bits are sign bits.
3741     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3742         TargetLowering::ZeroOrNegativeOneBooleanContent)
3743       return VTBits;
3744     break;
3745   }
3746   case ISD::ROTL:
3747   case ISD::ROTR:
3748     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3749 
3750     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3751     if (Tmp == VTBits)
3752       return VTBits;
3753 
3754     if (ConstantSDNode *C =
3755             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3756       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3757 
3758       // Handle rotate right by N like a rotate left by 32-N.
3759       if (Opcode == ISD::ROTR)
3760         RotAmt = (VTBits - RotAmt) % VTBits;
3761 
3762       // If we aren't rotating out all of the known-in sign bits, return the
3763       // number that are left.  This handles rotl(sext(x), 1) for example.
3764       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3765     }
3766     break;
3767   case ISD::ADD:
3768   case ISD::ADDC:
3769     // Add can have at most one carry bit.  Thus we know that the output
3770     // is, at worst, one more bit than the inputs.
3771     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3772     if (Tmp == 1) return 1; // Early out.
3773 
3774     // Special case decrementing a value (ADD X, -1):
3775     if (ConstantSDNode *CRHS =
3776             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3777       if (CRHS->isAllOnesValue()) {
3778         KnownBits Known =
3779             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3780 
3781         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3782         // sign bits set.
3783         if ((Known.Zero | 1).isAllOnesValue())
3784           return VTBits;
3785 
3786         // If we are subtracting one from a positive number, there is no carry
3787         // out of the result.
3788         if (Known.isNonNegative())
3789           return Tmp;
3790       }
3791 
3792     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3793     if (Tmp2 == 1) return 1; // Early out.
3794     return std::min(Tmp, Tmp2) - 1;
3795   case ISD::SUB:
3796     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3797     if (Tmp2 == 1) return 1; // Early out.
3798 
3799     // Handle NEG.
3800     if (ConstantSDNode *CLHS =
3801             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3802       if (CLHS->isNullValue()) {
3803         KnownBits Known =
3804             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3805         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3806         // sign bits set.
3807         if ((Known.Zero | 1).isAllOnesValue())
3808           return VTBits;
3809 
3810         // If the input is known to be positive (the sign bit is known clear),
3811         // the output of the NEG has the same number of sign bits as the input.
3812         if (Known.isNonNegative())
3813           return Tmp2;
3814 
3815         // Otherwise, we treat this like a SUB.
3816       }
3817 
3818     // Sub can have at most one carry bit.  Thus we know that the output
3819     // is, at worst, one more bit than the inputs.
3820     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821     if (Tmp == 1) return 1; // Early out.
3822     return std::min(Tmp, Tmp2) - 1;
3823   case ISD::MUL: {
3824     // The output of the Mul can be at most twice the valid bits in the inputs.
3825     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3826     if (SignBitsOp0 == 1)
3827       break;
3828     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3829     if (SignBitsOp1 == 1)
3830       break;
3831     unsigned OutValidBits =
3832         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3833     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3834   }
3835   case ISD::TRUNCATE: {
3836     // Check if the sign bits of source go down as far as the truncated value.
3837     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3838     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3839     if (NumSrcSignBits > (NumSrcBits - VTBits))
3840       return NumSrcSignBits - (NumSrcBits - VTBits);
3841     break;
3842   }
3843   case ISD::EXTRACT_ELEMENT: {
3844     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3845     const int BitWidth = Op.getValueSizeInBits();
3846     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3847 
3848     // Get reverse index (starting from 1), Op1 value indexes elements from
3849     // little end. Sign starts at big end.
3850     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3851 
3852     // If the sign portion ends in our element the subtraction gives correct
3853     // result. Otherwise it gives either negative or > bitwidth result
3854     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3855   }
3856   case ISD::INSERT_VECTOR_ELT: {
3857     // If we know the element index, split the demand between the
3858     // source vector and the inserted element, otherwise assume we need
3859     // the original demanded vector elements and the value.
3860     SDValue InVec = Op.getOperand(0);
3861     SDValue InVal = Op.getOperand(1);
3862     SDValue EltNo = Op.getOperand(2);
3863     bool DemandedVal = true;
3864     APInt DemandedVecElts = DemandedElts;
3865     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3866     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3867       unsigned EltIdx = CEltNo->getZExtValue();
3868       DemandedVal = !!DemandedElts[EltIdx];
3869       DemandedVecElts.clearBit(EltIdx);
3870     }
3871     Tmp = std::numeric_limits<unsigned>::max();
3872     if (DemandedVal) {
3873       // TODO - handle implicit truncation of inserted elements.
3874       if (InVal.getScalarValueSizeInBits() != VTBits)
3875         break;
3876       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3877       Tmp = std::min(Tmp, Tmp2);
3878     }
3879     if (!!DemandedVecElts) {
3880       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3881       Tmp = std::min(Tmp, Tmp2);
3882     }
3883     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3884     return Tmp;
3885   }
3886   case ISD::EXTRACT_VECTOR_ELT: {
3887     SDValue InVec = Op.getOperand(0);
3888     SDValue EltNo = Op.getOperand(1);
3889     EVT VecVT = InVec.getValueType();
3890     const unsigned BitWidth = Op.getValueSizeInBits();
3891     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3892     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3893 
3894     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3895     // anything about sign bits. But if the sizes match we can derive knowledge
3896     // about sign bits from the vector operand.
3897     if (BitWidth != EltBitWidth)
3898       break;
3899 
3900     // If we know the element index, just demand that vector element, else for
3901     // an unknown element index, ignore DemandedElts and demand them all.
3902     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3903     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3904     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3905       DemandedSrcElts =
3906           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3907 
3908     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3909   }
3910   case ISD::EXTRACT_SUBVECTOR: {
3911     // Offset the demanded elts by the subvector index.
3912     SDValue Src = Op.getOperand(0);
3913     // Bail until we can represent demanded elements for scalable vectors.
3914     if (Src.getValueType().isScalableVector())
3915       break;
3916     uint64_t Idx = Op.getConstantOperandVal(1);
3917     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3918     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3919     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3920   }
3921   case ISD::CONCAT_VECTORS: {
3922     // Determine the minimum number of sign bits across all demanded
3923     // elts of the input vectors. Early out if the result is already 1.
3924     Tmp = std::numeric_limits<unsigned>::max();
3925     EVT SubVectorVT = Op.getOperand(0).getValueType();
3926     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3927     unsigned NumSubVectors = Op.getNumOperands();
3928     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3929       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3930       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3931       if (!DemandedSub)
3932         continue;
3933       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3934       Tmp = std::min(Tmp, Tmp2);
3935     }
3936     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3937     return Tmp;
3938   }
3939   case ISD::INSERT_SUBVECTOR: {
3940     // Demand any elements from the subvector and the remainder from the src its
3941     // inserted into.
3942     SDValue Src = Op.getOperand(0);
3943     SDValue Sub = Op.getOperand(1);
3944     uint64_t Idx = Op.getConstantOperandVal(2);
3945     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3946     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3947     APInt DemandedSrcElts = DemandedElts;
3948     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3949 
3950     Tmp = std::numeric_limits<unsigned>::max();
3951     if (!!DemandedSubElts) {
3952       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3953       if (Tmp == 1)
3954         return 1; // early-out
3955     }
3956     if (!!DemandedSrcElts) {
3957       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3958       Tmp = std::min(Tmp, Tmp2);
3959     }
3960     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3961     return Tmp;
3962   }
3963   }
3964 
3965   // If we are looking at the loaded value of the SDNode.
3966   if (Op.getResNo() == 0) {
3967     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3968     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3969       unsigned ExtType = LD->getExtensionType();
3970       switch (ExtType) {
3971       default: break;
3972       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3973         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3974         return VTBits - Tmp + 1;
3975       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3976         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3977         return VTBits - Tmp;
3978       case ISD::NON_EXTLOAD:
3979         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3980           // We only need to handle vectors - computeKnownBits should handle
3981           // scalar cases.
3982           Type *CstTy = Cst->getType();
3983           if (CstTy->isVectorTy() &&
3984               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3985             Tmp = VTBits;
3986             for (unsigned i = 0; i != NumElts; ++i) {
3987               if (!DemandedElts[i])
3988                 continue;
3989               if (Constant *Elt = Cst->getAggregateElement(i)) {
3990                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3991                   const APInt &Value = CInt->getValue();
3992                   Tmp = std::min(Tmp, Value.getNumSignBits());
3993                   continue;
3994                 }
3995                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3996                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3997                   Tmp = std::min(Tmp, Value.getNumSignBits());
3998                   continue;
3999                 }
4000               }
4001               // Unknown type. Conservatively assume no bits match sign bit.
4002               return 1;
4003             }
4004             return Tmp;
4005           }
4006         }
4007         break;
4008       }
4009     }
4010   }
4011 
4012   // Allow the target to implement this method for its nodes.
4013   if (Opcode >= ISD::BUILTIN_OP_END ||
4014       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4015       Opcode == ISD::INTRINSIC_W_CHAIN ||
4016       Opcode == ISD::INTRINSIC_VOID) {
4017     unsigned NumBits =
4018         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4019     if (NumBits > 1)
4020       FirstAnswer = std::max(FirstAnswer, NumBits);
4021   }
4022 
4023   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4024   // use this information.
4025   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4026 
4027   APInt Mask;
4028   if (Known.isNonNegative()) {        // sign bit is 0
4029     Mask = Known.Zero;
4030   } else if (Known.isNegative()) {  // sign bit is 1;
4031     Mask = Known.One;
4032   } else {
4033     // Nothing known.
4034     return FirstAnswer;
4035   }
4036 
4037   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4038   // the number of identical bits in the top of the input value.
4039   Mask <<= Mask.getBitWidth()-VTBits;
4040   return std::max(FirstAnswer, Mask.countLeadingOnes());
4041 }
4042 
4043 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4044   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4045       !isa<ConstantSDNode>(Op.getOperand(1)))
4046     return false;
4047 
4048   if (Op.getOpcode() == ISD::OR &&
4049       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4050     return false;
4051 
4052   return true;
4053 }
4054 
4055 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4056   // If we're told that NaNs won't happen, assume they won't.
4057   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4058     return true;
4059 
4060   if (Depth >= MaxRecursionDepth)
4061     return false; // Limit search depth.
4062 
4063   // TODO: Handle vectors.
4064   // If the value is a constant, we can obviously see if it is a NaN or not.
4065   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4066     return !C->getValueAPF().isNaN() ||
4067            (SNaN && !C->getValueAPF().isSignaling());
4068   }
4069 
4070   unsigned Opcode = Op.getOpcode();
4071   switch (Opcode) {
4072   case ISD::FADD:
4073   case ISD::FSUB:
4074   case ISD::FMUL:
4075   case ISD::FDIV:
4076   case ISD::FREM:
4077   case ISD::FSIN:
4078   case ISD::FCOS: {
4079     if (SNaN)
4080       return true;
4081     // TODO: Need isKnownNeverInfinity
4082     return false;
4083   }
4084   case ISD::FCANONICALIZE:
4085   case ISD::FEXP:
4086   case ISD::FEXP2:
4087   case ISD::FTRUNC:
4088   case ISD::FFLOOR:
4089   case ISD::FCEIL:
4090   case ISD::FROUND:
4091   case ISD::FROUNDEVEN:
4092   case ISD::FRINT:
4093   case ISD::FNEARBYINT: {
4094     if (SNaN)
4095       return true;
4096     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4097   }
4098   case ISD::FABS:
4099   case ISD::FNEG:
4100   case ISD::FCOPYSIGN: {
4101     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4102   }
4103   case ISD::SELECT:
4104     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4105            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4106   case ISD::FP_EXTEND:
4107   case ISD::FP_ROUND: {
4108     if (SNaN)
4109       return true;
4110     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4111   }
4112   case ISD::SINT_TO_FP:
4113   case ISD::UINT_TO_FP:
4114     return true;
4115   case ISD::FMA:
4116   case ISD::FMAD: {
4117     if (SNaN)
4118       return true;
4119     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4120            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4121            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4122   }
4123   case ISD::FSQRT: // Need is known positive
4124   case ISD::FLOG:
4125   case ISD::FLOG2:
4126   case ISD::FLOG10:
4127   case ISD::FPOWI:
4128   case ISD::FPOW: {
4129     if (SNaN)
4130       return true;
4131     // TODO: Refine on operand
4132     return false;
4133   }
4134   case ISD::FMINNUM:
4135   case ISD::FMAXNUM: {
4136     // Only one needs to be known not-nan, since it will be returned if the
4137     // other ends up being one.
4138     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4139            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4140   }
4141   case ISD::FMINNUM_IEEE:
4142   case ISD::FMAXNUM_IEEE: {
4143     if (SNaN)
4144       return true;
4145     // This can return a NaN if either operand is an sNaN, or if both operands
4146     // are NaN.
4147     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4148             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4149            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4150             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4151   }
4152   case ISD::FMINIMUM:
4153   case ISD::FMAXIMUM: {
4154     // TODO: Does this quiet or return the origina NaN as-is?
4155     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4156            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4157   }
4158   case ISD::EXTRACT_VECTOR_ELT: {
4159     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4160   }
4161   default:
4162     if (Opcode >= ISD::BUILTIN_OP_END ||
4163         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4164         Opcode == ISD::INTRINSIC_W_CHAIN ||
4165         Opcode == ISD::INTRINSIC_VOID) {
4166       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4167     }
4168 
4169     return false;
4170   }
4171 }
4172 
4173 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4174   assert(Op.getValueType().isFloatingPoint() &&
4175          "Floating point type expected");
4176 
4177   // If the value is a constant, we can obviously see if it is a zero or not.
4178   // TODO: Add BuildVector support.
4179   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4180     return !C->isZero();
4181   return false;
4182 }
4183 
4184 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4185   assert(!Op.getValueType().isFloatingPoint() &&
4186          "Floating point types unsupported - use isKnownNeverZeroFloat");
4187 
4188   // If the value is a constant, we can obviously see if it is a zero or not.
4189   if (ISD::matchUnaryPredicate(
4190           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4191     return true;
4192 
4193   // TODO: Recognize more cases here.
4194   switch (Op.getOpcode()) {
4195   default: break;
4196   case ISD::OR:
4197     if (isKnownNeverZero(Op.getOperand(1)) ||
4198         isKnownNeverZero(Op.getOperand(0)))
4199       return true;
4200     break;
4201   }
4202 
4203   return false;
4204 }
4205 
4206 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4207   // Check the obvious case.
4208   if (A == B) return true;
4209 
4210   // For for negative and positive zero.
4211   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4212     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4213       if (CA->isZero() && CB->isZero()) return true;
4214 
4215   // Otherwise they may not be equal.
4216   return false;
4217 }
4218 
4219 // FIXME: unify with llvm::haveNoCommonBitsSet.
4220 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4221 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4222   assert(A.getValueType() == B.getValueType() &&
4223          "Values must have the same type");
4224   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4225 }
4226 
4227 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4228                                 ArrayRef<SDValue> Ops,
4229                                 SelectionDAG &DAG) {
4230   int NumOps = Ops.size();
4231   assert(NumOps != 0 && "Can't build an empty vector!");
4232   assert(!VT.isScalableVector() &&
4233          "BUILD_VECTOR cannot be used with scalable types");
4234   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4235          "Incorrect element count in BUILD_VECTOR!");
4236 
4237   // BUILD_VECTOR of UNDEFs is UNDEF.
4238   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4239     return DAG.getUNDEF(VT);
4240 
4241   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4242   SDValue IdentitySrc;
4243   bool IsIdentity = true;
4244   for (int i = 0; i != NumOps; ++i) {
4245     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4246         Ops[i].getOperand(0).getValueType() != VT ||
4247         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4248         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4249         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4250       IsIdentity = false;
4251       break;
4252     }
4253     IdentitySrc = Ops[i].getOperand(0);
4254   }
4255   if (IsIdentity)
4256     return IdentitySrc;
4257 
4258   return SDValue();
4259 }
4260 
4261 /// Try to simplify vector concatenation to an input value, undef, or build
4262 /// vector.
4263 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4264                                   ArrayRef<SDValue> Ops,
4265                                   SelectionDAG &DAG) {
4266   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4267   assert(llvm::all_of(Ops,
4268                       [Ops](SDValue Op) {
4269                         return Ops[0].getValueType() == Op.getValueType();
4270                       }) &&
4271          "Concatenation of vectors with inconsistent value types!");
4272   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4273              VT.getVectorElementCount() &&
4274          "Incorrect element count in vector concatenation!");
4275 
4276   if (Ops.size() == 1)
4277     return Ops[0];
4278 
4279   // Concat of UNDEFs is UNDEF.
4280   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4281     return DAG.getUNDEF(VT);
4282 
4283   // Scan the operands and look for extract operations from a single source
4284   // that correspond to insertion at the same location via this concatenation:
4285   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4286   SDValue IdentitySrc;
4287   bool IsIdentity = true;
4288   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4289     SDValue Op = Ops[i];
4290     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4291     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4292         Op.getOperand(0).getValueType() != VT ||
4293         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4294         Op.getConstantOperandVal(1) != IdentityIndex) {
4295       IsIdentity = false;
4296       break;
4297     }
4298     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4299            "Unexpected identity source vector for concat of extracts");
4300     IdentitySrc = Op.getOperand(0);
4301   }
4302   if (IsIdentity) {
4303     assert(IdentitySrc && "Failed to set source vector of extracts");
4304     return IdentitySrc;
4305   }
4306 
4307   // The code below this point is only designed to work for fixed width
4308   // vectors, so we bail out for now.
4309   if (VT.isScalableVector())
4310     return SDValue();
4311 
4312   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4313   // simplified to one big BUILD_VECTOR.
4314   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4315   EVT SVT = VT.getScalarType();
4316   SmallVector<SDValue, 16> Elts;
4317   for (SDValue Op : Ops) {
4318     EVT OpVT = Op.getValueType();
4319     if (Op.isUndef())
4320       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4321     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4322       Elts.append(Op->op_begin(), Op->op_end());
4323     else
4324       return SDValue();
4325   }
4326 
4327   // BUILD_VECTOR requires all inputs to be of the same type, find the
4328   // maximum type and extend them all.
4329   for (SDValue Op : Elts)
4330     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4331 
4332   if (SVT.bitsGT(VT.getScalarType())) {
4333     for (SDValue &Op : Elts) {
4334       if (Op.isUndef())
4335         Op = DAG.getUNDEF(SVT);
4336       else
4337         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4338                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4339                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4340     }
4341   }
4342 
4343   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4344   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4345   return V;
4346 }
4347 
4348 /// Gets or creates the specified node.
4349 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4350   FoldingSetNodeID ID;
4351   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4352   void *IP = nullptr;
4353   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4354     return SDValue(E, 0);
4355 
4356   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4357                               getVTList(VT));
4358   CSEMap.InsertNode(N, IP);
4359 
4360   InsertNode(N);
4361   SDValue V = SDValue(N, 0);
4362   NewSDValueDbgMsg(V, "Creating new node: ", this);
4363   return V;
4364 }
4365 
4366 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4367                               SDValue Operand) {
4368   SDNodeFlags Flags;
4369   if (Inserter)
4370     Flags = Inserter->getFlags();
4371   return getNode(Opcode, DL, VT, Operand, Flags);
4372 }
4373 
4374 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4375                               SDValue Operand, const SDNodeFlags Flags) {
4376   // Constant fold unary operations with an integer constant operand. Even
4377   // opaque constant will be folded, because the folding of unary operations
4378   // doesn't create new constants with different values. Nevertheless, the
4379   // opaque flag is preserved during folding to prevent future folding with
4380   // other constants.
4381   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4382     const APInt &Val = C->getAPIntValue();
4383     switch (Opcode) {
4384     default: break;
4385     case ISD::SIGN_EXTEND:
4386       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4387                          C->isTargetOpcode(), C->isOpaque());
4388     case ISD::TRUNCATE:
4389       if (C->isOpaque())
4390         break;
4391       LLVM_FALLTHROUGH;
4392     case ISD::ANY_EXTEND:
4393     case ISD::ZERO_EXTEND:
4394       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4395                          C->isTargetOpcode(), C->isOpaque());
4396     case ISD::UINT_TO_FP:
4397     case ISD::SINT_TO_FP: {
4398       APFloat apf(EVTToAPFloatSemantics(VT),
4399                   APInt::getNullValue(VT.getSizeInBits()));
4400       (void)apf.convertFromAPInt(Val,
4401                                  Opcode==ISD::SINT_TO_FP,
4402                                  APFloat::rmNearestTiesToEven);
4403       return getConstantFP(apf, DL, VT);
4404     }
4405     case ISD::BITCAST:
4406       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4407         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4408       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4409         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4410       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4411         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4412       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4413         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4414       break;
4415     case ISD::ABS:
4416       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4417                          C->isOpaque());
4418     case ISD::BITREVERSE:
4419       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4420                          C->isOpaque());
4421     case ISD::BSWAP:
4422       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4423                          C->isOpaque());
4424     case ISD::CTPOP:
4425       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4426                          C->isOpaque());
4427     case ISD::CTLZ:
4428     case ISD::CTLZ_ZERO_UNDEF:
4429       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4430                          C->isOpaque());
4431     case ISD::CTTZ:
4432     case ISD::CTTZ_ZERO_UNDEF:
4433       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4434                          C->isOpaque());
4435     case ISD::FP16_TO_FP: {
4436       bool Ignored;
4437       APFloat FPV(APFloat::IEEEhalf(),
4438                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4439 
4440       // This can return overflow, underflow, or inexact; we don't care.
4441       // FIXME need to be more flexible about rounding mode.
4442       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4443                         APFloat::rmNearestTiesToEven, &Ignored);
4444       return getConstantFP(FPV, DL, VT);
4445     }
4446     }
4447   }
4448 
4449   // Constant fold unary operations with a floating point constant operand.
4450   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4451     APFloat V = C->getValueAPF();    // make copy
4452     switch (Opcode) {
4453     case ISD::FNEG:
4454       V.changeSign();
4455       return getConstantFP(V, DL, VT);
4456     case ISD::FABS:
4457       V.clearSign();
4458       return getConstantFP(V, DL, VT);
4459     case ISD::FCEIL: {
4460       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4461       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4462         return getConstantFP(V, DL, VT);
4463       break;
4464     }
4465     case ISD::FTRUNC: {
4466       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4467       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4468         return getConstantFP(V, DL, VT);
4469       break;
4470     }
4471     case ISD::FFLOOR: {
4472       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4473       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4474         return getConstantFP(V, DL, VT);
4475       break;
4476     }
4477     case ISD::FP_EXTEND: {
4478       bool ignored;
4479       // This can return overflow, underflow, or inexact; we don't care.
4480       // FIXME need to be more flexible about rounding mode.
4481       (void)V.convert(EVTToAPFloatSemantics(VT),
4482                       APFloat::rmNearestTiesToEven, &ignored);
4483       return getConstantFP(V, DL, VT);
4484     }
4485     case ISD::FP_TO_SINT:
4486     case ISD::FP_TO_UINT: {
4487       bool ignored;
4488       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4489       // FIXME need to be more flexible about rounding mode.
4490       APFloat::opStatus s =
4491           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4492       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4493         break;
4494       return getConstant(IntVal, DL, VT);
4495     }
4496     case ISD::BITCAST:
4497       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4498         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4499       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4500         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4501       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4502         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4503       break;
4504     case ISD::FP_TO_FP16: {
4505       bool Ignored;
4506       // This can return overflow, underflow, or inexact; we don't care.
4507       // FIXME need to be more flexible about rounding mode.
4508       (void)V.convert(APFloat::IEEEhalf(),
4509                       APFloat::rmNearestTiesToEven, &Ignored);
4510       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4511     }
4512     }
4513   }
4514 
4515   // Constant fold unary operations with a vector integer or float operand.
4516   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4517     if (BV->isConstant()) {
4518       switch (Opcode) {
4519       default:
4520         // FIXME: Entirely reasonable to perform folding of other unary
4521         // operations here as the need arises.
4522         break;
4523       case ISD::FNEG:
4524       case ISD::FABS:
4525       case ISD::FCEIL:
4526       case ISD::FTRUNC:
4527       case ISD::FFLOOR:
4528       case ISD::FP_EXTEND:
4529       case ISD::FP_TO_SINT:
4530       case ISD::FP_TO_UINT:
4531       case ISD::TRUNCATE:
4532       case ISD::ANY_EXTEND:
4533       case ISD::ZERO_EXTEND:
4534       case ISD::SIGN_EXTEND:
4535       case ISD::UINT_TO_FP:
4536       case ISD::SINT_TO_FP:
4537       case ISD::ABS:
4538       case ISD::BITREVERSE:
4539       case ISD::BSWAP:
4540       case ISD::CTLZ:
4541       case ISD::CTLZ_ZERO_UNDEF:
4542       case ISD::CTTZ:
4543       case ISD::CTTZ_ZERO_UNDEF:
4544       case ISD::CTPOP: {
4545         SDValue Ops = { Operand };
4546         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4547           return Fold;
4548       }
4549       }
4550     }
4551   }
4552 
4553   unsigned OpOpcode = Operand.getNode()->getOpcode();
4554   switch (Opcode) {
4555   case ISD::FREEZE:
4556     assert(VT == Operand.getValueType() && "Unexpected VT!");
4557     break;
4558   case ISD::TokenFactor:
4559   case ISD::MERGE_VALUES:
4560   case ISD::CONCAT_VECTORS:
4561     return Operand;         // Factor, merge or concat of one node?  No need.
4562   case ISD::BUILD_VECTOR: {
4563     // Attempt to simplify BUILD_VECTOR.
4564     SDValue Ops[] = {Operand};
4565     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4566       return V;
4567     break;
4568   }
4569   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4570   case ISD::FP_EXTEND:
4571     assert(VT.isFloatingPoint() &&
4572            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4573     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4574     assert((!VT.isVector() ||
4575             VT.getVectorElementCount() ==
4576             Operand.getValueType().getVectorElementCount()) &&
4577            "Vector element count mismatch!");
4578     assert(Operand.getValueType().bitsLT(VT) &&
4579            "Invalid fpext node, dst < src!");
4580     if (Operand.isUndef())
4581       return getUNDEF(VT);
4582     break;
4583   case ISD::FP_TO_SINT:
4584   case ISD::FP_TO_UINT:
4585     if (Operand.isUndef())
4586       return getUNDEF(VT);
4587     break;
4588   case ISD::SINT_TO_FP:
4589   case ISD::UINT_TO_FP:
4590     // [us]itofp(undef) = 0, because the result value is bounded.
4591     if (Operand.isUndef())
4592       return getConstantFP(0.0, DL, VT);
4593     break;
4594   case ISD::SIGN_EXTEND:
4595     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4596            "Invalid SIGN_EXTEND!");
4597     assert(VT.isVector() == Operand.getValueType().isVector() &&
4598            "SIGN_EXTEND result type type should be vector iff the operand "
4599            "type is vector!");
4600     if (Operand.getValueType() == VT) return Operand;   // noop extension
4601     assert((!VT.isVector() ||
4602             VT.getVectorElementCount() ==
4603                 Operand.getValueType().getVectorElementCount()) &&
4604            "Vector element count mismatch!");
4605     assert(Operand.getValueType().bitsLT(VT) &&
4606            "Invalid sext node, dst < src!");
4607     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4608       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4609     else if (OpOpcode == ISD::UNDEF)
4610       // sext(undef) = 0, because the top bits will all be the same.
4611       return getConstant(0, DL, VT);
4612     break;
4613   case ISD::ZERO_EXTEND:
4614     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4615            "Invalid ZERO_EXTEND!");
4616     assert(VT.isVector() == Operand.getValueType().isVector() &&
4617            "ZERO_EXTEND result type type should be vector iff the operand "
4618            "type is vector!");
4619     if (Operand.getValueType() == VT) return Operand;   // noop extension
4620     assert((!VT.isVector() ||
4621             VT.getVectorElementCount() ==
4622                 Operand.getValueType().getVectorElementCount()) &&
4623            "Vector element count mismatch!");
4624     assert(Operand.getValueType().bitsLT(VT) &&
4625            "Invalid zext node, dst < src!");
4626     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4627       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4628     else if (OpOpcode == ISD::UNDEF)
4629       // zext(undef) = 0, because the top bits will be zero.
4630       return getConstant(0, DL, VT);
4631     break;
4632   case ISD::ANY_EXTEND:
4633     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4634            "Invalid ANY_EXTEND!");
4635     assert(VT.isVector() == Operand.getValueType().isVector() &&
4636            "ANY_EXTEND result type type should be vector iff the operand "
4637            "type is vector!");
4638     if (Operand.getValueType() == VT) return Operand;   // noop extension
4639     assert((!VT.isVector() ||
4640             VT.getVectorElementCount() ==
4641                 Operand.getValueType().getVectorElementCount()) &&
4642            "Vector element count mismatch!");
4643     assert(Operand.getValueType().bitsLT(VT) &&
4644            "Invalid anyext node, dst < src!");
4645 
4646     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4647         OpOpcode == ISD::ANY_EXTEND)
4648       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4649       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4650     else if (OpOpcode == ISD::UNDEF)
4651       return getUNDEF(VT);
4652 
4653     // (ext (trunc x)) -> x
4654     if (OpOpcode == ISD::TRUNCATE) {
4655       SDValue OpOp = Operand.getOperand(0);
4656       if (OpOp.getValueType() == VT) {
4657         transferDbgValues(Operand, OpOp);
4658         return OpOp;
4659       }
4660     }
4661     break;
4662   case ISD::TRUNCATE:
4663     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4664            "Invalid TRUNCATE!");
4665     assert(VT.isVector() == Operand.getValueType().isVector() &&
4666            "TRUNCATE result type type should be vector iff the operand "
4667            "type is vector!");
4668     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4669     assert((!VT.isVector() ||
4670             VT.getVectorElementCount() ==
4671                 Operand.getValueType().getVectorElementCount()) &&
4672            "Vector element count mismatch!");
4673     assert(Operand.getValueType().bitsGT(VT) &&
4674            "Invalid truncate node, src < dst!");
4675     if (OpOpcode == ISD::TRUNCATE)
4676       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4677     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4678         OpOpcode == ISD::ANY_EXTEND) {
4679       // If the source is smaller than the dest, we still need an extend.
4680       if (Operand.getOperand(0).getValueType().getScalarType()
4681             .bitsLT(VT.getScalarType()))
4682         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4683       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4684         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4685       return Operand.getOperand(0);
4686     }
4687     if (OpOpcode == ISD::UNDEF)
4688       return getUNDEF(VT);
4689     break;
4690   case ISD::ANY_EXTEND_VECTOR_INREG:
4691   case ISD::ZERO_EXTEND_VECTOR_INREG:
4692   case ISD::SIGN_EXTEND_VECTOR_INREG:
4693     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4694     assert(Operand.getValueType().bitsLE(VT) &&
4695            "The input must be the same size or smaller than the result.");
4696     assert(VT.getVectorNumElements() <
4697              Operand.getValueType().getVectorNumElements() &&
4698            "The destination vector type must have fewer lanes than the input.");
4699     break;
4700   case ISD::ABS:
4701     assert(VT.isInteger() && VT == Operand.getValueType() &&
4702            "Invalid ABS!");
4703     if (OpOpcode == ISD::UNDEF)
4704       return getUNDEF(VT);
4705     break;
4706   case ISD::BSWAP:
4707     assert(VT.isInteger() && VT == Operand.getValueType() &&
4708            "Invalid BSWAP!");
4709     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4710            "BSWAP types must be a multiple of 16 bits!");
4711     if (OpOpcode == ISD::UNDEF)
4712       return getUNDEF(VT);
4713     break;
4714   case ISD::BITREVERSE:
4715     assert(VT.isInteger() && VT == Operand.getValueType() &&
4716            "Invalid BITREVERSE!");
4717     if (OpOpcode == ISD::UNDEF)
4718       return getUNDEF(VT);
4719     break;
4720   case ISD::BITCAST:
4721     // Basic sanity checking.
4722     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4723            "Cannot BITCAST between types of different sizes!");
4724     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4725     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4726       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4727     if (OpOpcode == ISD::UNDEF)
4728       return getUNDEF(VT);
4729     break;
4730   case ISD::SCALAR_TO_VECTOR:
4731     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4732            (VT.getVectorElementType() == Operand.getValueType() ||
4733             (VT.getVectorElementType().isInteger() &&
4734              Operand.getValueType().isInteger() &&
4735              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4736            "Illegal SCALAR_TO_VECTOR node!");
4737     if (OpOpcode == ISD::UNDEF)
4738       return getUNDEF(VT);
4739     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4740     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4741         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4742         Operand.getConstantOperandVal(1) == 0 &&
4743         Operand.getOperand(0).getValueType() == VT)
4744       return Operand.getOperand(0);
4745     break;
4746   case ISD::FNEG:
4747     // Negation of an unknown bag of bits is still completely undefined.
4748     if (OpOpcode == ISD::UNDEF)
4749       return getUNDEF(VT);
4750 
4751     if (OpOpcode == ISD::FNEG)  // --X -> X
4752       return Operand.getOperand(0);
4753     break;
4754   case ISD::FABS:
4755     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4756       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4757     break;
4758   case ISD::VSCALE:
4759     assert(VT == Operand.getValueType() && "Unexpected VT!");
4760     break;
4761   case ISD::VECREDUCE_SMIN:
4762   case ISD::VECREDUCE_UMAX:
4763     if (Operand.getValueType().getScalarType() == MVT::i1)
4764       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4765     break;
4766   case ISD::VECREDUCE_SMAX:
4767   case ISD::VECREDUCE_UMIN:
4768     if (Operand.getValueType().getScalarType() == MVT::i1)
4769       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4770     break;
4771   }
4772 
4773   SDNode *N;
4774   SDVTList VTs = getVTList(VT);
4775   SDValue Ops[] = {Operand};
4776   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4777     FoldingSetNodeID ID;
4778     AddNodeIDNode(ID, Opcode, VTs, Ops);
4779     void *IP = nullptr;
4780     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4781       E->intersectFlagsWith(Flags);
4782       return SDValue(E, 0);
4783     }
4784 
4785     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4786     N->setFlags(Flags);
4787     createOperands(N, Ops);
4788     CSEMap.InsertNode(N, IP);
4789   } else {
4790     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4791     createOperands(N, Ops);
4792   }
4793 
4794   InsertNode(N);
4795   SDValue V = SDValue(N, 0);
4796   NewSDValueDbgMsg(V, "Creating new node: ", this);
4797   return V;
4798 }
4799 
4800 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4801                                        const APInt &C2) {
4802   switch (Opcode) {
4803   case ISD::ADD:  return C1 + C2;
4804   case ISD::SUB:  return C1 - C2;
4805   case ISD::MUL:  return C1 * C2;
4806   case ISD::AND:  return C1 & C2;
4807   case ISD::OR:   return C1 | C2;
4808   case ISD::XOR:  return C1 ^ C2;
4809   case ISD::SHL:  return C1 << C2;
4810   case ISD::SRL:  return C1.lshr(C2);
4811   case ISD::SRA:  return C1.ashr(C2);
4812   case ISD::ROTL: return C1.rotl(C2);
4813   case ISD::ROTR: return C1.rotr(C2);
4814   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4815   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4816   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4817   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4818   case ISD::SADDSAT: return C1.sadd_sat(C2);
4819   case ISD::UADDSAT: return C1.uadd_sat(C2);
4820   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4821   case ISD::USUBSAT: return C1.usub_sat(C2);
4822   case ISD::UDIV:
4823     if (!C2.getBoolValue())
4824       break;
4825     return C1.udiv(C2);
4826   case ISD::UREM:
4827     if (!C2.getBoolValue())
4828       break;
4829     return C1.urem(C2);
4830   case ISD::SDIV:
4831     if (!C2.getBoolValue())
4832       break;
4833     return C1.sdiv(C2);
4834   case ISD::SREM:
4835     if (!C2.getBoolValue())
4836       break;
4837     return C1.srem(C2);
4838   }
4839   return llvm::None;
4840 }
4841 
4842 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4843                                        const GlobalAddressSDNode *GA,
4844                                        const SDNode *N2) {
4845   if (GA->getOpcode() != ISD::GlobalAddress)
4846     return SDValue();
4847   if (!TLI->isOffsetFoldingLegal(GA))
4848     return SDValue();
4849   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4850   if (!C2)
4851     return SDValue();
4852   int64_t Offset = C2->getSExtValue();
4853   switch (Opcode) {
4854   case ISD::ADD: break;
4855   case ISD::SUB: Offset = -uint64_t(Offset); break;
4856   default: return SDValue();
4857   }
4858   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4859                           GA->getOffset() + uint64_t(Offset));
4860 }
4861 
4862 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4863   switch (Opcode) {
4864   case ISD::SDIV:
4865   case ISD::UDIV:
4866   case ISD::SREM:
4867   case ISD::UREM: {
4868     // If a divisor is zero/undef or any element of a divisor vector is
4869     // zero/undef, the whole op is undef.
4870     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4871     SDValue Divisor = Ops[1];
4872     if (Divisor.isUndef() || isNullConstant(Divisor))
4873       return true;
4874 
4875     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4876            llvm::any_of(Divisor->op_values(),
4877                         [](SDValue V) { return V.isUndef() ||
4878                                         isNullConstant(V); });
4879     // TODO: Handle signed overflow.
4880   }
4881   // TODO: Handle oversized shifts.
4882   default:
4883     return false;
4884   }
4885 }
4886 
4887 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4888                                              EVT VT, ArrayRef<SDValue> Ops) {
4889   // If the opcode is a target-specific ISD node, there's nothing we can
4890   // do here and the operand rules may not line up with the below, so
4891   // bail early.
4892   if (Opcode >= ISD::BUILTIN_OP_END)
4893     return SDValue();
4894 
4895   // For now, the array Ops should only contain two values.
4896   // This enforcement will be removed once this function is merged with
4897   // FoldConstantVectorArithmetic
4898   if (Ops.size() != 2)
4899     return SDValue();
4900 
4901   if (isUndef(Opcode, Ops))
4902     return getUNDEF(VT);
4903 
4904   SDNode *N1 = Ops[0].getNode();
4905   SDNode *N2 = Ops[1].getNode();
4906 
4907   // Handle the case of two scalars.
4908   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4909     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4910       if (C1->isOpaque() || C2->isOpaque())
4911         return SDValue();
4912 
4913       Optional<APInt> FoldAttempt =
4914           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4915       if (!FoldAttempt)
4916         return SDValue();
4917 
4918       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4919       assert((!Folded || !VT.isVector()) &&
4920              "Can't fold vectors ops with scalar operands");
4921       return Folded;
4922     }
4923   }
4924 
4925   // fold (add Sym, c) -> Sym+c
4926   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4927     return FoldSymbolOffset(Opcode, VT, GA, N2);
4928   if (TLI->isCommutativeBinOp(Opcode))
4929     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4930       return FoldSymbolOffset(Opcode, VT, GA, N1);
4931 
4932   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4933   // vector width, however we should be able to do constant folds involving
4934   // splat vector nodes too.
4935   if (VT.isScalableVector())
4936     return SDValue();
4937 
4938   // For fixed width vectors, extract each constant element and fold them
4939   // individually. Either input may be an undef value.
4940   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4941   if (!BV1 && !N1->isUndef())
4942     return SDValue();
4943   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4944   if (!BV2 && !N2->isUndef())
4945     return SDValue();
4946   // If both operands are undef, that's handled the same way as scalars.
4947   if (!BV1 && !BV2)
4948     return SDValue();
4949 
4950   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4951          "Vector binop with different number of elements in operands?");
4952 
4953   EVT SVT = VT.getScalarType();
4954   EVT LegalSVT = SVT;
4955   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4956     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4957     if (LegalSVT.bitsLT(SVT))
4958       return SDValue();
4959   }
4960   SmallVector<SDValue, 4> Outputs;
4961   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4962   for (unsigned I = 0; I != NumOps; ++I) {
4963     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4964     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4965     if (SVT.isInteger()) {
4966       if (V1->getValueType(0).bitsGT(SVT))
4967         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4968       if (V2->getValueType(0).bitsGT(SVT))
4969         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4970     }
4971 
4972     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4973       return SDValue();
4974 
4975     // Fold one vector element.
4976     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4977     if (LegalSVT != SVT)
4978       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4979 
4980     // Scalar folding only succeeded if the result is a constant or UNDEF.
4981     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4982         ScalarResult.getOpcode() != ISD::ConstantFP)
4983       return SDValue();
4984     Outputs.push_back(ScalarResult);
4985   }
4986 
4987   assert(VT.getVectorNumElements() == Outputs.size() &&
4988          "Vector size mismatch!");
4989 
4990   // We may have a vector type but a scalar result. Create a splat.
4991   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4992 
4993   // Build a big vector out of the scalar elements we generated.
4994   return getBuildVector(VT, SDLoc(), Outputs);
4995 }
4996 
4997 // TODO: Merge with FoldConstantArithmetic
4998 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4999                                                    const SDLoc &DL, EVT VT,
5000                                                    ArrayRef<SDValue> Ops,
5001                                                    const SDNodeFlags Flags) {
5002   // If the opcode is a target-specific ISD node, there's nothing we can
5003   // do here and the operand rules may not line up with the below, so
5004   // bail early.
5005   if (Opcode >= ISD::BUILTIN_OP_END)
5006     return SDValue();
5007 
5008   if (isUndef(Opcode, Ops))
5009     return getUNDEF(VT);
5010 
5011   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5012   if (!VT.isVector())
5013     return SDValue();
5014 
5015   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5016   // vector width, however we should be able to do constant folds involving
5017   // splat vector nodes too.
5018   if (VT.isScalableVector())
5019     return SDValue();
5020 
5021   // From this point onwards all vectors are assumed to be fixed width.
5022   unsigned NumElts = VT.getVectorNumElements();
5023 
5024   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5025     return !Op.getValueType().isVector() ||
5026            Op.getValueType().getVectorNumElements() == NumElts;
5027   };
5028 
5029   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5030     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5031     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5032            (BV && BV->isConstant());
5033   };
5034 
5035   // All operands must be vector types with the same number of elements as
5036   // the result type and must be either UNDEF or a build vector of constant
5037   // or UNDEF scalars.
5038   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5039       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5040     return SDValue();
5041 
5042   // If we are comparing vectors, then the result needs to be a i1 boolean
5043   // that is then sign-extended back to the legal result type.
5044   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5045 
5046   // Find legal integer scalar type for constant promotion and
5047   // ensure that its scalar size is at least as large as source.
5048   EVT LegalSVT = VT.getScalarType();
5049   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5050     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5051     if (LegalSVT.bitsLT(VT.getScalarType()))
5052       return SDValue();
5053   }
5054 
5055   // Constant fold each scalar lane separately.
5056   SmallVector<SDValue, 4> ScalarResults;
5057   for (unsigned i = 0; i != NumElts; i++) {
5058     SmallVector<SDValue, 4> ScalarOps;
5059     for (SDValue Op : Ops) {
5060       EVT InSVT = Op.getValueType().getScalarType();
5061       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5062       if (!InBV) {
5063         // We've checked that this is UNDEF or a constant of some kind.
5064         if (Op.isUndef())
5065           ScalarOps.push_back(getUNDEF(InSVT));
5066         else
5067           ScalarOps.push_back(Op);
5068         continue;
5069       }
5070 
5071       SDValue ScalarOp = InBV->getOperand(i);
5072       EVT ScalarVT = ScalarOp.getValueType();
5073 
5074       // Build vector (integer) scalar operands may need implicit
5075       // truncation - do this before constant folding.
5076       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5077         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5078 
5079       ScalarOps.push_back(ScalarOp);
5080     }
5081 
5082     // Constant fold the scalar operands.
5083     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5084 
5085     // Legalize the (integer) scalar constant if necessary.
5086     if (LegalSVT != SVT)
5087       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5088 
5089     // Scalar folding only succeeded if the result is a constant or UNDEF.
5090     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5091         ScalarResult.getOpcode() != ISD::ConstantFP)
5092       return SDValue();
5093     ScalarResults.push_back(ScalarResult);
5094   }
5095 
5096   SDValue V = getBuildVector(VT, DL, ScalarResults);
5097   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5098   return V;
5099 }
5100 
5101 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5102                                          EVT VT, SDValue N1, SDValue N2) {
5103   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5104   //       should. That will require dealing with a potentially non-default
5105   //       rounding mode, checking the "opStatus" return value from the APFloat
5106   //       math calculations, and possibly other variations.
5107   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5108   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5109   if (N1CFP && N2CFP) {
5110     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5111     switch (Opcode) {
5112     case ISD::FADD:
5113       C1.add(C2, APFloat::rmNearestTiesToEven);
5114       return getConstantFP(C1, DL, VT);
5115     case ISD::FSUB:
5116       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5117       return getConstantFP(C1, DL, VT);
5118     case ISD::FMUL:
5119       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5120       return getConstantFP(C1, DL, VT);
5121     case ISD::FDIV:
5122       C1.divide(C2, APFloat::rmNearestTiesToEven);
5123       return getConstantFP(C1, DL, VT);
5124     case ISD::FREM:
5125       C1.mod(C2);
5126       return getConstantFP(C1, DL, VT);
5127     case ISD::FCOPYSIGN:
5128       C1.copySign(C2);
5129       return getConstantFP(C1, DL, VT);
5130     default: break;
5131     }
5132   }
5133   if (N1CFP && Opcode == ISD::FP_ROUND) {
5134     APFloat C1 = N1CFP->getValueAPF();    // make copy
5135     bool Unused;
5136     // This can return overflow, underflow, or inexact; we don't care.
5137     // FIXME need to be more flexible about rounding mode.
5138     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5139                       &Unused);
5140     return getConstantFP(C1, DL, VT);
5141   }
5142 
5143   switch (Opcode) {
5144   case ISD::FSUB:
5145     // -0.0 - undef --> undef (consistent with "fneg undef")
5146     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5147       return getUNDEF(VT);
5148     LLVM_FALLTHROUGH;
5149 
5150   case ISD::FADD:
5151   case ISD::FMUL:
5152   case ISD::FDIV:
5153   case ISD::FREM:
5154     // If both operands are undef, the result is undef. If 1 operand is undef,
5155     // the result is NaN. This should match the behavior of the IR optimizer.
5156     if (N1.isUndef() && N2.isUndef())
5157       return getUNDEF(VT);
5158     if (N1.isUndef() || N2.isUndef())
5159       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5160   }
5161   return SDValue();
5162 }
5163 
5164 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5165   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5166 
5167   // There's no need to assert on a byte-aligned pointer. All pointers are at
5168   // least byte aligned.
5169   if (A == Align(1))
5170     return Val;
5171 
5172   FoldingSetNodeID ID;
5173   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5174   ID.AddInteger(A.value());
5175 
5176   void *IP = nullptr;
5177   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5178     return SDValue(E, 0);
5179 
5180   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5181                                          Val.getValueType(), A);
5182   createOperands(N, {Val});
5183 
5184   CSEMap.InsertNode(N, IP);
5185   InsertNode(N);
5186 
5187   SDValue V(N, 0);
5188   NewSDValueDbgMsg(V, "Creating new node: ", this);
5189   return V;
5190 }
5191 
5192 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5193                               SDValue N1, SDValue N2) {
5194   SDNodeFlags Flags;
5195   if (Inserter)
5196     Flags = Inserter->getFlags();
5197   return getNode(Opcode, DL, VT, N1, N2, Flags);
5198 }
5199 
5200 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5201                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5202   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5203   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5204   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5205   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5206 
5207   // Canonicalize constant to RHS if commutative.
5208   if (TLI->isCommutativeBinOp(Opcode)) {
5209     if (N1C && !N2C) {
5210       std::swap(N1C, N2C);
5211       std::swap(N1, N2);
5212     } else if (N1CFP && !N2CFP) {
5213       std::swap(N1CFP, N2CFP);
5214       std::swap(N1, N2);
5215     }
5216   }
5217 
5218   switch (Opcode) {
5219   default: break;
5220   case ISD::TokenFactor:
5221     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5222            N2.getValueType() == MVT::Other && "Invalid token factor!");
5223     // Fold trivial token factors.
5224     if (N1.getOpcode() == ISD::EntryToken) return N2;
5225     if (N2.getOpcode() == ISD::EntryToken) return N1;
5226     if (N1 == N2) return N1;
5227     break;
5228   case ISD::BUILD_VECTOR: {
5229     // Attempt to simplify BUILD_VECTOR.
5230     SDValue Ops[] = {N1, N2};
5231     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5232       return V;
5233     break;
5234   }
5235   case ISD::CONCAT_VECTORS: {
5236     SDValue Ops[] = {N1, N2};
5237     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5238       return V;
5239     break;
5240   }
5241   case ISD::AND:
5242     assert(VT.isInteger() && "This operator does not apply to FP types!");
5243     assert(N1.getValueType() == N2.getValueType() &&
5244            N1.getValueType() == VT && "Binary operator types must match!");
5245     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5246     // worth handling here.
5247     if (N2C && N2C->isNullValue())
5248       return N2;
5249     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5250       return N1;
5251     break;
5252   case ISD::OR:
5253   case ISD::XOR:
5254   case ISD::ADD:
5255   case ISD::SUB:
5256     assert(VT.isInteger() && "This operator does not apply to FP types!");
5257     assert(N1.getValueType() == N2.getValueType() &&
5258            N1.getValueType() == VT && "Binary operator types must match!");
5259     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5260     // it's worth handling here.
5261     if (N2C && N2C->isNullValue())
5262       return N1;
5263     break;
5264   case ISD::MUL:
5265     assert(VT.isInteger() && "This operator does not apply to FP types!");
5266     assert(N1.getValueType() == N2.getValueType() &&
5267            N1.getValueType() == VT && "Binary operator types must match!");
5268     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5269       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5270       APInt N2CImm = N2C->getAPIntValue();
5271       return getVScale(DL, VT, MulImm * N2CImm);
5272     }
5273     break;
5274   case ISD::UDIV:
5275   case ISD::UREM:
5276   case ISD::MULHU:
5277   case ISD::MULHS:
5278   case ISD::SDIV:
5279   case ISD::SREM:
5280   case ISD::SADDSAT:
5281   case ISD::SSUBSAT:
5282   case ISD::UADDSAT:
5283   case ISD::USUBSAT:
5284     assert(VT.isInteger() && "This operator does not apply to FP types!");
5285     assert(N1.getValueType() == N2.getValueType() &&
5286            N1.getValueType() == VT && "Binary operator types must match!");
5287     break;
5288   case ISD::SMIN:
5289   case ISD::UMAX:
5290     assert(VT.isInteger() && "This operator does not apply to FP types!");
5291     assert(N1.getValueType() == N2.getValueType() &&
5292            N1.getValueType() == VT && "Binary operator types must match!");
5293     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5294       return getNode(ISD::OR, DL, VT, N1, N2);
5295     break;
5296   case ISD::SMAX:
5297   case ISD::UMIN:
5298     assert(VT.isInteger() && "This operator does not apply to FP types!");
5299     assert(N1.getValueType() == N2.getValueType() &&
5300            N1.getValueType() == VT && "Binary operator types must match!");
5301     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5302       return getNode(ISD::AND, DL, VT, N1, N2);
5303     break;
5304   case ISD::FADD:
5305   case ISD::FSUB:
5306   case ISD::FMUL:
5307   case ISD::FDIV:
5308   case ISD::FREM:
5309     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5310     assert(N1.getValueType() == N2.getValueType() &&
5311            N1.getValueType() == VT && "Binary operator types must match!");
5312     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5313       return V;
5314     break;
5315   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5316     assert(N1.getValueType() == VT &&
5317            N1.getValueType().isFloatingPoint() &&
5318            N2.getValueType().isFloatingPoint() &&
5319            "Invalid FCOPYSIGN!");
5320     break;
5321   case ISD::SHL:
5322     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5323       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5324       APInt ShiftImm = N2C->getAPIntValue();
5325       return getVScale(DL, VT, MulImm << ShiftImm);
5326     }
5327     LLVM_FALLTHROUGH;
5328   case ISD::SRA:
5329   case ISD::SRL:
5330     if (SDValue V = simplifyShift(N1, N2))
5331       return V;
5332     LLVM_FALLTHROUGH;
5333   case ISD::ROTL:
5334   case ISD::ROTR:
5335     assert(VT == N1.getValueType() &&
5336            "Shift operators return type must be the same as their first arg");
5337     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5338            "Shifts only work on integers");
5339     assert((!VT.isVector() || VT == N2.getValueType()) &&
5340            "Vector shift amounts must be in the same as their first arg");
5341     // Verify that the shift amount VT is big enough to hold valid shift
5342     // amounts.  This catches things like trying to shift an i1024 value by an
5343     // i8, which is easy to fall into in generic code that uses
5344     // TLI.getShiftAmount().
5345     assert(N2.getValueType().getScalarSizeInBits() >=
5346                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5347            "Invalid use of small shift amount with oversized value!");
5348 
5349     // Always fold shifts of i1 values so the code generator doesn't need to
5350     // handle them.  Since we know the size of the shift has to be less than the
5351     // size of the value, the shift/rotate count is guaranteed to be zero.
5352     if (VT == MVT::i1)
5353       return N1;
5354     if (N2C && N2C->isNullValue())
5355       return N1;
5356     break;
5357   case ISD::FP_ROUND:
5358     assert(VT.isFloatingPoint() &&
5359            N1.getValueType().isFloatingPoint() &&
5360            VT.bitsLE(N1.getValueType()) &&
5361            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5362            "Invalid FP_ROUND!");
5363     if (N1.getValueType() == VT) return N1;  // noop conversion.
5364     break;
5365   case ISD::AssertSext:
5366   case ISD::AssertZext: {
5367     EVT EVT = cast<VTSDNode>(N2)->getVT();
5368     assert(VT == N1.getValueType() && "Not an inreg extend!");
5369     assert(VT.isInteger() && EVT.isInteger() &&
5370            "Cannot *_EXTEND_INREG FP types");
5371     assert(!EVT.isVector() &&
5372            "AssertSExt/AssertZExt type should be the vector element type "
5373            "rather than the vector type!");
5374     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5375     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5376     break;
5377   }
5378   case ISD::SIGN_EXTEND_INREG: {
5379     EVT EVT = cast<VTSDNode>(N2)->getVT();
5380     assert(VT == N1.getValueType() && "Not an inreg extend!");
5381     assert(VT.isInteger() && EVT.isInteger() &&
5382            "Cannot *_EXTEND_INREG FP types");
5383     assert(EVT.isVector() == VT.isVector() &&
5384            "SIGN_EXTEND_INREG type should be vector iff the operand "
5385            "type is vector!");
5386     assert((!EVT.isVector() ||
5387             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5388            "Vector element counts must match in SIGN_EXTEND_INREG");
5389     assert(EVT.bitsLE(VT) && "Not extending!");
5390     if (EVT == VT) return N1;  // Not actually extending
5391 
5392     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5393       unsigned FromBits = EVT.getScalarSizeInBits();
5394       Val <<= Val.getBitWidth() - FromBits;
5395       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5396       return getConstant(Val, DL, ConstantVT);
5397     };
5398 
5399     if (N1C) {
5400       const APInt &Val = N1C->getAPIntValue();
5401       return SignExtendInReg(Val, VT);
5402     }
5403     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5404       SmallVector<SDValue, 8> Ops;
5405       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5406       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5407         SDValue Op = N1.getOperand(i);
5408         if (Op.isUndef()) {
5409           Ops.push_back(getUNDEF(OpVT));
5410           continue;
5411         }
5412         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5413         APInt Val = C->getAPIntValue();
5414         Ops.push_back(SignExtendInReg(Val, OpVT));
5415       }
5416       return getBuildVector(VT, DL, Ops);
5417     }
5418     break;
5419   }
5420   case ISD::EXTRACT_VECTOR_ELT:
5421     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5422            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5423              element type of the vector.");
5424 
5425     // Extract from an undefined value or using an undefined index is undefined.
5426     if (N1.isUndef() || N2.isUndef())
5427       return getUNDEF(VT);
5428 
5429     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5430     // vectors. For scalable vectors we will provide appropriate support for
5431     // dealing with arbitrary indices.
5432     if (N2C && N1.getValueType().isFixedLengthVector() &&
5433         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5434       return getUNDEF(VT);
5435 
5436     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5437     // expanding copies of large vectors from registers. This only works for
5438     // fixed length vectors, since we need to know the exact number of
5439     // elements.
5440     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5441         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5442       unsigned Factor =
5443         N1.getOperand(0).getValueType().getVectorNumElements();
5444       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5445                      N1.getOperand(N2C->getZExtValue() / Factor),
5446                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5447     }
5448 
5449     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5450     // lowering is expanding large vector constants.
5451     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5452                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5453       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5454               N1.getValueType().isFixedLengthVector()) &&
5455              "BUILD_VECTOR used for scalable vectors");
5456       unsigned Index =
5457           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5458       SDValue Elt = N1.getOperand(Index);
5459 
5460       if (VT != Elt.getValueType())
5461         // If the vector element type is not legal, the BUILD_VECTOR operands
5462         // are promoted and implicitly truncated, and the result implicitly
5463         // extended. Make that explicit here.
5464         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5465 
5466       return Elt;
5467     }
5468 
5469     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5470     // operations are lowered to scalars.
5471     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5472       // If the indices are the same, return the inserted element else
5473       // if the indices are known different, extract the element from
5474       // the original vector.
5475       SDValue N1Op2 = N1.getOperand(2);
5476       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5477 
5478       if (N1Op2C && N2C) {
5479         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5480           if (VT == N1.getOperand(1).getValueType())
5481             return N1.getOperand(1);
5482           else
5483             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5484         }
5485 
5486         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5487       }
5488     }
5489 
5490     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5491     // when vector types are scalarized and v1iX is legal.
5492     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5493     // Here we are completely ignoring the extract element index (N2),
5494     // which is fine for fixed width vectors, since any index other than 0
5495     // is undefined anyway. However, this cannot be ignored for scalable
5496     // vectors - in theory we could support this, but we don't want to do this
5497     // without a profitability check.
5498     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5499         N1.getValueType().isFixedLengthVector() &&
5500         N1.getValueType().getVectorNumElements() == 1) {
5501       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5502                      N1.getOperand(1));
5503     }
5504     break;
5505   case ISD::EXTRACT_ELEMENT:
5506     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5507     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5508            (N1.getValueType().isInteger() == VT.isInteger()) &&
5509            N1.getValueType() != VT &&
5510            "Wrong types for EXTRACT_ELEMENT!");
5511 
5512     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5513     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5514     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5515     if (N1.getOpcode() == ISD::BUILD_PAIR)
5516       return N1.getOperand(N2C->getZExtValue());
5517 
5518     // EXTRACT_ELEMENT of a constant int is also very common.
5519     if (N1C) {
5520       unsigned ElementSize = VT.getSizeInBits();
5521       unsigned Shift = ElementSize * N2C->getZExtValue();
5522       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5523       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5524     }
5525     break;
5526   case ISD::EXTRACT_SUBVECTOR:
5527     EVT N1VT = N1.getValueType();
5528     assert(VT.isVector() && N1VT.isVector() &&
5529            "Extract subvector VTs must be vectors!");
5530     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5531            "Extract subvector VTs must have the same element type!");
5532     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5533            "Cannot extract a scalable vector from a fixed length vector!");
5534     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5535             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5536            "Extract subvector must be from larger vector to smaller vector!");
5537     assert(N2C && "Extract subvector index must be a constant");
5538     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5539             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5540                 N1VT.getVectorMinNumElements()) &&
5541            "Extract subvector overflow!");
5542     assert(N2C->getAPIntValue().getBitWidth() ==
5543                TLI->getVectorIdxTy(getDataLayout())
5544                    .getSizeInBits()
5545                    .getFixedSize() &&
5546            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5547 
5548     // Trivial extraction.
5549     if (VT == N1VT)
5550       return N1;
5551 
5552     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5553     if (N1.isUndef())
5554       return getUNDEF(VT);
5555 
5556     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5557     // the concat have the same type as the extract.
5558     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5559         VT == N1.getOperand(0).getValueType()) {
5560       unsigned Factor = VT.getVectorMinNumElements();
5561       return N1.getOperand(N2C->getZExtValue() / Factor);
5562     }
5563 
5564     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5565     // during shuffle legalization.
5566     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5567         VT == N1.getOperand(1).getValueType())
5568       return N1.getOperand(1);
5569     break;
5570   }
5571 
5572   // Perform trivial constant folding.
5573   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5574     return SV;
5575 
5576   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5577     return V;
5578 
5579   // Canonicalize an UNDEF to the RHS, even over a constant.
5580   if (N1.isUndef()) {
5581     if (TLI->isCommutativeBinOp(Opcode)) {
5582       std::swap(N1, N2);
5583     } else {
5584       switch (Opcode) {
5585       case ISD::SIGN_EXTEND_INREG:
5586       case ISD::SUB:
5587         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5588       case ISD::UDIV:
5589       case ISD::SDIV:
5590       case ISD::UREM:
5591       case ISD::SREM:
5592       case ISD::SSUBSAT:
5593       case ISD::USUBSAT:
5594         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5595       }
5596     }
5597   }
5598 
5599   // Fold a bunch of operators when the RHS is undef.
5600   if (N2.isUndef()) {
5601     switch (Opcode) {
5602     case ISD::XOR:
5603       if (N1.isUndef())
5604         // Handle undef ^ undef -> 0 special case. This is a common
5605         // idiom (misuse).
5606         return getConstant(0, DL, VT);
5607       LLVM_FALLTHROUGH;
5608     case ISD::ADD:
5609     case ISD::SUB:
5610     case ISD::UDIV:
5611     case ISD::SDIV:
5612     case ISD::UREM:
5613     case ISD::SREM:
5614       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5615     case ISD::MUL:
5616     case ISD::AND:
5617     case ISD::SSUBSAT:
5618     case ISD::USUBSAT:
5619       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5620     case ISD::OR:
5621     case ISD::SADDSAT:
5622     case ISD::UADDSAT:
5623       return getAllOnesConstant(DL, VT);
5624     }
5625   }
5626 
5627   // Memoize this node if possible.
5628   SDNode *N;
5629   SDVTList VTs = getVTList(VT);
5630   SDValue Ops[] = {N1, N2};
5631   if (VT != MVT::Glue) {
5632     FoldingSetNodeID ID;
5633     AddNodeIDNode(ID, Opcode, VTs, Ops);
5634     void *IP = nullptr;
5635     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5636       E->intersectFlagsWith(Flags);
5637       return SDValue(E, 0);
5638     }
5639 
5640     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5641     N->setFlags(Flags);
5642     createOperands(N, Ops);
5643     CSEMap.InsertNode(N, IP);
5644   } else {
5645     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5646     createOperands(N, Ops);
5647   }
5648 
5649   InsertNode(N);
5650   SDValue V = SDValue(N, 0);
5651   NewSDValueDbgMsg(V, "Creating new node: ", this);
5652   return V;
5653 }
5654 
5655 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5656                               SDValue N1, SDValue N2, SDValue N3) {
5657   SDNodeFlags Flags;
5658   if (Inserter)
5659     Flags = Inserter->getFlags();
5660   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5661 }
5662 
5663 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5664                               SDValue N1, SDValue N2, SDValue N3,
5665                               const SDNodeFlags Flags) {
5666   // Perform various simplifications.
5667   switch (Opcode) {
5668   case ISD::FMA: {
5669     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5670     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5671            N3.getValueType() == VT && "FMA types must match!");
5672     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5673     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5674     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5675     if (N1CFP && N2CFP && N3CFP) {
5676       APFloat  V1 = N1CFP->getValueAPF();
5677       const APFloat &V2 = N2CFP->getValueAPF();
5678       const APFloat &V3 = N3CFP->getValueAPF();
5679       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5680       return getConstantFP(V1, DL, VT);
5681     }
5682     break;
5683   }
5684   case ISD::BUILD_VECTOR: {
5685     // Attempt to simplify BUILD_VECTOR.
5686     SDValue Ops[] = {N1, N2, N3};
5687     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5688       return V;
5689     break;
5690   }
5691   case ISD::CONCAT_VECTORS: {
5692     SDValue Ops[] = {N1, N2, N3};
5693     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5694       return V;
5695     break;
5696   }
5697   case ISD::SETCC: {
5698     assert(VT.isInteger() && "SETCC result type must be an integer!");
5699     assert(N1.getValueType() == N2.getValueType() &&
5700            "SETCC operands must have the same type!");
5701     assert(VT.isVector() == N1.getValueType().isVector() &&
5702            "SETCC type should be vector iff the operand type is vector!");
5703     assert((!VT.isVector() || VT.getVectorElementCount() ==
5704                                   N1.getValueType().getVectorElementCount()) &&
5705            "SETCC vector element counts must match!");
5706     // Use FoldSetCC to simplify SETCC's.
5707     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5708       return V;
5709     // Vector constant folding.
5710     SDValue Ops[] = {N1, N2, N3};
5711     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5712       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5713       return V;
5714     }
5715     break;
5716   }
5717   case ISD::SELECT:
5718   case ISD::VSELECT:
5719     if (SDValue V = simplifySelect(N1, N2, N3))
5720       return V;
5721     break;
5722   case ISD::VECTOR_SHUFFLE:
5723     llvm_unreachable("should use getVectorShuffle constructor!");
5724   case ISD::INSERT_VECTOR_ELT: {
5725     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5726     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5727     // for scalable vectors where we will generate appropriate code to
5728     // deal with out-of-bounds cases correctly.
5729     if (N3C && N1.getValueType().isFixedLengthVector() &&
5730         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5731       return getUNDEF(VT);
5732 
5733     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5734     if (N3.isUndef())
5735       return getUNDEF(VT);
5736 
5737     // If the inserted element is an UNDEF, just use the input vector.
5738     if (N2.isUndef())
5739       return N1;
5740 
5741     break;
5742   }
5743   case ISD::INSERT_SUBVECTOR: {
5744     // Inserting undef into undef is still undef.
5745     if (N1.isUndef() && N2.isUndef())
5746       return getUNDEF(VT);
5747 
5748     EVT N2VT = N2.getValueType();
5749     assert(VT == N1.getValueType() &&
5750            "Dest and insert subvector source types must match!");
5751     assert(VT.isVector() && N2VT.isVector() &&
5752            "Insert subvector VTs must be vectors!");
5753     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5754            "Cannot insert a scalable vector into a fixed length vector!");
5755     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5756             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5757            "Insert subvector must be from smaller vector to larger vector!");
5758     assert(isa<ConstantSDNode>(N3) &&
5759            "Insert subvector index must be constant");
5760     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5761             (N2VT.getVectorMinNumElements() +
5762              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5763                 VT.getVectorMinNumElements()) &&
5764            "Insert subvector overflow!");
5765 
5766     // Trivial insertion.
5767     if (VT == N2VT)
5768       return N2;
5769 
5770     // If this is an insert of an extracted vector into an undef vector, we
5771     // can just use the input to the extract.
5772     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5773         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5774       return N2.getOperand(0);
5775     break;
5776   }
5777   case ISD::BITCAST:
5778     // Fold bit_convert nodes from a type to themselves.
5779     if (N1.getValueType() == VT)
5780       return N1;
5781     break;
5782   }
5783 
5784   // Memoize node if it doesn't produce a flag.
5785   SDNode *N;
5786   SDVTList VTs = getVTList(VT);
5787   SDValue Ops[] = {N1, N2, N3};
5788   if (VT != MVT::Glue) {
5789     FoldingSetNodeID ID;
5790     AddNodeIDNode(ID, Opcode, VTs, Ops);
5791     void *IP = nullptr;
5792     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5793       E->intersectFlagsWith(Flags);
5794       return SDValue(E, 0);
5795     }
5796 
5797     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5798     N->setFlags(Flags);
5799     createOperands(N, Ops);
5800     CSEMap.InsertNode(N, IP);
5801   } else {
5802     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5803     createOperands(N, Ops);
5804   }
5805 
5806   InsertNode(N);
5807   SDValue V = SDValue(N, 0);
5808   NewSDValueDbgMsg(V, "Creating new node: ", this);
5809   return V;
5810 }
5811 
5812 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5813                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5814   SDValue Ops[] = { N1, N2, N3, N4 };
5815   return getNode(Opcode, DL, VT, Ops);
5816 }
5817 
5818 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5819                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5820                               SDValue N5) {
5821   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5822   return getNode(Opcode, DL, VT, Ops);
5823 }
5824 
5825 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5826 /// the incoming stack arguments to be loaded from the stack.
5827 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5828   SmallVector<SDValue, 8> ArgChains;
5829 
5830   // Include the original chain at the beginning of the list. When this is
5831   // used by target LowerCall hooks, this helps legalize find the
5832   // CALLSEQ_BEGIN node.
5833   ArgChains.push_back(Chain);
5834 
5835   // Add a chain value for each stack argument.
5836   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5837        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5838     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5839       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5840         if (FI->getIndex() < 0)
5841           ArgChains.push_back(SDValue(L, 1));
5842 
5843   // Build a tokenfactor for all the chains.
5844   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5845 }
5846 
5847 /// getMemsetValue - Vectorized representation of the memset value
5848 /// operand.
5849 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5850                               const SDLoc &dl) {
5851   assert(!Value.isUndef());
5852 
5853   unsigned NumBits = VT.getScalarSizeInBits();
5854   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5855     assert(C->getAPIntValue().getBitWidth() == 8);
5856     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5857     if (VT.isInteger()) {
5858       bool IsOpaque = VT.getSizeInBits() > 64 ||
5859           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5860       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5861     }
5862     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5863                              VT);
5864   }
5865 
5866   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5867   EVT IntVT = VT.getScalarType();
5868   if (!IntVT.isInteger())
5869     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5870 
5871   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5872   if (NumBits > 8) {
5873     // Use a multiplication with 0x010101... to extend the input to the
5874     // required length.
5875     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5876     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5877                         DAG.getConstant(Magic, dl, IntVT));
5878   }
5879 
5880   if (VT != Value.getValueType() && !VT.isInteger())
5881     Value = DAG.getBitcast(VT.getScalarType(), Value);
5882   if (VT != Value.getValueType())
5883     Value = DAG.getSplatBuildVector(VT, dl, Value);
5884 
5885   return Value;
5886 }
5887 
5888 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5889 /// used when a memcpy is turned into a memset when the source is a constant
5890 /// string ptr.
5891 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5892                                   const TargetLowering &TLI,
5893                                   const ConstantDataArraySlice &Slice) {
5894   // Handle vector with all elements zero.
5895   if (Slice.Array == nullptr) {
5896     if (VT.isInteger())
5897       return DAG.getConstant(0, dl, VT);
5898     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5899       return DAG.getConstantFP(0.0, dl, VT);
5900     else if (VT.isVector()) {
5901       unsigned NumElts = VT.getVectorNumElements();
5902       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5903       return DAG.getNode(ISD::BITCAST, dl, VT,
5904                          DAG.getConstant(0, dl,
5905                                          EVT::getVectorVT(*DAG.getContext(),
5906                                                           EltVT, NumElts)));
5907     } else
5908       llvm_unreachable("Expected type!");
5909   }
5910 
5911   assert(!VT.isVector() && "Can't handle vector type here!");
5912   unsigned NumVTBits = VT.getSizeInBits();
5913   unsigned NumVTBytes = NumVTBits / 8;
5914   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5915 
5916   APInt Val(NumVTBits, 0);
5917   if (DAG.getDataLayout().isLittleEndian()) {
5918     for (unsigned i = 0; i != NumBytes; ++i)
5919       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5920   } else {
5921     for (unsigned i = 0; i != NumBytes; ++i)
5922       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5923   }
5924 
5925   // If the "cost" of materializing the integer immediate is less than the cost
5926   // of a load, then it is cost effective to turn the load into the immediate.
5927   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5928   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5929     return DAG.getConstant(Val, dl, VT);
5930   return SDValue(nullptr, 0);
5931 }
5932 
5933 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5934                                            const SDLoc &DL,
5935                                            const SDNodeFlags Flags) {
5936   EVT VT = Base.getValueType();
5937   SDValue Index;
5938 
5939   if (Offset.isScalable())
5940     Index = getVScale(DL, Base.getValueType(),
5941                       APInt(Base.getValueSizeInBits().getFixedSize(),
5942                             Offset.getKnownMinSize()));
5943   else
5944     Index = getConstant(Offset.getFixedSize(), DL, VT);
5945 
5946   return getMemBasePlusOffset(Base, Index, DL, Flags);
5947 }
5948 
5949 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5950                                            const SDLoc &DL,
5951                                            const SDNodeFlags Flags) {
5952   assert(Offset.getValueType().isInteger());
5953   EVT BasePtrVT = Ptr.getValueType();
5954   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5955 }
5956 
5957 /// Returns true if memcpy source is constant data.
5958 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5959   uint64_t SrcDelta = 0;
5960   GlobalAddressSDNode *G = nullptr;
5961   if (Src.getOpcode() == ISD::GlobalAddress)
5962     G = cast<GlobalAddressSDNode>(Src);
5963   else if (Src.getOpcode() == ISD::ADD &&
5964            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5965            Src.getOperand(1).getOpcode() == ISD::Constant) {
5966     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5967     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5968   }
5969   if (!G)
5970     return false;
5971 
5972   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5973                                   SrcDelta + G->getOffset());
5974 }
5975 
5976 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5977                                       SelectionDAG &DAG) {
5978   // On Darwin, -Os means optimize for size without hurting performance, so
5979   // only really optimize for size when -Oz (MinSize) is used.
5980   if (MF.getTarget().getTargetTriple().isOSDarwin())
5981     return MF.getFunction().hasMinSize();
5982   return DAG.shouldOptForSize();
5983 }
5984 
5985 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5986                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5987                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5988                           SmallVector<SDValue, 16> &OutStoreChains) {
5989   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5990   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5991   SmallVector<SDValue, 16> GluedLoadChains;
5992   for (unsigned i = From; i < To; ++i) {
5993     OutChains.push_back(OutLoadChains[i]);
5994     GluedLoadChains.push_back(OutLoadChains[i]);
5995   }
5996 
5997   // Chain for all loads.
5998   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5999                                   GluedLoadChains);
6000 
6001   for (unsigned i = From; i < To; ++i) {
6002     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6003     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6004                                   ST->getBasePtr(), ST->getMemoryVT(),
6005                                   ST->getMemOperand());
6006     OutChains.push_back(NewStore);
6007   }
6008 }
6009 
6010 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6011                                        SDValue Chain, SDValue Dst, SDValue Src,
6012                                        uint64_t Size, Align Alignment,
6013                                        bool isVol, bool AlwaysInline,
6014                                        MachinePointerInfo DstPtrInfo,
6015                                        MachinePointerInfo SrcPtrInfo) {
6016   // Turn a memcpy of undef to nop.
6017   // FIXME: We need to honor volatile even is Src is undef.
6018   if (Src.isUndef())
6019     return Chain;
6020 
6021   // Expand memcpy to a series of load and store ops if the size operand falls
6022   // below a certain threshold.
6023   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6024   // rather than maybe a humongous number of loads and stores.
6025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6026   const DataLayout &DL = DAG.getDataLayout();
6027   LLVMContext &C = *DAG.getContext();
6028   std::vector<EVT> MemOps;
6029   bool DstAlignCanChange = false;
6030   MachineFunction &MF = DAG.getMachineFunction();
6031   MachineFrameInfo &MFI = MF.getFrameInfo();
6032   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6033   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6034   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6035     DstAlignCanChange = true;
6036   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6037   if (!SrcAlign || Alignment > *SrcAlign)
6038     SrcAlign = Alignment;
6039   assert(SrcAlign && "SrcAlign must be set");
6040   ConstantDataArraySlice Slice;
6041   // If marked as volatile, perform a copy even when marked as constant.
6042   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6043   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6044   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6045   const MemOp Op = isZeroConstant
6046                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6047                                     /*IsZeroMemset*/ true, isVol)
6048                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6049                                      *SrcAlign, isVol, CopyFromConstant);
6050   if (!TLI.findOptimalMemOpLowering(
6051           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6052           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6053     return SDValue();
6054 
6055   if (DstAlignCanChange) {
6056     Type *Ty = MemOps[0].getTypeForEVT(C);
6057     Align NewAlign = DL.getABITypeAlign(Ty);
6058 
6059     // Don't promote to an alignment that would require dynamic stack
6060     // realignment.
6061     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6062     if (!TRI->needsStackRealignment(MF))
6063       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6064         NewAlign = NewAlign / 2;
6065 
6066     if (NewAlign > Alignment) {
6067       // Give the stack frame object a larger alignment if needed.
6068       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6069         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6070       Alignment = NewAlign;
6071     }
6072   }
6073 
6074   MachineMemOperand::Flags MMOFlags =
6075       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6076   SmallVector<SDValue, 16> OutLoadChains;
6077   SmallVector<SDValue, 16> OutStoreChains;
6078   SmallVector<SDValue, 32> OutChains;
6079   unsigned NumMemOps = MemOps.size();
6080   uint64_t SrcOff = 0, DstOff = 0;
6081   for (unsigned i = 0; i != NumMemOps; ++i) {
6082     EVT VT = MemOps[i];
6083     unsigned VTSize = VT.getSizeInBits() / 8;
6084     SDValue Value, Store;
6085 
6086     if (VTSize > Size) {
6087       // Issuing an unaligned load / store pair  that overlaps with the previous
6088       // pair. Adjust the offset accordingly.
6089       assert(i == NumMemOps-1 && i != 0);
6090       SrcOff -= VTSize - Size;
6091       DstOff -= VTSize - Size;
6092     }
6093 
6094     if (CopyFromConstant &&
6095         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6096       // It's unlikely a store of a vector immediate can be done in a single
6097       // instruction. It would require a load from a constantpool first.
6098       // We only handle zero vectors here.
6099       // FIXME: Handle other cases where store of vector immediate is done in
6100       // a single instruction.
6101       ConstantDataArraySlice SubSlice;
6102       if (SrcOff < Slice.Length) {
6103         SubSlice = Slice;
6104         SubSlice.move(SrcOff);
6105       } else {
6106         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6107         SubSlice.Array = nullptr;
6108         SubSlice.Offset = 0;
6109         SubSlice.Length = VTSize;
6110       }
6111       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6112       if (Value.getNode()) {
6113         Store = DAG.getStore(
6114             Chain, dl, Value,
6115             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6116             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6117         OutChains.push_back(Store);
6118       }
6119     }
6120 
6121     if (!Store.getNode()) {
6122       // The type might not be legal for the target.  This should only happen
6123       // if the type is smaller than a legal type, as on PPC, so the right
6124       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6125       // to Load/Store if NVT==VT.
6126       // FIXME does the case above also need this?
6127       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6128       assert(NVT.bitsGE(VT));
6129 
6130       bool isDereferenceable =
6131         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6132       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6133       if (isDereferenceable)
6134         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6135 
6136       Value = DAG.getExtLoad(
6137           ISD::EXTLOAD, dl, NVT, Chain,
6138           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6139           SrcPtrInfo.getWithOffset(SrcOff), VT,
6140           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6141       OutLoadChains.push_back(Value.getValue(1));
6142 
6143       Store = DAG.getTruncStore(
6144           Chain, dl, Value,
6145           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6146           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6147       OutStoreChains.push_back(Store);
6148     }
6149     SrcOff += VTSize;
6150     DstOff += VTSize;
6151     Size -= VTSize;
6152   }
6153 
6154   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6155                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6156   unsigned NumLdStInMemcpy = OutStoreChains.size();
6157 
6158   if (NumLdStInMemcpy) {
6159     // It may be that memcpy might be converted to memset if it's memcpy
6160     // of constants. In such a case, we won't have loads and stores, but
6161     // just stores. In the absence of loads, there is nothing to gang up.
6162     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6163       // If target does not care, just leave as it.
6164       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6165         OutChains.push_back(OutLoadChains[i]);
6166         OutChains.push_back(OutStoreChains[i]);
6167       }
6168     } else {
6169       // Ld/St less than/equal limit set by target.
6170       if (NumLdStInMemcpy <= GluedLdStLimit) {
6171           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6172                                         NumLdStInMemcpy, OutLoadChains,
6173                                         OutStoreChains);
6174       } else {
6175         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6176         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6177         unsigned GlueIter = 0;
6178 
6179         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6180           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6181           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6182 
6183           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6184                                        OutLoadChains, OutStoreChains);
6185           GlueIter += GluedLdStLimit;
6186         }
6187 
6188         // Residual ld/st.
6189         if (RemainingLdStInMemcpy) {
6190           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6191                                         RemainingLdStInMemcpy, OutLoadChains,
6192                                         OutStoreChains);
6193         }
6194       }
6195     }
6196   }
6197   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6198 }
6199 
6200 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6201                                         SDValue Chain, SDValue Dst, SDValue Src,
6202                                         uint64_t Size, Align Alignment,
6203                                         bool isVol, bool AlwaysInline,
6204                                         MachinePointerInfo DstPtrInfo,
6205                                         MachinePointerInfo SrcPtrInfo) {
6206   // Turn a memmove of undef to nop.
6207   // FIXME: We need to honor volatile even is Src is undef.
6208   if (Src.isUndef())
6209     return Chain;
6210 
6211   // Expand memmove to a series of load and store ops if the size operand falls
6212   // below a certain threshold.
6213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6214   const DataLayout &DL = DAG.getDataLayout();
6215   LLVMContext &C = *DAG.getContext();
6216   std::vector<EVT> MemOps;
6217   bool DstAlignCanChange = false;
6218   MachineFunction &MF = DAG.getMachineFunction();
6219   MachineFrameInfo &MFI = MF.getFrameInfo();
6220   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6221   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6222   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6223     DstAlignCanChange = true;
6224   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6225   if (!SrcAlign || Alignment > *SrcAlign)
6226     SrcAlign = Alignment;
6227   assert(SrcAlign && "SrcAlign must be set");
6228   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6229   if (!TLI.findOptimalMemOpLowering(
6230           MemOps, Limit,
6231           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6232                       /*IsVolatile*/ true),
6233           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6234           MF.getFunction().getAttributes()))
6235     return SDValue();
6236 
6237   if (DstAlignCanChange) {
6238     Type *Ty = MemOps[0].getTypeForEVT(C);
6239     Align NewAlign = DL.getABITypeAlign(Ty);
6240     if (NewAlign > Alignment) {
6241       // Give the stack frame object a larger alignment if needed.
6242       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6243         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6244       Alignment = NewAlign;
6245     }
6246   }
6247 
6248   MachineMemOperand::Flags MMOFlags =
6249       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6250   uint64_t SrcOff = 0, DstOff = 0;
6251   SmallVector<SDValue, 8> LoadValues;
6252   SmallVector<SDValue, 8> LoadChains;
6253   SmallVector<SDValue, 8> OutChains;
6254   unsigned NumMemOps = MemOps.size();
6255   for (unsigned i = 0; i < NumMemOps; i++) {
6256     EVT VT = MemOps[i];
6257     unsigned VTSize = VT.getSizeInBits() / 8;
6258     SDValue Value;
6259 
6260     bool isDereferenceable =
6261       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6262     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6263     if (isDereferenceable)
6264       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6265 
6266     Value =
6267         DAG.getLoad(VT, dl, Chain,
6268                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6269                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6270     LoadValues.push_back(Value);
6271     LoadChains.push_back(Value.getValue(1));
6272     SrcOff += VTSize;
6273   }
6274   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6275   OutChains.clear();
6276   for (unsigned i = 0; i < NumMemOps; i++) {
6277     EVT VT = MemOps[i];
6278     unsigned VTSize = VT.getSizeInBits() / 8;
6279     SDValue Store;
6280 
6281     Store =
6282         DAG.getStore(Chain, dl, LoadValues[i],
6283                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6284                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6285     OutChains.push_back(Store);
6286     DstOff += VTSize;
6287   }
6288 
6289   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6290 }
6291 
6292 /// Lower the call to 'memset' intrinsic function into a series of store
6293 /// operations.
6294 ///
6295 /// \param DAG Selection DAG where lowered code is placed.
6296 /// \param dl Link to corresponding IR location.
6297 /// \param Chain Control flow dependency.
6298 /// \param Dst Pointer to destination memory location.
6299 /// \param Src Value of byte to write into the memory.
6300 /// \param Size Number of bytes to write.
6301 /// \param Alignment Alignment of the destination in bytes.
6302 /// \param isVol True if destination is volatile.
6303 /// \param DstPtrInfo IR information on the memory pointer.
6304 /// \returns New head in the control flow, if lowering was successful, empty
6305 /// SDValue otherwise.
6306 ///
6307 /// The function tries to replace 'llvm.memset' intrinsic with several store
6308 /// operations and value calculation code. This is usually profitable for small
6309 /// memory size.
6310 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6311                                SDValue Chain, SDValue Dst, SDValue Src,
6312                                uint64_t Size, Align Alignment, bool isVol,
6313                                MachinePointerInfo DstPtrInfo) {
6314   // Turn a memset of undef to nop.
6315   // FIXME: We need to honor volatile even is Src is undef.
6316   if (Src.isUndef())
6317     return Chain;
6318 
6319   // Expand memset to a series of load/store ops if the size operand
6320   // falls below a certain threshold.
6321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6322   std::vector<EVT> MemOps;
6323   bool DstAlignCanChange = false;
6324   MachineFunction &MF = DAG.getMachineFunction();
6325   MachineFrameInfo &MFI = MF.getFrameInfo();
6326   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6327   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6328   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6329     DstAlignCanChange = true;
6330   bool IsZeroVal =
6331     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6332   if (!TLI.findOptimalMemOpLowering(
6333           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6334           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6335           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6336     return SDValue();
6337 
6338   if (DstAlignCanChange) {
6339     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6340     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6341     if (NewAlign > Alignment) {
6342       // Give the stack frame object a larger alignment if needed.
6343       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6344         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6345       Alignment = NewAlign;
6346     }
6347   }
6348 
6349   SmallVector<SDValue, 8> OutChains;
6350   uint64_t DstOff = 0;
6351   unsigned NumMemOps = MemOps.size();
6352 
6353   // Find the largest store and generate the bit pattern for it.
6354   EVT LargestVT = MemOps[0];
6355   for (unsigned i = 1; i < NumMemOps; i++)
6356     if (MemOps[i].bitsGT(LargestVT))
6357       LargestVT = MemOps[i];
6358   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6359 
6360   for (unsigned i = 0; i < NumMemOps; i++) {
6361     EVT VT = MemOps[i];
6362     unsigned VTSize = VT.getSizeInBits() / 8;
6363     if (VTSize > Size) {
6364       // Issuing an unaligned load / store pair  that overlaps with the previous
6365       // pair. Adjust the offset accordingly.
6366       assert(i == NumMemOps-1 && i != 0);
6367       DstOff -= VTSize - Size;
6368     }
6369 
6370     // If this store is smaller than the largest store see whether we can get
6371     // the smaller value for free with a truncate.
6372     SDValue Value = MemSetValue;
6373     if (VT.bitsLT(LargestVT)) {
6374       if (!LargestVT.isVector() && !VT.isVector() &&
6375           TLI.isTruncateFree(LargestVT, VT))
6376         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6377       else
6378         Value = getMemsetValue(Src, VT, DAG, dl);
6379     }
6380     assert(Value.getValueType() == VT && "Value with wrong type.");
6381     SDValue Store = DAG.getStore(
6382         Chain, dl, Value,
6383         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6384         DstPtrInfo.getWithOffset(DstOff), Alignment,
6385         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6386     OutChains.push_back(Store);
6387     DstOff += VT.getSizeInBits() / 8;
6388     Size -= VTSize;
6389   }
6390 
6391   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6392 }
6393 
6394 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6395                                             unsigned AS) {
6396   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6397   // pointer operands can be losslessly bitcasted to pointers of address space 0
6398   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6399     report_fatal_error("cannot lower memory intrinsic in address space " +
6400                        Twine(AS));
6401   }
6402 }
6403 
6404 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6405                                 SDValue Src, SDValue Size, Align Alignment,
6406                                 bool isVol, bool AlwaysInline, bool isTailCall,
6407                                 MachinePointerInfo DstPtrInfo,
6408                                 MachinePointerInfo SrcPtrInfo) {
6409   // Check to see if we should lower the memcpy to loads and stores first.
6410   // For cases within the target-specified limits, this is the best choice.
6411   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6412   if (ConstantSize) {
6413     // Memcpy with size zero? Just return the original chain.
6414     if (ConstantSize->isNullValue())
6415       return Chain;
6416 
6417     SDValue Result = getMemcpyLoadsAndStores(
6418         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6419         isVol, false, DstPtrInfo, SrcPtrInfo);
6420     if (Result.getNode())
6421       return Result;
6422   }
6423 
6424   // Then check to see if we should lower the memcpy with target-specific
6425   // code. If the target chooses to do this, this is the next best.
6426   if (TSI) {
6427     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6428         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6429         DstPtrInfo, SrcPtrInfo);
6430     if (Result.getNode())
6431       return Result;
6432   }
6433 
6434   // If we really need inline code and the target declined to provide it,
6435   // use a (potentially long) sequence of loads and stores.
6436   if (AlwaysInline) {
6437     assert(ConstantSize && "AlwaysInline requires a constant size!");
6438     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6439                                    ConstantSize->getZExtValue(), Alignment,
6440                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6441   }
6442 
6443   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6444   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6445 
6446   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6447   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6448   // respect volatile, so they may do things like read or write memory
6449   // beyond the given memory regions. But fixing this isn't easy, and most
6450   // people don't care.
6451 
6452   // Emit a library call.
6453   TargetLowering::ArgListTy Args;
6454   TargetLowering::ArgListEntry Entry;
6455   Entry.Ty = Type::getInt8PtrTy(*getContext());
6456   Entry.Node = Dst; Args.push_back(Entry);
6457   Entry.Node = Src; Args.push_back(Entry);
6458 
6459   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6460   Entry.Node = Size; Args.push_back(Entry);
6461   // FIXME: pass in SDLoc
6462   TargetLowering::CallLoweringInfo CLI(*this);
6463   CLI.setDebugLoc(dl)
6464       .setChain(Chain)
6465       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6466                     Dst.getValueType().getTypeForEVT(*getContext()),
6467                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6468                                       TLI->getPointerTy(getDataLayout())),
6469                     std::move(Args))
6470       .setDiscardResult()
6471       .setTailCall(isTailCall);
6472 
6473   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6474   return CallResult.second;
6475 }
6476 
6477 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6478                                       SDValue Dst, unsigned DstAlign,
6479                                       SDValue Src, unsigned SrcAlign,
6480                                       SDValue Size, Type *SizeTy,
6481                                       unsigned ElemSz, bool isTailCall,
6482                                       MachinePointerInfo DstPtrInfo,
6483                                       MachinePointerInfo SrcPtrInfo) {
6484   // Emit a library call.
6485   TargetLowering::ArgListTy Args;
6486   TargetLowering::ArgListEntry Entry;
6487   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6488   Entry.Node = Dst;
6489   Args.push_back(Entry);
6490 
6491   Entry.Node = Src;
6492   Args.push_back(Entry);
6493 
6494   Entry.Ty = SizeTy;
6495   Entry.Node = Size;
6496   Args.push_back(Entry);
6497 
6498   RTLIB::Libcall LibraryCall =
6499       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6500   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6501     report_fatal_error("Unsupported element size");
6502 
6503   TargetLowering::CallLoweringInfo CLI(*this);
6504   CLI.setDebugLoc(dl)
6505       .setChain(Chain)
6506       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6507                     Type::getVoidTy(*getContext()),
6508                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6509                                       TLI->getPointerTy(getDataLayout())),
6510                     std::move(Args))
6511       .setDiscardResult()
6512       .setTailCall(isTailCall);
6513 
6514   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6515   return CallResult.second;
6516 }
6517 
6518 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6519                                  SDValue Src, SDValue Size, Align Alignment,
6520                                  bool isVol, bool isTailCall,
6521                                  MachinePointerInfo DstPtrInfo,
6522                                  MachinePointerInfo SrcPtrInfo) {
6523   // Check to see if we should lower the memmove to loads and stores first.
6524   // For cases within the target-specified limits, this is the best choice.
6525   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6526   if (ConstantSize) {
6527     // Memmove with size zero? Just return the original chain.
6528     if (ConstantSize->isNullValue())
6529       return Chain;
6530 
6531     SDValue Result = getMemmoveLoadsAndStores(
6532         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6533         isVol, false, DstPtrInfo, SrcPtrInfo);
6534     if (Result.getNode())
6535       return Result;
6536   }
6537 
6538   // Then check to see if we should lower the memmove with target-specific
6539   // code. If the target chooses to do this, this is the next best.
6540   if (TSI) {
6541     SDValue Result =
6542         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6543                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6544     if (Result.getNode())
6545       return Result;
6546   }
6547 
6548   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6549   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6550 
6551   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6552   // not be safe.  See memcpy above for more details.
6553 
6554   // Emit a library call.
6555   TargetLowering::ArgListTy Args;
6556   TargetLowering::ArgListEntry Entry;
6557   Entry.Ty = Type::getInt8PtrTy(*getContext());
6558   Entry.Node = Dst; Args.push_back(Entry);
6559   Entry.Node = Src; Args.push_back(Entry);
6560 
6561   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6562   Entry.Node = Size; Args.push_back(Entry);
6563   // FIXME:  pass in SDLoc
6564   TargetLowering::CallLoweringInfo CLI(*this);
6565   CLI.setDebugLoc(dl)
6566       .setChain(Chain)
6567       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6568                     Dst.getValueType().getTypeForEVT(*getContext()),
6569                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6570                                       TLI->getPointerTy(getDataLayout())),
6571                     std::move(Args))
6572       .setDiscardResult()
6573       .setTailCall(isTailCall);
6574 
6575   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6576   return CallResult.second;
6577 }
6578 
6579 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6580                                        SDValue Dst, unsigned DstAlign,
6581                                        SDValue Src, unsigned SrcAlign,
6582                                        SDValue Size, Type *SizeTy,
6583                                        unsigned ElemSz, bool isTailCall,
6584                                        MachinePointerInfo DstPtrInfo,
6585                                        MachinePointerInfo SrcPtrInfo) {
6586   // Emit a library call.
6587   TargetLowering::ArgListTy Args;
6588   TargetLowering::ArgListEntry Entry;
6589   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6590   Entry.Node = Dst;
6591   Args.push_back(Entry);
6592 
6593   Entry.Node = Src;
6594   Args.push_back(Entry);
6595 
6596   Entry.Ty = SizeTy;
6597   Entry.Node = Size;
6598   Args.push_back(Entry);
6599 
6600   RTLIB::Libcall LibraryCall =
6601       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6602   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6603     report_fatal_error("Unsupported element size");
6604 
6605   TargetLowering::CallLoweringInfo CLI(*this);
6606   CLI.setDebugLoc(dl)
6607       .setChain(Chain)
6608       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6609                     Type::getVoidTy(*getContext()),
6610                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6611                                       TLI->getPointerTy(getDataLayout())),
6612                     std::move(Args))
6613       .setDiscardResult()
6614       .setTailCall(isTailCall);
6615 
6616   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6617   return CallResult.second;
6618 }
6619 
6620 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6621                                 SDValue Src, SDValue Size, Align Alignment,
6622                                 bool isVol, bool isTailCall,
6623                                 MachinePointerInfo DstPtrInfo) {
6624   // Check to see if we should lower the memset to stores first.
6625   // For cases within the target-specified limits, this is the best choice.
6626   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6627   if (ConstantSize) {
6628     // Memset with size zero? Just return the original chain.
6629     if (ConstantSize->isNullValue())
6630       return Chain;
6631 
6632     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6633                                      ConstantSize->getZExtValue(), Alignment,
6634                                      isVol, DstPtrInfo);
6635 
6636     if (Result.getNode())
6637       return Result;
6638   }
6639 
6640   // Then check to see if we should lower the memset with target-specific
6641   // code. If the target chooses to do this, this is the next best.
6642   if (TSI) {
6643     SDValue Result = TSI->EmitTargetCodeForMemset(
6644         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6645     if (Result.getNode())
6646       return Result;
6647   }
6648 
6649   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6650 
6651   // Emit a library call.
6652   TargetLowering::ArgListTy Args;
6653   TargetLowering::ArgListEntry Entry;
6654   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6655   Args.push_back(Entry);
6656   Entry.Node = Src;
6657   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6658   Args.push_back(Entry);
6659   Entry.Node = Size;
6660   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6661   Args.push_back(Entry);
6662 
6663   // FIXME: pass in SDLoc
6664   TargetLowering::CallLoweringInfo CLI(*this);
6665   CLI.setDebugLoc(dl)
6666       .setChain(Chain)
6667       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6668                     Dst.getValueType().getTypeForEVT(*getContext()),
6669                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6670                                       TLI->getPointerTy(getDataLayout())),
6671                     std::move(Args))
6672       .setDiscardResult()
6673       .setTailCall(isTailCall);
6674 
6675   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6676   return CallResult.second;
6677 }
6678 
6679 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6680                                       SDValue Dst, unsigned DstAlign,
6681                                       SDValue Value, SDValue Size, Type *SizeTy,
6682                                       unsigned ElemSz, bool isTailCall,
6683                                       MachinePointerInfo DstPtrInfo) {
6684   // Emit a library call.
6685   TargetLowering::ArgListTy Args;
6686   TargetLowering::ArgListEntry Entry;
6687   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6688   Entry.Node = Dst;
6689   Args.push_back(Entry);
6690 
6691   Entry.Ty = Type::getInt8Ty(*getContext());
6692   Entry.Node = Value;
6693   Args.push_back(Entry);
6694 
6695   Entry.Ty = SizeTy;
6696   Entry.Node = Size;
6697   Args.push_back(Entry);
6698 
6699   RTLIB::Libcall LibraryCall =
6700       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6701   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6702     report_fatal_error("Unsupported element size");
6703 
6704   TargetLowering::CallLoweringInfo CLI(*this);
6705   CLI.setDebugLoc(dl)
6706       .setChain(Chain)
6707       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6708                     Type::getVoidTy(*getContext()),
6709                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6710                                       TLI->getPointerTy(getDataLayout())),
6711                     std::move(Args))
6712       .setDiscardResult()
6713       .setTailCall(isTailCall);
6714 
6715   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6716   return CallResult.second;
6717 }
6718 
6719 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6720                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6721                                 MachineMemOperand *MMO) {
6722   FoldingSetNodeID ID;
6723   ID.AddInteger(MemVT.getRawBits());
6724   AddNodeIDNode(ID, Opcode, VTList, Ops);
6725   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6726   void* IP = nullptr;
6727   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6728     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6729     return SDValue(E, 0);
6730   }
6731 
6732   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6733                                     VTList, MemVT, MMO);
6734   createOperands(N, Ops);
6735 
6736   CSEMap.InsertNode(N, IP);
6737   InsertNode(N);
6738   return SDValue(N, 0);
6739 }
6740 
6741 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6742                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6743                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6744                                        MachineMemOperand *MMO) {
6745   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6746          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6747   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6748 
6749   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6750   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6751 }
6752 
6753 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6754                                 SDValue Chain, SDValue Ptr, SDValue Val,
6755                                 MachineMemOperand *MMO) {
6756   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6757           Opcode == ISD::ATOMIC_LOAD_SUB ||
6758           Opcode == ISD::ATOMIC_LOAD_AND ||
6759           Opcode == ISD::ATOMIC_LOAD_CLR ||
6760           Opcode == ISD::ATOMIC_LOAD_OR ||
6761           Opcode == ISD::ATOMIC_LOAD_XOR ||
6762           Opcode == ISD::ATOMIC_LOAD_NAND ||
6763           Opcode == ISD::ATOMIC_LOAD_MIN ||
6764           Opcode == ISD::ATOMIC_LOAD_MAX ||
6765           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6766           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6767           Opcode == ISD::ATOMIC_LOAD_FADD ||
6768           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6769           Opcode == ISD::ATOMIC_SWAP ||
6770           Opcode == ISD::ATOMIC_STORE) &&
6771          "Invalid Atomic Op");
6772 
6773   EVT VT = Val.getValueType();
6774 
6775   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6776                                                getVTList(VT, MVT::Other);
6777   SDValue Ops[] = {Chain, Ptr, Val};
6778   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6779 }
6780 
6781 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6782                                 EVT VT, SDValue Chain, SDValue Ptr,
6783                                 MachineMemOperand *MMO) {
6784   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6785 
6786   SDVTList VTs = getVTList(VT, MVT::Other);
6787   SDValue Ops[] = {Chain, Ptr};
6788   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6789 }
6790 
6791 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6792 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6793   if (Ops.size() == 1)
6794     return Ops[0];
6795 
6796   SmallVector<EVT, 4> VTs;
6797   VTs.reserve(Ops.size());
6798   for (unsigned i = 0; i < Ops.size(); ++i)
6799     VTs.push_back(Ops[i].getValueType());
6800   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6801 }
6802 
6803 SDValue SelectionDAG::getMemIntrinsicNode(
6804     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6805     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6806     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6807   if (!Size && MemVT.isScalableVector())
6808     Size = MemoryLocation::UnknownSize;
6809   else if (!Size)
6810     Size = MemVT.getStoreSize();
6811 
6812   MachineFunction &MF = getMachineFunction();
6813   MachineMemOperand *MMO =
6814       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6815 
6816   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6817 }
6818 
6819 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6820                                           SDVTList VTList,
6821                                           ArrayRef<SDValue> Ops, EVT MemVT,
6822                                           MachineMemOperand *MMO) {
6823   assert((Opcode == ISD::INTRINSIC_VOID ||
6824           Opcode == ISD::INTRINSIC_W_CHAIN ||
6825           Opcode == ISD::PREFETCH ||
6826           ((int)Opcode <= std::numeric_limits<int>::max() &&
6827            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6828          "Opcode is not a memory-accessing opcode!");
6829 
6830   // Memoize the node unless it returns a flag.
6831   MemIntrinsicSDNode *N;
6832   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6833     FoldingSetNodeID ID;
6834     AddNodeIDNode(ID, Opcode, VTList, Ops);
6835     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6836         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6837     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6838     void *IP = nullptr;
6839     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6840       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6841       return SDValue(E, 0);
6842     }
6843 
6844     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6845                                       VTList, MemVT, MMO);
6846     createOperands(N, Ops);
6847 
6848   CSEMap.InsertNode(N, IP);
6849   } else {
6850     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6851                                       VTList, MemVT, MMO);
6852     createOperands(N, Ops);
6853   }
6854   InsertNode(N);
6855   SDValue V(N, 0);
6856   NewSDValueDbgMsg(V, "Creating new node: ", this);
6857   return V;
6858 }
6859 
6860 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6861                                       SDValue Chain, int FrameIndex,
6862                                       int64_t Size, int64_t Offset) {
6863   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6864   const auto VTs = getVTList(MVT::Other);
6865   SDValue Ops[2] = {
6866       Chain,
6867       getFrameIndex(FrameIndex,
6868                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6869                     true)};
6870 
6871   FoldingSetNodeID ID;
6872   AddNodeIDNode(ID, Opcode, VTs, Ops);
6873   ID.AddInteger(FrameIndex);
6874   ID.AddInteger(Size);
6875   ID.AddInteger(Offset);
6876   void *IP = nullptr;
6877   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6878     return SDValue(E, 0);
6879 
6880   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6881       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6882   createOperands(N, Ops);
6883   CSEMap.InsertNode(N, IP);
6884   InsertNode(N);
6885   SDValue V(N, 0);
6886   NewSDValueDbgMsg(V, "Creating new node: ", this);
6887   return V;
6888 }
6889 
6890 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6891 /// MachinePointerInfo record from it.  This is particularly useful because the
6892 /// code generator has many cases where it doesn't bother passing in a
6893 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6894 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6895                                            SelectionDAG &DAG, SDValue Ptr,
6896                                            int64_t Offset = 0) {
6897   // If this is FI+Offset, we can model it.
6898   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6899     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6900                                              FI->getIndex(), Offset);
6901 
6902   // If this is (FI+Offset1)+Offset2, we can model it.
6903   if (Ptr.getOpcode() != ISD::ADD ||
6904       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6905       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6906     return Info;
6907 
6908   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6909   return MachinePointerInfo::getFixedStack(
6910       DAG.getMachineFunction(), FI,
6911       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6912 }
6913 
6914 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6915 /// MachinePointerInfo record from it.  This is particularly useful because the
6916 /// code generator has many cases where it doesn't bother passing in a
6917 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6918 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6919                                            SelectionDAG &DAG, SDValue Ptr,
6920                                            SDValue OffsetOp) {
6921   // If the 'Offset' value isn't a constant, we can't handle this.
6922   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6923     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6924   if (OffsetOp.isUndef())
6925     return InferPointerInfo(Info, DAG, Ptr);
6926   return Info;
6927 }
6928 
6929 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6930                               EVT VT, const SDLoc &dl, SDValue Chain,
6931                               SDValue Ptr, SDValue Offset,
6932                               MachinePointerInfo PtrInfo, EVT MemVT,
6933                               Align Alignment,
6934                               MachineMemOperand::Flags MMOFlags,
6935                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6936   assert(Chain.getValueType() == MVT::Other &&
6937         "Invalid chain type");
6938 
6939   MMOFlags |= MachineMemOperand::MOLoad;
6940   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6941   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6942   // clients.
6943   if (PtrInfo.V.isNull())
6944     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6945 
6946   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6947   MachineFunction &MF = getMachineFunction();
6948   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6949                                                    Alignment, AAInfo, Ranges);
6950   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6951 }
6952 
6953 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6954                               EVT VT, const SDLoc &dl, SDValue Chain,
6955                               SDValue Ptr, SDValue Offset, EVT MemVT,
6956                               MachineMemOperand *MMO) {
6957   if (VT == MemVT) {
6958     ExtType = ISD::NON_EXTLOAD;
6959   } else if (ExtType == ISD::NON_EXTLOAD) {
6960     assert(VT == MemVT && "Non-extending load from different memory type!");
6961   } else {
6962     // Extending load.
6963     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6964            "Should only be an extending load, not truncating!");
6965     assert(VT.isInteger() == MemVT.isInteger() &&
6966            "Cannot convert from FP to Int or Int -> FP!");
6967     assert(VT.isVector() == MemVT.isVector() &&
6968            "Cannot use an ext load to convert to or from a vector!");
6969     assert((!VT.isVector() ||
6970             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
6971            "Cannot use an ext load to change the number of vector elements!");
6972   }
6973 
6974   bool Indexed = AM != ISD::UNINDEXED;
6975   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6976 
6977   SDVTList VTs = Indexed ?
6978     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6979   SDValue Ops[] = { Chain, Ptr, Offset };
6980   FoldingSetNodeID ID;
6981   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6982   ID.AddInteger(MemVT.getRawBits());
6983   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6984       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6985   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6986   void *IP = nullptr;
6987   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6988     cast<LoadSDNode>(E)->refineAlignment(MMO);
6989     return SDValue(E, 0);
6990   }
6991   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6992                                   ExtType, MemVT, MMO);
6993   createOperands(N, Ops);
6994 
6995   CSEMap.InsertNode(N, IP);
6996   InsertNode(N);
6997   SDValue V(N, 0);
6998   NewSDValueDbgMsg(V, "Creating new node: ", this);
6999   return V;
7000 }
7001 
7002 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7003                               SDValue Ptr, MachinePointerInfo PtrInfo,
7004                               MaybeAlign Alignment,
7005                               MachineMemOperand::Flags MMOFlags,
7006                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7007   SDValue Undef = getUNDEF(Ptr.getValueType());
7008   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7009                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7010 }
7011 
7012 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7013                               SDValue Ptr, MachineMemOperand *MMO) {
7014   SDValue Undef = getUNDEF(Ptr.getValueType());
7015   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7016                  VT, MMO);
7017 }
7018 
7019 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7020                                  EVT VT, SDValue Chain, SDValue Ptr,
7021                                  MachinePointerInfo PtrInfo, EVT MemVT,
7022                                  MaybeAlign Alignment,
7023                                  MachineMemOperand::Flags MMOFlags,
7024                                  const AAMDNodes &AAInfo) {
7025   SDValue Undef = getUNDEF(Ptr.getValueType());
7026   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7027                  MemVT, Alignment, MMOFlags, AAInfo);
7028 }
7029 
7030 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7031                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7032                                  MachineMemOperand *MMO) {
7033   SDValue Undef = getUNDEF(Ptr.getValueType());
7034   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7035                  MemVT, MMO);
7036 }
7037 
7038 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7039                                      SDValue Base, SDValue Offset,
7040                                      ISD::MemIndexedMode AM) {
7041   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7042   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7043   // Don't propagate the invariant or dereferenceable flags.
7044   auto MMOFlags =
7045       LD->getMemOperand()->getFlags() &
7046       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7047   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7048                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7049                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7050 }
7051 
7052 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7053                                SDValue Ptr, MachinePointerInfo PtrInfo,
7054                                Align Alignment,
7055                                MachineMemOperand::Flags MMOFlags,
7056                                const AAMDNodes &AAInfo) {
7057   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7058 
7059   MMOFlags |= MachineMemOperand::MOStore;
7060   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7061 
7062   if (PtrInfo.V.isNull())
7063     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7064 
7065   MachineFunction &MF = getMachineFunction();
7066   uint64_t Size =
7067       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7068   MachineMemOperand *MMO =
7069       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7070   return getStore(Chain, dl, Val, Ptr, MMO);
7071 }
7072 
7073 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7074                                SDValue Ptr, MachineMemOperand *MMO) {
7075   assert(Chain.getValueType() == MVT::Other &&
7076         "Invalid chain type");
7077   EVT VT = Val.getValueType();
7078   SDVTList VTs = getVTList(MVT::Other);
7079   SDValue Undef = getUNDEF(Ptr.getValueType());
7080   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7081   FoldingSetNodeID ID;
7082   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7083   ID.AddInteger(VT.getRawBits());
7084   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7085       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7086   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7087   void *IP = nullptr;
7088   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7089     cast<StoreSDNode>(E)->refineAlignment(MMO);
7090     return SDValue(E, 0);
7091   }
7092   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7093                                    ISD::UNINDEXED, false, VT, MMO);
7094   createOperands(N, Ops);
7095 
7096   CSEMap.InsertNode(N, IP);
7097   InsertNode(N);
7098   SDValue V(N, 0);
7099   NewSDValueDbgMsg(V, "Creating new node: ", this);
7100   return V;
7101 }
7102 
7103 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7104                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7105                                     EVT SVT, Align Alignment,
7106                                     MachineMemOperand::Flags MMOFlags,
7107                                     const AAMDNodes &AAInfo) {
7108   assert(Chain.getValueType() == MVT::Other &&
7109         "Invalid chain type");
7110 
7111   MMOFlags |= MachineMemOperand::MOStore;
7112   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7113 
7114   if (PtrInfo.V.isNull())
7115     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7116 
7117   MachineFunction &MF = getMachineFunction();
7118   MachineMemOperand *MMO = MF.getMachineMemOperand(
7119       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7120       Alignment, AAInfo);
7121   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7122 }
7123 
7124 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7125                                     SDValue Ptr, EVT SVT,
7126                                     MachineMemOperand *MMO) {
7127   EVT VT = Val.getValueType();
7128 
7129   assert(Chain.getValueType() == MVT::Other &&
7130         "Invalid chain type");
7131   if (VT == SVT)
7132     return getStore(Chain, dl, Val, Ptr, MMO);
7133 
7134   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7135          "Should only be a truncating store, not extending!");
7136   assert(VT.isInteger() == SVT.isInteger() &&
7137          "Can't do FP-INT conversion!");
7138   assert(VT.isVector() == SVT.isVector() &&
7139          "Cannot use trunc store to convert to or from a vector!");
7140   assert((!VT.isVector() ||
7141           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7142          "Cannot use trunc store to change the number of vector elements!");
7143 
7144   SDVTList VTs = getVTList(MVT::Other);
7145   SDValue Undef = getUNDEF(Ptr.getValueType());
7146   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7147   FoldingSetNodeID ID;
7148   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7149   ID.AddInteger(SVT.getRawBits());
7150   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7151       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7152   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7153   void *IP = nullptr;
7154   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7155     cast<StoreSDNode>(E)->refineAlignment(MMO);
7156     return SDValue(E, 0);
7157   }
7158   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7159                                    ISD::UNINDEXED, true, SVT, MMO);
7160   createOperands(N, Ops);
7161 
7162   CSEMap.InsertNode(N, IP);
7163   InsertNode(N);
7164   SDValue V(N, 0);
7165   NewSDValueDbgMsg(V, "Creating new node: ", this);
7166   return V;
7167 }
7168 
7169 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7170                                       SDValue Base, SDValue Offset,
7171                                       ISD::MemIndexedMode AM) {
7172   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7173   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7174   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7175   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7176   FoldingSetNodeID ID;
7177   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7178   ID.AddInteger(ST->getMemoryVT().getRawBits());
7179   ID.AddInteger(ST->getRawSubclassData());
7180   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7181   void *IP = nullptr;
7182   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7183     return SDValue(E, 0);
7184 
7185   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7186                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7187                                    ST->getMemOperand());
7188   createOperands(N, Ops);
7189 
7190   CSEMap.InsertNode(N, IP);
7191   InsertNode(N);
7192   SDValue V(N, 0);
7193   NewSDValueDbgMsg(V, "Creating new node: ", this);
7194   return V;
7195 }
7196 
7197 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7198                                     SDValue Base, SDValue Offset, SDValue Mask,
7199                                     SDValue PassThru, EVT MemVT,
7200                                     MachineMemOperand *MMO,
7201                                     ISD::MemIndexedMode AM,
7202                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7203   bool Indexed = AM != ISD::UNINDEXED;
7204   assert((Indexed || Offset.isUndef()) &&
7205          "Unindexed masked load with an offset!");
7206   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7207                          : getVTList(VT, MVT::Other);
7208   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7209   FoldingSetNodeID ID;
7210   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7211   ID.AddInteger(MemVT.getRawBits());
7212   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7213       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7214   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7215   void *IP = nullptr;
7216   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7217     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7218     return SDValue(E, 0);
7219   }
7220   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7221                                         AM, ExtTy, isExpanding, MemVT, MMO);
7222   createOperands(N, Ops);
7223 
7224   CSEMap.InsertNode(N, IP);
7225   InsertNode(N);
7226   SDValue V(N, 0);
7227   NewSDValueDbgMsg(V, "Creating new node: ", this);
7228   return V;
7229 }
7230 
7231 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7232                                            SDValue Base, SDValue Offset,
7233                                            ISD::MemIndexedMode AM) {
7234   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7235   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7236   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7237                        Offset, LD->getMask(), LD->getPassThru(),
7238                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7239                        LD->getExtensionType(), LD->isExpandingLoad());
7240 }
7241 
7242 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7243                                      SDValue Val, SDValue Base, SDValue Offset,
7244                                      SDValue Mask, EVT MemVT,
7245                                      MachineMemOperand *MMO,
7246                                      ISD::MemIndexedMode AM, bool IsTruncating,
7247                                      bool IsCompressing) {
7248   assert(Chain.getValueType() == MVT::Other &&
7249         "Invalid chain type");
7250   bool Indexed = AM != ISD::UNINDEXED;
7251   assert((Indexed || Offset.isUndef()) &&
7252          "Unindexed masked store with an offset!");
7253   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7254                          : getVTList(MVT::Other);
7255   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7256   FoldingSetNodeID ID;
7257   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7258   ID.AddInteger(MemVT.getRawBits());
7259   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7260       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7261   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7262   void *IP = nullptr;
7263   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7264     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7265     return SDValue(E, 0);
7266   }
7267   auto *N =
7268       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7269                                    IsTruncating, IsCompressing, MemVT, MMO);
7270   createOperands(N, Ops);
7271 
7272   CSEMap.InsertNode(N, IP);
7273   InsertNode(N);
7274   SDValue V(N, 0);
7275   NewSDValueDbgMsg(V, "Creating new node: ", this);
7276   return V;
7277 }
7278 
7279 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7280                                             SDValue Base, SDValue Offset,
7281                                             ISD::MemIndexedMode AM) {
7282   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7283   assert(ST->getOffset().isUndef() &&
7284          "Masked store is already a indexed store!");
7285   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7286                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7287                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7288 }
7289 
7290 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7291                                       ArrayRef<SDValue> Ops,
7292                                       MachineMemOperand *MMO,
7293                                       ISD::MemIndexType IndexType) {
7294   assert(Ops.size() == 6 && "Incompatible number of operands");
7295 
7296   FoldingSetNodeID ID;
7297   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7298   ID.AddInteger(VT.getRawBits());
7299   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7300       dl.getIROrder(), VTs, VT, MMO, IndexType));
7301   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7302   void *IP = nullptr;
7303   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7304     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7305     return SDValue(E, 0);
7306   }
7307 
7308   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7309                                           VTs, VT, MMO, IndexType);
7310   createOperands(N, Ops);
7311 
7312   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7313          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7314   assert(N->getMask().getValueType().getVectorNumElements() ==
7315              N->getValueType(0).getVectorNumElements() &&
7316          "Vector width mismatch between mask and data");
7317   assert(N->getIndex().getValueType().getVectorNumElements() >=
7318              N->getValueType(0).getVectorNumElements() &&
7319          "Vector width mismatch between index and data");
7320   assert(isa<ConstantSDNode>(N->getScale()) &&
7321          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7322          "Scale should be a constant power of 2");
7323 
7324   CSEMap.InsertNode(N, IP);
7325   InsertNode(N);
7326   SDValue V(N, 0);
7327   NewSDValueDbgMsg(V, "Creating new node: ", this);
7328   return V;
7329 }
7330 
7331 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7332                                        ArrayRef<SDValue> Ops,
7333                                        MachineMemOperand *MMO,
7334                                        ISD::MemIndexType IndexType,
7335                                        bool IsTrunc) {
7336   assert(Ops.size() == 6 && "Incompatible number of operands");
7337 
7338   FoldingSetNodeID ID;
7339   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7340   ID.AddInteger(VT.getRawBits());
7341   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7342       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7343   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7344   void *IP = nullptr;
7345   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7346     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7347     return SDValue(E, 0);
7348   }
7349 
7350   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7351   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7352                                            VTs, VT, MMO, IndexType, IsTrunc);
7353   createOperands(N, Ops);
7354 
7355   assert(N->getMask().getValueType().getVectorElementCount() ==
7356              N->getValue().getValueType().getVectorElementCount() &&
7357          "Vector width mismatch between mask and data");
7358   assert(
7359       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7360           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7361       "Scalable flags of index and data do not match");
7362   assert(ElementCount::isKnownGE(
7363              N->getIndex().getValueType().getVectorElementCount(),
7364              N->getValue().getValueType().getVectorElementCount()) &&
7365          "Vector width mismatch between index and data");
7366   assert(isa<ConstantSDNode>(N->getScale()) &&
7367          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7368          "Scale should be a constant power of 2");
7369 
7370   CSEMap.InsertNode(N, IP);
7371   InsertNode(N);
7372   SDValue V(N, 0);
7373   NewSDValueDbgMsg(V, "Creating new node: ", this);
7374   return V;
7375 }
7376 
7377 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7378   // select undef, T, F --> T (if T is a constant), otherwise F
7379   // select, ?, undef, F --> F
7380   // select, ?, T, undef --> T
7381   if (Cond.isUndef())
7382     return isConstantValueOfAnyType(T) ? T : F;
7383   if (T.isUndef())
7384     return F;
7385   if (F.isUndef())
7386     return T;
7387 
7388   // select true, T, F --> T
7389   // select false, T, F --> F
7390   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7391     return CondC->isNullValue() ? F : T;
7392 
7393   // TODO: This should simplify VSELECT with constant condition using something
7394   // like this (but check boolean contents to be complete?):
7395   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7396   //    return T;
7397   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7398   //    return F;
7399 
7400   // select ?, T, T --> T
7401   if (T == F)
7402     return T;
7403 
7404   return SDValue();
7405 }
7406 
7407 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7408   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7409   if (X.isUndef())
7410     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7411   // shift X, undef --> undef (because it may shift by the bitwidth)
7412   if (Y.isUndef())
7413     return getUNDEF(X.getValueType());
7414 
7415   // shift 0, Y --> 0
7416   // shift X, 0 --> X
7417   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7418     return X;
7419 
7420   // shift X, C >= bitwidth(X) --> undef
7421   // All vector elements must be too big (or undef) to avoid partial undefs.
7422   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7423     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7424   };
7425   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7426     return getUNDEF(X.getValueType());
7427 
7428   return SDValue();
7429 }
7430 
7431 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7432                                       SDNodeFlags Flags) {
7433   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7434   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7435   // operation is poison. That result can be relaxed to undef.
7436   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7437   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7438   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7439                 (YC && YC->getValueAPF().isNaN());
7440   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7441                 (YC && YC->getValueAPF().isInfinity());
7442 
7443   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7444     return getUNDEF(X.getValueType());
7445 
7446   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7447     return getUNDEF(X.getValueType());
7448 
7449   if (!YC)
7450     return SDValue();
7451 
7452   // X + -0.0 --> X
7453   if (Opcode == ISD::FADD)
7454     if (YC->getValueAPF().isNegZero())
7455       return X;
7456 
7457   // X - +0.0 --> X
7458   if (Opcode == ISD::FSUB)
7459     if (YC->getValueAPF().isPosZero())
7460       return X;
7461 
7462   // X * 1.0 --> X
7463   // X / 1.0 --> X
7464   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7465     if (YC->getValueAPF().isExactlyValue(1.0))
7466       return X;
7467 
7468   // X * 0.0 --> 0.0
7469   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7470     if (YC->getValueAPF().isZero())
7471       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7472 
7473   return SDValue();
7474 }
7475 
7476 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7477                                SDValue Ptr, SDValue SV, unsigned Align) {
7478   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7479   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7480 }
7481 
7482 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7483                               ArrayRef<SDUse> Ops) {
7484   switch (Ops.size()) {
7485   case 0: return getNode(Opcode, DL, VT);
7486   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7487   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7488   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7489   default: break;
7490   }
7491 
7492   // Copy from an SDUse array into an SDValue array for use with
7493   // the regular getNode logic.
7494   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7495   return getNode(Opcode, DL, VT, NewOps);
7496 }
7497 
7498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7499                               ArrayRef<SDValue> Ops) {
7500   SDNodeFlags Flags;
7501   if (Inserter)
7502     Flags = Inserter->getFlags();
7503   return getNode(Opcode, DL, VT, Ops, Flags);
7504 }
7505 
7506 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7507                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7508   unsigned NumOps = Ops.size();
7509   switch (NumOps) {
7510   case 0: return getNode(Opcode, DL, VT);
7511   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7512   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7513   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7514   default: break;
7515   }
7516 
7517   switch (Opcode) {
7518   default: break;
7519   case ISD::BUILD_VECTOR:
7520     // Attempt to simplify BUILD_VECTOR.
7521     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7522       return V;
7523     break;
7524   case ISD::CONCAT_VECTORS:
7525     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7526       return V;
7527     break;
7528   case ISD::SELECT_CC:
7529     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7530     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7531            "LHS and RHS of condition must have same type!");
7532     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7533            "True and False arms of SelectCC must have same type!");
7534     assert(Ops[2].getValueType() == VT &&
7535            "select_cc node must be of same type as true and false value!");
7536     break;
7537   case ISD::BR_CC:
7538     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7539     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7540            "LHS/RHS of comparison should match types!");
7541     break;
7542   }
7543 
7544   // Memoize nodes.
7545   SDNode *N;
7546   SDVTList VTs = getVTList(VT);
7547 
7548   if (VT != MVT::Glue) {
7549     FoldingSetNodeID ID;
7550     AddNodeIDNode(ID, Opcode, VTs, Ops);
7551     void *IP = nullptr;
7552 
7553     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7554       return SDValue(E, 0);
7555 
7556     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7557     createOperands(N, Ops);
7558 
7559     CSEMap.InsertNode(N, IP);
7560   } else {
7561     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7562     createOperands(N, Ops);
7563   }
7564 
7565   N->setFlags(Flags);
7566   InsertNode(N);
7567   SDValue V(N, 0);
7568   NewSDValueDbgMsg(V, "Creating new node: ", this);
7569   return V;
7570 }
7571 
7572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7573                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7574   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7575 }
7576 
7577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7578                               ArrayRef<SDValue> Ops) {
7579   SDNodeFlags Flags;
7580   if (Inserter)
7581     Flags = Inserter->getFlags();
7582   return getNode(Opcode, DL, VTList, Ops, Flags);
7583 }
7584 
7585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7586                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7587   if (VTList.NumVTs == 1)
7588     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7589 
7590   switch (Opcode) {
7591   case ISD::STRICT_FP_EXTEND:
7592     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7593            "Invalid STRICT_FP_EXTEND!");
7594     assert(VTList.VTs[0].isFloatingPoint() &&
7595            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7596     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7597            "STRICT_FP_EXTEND result type should be vector iff the operand "
7598            "type is vector!");
7599     assert((!VTList.VTs[0].isVector() ||
7600             VTList.VTs[0].getVectorNumElements() ==
7601             Ops[1].getValueType().getVectorNumElements()) &&
7602            "Vector element count mismatch!");
7603     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7604            "Invalid fpext node, dst <= src!");
7605     break;
7606   case ISD::STRICT_FP_ROUND:
7607     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7608     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7609            "STRICT_FP_ROUND result type should be vector iff the operand "
7610            "type is vector!");
7611     assert((!VTList.VTs[0].isVector() ||
7612             VTList.VTs[0].getVectorNumElements() ==
7613             Ops[1].getValueType().getVectorNumElements()) &&
7614            "Vector element count mismatch!");
7615     assert(VTList.VTs[0].isFloatingPoint() &&
7616            Ops[1].getValueType().isFloatingPoint() &&
7617            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7618            isa<ConstantSDNode>(Ops[2]) &&
7619            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7620             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7621            "Invalid STRICT_FP_ROUND!");
7622     break;
7623 #if 0
7624   // FIXME: figure out how to safely handle things like
7625   // int foo(int x) { return 1 << (x & 255); }
7626   // int bar() { return foo(256); }
7627   case ISD::SRA_PARTS:
7628   case ISD::SRL_PARTS:
7629   case ISD::SHL_PARTS:
7630     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7631         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7632       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7633     else if (N3.getOpcode() == ISD::AND)
7634       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7635         // If the and is only masking out bits that cannot effect the shift,
7636         // eliminate the and.
7637         unsigned NumBits = VT.getScalarSizeInBits()*2;
7638         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7639           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7640       }
7641     break;
7642 #endif
7643   }
7644 
7645   // Memoize the node unless it returns a flag.
7646   SDNode *N;
7647   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7648     FoldingSetNodeID ID;
7649     AddNodeIDNode(ID, Opcode, VTList, Ops);
7650     void *IP = nullptr;
7651     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7652       return SDValue(E, 0);
7653 
7654     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7655     createOperands(N, Ops);
7656     CSEMap.InsertNode(N, IP);
7657   } else {
7658     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7659     createOperands(N, Ops);
7660   }
7661 
7662   N->setFlags(Flags);
7663   InsertNode(N);
7664   SDValue V(N, 0);
7665   NewSDValueDbgMsg(V, "Creating new node: ", this);
7666   return V;
7667 }
7668 
7669 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7670                               SDVTList VTList) {
7671   return getNode(Opcode, DL, VTList, None);
7672 }
7673 
7674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7675                               SDValue N1) {
7676   SDValue Ops[] = { N1 };
7677   return getNode(Opcode, DL, VTList, Ops);
7678 }
7679 
7680 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7681                               SDValue N1, SDValue N2) {
7682   SDValue Ops[] = { N1, N2 };
7683   return getNode(Opcode, DL, VTList, Ops);
7684 }
7685 
7686 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7687                               SDValue N1, SDValue N2, SDValue N3) {
7688   SDValue Ops[] = { N1, N2, N3 };
7689   return getNode(Opcode, DL, VTList, Ops);
7690 }
7691 
7692 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7693                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7694   SDValue Ops[] = { N1, N2, N3, N4 };
7695   return getNode(Opcode, DL, VTList, Ops);
7696 }
7697 
7698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7699                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7700                               SDValue N5) {
7701   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7702   return getNode(Opcode, DL, VTList, Ops);
7703 }
7704 
7705 SDVTList SelectionDAG::getVTList(EVT VT) {
7706   return makeVTList(SDNode::getValueTypeList(VT), 1);
7707 }
7708 
7709 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7710   FoldingSetNodeID ID;
7711   ID.AddInteger(2U);
7712   ID.AddInteger(VT1.getRawBits());
7713   ID.AddInteger(VT2.getRawBits());
7714 
7715   void *IP = nullptr;
7716   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7717   if (!Result) {
7718     EVT *Array = Allocator.Allocate<EVT>(2);
7719     Array[0] = VT1;
7720     Array[1] = VT2;
7721     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7722     VTListMap.InsertNode(Result, IP);
7723   }
7724   return Result->getSDVTList();
7725 }
7726 
7727 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7728   FoldingSetNodeID ID;
7729   ID.AddInteger(3U);
7730   ID.AddInteger(VT1.getRawBits());
7731   ID.AddInteger(VT2.getRawBits());
7732   ID.AddInteger(VT3.getRawBits());
7733 
7734   void *IP = nullptr;
7735   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7736   if (!Result) {
7737     EVT *Array = Allocator.Allocate<EVT>(3);
7738     Array[0] = VT1;
7739     Array[1] = VT2;
7740     Array[2] = VT3;
7741     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7742     VTListMap.InsertNode(Result, IP);
7743   }
7744   return Result->getSDVTList();
7745 }
7746 
7747 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7748   FoldingSetNodeID ID;
7749   ID.AddInteger(4U);
7750   ID.AddInteger(VT1.getRawBits());
7751   ID.AddInteger(VT2.getRawBits());
7752   ID.AddInteger(VT3.getRawBits());
7753   ID.AddInteger(VT4.getRawBits());
7754 
7755   void *IP = nullptr;
7756   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7757   if (!Result) {
7758     EVT *Array = Allocator.Allocate<EVT>(4);
7759     Array[0] = VT1;
7760     Array[1] = VT2;
7761     Array[2] = VT3;
7762     Array[3] = VT4;
7763     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7764     VTListMap.InsertNode(Result, IP);
7765   }
7766   return Result->getSDVTList();
7767 }
7768 
7769 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7770   unsigned NumVTs = VTs.size();
7771   FoldingSetNodeID ID;
7772   ID.AddInteger(NumVTs);
7773   for (unsigned index = 0; index < NumVTs; index++) {
7774     ID.AddInteger(VTs[index].getRawBits());
7775   }
7776 
7777   void *IP = nullptr;
7778   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7779   if (!Result) {
7780     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7781     llvm::copy(VTs, Array);
7782     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7783     VTListMap.InsertNode(Result, IP);
7784   }
7785   return Result->getSDVTList();
7786 }
7787 
7788 
7789 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7790 /// specified operands.  If the resultant node already exists in the DAG,
7791 /// this does not modify the specified node, instead it returns the node that
7792 /// already exists.  If the resultant node does not exist in the DAG, the
7793 /// input node is returned.  As a degenerate case, if you specify the same
7794 /// input operands as the node already has, the input node is returned.
7795 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7796   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7797 
7798   // Check to see if there is no change.
7799   if (Op == N->getOperand(0)) return N;
7800 
7801   // See if the modified node already exists.
7802   void *InsertPos = nullptr;
7803   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7804     return Existing;
7805 
7806   // Nope it doesn't.  Remove the node from its current place in the maps.
7807   if (InsertPos)
7808     if (!RemoveNodeFromCSEMaps(N))
7809       InsertPos = nullptr;
7810 
7811   // Now we update the operands.
7812   N->OperandList[0].set(Op);
7813 
7814   updateDivergence(N);
7815   // If this gets put into a CSE map, add it.
7816   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7817   return N;
7818 }
7819 
7820 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7821   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7822 
7823   // Check to see if there is no change.
7824   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7825     return N;   // No operands changed, just return the input node.
7826 
7827   // See if the modified node already exists.
7828   void *InsertPos = nullptr;
7829   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7830     return Existing;
7831 
7832   // Nope it doesn't.  Remove the node from its current place in the maps.
7833   if (InsertPos)
7834     if (!RemoveNodeFromCSEMaps(N))
7835       InsertPos = nullptr;
7836 
7837   // Now we update the operands.
7838   if (N->OperandList[0] != Op1)
7839     N->OperandList[0].set(Op1);
7840   if (N->OperandList[1] != Op2)
7841     N->OperandList[1].set(Op2);
7842 
7843   updateDivergence(N);
7844   // If this gets put into a CSE map, add it.
7845   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7846   return N;
7847 }
7848 
7849 SDNode *SelectionDAG::
7850 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7851   SDValue Ops[] = { Op1, Op2, Op3 };
7852   return UpdateNodeOperands(N, Ops);
7853 }
7854 
7855 SDNode *SelectionDAG::
7856 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7857                    SDValue Op3, SDValue Op4) {
7858   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7859   return UpdateNodeOperands(N, Ops);
7860 }
7861 
7862 SDNode *SelectionDAG::
7863 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7864                    SDValue Op3, SDValue Op4, SDValue Op5) {
7865   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7866   return UpdateNodeOperands(N, Ops);
7867 }
7868 
7869 SDNode *SelectionDAG::
7870 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7871   unsigned NumOps = Ops.size();
7872   assert(N->getNumOperands() == NumOps &&
7873          "Update with wrong number of operands");
7874 
7875   // If no operands changed just return the input node.
7876   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7877     return N;
7878 
7879   // See if the modified node already exists.
7880   void *InsertPos = nullptr;
7881   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7882     return Existing;
7883 
7884   // Nope it doesn't.  Remove the node from its current place in the maps.
7885   if (InsertPos)
7886     if (!RemoveNodeFromCSEMaps(N))
7887       InsertPos = nullptr;
7888 
7889   // Now we update the operands.
7890   for (unsigned i = 0; i != NumOps; ++i)
7891     if (N->OperandList[i] != Ops[i])
7892       N->OperandList[i].set(Ops[i]);
7893 
7894   updateDivergence(N);
7895   // If this gets put into a CSE map, add it.
7896   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7897   return N;
7898 }
7899 
7900 /// DropOperands - Release the operands and set this node to have
7901 /// zero operands.
7902 void SDNode::DropOperands() {
7903   // Unlike the code in MorphNodeTo that does this, we don't need to
7904   // watch for dead nodes here.
7905   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7906     SDUse &Use = *I++;
7907     Use.set(SDValue());
7908   }
7909 }
7910 
7911 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7912                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7913   if (NewMemRefs.empty()) {
7914     N->clearMemRefs();
7915     return;
7916   }
7917 
7918   // Check if we can avoid allocating by storing a single reference directly.
7919   if (NewMemRefs.size() == 1) {
7920     N->MemRefs = NewMemRefs[0];
7921     N->NumMemRefs = 1;
7922     return;
7923   }
7924 
7925   MachineMemOperand **MemRefsBuffer =
7926       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7927   llvm::copy(NewMemRefs, MemRefsBuffer);
7928   N->MemRefs = MemRefsBuffer;
7929   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7930 }
7931 
7932 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7933 /// machine opcode.
7934 ///
7935 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7936                                    EVT VT) {
7937   SDVTList VTs = getVTList(VT);
7938   return SelectNodeTo(N, MachineOpc, VTs, None);
7939 }
7940 
7941 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7942                                    EVT VT, SDValue Op1) {
7943   SDVTList VTs = getVTList(VT);
7944   SDValue Ops[] = { Op1 };
7945   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7946 }
7947 
7948 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7949                                    EVT VT, SDValue Op1,
7950                                    SDValue Op2) {
7951   SDVTList VTs = getVTList(VT);
7952   SDValue Ops[] = { Op1, Op2 };
7953   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7954 }
7955 
7956 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7957                                    EVT VT, SDValue Op1,
7958                                    SDValue Op2, SDValue Op3) {
7959   SDVTList VTs = getVTList(VT);
7960   SDValue Ops[] = { Op1, Op2, Op3 };
7961   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7962 }
7963 
7964 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7965                                    EVT VT, ArrayRef<SDValue> Ops) {
7966   SDVTList VTs = getVTList(VT);
7967   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7968 }
7969 
7970 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7971                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7972   SDVTList VTs = getVTList(VT1, VT2);
7973   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7974 }
7975 
7976 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7977                                    EVT VT1, EVT VT2) {
7978   SDVTList VTs = getVTList(VT1, VT2);
7979   return SelectNodeTo(N, MachineOpc, VTs, None);
7980 }
7981 
7982 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7983                                    EVT VT1, EVT VT2, EVT VT3,
7984                                    ArrayRef<SDValue> Ops) {
7985   SDVTList VTs = getVTList(VT1, VT2, VT3);
7986   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7987 }
7988 
7989 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7990                                    EVT VT1, EVT VT2,
7991                                    SDValue Op1, SDValue Op2) {
7992   SDVTList VTs = getVTList(VT1, VT2);
7993   SDValue Ops[] = { Op1, Op2 };
7994   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7995 }
7996 
7997 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7998                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7999   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8000   // Reset the NodeID to -1.
8001   New->setNodeId(-1);
8002   if (New != N) {
8003     ReplaceAllUsesWith(N, New);
8004     RemoveDeadNode(N);
8005   }
8006   return New;
8007 }
8008 
8009 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8010 /// the line number information on the merged node since it is not possible to
8011 /// preserve the information that operation is associated with multiple lines.
8012 /// This will make the debugger working better at -O0, were there is a higher
8013 /// probability having other instructions associated with that line.
8014 ///
8015 /// For IROrder, we keep the smaller of the two
8016 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8017   DebugLoc NLoc = N->getDebugLoc();
8018   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8019     N->setDebugLoc(DebugLoc());
8020   }
8021   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8022   N->setIROrder(Order);
8023   return N;
8024 }
8025 
8026 /// MorphNodeTo - This *mutates* the specified node to have the specified
8027 /// return type, opcode, and operands.
8028 ///
8029 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8030 /// node of the specified opcode and operands, it returns that node instead of
8031 /// the current one.  Note that the SDLoc need not be the same.
8032 ///
8033 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8034 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8035 /// node, and because it doesn't require CSE recalculation for any of
8036 /// the node's users.
8037 ///
8038 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8039 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8040 /// the legalizer which maintain worklists that would need to be updated when
8041 /// deleting things.
8042 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8043                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8044   // If an identical node already exists, use it.
8045   void *IP = nullptr;
8046   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8047     FoldingSetNodeID ID;
8048     AddNodeIDNode(ID, Opc, VTs, Ops);
8049     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8050       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8051   }
8052 
8053   if (!RemoveNodeFromCSEMaps(N))
8054     IP = nullptr;
8055 
8056   // Start the morphing.
8057   N->NodeType = Opc;
8058   N->ValueList = VTs.VTs;
8059   N->NumValues = VTs.NumVTs;
8060 
8061   // Clear the operands list, updating used nodes to remove this from their
8062   // use list.  Keep track of any operands that become dead as a result.
8063   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8064   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8065     SDUse &Use = *I++;
8066     SDNode *Used = Use.getNode();
8067     Use.set(SDValue());
8068     if (Used->use_empty())
8069       DeadNodeSet.insert(Used);
8070   }
8071 
8072   // For MachineNode, initialize the memory references information.
8073   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8074     MN->clearMemRefs();
8075 
8076   // Swap for an appropriately sized array from the recycler.
8077   removeOperands(N);
8078   createOperands(N, Ops);
8079 
8080   // Delete any nodes that are still dead after adding the uses for the
8081   // new operands.
8082   if (!DeadNodeSet.empty()) {
8083     SmallVector<SDNode *, 16> DeadNodes;
8084     for (SDNode *N : DeadNodeSet)
8085       if (N->use_empty())
8086         DeadNodes.push_back(N);
8087     RemoveDeadNodes(DeadNodes);
8088   }
8089 
8090   if (IP)
8091     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8092   return N;
8093 }
8094 
8095 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8096   unsigned OrigOpc = Node->getOpcode();
8097   unsigned NewOpc;
8098   switch (OrigOpc) {
8099   default:
8100     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8101 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8102   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8103 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8104   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8105 #include "llvm/IR/ConstrainedOps.def"
8106   }
8107 
8108   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8109 
8110   // We're taking this node out of the chain, so we need to re-link things.
8111   SDValue InputChain = Node->getOperand(0);
8112   SDValue OutputChain = SDValue(Node, 1);
8113   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8114 
8115   SmallVector<SDValue, 3> Ops;
8116   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8117     Ops.push_back(Node->getOperand(i));
8118 
8119   SDVTList VTs = getVTList(Node->getValueType(0));
8120   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8121 
8122   // MorphNodeTo can operate in two ways: if an existing node with the
8123   // specified operands exists, it can just return it.  Otherwise, it
8124   // updates the node in place to have the requested operands.
8125   if (Res == Node) {
8126     // If we updated the node in place, reset the node ID.  To the isel,
8127     // this should be just like a newly allocated machine node.
8128     Res->setNodeId(-1);
8129   } else {
8130     ReplaceAllUsesWith(Node, Res);
8131     RemoveDeadNode(Node);
8132   }
8133 
8134   return Res;
8135 }
8136 
8137 /// getMachineNode - These are used for target selectors to create a new node
8138 /// with specified return type(s), MachineInstr opcode, and operands.
8139 ///
8140 /// Note that getMachineNode returns the resultant node.  If there is already a
8141 /// node of the specified opcode and operands, it returns that node instead of
8142 /// the current one.
8143 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8144                                             EVT VT) {
8145   SDVTList VTs = getVTList(VT);
8146   return getMachineNode(Opcode, dl, VTs, None);
8147 }
8148 
8149 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8150                                             EVT VT, SDValue Op1) {
8151   SDVTList VTs = getVTList(VT);
8152   SDValue Ops[] = { Op1 };
8153   return getMachineNode(Opcode, dl, VTs, Ops);
8154 }
8155 
8156 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8157                                             EVT VT, SDValue Op1, SDValue Op2) {
8158   SDVTList VTs = getVTList(VT);
8159   SDValue Ops[] = { Op1, Op2 };
8160   return getMachineNode(Opcode, dl, VTs, Ops);
8161 }
8162 
8163 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8164                                             EVT VT, SDValue Op1, SDValue Op2,
8165                                             SDValue Op3) {
8166   SDVTList VTs = getVTList(VT);
8167   SDValue Ops[] = { Op1, Op2, Op3 };
8168   return getMachineNode(Opcode, dl, VTs, Ops);
8169 }
8170 
8171 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8172                                             EVT VT, ArrayRef<SDValue> Ops) {
8173   SDVTList VTs = getVTList(VT);
8174   return getMachineNode(Opcode, dl, VTs, Ops);
8175 }
8176 
8177 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8178                                             EVT VT1, EVT VT2, SDValue Op1,
8179                                             SDValue Op2) {
8180   SDVTList VTs = getVTList(VT1, VT2);
8181   SDValue Ops[] = { Op1, Op2 };
8182   return getMachineNode(Opcode, dl, VTs, Ops);
8183 }
8184 
8185 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8186                                             EVT VT1, EVT VT2, SDValue Op1,
8187                                             SDValue Op2, SDValue Op3) {
8188   SDVTList VTs = getVTList(VT1, VT2);
8189   SDValue Ops[] = { Op1, Op2, Op3 };
8190   return getMachineNode(Opcode, dl, VTs, Ops);
8191 }
8192 
8193 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8194                                             EVT VT1, EVT VT2,
8195                                             ArrayRef<SDValue> Ops) {
8196   SDVTList VTs = getVTList(VT1, VT2);
8197   return getMachineNode(Opcode, dl, VTs, Ops);
8198 }
8199 
8200 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8201                                             EVT VT1, EVT VT2, EVT VT3,
8202                                             SDValue Op1, SDValue Op2) {
8203   SDVTList VTs = getVTList(VT1, VT2, VT3);
8204   SDValue Ops[] = { Op1, Op2 };
8205   return getMachineNode(Opcode, dl, VTs, Ops);
8206 }
8207 
8208 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8209                                             EVT VT1, EVT VT2, EVT VT3,
8210                                             SDValue Op1, SDValue Op2,
8211                                             SDValue Op3) {
8212   SDVTList VTs = getVTList(VT1, VT2, VT3);
8213   SDValue Ops[] = { Op1, Op2, Op3 };
8214   return getMachineNode(Opcode, dl, VTs, Ops);
8215 }
8216 
8217 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8218                                             EVT VT1, EVT VT2, EVT VT3,
8219                                             ArrayRef<SDValue> Ops) {
8220   SDVTList VTs = getVTList(VT1, VT2, VT3);
8221   return getMachineNode(Opcode, dl, VTs, Ops);
8222 }
8223 
8224 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8225                                             ArrayRef<EVT> ResultTys,
8226                                             ArrayRef<SDValue> Ops) {
8227   SDVTList VTs = getVTList(ResultTys);
8228   return getMachineNode(Opcode, dl, VTs, Ops);
8229 }
8230 
8231 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8232                                             SDVTList VTs,
8233                                             ArrayRef<SDValue> Ops) {
8234   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8235   MachineSDNode *N;
8236   void *IP = nullptr;
8237 
8238   if (DoCSE) {
8239     FoldingSetNodeID ID;
8240     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8241     IP = nullptr;
8242     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8243       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8244     }
8245   }
8246 
8247   // Allocate a new MachineSDNode.
8248   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8249   createOperands(N, Ops);
8250 
8251   if (DoCSE)
8252     CSEMap.InsertNode(N, IP);
8253 
8254   InsertNode(N);
8255   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8256   return N;
8257 }
8258 
8259 /// getTargetExtractSubreg - A convenience function for creating
8260 /// TargetOpcode::EXTRACT_SUBREG nodes.
8261 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8262                                              SDValue Operand) {
8263   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8264   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8265                                   VT, Operand, SRIdxVal);
8266   return SDValue(Subreg, 0);
8267 }
8268 
8269 /// getTargetInsertSubreg - A convenience function for creating
8270 /// TargetOpcode::INSERT_SUBREG nodes.
8271 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8272                                             SDValue Operand, SDValue Subreg) {
8273   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8274   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8275                                   VT, Operand, Subreg, SRIdxVal);
8276   return SDValue(Result, 0);
8277 }
8278 
8279 /// getNodeIfExists - Get the specified node if it's already available, or
8280 /// else return NULL.
8281 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8282                                       ArrayRef<SDValue> Ops) {
8283   SDNodeFlags Flags;
8284   if (Inserter)
8285     Flags = Inserter->getFlags();
8286   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8287 }
8288 
8289 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8290                                       ArrayRef<SDValue> Ops,
8291                                       const SDNodeFlags Flags) {
8292   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8293     FoldingSetNodeID ID;
8294     AddNodeIDNode(ID, Opcode, VTList, Ops);
8295     void *IP = nullptr;
8296     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8297       E->intersectFlagsWith(Flags);
8298       return E;
8299     }
8300   }
8301   return nullptr;
8302 }
8303 
8304 /// getDbgValue - Creates a SDDbgValue node.
8305 ///
8306 /// SDNode
8307 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8308                                       SDNode *N, unsigned R, bool IsIndirect,
8309                                       const DebugLoc &DL, unsigned O) {
8310   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8311          "Expected inlined-at fields to agree");
8312   return new (DbgInfo->getAlloc())
8313       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8314 }
8315 
8316 /// Constant
8317 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8318                                               DIExpression *Expr,
8319                                               const Value *C,
8320                                               const DebugLoc &DL, unsigned O) {
8321   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8322          "Expected inlined-at fields to agree");
8323   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8324 }
8325 
8326 /// FrameIndex
8327 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8328                                                 DIExpression *Expr, unsigned FI,
8329                                                 bool IsIndirect,
8330                                                 const DebugLoc &DL,
8331                                                 unsigned O) {
8332   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8333          "Expected inlined-at fields to agree");
8334   return new (DbgInfo->getAlloc())
8335       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8336 }
8337 
8338 /// VReg
8339 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8340                                           DIExpression *Expr,
8341                                           unsigned VReg, bool IsIndirect,
8342                                           const DebugLoc &DL, unsigned O) {
8343   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8344          "Expected inlined-at fields to agree");
8345   return new (DbgInfo->getAlloc())
8346       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8347 }
8348 
8349 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8350                                      unsigned OffsetInBits, unsigned SizeInBits,
8351                                      bool InvalidateDbg) {
8352   SDNode *FromNode = From.getNode();
8353   SDNode *ToNode = To.getNode();
8354   assert(FromNode && ToNode && "Can't modify dbg values");
8355 
8356   // PR35338
8357   // TODO: assert(From != To && "Redundant dbg value transfer");
8358   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8359   if (From == To || FromNode == ToNode)
8360     return;
8361 
8362   if (!FromNode->getHasDebugValue())
8363     return;
8364 
8365   SmallVector<SDDbgValue *, 2> ClonedDVs;
8366   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8367     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8368       continue;
8369 
8370     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8371 
8372     // Just transfer the dbg value attached to From.
8373     if (Dbg->getResNo() != From.getResNo())
8374       continue;
8375 
8376     DIVariable *Var = Dbg->getVariable();
8377     auto *Expr = Dbg->getExpression();
8378     // If a fragment is requested, update the expression.
8379     if (SizeInBits) {
8380       // When splitting a larger (e.g., sign-extended) value whose
8381       // lower bits are described with an SDDbgValue, do not attempt
8382       // to transfer the SDDbgValue to the upper bits.
8383       if (auto FI = Expr->getFragmentInfo())
8384         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8385           continue;
8386       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8387                                                              SizeInBits);
8388       if (!Fragment)
8389         continue;
8390       Expr = *Fragment;
8391     }
8392     // Clone the SDDbgValue and move it to To.
8393     SDDbgValue *Clone = getDbgValue(
8394         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8395         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8396     ClonedDVs.push_back(Clone);
8397 
8398     if (InvalidateDbg) {
8399       // Invalidate value and indicate the SDDbgValue should not be emitted.
8400       Dbg->setIsInvalidated();
8401       Dbg->setIsEmitted();
8402     }
8403   }
8404 
8405   for (SDDbgValue *Dbg : ClonedDVs)
8406     AddDbgValue(Dbg, ToNode, false);
8407 }
8408 
8409 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8410   if (!N.getHasDebugValue())
8411     return;
8412 
8413   SmallVector<SDDbgValue *, 2> ClonedDVs;
8414   for (auto DV : GetDbgValues(&N)) {
8415     if (DV->isInvalidated())
8416       continue;
8417     switch (N.getOpcode()) {
8418     default:
8419       break;
8420     case ISD::ADD:
8421       SDValue N0 = N.getOperand(0);
8422       SDValue N1 = N.getOperand(1);
8423       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8424           isConstantIntBuildVectorOrConstantInt(N1)) {
8425         uint64_t Offset = N.getConstantOperandVal(1);
8426         // Rewrite an ADD constant node into a DIExpression. Since we are
8427         // performing arithmetic to compute the variable's *value* in the
8428         // DIExpression, we need to mark the expression with a
8429         // DW_OP_stack_value.
8430         auto *DIExpr = DV->getExpression();
8431         DIExpr =
8432             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8433         SDDbgValue *Clone =
8434             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8435                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8436         ClonedDVs.push_back(Clone);
8437         DV->setIsInvalidated();
8438         DV->setIsEmitted();
8439         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8440                    N0.getNode()->dumprFull(this);
8441                    dbgs() << " into " << *DIExpr << '\n');
8442       }
8443     }
8444   }
8445 
8446   for (SDDbgValue *Dbg : ClonedDVs)
8447     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8448 }
8449 
8450 /// Creates a SDDbgLabel node.
8451 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8452                                       const DebugLoc &DL, unsigned O) {
8453   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8454          "Expected inlined-at fields to agree");
8455   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8456 }
8457 
8458 namespace {
8459 
8460 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8461 /// pointed to by a use iterator is deleted, increment the use iterator
8462 /// so that it doesn't dangle.
8463 ///
8464 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8465   SDNode::use_iterator &UI;
8466   SDNode::use_iterator &UE;
8467 
8468   void NodeDeleted(SDNode *N, SDNode *E) override {
8469     // Increment the iterator as needed.
8470     while (UI != UE && N == *UI)
8471       ++UI;
8472   }
8473 
8474 public:
8475   RAUWUpdateListener(SelectionDAG &d,
8476                      SDNode::use_iterator &ui,
8477                      SDNode::use_iterator &ue)
8478     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8479 };
8480 
8481 } // end anonymous namespace
8482 
8483 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8484 /// This can cause recursive merging of nodes in the DAG.
8485 ///
8486 /// This version assumes From has a single result value.
8487 ///
8488 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8489   SDNode *From = FromN.getNode();
8490   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8491          "Cannot replace with this method!");
8492   assert(From != To.getNode() && "Cannot replace uses of with self");
8493 
8494   // Preserve Debug Values
8495   transferDbgValues(FromN, To);
8496 
8497   // Iterate over all the existing uses of From. New uses will be added
8498   // to the beginning of the use list, which we avoid visiting.
8499   // This specifically avoids visiting uses of From that arise while the
8500   // replacement is happening, because any such uses would be the result
8501   // of CSE: If an existing node looks like From after one of its operands
8502   // is replaced by To, we don't want to replace of all its users with To
8503   // too. See PR3018 for more info.
8504   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8505   RAUWUpdateListener Listener(*this, UI, UE);
8506   while (UI != UE) {
8507     SDNode *User = *UI;
8508 
8509     // This node is about to morph, remove its old self from the CSE maps.
8510     RemoveNodeFromCSEMaps(User);
8511 
8512     // A user can appear in a use list multiple times, and when this
8513     // happens the uses are usually next to each other in the list.
8514     // To help reduce the number of CSE recomputations, process all
8515     // the uses of this user that we can find this way.
8516     do {
8517       SDUse &Use = UI.getUse();
8518       ++UI;
8519       Use.set(To);
8520       if (To->isDivergent() != From->isDivergent())
8521         updateDivergence(User);
8522     } while (UI != UE && *UI == User);
8523     // Now that we have modified User, add it back to the CSE maps.  If it
8524     // already exists there, recursively merge the results together.
8525     AddModifiedNodeToCSEMaps(User);
8526   }
8527 
8528   // If we just RAUW'd the root, take note.
8529   if (FromN == getRoot())
8530     setRoot(To);
8531 }
8532 
8533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8534 /// This can cause recursive merging of nodes in the DAG.
8535 ///
8536 /// This version assumes that for each value of From, there is a
8537 /// corresponding value in To in the same position with the same type.
8538 ///
8539 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8540 #ifndef NDEBUG
8541   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8542     assert((!From->hasAnyUseOfValue(i) ||
8543             From->getValueType(i) == To->getValueType(i)) &&
8544            "Cannot use this version of ReplaceAllUsesWith!");
8545 #endif
8546 
8547   // Handle the trivial case.
8548   if (From == To)
8549     return;
8550 
8551   // Preserve Debug Info. Only do this if there's a use.
8552   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8553     if (From->hasAnyUseOfValue(i)) {
8554       assert((i < To->getNumValues()) && "Invalid To location");
8555       transferDbgValues(SDValue(From, i), SDValue(To, i));
8556     }
8557 
8558   // Iterate over just the existing users of From. See the comments in
8559   // the ReplaceAllUsesWith above.
8560   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8561   RAUWUpdateListener Listener(*this, UI, UE);
8562   while (UI != UE) {
8563     SDNode *User = *UI;
8564 
8565     // This node is about to morph, remove its old self from the CSE maps.
8566     RemoveNodeFromCSEMaps(User);
8567 
8568     // A user can appear in a use list multiple times, and when this
8569     // happens the uses are usually next to each other in the list.
8570     // To help reduce the number of CSE recomputations, process all
8571     // the uses of this user that we can find this way.
8572     do {
8573       SDUse &Use = UI.getUse();
8574       ++UI;
8575       Use.setNode(To);
8576       if (To->isDivergent() != From->isDivergent())
8577         updateDivergence(User);
8578     } while (UI != UE && *UI == User);
8579 
8580     // Now that we have modified User, add it back to the CSE maps.  If it
8581     // already exists there, recursively merge the results together.
8582     AddModifiedNodeToCSEMaps(User);
8583   }
8584 
8585   // If we just RAUW'd the root, take note.
8586   if (From == getRoot().getNode())
8587     setRoot(SDValue(To, getRoot().getResNo()));
8588 }
8589 
8590 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8591 /// This can cause recursive merging of nodes in the DAG.
8592 ///
8593 /// This version can replace From with any result values.  To must match the
8594 /// number and types of values returned by From.
8595 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8596   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8597     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8598 
8599   // Preserve Debug Info.
8600   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8601     transferDbgValues(SDValue(From, i), To[i]);
8602 
8603   // Iterate over just the existing users of From. See the comments in
8604   // the ReplaceAllUsesWith above.
8605   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8606   RAUWUpdateListener Listener(*this, UI, UE);
8607   while (UI != UE) {
8608     SDNode *User = *UI;
8609 
8610     // This node is about to morph, remove its old self from the CSE maps.
8611     RemoveNodeFromCSEMaps(User);
8612 
8613     // A user can appear in a use list multiple times, and when this happens the
8614     // uses are usually next to each other in the list.  To help reduce the
8615     // number of CSE and divergence recomputations, process all the uses of this
8616     // user that we can find this way.
8617     bool To_IsDivergent = false;
8618     do {
8619       SDUse &Use = UI.getUse();
8620       const SDValue &ToOp = To[Use.getResNo()];
8621       ++UI;
8622       Use.set(ToOp);
8623       To_IsDivergent |= ToOp->isDivergent();
8624     } while (UI != UE && *UI == User);
8625 
8626     if (To_IsDivergent != From->isDivergent())
8627       updateDivergence(User);
8628 
8629     // Now that we have modified User, add it back to the CSE maps.  If it
8630     // already exists there, recursively merge the results together.
8631     AddModifiedNodeToCSEMaps(User);
8632   }
8633 
8634   // If we just RAUW'd the root, take note.
8635   if (From == getRoot().getNode())
8636     setRoot(SDValue(To[getRoot().getResNo()]));
8637 }
8638 
8639 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8640 /// uses of other values produced by From.getNode() alone.  The Deleted
8641 /// vector is handled the same way as for ReplaceAllUsesWith.
8642 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8643   // Handle the really simple, really trivial case efficiently.
8644   if (From == To) return;
8645 
8646   // Handle the simple, trivial, case efficiently.
8647   if (From.getNode()->getNumValues() == 1) {
8648     ReplaceAllUsesWith(From, To);
8649     return;
8650   }
8651 
8652   // Preserve Debug Info.
8653   transferDbgValues(From, To);
8654 
8655   // Iterate over just the existing users of From. See the comments in
8656   // the ReplaceAllUsesWith above.
8657   SDNode::use_iterator UI = From.getNode()->use_begin(),
8658                        UE = From.getNode()->use_end();
8659   RAUWUpdateListener Listener(*this, UI, UE);
8660   while (UI != UE) {
8661     SDNode *User = *UI;
8662     bool UserRemovedFromCSEMaps = false;
8663 
8664     // A user can appear in a use list multiple times, and when this
8665     // happens the uses are usually next to each other in the list.
8666     // To help reduce the number of CSE recomputations, process all
8667     // the uses of this user that we can find this way.
8668     do {
8669       SDUse &Use = UI.getUse();
8670 
8671       // Skip uses of different values from the same node.
8672       if (Use.getResNo() != From.getResNo()) {
8673         ++UI;
8674         continue;
8675       }
8676 
8677       // If this node hasn't been modified yet, it's still in the CSE maps,
8678       // so remove its old self from the CSE maps.
8679       if (!UserRemovedFromCSEMaps) {
8680         RemoveNodeFromCSEMaps(User);
8681         UserRemovedFromCSEMaps = true;
8682       }
8683 
8684       ++UI;
8685       Use.set(To);
8686       if (To->isDivergent() != From->isDivergent())
8687         updateDivergence(User);
8688     } while (UI != UE && *UI == User);
8689     // We are iterating over all uses of the From node, so if a use
8690     // doesn't use the specific value, no changes are made.
8691     if (!UserRemovedFromCSEMaps)
8692       continue;
8693 
8694     // Now that we have modified User, add it back to the CSE maps.  If it
8695     // already exists there, recursively merge the results together.
8696     AddModifiedNodeToCSEMaps(User);
8697   }
8698 
8699   // If we just RAUW'd the root, take note.
8700   if (From == getRoot())
8701     setRoot(To);
8702 }
8703 
8704 namespace {
8705 
8706   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8707   /// to record information about a use.
8708   struct UseMemo {
8709     SDNode *User;
8710     unsigned Index;
8711     SDUse *Use;
8712   };
8713 
8714   /// operator< - Sort Memos by User.
8715   bool operator<(const UseMemo &L, const UseMemo &R) {
8716     return (intptr_t)L.User < (intptr_t)R.User;
8717   }
8718 
8719 } // end anonymous namespace
8720 
8721 bool SelectionDAG::calculateDivergence(SDNode *N) {
8722   if (TLI->isSDNodeAlwaysUniform(N)) {
8723     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8724            "Conflicting divergence information!");
8725     return false;
8726   }
8727   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8728     return true;
8729   for (auto &Op : N->ops()) {
8730     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8731       return true;
8732   }
8733   return false;
8734 }
8735 
8736 void SelectionDAG::updateDivergence(SDNode *N) {
8737   SmallVector<SDNode *, 16> Worklist(1, N);
8738   do {
8739     N = Worklist.pop_back_val();
8740     bool IsDivergent = calculateDivergence(N);
8741     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8742       N->SDNodeBits.IsDivergent = IsDivergent;
8743       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8744     }
8745   } while (!Worklist.empty());
8746 }
8747 
8748 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8749   DenseMap<SDNode *, unsigned> Degree;
8750   Order.reserve(AllNodes.size());
8751   for (auto &N : allnodes()) {
8752     unsigned NOps = N.getNumOperands();
8753     Degree[&N] = NOps;
8754     if (0 == NOps)
8755       Order.push_back(&N);
8756   }
8757   for (size_t I = 0; I != Order.size(); ++I) {
8758     SDNode *N = Order[I];
8759     for (auto U : N->uses()) {
8760       unsigned &UnsortedOps = Degree[U];
8761       if (0 == --UnsortedOps)
8762         Order.push_back(U);
8763     }
8764   }
8765 }
8766 
8767 #ifndef NDEBUG
8768 void SelectionDAG::VerifyDAGDiverence() {
8769   std::vector<SDNode *> TopoOrder;
8770   CreateTopologicalOrder(TopoOrder);
8771   for (auto *N : TopoOrder) {
8772     assert(calculateDivergence(N) == N->isDivergent() &&
8773            "Divergence bit inconsistency detected");
8774   }
8775 }
8776 #endif
8777 
8778 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8779 /// uses of other values produced by From.getNode() alone.  The same value
8780 /// may appear in both the From and To list.  The Deleted vector is
8781 /// handled the same way as for ReplaceAllUsesWith.
8782 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8783                                               const SDValue *To,
8784                                               unsigned Num){
8785   // Handle the simple, trivial case efficiently.
8786   if (Num == 1)
8787     return ReplaceAllUsesOfValueWith(*From, *To);
8788 
8789   transferDbgValues(*From, *To);
8790 
8791   // Read up all the uses and make records of them. This helps
8792   // processing new uses that are introduced during the
8793   // replacement process.
8794   SmallVector<UseMemo, 4> Uses;
8795   for (unsigned i = 0; i != Num; ++i) {
8796     unsigned FromResNo = From[i].getResNo();
8797     SDNode *FromNode = From[i].getNode();
8798     for (SDNode::use_iterator UI = FromNode->use_begin(),
8799          E = FromNode->use_end(); UI != E; ++UI) {
8800       SDUse &Use = UI.getUse();
8801       if (Use.getResNo() == FromResNo) {
8802         UseMemo Memo = { *UI, i, &Use };
8803         Uses.push_back(Memo);
8804       }
8805     }
8806   }
8807 
8808   // Sort the uses, so that all the uses from a given User are together.
8809   llvm::sort(Uses);
8810 
8811   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8812        UseIndex != UseIndexEnd; ) {
8813     // We know that this user uses some value of From.  If it is the right
8814     // value, update it.
8815     SDNode *User = Uses[UseIndex].User;
8816 
8817     // This node is about to morph, remove its old self from the CSE maps.
8818     RemoveNodeFromCSEMaps(User);
8819 
8820     // The Uses array is sorted, so all the uses for a given User
8821     // are next to each other in the list.
8822     // To help reduce the number of CSE recomputations, process all
8823     // the uses of this user that we can find this way.
8824     do {
8825       unsigned i = Uses[UseIndex].Index;
8826       SDUse &Use = *Uses[UseIndex].Use;
8827       ++UseIndex;
8828 
8829       Use.set(To[i]);
8830     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8831 
8832     // Now that we have modified User, add it back to the CSE maps.  If it
8833     // already exists there, recursively merge the results together.
8834     AddModifiedNodeToCSEMaps(User);
8835   }
8836 }
8837 
8838 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8839 /// based on their topological order. It returns the maximum id and a vector
8840 /// of the SDNodes* in assigned order by reference.
8841 unsigned SelectionDAG::AssignTopologicalOrder() {
8842   unsigned DAGSize = 0;
8843 
8844   // SortedPos tracks the progress of the algorithm. Nodes before it are
8845   // sorted, nodes after it are unsorted. When the algorithm completes
8846   // it is at the end of the list.
8847   allnodes_iterator SortedPos = allnodes_begin();
8848 
8849   // Visit all the nodes. Move nodes with no operands to the front of
8850   // the list immediately. Annotate nodes that do have operands with their
8851   // operand count. Before we do this, the Node Id fields of the nodes
8852   // may contain arbitrary values. After, the Node Id fields for nodes
8853   // before SortedPos will contain the topological sort index, and the
8854   // Node Id fields for nodes At SortedPos and after will contain the
8855   // count of outstanding operands.
8856   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8857     SDNode *N = &*I++;
8858     checkForCycles(N, this);
8859     unsigned Degree = N->getNumOperands();
8860     if (Degree == 0) {
8861       // A node with no uses, add it to the result array immediately.
8862       N->setNodeId(DAGSize++);
8863       allnodes_iterator Q(N);
8864       if (Q != SortedPos)
8865         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8866       assert(SortedPos != AllNodes.end() && "Overran node list");
8867       ++SortedPos;
8868     } else {
8869       // Temporarily use the Node Id as scratch space for the degree count.
8870       N->setNodeId(Degree);
8871     }
8872   }
8873 
8874   // Visit all the nodes. As we iterate, move nodes into sorted order,
8875   // such that by the time the end is reached all nodes will be sorted.
8876   for (SDNode &Node : allnodes()) {
8877     SDNode *N = &Node;
8878     checkForCycles(N, this);
8879     // N is in sorted position, so all its uses have one less operand
8880     // that needs to be sorted.
8881     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8882          UI != UE; ++UI) {
8883       SDNode *P = *UI;
8884       unsigned Degree = P->getNodeId();
8885       assert(Degree != 0 && "Invalid node degree");
8886       --Degree;
8887       if (Degree == 0) {
8888         // All of P's operands are sorted, so P may sorted now.
8889         P->setNodeId(DAGSize++);
8890         if (P->getIterator() != SortedPos)
8891           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8892         assert(SortedPos != AllNodes.end() && "Overran node list");
8893         ++SortedPos;
8894       } else {
8895         // Update P's outstanding operand count.
8896         P->setNodeId(Degree);
8897       }
8898     }
8899     if (Node.getIterator() == SortedPos) {
8900 #ifndef NDEBUG
8901       allnodes_iterator I(N);
8902       SDNode *S = &*++I;
8903       dbgs() << "Overran sorted position:\n";
8904       S->dumprFull(this); dbgs() << "\n";
8905       dbgs() << "Checking if this is due to cycles\n";
8906       checkForCycles(this, true);
8907 #endif
8908       llvm_unreachable(nullptr);
8909     }
8910   }
8911 
8912   assert(SortedPos == AllNodes.end() &&
8913          "Topological sort incomplete!");
8914   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8915          "First node in topological sort is not the entry token!");
8916   assert(AllNodes.front().getNodeId() == 0 &&
8917          "First node in topological sort has non-zero id!");
8918   assert(AllNodes.front().getNumOperands() == 0 &&
8919          "First node in topological sort has operands!");
8920   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8921          "Last node in topologic sort has unexpected id!");
8922   assert(AllNodes.back().use_empty() &&
8923          "Last node in topologic sort has users!");
8924   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8925   return DAGSize;
8926 }
8927 
8928 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8929 /// value is produced by SD.
8930 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8931   if (SD) {
8932     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8933     SD->setHasDebugValue(true);
8934   }
8935   DbgInfo->add(DB, SD, isParameter);
8936 }
8937 
8938 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8939   DbgInfo->add(DB);
8940 }
8941 
8942 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8943                                                    SDValue NewMemOp) {
8944   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8945   // The new memory operation must have the same position as the old load in
8946   // terms of memory dependency. Create a TokenFactor for the old load and new
8947   // memory operation and update uses of the old load's output chain to use that
8948   // TokenFactor.
8949   SDValue OldChain = SDValue(OldLoad, 1);
8950   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8951   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8952     return NewChain;
8953 
8954   SDValue TokenFactor =
8955       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8956   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8957   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8958   return TokenFactor;
8959 }
8960 
8961 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8962                                                      Function **OutFunction) {
8963   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8964 
8965   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8966   auto *Module = MF->getFunction().getParent();
8967   auto *Function = Module->getFunction(Symbol);
8968 
8969   if (OutFunction != nullptr)
8970       *OutFunction = Function;
8971 
8972   if (Function != nullptr) {
8973     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8974     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8975   }
8976 
8977   std::string ErrorStr;
8978   raw_string_ostream ErrorFormatter(ErrorStr);
8979 
8980   ErrorFormatter << "Undefined external symbol ";
8981   ErrorFormatter << '"' << Symbol << '"';
8982   ErrorFormatter.flush();
8983 
8984   report_fatal_error(ErrorStr);
8985 }
8986 
8987 //===----------------------------------------------------------------------===//
8988 //                              SDNode Class
8989 //===----------------------------------------------------------------------===//
8990 
8991 bool llvm::isNullConstant(SDValue V) {
8992   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8993   return Const != nullptr && Const->isNullValue();
8994 }
8995 
8996 bool llvm::isNullFPConstant(SDValue V) {
8997   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8998   return Const != nullptr && Const->isZero() && !Const->isNegative();
8999 }
9000 
9001 bool llvm::isAllOnesConstant(SDValue V) {
9002   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9003   return Const != nullptr && Const->isAllOnesValue();
9004 }
9005 
9006 bool llvm::isOneConstant(SDValue V) {
9007   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9008   return Const != nullptr && Const->isOne();
9009 }
9010 
9011 SDValue llvm::peekThroughBitcasts(SDValue V) {
9012   while (V.getOpcode() == ISD::BITCAST)
9013     V = V.getOperand(0);
9014   return V;
9015 }
9016 
9017 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9018   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9019     V = V.getOperand(0);
9020   return V;
9021 }
9022 
9023 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9024   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9025     V = V.getOperand(0);
9026   return V;
9027 }
9028 
9029 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9030   if (V.getOpcode() != ISD::XOR)
9031     return false;
9032   V = peekThroughBitcasts(V.getOperand(1));
9033   unsigned NumBits = V.getScalarValueSizeInBits();
9034   ConstantSDNode *C =
9035       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9036   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9037 }
9038 
9039 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9040                                           bool AllowTruncation) {
9041   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9042     return CN;
9043 
9044   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9045     BitVector UndefElements;
9046     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9047 
9048     // BuildVectors can truncate their operands. Ignore that case here unless
9049     // AllowTruncation is set.
9050     if (CN && (UndefElements.none() || AllowUndefs)) {
9051       EVT CVT = CN->getValueType(0);
9052       EVT NSVT = N.getValueType().getScalarType();
9053       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9054       if (AllowTruncation || (CVT == NSVT))
9055         return CN;
9056     }
9057   }
9058 
9059   return nullptr;
9060 }
9061 
9062 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9063                                           bool AllowUndefs,
9064                                           bool AllowTruncation) {
9065   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9066     return CN;
9067 
9068   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9069     BitVector UndefElements;
9070     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9071 
9072     // BuildVectors can truncate their operands. Ignore that case here unless
9073     // AllowTruncation is set.
9074     if (CN && (UndefElements.none() || AllowUndefs)) {
9075       EVT CVT = CN->getValueType(0);
9076       EVT NSVT = N.getValueType().getScalarType();
9077       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9078       if (AllowTruncation || (CVT == NSVT))
9079         return CN;
9080     }
9081   }
9082 
9083   return nullptr;
9084 }
9085 
9086 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9087   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9088     return CN;
9089 
9090   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9091     BitVector UndefElements;
9092     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9093     if (CN && (UndefElements.none() || AllowUndefs))
9094       return CN;
9095   }
9096 
9097   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9098     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9099       return CN;
9100 
9101   return nullptr;
9102 }
9103 
9104 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9105                                               const APInt &DemandedElts,
9106                                               bool AllowUndefs) {
9107   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9108     return CN;
9109 
9110   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9111     BitVector UndefElements;
9112     ConstantFPSDNode *CN =
9113         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9114     if (CN && (UndefElements.none() || AllowUndefs))
9115       return CN;
9116   }
9117 
9118   return nullptr;
9119 }
9120 
9121 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9122   // TODO: may want to use peekThroughBitcast() here.
9123   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9124   return C && C->isNullValue();
9125 }
9126 
9127 bool llvm::isOneOrOneSplat(SDValue N) {
9128   // TODO: may want to use peekThroughBitcast() here.
9129   unsigned BitWidth = N.getScalarValueSizeInBits();
9130   ConstantSDNode *C = isConstOrConstSplat(N);
9131   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9132 }
9133 
9134 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9135   N = peekThroughBitcasts(N);
9136   unsigned BitWidth = N.getScalarValueSizeInBits();
9137   ConstantSDNode *C = isConstOrConstSplat(N);
9138   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9139 }
9140 
9141 HandleSDNode::~HandleSDNode() {
9142   DropOperands();
9143 }
9144 
9145 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9146                                          const DebugLoc &DL,
9147                                          const GlobalValue *GA, EVT VT,
9148                                          int64_t o, unsigned TF)
9149     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9150   TheGlobal = GA;
9151 }
9152 
9153 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9154                                          EVT VT, unsigned SrcAS,
9155                                          unsigned DestAS)
9156     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9157       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9158 
9159 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9160                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9161     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9162   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9163   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9164   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9165   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9166 
9167   // We check here that the size of the memory operand fits within the size of
9168   // the MMO. This is because the MMO might indicate only a possible address
9169   // range instead of specifying the affected memory addresses precisely.
9170   // TODO: Make MachineMemOperands aware of scalable vectors.
9171   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9172          "Size mismatch!");
9173 }
9174 
9175 /// Profile - Gather unique data for the node.
9176 ///
9177 void SDNode::Profile(FoldingSetNodeID &ID) const {
9178   AddNodeIDNode(ID, this);
9179 }
9180 
9181 namespace {
9182 
9183   struct EVTArray {
9184     std::vector<EVT> VTs;
9185 
9186     EVTArray() {
9187       VTs.reserve(MVT::LAST_VALUETYPE);
9188       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9189         VTs.push_back(MVT((MVT::SimpleValueType)i));
9190     }
9191   };
9192 
9193 } // end anonymous namespace
9194 
9195 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9196 static ManagedStatic<EVTArray> SimpleVTArray;
9197 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9198 
9199 /// getValueTypeList - Return a pointer to the specified value type.
9200 ///
9201 const EVT *SDNode::getValueTypeList(EVT VT) {
9202   if (VT.isExtended()) {
9203     sys::SmartScopedLock<true> Lock(*VTMutex);
9204     return &(*EVTs->insert(VT).first);
9205   } else {
9206     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9207            "Value type out of range!");
9208     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9209   }
9210 }
9211 
9212 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9213 /// indicated value.  This method ignores uses of other values defined by this
9214 /// operation.
9215 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9216   assert(Value < getNumValues() && "Bad value!");
9217 
9218   // TODO: Only iterate over uses of a given value of the node
9219   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9220     if (UI.getUse().getResNo() == Value) {
9221       if (NUses == 0)
9222         return false;
9223       --NUses;
9224     }
9225   }
9226 
9227   // Found exactly the right number of uses?
9228   return NUses == 0;
9229 }
9230 
9231 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9232 /// value. This method ignores uses of other values defined by this operation.
9233 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9234   assert(Value < getNumValues() && "Bad value!");
9235 
9236   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9237     if (UI.getUse().getResNo() == Value)
9238       return true;
9239 
9240   return false;
9241 }
9242 
9243 /// isOnlyUserOf - Return true if this node is the only use of N.
9244 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9245   bool Seen = false;
9246   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9247     SDNode *User = *I;
9248     if (User == this)
9249       Seen = true;
9250     else
9251       return false;
9252   }
9253 
9254   return Seen;
9255 }
9256 
9257 /// Return true if the only users of N are contained in Nodes.
9258 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9259   bool Seen = false;
9260   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9261     SDNode *User = *I;
9262     if (llvm::any_of(Nodes,
9263                      [&User](const SDNode *Node) { return User == Node; }))
9264       Seen = true;
9265     else
9266       return false;
9267   }
9268 
9269   return Seen;
9270 }
9271 
9272 /// isOperand - Return true if this node is an operand of N.
9273 bool SDValue::isOperandOf(const SDNode *N) const {
9274   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9275 }
9276 
9277 bool SDNode::isOperandOf(const SDNode *N) const {
9278   return any_of(N->op_values(),
9279                 [this](SDValue Op) { return this == Op.getNode(); });
9280 }
9281 
9282 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9283 /// be a chain) reaches the specified operand without crossing any
9284 /// side-effecting instructions on any chain path.  In practice, this looks
9285 /// through token factors and non-volatile loads.  In order to remain efficient,
9286 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9287 ///
9288 /// Note that we only need to examine chains when we're searching for
9289 /// side-effects; SelectionDAG requires that all side-effects are represented
9290 /// by chains, even if another operand would force a specific ordering. This
9291 /// constraint is necessary to allow transformations like splitting loads.
9292 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9293                                              unsigned Depth) const {
9294   if (*this == Dest) return true;
9295 
9296   // Don't search too deeply, we just want to be able to see through
9297   // TokenFactor's etc.
9298   if (Depth == 0) return false;
9299 
9300   // If this is a token factor, all inputs to the TF happen in parallel.
9301   if (getOpcode() == ISD::TokenFactor) {
9302     // First, try a shallow search.
9303     if (is_contained((*this)->ops(), Dest)) {
9304       // We found the chain we want as an operand of this TokenFactor.
9305       // Essentially, we reach the chain without side-effects if we could
9306       // serialize the TokenFactor into a simple chain of operations with
9307       // Dest as the last operation. This is automatically true if the
9308       // chain has one use: there are no other ordering constraints.
9309       // If the chain has more than one use, we give up: some other
9310       // use of Dest might force a side-effect between Dest and the current
9311       // node.
9312       if (Dest.hasOneUse())
9313         return true;
9314     }
9315     // Next, try a deep search: check whether every operand of the TokenFactor
9316     // reaches Dest.
9317     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9318       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9319     });
9320   }
9321 
9322   // Loads don't have side effects, look through them.
9323   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9324     if (Ld->isUnordered())
9325       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9326   }
9327   return false;
9328 }
9329 
9330 bool SDNode::hasPredecessor(const SDNode *N) const {
9331   SmallPtrSet<const SDNode *, 32> Visited;
9332   SmallVector<const SDNode *, 16> Worklist;
9333   Worklist.push_back(this);
9334   return hasPredecessorHelper(N, Visited, Worklist);
9335 }
9336 
9337 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9338   this->Flags.intersectWith(Flags);
9339 }
9340 
9341 SDValue
9342 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9343                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9344                                   bool AllowPartials) {
9345   // The pattern must end in an extract from index 0.
9346   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9347       !isNullConstant(Extract->getOperand(1)))
9348     return SDValue();
9349 
9350   // Match against one of the candidate binary ops.
9351   SDValue Op = Extract->getOperand(0);
9352   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9353         return Op.getOpcode() == unsigned(BinOp);
9354       }))
9355     return SDValue();
9356 
9357   // Floating-point reductions may require relaxed constraints on the final step
9358   // of the reduction because they may reorder intermediate operations.
9359   unsigned CandidateBinOp = Op.getOpcode();
9360   if (Op.getValueType().isFloatingPoint()) {
9361     SDNodeFlags Flags = Op->getFlags();
9362     switch (CandidateBinOp) {
9363     case ISD::FADD:
9364       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9365         return SDValue();
9366       break;
9367     default:
9368       llvm_unreachable("Unhandled FP opcode for binop reduction");
9369     }
9370   }
9371 
9372   // Matching failed - attempt to see if we did enough stages that a partial
9373   // reduction from a subvector is possible.
9374   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9375     if (!AllowPartials || !Op)
9376       return SDValue();
9377     EVT OpVT = Op.getValueType();
9378     EVT OpSVT = OpVT.getScalarType();
9379     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9380     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9381       return SDValue();
9382     BinOp = (ISD::NodeType)CandidateBinOp;
9383     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9384                    getVectorIdxConstant(0, SDLoc(Op)));
9385   };
9386 
9387   // At each stage, we're looking for something that looks like:
9388   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9389   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9390   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9391   // %a = binop <8 x i32> %op, %s
9392   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9393   // we expect something like:
9394   // <4,5,6,7,u,u,u,u>
9395   // <2,3,u,u,u,u,u,u>
9396   // <1,u,u,u,u,u,u,u>
9397   // While a partial reduction match would be:
9398   // <2,3,u,u,u,u,u,u>
9399   // <1,u,u,u,u,u,u,u>
9400   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9401   SDValue PrevOp;
9402   for (unsigned i = 0; i < Stages; ++i) {
9403     unsigned MaskEnd = (1 << i);
9404 
9405     if (Op.getOpcode() != CandidateBinOp)
9406       return PartialReduction(PrevOp, MaskEnd);
9407 
9408     SDValue Op0 = Op.getOperand(0);
9409     SDValue Op1 = Op.getOperand(1);
9410 
9411     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9412     if (Shuffle) {
9413       Op = Op1;
9414     } else {
9415       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9416       Op = Op0;
9417     }
9418 
9419     // The first operand of the shuffle should be the same as the other operand
9420     // of the binop.
9421     if (!Shuffle || Shuffle->getOperand(0) != Op)
9422       return PartialReduction(PrevOp, MaskEnd);
9423 
9424     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9425     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9426       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9427         return PartialReduction(PrevOp, MaskEnd);
9428 
9429     PrevOp = Op;
9430   }
9431 
9432   // Handle subvector reductions, which tend to appear after the shuffle
9433   // reduction stages.
9434   while (Op.getOpcode() == CandidateBinOp) {
9435     unsigned NumElts = Op.getValueType().getVectorNumElements();
9436     SDValue Op0 = Op.getOperand(0);
9437     SDValue Op1 = Op.getOperand(1);
9438     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9439         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9440         Op0.getOperand(0) != Op1.getOperand(0))
9441       break;
9442     SDValue Src = Op0.getOperand(0);
9443     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9444     if (NumSrcElts != (2 * NumElts))
9445       break;
9446     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9447           Op1.getConstantOperandAPInt(1) == NumElts) &&
9448         !(Op1.getConstantOperandAPInt(1) == 0 &&
9449           Op0.getConstantOperandAPInt(1) == NumElts))
9450       break;
9451     Op = Src;
9452   }
9453 
9454   BinOp = (ISD::NodeType)CandidateBinOp;
9455   return Op;
9456 }
9457 
9458 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9459   assert(N->getNumValues() == 1 &&
9460          "Can't unroll a vector with multiple results!");
9461 
9462   EVT VT = N->getValueType(0);
9463   unsigned NE = VT.getVectorNumElements();
9464   EVT EltVT = VT.getVectorElementType();
9465   SDLoc dl(N);
9466 
9467   SmallVector<SDValue, 8> Scalars;
9468   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9469 
9470   // If ResNE is 0, fully unroll the vector op.
9471   if (ResNE == 0)
9472     ResNE = NE;
9473   else if (NE > ResNE)
9474     NE = ResNE;
9475 
9476   unsigned i;
9477   for (i= 0; i != NE; ++i) {
9478     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9479       SDValue Operand = N->getOperand(j);
9480       EVT OperandVT = Operand.getValueType();
9481       if (OperandVT.isVector()) {
9482         // A vector operand; extract a single element.
9483         EVT OperandEltVT = OperandVT.getVectorElementType();
9484         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9485                               Operand, getVectorIdxConstant(i, dl));
9486       } else {
9487         // A scalar operand; just use it as is.
9488         Operands[j] = Operand;
9489       }
9490     }
9491 
9492     switch (N->getOpcode()) {
9493     default: {
9494       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9495                                 N->getFlags()));
9496       break;
9497     }
9498     case ISD::VSELECT:
9499       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9500       break;
9501     case ISD::SHL:
9502     case ISD::SRA:
9503     case ISD::SRL:
9504     case ISD::ROTL:
9505     case ISD::ROTR:
9506       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9507                                getShiftAmountOperand(Operands[0].getValueType(),
9508                                                      Operands[1])));
9509       break;
9510     case ISD::SIGN_EXTEND_INREG: {
9511       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9512       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9513                                 Operands[0],
9514                                 getValueType(ExtVT)));
9515     }
9516     }
9517   }
9518 
9519   for (; i < ResNE; ++i)
9520     Scalars.push_back(getUNDEF(EltVT));
9521 
9522   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9523   return getBuildVector(VecVT, dl, Scalars);
9524 }
9525 
9526 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9527     SDNode *N, unsigned ResNE) {
9528   unsigned Opcode = N->getOpcode();
9529   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9530           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9531           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9532          "Expected an overflow opcode");
9533 
9534   EVT ResVT = N->getValueType(0);
9535   EVT OvVT = N->getValueType(1);
9536   EVT ResEltVT = ResVT.getVectorElementType();
9537   EVT OvEltVT = OvVT.getVectorElementType();
9538   SDLoc dl(N);
9539 
9540   // If ResNE is 0, fully unroll the vector op.
9541   unsigned NE = ResVT.getVectorNumElements();
9542   if (ResNE == 0)
9543     ResNE = NE;
9544   else if (NE > ResNE)
9545     NE = ResNE;
9546 
9547   SmallVector<SDValue, 8> LHSScalars;
9548   SmallVector<SDValue, 8> RHSScalars;
9549   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9550   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9551 
9552   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9553   SDVTList VTs = getVTList(ResEltVT, SVT);
9554   SmallVector<SDValue, 8> ResScalars;
9555   SmallVector<SDValue, 8> OvScalars;
9556   for (unsigned i = 0; i < NE; ++i) {
9557     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9558     SDValue Ov =
9559         getSelect(dl, OvEltVT, Res.getValue(1),
9560                   getBoolConstant(true, dl, OvEltVT, ResVT),
9561                   getConstant(0, dl, OvEltVT));
9562 
9563     ResScalars.push_back(Res);
9564     OvScalars.push_back(Ov);
9565   }
9566 
9567   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9568   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9569 
9570   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9571   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9572   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9573                         getBuildVector(NewOvVT, dl, OvScalars));
9574 }
9575 
9576 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9577                                                   LoadSDNode *Base,
9578                                                   unsigned Bytes,
9579                                                   int Dist) const {
9580   if (LD->isVolatile() || Base->isVolatile())
9581     return false;
9582   // TODO: probably too restrictive for atomics, revisit
9583   if (!LD->isSimple())
9584     return false;
9585   if (LD->isIndexed() || Base->isIndexed())
9586     return false;
9587   if (LD->getChain() != Base->getChain())
9588     return false;
9589   EVT VT = LD->getValueType(0);
9590   if (VT.getSizeInBits() / 8 != Bytes)
9591     return false;
9592 
9593   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9594   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9595 
9596   int64_t Offset = 0;
9597   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9598     return (Dist * Bytes == Offset);
9599   return false;
9600 }
9601 
9602 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9603 /// if it cannot be inferred.
9604 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9605   // If this is a GlobalAddress + cst, return the alignment.
9606   const GlobalValue *GV = nullptr;
9607   int64_t GVOffset = 0;
9608   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9609     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9610     KnownBits Known(PtrWidth);
9611     llvm::computeKnownBits(GV, Known, getDataLayout());
9612     unsigned AlignBits = Known.countMinTrailingZeros();
9613     if (AlignBits)
9614       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9615   }
9616 
9617   // If this is a direct reference to a stack slot, use information about the
9618   // stack slot's alignment.
9619   int FrameIdx = INT_MIN;
9620   int64_t FrameOffset = 0;
9621   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9622     FrameIdx = FI->getIndex();
9623   } else if (isBaseWithConstantOffset(Ptr) &&
9624              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9625     // Handle FI+Cst
9626     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9627     FrameOffset = Ptr.getConstantOperandVal(1);
9628   }
9629 
9630   if (FrameIdx != INT_MIN) {
9631     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9632     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9633   }
9634 
9635   return None;
9636 }
9637 
9638 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9639 /// which is split (or expanded) into two not necessarily identical pieces.
9640 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9641   // Currently all types are split in half.
9642   EVT LoVT, HiVT;
9643   if (!VT.isVector())
9644     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9645   else
9646     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9647 
9648   return std::make_pair(LoVT, HiVT);
9649 }
9650 
9651 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9652 /// type, dependent on an enveloping VT that has been split into two identical
9653 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9654 std::pair<EVT, EVT>
9655 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9656                                        bool *HiIsEmpty) const {
9657   EVT EltTp = VT.getVectorElementType();
9658   // Examples:
9659   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9660   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9661   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9662   //   etc.
9663   ElementCount VTNumElts = VT.getVectorElementCount();
9664   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9665   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9666          "Mixing fixed width and scalable vectors when enveloping a type");
9667   EVT LoVT, HiVT;
9668   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9669     LoVT = EnvVT;
9670     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9671     *HiIsEmpty = false;
9672   } else {
9673     // Flag that hi type has zero storage size, but return split envelop type
9674     // (this would be easier if vector types with zero elements were allowed).
9675     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9676     HiVT = EnvVT;
9677     *HiIsEmpty = true;
9678   }
9679   return std::make_pair(LoVT, HiVT);
9680 }
9681 
9682 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9683 /// low/high part.
9684 std::pair<SDValue, SDValue>
9685 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9686                           const EVT &HiVT) {
9687   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9688          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9689          "Splitting vector with an invalid mixture of fixed and scalable "
9690          "vector types");
9691   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9692              N.getValueType().getVectorMinNumElements() &&
9693          "More vector elements requested than available!");
9694   SDValue Lo, Hi;
9695   Lo =
9696       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9697   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9698   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9699   // IDX with the runtime scaling factor of the result vector type. For
9700   // fixed-width result vectors, that runtime scaling factor is 1.
9701   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9702                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9703   return std::make_pair(Lo, Hi);
9704 }
9705 
9706 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9707 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9708   EVT VT = N.getValueType();
9709   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9710                                 NextPowerOf2(VT.getVectorNumElements()));
9711   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9712                  getVectorIdxConstant(0, DL));
9713 }
9714 
9715 void SelectionDAG::ExtractVectorElements(SDValue Op,
9716                                          SmallVectorImpl<SDValue> &Args,
9717                                          unsigned Start, unsigned Count,
9718                                          EVT EltVT) {
9719   EVT VT = Op.getValueType();
9720   if (Count == 0)
9721     Count = VT.getVectorNumElements();
9722   if (EltVT == EVT())
9723     EltVT = VT.getVectorElementType();
9724   SDLoc SL(Op);
9725   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9726     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9727                            getVectorIdxConstant(i, SL)));
9728   }
9729 }
9730 
9731 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9732 unsigned GlobalAddressSDNode::getAddressSpace() const {
9733   return getGlobal()->getType()->getAddressSpace();
9734 }
9735 
9736 Type *ConstantPoolSDNode::getType() const {
9737   if (isMachineConstantPoolEntry())
9738     return Val.MachineCPVal->getType();
9739   return Val.ConstVal->getType();
9740 }
9741 
9742 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9743                                         unsigned &SplatBitSize,
9744                                         bool &HasAnyUndefs,
9745                                         unsigned MinSplatBits,
9746                                         bool IsBigEndian) const {
9747   EVT VT = getValueType(0);
9748   assert(VT.isVector() && "Expected a vector type");
9749   unsigned VecWidth = VT.getSizeInBits();
9750   if (MinSplatBits > VecWidth)
9751     return false;
9752 
9753   // FIXME: The widths are based on this node's type, but build vectors can
9754   // truncate their operands.
9755   SplatValue = APInt(VecWidth, 0);
9756   SplatUndef = APInt(VecWidth, 0);
9757 
9758   // Get the bits. Bits with undefined values (when the corresponding element
9759   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9760   // in SplatValue. If any of the values are not constant, give up and return
9761   // false.
9762   unsigned int NumOps = getNumOperands();
9763   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9764   unsigned EltWidth = VT.getScalarSizeInBits();
9765 
9766   for (unsigned j = 0; j < NumOps; ++j) {
9767     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9768     SDValue OpVal = getOperand(i);
9769     unsigned BitPos = j * EltWidth;
9770 
9771     if (OpVal.isUndef())
9772       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9773     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9774       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9775     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9776       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9777     else
9778       return false;
9779   }
9780 
9781   // The build_vector is all constants or undefs. Find the smallest element
9782   // size that splats the vector.
9783   HasAnyUndefs = (SplatUndef != 0);
9784 
9785   // FIXME: This does not work for vectors with elements less than 8 bits.
9786   while (VecWidth > 8) {
9787     unsigned HalfSize = VecWidth / 2;
9788     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9789     APInt LowValue = SplatValue.trunc(HalfSize);
9790     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9791     APInt LowUndef = SplatUndef.trunc(HalfSize);
9792 
9793     // If the two halves do not match (ignoring undef bits), stop here.
9794     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9795         MinSplatBits > HalfSize)
9796       break;
9797 
9798     SplatValue = HighValue | LowValue;
9799     SplatUndef = HighUndef & LowUndef;
9800 
9801     VecWidth = HalfSize;
9802   }
9803 
9804   SplatBitSize = VecWidth;
9805   return true;
9806 }
9807 
9808 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9809                                          BitVector *UndefElements) const {
9810   unsigned NumOps = getNumOperands();
9811   if (UndefElements) {
9812     UndefElements->clear();
9813     UndefElements->resize(NumOps);
9814   }
9815   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9816   if (!DemandedElts)
9817     return SDValue();
9818   SDValue Splatted;
9819   for (unsigned i = 0; i != NumOps; ++i) {
9820     if (!DemandedElts[i])
9821       continue;
9822     SDValue Op = getOperand(i);
9823     if (Op.isUndef()) {
9824       if (UndefElements)
9825         (*UndefElements)[i] = true;
9826     } else if (!Splatted) {
9827       Splatted = Op;
9828     } else if (Splatted != Op) {
9829       return SDValue();
9830     }
9831   }
9832 
9833   if (!Splatted) {
9834     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9835     assert(getOperand(FirstDemandedIdx).isUndef() &&
9836            "Can only have a splat without a constant for all undefs.");
9837     return getOperand(FirstDemandedIdx);
9838   }
9839 
9840   return Splatted;
9841 }
9842 
9843 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9844   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9845   return getSplatValue(DemandedElts, UndefElements);
9846 }
9847 
9848 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9849                                             SmallVectorImpl<SDValue> &Sequence,
9850                                             BitVector *UndefElements) const {
9851   unsigned NumOps = getNumOperands();
9852   Sequence.clear();
9853   if (UndefElements) {
9854     UndefElements->clear();
9855     UndefElements->resize(NumOps);
9856   }
9857   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9858   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9859     return false;
9860 
9861   // Set the undefs even if we don't find a sequence (like getSplatValue).
9862   if (UndefElements)
9863     for (unsigned I = 0; I != NumOps; ++I)
9864       if (DemandedElts[I] && getOperand(I).isUndef())
9865         (*UndefElements)[I] = true;
9866 
9867   // Iteratively widen the sequence length looking for repetitions.
9868   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9869     Sequence.append(SeqLen, SDValue());
9870     for (unsigned I = 0; I != NumOps; ++I) {
9871       if (!DemandedElts[I])
9872         continue;
9873       SDValue &SeqOp = Sequence[I % SeqLen];
9874       SDValue Op = getOperand(I);
9875       if (Op.isUndef()) {
9876         if (!SeqOp)
9877           SeqOp = Op;
9878         continue;
9879       }
9880       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9881         Sequence.clear();
9882         break;
9883       }
9884       SeqOp = Op;
9885     }
9886     if (!Sequence.empty())
9887       return true;
9888   }
9889 
9890   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9891   return false;
9892 }
9893 
9894 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
9895                                             BitVector *UndefElements) const {
9896   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9897   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
9898 }
9899 
9900 ConstantSDNode *
9901 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9902                                         BitVector *UndefElements) const {
9903   return dyn_cast_or_null<ConstantSDNode>(
9904       getSplatValue(DemandedElts, UndefElements));
9905 }
9906 
9907 ConstantSDNode *
9908 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9909   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9910 }
9911 
9912 ConstantFPSDNode *
9913 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9914                                           BitVector *UndefElements) const {
9915   return dyn_cast_or_null<ConstantFPSDNode>(
9916       getSplatValue(DemandedElts, UndefElements));
9917 }
9918 
9919 ConstantFPSDNode *
9920 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9921   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9922 }
9923 
9924 int32_t
9925 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9926                                                    uint32_t BitWidth) const {
9927   if (ConstantFPSDNode *CN =
9928           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9929     bool IsExact;
9930     APSInt IntVal(BitWidth);
9931     const APFloat &APF = CN->getValueAPF();
9932     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9933             APFloat::opOK ||
9934         !IsExact)
9935       return -1;
9936 
9937     return IntVal.exactLogBase2();
9938   }
9939   return -1;
9940 }
9941 
9942 bool BuildVectorSDNode::isConstant() const {
9943   for (const SDValue &Op : op_values()) {
9944     unsigned Opc = Op.getOpcode();
9945     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9946       return false;
9947   }
9948   return true;
9949 }
9950 
9951 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9952   // Find the first non-undef value in the shuffle mask.
9953   unsigned i, e;
9954   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9955     /* search */;
9956 
9957   // If all elements are undefined, this shuffle can be considered a splat
9958   // (although it should eventually get simplified away completely).
9959   if (i == e)
9960     return true;
9961 
9962   // Make sure all remaining elements are either undef or the same as the first
9963   // non-undef value.
9964   for (int Idx = Mask[i]; i != e; ++i)
9965     if (Mask[i] >= 0 && Mask[i] != Idx)
9966       return false;
9967   return true;
9968 }
9969 
9970 // Returns the SDNode if it is a constant integer BuildVector
9971 // or constant integer.
9972 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9973   if (isa<ConstantSDNode>(N))
9974     return N.getNode();
9975   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9976     return N.getNode();
9977   // Treat a GlobalAddress supporting constant offset folding as a
9978   // constant integer.
9979   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9980     if (GA->getOpcode() == ISD::GlobalAddress &&
9981         TLI->isOffsetFoldingLegal(GA))
9982       return GA;
9983   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
9984       isa<ConstantSDNode>(N.getOperand(0)))
9985     return N.getNode();
9986   return nullptr;
9987 }
9988 
9989 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9990   if (isa<ConstantFPSDNode>(N))
9991     return N.getNode();
9992 
9993   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9994     return N.getNode();
9995 
9996   return nullptr;
9997 }
9998 
9999 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10000   assert(!Node->OperandList && "Node already has operands");
10001   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10002          "too many operands to fit into SDNode");
10003   SDUse *Ops = OperandRecycler.allocate(
10004       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10005 
10006   bool IsDivergent = false;
10007   for (unsigned I = 0; I != Vals.size(); ++I) {
10008     Ops[I].setUser(Node);
10009     Ops[I].setInitial(Vals[I]);
10010     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10011       IsDivergent |= Ops[I].getNode()->isDivergent();
10012   }
10013   Node->NumOperands = Vals.size();
10014   Node->OperandList = Ops;
10015   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10016     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10017     Node->SDNodeBits.IsDivergent = IsDivergent;
10018   }
10019   checkForCycles(Node);
10020 }
10021 
10022 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10023                                      SmallVectorImpl<SDValue> &Vals) {
10024   size_t Limit = SDNode::getMaxNumOperands();
10025   while (Vals.size() > Limit) {
10026     unsigned SliceIdx = Vals.size() - Limit;
10027     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10028     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10029     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10030     Vals.emplace_back(NewTF);
10031   }
10032   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10033 }
10034 
10035 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10036                                         EVT VT, SDNodeFlags Flags) {
10037   switch (Opcode) {
10038   default:
10039     return SDValue();
10040   case ISD::ADD:
10041   case ISD::OR:
10042   case ISD::XOR:
10043   case ISD::UMAX:
10044     return getConstant(0, DL, VT);
10045   case ISD::MUL:
10046     return getConstant(1, DL, VT);
10047   case ISD::AND:
10048   case ISD::UMIN:
10049     return getAllOnesConstant(DL, VT);
10050   case ISD::SMAX:
10051     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10052   case ISD::SMIN:
10053     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10054   case ISD::FADD:
10055     return getConstantFP(-0.0, DL, VT);
10056   case ISD::FMUL:
10057     return getConstantFP(1.0, DL, VT);
10058   case ISD::FMINNUM:
10059   case ISD::FMAXNUM: {
10060     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10061     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10062     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10063                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10064                         APFloat::getLargest(Semantics);
10065     if (Opcode == ISD::FMAXNUM)
10066       NeutralAF.changeSign();
10067 
10068     return getConstantFP(NeutralAF, DL, VT);
10069   }
10070   }
10071 }
10072 
10073 #ifndef NDEBUG
10074 static void checkForCyclesHelper(const SDNode *N,
10075                                  SmallPtrSetImpl<const SDNode*> &Visited,
10076                                  SmallPtrSetImpl<const SDNode*> &Checked,
10077                                  const llvm::SelectionDAG *DAG) {
10078   // If this node has already been checked, don't check it again.
10079   if (Checked.count(N))
10080     return;
10081 
10082   // If a node has already been visited on this depth-first walk, reject it as
10083   // a cycle.
10084   if (!Visited.insert(N).second) {
10085     errs() << "Detected cycle in SelectionDAG\n";
10086     dbgs() << "Offending node:\n";
10087     N->dumprFull(DAG); dbgs() << "\n";
10088     abort();
10089   }
10090 
10091   for (const SDValue &Op : N->op_values())
10092     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10093 
10094   Checked.insert(N);
10095   Visited.erase(N);
10096 }
10097 #endif
10098 
10099 void llvm::checkForCycles(const llvm::SDNode *N,
10100                           const llvm::SelectionDAG *DAG,
10101                           bool force) {
10102 #ifndef NDEBUG
10103   bool check = force;
10104 #ifdef EXPENSIVE_CHECKS
10105   check = true;
10106 #endif  // EXPENSIVE_CHECKS
10107   if (check) {
10108     assert(N && "Checking nonexistent SDNode");
10109     SmallPtrSet<const SDNode*, 32> visited;
10110     SmallPtrSet<const SDNode*, 32> checked;
10111     checkForCyclesHelper(N, visited, checked, DAG);
10112   }
10113 #endif  // !NDEBUG
10114 }
10115 
10116 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10117   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10118 }
10119