1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 auto *BV = dyn_cast<BuildVectorSDNode>(N); 143 if (!BV) 144 return false; 145 146 APInt SplatUndef; 147 unsigned SplatBitSize; 148 bool HasUndefs; 149 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 150 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 151 EltSize) && 152 EltSize == SplatBitSize; 153 } 154 155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 156 // specializations of the more general isConstantSplatVector()? 157 158 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 159 // Look through a bit convert. 160 while (N->getOpcode() == ISD::BITCAST) 161 N = N->getOperand(0).getNode(); 162 163 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 164 165 unsigned i = 0, e = N->getNumOperands(); 166 167 // Skip over all of the undef values. 168 while (i != e && N->getOperand(i).isUndef()) 169 ++i; 170 171 // Do not accept an all-undef vector. 172 if (i == e) return false; 173 174 // Do not accept build_vectors that aren't all constants or which have non-~0 175 // elements. We have to be a bit careful here, as the type of the constant 176 // may not be the same as the type of the vector elements due to type 177 // legalization (the elements are promoted to a legal type for the target and 178 // a vector of a type may be legal when the base element type is not). 179 // We only want to check enough bits to cover the vector elements, because 180 // we care if the resultant vector is all ones, not whether the individual 181 // constants are. 182 SDValue NotZero = N->getOperand(i); 183 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 184 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 185 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 186 return false; 187 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 188 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 189 return false; 190 } else 191 return false; 192 193 // Okay, we have at least one ~0 value, check to see if the rest match or are 194 // undefs. Even with the above element type twiddling, this should be OK, as 195 // the same type legalization should have applied to all the elements. 196 for (++i; i != e; ++i) 197 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 198 return false; 199 return true; 200 } 201 202 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 203 // Look through a bit convert. 204 while (N->getOpcode() == ISD::BITCAST) 205 N = N->getOperand(0).getNode(); 206 207 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 208 209 bool IsAllUndef = true; 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 IsAllUndef = false; 214 // Do not accept build_vectors that aren't all constants or which have non-0 215 // elements. We have to be a bit careful here, as the type of the constant 216 // may not be the same as the type of the vector elements due to type 217 // legalization (the elements are promoted to a legal type for the target 218 // and a vector of a type may be legal when the base element type is not). 219 // We only want to check enough bits to cover the vector elements, because 220 // we care if the resultant vector is all zeros, not whether the individual 221 // constants are. 222 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 223 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 224 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 225 return false; 226 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 227 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 228 return false; 229 } else 230 return false; 231 } 232 233 // Do not accept an all-undef vector. 234 if (IsAllUndef) 235 return false; 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 253 if (N->getOpcode() != ISD::BUILD_VECTOR) 254 return false; 255 256 for (const SDValue &Op : N->op_values()) { 257 if (Op.isUndef()) 258 continue; 259 if (!isa<ConstantFPSDNode>(Op)) 260 return false; 261 } 262 return true; 263 } 264 265 bool ISD::allOperandsUndef(const SDNode *N) { 266 // Return false if the node has no operands. 267 // This is "logically inconsistent" with the definition of "all" but 268 // is probably the desired behavior. 269 if (N->getNumOperands() == 0) 270 return false; 271 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 272 } 273 274 bool ISD::matchUnaryPredicate(SDValue Op, 275 std::function<bool(ConstantSDNode *)> Match, 276 bool AllowUndefs) { 277 // FIXME: Add support for scalar UNDEF cases? 278 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 279 return Match(Cst); 280 281 // FIXME: Add support for vector UNDEF cases? 282 if (ISD::BUILD_VECTOR != Op.getOpcode()) 283 return false; 284 285 EVT SVT = Op.getValueType().getScalarType(); 286 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 287 if (AllowUndefs && Op.getOperand(i).isUndef()) { 288 if (!Match(nullptr)) 289 return false; 290 continue; 291 } 292 293 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 294 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 295 return false; 296 } 297 return true; 298 } 299 300 bool ISD::matchBinaryPredicate( 301 SDValue LHS, SDValue RHS, 302 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 303 bool AllowUndefs, bool AllowTypeMismatch) { 304 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 305 return false; 306 307 // TODO: Add support for scalar UNDEF cases? 308 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 309 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 310 return Match(LHSCst, RHSCst); 311 312 // TODO: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 314 ISD::BUILD_VECTOR != RHS.getOpcode()) 315 return false; 316 317 EVT SVT = LHS.getValueType().getScalarType(); 318 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 319 SDValue LHSOp = LHS.getOperand(i); 320 SDValue RHSOp = RHS.getOperand(i); 321 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 322 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 323 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 324 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 325 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 326 return false; 327 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 328 LHSOp.getValueType() != RHSOp.getValueType())) 329 return false; 330 if (!Match(LHSCst, RHSCst)) 331 return false; 332 } 333 return true; 334 } 335 336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 337 switch (VecReduceOpcode) { 338 default: 339 llvm_unreachable("Expected VECREDUCE opcode"); 340 case ISD::VECREDUCE_FADD: 341 case ISD::VECREDUCE_SEQ_FADD: 342 return ISD::FADD; 343 case ISD::VECREDUCE_FMUL: 344 case ISD::VECREDUCE_SEQ_FMUL: 345 return ISD::FMUL; 346 case ISD::VECREDUCE_ADD: 347 return ISD::ADD; 348 case ISD::VECREDUCE_MUL: 349 return ISD::MUL; 350 case ISD::VECREDUCE_AND: 351 return ISD::AND; 352 case ISD::VECREDUCE_OR: 353 return ISD::OR; 354 case ISD::VECREDUCE_XOR: 355 return ISD::XOR; 356 case ISD::VECREDUCE_SMAX: 357 return ISD::SMAX; 358 case ISD::VECREDUCE_SMIN: 359 return ISD::SMIN; 360 case ISD::VECREDUCE_UMAX: 361 return ISD::UMAX; 362 case ISD::VECREDUCE_UMIN: 363 return ISD::UMIN; 364 case ISD::VECREDUCE_FMAX: 365 return ISD::FMAXNUM; 366 case ISD::VECREDUCE_FMIN: 367 return ISD::FMINNUM; 368 } 369 } 370 371 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 372 switch (ExtType) { 373 case ISD::EXTLOAD: 374 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 375 case ISD::SEXTLOAD: 376 return ISD::SIGN_EXTEND; 377 case ISD::ZEXTLOAD: 378 return ISD::ZERO_EXTEND; 379 default: 380 break; 381 } 382 383 llvm_unreachable("Invalid LoadExtType"); 384 } 385 386 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 387 // To perform this operation, we just need to swap the L and G bits of the 388 // operation. 389 unsigned OldL = (Operation >> 2) & 1; 390 unsigned OldG = (Operation >> 1) & 1; 391 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 392 (OldL << 1) | // New G bit 393 (OldG << 2)); // New L bit. 394 } 395 396 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 397 unsigned Operation = Op; 398 if (isIntegerLike) 399 Operation ^= 7; // Flip L, G, E bits, but not U. 400 else 401 Operation ^= 15; // Flip all of the condition bits. 402 403 if (Operation > ISD::SETTRUE2) 404 Operation &= ~8; // Don't let N and U bits get set. 405 406 return ISD::CondCode(Operation); 407 } 408 409 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 410 return getSetCCInverseImpl(Op, Type.isInteger()); 411 } 412 413 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 414 bool isIntegerLike) { 415 return getSetCCInverseImpl(Op, isIntegerLike); 416 } 417 418 /// For an integer comparison, return 1 if the comparison is a signed operation 419 /// and 2 if the result is an unsigned comparison. Return zero if the operation 420 /// does not depend on the sign of the input (setne and seteq). 421 static int isSignedOp(ISD::CondCode Opcode) { 422 switch (Opcode) { 423 default: llvm_unreachable("Illegal integer setcc operation!"); 424 case ISD::SETEQ: 425 case ISD::SETNE: return 0; 426 case ISD::SETLT: 427 case ISD::SETLE: 428 case ISD::SETGT: 429 case ISD::SETGE: return 1; 430 case ISD::SETULT: 431 case ISD::SETULE: 432 case ISD::SETUGT: 433 case ISD::SETUGE: return 2; 434 } 435 } 436 437 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 438 EVT Type) { 439 bool IsInteger = Type.isInteger(); 440 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 441 // Cannot fold a signed integer setcc with an unsigned integer setcc. 442 return ISD::SETCC_INVALID; 443 444 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 445 446 // If the N and U bits get set, then the resultant comparison DOES suddenly 447 // care about orderedness, and it is true when ordered. 448 if (Op > ISD::SETTRUE2) 449 Op &= ~16; // Clear the U bit if the N bit is set. 450 451 // Canonicalize illegal integer setcc's. 452 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 453 Op = ISD::SETNE; 454 455 return ISD::CondCode(Op); 456 } 457 458 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 459 EVT Type) { 460 bool IsInteger = Type.isInteger(); 461 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 462 // Cannot fold a signed setcc with an unsigned setcc. 463 return ISD::SETCC_INVALID; 464 465 // Combine all of the condition bits. 466 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 467 468 // Canonicalize illegal integer setcc's. 469 if (IsInteger) { 470 switch (Result) { 471 default: break; 472 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 473 case ISD::SETOEQ: // SETEQ & SETU[LG]E 474 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 475 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 476 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 477 } 478 } 479 480 return Result; 481 } 482 483 //===----------------------------------------------------------------------===// 484 // SDNode Profile Support 485 //===----------------------------------------------------------------------===// 486 487 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 488 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 489 ID.AddInteger(OpC); 490 } 491 492 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 493 /// solely with their pointer. 494 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 495 ID.AddPointer(VTList.VTs); 496 } 497 498 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 499 static void AddNodeIDOperands(FoldingSetNodeID &ID, 500 ArrayRef<SDValue> Ops) { 501 for (auto& Op : Ops) { 502 ID.AddPointer(Op.getNode()); 503 ID.AddInteger(Op.getResNo()); 504 } 505 } 506 507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 508 static void AddNodeIDOperands(FoldingSetNodeID &ID, 509 ArrayRef<SDUse> Ops) { 510 for (auto& Op : Ops) { 511 ID.AddPointer(Op.getNode()); 512 ID.AddInteger(Op.getResNo()); 513 } 514 } 515 516 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 517 SDVTList VTList, ArrayRef<SDValue> OpList) { 518 AddNodeIDOpcode(ID, OpC); 519 AddNodeIDValueTypes(ID, VTList); 520 AddNodeIDOperands(ID, OpList); 521 } 522 523 /// If this is an SDNode with special info, add this info to the NodeID data. 524 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 525 switch (N->getOpcode()) { 526 case ISD::TargetExternalSymbol: 527 case ISD::ExternalSymbol: 528 case ISD::MCSymbol: 529 llvm_unreachable("Should only be used on nodes with operands"); 530 default: break; // Normal nodes don't need extra info. 531 case ISD::TargetConstant: 532 case ISD::Constant: { 533 const ConstantSDNode *C = cast<ConstantSDNode>(N); 534 ID.AddPointer(C->getConstantIntValue()); 535 ID.AddBoolean(C->isOpaque()); 536 break; 537 } 538 case ISD::TargetConstantFP: 539 case ISD::ConstantFP: 540 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 541 break; 542 case ISD::TargetGlobalAddress: 543 case ISD::GlobalAddress: 544 case ISD::TargetGlobalTLSAddress: 545 case ISD::GlobalTLSAddress: { 546 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 547 ID.AddPointer(GA->getGlobal()); 548 ID.AddInteger(GA->getOffset()); 549 ID.AddInteger(GA->getTargetFlags()); 550 break; 551 } 552 case ISD::BasicBlock: 553 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 554 break; 555 case ISD::Register: 556 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 557 break; 558 case ISD::RegisterMask: 559 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 560 break; 561 case ISD::SRCVALUE: 562 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 563 break; 564 case ISD::FrameIndex: 565 case ISD::TargetFrameIndex: 566 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 567 break; 568 case ISD::LIFETIME_START: 569 case ISD::LIFETIME_END: 570 if (cast<LifetimeSDNode>(N)->hasOffset()) { 571 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 572 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 573 } 574 break; 575 case ISD::JumpTable: 576 case ISD::TargetJumpTable: 577 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 578 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 579 break; 580 case ISD::ConstantPool: 581 case ISD::TargetConstantPool: { 582 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 583 ID.AddInteger(CP->getAlign().value()); 584 ID.AddInteger(CP->getOffset()); 585 if (CP->isMachineConstantPoolEntry()) 586 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 587 else 588 ID.AddPointer(CP->getConstVal()); 589 ID.AddInteger(CP->getTargetFlags()); 590 break; 591 } 592 case ISD::TargetIndex: { 593 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 594 ID.AddInteger(TI->getIndex()); 595 ID.AddInteger(TI->getOffset()); 596 ID.AddInteger(TI->getTargetFlags()); 597 break; 598 } 599 case ISD::LOAD: { 600 const LoadSDNode *LD = cast<LoadSDNode>(N); 601 ID.AddInteger(LD->getMemoryVT().getRawBits()); 602 ID.AddInteger(LD->getRawSubclassData()); 603 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 604 break; 605 } 606 case ISD::STORE: { 607 const StoreSDNode *ST = cast<StoreSDNode>(N); 608 ID.AddInteger(ST->getMemoryVT().getRawBits()); 609 ID.AddInteger(ST->getRawSubclassData()); 610 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 611 break; 612 } 613 case ISD::MLOAD: { 614 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 615 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 616 ID.AddInteger(MLD->getRawSubclassData()); 617 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 618 break; 619 } 620 case ISD::MSTORE: { 621 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 622 ID.AddInteger(MST->getMemoryVT().getRawBits()); 623 ID.AddInteger(MST->getRawSubclassData()); 624 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::MGATHER: { 628 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 629 ID.AddInteger(MG->getMemoryVT().getRawBits()); 630 ID.AddInteger(MG->getRawSubclassData()); 631 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 632 break; 633 } 634 case ISD::MSCATTER: { 635 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 636 ID.AddInteger(MS->getMemoryVT().getRawBits()); 637 ID.AddInteger(MS->getRawSubclassData()); 638 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 639 break; 640 } 641 case ISD::ATOMIC_CMP_SWAP: 642 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 643 case ISD::ATOMIC_SWAP: 644 case ISD::ATOMIC_LOAD_ADD: 645 case ISD::ATOMIC_LOAD_SUB: 646 case ISD::ATOMIC_LOAD_AND: 647 case ISD::ATOMIC_LOAD_CLR: 648 case ISD::ATOMIC_LOAD_OR: 649 case ISD::ATOMIC_LOAD_XOR: 650 case ISD::ATOMIC_LOAD_NAND: 651 case ISD::ATOMIC_LOAD_MIN: 652 case ISD::ATOMIC_LOAD_MAX: 653 case ISD::ATOMIC_LOAD_UMIN: 654 case ISD::ATOMIC_LOAD_UMAX: 655 case ISD::ATOMIC_LOAD: 656 case ISD::ATOMIC_STORE: { 657 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 658 ID.AddInteger(AT->getMemoryVT().getRawBits()); 659 ID.AddInteger(AT->getRawSubclassData()); 660 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 661 break; 662 } 663 case ISD::PREFETCH: { 664 const MemSDNode *PF = cast<MemSDNode>(N); 665 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 666 break; 667 } 668 case ISD::VECTOR_SHUFFLE: { 669 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 670 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 671 i != e; ++i) 672 ID.AddInteger(SVN->getMaskElt(i)); 673 break; 674 } 675 case ISD::TargetBlockAddress: 676 case ISD::BlockAddress: { 677 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 678 ID.AddPointer(BA->getBlockAddress()); 679 ID.AddInteger(BA->getOffset()); 680 ID.AddInteger(BA->getTargetFlags()); 681 break; 682 } 683 } // end switch (N->getOpcode()) 684 685 // Target specific memory nodes could also have address spaces to check. 686 if (N->isTargetMemoryOpcode()) 687 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 688 } 689 690 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 691 /// data. 692 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 693 AddNodeIDOpcode(ID, N->getOpcode()); 694 // Add the return value info. 695 AddNodeIDValueTypes(ID, N->getVTList()); 696 // Add the operand info. 697 AddNodeIDOperands(ID, N->ops()); 698 699 // Handle SDNode leafs with special info. 700 AddNodeIDCustom(ID, N); 701 } 702 703 //===----------------------------------------------------------------------===// 704 // SelectionDAG Class 705 //===----------------------------------------------------------------------===// 706 707 /// doNotCSE - Return true if CSE should not be performed for this node. 708 static bool doNotCSE(SDNode *N) { 709 if (N->getValueType(0) == MVT::Glue) 710 return true; // Never CSE anything that produces a flag. 711 712 switch (N->getOpcode()) { 713 default: break; 714 case ISD::HANDLENODE: 715 case ISD::EH_LABEL: 716 return true; // Never CSE these nodes. 717 } 718 719 // Check that remaining values produced are not flags. 720 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 721 if (N->getValueType(i) == MVT::Glue) 722 return true; // Never CSE anything that produces a flag. 723 724 return false; 725 } 726 727 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 728 /// SelectionDAG. 729 void SelectionDAG::RemoveDeadNodes() { 730 // Create a dummy node (which is not added to allnodes), that adds a reference 731 // to the root node, preventing it from being deleted. 732 HandleSDNode Dummy(getRoot()); 733 734 SmallVector<SDNode*, 128> DeadNodes; 735 736 // Add all obviously-dead nodes to the DeadNodes worklist. 737 for (SDNode &Node : allnodes()) 738 if (Node.use_empty()) 739 DeadNodes.push_back(&Node); 740 741 RemoveDeadNodes(DeadNodes); 742 743 // If the root changed (e.g. it was a dead load, update the root). 744 setRoot(Dummy.getValue()); 745 } 746 747 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 748 /// given list, and any nodes that become unreachable as a result. 749 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 750 751 // Process the worklist, deleting the nodes and adding their uses to the 752 // worklist. 753 while (!DeadNodes.empty()) { 754 SDNode *N = DeadNodes.pop_back_val(); 755 // Skip to next node if we've already managed to delete the node. This could 756 // happen if replacing a node causes a node previously added to the node to 757 // be deleted. 758 if (N->getOpcode() == ISD::DELETED_NODE) 759 continue; 760 761 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 762 DUL->NodeDeleted(N, nullptr); 763 764 // Take the node out of the appropriate CSE map. 765 RemoveNodeFromCSEMaps(N); 766 767 // Next, brutally remove the operand list. This is safe to do, as there are 768 // no cycles in the graph. 769 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 770 SDUse &Use = *I++; 771 SDNode *Operand = Use.getNode(); 772 Use.set(SDValue()); 773 774 // Now that we removed this operand, see if there are no uses of it left. 775 if (Operand->use_empty()) 776 DeadNodes.push_back(Operand); 777 } 778 779 DeallocateNode(N); 780 } 781 } 782 783 void SelectionDAG::RemoveDeadNode(SDNode *N){ 784 SmallVector<SDNode*, 16> DeadNodes(1, N); 785 786 // Create a dummy node that adds a reference to the root node, preventing 787 // it from being deleted. (This matters if the root is an operand of the 788 // dead node.) 789 HandleSDNode Dummy(getRoot()); 790 791 RemoveDeadNodes(DeadNodes); 792 } 793 794 void SelectionDAG::DeleteNode(SDNode *N) { 795 // First take this out of the appropriate CSE map. 796 RemoveNodeFromCSEMaps(N); 797 798 // Finally, remove uses due to operands of this node, remove from the 799 // AllNodes list, and delete the node. 800 DeleteNodeNotInCSEMaps(N); 801 } 802 803 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 804 assert(N->getIterator() != AllNodes.begin() && 805 "Cannot delete the entry node!"); 806 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 807 808 // Drop all of the operands and decrement used node's use counts. 809 N->DropOperands(); 810 811 DeallocateNode(N); 812 } 813 814 void SDDbgInfo::erase(const SDNode *Node) { 815 DbgValMapType::iterator I = DbgValMap.find(Node); 816 if (I == DbgValMap.end()) 817 return; 818 for (auto &Val: I->second) 819 Val->setIsInvalidated(); 820 DbgValMap.erase(I); 821 } 822 823 void SelectionDAG::DeallocateNode(SDNode *N) { 824 // If we have operands, deallocate them. 825 removeOperands(N); 826 827 NodeAllocator.Deallocate(AllNodes.remove(N)); 828 829 // Set the opcode to DELETED_NODE to help catch bugs when node 830 // memory is reallocated. 831 // FIXME: There are places in SDag that have grown a dependency on the opcode 832 // value in the released node. 833 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 834 N->NodeType = ISD::DELETED_NODE; 835 836 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 837 // them and forget about that node. 838 DbgInfo->erase(N); 839 } 840 841 #ifndef NDEBUG 842 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 843 static void VerifySDNode(SDNode *N) { 844 switch (N->getOpcode()) { 845 default: 846 break; 847 case ISD::BUILD_PAIR: { 848 EVT VT = N->getValueType(0); 849 assert(N->getNumValues() == 1 && "Too many results!"); 850 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 851 "Wrong return type!"); 852 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 853 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 854 "Mismatched operand types!"); 855 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 856 "Wrong operand type!"); 857 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 858 "Wrong return type size"); 859 break; 860 } 861 case ISD::BUILD_VECTOR: { 862 assert(N->getNumValues() == 1 && "Too many results!"); 863 assert(N->getValueType(0).isVector() && "Wrong return type!"); 864 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 865 "Wrong number of operands!"); 866 EVT EltVT = N->getValueType(0).getVectorElementType(); 867 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 868 assert((I->getValueType() == EltVT || 869 (EltVT.isInteger() && I->getValueType().isInteger() && 870 EltVT.bitsLE(I->getValueType()))) && 871 "Wrong operand type!"); 872 assert(I->getValueType() == N->getOperand(0).getValueType() && 873 "Operands must all have the same type"); 874 } 875 break; 876 } 877 } 878 } 879 #endif // NDEBUG 880 881 /// Insert a newly allocated node into the DAG. 882 /// 883 /// Handles insertion into the all nodes list and CSE map, as well as 884 /// verification and other common operations when a new node is allocated. 885 void SelectionDAG::InsertNode(SDNode *N) { 886 AllNodes.push_back(N); 887 #ifndef NDEBUG 888 N->PersistentId = NextPersistentId++; 889 VerifySDNode(N); 890 #endif 891 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 892 DUL->NodeInserted(N); 893 } 894 895 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 896 /// correspond to it. This is useful when we're about to delete or repurpose 897 /// the node. We don't want future request for structurally identical nodes 898 /// to return N anymore. 899 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 900 bool Erased = false; 901 switch (N->getOpcode()) { 902 case ISD::HANDLENODE: return false; // noop. 903 case ISD::CONDCODE: 904 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 905 "Cond code doesn't exist!"); 906 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 907 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 908 break; 909 case ISD::ExternalSymbol: 910 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 911 break; 912 case ISD::TargetExternalSymbol: { 913 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 914 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 915 ESN->getSymbol(), ESN->getTargetFlags())); 916 break; 917 } 918 case ISD::MCSymbol: { 919 auto *MCSN = cast<MCSymbolSDNode>(N); 920 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 921 break; 922 } 923 case ISD::VALUETYPE: { 924 EVT VT = cast<VTSDNode>(N)->getVT(); 925 if (VT.isExtended()) { 926 Erased = ExtendedValueTypeNodes.erase(VT); 927 } else { 928 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 929 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 930 } 931 break; 932 } 933 default: 934 // Remove it from the CSE Map. 935 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 936 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 937 Erased = CSEMap.RemoveNode(N); 938 break; 939 } 940 #ifndef NDEBUG 941 // Verify that the node was actually in one of the CSE maps, unless it has a 942 // flag result (which cannot be CSE'd) or is one of the special cases that are 943 // not subject to CSE. 944 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 945 !N->isMachineOpcode() && !doNotCSE(N)) { 946 N->dump(this); 947 dbgs() << "\n"; 948 llvm_unreachable("Node is not in map!"); 949 } 950 #endif 951 return Erased; 952 } 953 954 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 955 /// maps and modified in place. Add it back to the CSE maps, unless an identical 956 /// node already exists, in which case transfer all its users to the existing 957 /// node. This transfer can potentially trigger recursive merging. 958 void 959 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 960 // For node types that aren't CSE'd, just act as if no identical node 961 // already exists. 962 if (!doNotCSE(N)) { 963 SDNode *Existing = CSEMap.GetOrInsertNode(N); 964 if (Existing != N) { 965 // If there was already an existing matching node, use ReplaceAllUsesWith 966 // to replace the dead one with the existing one. This can cause 967 // recursive merging of other unrelated nodes down the line. 968 ReplaceAllUsesWith(N, Existing); 969 970 // N is now dead. Inform the listeners and delete it. 971 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 972 DUL->NodeDeleted(N, Existing); 973 DeleteNodeNotInCSEMaps(N); 974 return; 975 } 976 } 977 978 // If the node doesn't already exist, we updated it. Inform listeners. 979 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 980 DUL->NodeUpdated(N); 981 } 982 983 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 984 /// were replaced with those specified. If this node is never memoized, 985 /// return null, otherwise return a pointer to the slot it would take. If a 986 /// node already exists with these operands, the slot will be non-null. 987 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 988 void *&InsertPos) { 989 if (doNotCSE(N)) 990 return nullptr; 991 992 SDValue Ops[] = { Op }; 993 FoldingSetNodeID ID; 994 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 995 AddNodeIDCustom(ID, N); 996 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 997 if (Node) 998 Node->intersectFlagsWith(N->getFlags()); 999 return Node; 1000 } 1001 1002 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1003 /// were replaced with those specified. If this node is never memoized, 1004 /// return null, otherwise return a pointer to the slot it would take. If a 1005 /// node already exists with these operands, the slot will be non-null. 1006 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1007 SDValue Op1, SDValue Op2, 1008 void *&InsertPos) { 1009 if (doNotCSE(N)) 1010 return nullptr; 1011 1012 SDValue Ops[] = { Op1, Op2 }; 1013 FoldingSetNodeID ID; 1014 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1015 AddNodeIDCustom(ID, N); 1016 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1017 if (Node) 1018 Node->intersectFlagsWith(N->getFlags()); 1019 return Node; 1020 } 1021 1022 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1023 /// were replaced with those specified. If this node is never memoized, 1024 /// return null, otherwise return a pointer to the slot it would take. If a 1025 /// node already exists with these operands, the slot will be non-null. 1026 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1027 void *&InsertPos) { 1028 if (doNotCSE(N)) 1029 return nullptr; 1030 1031 FoldingSetNodeID ID; 1032 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1033 AddNodeIDCustom(ID, N); 1034 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1035 if (Node) 1036 Node->intersectFlagsWith(N->getFlags()); 1037 return Node; 1038 } 1039 1040 Align SelectionDAG::getEVTAlign(EVT VT) const { 1041 Type *Ty = VT == MVT::iPTR ? 1042 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1043 VT.getTypeForEVT(*getContext()); 1044 1045 return getDataLayout().getABITypeAlign(Ty); 1046 } 1047 1048 // EntryNode could meaningfully have debug info if we can find it... 1049 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1050 : TM(tm), OptLevel(OL), 1051 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1052 Root(getEntryNode()) { 1053 InsertNode(&EntryNode); 1054 DbgInfo = new SDDbgInfo(); 1055 } 1056 1057 void SelectionDAG::init(MachineFunction &NewMF, 1058 OptimizationRemarkEmitter &NewORE, 1059 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1060 LegacyDivergenceAnalysis * Divergence, 1061 ProfileSummaryInfo *PSIin, 1062 BlockFrequencyInfo *BFIin) { 1063 MF = &NewMF; 1064 SDAGISelPass = PassPtr; 1065 ORE = &NewORE; 1066 TLI = getSubtarget().getTargetLowering(); 1067 TSI = getSubtarget().getSelectionDAGInfo(); 1068 LibInfo = LibraryInfo; 1069 Context = &MF->getFunction().getContext(); 1070 DA = Divergence; 1071 PSI = PSIin; 1072 BFI = BFIin; 1073 } 1074 1075 SelectionDAG::~SelectionDAG() { 1076 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1077 allnodes_clear(); 1078 OperandRecycler.clear(OperandAllocator); 1079 delete DbgInfo; 1080 } 1081 1082 bool SelectionDAG::shouldOptForSize() const { 1083 return MF->getFunction().hasOptSize() || 1084 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1085 } 1086 1087 void SelectionDAG::allnodes_clear() { 1088 assert(&*AllNodes.begin() == &EntryNode); 1089 AllNodes.remove(AllNodes.begin()); 1090 while (!AllNodes.empty()) 1091 DeallocateNode(&AllNodes.front()); 1092 #ifndef NDEBUG 1093 NextPersistentId = 0; 1094 #endif 1095 } 1096 1097 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1098 void *&InsertPos) { 1099 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1100 if (N) { 1101 switch (N->getOpcode()) { 1102 default: break; 1103 case ISD::Constant: 1104 case ISD::ConstantFP: 1105 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1106 "debug location. Use another overload."); 1107 } 1108 } 1109 return N; 1110 } 1111 1112 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1113 const SDLoc &DL, void *&InsertPos) { 1114 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1115 if (N) { 1116 switch (N->getOpcode()) { 1117 case ISD::Constant: 1118 case ISD::ConstantFP: 1119 // Erase debug location from the node if the node is used at several 1120 // different places. Do not propagate one location to all uses as it 1121 // will cause a worse single stepping debugging experience. 1122 if (N->getDebugLoc() != DL.getDebugLoc()) 1123 N->setDebugLoc(DebugLoc()); 1124 break; 1125 default: 1126 // When the node's point of use is located earlier in the instruction 1127 // sequence than its prior point of use, update its debug info to the 1128 // earlier location. 1129 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1130 N->setDebugLoc(DL.getDebugLoc()); 1131 break; 1132 } 1133 } 1134 return N; 1135 } 1136 1137 void SelectionDAG::clear() { 1138 allnodes_clear(); 1139 OperandRecycler.clear(OperandAllocator); 1140 OperandAllocator.Reset(); 1141 CSEMap.clear(); 1142 1143 ExtendedValueTypeNodes.clear(); 1144 ExternalSymbols.clear(); 1145 TargetExternalSymbols.clear(); 1146 MCSymbols.clear(); 1147 SDCallSiteDbgInfo.clear(); 1148 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1149 static_cast<CondCodeSDNode*>(nullptr)); 1150 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1151 static_cast<SDNode*>(nullptr)); 1152 1153 EntryNode.UseList = nullptr; 1154 InsertNode(&EntryNode); 1155 Root = getEntryNode(); 1156 DbgInfo->clear(); 1157 } 1158 1159 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1160 return VT.bitsGT(Op.getValueType()) 1161 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1162 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1163 } 1164 1165 std::pair<SDValue, SDValue> 1166 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1167 const SDLoc &DL, EVT VT) { 1168 assert(!VT.bitsEq(Op.getValueType()) && 1169 "Strict no-op FP extend/round not allowed."); 1170 SDValue Res = 1171 VT.bitsGT(Op.getValueType()) 1172 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1173 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1174 {Chain, Op, getIntPtrConstant(0, DL)}); 1175 1176 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1177 } 1178 1179 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1180 return VT.bitsGT(Op.getValueType()) ? 1181 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1182 getNode(ISD::TRUNCATE, DL, VT, Op); 1183 } 1184 1185 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1186 return VT.bitsGT(Op.getValueType()) ? 1187 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1188 getNode(ISD::TRUNCATE, DL, VT, Op); 1189 } 1190 1191 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1192 return VT.bitsGT(Op.getValueType()) ? 1193 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1194 getNode(ISD::TRUNCATE, DL, VT, Op); 1195 } 1196 1197 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1198 EVT OpVT) { 1199 if (VT.bitsLE(Op.getValueType())) 1200 return getNode(ISD::TRUNCATE, SL, VT, Op); 1201 1202 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1203 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1204 } 1205 1206 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1207 EVT OpVT = Op.getValueType(); 1208 assert(VT.isInteger() && OpVT.isInteger() && 1209 "Cannot getZeroExtendInReg FP types"); 1210 assert(VT.isVector() == OpVT.isVector() && 1211 "getZeroExtendInReg type should be vector iff the operand " 1212 "type is vector!"); 1213 assert((!VT.isVector() || 1214 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1215 "Vector element counts must match in getZeroExtendInReg"); 1216 assert(VT.bitsLE(OpVT) && "Not extending!"); 1217 if (OpVT == VT) 1218 return Op; 1219 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1220 VT.getScalarSizeInBits()); 1221 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1222 } 1223 1224 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1225 // Only unsigned pointer semantics are supported right now. In the future this 1226 // might delegate to TLI to check pointer signedness. 1227 return getZExtOrTrunc(Op, DL, VT); 1228 } 1229 1230 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1231 // Only unsigned pointer semantics are supported right now. In the future this 1232 // might delegate to TLI to check pointer signedness. 1233 return getZeroExtendInReg(Op, DL, VT); 1234 } 1235 1236 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1237 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1238 EVT EltVT = VT.getScalarType(); 1239 SDValue NegOne = 1240 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1241 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1242 } 1243 1244 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1245 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1246 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1247 } 1248 1249 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1250 EVT OpVT) { 1251 if (!V) 1252 return getConstant(0, DL, VT); 1253 1254 switch (TLI->getBooleanContents(OpVT)) { 1255 case TargetLowering::ZeroOrOneBooleanContent: 1256 case TargetLowering::UndefinedBooleanContent: 1257 return getConstant(1, DL, VT); 1258 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1259 return getAllOnesConstant(DL, VT); 1260 } 1261 llvm_unreachable("Unexpected boolean content enum!"); 1262 } 1263 1264 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1265 bool isT, bool isO) { 1266 EVT EltVT = VT.getScalarType(); 1267 assert((EltVT.getSizeInBits() >= 64 || 1268 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1269 "getConstant with a uint64_t value that doesn't fit in the type!"); 1270 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1271 } 1272 1273 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1274 bool isT, bool isO) { 1275 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1276 } 1277 1278 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1279 EVT VT, bool isT, bool isO) { 1280 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1281 1282 EVT EltVT = VT.getScalarType(); 1283 const ConstantInt *Elt = &Val; 1284 1285 // In some cases the vector type is legal but the element type is illegal and 1286 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1287 // inserted value (the type does not need to match the vector element type). 1288 // Any extra bits introduced will be truncated away. 1289 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1290 TargetLowering::TypePromoteInteger) { 1291 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1292 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1293 Elt = ConstantInt::get(*getContext(), NewVal); 1294 } 1295 // In other cases the element type is illegal and needs to be expanded, for 1296 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1297 // the value into n parts and use a vector type with n-times the elements. 1298 // Then bitcast to the type requested. 1299 // Legalizing constants too early makes the DAGCombiner's job harder so we 1300 // only legalize if the DAG tells us we must produce legal types. 1301 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1302 TLI->getTypeAction(*getContext(), EltVT) == 1303 TargetLowering::TypeExpandInteger) { 1304 const APInt &NewVal = Elt->getValue(); 1305 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1306 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1307 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1308 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1309 1310 // Check the temporary vector is the correct size. If this fails then 1311 // getTypeToTransformTo() probably returned a type whose size (in bits) 1312 // isn't a power-of-2 factor of the requested type size. 1313 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1314 1315 SmallVector<SDValue, 2> EltParts; 1316 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1317 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1318 .zextOrTrunc(ViaEltSizeInBits), DL, 1319 ViaEltVT, isT, isO)); 1320 } 1321 1322 // EltParts is currently in little endian order. If we actually want 1323 // big-endian order then reverse it now. 1324 if (getDataLayout().isBigEndian()) 1325 std::reverse(EltParts.begin(), EltParts.end()); 1326 1327 // The elements must be reversed when the element order is different 1328 // to the endianness of the elements (because the BITCAST is itself a 1329 // vector shuffle in this situation). However, we do not need any code to 1330 // perform this reversal because getConstant() is producing a vector 1331 // splat. 1332 // This situation occurs in MIPS MSA. 1333 1334 SmallVector<SDValue, 8> Ops; 1335 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1336 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1337 1338 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1339 return V; 1340 } 1341 1342 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1343 "APInt size does not match type size!"); 1344 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1345 FoldingSetNodeID ID; 1346 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1347 ID.AddPointer(Elt); 1348 ID.AddBoolean(isO); 1349 void *IP = nullptr; 1350 SDNode *N = nullptr; 1351 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1352 if (!VT.isVector()) 1353 return SDValue(N, 0); 1354 1355 if (!N) { 1356 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1357 CSEMap.InsertNode(N, IP); 1358 InsertNode(N); 1359 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1360 } 1361 1362 SDValue Result(N, 0); 1363 if (VT.isScalableVector()) 1364 Result = getSplatVector(VT, DL, Result); 1365 else if (VT.isVector()) 1366 Result = getSplatBuildVector(VT, DL, Result); 1367 1368 return Result; 1369 } 1370 1371 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1372 bool isTarget) { 1373 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1374 } 1375 1376 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1377 const SDLoc &DL, bool LegalTypes) { 1378 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1379 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1380 return getConstant(Val, DL, ShiftVT); 1381 } 1382 1383 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1384 bool isTarget) { 1385 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1386 } 1387 1388 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1389 bool isTarget) { 1390 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1391 } 1392 1393 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1394 EVT VT, bool isTarget) { 1395 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1396 1397 EVT EltVT = VT.getScalarType(); 1398 1399 // Do the map lookup using the actual bit pattern for the floating point 1400 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1401 // we don't have issues with SNANs. 1402 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1403 FoldingSetNodeID ID; 1404 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1405 ID.AddPointer(&V); 1406 void *IP = nullptr; 1407 SDNode *N = nullptr; 1408 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1409 if (!VT.isVector()) 1410 return SDValue(N, 0); 1411 1412 if (!N) { 1413 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1414 CSEMap.InsertNode(N, IP); 1415 InsertNode(N); 1416 } 1417 1418 SDValue Result(N, 0); 1419 if (VT.isScalableVector()) 1420 Result = getSplatVector(VT, DL, Result); 1421 else if (VT.isVector()) 1422 Result = getSplatBuildVector(VT, DL, Result); 1423 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1424 return Result; 1425 } 1426 1427 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1428 bool isTarget) { 1429 EVT EltVT = VT.getScalarType(); 1430 if (EltVT == MVT::f32) 1431 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1432 else if (EltVT == MVT::f64) 1433 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1434 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1435 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1436 bool Ignored; 1437 APFloat APF = APFloat(Val); 1438 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1439 &Ignored); 1440 return getConstantFP(APF, DL, VT, isTarget); 1441 } else 1442 llvm_unreachable("Unsupported type in getConstantFP"); 1443 } 1444 1445 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1446 EVT VT, int64_t Offset, bool isTargetGA, 1447 unsigned TargetFlags) { 1448 assert((TargetFlags == 0 || isTargetGA) && 1449 "Cannot set target flags on target-independent globals"); 1450 1451 // Truncate (with sign-extension) the offset value to the pointer size. 1452 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1453 if (BitWidth < 64) 1454 Offset = SignExtend64(Offset, BitWidth); 1455 1456 unsigned Opc; 1457 if (GV->isThreadLocal()) 1458 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1459 else 1460 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1461 1462 FoldingSetNodeID ID; 1463 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1464 ID.AddPointer(GV); 1465 ID.AddInteger(Offset); 1466 ID.AddInteger(TargetFlags); 1467 void *IP = nullptr; 1468 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1469 return SDValue(E, 0); 1470 1471 auto *N = newSDNode<GlobalAddressSDNode>( 1472 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1473 CSEMap.InsertNode(N, IP); 1474 InsertNode(N); 1475 return SDValue(N, 0); 1476 } 1477 1478 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1479 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1480 FoldingSetNodeID ID; 1481 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1482 ID.AddInteger(FI); 1483 void *IP = nullptr; 1484 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1485 return SDValue(E, 0); 1486 1487 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1488 CSEMap.InsertNode(N, IP); 1489 InsertNode(N); 1490 return SDValue(N, 0); 1491 } 1492 1493 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1494 unsigned TargetFlags) { 1495 assert((TargetFlags == 0 || isTarget) && 1496 "Cannot set target flags on target-independent jump tables"); 1497 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1498 FoldingSetNodeID ID; 1499 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1500 ID.AddInteger(JTI); 1501 ID.AddInteger(TargetFlags); 1502 void *IP = nullptr; 1503 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1504 return SDValue(E, 0); 1505 1506 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 return SDValue(N, 0); 1510 } 1511 1512 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1513 MaybeAlign Alignment, int Offset, 1514 bool isTarget, unsigned TargetFlags) { 1515 assert((TargetFlags == 0 || isTarget) && 1516 "Cannot set target flags on target-independent globals"); 1517 if (!Alignment) 1518 Alignment = shouldOptForSize() 1519 ? getDataLayout().getABITypeAlign(C->getType()) 1520 : getDataLayout().getPrefTypeAlign(C->getType()); 1521 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1522 FoldingSetNodeID ID; 1523 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1524 ID.AddInteger(Alignment->value()); 1525 ID.AddInteger(Offset); 1526 ID.AddPointer(C); 1527 ID.AddInteger(TargetFlags); 1528 void *IP = nullptr; 1529 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1530 return SDValue(E, 0); 1531 1532 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1533 TargetFlags); 1534 CSEMap.InsertNode(N, IP); 1535 InsertNode(N); 1536 SDValue V = SDValue(N, 0); 1537 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1538 return V; 1539 } 1540 1541 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1542 MaybeAlign Alignment, int Offset, 1543 bool isTarget, unsigned TargetFlags) { 1544 assert((TargetFlags == 0 || isTarget) && 1545 "Cannot set target flags on target-independent globals"); 1546 if (!Alignment) 1547 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1548 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1551 ID.AddInteger(Alignment->value()); 1552 ID.AddInteger(Offset); 1553 C->addSelectionDAGCSEId(ID); 1554 ID.AddInteger(TargetFlags); 1555 void *IP = nullptr; 1556 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1557 return SDValue(E, 0); 1558 1559 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1560 TargetFlags); 1561 CSEMap.InsertNode(N, IP); 1562 InsertNode(N); 1563 return SDValue(N, 0); 1564 } 1565 1566 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1567 unsigned TargetFlags) { 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1570 ID.AddInteger(Index); 1571 ID.AddInteger(Offset); 1572 ID.AddInteger(TargetFlags); 1573 void *IP = nullptr; 1574 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1575 return SDValue(E, 0); 1576 1577 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1578 CSEMap.InsertNode(N, IP); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1584 FoldingSetNodeID ID; 1585 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1586 ID.AddPointer(MBB); 1587 void *IP = nullptr; 1588 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1589 return SDValue(E, 0); 1590 1591 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1592 CSEMap.InsertNode(N, IP); 1593 InsertNode(N); 1594 return SDValue(N, 0); 1595 } 1596 1597 SDValue SelectionDAG::getValueType(EVT VT) { 1598 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1599 ValueTypeNodes.size()) 1600 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1601 1602 SDNode *&N = VT.isExtended() ? 1603 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1604 1605 if (N) return SDValue(N, 0); 1606 N = newSDNode<VTSDNode>(VT); 1607 InsertNode(N); 1608 return SDValue(N, 0); 1609 } 1610 1611 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1612 SDNode *&N = ExternalSymbols[Sym]; 1613 if (N) return SDValue(N, 0); 1614 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1615 InsertNode(N); 1616 return SDValue(N, 0); 1617 } 1618 1619 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1620 SDNode *&N = MCSymbols[Sym]; 1621 if (N) 1622 return SDValue(N, 0); 1623 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1629 unsigned TargetFlags) { 1630 SDNode *&N = 1631 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1632 if (N) return SDValue(N, 0); 1633 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1634 InsertNode(N); 1635 return SDValue(N, 0); 1636 } 1637 1638 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1639 if ((unsigned)Cond >= CondCodeNodes.size()) 1640 CondCodeNodes.resize(Cond+1); 1641 1642 if (!CondCodeNodes[Cond]) { 1643 auto *N = newSDNode<CondCodeSDNode>(Cond); 1644 CondCodeNodes[Cond] = N; 1645 InsertNode(N); 1646 } 1647 1648 return SDValue(CondCodeNodes[Cond], 0); 1649 } 1650 1651 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1652 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1653 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1654 std::swap(N1, N2); 1655 ShuffleVectorSDNode::commuteMask(M); 1656 } 1657 1658 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1659 SDValue N2, ArrayRef<int> Mask) { 1660 assert(VT.getVectorNumElements() == Mask.size() && 1661 "Must have the same number of vector elements as mask elements!"); 1662 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1663 "Invalid VECTOR_SHUFFLE"); 1664 1665 // Canonicalize shuffle undef, undef -> undef 1666 if (N1.isUndef() && N2.isUndef()) 1667 return getUNDEF(VT); 1668 1669 // Validate that all indices in Mask are within the range of the elements 1670 // input to the shuffle. 1671 int NElts = Mask.size(); 1672 assert(llvm::all_of(Mask, 1673 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1674 "Index out of range"); 1675 1676 // Copy the mask so we can do any needed cleanup. 1677 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1678 1679 // Canonicalize shuffle v, v -> v, undef 1680 if (N1 == N2) { 1681 N2 = getUNDEF(VT); 1682 for (int i = 0; i != NElts; ++i) 1683 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1684 } 1685 1686 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1687 if (N1.isUndef()) 1688 commuteShuffle(N1, N2, MaskVec); 1689 1690 if (TLI->hasVectorBlend()) { 1691 // If shuffling a splat, try to blend the splat instead. We do this here so 1692 // that even when this arises during lowering we don't have to re-handle it. 1693 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1694 BitVector UndefElements; 1695 SDValue Splat = BV->getSplatValue(&UndefElements); 1696 if (!Splat) 1697 return; 1698 1699 for (int i = 0; i < NElts; ++i) { 1700 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1701 continue; 1702 1703 // If this input comes from undef, mark it as such. 1704 if (UndefElements[MaskVec[i] - Offset]) { 1705 MaskVec[i] = -1; 1706 continue; 1707 } 1708 1709 // If we can blend a non-undef lane, use that instead. 1710 if (!UndefElements[i]) 1711 MaskVec[i] = i + Offset; 1712 } 1713 }; 1714 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1715 BlendSplat(N1BV, 0); 1716 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1717 BlendSplat(N2BV, NElts); 1718 } 1719 1720 // Canonicalize all index into lhs, -> shuffle lhs, undef 1721 // Canonicalize all index into rhs, -> shuffle rhs, undef 1722 bool AllLHS = true, AllRHS = true; 1723 bool N2Undef = N2.isUndef(); 1724 for (int i = 0; i != NElts; ++i) { 1725 if (MaskVec[i] >= NElts) { 1726 if (N2Undef) 1727 MaskVec[i] = -1; 1728 else 1729 AllLHS = false; 1730 } else if (MaskVec[i] >= 0) { 1731 AllRHS = false; 1732 } 1733 } 1734 if (AllLHS && AllRHS) 1735 return getUNDEF(VT); 1736 if (AllLHS && !N2Undef) 1737 N2 = getUNDEF(VT); 1738 if (AllRHS) { 1739 N1 = getUNDEF(VT); 1740 commuteShuffle(N1, N2, MaskVec); 1741 } 1742 // Reset our undef status after accounting for the mask. 1743 N2Undef = N2.isUndef(); 1744 // Re-check whether both sides ended up undef. 1745 if (N1.isUndef() && N2Undef) 1746 return getUNDEF(VT); 1747 1748 // If Identity shuffle return that node. 1749 bool Identity = true, AllSame = true; 1750 for (int i = 0; i != NElts; ++i) { 1751 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1752 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1753 } 1754 if (Identity && NElts) 1755 return N1; 1756 1757 // Shuffling a constant splat doesn't change the result. 1758 if (N2Undef) { 1759 SDValue V = N1; 1760 1761 // Look through any bitcasts. We check that these don't change the number 1762 // (and size) of elements and just changes their types. 1763 while (V.getOpcode() == ISD::BITCAST) 1764 V = V->getOperand(0); 1765 1766 // A splat should always show up as a build vector node. 1767 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1768 BitVector UndefElements; 1769 SDValue Splat = BV->getSplatValue(&UndefElements); 1770 // If this is a splat of an undef, shuffling it is also undef. 1771 if (Splat && Splat.isUndef()) 1772 return getUNDEF(VT); 1773 1774 bool SameNumElts = 1775 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1776 1777 // We only have a splat which can skip shuffles if there is a splatted 1778 // value and no undef lanes rearranged by the shuffle. 1779 if (Splat && UndefElements.none()) { 1780 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1781 // number of elements match or the value splatted is a zero constant. 1782 if (SameNumElts) 1783 return N1; 1784 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1785 if (C->isNullValue()) 1786 return N1; 1787 } 1788 1789 // If the shuffle itself creates a splat, build the vector directly. 1790 if (AllSame && SameNumElts) { 1791 EVT BuildVT = BV->getValueType(0); 1792 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1793 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1794 1795 // We may have jumped through bitcasts, so the type of the 1796 // BUILD_VECTOR may not match the type of the shuffle. 1797 if (BuildVT != VT) 1798 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1799 return NewBV; 1800 } 1801 } 1802 } 1803 1804 FoldingSetNodeID ID; 1805 SDValue Ops[2] = { N1, N2 }; 1806 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1807 for (int i = 0; i != NElts; ++i) 1808 ID.AddInteger(MaskVec[i]); 1809 1810 void* IP = nullptr; 1811 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1812 return SDValue(E, 0); 1813 1814 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1815 // SDNode doesn't have access to it. This memory will be "leaked" when 1816 // the node is deallocated, but recovered when the NodeAllocator is released. 1817 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1818 llvm::copy(MaskVec, MaskAlloc); 1819 1820 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1821 dl.getDebugLoc(), MaskAlloc); 1822 createOperands(N, Ops); 1823 1824 CSEMap.InsertNode(N, IP); 1825 InsertNode(N); 1826 SDValue V = SDValue(N, 0); 1827 NewSDValueDbgMsg(V, "Creating new node: ", this); 1828 return V; 1829 } 1830 1831 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1832 EVT VT = SV.getValueType(0); 1833 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1834 ShuffleVectorSDNode::commuteMask(MaskVec); 1835 1836 SDValue Op0 = SV.getOperand(0); 1837 SDValue Op1 = SV.getOperand(1); 1838 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1839 } 1840 1841 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1842 FoldingSetNodeID ID; 1843 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1844 ID.AddInteger(RegNo); 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1850 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1857 FoldingSetNodeID ID; 1858 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1859 ID.AddPointer(RegMask); 1860 void *IP = nullptr; 1861 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1862 return SDValue(E, 0); 1863 1864 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1865 CSEMap.InsertNode(N, IP); 1866 InsertNode(N); 1867 return SDValue(N, 0); 1868 } 1869 1870 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1871 MCSymbol *Label) { 1872 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1873 } 1874 1875 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1876 SDValue Root, MCSymbol *Label) { 1877 FoldingSetNodeID ID; 1878 SDValue Ops[] = { Root }; 1879 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1880 ID.AddPointer(Label); 1881 void *IP = nullptr; 1882 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1883 return SDValue(E, 0); 1884 1885 auto *N = 1886 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1887 createOperands(N, Ops); 1888 1889 CSEMap.InsertNode(N, IP); 1890 InsertNode(N); 1891 return SDValue(N, 0); 1892 } 1893 1894 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1895 int64_t Offset, bool isTarget, 1896 unsigned TargetFlags) { 1897 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1898 1899 FoldingSetNodeID ID; 1900 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1901 ID.AddPointer(BA); 1902 ID.AddInteger(Offset); 1903 ID.AddInteger(TargetFlags); 1904 void *IP = nullptr; 1905 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1906 return SDValue(E, 0); 1907 1908 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1909 CSEMap.InsertNode(N, IP); 1910 InsertNode(N); 1911 return SDValue(N, 0); 1912 } 1913 1914 SDValue SelectionDAG::getSrcValue(const Value *V) { 1915 FoldingSetNodeID ID; 1916 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1917 ID.AddPointer(V); 1918 1919 void *IP = nullptr; 1920 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1921 return SDValue(E, 0); 1922 1923 auto *N = newSDNode<SrcValueSDNode>(V); 1924 CSEMap.InsertNode(N, IP); 1925 InsertNode(N); 1926 return SDValue(N, 0); 1927 } 1928 1929 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1930 FoldingSetNodeID ID; 1931 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1932 ID.AddPointer(MD); 1933 1934 void *IP = nullptr; 1935 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1936 return SDValue(E, 0); 1937 1938 auto *N = newSDNode<MDNodeSDNode>(MD); 1939 CSEMap.InsertNode(N, IP); 1940 InsertNode(N); 1941 return SDValue(N, 0); 1942 } 1943 1944 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1945 if (VT == V.getValueType()) 1946 return V; 1947 1948 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1949 } 1950 1951 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1952 unsigned SrcAS, unsigned DestAS) { 1953 SDValue Ops[] = {Ptr}; 1954 FoldingSetNodeID ID; 1955 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1956 ID.AddInteger(SrcAS); 1957 ID.AddInteger(DestAS); 1958 1959 void *IP = nullptr; 1960 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1961 return SDValue(E, 0); 1962 1963 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1964 VT, SrcAS, DestAS); 1965 createOperands(N, Ops); 1966 1967 CSEMap.InsertNode(N, IP); 1968 InsertNode(N); 1969 return SDValue(N, 0); 1970 } 1971 1972 SDValue SelectionDAG::getFreeze(SDValue V) { 1973 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1974 } 1975 1976 /// getShiftAmountOperand - Return the specified value casted to 1977 /// the target's desired shift amount type. 1978 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1979 EVT OpTy = Op.getValueType(); 1980 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1981 if (OpTy == ShTy || OpTy.isVector()) return Op; 1982 1983 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1984 } 1985 1986 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1987 SDLoc dl(Node); 1988 const TargetLowering &TLI = getTargetLoweringInfo(); 1989 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1990 EVT VT = Node->getValueType(0); 1991 SDValue Tmp1 = Node->getOperand(0); 1992 SDValue Tmp2 = Node->getOperand(1); 1993 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1994 1995 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1996 Tmp2, MachinePointerInfo(V)); 1997 SDValue VAList = VAListLoad; 1998 1999 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2000 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2001 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2002 2003 VAList = 2004 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2005 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2006 } 2007 2008 // Increment the pointer, VAList, to the next vaarg 2009 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2010 getConstant(getDataLayout().getTypeAllocSize( 2011 VT.getTypeForEVT(*getContext())), 2012 dl, VAList.getValueType())); 2013 // Store the incremented VAList to the legalized pointer 2014 Tmp1 = 2015 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2016 // Load the actual argument out of the pointer VAList 2017 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2018 } 2019 2020 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2021 SDLoc dl(Node); 2022 const TargetLowering &TLI = getTargetLoweringInfo(); 2023 // This defaults to loading a pointer from the input and storing it to the 2024 // output, returning the chain. 2025 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2026 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2027 SDValue Tmp1 = 2028 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2029 Node->getOperand(2), MachinePointerInfo(VS)); 2030 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2031 MachinePointerInfo(VD)); 2032 } 2033 2034 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2035 const DataLayout &DL = getDataLayout(); 2036 Type *Ty = VT.getTypeForEVT(*getContext()); 2037 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2038 2039 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2040 return RedAlign; 2041 2042 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2043 const Align StackAlign = TFI->getStackAlign(); 2044 2045 // See if we can choose a smaller ABI alignment in cases where it's an 2046 // illegal vector type that will get broken down. 2047 if (RedAlign > StackAlign) { 2048 EVT IntermediateVT; 2049 MVT RegisterVT; 2050 unsigned NumIntermediates; 2051 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2052 NumIntermediates, RegisterVT); 2053 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2054 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2055 if (RedAlign2 < RedAlign) 2056 RedAlign = RedAlign2; 2057 } 2058 2059 return RedAlign; 2060 } 2061 2062 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2063 MachineFrameInfo &MFI = MF->getFrameInfo(); 2064 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2065 int StackID = 0; 2066 if (Bytes.isScalable()) 2067 StackID = TFI->getStackIDForScalableVectors(); 2068 // The stack id gives an indication of whether the object is scalable or 2069 // not, so it's safe to pass in the minimum size here. 2070 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2071 false, nullptr, StackID); 2072 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2073 } 2074 2075 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2076 Type *Ty = VT.getTypeForEVT(*getContext()); 2077 Align StackAlign = 2078 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2079 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2080 } 2081 2082 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2083 TypeSize VT1Size = VT1.getStoreSize(); 2084 TypeSize VT2Size = VT2.getStoreSize(); 2085 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2086 "Don't know how to choose the maximum size when creating a stack " 2087 "temporary"); 2088 TypeSize Bytes = 2089 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2090 2091 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2092 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2093 const DataLayout &DL = getDataLayout(); 2094 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2095 return CreateStackTemporary(Bytes, Align); 2096 } 2097 2098 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2099 ISD::CondCode Cond, const SDLoc &dl) { 2100 EVT OpVT = N1.getValueType(); 2101 2102 // These setcc operations always fold. 2103 switch (Cond) { 2104 default: break; 2105 case ISD::SETFALSE: 2106 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2107 case ISD::SETTRUE: 2108 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2109 2110 case ISD::SETOEQ: 2111 case ISD::SETOGT: 2112 case ISD::SETOGE: 2113 case ISD::SETOLT: 2114 case ISD::SETOLE: 2115 case ISD::SETONE: 2116 case ISD::SETO: 2117 case ISD::SETUO: 2118 case ISD::SETUEQ: 2119 case ISD::SETUNE: 2120 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2121 break; 2122 } 2123 2124 if (OpVT.isInteger()) { 2125 // For EQ and NE, we can always pick a value for the undef to make the 2126 // predicate pass or fail, so we can return undef. 2127 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2128 // icmp eq/ne X, undef -> undef. 2129 if ((N1.isUndef() || N2.isUndef()) && 2130 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2131 return getUNDEF(VT); 2132 2133 // If both operands are undef, we can return undef for int comparison. 2134 // icmp undef, undef -> undef. 2135 if (N1.isUndef() && N2.isUndef()) 2136 return getUNDEF(VT); 2137 2138 // icmp X, X -> true/false 2139 // icmp X, undef -> true/false because undef could be X. 2140 if (N1 == N2) 2141 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2142 } 2143 2144 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2145 const APInt &C2 = N2C->getAPIntValue(); 2146 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2147 const APInt &C1 = N1C->getAPIntValue(); 2148 2149 switch (Cond) { 2150 default: llvm_unreachable("Unknown integer setcc!"); 2151 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2152 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2153 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2154 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2155 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2156 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2157 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2158 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2159 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2160 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2161 } 2162 } 2163 } 2164 2165 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2166 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2167 2168 if (N1CFP && N2CFP) { 2169 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2170 switch (Cond) { 2171 default: break; 2172 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2173 return getUNDEF(VT); 2174 LLVM_FALLTHROUGH; 2175 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2176 OpVT); 2177 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2178 return getUNDEF(VT); 2179 LLVM_FALLTHROUGH; 2180 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2181 R==APFloat::cmpLessThan, dl, VT, 2182 OpVT); 2183 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2184 return getUNDEF(VT); 2185 LLVM_FALLTHROUGH; 2186 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2187 OpVT); 2188 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2189 return getUNDEF(VT); 2190 LLVM_FALLTHROUGH; 2191 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2192 VT, OpVT); 2193 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2194 return getUNDEF(VT); 2195 LLVM_FALLTHROUGH; 2196 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2197 R==APFloat::cmpEqual, dl, VT, 2198 OpVT); 2199 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2200 return getUNDEF(VT); 2201 LLVM_FALLTHROUGH; 2202 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2203 R==APFloat::cmpEqual, dl, VT, OpVT); 2204 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2205 OpVT); 2206 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2207 OpVT); 2208 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2209 R==APFloat::cmpEqual, dl, VT, 2210 OpVT); 2211 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2212 OpVT); 2213 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2214 R==APFloat::cmpLessThan, dl, VT, 2215 OpVT); 2216 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2217 R==APFloat::cmpUnordered, dl, VT, 2218 OpVT); 2219 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2220 VT, OpVT); 2221 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2222 OpVT); 2223 } 2224 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2225 // Ensure that the constant occurs on the RHS. 2226 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2227 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2228 return SDValue(); 2229 return getSetCC(dl, VT, N2, N1, SwappedCond); 2230 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2231 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2232 // If an operand is known to be a nan (or undef that could be a nan), we can 2233 // fold it. 2234 // Choosing NaN for the undef will always make unordered comparison succeed 2235 // and ordered comparison fails. 2236 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2237 switch (ISD::getUnorderedFlavor(Cond)) { 2238 default: 2239 llvm_unreachable("Unknown flavor!"); 2240 case 0: // Known false. 2241 return getBoolConstant(false, dl, VT, OpVT); 2242 case 1: // Known true. 2243 return getBoolConstant(true, dl, VT, OpVT); 2244 case 2: // Undefined. 2245 return getUNDEF(VT); 2246 } 2247 } 2248 2249 // Could not fold it. 2250 return SDValue(); 2251 } 2252 2253 /// See if the specified operand can be simplified with the knowledge that only 2254 /// the bits specified by DemandedBits are used. 2255 /// TODO: really we should be making this into the DAG equivalent of 2256 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2257 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2258 EVT VT = V.getValueType(); 2259 2260 if (VT.isScalableVector()) 2261 return SDValue(); 2262 2263 APInt DemandedElts = VT.isVector() 2264 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2265 : APInt(1, 1); 2266 return GetDemandedBits(V, DemandedBits, DemandedElts); 2267 } 2268 2269 /// See if the specified operand can be simplified with the knowledge that only 2270 /// the bits specified by DemandedBits are used in the elements specified by 2271 /// DemandedElts. 2272 /// TODO: really we should be making this into the DAG equivalent of 2273 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2274 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2275 const APInt &DemandedElts) { 2276 switch (V.getOpcode()) { 2277 default: 2278 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2279 *this, 0); 2280 case ISD::Constant: { 2281 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2282 APInt NewVal = CVal & DemandedBits; 2283 if (NewVal != CVal) 2284 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2285 break; 2286 } 2287 case ISD::SRL: 2288 // Only look at single-use SRLs. 2289 if (!V.getNode()->hasOneUse()) 2290 break; 2291 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2292 // See if we can recursively simplify the LHS. 2293 unsigned Amt = RHSC->getZExtValue(); 2294 2295 // Watch out for shift count overflow though. 2296 if (Amt >= DemandedBits.getBitWidth()) 2297 break; 2298 APInt SrcDemandedBits = DemandedBits << Amt; 2299 if (SDValue SimplifyLHS = 2300 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2301 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2302 V.getOperand(1)); 2303 } 2304 break; 2305 } 2306 return SDValue(); 2307 } 2308 2309 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2310 /// use this predicate to simplify operations downstream. 2311 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2312 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2313 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2314 } 2315 2316 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2317 /// this predicate to simplify operations downstream. Mask is known to be zero 2318 /// for bits that V cannot have. 2319 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2320 unsigned Depth) const { 2321 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2322 } 2323 2324 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2325 /// DemandedElts. We use this predicate to simplify operations downstream. 2326 /// Mask is known to be zero for bits that V cannot have. 2327 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2328 const APInt &DemandedElts, 2329 unsigned Depth) const { 2330 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2331 } 2332 2333 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2334 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2335 unsigned Depth) const { 2336 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2337 } 2338 2339 /// isSplatValue - Return true if the vector V has the same value 2340 /// across all DemandedElts. For scalable vectors it does not make 2341 /// sense to specify which elements are demanded or undefined, therefore 2342 /// they are simply ignored. 2343 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2344 APInt &UndefElts) { 2345 EVT VT = V.getValueType(); 2346 assert(VT.isVector() && "Vector type expected"); 2347 2348 if (!VT.isScalableVector() && !DemandedElts) 2349 return false; // No demanded elts, better to assume we don't know anything. 2350 2351 // Deal with some common cases here that work for both fixed and scalable 2352 // vector types. 2353 switch (V.getOpcode()) { 2354 case ISD::SPLAT_VECTOR: 2355 UndefElts = V.getOperand(0).isUndef() 2356 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2357 : APInt(DemandedElts.getBitWidth(), 0); 2358 return true; 2359 case ISD::ADD: 2360 case ISD::SUB: 2361 case ISD::AND: { 2362 APInt UndefLHS, UndefRHS; 2363 SDValue LHS = V.getOperand(0); 2364 SDValue RHS = V.getOperand(1); 2365 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2366 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2367 UndefElts = UndefLHS | UndefRHS; 2368 return true; 2369 } 2370 break; 2371 } 2372 case ISD::TRUNCATE: 2373 case ISD::SIGN_EXTEND: 2374 case ISD::ZERO_EXTEND: 2375 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2376 } 2377 2378 // We don't support other cases than those above for scalable vectors at 2379 // the moment. 2380 if (VT.isScalableVector()) 2381 return false; 2382 2383 unsigned NumElts = VT.getVectorNumElements(); 2384 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2385 UndefElts = APInt::getNullValue(NumElts); 2386 2387 switch (V.getOpcode()) { 2388 case ISD::BUILD_VECTOR: { 2389 SDValue Scl; 2390 for (unsigned i = 0; i != NumElts; ++i) { 2391 SDValue Op = V.getOperand(i); 2392 if (Op.isUndef()) { 2393 UndefElts.setBit(i); 2394 continue; 2395 } 2396 if (!DemandedElts[i]) 2397 continue; 2398 if (Scl && Scl != Op) 2399 return false; 2400 Scl = Op; 2401 } 2402 return true; 2403 } 2404 case ISD::VECTOR_SHUFFLE: { 2405 // Check if this is a shuffle node doing a splat. 2406 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2407 int SplatIndex = -1; 2408 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2409 for (int i = 0; i != (int)NumElts; ++i) { 2410 int M = Mask[i]; 2411 if (M < 0) { 2412 UndefElts.setBit(i); 2413 continue; 2414 } 2415 if (!DemandedElts[i]) 2416 continue; 2417 if (0 <= SplatIndex && SplatIndex != M) 2418 return false; 2419 SplatIndex = M; 2420 } 2421 return true; 2422 } 2423 case ISD::EXTRACT_SUBVECTOR: { 2424 // Offset the demanded elts by the subvector index. 2425 SDValue Src = V.getOperand(0); 2426 uint64_t Idx = V.getConstantOperandVal(1); 2427 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2428 APInt UndefSrcElts; 2429 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2430 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2431 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2432 return true; 2433 } 2434 break; 2435 } 2436 } 2437 2438 return false; 2439 } 2440 2441 /// Helper wrapper to main isSplatValue function. 2442 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2443 EVT VT = V.getValueType(); 2444 assert(VT.isVector() && "Vector type expected"); 2445 2446 APInt UndefElts; 2447 APInt DemandedElts; 2448 2449 // For now we don't support this with scalable vectors. 2450 if (!VT.isScalableVector()) 2451 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2452 return isSplatValue(V, DemandedElts, UndefElts) && 2453 (AllowUndefs || !UndefElts); 2454 } 2455 2456 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2457 V = peekThroughExtractSubvectors(V); 2458 2459 EVT VT = V.getValueType(); 2460 unsigned Opcode = V.getOpcode(); 2461 switch (Opcode) { 2462 default: { 2463 APInt UndefElts; 2464 APInt DemandedElts; 2465 2466 if (!VT.isScalableVector()) 2467 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2468 2469 if (isSplatValue(V, DemandedElts, UndefElts)) { 2470 if (VT.isScalableVector()) { 2471 // DemandedElts and UndefElts are ignored for scalable vectors, since 2472 // the only supported cases are SPLAT_VECTOR nodes. 2473 SplatIdx = 0; 2474 } else { 2475 // Handle case where all demanded elements are UNDEF. 2476 if (DemandedElts.isSubsetOf(UndefElts)) { 2477 SplatIdx = 0; 2478 return getUNDEF(VT); 2479 } 2480 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2481 } 2482 return V; 2483 } 2484 break; 2485 } 2486 case ISD::SPLAT_VECTOR: 2487 SplatIdx = 0; 2488 return V; 2489 case ISD::VECTOR_SHUFFLE: { 2490 if (VT.isScalableVector()) 2491 return SDValue(); 2492 2493 // Check if this is a shuffle node doing a splat. 2494 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2495 // getTargetVShiftNode currently struggles without the splat source. 2496 auto *SVN = cast<ShuffleVectorSDNode>(V); 2497 if (!SVN->isSplat()) 2498 break; 2499 int Idx = SVN->getSplatIndex(); 2500 int NumElts = V.getValueType().getVectorNumElements(); 2501 SplatIdx = Idx % NumElts; 2502 return V.getOperand(Idx / NumElts); 2503 } 2504 } 2505 2506 return SDValue(); 2507 } 2508 2509 SDValue SelectionDAG::getSplatValue(SDValue V) { 2510 int SplatIdx; 2511 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2512 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2513 SrcVector.getValueType().getScalarType(), SrcVector, 2514 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2515 return SDValue(); 2516 } 2517 2518 const APInt * 2519 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2520 const APInt &DemandedElts) const { 2521 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2522 V.getOpcode() == ISD::SRA) && 2523 "Unknown shift node"); 2524 unsigned BitWidth = V.getScalarValueSizeInBits(); 2525 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2526 // Shifting more than the bitwidth is not valid. 2527 const APInt &ShAmt = SA->getAPIntValue(); 2528 if (ShAmt.ult(BitWidth)) 2529 return &ShAmt; 2530 } 2531 return nullptr; 2532 } 2533 2534 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2535 SDValue V, const APInt &DemandedElts) const { 2536 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2537 V.getOpcode() == ISD::SRA) && 2538 "Unknown shift node"); 2539 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2540 return ValidAmt; 2541 unsigned BitWidth = V.getScalarValueSizeInBits(); 2542 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2543 if (!BV) 2544 return nullptr; 2545 const APInt *MinShAmt = nullptr; 2546 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2547 if (!DemandedElts[i]) 2548 continue; 2549 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2550 if (!SA) 2551 return nullptr; 2552 // Shifting more than the bitwidth is not valid. 2553 const APInt &ShAmt = SA->getAPIntValue(); 2554 if (ShAmt.uge(BitWidth)) 2555 return nullptr; 2556 if (MinShAmt && MinShAmt->ule(ShAmt)) 2557 continue; 2558 MinShAmt = &ShAmt; 2559 } 2560 return MinShAmt; 2561 } 2562 2563 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2564 SDValue V, const APInt &DemandedElts) const { 2565 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2566 V.getOpcode() == ISD::SRA) && 2567 "Unknown shift node"); 2568 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2569 return ValidAmt; 2570 unsigned BitWidth = V.getScalarValueSizeInBits(); 2571 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2572 if (!BV) 2573 return nullptr; 2574 const APInt *MaxShAmt = nullptr; 2575 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2576 if (!DemandedElts[i]) 2577 continue; 2578 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2579 if (!SA) 2580 return nullptr; 2581 // Shifting more than the bitwidth is not valid. 2582 const APInt &ShAmt = SA->getAPIntValue(); 2583 if (ShAmt.uge(BitWidth)) 2584 return nullptr; 2585 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2586 continue; 2587 MaxShAmt = &ShAmt; 2588 } 2589 return MaxShAmt; 2590 } 2591 2592 /// Determine which bits of Op are known to be either zero or one and return 2593 /// them in Known. For vectors, the known bits are those that are shared by 2594 /// every vector element. 2595 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2596 EVT VT = Op.getValueType(); 2597 2598 // TOOD: Until we have a plan for how to represent demanded elements for 2599 // scalable vectors, we can just bail out for now. 2600 if (Op.getValueType().isScalableVector()) { 2601 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2602 return KnownBits(BitWidth); 2603 } 2604 2605 APInt DemandedElts = VT.isVector() 2606 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2607 : APInt(1, 1); 2608 return computeKnownBits(Op, DemandedElts, Depth); 2609 } 2610 2611 /// Determine which bits of Op are known to be either zero or one and return 2612 /// them in Known. The DemandedElts argument allows us to only collect the known 2613 /// bits that are shared by the requested vector elements. 2614 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2615 unsigned Depth) const { 2616 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2617 2618 KnownBits Known(BitWidth); // Don't know anything. 2619 2620 // TOOD: Until we have a plan for how to represent demanded elements for 2621 // scalable vectors, we can just bail out for now. 2622 if (Op.getValueType().isScalableVector()) 2623 return Known; 2624 2625 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2626 // We know all of the bits for a constant! 2627 Known.One = C->getAPIntValue(); 2628 Known.Zero = ~Known.One; 2629 return Known; 2630 } 2631 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2632 // We know all of the bits for a constant fp! 2633 Known.One = C->getValueAPF().bitcastToAPInt(); 2634 Known.Zero = ~Known.One; 2635 return Known; 2636 } 2637 2638 if (Depth >= MaxRecursionDepth) 2639 return Known; // Limit search depth. 2640 2641 KnownBits Known2; 2642 unsigned NumElts = DemandedElts.getBitWidth(); 2643 assert((!Op.getValueType().isVector() || 2644 NumElts == Op.getValueType().getVectorNumElements()) && 2645 "Unexpected vector size"); 2646 2647 if (!DemandedElts) 2648 return Known; // No demanded elts, better to assume we don't know anything. 2649 2650 unsigned Opcode = Op.getOpcode(); 2651 switch (Opcode) { 2652 case ISD::BUILD_VECTOR: 2653 // Collect the known bits that are shared by every demanded vector element. 2654 Known.Zero.setAllBits(); Known.One.setAllBits(); 2655 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2656 if (!DemandedElts[i]) 2657 continue; 2658 2659 SDValue SrcOp = Op.getOperand(i); 2660 Known2 = computeKnownBits(SrcOp, Depth + 1); 2661 2662 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2663 if (SrcOp.getValueSizeInBits() != BitWidth) { 2664 assert(SrcOp.getValueSizeInBits() > BitWidth && 2665 "Expected BUILD_VECTOR implicit truncation"); 2666 Known2 = Known2.trunc(BitWidth); 2667 } 2668 2669 // Known bits are the values that are shared by every demanded element. 2670 Known = KnownBits::commonBits(Known, Known2); 2671 2672 // If we don't know any bits, early out. 2673 if (Known.isUnknown()) 2674 break; 2675 } 2676 break; 2677 case ISD::VECTOR_SHUFFLE: { 2678 // Collect the known bits that are shared by every vector element referenced 2679 // by the shuffle. 2680 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2681 Known.Zero.setAllBits(); Known.One.setAllBits(); 2682 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2683 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2684 for (unsigned i = 0; i != NumElts; ++i) { 2685 if (!DemandedElts[i]) 2686 continue; 2687 2688 int M = SVN->getMaskElt(i); 2689 if (M < 0) { 2690 // For UNDEF elements, we don't know anything about the common state of 2691 // the shuffle result. 2692 Known.resetAll(); 2693 DemandedLHS.clearAllBits(); 2694 DemandedRHS.clearAllBits(); 2695 break; 2696 } 2697 2698 if ((unsigned)M < NumElts) 2699 DemandedLHS.setBit((unsigned)M % NumElts); 2700 else 2701 DemandedRHS.setBit((unsigned)M % NumElts); 2702 } 2703 // Known bits are the values that are shared by every demanded element. 2704 if (!!DemandedLHS) { 2705 SDValue LHS = Op.getOperand(0); 2706 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2707 Known = KnownBits::commonBits(Known, Known2); 2708 } 2709 // If we don't know any bits, early out. 2710 if (Known.isUnknown()) 2711 break; 2712 if (!!DemandedRHS) { 2713 SDValue RHS = Op.getOperand(1); 2714 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2715 Known = KnownBits::commonBits(Known, Known2); 2716 } 2717 break; 2718 } 2719 case ISD::CONCAT_VECTORS: { 2720 // Split DemandedElts and test each of the demanded subvectors. 2721 Known.Zero.setAllBits(); Known.One.setAllBits(); 2722 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2723 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2724 unsigned NumSubVectors = Op.getNumOperands(); 2725 for (unsigned i = 0; i != NumSubVectors; ++i) { 2726 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2727 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2728 if (!!DemandedSub) { 2729 SDValue Sub = Op.getOperand(i); 2730 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2731 Known = KnownBits::commonBits(Known, Known2); 2732 } 2733 // If we don't know any bits, early out. 2734 if (Known.isUnknown()) 2735 break; 2736 } 2737 break; 2738 } 2739 case ISD::INSERT_SUBVECTOR: { 2740 // Demand any elements from the subvector and the remainder from the src its 2741 // inserted into. 2742 SDValue Src = Op.getOperand(0); 2743 SDValue Sub = Op.getOperand(1); 2744 uint64_t Idx = Op.getConstantOperandVal(2); 2745 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2746 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2747 APInt DemandedSrcElts = DemandedElts; 2748 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2749 2750 Known.One.setAllBits(); 2751 Known.Zero.setAllBits(); 2752 if (!!DemandedSubElts) { 2753 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2754 if (Known.isUnknown()) 2755 break; // early-out. 2756 } 2757 if (!!DemandedSrcElts) { 2758 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2759 Known = KnownBits::commonBits(Known, Known2); 2760 } 2761 break; 2762 } 2763 case ISD::EXTRACT_SUBVECTOR: { 2764 // Offset the demanded elts by the subvector index. 2765 SDValue Src = Op.getOperand(0); 2766 // Bail until we can represent demanded elements for scalable vectors. 2767 if (Src.getValueType().isScalableVector()) 2768 break; 2769 uint64_t Idx = Op.getConstantOperandVal(1); 2770 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2771 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2772 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2773 break; 2774 } 2775 case ISD::SCALAR_TO_VECTOR: { 2776 // We know about scalar_to_vector as much as we know about it source, 2777 // which becomes the first element of otherwise unknown vector. 2778 if (DemandedElts != 1) 2779 break; 2780 2781 SDValue N0 = Op.getOperand(0); 2782 Known = computeKnownBits(N0, Depth + 1); 2783 if (N0.getValueSizeInBits() != BitWidth) 2784 Known = Known.trunc(BitWidth); 2785 2786 break; 2787 } 2788 case ISD::BITCAST: { 2789 SDValue N0 = Op.getOperand(0); 2790 EVT SubVT = N0.getValueType(); 2791 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2792 2793 // Ignore bitcasts from unsupported types. 2794 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2795 break; 2796 2797 // Fast handling of 'identity' bitcasts. 2798 if (BitWidth == SubBitWidth) { 2799 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2800 break; 2801 } 2802 2803 bool IsLE = getDataLayout().isLittleEndian(); 2804 2805 // Bitcast 'small element' vector to 'large element' scalar/vector. 2806 if ((BitWidth % SubBitWidth) == 0) { 2807 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2808 2809 // Collect known bits for the (larger) output by collecting the known 2810 // bits from each set of sub elements and shift these into place. 2811 // We need to separately call computeKnownBits for each set of 2812 // sub elements as the knownbits for each is likely to be different. 2813 unsigned SubScale = BitWidth / SubBitWidth; 2814 APInt SubDemandedElts(NumElts * SubScale, 0); 2815 for (unsigned i = 0; i != NumElts; ++i) 2816 if (DemandedElts[i]) 2817 SubDemandedElts.setBit(i * SubScale); 2818 2819 for (unsigned i = 0; i != SubScale; ++i) { 2820 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2821 Depth + 1); 2822 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2823 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2824 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2825 } 2826 } 2827 2828 // Bitcast 'large element' scalar/vector to 'small element' vector. 2829 if ((SubBitWidth % BitWidth) == 0) { 2830 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2831 2832 // Collect known bits for the (smaller) output by collecting the known 2833 // bits from the overlapping larger input elements and extracting the 2834 // sub sections we actually care about. 2835 unsigned SubScale = SubBitWidth / BitWidth; 2836 APInt SubDemandedElts(NumElts / SubScale, 0); 2837 for (unsigned i = 0; i != NumElts; ++i) 2838 if (DemandedElts[i]) 2839 SubDemandedElts.setBit(i / SubScale); 2840 2841 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2842 2843 Known.Zero.setAllBits(); Known.One.setAllBits(); 2844 for (unsigned i = 0; i != NumElts; ++i) 2845 if (DemandedElts[i]) { 2846 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2847 unsigned Offset = (Shifts % SubScale) * BitWidth; 2848 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2849 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2850 // If we don't know any bits, early out. 2851 if (Known.isUnknown()) 2852 break; 2853 } 2854 } 2855 break; 2856 } 2857 case ISD::AND: 2858 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2859 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2860 2861 Known &= Known2; 2862 break; 2863 case ISD::OR: 2864 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2865 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2866 2867 Known |= Known2; 2868 break; 2869 case ISD::XOR: 2870 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2871 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2872 2873 Known ^= Known2; 2874 break; 2875 case ISD::MUL: { 2876 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2877 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2878 Known = KnownBits::computeForMul(Known, Known2); 2879 break; 2880 } 2881 case ISD::UDIV: { 2882 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2883 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2884 Known = KnownBits::udiv(Known, Known2); 2885 break; 2886 } 2887 case ISD::SELECT: 2888 case ISD::VSELECT: 2889 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2890 // If we don't know any bits, early out. 2891 if (Known.isUnknown()) 2892 break; 2893 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2894 2895 // Only known if known in both the LHS and RHS. 2896 Known = KnownBits::commonBits(Known, Known2); 2897 break; 2898 case ISD::SELECT_CC: 2899 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2900 // If we don't know any bits, early out. 2901 if (Known.isUnknown()) 2902 break; 2903 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2904 2905 // Only known if known in both the LHS and RHS. 2906 Known = KnownBits::commonBits(Known, Known2); 2907 break; 2908 case ISD::SMULO: 2909 case ISD::UMULO: 2910 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2911 if (Op.getResNo() != 1) 2912 break; 2913 // The boolean result conforms to getBooleanContents. 2914 // If we know the result of a setcc has the top bits zero, use this info. 2915 // We know that we have an integer-based boolean since these operations 2916 // are only available for integer. 2917 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2918 TargetLowering::ZeroOrOneBooleanContent && 2919 BitWidth > 1) 2920 Known.Zero.setBitsFrom(1); 2921 break; 2922 case ISD::SETCC: 2923 case ISD::STRICT_FSETCC: 2924 case ISD::STRICT_FSETCCS: { 2925 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2926 // If we know the result of a setcc has the top bits zero, use this info. 2927 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2928 TargetLowering::ZeroOrOneBooleanContent && 2929 BitWidth > 1) 2930 Known.Zero.setBitsFrom(1); 2931 break; 2932 } 2933 case ISD::SHL: 2934 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2935 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2936 Known = KnownBits::shl(Known, Known2); 2937 2938 // Minimum shift low bits are known zero. 2939 if (const APInt *ShMinAmt = 2940 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2941 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2942 break; 2943 case ISD::SRL: 2944 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2945 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2946 Known = KnownBits::lshr(Known, Known2); 2947 2948 // Minimum shift high bits are known zero. 2949 if (const APInt *ShMinAmt = 2950 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2951 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2952 break; 2953 case ISD::SRA: 2954 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2955 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2956 Known = KnownBits::ashr(Known, Known2); 2957 // TODO: Add minimum shift high known sign bits. 2958 break; 2959 case ISD::FSHL: 2960 case ISD::FSHR: 2961 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2962 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2963 2964 // For fshl, 0-shift returns the 1st arg. 2965 // For fshr, 0-shift returns the 2nd arg. 2966 if (Amt == 0) { 2967 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2968 DemandedElts, Depth + 1); 2969 break; 2970 } 2971 2972 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2973 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2974 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2975 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2976 if (Opcode == ISD::FSHL) { 2977 Known.One <<= Amt; 2978 Known.Zero <<= Amt; 2979 Known2.One.lshrInPlace(BitWidth - Amt); 2980 Known2.Zero.lshrInPlace(BitWidth - Amt); 2981 } else { 2982 Known.One <<= BitWidth - Amt; 2983 Known.Zero <<= BitWidth - Amt; 2984 Known2.One.lshrInPlace(Amt); 2985 Known2.Zero.lshrInPlace(Amt); 2986 } 2987 Known.One |= Known2.One; 2988 Known.Zero |= Known2.Zero; 2989 } 2990 break; 2991 case ISD::SIGN_EXTEND_INREG: { 2992 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2993 unsigned EBits = EVT.getScalarSizeInBits(); 2994 2995 // Sign extension. Compute the demanded bits in the result that are not 2996 // present in the input. 2997 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2998 2999 APInt InSignMask = APInt::getSignMask(EBits); 3000 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3001 3002 // If the sign extended bits are demanded, we know that the sign 3003 // bit is demanded. 3004 InSignMask = InSignMask.zext(BitWidth); 3005 if (NewBits.getBoolValue()) 3006 InputDemandedBits |= InSignMask; 3007 3008 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3009 Known.One &= InputDemandedBits; 3010 Known.Zero &= InputDemandedBits; 3011 3012 // If the sign bit of the input is known set or clear, then we know the 3013 // top bits of the result. 3014 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3015 Known.Zero |= NewBits; 3016 Known.One &= ~NewBits; 3017 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3018 Known.One |= NewBits; 3019 Known.Zero &= ~NewBits; 3020 } else { // Input sign bit unknown 3021 Known.Zero &= ~NewBits; 3022 Known.One &= ~NewBits; 3023 } 3024 break; 3025 } 3026 case ISD::CTTZ: 3027 case ISD::CTTZ_ZERO_UNDEF: { 3028 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3029 // If we have a known 1, its position is our upper bound. 3030 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3031 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3032 Known.Zero.setBitsFrom(LowBits); 3033 break; 3034 } 3035 case ISD::CTLZ: 3036 case ISD::CTLZ_ZERO_UNDEF: { 3037 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3038 // If we have a known 1, its position is our upper bound. 3039 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3040 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3041 Known.Zero.setBitsFrom(LowBits); 3042 break; 3043 } 3044 case ISD::CTPOP: { 3045 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3046 // If we know some of the bits are zero, they can't be one. 3047 unsigned PossibleOnes = Known2.countMaxPopulation(); 3048 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3049 break; 3050 } 3051 case ISD::PARITY: { 3052 // Parity returns 0 everywhere but the LSB. 3053 Known.Zero.setBitsFrom(1); 3054 break; 3055 } 3056 case ISD::LOAD: { 3057 LoadSDNode *LD = cast<LoadSDNode>(Op); 3058 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3059 if (ISD::isNON_EXTLoad(LD) && Cst) { 3060 // Determine any common known bits from the loaded constant pool value. 3061 Type *CstTy = Cst->getType(); 3062 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3063 // If its a vector splat, then we can (quickly) reuse the scalar path. 3064 // NOTE: We assume all elements match and none are UNDEF. 3065 if (CstTy->isVectorTy()) { 3066 if (const Constant *Splat = Cst->getSplatValue()) { 3067 Cst = Splat; 3068 CstTy = Cst->getType(); 3069 } 3070 } 3071 // TODO - do we need to handle different bitwidths? 3072 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3073 // Iterate across all vector elements finding common known bits. 3074 Known.One.setAllBits(); 3075 Known.Zero.setAllBits(); 3076 for (unsigned i = 0; i != NumElts; ++i) { 3077 if (!DemandedElts[i]) 3078 continue; 3079 if (Constant *Elt = Cst->getAggregateElement(i)) { 3080 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3081 const APInt &Value = CInt->getValue(); 3082 Known.One &= Value; 3083 Known.Zero &= ~Value; 3084 continue; 3085 } 3086 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3087 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3088 Known.One &= Value; 3089 Known.Zero &= ~Value; 3090 continue; 3091 } 3092 } 3093 Known.One.clearAllBits(); 3094 Known.Zero.clearAllBits(); 3095 break; 3096 } 3097 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3098 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3099 const APInt &Value = CInt->getValue(); 3100 Known.One = Value; 3101 Known.Zero = ~Value; 3102 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3103 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3104 Known.One = Value; 3105 Known.Zero = ~Value; 3106 } 3107 } 3108 } 3109 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3110 // If this is a ZEXTLoad and we are looking at the loaded value. 3111 EVT VT = LD->getMemoryVT(); 3112 unsigned MemBits = VT.getScalarSizeInBits(); 3113 Known.Zero.setBitsFrom(MemBits); 3114 } else if (const MDNode *Ranges = LD->getRanges()) { 3115 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3116 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3117 } 3118 break; 3119 } 3120 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3121 EVT InVT = Op.getOperand(0).getValueType(); 3122 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3123 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3124 Known = Known.zext(BitWidth); 3125 break; 3126 } 3127 case ISD::ZERO_EXTEND: { 3128 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3129 Known = Known.zext(BitWidth); 3130 break; 3131 } 3132 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3133 EVT InVT = Op.getOperand(0).getValueType(); 3134 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3135 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3136 // If the sign bit is known to be zero or one, then sext will extend 3137 // it to the top bits, else it will just zext. 3138 Known = Known.sext(BitWidth); 3139 break; 3140 } 3141 case ISD::SIGN_EXTEND: { 3142 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3143 // If the sign bit is known to be zero or one, then sext will extend 3144 // it to the top bits, else it will just zext. 3145 Known = Known.sext(BitWidth); 3146 break; 3147 } 3148 case ISD::ANY_EXTEND_VECTOR_INREG: { 3149 EVT InVT = Op.getOperand(0).getValueType(); 3150 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3151 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3152 Known = Known.anyext(BitWidth); 3153 break; 3154 } 3155 case ISD::ANY_EXTEND: { 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 Known = Known.anyext(BitWidth); 3158 break; 3159 } 3160 case ISD::TRUNCATE: { 3161 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3162 Known = Known.trunc(BitWidth); 3163 break; 3164 } 3165 case ISD::AssertZext: { 3166 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3167 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3168 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3169 Known.Zero |= (~InMask); 3170 Known.One &= (~Known.Zero); 3171 break; 3172 } 3173 case ISD::AssertAlign: { 3174 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3175 assert(LogOfAlign != 0); 3176 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3177 // well as clearing one bits. 3178 Known.Zero.setLowBits(LogOfAlign); 3179 Known.One.clearLowBits(LogOfAlign); 3180 break; 3181 } 3182 case ISD::FGETSIGN: 3183 // All bits are zero except the low bit. 3184 Known.Zero.setBitsFrom(1); 3185 break; 3186 case ISD::USUBO: 3187 case ISD::SSUBO: 3188 if (Op.getResNo() == 1) { 3189 // If we know the result of a setcc has the top bits zero, use this info. 3190 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3191 TargetLowering::ZeroOrOneBooleanContent && 3192 BitWidth > 1) 3193 Known.Zero.setBitsFrom(1); 3194 break; 3195 } 3196 LLVM_FALLTHROUGH; 3197 case ISD::SUB: 3198 case ISD::SUBC: { 3199 assert(Op.getResNo() == 0 && 3200 "We only compute knownbits for the difference here."); 3201 3202 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3203 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3204 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3205 Known, Known2); 3206 break; 3207 } 3208 case ISD::UADDO: 3209 case ISD::SADDO: 3210 case ISD::ADDCARRY: 3211 if (Op.getResNo() == 1) { 3212 // If we know the result of a setcc has the top bits zero, use this info. 3213 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3214 TargetLowering::ZeroOrOneBooleanContent && 3215 BitWidth > 1) 3216 Known.Zero.setBitsFrom(1); 3217 break; 3218 } 3219 LLVM_FALLTHROUGH; 3220 case ISD::ADD: 3221 case ISD::ADDC: 3222 case ISD::ADDE: { 3223 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3224 3225 // With ADDE and ADDCARRY, a carry bit may be added in. 3226 KnownBits Carry(1); 3227 if (Opcode == ISD::ADDE) 3228 // Can't track carry from glue, set carry to unknown. 3229 Carry.resetAll(); 3230 else if (Opcode == ISD::ADDCARRY) 3231 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3232 // the trouble (how often will we find a known carry bit). And I haven't 3233 // tested this very much yet, but something like this might work: 3234 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3235 // Carry = Carry.zextOrTrunc(1, false); 3236 Carry.resetAll(); 3237 else 3238 Carry.setAllZero(); 3239 3240 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3241 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3242 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3243 break; 3244 } 3245 case ISD::SREM: { 3246 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3247 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3248 Known = KnownBits::srem(Known, Known2); 3249 break; 3250 } 3251 case ISD::UREM: { 3252 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3253 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3254 Known = KnownBits::urem(Known, Known2); 3255 break; 3256 } 3257 case ISD::EXTRACT_ELEMENT: { 3258 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3259 const unsigned Index = Op.getConstantOperandVal(1); 3260 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3261 3262 // Remove low part of known bits mask 3263 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3264 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3265 3266 // Remove high part of known bit mask 3267 Known = Known.trunc(EltBitWidth); 3268 break; 3269 } 3270 case ISD::EXTRACT_VECTOR_ELT: { 3271 SDValue InVec = Op.getOperand(0); 3272 SDValue EltNo = Op.getOperand(1); 3273 EVT VecVT = InVec.getValueType(); 3274 // computeKnownBits not yet implemented for scalable vectors. 3275 if (VecVT.isScalableVector()) 3276 break; 3277 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3278 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3279 3280 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3281 // anything about the extended bits. 3282 if (BitWidth > EltBitWidth) 3283 Known = Known.trunc(EltBitWidth); 3284 3285 // If we know the element index, just demand that vector element, else for 3286 // an unknown element index, ignore DemandedElts and demand them all. 3287 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3288 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3289 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3290 DemandedSrcElts = 3291 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3292 3293 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3294 if (BitWidth > EltBitWidth) 3295 Known = Known.anyext(BitWidth); 3296 break; 3297 } 3298 case ISD::INSERT_VECTOR_ELT: { 3299 // If we know the element index, split the demand between the 3300 // source vector and the inserted element, otherwise assume we need 3301 // the original demanded vector elements and the value. 3302 SDValue InVec = Op.getOperand(0); 3303 SDValue InVal = Op.getOperand(1); 3304 SDValue EltNo = Op.getOperand(2); 3305 bool DemandedVal = true; 3306 APInt DemandedVecElts = DemandedElts; 3307 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3308 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3309 unsigned EltIdx = CEltNo->getZExtValue(); 3310 DemandedVal = !!DemandedElts[EltIdx]; 3311 DemandedVecElts.clearBit(EltIdx); 3312 } 3313 Known.One.setAllBits(); 3314 Known.Zero.setAllBits(); 3315 if (DemandedVal) { 3316 Known2 = computeKnownBits(InVal, Depth + 1); 3317 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3318 } 3319 if (!!DemandedVecElts) { 3320 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3321 Known = KnownBits::commonBits(Known, Known2); 3322 } 3323 break; 3324 } 3325 case ISD::BITREVERSE: { 3326 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 Known = Known2.reverseBits(); 3328 break; 3329 } 3330 case ISD::BSWAP: { 3331 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3332 Known = Known2.byteSwap(); 3333 break; 3334 } 3335 case ISD::ABS: { 3336 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 Known = Known2.abs(); 3338 break; 3339 } 3340 case ISD::UMIN: { 3341 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3342 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3343 Known = KnownBits::umin(Known, Known2); 3344 break; 3345 } 3346 case ISD::UMAX: { 3347 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3348 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3349 Known = KnownBits::umax(Known, Known2); 3350 break; 3351 } 3352 case ISD::SMIN: 3353 case ISD::SMAX: { 3354 // If we have a clamp pattern, we know that the number of sign bits will be 3355 // the minimum of the clamp min/max range. 3356 bool IsMax = (Opcode == ISD::SMAX); 3357 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3358 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3359 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3360 CstHigh = 3361 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3362 if (CstLow && CstHigh) { 3363 if (!IsMax) 3364 std::swap(CstLow, CstHigh); 3365 3366 const APInt &ValueLow = CstLow->getAPIntValue(); 3367 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3368 if (ValueLow.sle(ValueHigh)) { 3369 unsigned LowSignBits = ValueLow.getNumSignBits(); 3370 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3371 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3372 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3373 Known.One.setHighBits(MinSignBits); 3374 break; 3375 } 3376 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3377 Known.Zero.setHighBits(MinSignBits); 3378 break; 3379 } 3380 } 3381 } 3382 3383 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3384 if (Known.isUnknown()) break; // Early-out 3385 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3386 if (IsMax) 3387 Known = KnownBits::smax(Known, Known2); 3388 else 3389 Known = KnownBits::smin(Known, Known2); 3390 break; 3391 } 3392 case ISD::FrameIndex: 3393 case ISD::TargetFrameIndex: 3394 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3395 Known, getMachineFunction()); 3396 break; 3397 3398 default: 3399 if (Opcode < ISD::BUILTIN_OP_END) 3400 break; 3401 LLVM_FALLTHROUGH; 3402 case ISD::INTRINSIC_WO_CHAIN: 3403 case ISD::INTRINSIC_W_CHAIN: 3404 case ISD::INTRINSIC_VOID: 3405 // Allow the target to implement this method for its nodes. 3406 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3407 break; 3408 } 3409 3410 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3411 return Known; 3412 } 3413 3414 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3415 SDValue N1) const { 3416 // X + 0 never overflow 3417 if (isNullConstant(N1)) 3418 return OFK_Never; 3419 3420 KnownBits N1Known = computeKnownBits(N1); 3421 if (N1Known.Zero.getBoolValue()) { 3422 KnownBits N0Known = computeKnownBits(N0); 3423 3424 bool overflow; 3425 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3426 if (!overflow) 3427 return OFK_Never; 3428 } 3429 3430 // mulhi + 1 never overflow 3431 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3432 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3433 return OFK_Never; 3434 3435 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3436 KnownBits N0Known = computeKnownBits(N0); 3437 3438 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3439 return OFK_Never; 3440 } 3441 3442 return OFK_Sometime; 3443 } 3444 3445 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3446 EVT OpVT = Val.getValueType(); 3447 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3448 3449 // Is the constant a known power of 2? 3450 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3451 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3452 3453 // A left-shift of a constant one will have exactly one bit set because 3454 // shifting the bit off the end is undefined. 3455 if (Val.getOpcode() == ISD::SHL) { 3456 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3457 if (C && C->getAPIntValue() == 1) 3458 return true; 3459 } 3460 3461 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3462 // one bit set. 3463 if (Val.getOpcode() == ISD::SRL) { 3464 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3465 if (C && C->getAPIntValue().isSignMask()) 3466 return true; 3467 } 3468 3469 // Are all operands of a build vector constant powers of two? 3470 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3471 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3472 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3473 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3474 return false; 3475 })) 3476 return true; 3477 3478 // More could be done here, though the above checks are enough 3479 // to handle some common cases. 3480 3481 // Fall back to computeKnownBits to catch other known cases. 3482 KnownBits Known = computeKnownBits(Val); 3483 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3484 } 3485 3486 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3487 EVT VT = Op.getValueType(); 3488 3489 // TODO: Assume we don't know anything for now. 3490 if (VT.isScalableVector()) 3491 return 1; 3492 3493 APInt DemandedElts = VT.isVector() 3494 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3495 : APInt(1, 1); 3496 return ComputeNumSignBits(Op, DemandedElts, Depth); 3497 } 3498 3499 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3500 unsigned Depth) const { 3501 EVT VT = Op.getValueType(); 3502 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3503 unsigned VTBits = VT.getScalarSizeInBits(); 3504 unsigned NumElts = DemandedElts.getBitWidth(); 3505 unsigned Tmp, Tmp2; 3506 unsigned FirstAnswer = 1; 3507 3508 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3509 const APInt &Val = C->getAPIntValue(); 3510 return Val.getNumSignBits(); 3511 } 3512 3513 if (Depth >= MaxRecursionDepth) 3514 return 1; // Limit search depth. 3515 3516 if (!DemandedElts || VT.isScalableVector()) 3517 return 1; // No demanded elts, better to assume we don't know anything. 3518 3519 unsigned Opcode = Op.getOpcode(); 3520 switch (Opcode) { 3521 default: break; 3522 case ISD::AssertSext: 3523 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3524 return VTBits-Tmp+1; 3525 case ISD::AssertZext: 3526 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3527 return VTBits-Tmp; 3528 3529 case ISD::BUILD_VECTOR: 3530 Tmp = VTBits; 3531 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3532 if (!DemandedElts[i]) 3533 continue; 3534 3535 SDValue SrcOp = Op.getOperand(i); 3536 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3537 3538 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3539 if (SrcOp.getValueSizeInBits() != VTBits) { 3540 assert(SrcOp.getValueSizeInBits() > VTBits && 3541 "Expected BUILD_VECTOR implicit truncation"); 3542 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3543 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3544 } 3545 Tmp = std::min(Tmp, Tmp2); 3546 } 3547 return Tmp; 3548 3549 case ISD::VECTOR_SHUFFLE: { 3550 // Collect the minimum number of sign bits that are shared by every vector 3551 // element referenced by the shuffle. 3552 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3553 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3554 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3555 for (unsigned i = 0; i != NumElts; ++i) { 3556 int M = SVN->getMaskElt(i); 3557 if (!DemandedElts[i]) 3558 continue; 3559 // For UNDEF elements, we don't know anything about the common state of 3560 // the shuffle result. 3561 if (M < 0) 3562 return 1; 3563 if ((unsigned)M < NumElts) 3564 DemandedLHS.setBit((unsigned)M % NumElts); 3565 else 3566 DemandedRHS.setBit((unsigned)M % NumElts); 3567 } 3568 Tmp = std::numeric_limits<unsigned>::max(); 3569 if (!!DemandedLHS) 3570 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3571 if (!!DemandedRHS) { 3572 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3573 Tmp = std::min(Tmp, Tmp2); 3574 } 3575 // If we don't know anything, early out and try computeKnownBits fall-back. 3576 if (Tmp == 1) 3577 break; 3578 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3579 return Tmp; 3580 } 3581 3582 case ISD::BITCAST: { 3583 SDValue N0 = Op.getOperand(0); 3584 EVT SrcVT = N0.getValueType(); 3585 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3586 3587 // Ignore bitcasts from unsupported types.. 3588 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3589 break; 3590 3591 // Fast handling of 'identity' bitcasts. 3592 if (VTBits == SrcBits) 3593 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3594 3595 bool IsLE = getDataLayout().isLittleEndian(); 3596 3597 // Bitcast 'large element' scalar/vector to 'small element' vector. 3598 if ((SrcBits % VTBits) == 0) { 3599 assert(VT.isVector() && "Expected bitcast to vector"); 3600 3601 unsigned Scale = SrcBits / VTBits; 3602 APInt SrcDemandedElts(NumElts / Scale, 0); 3603 for (unsigned i = 0; i != NumElts; ++i) 3604 if (DemandedElts[i]) 3605 SrcDemandedElts.setBit(i / Scale); 3606 3607 // Fast case - sign splat can be simply split across the small elements. 3608 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3609 if (Tmp == SrcBits) 3610 return VTBits; 3611 3612 // Slow case - determine how far the sign extends into each sub-element. 3613 Tmp2 = VTBits; 3614 for (unsigned i = 0; i != NumElts; ++i) 3615 if (DemandedElts[i]) { 3616 unsigned SubOffset = i % Scale; 3617 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3618 SubOffset = SubOffset * VTBits; 3619 if (Tmp <= SubOffset) 3620 return 1; 3621 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3622 } 3623 return Tmp2; 3624 } 3625 break; 3626 } 3627 3628 case ISD::SIGN_EXTEND: 3629 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3630 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3631 case ISD::SIGN_EXTEND_INREG: 3632 // Max of the input and what this extends. 3633 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3634 Tmp = VTBits-Tmp+1; 3635 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3636 return std::max(Tmp, Tmp2); 3637 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3638 SDValue Src = Op.getOperand(0); 3639 EVT SrcVT = Src.getValueType(); 3640 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3641 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3642 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3643 } 3644 case ISD::SRA: 3645 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3646 // SRA X, C -> adds C sign bits. 3647 if (const APInt *ShAmt = 3648 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3649 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3650 return Tmp; 3651 case ISD::SHL: 3652 if (const APInt *ShAmt = 3653 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3654 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3655 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3656 if (ShAmt->ult(Tmp)) 3657 return Tmp - ShAmt->getZExtValue(); 3658 } 3659 break; 3660 case ISD::AND: 3661 case ISD::OR: 3662 case ISD::XOR: // NOT is handled here. 3663 // Logical binary ops preserve the number of sign bits at the worst. 3664 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3665 if (Tmp != 1) { 3666 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3667 FirstAnswer = std::min(Tmp, Tmp2); 3668 // We computed what we know about the sign bits as our first 3669 // answer. Now proceed to the generic code that uses 3670 // computeKnownBits, and pick whichever answer is better. 3671 } 3672 break; 3673 3674 case ISD::SELECT: 3675 case ISD::VSELECT: 3676 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3677 if (Tmp == 1) return 1; // Early out. 3678 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3679 return std::min(Tmp, Tmp2); 3680 case ISD::SELECT_CC: 3681 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3682 if (Tmp == 1) return 1; // Early out. 3683 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3684 return std::min(Tmp, Tmp2); 3685 3686 case ISD::SMIN: 3687 case ISD::SMAX: { 3688 // If we have a clamp pattern, we know that the number of sign bits will be 3689 // the minimum of the clamp min/max range. 3690 bool IsMax = (Opcode == ISD::SMAX); 3691 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3692 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3693 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3694 CstHigh = 3695 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3696 if (CstLow && CstHigh) { 3697 if (!IsMax) 3698 std::swap(CstLow, CstHigh); 3699 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3700 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3701 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3702 return std::min(Tmp, Tmp2); 3703 } 3704 } 3705 3706 // Fallback - just get the minimum number of sign bits of the operands. 3707 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3708 if (Tmp == 1) 3709 return 1; // Early out. 3710 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3711 return std::min(Tmp, Tmp2); 3712 } 3713 case ISD::UMIN: 3714 case ISD::UMAX: 3715 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3716 if (Tmp == 1) 3717 return 1; // Early out. 3718 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3719 return std::min(Tmp, Tmp2); 3720 case ISD::SADDO: 3721 case ISD::UADDO: 3722 case ISD::SSUBO: 3723 case ISD::USUBO: 3724 case ISD::SMULO: 3725 case ISD::UMULO: 3726 if (Op.getResNo() != 1) 3727 break; 3728 // The boolean result conforms to getBooleanContents. Fall through. 3729 // If setcc returns 0/-1, all bits are sign bits. 3730 // We know that we have an integer-based boolean since these operations 3731 // are only available for integer. 3732 if (TLI->getBooleanContents(VT.isVector(), false) == 3733 TargetLowering::ZeroOrNegativeOneBooleanContent) 3734 return VTBits; 3735 break; 3736 case ISD::SETCC: 3737 case ISD::STRICT_FSETCC: 3738 case ISD::STRICT_FSETCCS: { 3739 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3740 // If setcc returns 0/-1, all bits are sign bits. 3741 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3742 TargetLowering::ZeroOrNegativeOneBooleanContent) 3743 return VTBits; 3744 break; 3745 } 3746 case ISD::ROTL: 3747 case ISD::ROTR: 3748 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3749 3750 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3751 if (Tmp == VTBits) 3752 return VTBits; 3753 3754 if (ConstantSDNode *C = 3755 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3756 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3757 3758 // Handle rotate right by N like a rotate left by 32-N. 3759 if (Opcode == ISD::ROTR) 3760 RotAmt = (VTBits - RotAmt) % VTBits; 3761 3762 // If we aren't rotating out all of the known-in sign bits, return the 3763 // number that are left. This handles rotl(sext(x), 1) for example. 3764 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3765 } 3766 break; 3767 case ISD::ADD: 3768 case ISD::ADDC: 3769 // Add can have at most one carry bit. Thus we know that the output 3770 // is, at worst, one more bit than the inputs. 3771 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3772 if (Tmp == 1) return 1; // Early out. 3773 3774 // Special case decrementing a value (ADD X, -1): 3775 if (ConstantSDNode *CRHS = 3776 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3777 if (CRHS->isAllOnesValue()) { 3778 KnownBits Known = 3779 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3780 3781 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3782 // sign bits set. 3783 if ((Known.Zero | 1).isAllOnesValue()) 3784 return VTBits; 3785 3786 // If we are subtracting one from a positive number, there is no carry 3787 // out of the result. 3788 if (Known.isNonNegative()) 3789 return Tmp; 3790 } 3791 3792 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3793 if (Tmp2 == 1) return 1; // Early out. 3794 return std::min(Tmp, Tmp2) - 1; 3795 case ISD::SUB: 3796 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3797 if (Tmp2 == 1) return 1; // Early out. 3798 3799 // Handle NEG. 3800 if (ConstantSDNode *CLHS = 3801 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3802 if (CLHS->isNullValue()) { 3803 KnownBits Known = 3804 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3805 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3806 // sign bits set. 3807 if ((Known.Zero | 1).isAllOnesValue()) 3808 return VTBits; 3809 3810 // If the input is known to be positive (the sign bit is known clear), 3811 // the output of the NEG has the same number of sign bits as the input. 3812 if (Known.isNonNegative()) 3813 return Tmp2; 3814 3815 // Otherwise, we treat this like a SUB. 3816 } 3817 3818 // Sub can have at most one carry bit. Thus we know that the output 3819 // is, at worst, one more bit than the inputs. 3820 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3821 if (Tmp == 1) return 1; // Early out. 3822 return std::min(Tmp, Tmp2) - 1; 3823 case ISD::MUL: { 3824 // The output of the Mul can be at most twice the valid bits in the inputs. 3825 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3826 if (SignBitsOp0 == 1) 3827 break; 3828 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3829 if (SignBitsOp1 == 1) 3830 break; 3831 unsigned OutValidBits = 3832 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3833 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3834 } 3835 case ISD::TRUNCATE: { 3836 // Check if the sign bits of source go down as far as the truncated value. 3837 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3838 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3839 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3840 return NumSrcSignBits - (NumSrcBits - VTBits); 3841 break; 3842 } 3843 case ISD::EXTRACT_ELEMENT: { 3844 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3845 const int BitWidth = Op.getValueSizeInBits(); 3846 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3847 3848 // Get reverse index (starting from 1), Op1 value indexes elements from 3849 // little end. Sign starts at big end. 3850 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3851 3852 // If the sign portion ends in our element the subtraction gives correct 3853 // result. Otherwise it gives either negative or > bitwidth result 3854 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3855 } 3856 case ISD::INSERT_VECTOR_ELT: { 3857 // If we know the element index, split the demand between the 3858 // source vector and the inserted element, otherwise assume we need 3859 // the original demanded vector elements and the value. 3860 SDValue InVec = Op.getOperand(0); 3861 SDValue InVal = Op.getOperand(1); 3862 SDValue EltNo = Op.getOperand(2); 3863 bool DemandedVal = true; 3864 APInt DemandedVecElts = DemandedElts; 3865 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3866 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3867 unsigned EltIdx = CEltNo->getZExtValue(); 3868 DemandedVal = !!DemandedElts[EltIdx]; 3869 DemandedVecElts.clearBit(EltIdx); 3870 } 3871 Tmp = std::numeric_limits<unsigned>::max(); 3872 if (DemandedVal) { 3873 // TODO - handle implicit truncation of inserted elements. 3874 if (InVal.getScalarValueSizeInBits() != VTBits) 3875 break; 3876 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3877 Tmp = std::min(Tmp, Tmp2); 3878 } 3879 if (!!DemandedVecElts) { 3880 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3881 Tmp = std::min(Tmp, Tmp2); 3882 } 3883 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3884 return Tmp; 3885 } 3886 case ISD::EXTRACT_VECTOR_ELT: { 3887 SDValue InVec = Op.getOperand(0); 3888 SDValue EltNo = Op.getOperand(1); 3889 EVT VecVT = InVec.getValueType(); 3890 const unsigned BitWidth = Op.getValueSizeInBits(); 3891 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3892 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3893 3894 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3895 // anything about sign bits. But if the sizes match we can derive knowledge 3896 // about sign bits from the vector operand. 3897 if (BitWidth != EltBitWidth) 3898 break; 3899 3900 // If we know the element index, just demand that vector element, else for 3901 // an unknown element index, ignore DemandedElts and demand them all. 3902 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3903 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3904 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3905 DemandedSrcElts = 3906 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3907 3908 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3909 } 3910 case ISD::EXTRACT_SUBVECTOR: { 3911 // Offset the demanded elts by the subvector index. 3912 SDValue Src = Op.getOperand(0); 3913 // Bail until we can represent demanded elements for scalable vectors. 3914 if (Src.getValueType().isScalableVector()) 3915 break; 3916 uint64_t Idx = Op.getConstantOperandVal(1); 3917 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3918 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3919 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3920 } 3921 case ISD::CONCAT_VECTORS: { 3922 // Determine the minimum number of sign bits across all demanded 3923 // elts of the input vectors. Early out if the result is already 1. 3924 Tmp = std::numeric_limits<unsigned>::max(); 3925 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3926 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3927 unsigned NumSubVectors = Op.getNumOperands(); 3928 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3929 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3930 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3931 if (!DemandedSub) 3932 continue; 3933 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3934 Tmp = std::min(Tmp, Tmp2); 3935 } 3936 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3937 return Tmp; 3938 } 3939 case ISD::INSERT_SUBVECTOR: { 3940 // Demand any elements from the subvector and the remainder from the src its 3941 // inserted into. 3942 SDValue Src = Op.getOperand(0); 3943 SDValue Sub = Op.getOperand(1); 3944 uint64_t Idx = Op.getConstantOperandVal(2); 3945 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3946 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3947 APInt DemandedSrcElts = DemandedElts; 3948 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3949 3950 Tmp = std::numeric_limits<unsigned>::max(); 3951 if (!!DemandedSubElts) { 3952 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3953 if (Tmp == 1) 3954 return 1; // early-out 3955 } 3956 if (!!DemandedSrcElts) { 3957 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3958 Tmp = std::min(Tmp, Tmp2); 3959 } 3960 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3961 return Tmp; 3962 } 3963 } 3964 3965 // If we are looking at the loaded value of the SDNode. 3966 if (Op.getResNo() == 0) { 3967 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3968 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3969 unsigned ExtType = LD->getExtensionType(); 3970 switch (ExtType) { 3971 default: break; 3972 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3973 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3974 return VTBits - Tmp + 1; 3975 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3976 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3977 return VTBits - Tmp; 3978 case ISD::NON_EXTLOAD: 3979 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3980 // We only need to handle vectors - computeKnownBits should handle 3981 // scalar cases. 3982 Type *CstTy = Cst->getType(); 3983 if (CstTy->isVectorTy() && 3984 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3985 Tmp = VTBits; 3986 for (unsigned i = 0; i != NumElts; ++i) { 3987 if (!DemandedElts[i]) 3988 continue; 3989 if (Constant *Elt = Cst->getAggregateElement(i)) { 3990 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3991 const APInt &Value = CInt->getValue(); 3992 Tmp = std::min(Tmp, Value.getNumSignBits()); 3993 continue; 3994 } 3995 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3996 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3997 Tmp = std::min(Tmp, Value.getNumSignBits()); 3998 continue; 3999 } 4000 } 4001 // Unknown type. Conservatively assume no bits match sign bit. 4002 return 1; 4003 } 4004 return Tmp; 4005 } 4006 } 4007 break; 4008 } 4009 } 4010 } 4011 4012 // Allow the target to implement this method for its nodes. 4013 if (Opcode >= ISD::BUILTIN_OP_END || 4014 Opcode == ISD::INTRINSIC_WO_CHAIN || 4015 Opcode == ISD::INTRINSIC_W_CHAIN || 4016 Opcode == ISD::INTRINSIC_VOID) { 4017 unsigned NumBits = 4018 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4019 if (NumBits > 1) 4020 FirstAnswer = std::max(FirstAnswer, NumBits); 4021 } 4022 4023 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4024 // use this information. 4025 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4026 4027 APInt Mask; 4028 if (Known.isNonNegative()) { // sign bit is 0 4029 Mask = Known.Zero; 4030 } else if (Known.isNegative()) { // sign bit is 1; 4031 Mask = Known.One; 4032 } else { 4033 // Nothing known. 4034 return FirstAnswer; 4035 } 4036 4037 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4038 // the number of identical bits in the top of the input value. 4039 Mask <<= Mask.getBitWidth()-VTBits; 4040 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4041 } 4042 4043 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4044 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4045 !isa<ConstantSDNode>(Op.getOperand(1))) 4046 return false; 4047 4048 if (Op.getOpcode() == ISD::OR && 4049 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4050 return false; 4051 4052 return true; 4053 } 4054 4055 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4056 // If we're told that NaNs won't happen, assume they won't. 4057 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4058 return true; 4059 4060 if (Depth >= MaxRecursionDepth) 4061 return false; // Limit search depth. 4062 4063 // TODO: Handle vectors. 4064 // If the value is a constant, we can obviously see if it is a NaN or not. 4065 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4066 return !C->getValueAPF().isNaN() || 4067 (SNaN && !C->getValueAPF().isSignaling()); 4068 } 4069 4070 unsigned Opcode = Op.getOpcode(); 4071 switch (Opcode) { 4072 case ISD::FADD: 4073 case ISD::FSUB: 4074 case ISD::FMUL: 4075 case ISD::FDIV: 4076 case ISD::FREM: 4077 case ISD::FSIN: 4078 case ISD::FCOS: { 4079 if (SNaN) 4080 return true; 4081 // TODO: Need isKnownNeverInfinity 4082 return false; 4083 } 4084 case ISD::FCANONICALIZE: 4085 case ISD::FEXP: 4086 case ISD::FEXP2: 4087 case ISD::FTRUNC: 4088 case ISD::FFLOOR: 4089 case ISD::FCEIL: 4090 case ISD::FROUND: 4091 case ISD::FROUNDEVEN: 4092 case ISD::FRINT: 4093 case ISD::FNEARBYINT: { 4094 if (SNaN) 4095 return true; 4096 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4097 } 4098 case ISD::FABS: 4099 case ISD::FNEG: 4100 case ISD::FCOPYSIGN: { 4101 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4102 } 4103 case ISD::SELECT: 4104 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4105 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4106 case ISD::FP_EXTEND: 4107 case ISD::FP_ROUND: { 4108 if (SNaN) 4109 return true; 4110 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4111 } 4112 case ISD::SINT_TO_FP: 4113 case ISD::UINT_TO_FP: 4114 return true; 4115 case ISD::FMA: 4116 case ISD::FMAD: { 4117 if (SNaN) 4118 return true; 4119 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4120 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4121 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4122 } 4123 case ISD::FSQRT: // Need is known positive 4124 case ISD::FLOG: 4125 case ISD::FLOG2: 4126 case ISD::FLOG10: 4127 case ISD::FPOWI: 4128 case ISD::FPOW: { 4129 if (SNaN) 4130 return true; 4131 // TODO: Refine on operand 4132 return false; 4133 } 4134 case ISD::FMINNUM: 4135 case ISD::FMAXNUM: { 4136 // Only one needs to be known not-nan, since it will be returned if the 4137 // other ends up being one. 4138 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4139 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4140 } 4141 case ISD::FMINNUM_IEEE: 4142 case ISD::FMAXNUM_IEEE: { 4143 if (SNaN) 4144 return true; 4145 // This can return a NaN if either operand is an sNaN, or if both operands 4146 // are NaN. 4147 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4148 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4149 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4150 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4151 } 4152 case ISD::FMINIMUM: 4153 case ISD::FMAXIMUM: { 4154 // TODO: Does this quiet or return the origina NaN as-is? 4155 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4156 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4157 } 4158 case ISD::EXTRACT_VECTOR_ELT: { 4159 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4160 } 4161 default: 4162 if (Opcode >= ISD::BUILTIN_OP_END || 4163 Opcode == ISD::INTRINSIC_WO_CHAIN || 4164 Opcode == ISD::INTRINSIC_W_CHAIN || 4165 Opcode == ISD::INTRINSIC_VOID) { 4166 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4167 } 4168 4169 return false; 4170 } 4171 } 4172 4173 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4174 assert(Op.getValueType().isFloatingPoint() && 4175 "Floating point type expected"); 4176 4177 // If the value is a constant, we can obviously see if it is a zero or not. 4178 // TODO: Add BuildVector support. 4179 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4180 return !C->isZero(); 4181 return false; 4182 } 4183 4184 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4185 assert(!Op.getValueType().isFloatingPoint() && 4186 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4187 4188 // If the value is a constant, we can obviously see if it is a zero or not. 4189 if (ISD::matchUnaryPredicate( 4190 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4191 return true; 4192 4193 // TODO: Recognize more cases here. 4194 switch (Op.getOpcode()) { 4195 default: break; 4196 case ISD::OR: 4197 if (isKnownNeverZero(Op.getOperand(1)) || 4198 isKnownNeverZero(Op.getOperand(0))) 4199 return true; 4200 break; 4201 } 4202 4203 return false; 4204 } 4205 4206 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4207 // Check the obvious case. 4208 if (A == B) return true; 4209 4210 // For for negative and positive zero. 4211 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4212 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4213 if (CA->isZero() && CB->isZero()) return true; 4214 4215 // Otherwise they may not be equal. 4216 return false; 4217 } 4218 4219 // FIXME: unify with llvm::haveNoCommonBitsSet. 4220 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4221 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4222 assert(A.getValueType() == B.getValueType() && 4223 "Values must have the same type"); 4224 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4225 } 4226 4227 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4228 ArrayRef<SDValue> Ops, 4229 SelectionDAG &DAG) { 4230 int NumOps = Ops.size(); 4231 assert(NumOps != 0 && "Can't build an empty vector!"); 4232 assert(!VT.isScalableVector() && 4233 "BUILD_VECTOR cannot be used with scalable types"); 4234 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4235 "Incorrect element count in BUILD_VECTOR!"); 4236 4237 // BUILD_VECTOR of UNDEFs is UNDEF. 4238 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4239 return DAG.getUNDEF(VT); 4240 4241 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4242 SDValue IdentitySrc; 4243 bool IsIdentity = true; 4244 for (int i = 0; i != NumOps; ++i) { 4245 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4246 Ops[i].getOperand(0).getValueType() != VT || 4247 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4248 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4249 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4250 IsIdentity = false; 4251 break; 4252 } 4253 IdentitySrc = Ops[i].getOperand(0); 4254 } 4255 if (IsIdentity) 4256 return IdentitySrc; 4257 4258 return SDValue(); 4259 } 4260 4261 /// Try to simplify vector concatenation to an input value, undef, or build 4262 /// vector. 4263 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4264 ArrayRef<SDValue> Ops, 4265 SelectionDAG &DAG) { 4266 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4267 assert(llvm::all_of(Ops, 4268 [Ops](SDValue Op) { 4269 return Ops[0].getValueType() == Op.getValueType(); 4270 }) && 4271 "Concatenation of vectors with inconsistent value types!"); 4272 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4273 VT.getVectorElementCount() && 4274 "Incorrect element count in vector concatenation!"); 4275 4276 if (Ops.size() == 1) 4277 return Ops[0]; 4278 4279 // Concat of UNDEFs is UNDEF. 4280 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4281 return DAG.getUNDEF(VT); 4282 4283 // Scan the operands and look for extract operations from a single source 4284 // that correspond to insertion at the same location via this concatenation: 4285 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4286 SDValue IdentitySrc; 4287 bool IsIdentity = true; 4288 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4289 SDValue Op = Ops[i]; 4290 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4291 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4292 Op.getOperand(0).getValueType() != VT || 4293 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4294 Op.getConstantOperandVal(1) != IdentityIndex) { 4295 IsIdentity = false; 4296 break; 4297 } 4298 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4299 "Unexpected identity source vector for concat of extracts"); 4300 IdentitySrc = Op.getOperand(0); 4301 } 4302 if (IsIdentity) { 4303 assert(IdentitySrc && "Failed to set source vector of extracts"); 4304 return IdentitySrc; 4305 } 4306 4307 // The code below this point is only designed to work for fixed width 4308 // vectors, so we bail out for now. 4309 if (VT.isScalableVector()) 4310 return SDValue(); 4311 4312 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4313 // simplified to one big BUILD_VECTOR. 4314 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4315 EVT SVT = VT.getScalarType(); 4316 SmallVector<SDValue, 16> Elts; 4317 for (SDValue Op : Ops) { 4318 EVT OpVT = Op.getValueType(); 4319 if (Op.isUndef()) 4320 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4321 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4322 Elts.append(Op->op_begin(), Op->op_end()); 4323 else 4324 return SDValue(); 4325 } 4326 4327 // BUILD_VECTOR requires all inputs to be of the same type, find the 4328 // maximum type and extend them all. 4329 for (SDValue Op : Elts) 4330 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4331 4332 if (SVT.bitsGT(VT.getScalarType())) { 4333 for (SDValue &Op : Elts) { 4334 if (Op.isUndef()) 4335 Op = DAG.getUNDEF(SVT); 4336 else 4337 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4338 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4339 : DAG.getSExtOrTrunc(Op, DL, SVT); 4340 } 4341 } 4342 4343 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4344 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4345 return V; 4346 } 4347 4348 /// Gets or creates the specified node. 4349 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4350 FoldingSetNodeID ID; 4351 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4352 void *IP = nullptr; 4353 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4354 return SDValue(E, 0); 4355 4356 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4357 getVTList(VT)); 4358 CSEMap.InsertNode(N, IP); 4359 4360 InsertNode(N); 4361 SDValue V = SDValue(N, 0); 4362 NewSDValueDbgMsg(V, "Creating new node: ", this); 4363 return V; 4364 } 4365 4366 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4367 SDValue Operand) { 4368 SDNodeFlags Flags; 4369 if (Inserter) 4370 Flags = Inserter->getFlags(); 4371 return getNode(Opcode, DL, VT, Operand, Flags); 4372 } 4373 4374 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4375 SDValue Operand, const SDNodeFlags Flags) { 4376 // Constant fold unary operations with an integer constant operand. Even 4377 // opaque constant will be folded, because the folding of unary operations 4378 // doesn't create new constants with different values. Nevertheless, the 4379 // opaque flag is preserved during folding to prevent future folding with 4380 // other constants. 4381 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4382 const APInt &Val = C->getAPIntValue(); 4383 switch (Opcode) { 4384 default: break; 4385 case ISD::SIGN_EXTEND: 4386 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4387 C->isTargetOpcode(), C->isOpaque()); 4388 case ISD::TRUNCATE: 4389 if (C->isOpaque()) 4390 break; 4391 LLVM_FALLTHROUGH; 4392 case ISD::ANY_EXTEND: 4393 case ISD::ZERO_EXTEND: 4394 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4395 C->isTargetOpcode(), C->isOpaque()); 4396 case ISD::UINT_TO_FP: 4397 case ISD::SINT_TO_FP: { 4398 APFloat apf(EVTToAPFloatSemantics(VT), 4399 APInt::getNullValue(VT.getSizeInBits())); 4400 (void)apf.convertFromAPInt(Val, 4401 Opcode==ISD::SINT_TO_FP, 4402 APFloat::rmNearestTiesToEven); 4403 return getConstantFP(apf, DL, VT); 4404 } 4405 case ISD::BITCAST: 4406 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4407 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4408 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4409 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4410 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4411 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4412 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4413 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4414 break; 4415 case ISD::ABS: 4416 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4417 C->isOpaque()); 4418 case ISD::BITREVERSE: 4419 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4420 C->isOpaque()); 4421 case ISD::BSWAP: 4422 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4423 C->isOpaque()); 4424 case ISD::CTPOP: 4425 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4426 C->isOpaque()); 4427 case ISD::CTLZ: 4428 case ISD::CTLZ_ZERO_UNDEF: 4429 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4430 C->isOpaque()); 4431 case ISD::CTTZ: 4432 case ISD::CTTZ_ZERO_UNDEF: 4433 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4434 C->isOpaque()); 4435 case ISD::FP16_TO_FP: { 4436 bool Ignored; 4437 APFloat FPV(APFloat::IEEEhalf(), 4438 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4439 4440 // This can return overflow, underflow, or inexact; we don't care. 4441 // FIXME need to be more flexible about rounding mode. 4442 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4443 APFloat::rmNearestTiesToEven, &Ignored); 4444 return getConstantFP(FPV, DL, VT); 4445 } 4446 } 4447 } 4448 4449 // Constant fold unary operations with a floating point constant operand. 4450 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4451 APFloat V = C->getValueAPF(); // make copy 4452 switch (Opcode) { 4453 case ISD::FNEG: 4454 V.changeSign(); 4455 return getConstantFP(V, DL, VT); 4456 case ISD::FABS: 4457 V.clearSign(); 4458 return getConstantFP(V, DL, VT); 4459 case ISD::FCEIL: { 4460 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4461 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4462 return getConstantFP(V, DL, VT); 4463 break; 4464 } 4465 case ISD::FTRUNC: { 4466 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4467 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4468 return getConstantFP(V, DL, VT); 4469 break; 4470 } 4471 case ISD::FFLOOR: { 4472 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4473 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4474 return getConstantFP(V, DL, VT); 4475 break; 4476 } 4477 case ISD::FP_EXTEND: { 4478 bool ignored; 4479 // This can return overflow, underflow, or inexact; we don't care. 4480 // FIXME need to be more flexible about rounding mode. 4481 (void)V.convert(EVTToAPFloatSemantics(VT), 4482 APFloat::rmNearestTiesToEven, &ignored); 4483 return getConstantFP(V, DL, VT); 4484 } 4485 case ISD::FP_TO_SINT: 4486 case ISD::FP_TO_UINT: { 4487 bool ignored; 4488 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4489 // FIXME need to be more flexible about rounding mode. 4490 APFloat::opStatus s = 4491 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4492 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4493 break; 4494 return getConstant(IntVal, DL, VT); 4495 } 4496 case ISD::BITCAST: 4497 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4498 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4499 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4500 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4501 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4502 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4503 break; 4504 case ISD::FP_TO_FP16: { 4505 bool Ignored; 4506 // This can return overflow, underflow, or inexact; we don't care. 4507 // FIXME need to be more flexible about rounding mode. 4508 (void)V.convert(APFloat::IEEEhalf(), 4509 APFloat::rmNearestTiesToEven, &Ignored); 4510 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4511 } 4512 } 4513 } 4514 4515 // Constant fold unary operations with a vector integer or float operand. 4516 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4517 if (BV->isConstant()) { 4518 switch (Opcode) { 4519 default: 4520 // FIXME: Entirely reasonable to perform folding of other unary 4521 // operations here as the need arises. 4522 break; 4523 case ISD::FNEG: 4524 case ISD::FABS: 4525 case ISD::FCEIL: 4526 case ISD::FTRUNC: 4527 case ISD::FFLOOR: 4528 case ISD::FP_EXTEND: 4529 case ISD::FP_TO_SINT: 4530 case ISD::FP_TO_UINT: 4531 case ISD::TRUNCATE: 4532 case ISD::ANY_EXTEND: 4533 case ISD::ZERO_EXTEND: 4534 case ISD::SIGN_EXTEND: 4535 case ISD::UINT_TO_FP: 4536 case ISD::SINT_TO_FP: 4537 case ISD::ABS: 4538 case ISD::BITREVERSE: 4539 case ISD::BSWAP: 4540 case ISD::CTLZ: 4541 case ISD::CTLZ_ZERO_UNDEF: 4542 case ISD::CTTZ: 4543 case ISD::CTTZ_ZERO_UNDEF: 4544 case ISD::CTPOP: { 4545 SDValue Ops = { Operand }; 4546 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4547 return Fold; 4548 } 4549 } 4550 } 4551 } 4552 4553 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4554 switch (Opcode) { 4555 case ISD::FREEZE: 4556 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4557 break; 4558 case ISD::TokenFactor: 4559 case ISD::MERGE_VALUES: 4560 case ISD::CONCAT_VECTORS: 4561 return Operand; // Factor, merge or concat of one node? No need. 4562 case ISD::BUILD_VECTOR: { 4563 // Attempt to simplify BUILD_VECTOR. 4564 SDValue Ops[] = {Operand}; 4565 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4566 return V; 4567 break; 4568 } 4569 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4570 case ISD::FP_EXTEND: 4571 assert(VT.isFloatingPoint() && 4572 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4573 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4574 assert((!VT.isVector() || 4575 VT.getVectorElementCount() == 4576 Operand.getValueType().getVectorElementCount()) && 4577 "Vector element count mismatch!"); 4578 assert(Operand.getValueType().bitsLT(VT) && 4579 "Invalid fpext node, dst < src!"); 4580 if (Operand.isUndef()) 4581 return getUNDEF(VT); 4582 break; 4583 case ISD::FP_TO_SINT: 4584 case ISD::FP_TO_UINT: 4585 if (Operand.isUndef()) 4586 return getUNDEF(VT); 4587 break; 4588 case ISD::SINT_TO_FP: 4589 case ISD::UINT_TO_FP: 4590 // [us]itofp(undef) = 0, because the result value is bounded. 4591 if (Operand.isUndef()) 4592 return getConstantFP(0.0, DL, VT); 4593 break; 4594 case ISD::SIGN_EXTEND: 4595 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4596 "Invalid SIGN_EXTEND!"); 4597 assert(VT.isVector() == Operand.getValueType().isVector() && 4598 "SIGN_EXTEND result type type should be vector iff the operand " 4599 "type is vector!"); 4600 if (Operand.getValueType() == VT) return Operand; // noop extension 4601 assert((!VT.isVector() || 4602 VT.getVectorElementCount() == 4603 Operand.getValueType().getVectorElementCount()) && 4604 "Vector element count mismatch!"); 4605 assert(Operand.getValueType().bitsLT(VT) && 4606 "Invalid sext node, dst < src!"); 4607 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4608 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4609 else if (OpOpcode == ISD::UNDEF) 4610 // sext(undef) = 0, because the top bits will all be the same. 4611 return getConstant(0, DL, VT); 4612 break; 4613 case ISD::ZERO_EXTEND: 4614 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4615 "Invalid ZERO_EXTEND!"); 4616 assert(VT.isVector() == Operand.getValueType().isVector() && 4617 "ZERO_EXTEND result type type should be vector iff the operand " 4618 "type is vector!"); 4619 if (Operand.getValueType() == VT) return Operand; // noop extension 4620 assert((!VT.isVector() || 4621 VT.getVectorElementCount() == 4622 Operand.getValueType().getVectorElementCount()) && 4623 "Vector element count mismatch!"); 4624 assert(Operand.getValueType().bitsLT(VT) && 4625 "Invalid zext node, dst < src!"); 4626 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4627 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4628 else if (OpOpcode == ISD::UNDEF) 4629 // zext(undef) = 0, because the top bits will be zero. 4630 return getConstant(0, DL, VT); 4631 break; 4632 case ISD::ANY_EXTEND: 4633 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4634 "Invalid ANY_EXTEND!"); 4635 assert(VT.isVector() == Operand.getValueType().isVector() && 4636 "ANY_EXTEND result type type should be vector iff the operand " 4637 "type is vector!"); 4638 if (Operand.getValueType() == VT) return Operand; // noop extension 4639 assert((!VT.isVector() || 4640 VT.getVectorElementCount() == 4641 Operand.getValueType().getVectorElementCount()) && 4642 "Vector element count mismatch!"); 4643 assert(Operand.getValueType().bitsLT(VT) && 4644 "Invalid anyext node, dst < src!"); 4645 4646 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4647 OpOpcode == ISD::ANY_EXTEND) 4648 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4649 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4650 else if (OpOpcode == ISD::UNDEF) 4651 return getUNDEF(VT); 4652 4653 // (ext (trunc x)) -> x 4654 if (OpOpcode == ISD::TRUNCATE) { 4655 SDValue OpOp = Operand.getOperand(0); 4656 if (OpOp.getValueType() == VT) { 4657 transferDbgValues(Operand, OpOp); 4658 return OpOp; 4659 } 4660 } 4661 break; 4662 case ISD::TRUNCATE: 4663 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4664 "Invalid TRUNCATE!"); 4665 assert(VT.isVector() == Operand.getValueType().isVector() && 4666 "TRUNCATE result type type should be vector iff the operand " 4667 "type is vector!"); 4668 if (Operand.getValueType() == VT) return Operand; // noop truncate 4669 assert((!VT.isVector() || 4670 VT.getVectorElementCount() == 4671 Operand.getValueType().getVectorElementCount()) && 4672 "Vector element count mismatch!"); 4673 assert(Operand.getValueType().bitsGT(VT) && 4674 "Invalid truncate node, src < dst!"); 4675 if (OpOpcode == ISD::TRUNCATE) 4676 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4677 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4678 OpOpcode == ISD::ANY_EXTEND) { 4679 // If the source is smaller than the dest, we still need an extend. 4680 if (Operand.getOperand(0).getValueType().getScalarType() 4681 .bitsLT(VT.getScalarType())) 4682 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4683 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4684 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4685 return Operand.getOperand(0); 4686 } 4687 if (OpOpcode == ISD::UNDEF) 4688 return getUNDEF(VT); 4689 break; 4690 case ISD::ANY_EXTEND_VECTOR_INREG: 4691 case ISD::ZERO_EXTEND_VECTOR_INREG: 4692 case ISD::SIGN_EXTEND_VECTOR_INREG: 4693 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4694 assert(Operand.getValueType().bitsLE(VT) && 4695 "The input must be the same size or smaller than the result."); 4696 assert(VT.getVectorNumElements() < 4697 Operand.getValueType().getVectorNumElements() && 4698 "The destination vector type must have fewer lanes than the input."); 4699 break; 4700 case ISD::ABS: 4701 assert(VT.isInteger() && VT == Operand.getValueType() && 4702 "Invalid ABS!"); 4703 if (OpOpcode == ISD::UNDEF) 4704 return getUNDEF(VT); 4705 break; 4706 case ISD::BSWAP: 4707 assert(VT.isInteger() && VT == Operand.getValueType() && 4708 "Invalid BSWAP!"); 4709 assert((VT.getScalarSizeInBits() % 16 == 0) && 4710 "BSWAP types must be a multiple of 16 bits!"); 4711 if (OpOpcode == ISD::UNDEF) 4712 return getUNDEF(VT); 4713 break; 4714 case ISD::BITREVERSE: 4715 assert(VT.isInteger() && VT == Operand.getValueType() && 4716 "Invalid BITREVERSE!"); 4717 if (OpOpcode == ISD::UNDEF) 4718 return getUNDEF(VT); 4719 break; 4720 case ISD::BITCAST: 4721 // Basic sanity checking. 4722 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4723 "Cannot BITCAST between types of different sizes!"); 4724 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4725 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4726 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4727 if (OpOpcode == ISD::UNDEF) 4728 return getUNDEF(VT); 4729 break; 4730 case ISD::SCALAR_TO_VECTOR: 4731 assert(VT.isVector() && !Operand.getValueType().isVector() && 4732 (VT.getVectorElementType() == Operand.getValueType() || 4733 (VT.getVectorElementType().isInteger() && 4734 Operand.getValueType().isInteger() && 4735 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4736 "Illegal SCALAR_TO_VECTOR node!"); 4737 if (OpOpcode == ISD::UNDEF) 4738 return getUNDEF(VT); 4739 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4740 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4741 isa<ConstantSDNode>(Operand.getOperand(1)) && 4742 Operand.getConstantOperandVal(1) == 0 && 4743 Operand.getOperand(0).getValueType() == VT) 4744 return Operand.getOperand(0); 4745 break; 4746 case ISD::FNEG: 4747 // Negation of an unknown bag of bits is still completely undefined. 4748 if (OpOpcode == ISD::UNDEF) 4749 return getUNDEF(VT); 4750 4751 if (OpOpcode == ISD::FNEG) // --X -> X 4752 return Operand.getOperand(0); 4753 break; 4754 case ISD::FABS: 4755 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4756 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4757 break; 4758 case ISD::VSCALE: 4759 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4760 break; 4761 case ISD::VECREDUCE_SMIN: 4762 case ISD::VECREDUCE_UMAX: 4763 if (Operand.getValueType().getScalarType() == MVT::i1) 4764 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4765 break; 4766 case ISD::VECREDUCE_SMAX: 4767 case ISD::VECREDUCE_UMIN: 4768 if (Operand.getValueType().getScalarType() == MVT::i1) 4769 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4770 break; 4771 } 4772 4773 SDNode *N; 4774 SDVTList VTs = getVTList(VT); 4775 SDValue Ops[] = {Operand}; 4776 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4777 FoldingSetNodeID ID; 4778 AddNodeIDNode(ID, Opcode, VTs, Ops); 4779 void *IP = nullptr; 4780 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4781 E->intersectFlagsWith(Flags); 4782 return SDValue(E, 0); 4783 } 4784 4785 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4786 N->setFlags(Flags); 4787 createOperands(N, Ops); 4788 CSEMap.InsertNode(N, IP); 4789 } else { 4790 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4791 createOperands(N, Ops); 4792 } 4793 4794 InsertNode(N); 4795 SDValue V = SDValue(N, 0); 4796 NewSDValueDbgMsg(V, "Creating new node: ", this); 4797 return V; 4798 } 4799 4800 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4801 const APInt &C2) { 4802 switch (Opcode) { 4803 case ISD::ADD: return C1 + C2; 4804 case ISD::SUB: return C1 - C2; 4805 case ISD::MUL: return C1 * C2; 4806 case ISD::AND: return C1 & C2; 4807 case ISD::OR: return C1 | C2; 4808 case ISD::XOR: return C1 ^ C2; 4809 case ISD::SHL: return C1 << C2; 4810 case ISD::SRL: return C1.lshr(C2); 4811 case ISD::SRA: return C1.ashr(C2); 4812 case ISD::ROTL: return C1.rotl(C2); 4813 case ISD::ROTR: return C1.rotr(C2); 4814 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4815 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4816 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4817 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4818 case ISD::SADDSAT: return C1.sadd_sat(C2); 4819 case ISD::UADDSAT: return C1.uadd_sat(C2); 4820 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4821 case ISD::USUBSAT: return C1.usub_sat(C2); 4822 case ISD::UDIV: 4823 if (!C2.getBoolValue()) 4824 break; 4825 return C1.udiv(C2); 4826 case ISD::UREM: 4827 if (!C2.getBoolValue()) 4828 break; 4829 return C1.urem(C2); 4830 case ISD::SDIV: 4831 if (!C2.getBoolValue()) 4832 break; 4833 return C1.sdiv(C2); 4834 case ISD::SREM: 4835 if (!C2.getBoolValue()) 4836 break; 4837 return C1.srem(C2); 4838 } 4839 return llvm::None; 4840 } 4841 4842 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4843 const GlobalAddressSDNode *GA, 4844 const SDNode *N2) { 4845 if (GA->getOpcode() != ISD::GlobalAddress) 4846 return SDValue(); 4847 if (!TLI->isOffsetFoldingLegal(GA)) 4848 return SDValue(); 4849 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4850 if (!C2) 4851 return SDValue(); 4852 int64_t Offset = C2->getSExtValue(); 4853 switch (Opcode) { 4854 case ISD::ADD: break; 4855 case ISD::SUB: Offset = -uint64_t(Offset); break; 4856 default: return SDValue(); 4857 } 4858 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4859 GA->getOffset() + uint64_t(Offset)); 4860 } 4861 4862 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4863 switch (Opcode) { 4864 case ISD::SDIV: 4865 case ISD::UDIV: 4866 case ISD::SREM: 4867 case ISD::UREM: { 4868 // If a divisor is zero/undef or any element of a divisor vector is 4869 // zero/undef, the whole op is undef. 4870 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4871 SDValue Divisor = Ops[1]; 4872 if (Divisor.isUndef() || isNullConstant(Divisor)) 4873 return true; 4874 4875 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4876 llvm::any_of(Divisor->op_values(), 4877 [](SDValue V) { return V.isUndef() || 4878 isNullConstant(V); }); 4879 // TODO: Handle signed overflow. 4880 } 4881 // TODO: Handle oversized shifts. 4882 default: 4883 return false; 4884 } 4885 } 4886 4887 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4888 EVT VT, ArrayRef<SDValue> Ops) { 4889 // If the opcode is a target-specific ISD node, there's nothing we can 4890 // do here and the operand rules may not line up with the below, so 4891 // bail early. 4892 if (Opcode >= ISD::BUILTIN_OP_END) 4893 return SDValue(); 4894 4895 // For now, the array Ops should only contain two values. 4896 // This enforcement will be removed once this function is merged with 4897 // FoldConstantVectorArithmetic 4898 if (Ops.size() != 2) 4899 return SDValue(); 4900 4901 if (isUndef(Opcode, Ops)) 4902 return getUNDEF(VT); 4903 4904 SDNode *N1 = Ops[0].getNode(); 4905 SDNode *N2 = Ops[1].getNode(); 4906 4907 // Handle the case of two scalars. 4908 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4909 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4910 if (C1->isOpaque() || C2->isOpaque()) 4911 return SDValue(); 4912 4913 Optional<APInt> FoldAttempt = 4914 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4915 if (!FoldAttempt) 4916 return SDValue(); 4917 4918 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4919 assert((!Folded || !VT.isVector()) && 4920 "Can't fold vectors ops with scalar operands"); 4921 return Folded; 4922 } 4923 } 4924 4925 // fold (add Sym, c) -> Sym+c 4926 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4927 return FoldSymbolOffset(Opcode, VT, GA, N2); 4928 if (TLI->isCommutativeBinOp(Opcode)) 4929 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4930 return FoldSymbolOffset(Opcode, VT, GA, N1); 4931 4932 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4933 // vector width, however we should be able to do constant folds involving 4934 // splat vector nodes too. 4935 if (VT.isScalableVector()) 4936 return SDValue(); 4937 4938 // For fixed width vectors, extract each constant element and fold them 4939 // individually. Either input may be an undef value. 4940 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4941 if (!BV1 && !N1->isUndef()) 4942 return SDValue(); 4943 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4944 if (!BV2 && !N2->isUndef()) 4945 return SDValue(); 4946 // If both operands are undef, that's handled the same way as scalars. 4947 if (!BV1 && !BV2) 4948 return SDValue(); 4949 4950 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4951 "Vector binop with different number of elements in operands?"); 4952 4953 EVT SVT = VT.getScalarType(); 4954 EVT LegalSVT = SVT; 4955 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4956 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4957 if (LegalSVT.bitsLT(SVT)) 4958 return SDValue(); 4959 } 4960 SmallVector<SDValue, 4> Outputs; 4961 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4962 for (unsigned I = 0; I != NumOps; ++I) { 4963 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4964 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4965 if (SVT.isInteger()) { 4966 if (V1->getValueType(0).bitsGT(SVT)) 4967 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4968 if (V2->getValueType(0).bitsGT(SVT)) 4969 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4970 } 4971 4972 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4973 return SDValue(); 4974 4975 // Fold one vector element. 4976 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4977 if (LegalSVT != SVT) 4978 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4979 4980 // Scalar folding only succeeded if the result is a constant or UNDEF. 4981 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4982 ScalarResult.getOpcode() != ISD::ConstantFP) 4983 return SDValue(); 4984 Outputs.push_back(ScalarResult); 4985 } 4986 4987 assert(VT.getVectorNumElements() == Outputs.size() && 4988 "Vector size mismatch!"); 4989 4990 // We may have a vector type but a scalar result. Create a splat. 4991 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4992 4993 // Build a big vector out of the scalar elements we generated. 4994 return getBuildVector(VT, SDLoc(), Outputs); 4995 } 4996 4997 // TODO: Merge with FoldConstantArithmetic 4998 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4999 const SDLoc &DL, EVT VT, 5000 ArrayRef<SDValue> Ops, 5001 const SDNodeFlags Flags) { 5002 // If the opcode is a target-specific ISD node, there's nothing we can 5003 // do here and the operand rules may not line up with the below, so 5004 // bail early. 5005 if (Opcode >= ISD::BUILTIN_OP_END) 5006 return SDValue(); 5007 5008 if (isUndef(Opcode, Ops)) 5009 return getUNDEF(VT); 5010 5011 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5012 if (!VT.isVector()) 5013 return SDValue(); 5014 5015 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5016 // vector width, however we should be able to do constant folds involving 5017 // splat vector nodes too. 5018 if (VT.isScalableVector()) 5019 return SDValue(); 5020 5021 // From this point onwards all vectors are assumed to be fixed width. 5022 unsigned NumElts = VT.getVectorNumElements(); 5023 5024 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5025 return !Op.getValueType().isVector() || 5026 Op.getValueType().getVectorNumElements() == NumElts; 5027 }; 5028 5029 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5030 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5031 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5032 (BV && BV->isConstant()); 5033 }; 5034 5035 // All operands must be vector types with the same number of elements as 5036 // the result type and must be either UNDEF or a build vector of constant 5037 // or UNDEF scalars. 5038 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5039 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5040 return SDValue(); 5041 5042 // If we are comparing vectors, then the result needs to be a i1 boolean 5043 // that is then sign-extended back to the legal result type. 5044 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5045 5046 // Find legal integer scalar type for constant promotion and 5047 // ensure that its scalar size is at least as large as source. 5048 EVT LegalSVT = VT.getScalarType(); 5049 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5050 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5051 if (LegalSVT.bitsLT(VT.getScalarType())) 5052 return SDValue(); 5053 } 5054 5055 // Constant fold each scalar lane separately. 5056 SmallVector<SDValue, 4> ScalarResults; 5057 for (unsigned i = 0; i != NumElts; i++) { 5058 SmallVector<SDValue, 4> ScalarOps; 5059 for (SDValue Op : Ops) { 5060 EVT InSVT = Op.getValueType().getScalarType(); 5061 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5062 if (!InBV) { 5063 // We've checked that this is UNDEF or a constant of some kind. 5064 if (Op.isUndef()) 5065 ScalarOps.push_back(getUNDEF(InSVT)); 5066 else 5067 ScalarOps.push_back(Op); 5068 continue; 5069 } 5070 5071 SDValue ScalarOp = InBV->getOperand(i); 5072 EVT ScalarVT = ScalarOp.getValueType(); 5073 5074 // Build vector (integer) scalar operands may need implicit 5075 // truncation - do this before constant folding. 5076 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5077 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5078 5079 ScalarOps.push_back(ScalarOp); 5080 } 5081 5082 // Constant fold the scalar operands. 5083 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5084 5085 // Legalize the (integer) scalar constant if necessary. 5086 if (LegalSVT != SVT) 5087 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5088 5089 // Scalar folding only succeeded if the result is a constant or UNDEF. 5090 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5091 ScalarResult.getOpcode() != ISD::ConstantFP) 5092 return SDValue(); 5093 ScalarResults.push_back(ScalarResult); 5094 } 5095 5096 SDValue V = getBuildVector(VT, DL, ScalarResults); 5097 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5098 return V; 5099 } 5100 5101 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5102 EVT VT, SDValue N1, SDValue N2) { 5103 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5104 // should. That will require dealing with a potentially non-default 5105 // rounding mode, checking the "opStatus" return value from the APFloat 5106 // math calculations, and possibly other variations. 5107 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5108 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5109 if (N1CFP && N2CFP) { 5110 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5111 switch (Opcode) { 5112 case ISD::FADD: 5113 C1.add(C2, APFloat::rmNearestTiesToEven); 5114 return getConstantFP(C1, DL, VT); 5115 case ISD::FSUB: 5116 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5117 return getConstantFP(C1, DL, VT); 5118 case ISD::FMUL: 5119 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5120 return getConstantFP(C1, DL, VT); 5121 case ISD::FDIV: 5122 C1.divide(C2, APFloat::rmNearestTiesToEven); 5123 return getConstantFP(C1, DL, VT); 5124 case ISD::FREM: 5125 C1.mod(C2); 5126 return getConstantFP(C1, DL, VT); 5127 case ISD::FCOPYSIGN: 5128 C1.copySign(C2); 5129 return getConstantFP(C1, DL, VT); 5130 default: break; 5131 } 5132 } 5133 if (N1CFP && Opcode == ISD::FP_ROUND) { 5134 APFloat C1 = N1CFP->getValueAPF(); // make copy 5135 bool Unused; 5136 // This can return overflow, underflow, or inexact; we don't care. 5137 // FIXME need to be more flexible about rounding mode. 5138 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5139 &Unused); 5140 return getConstantFP(C1, DL, VT); 5141 } 5142 5143 switch (Opcode) { 5144 case ISD::FSUB: 5145 // -0.0 - undef --> undef (consistent with "fneg undef") 5146 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5147 return getUNDEF(VT); 5148 LLVM_FALLTHROUGH; 5149 5150 case ISD::FADD: 5151 case ISD::FMUL: 5152 case ISD::FDIV: 5153 case ISD::FREM: 5154 // If both operands are undef, the result is undef. If 1 operand is undef, 5155 // the result is NaN. This should match the behavior of the IR optimizer. 5156 if (N1.isUndef() && N2.isUndef()) 5157 return getUNDEF(VT); 5158 if (N1.isUndef() || N2.isUndef()) 5159 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5160 } 5161 return SDValue(); 5162 } 5163 5164 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5165 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5166 5167 // There's no need to assert on a byte-aligned pointer. All pointers are at 5168 // least byte aligned. 5169 if (A == Align(1)) 5170 return Val; 5171 5172 FoldingSetNodeID ID; 5173 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5174 ID.AddInteger(A.value()); 5175 5176 void *IP = nullptr; 5177 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5178 return SDValue(E, 0); 5179 5180 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5181 Val.getValueType(), A); 5182 createOperands(N, {Val}); 5183 5184 CSEMap.InsertNode(N, IP); 5185 InsertNode(N); 5186 5187 SDValue V(N, 0); 5188 NewSDValueDbgMsg(V, "Creating new node: ", this); 5189 return V; 5190 } 5191 5192 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5193 SDValue N1, SDValue N2) { 5194 SDNodeFlags Flags; 5195 if (Inserter) 5196 Flags = Inserter->getFlags(); 5197 return getNode(Opcode, DL, VT, N1, N2, Flags); 5198 } 5199 5200 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5201 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5202 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5203 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5204 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5205 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5206 5207 // Canonicalize constant to RHS if commutative. 5208 if (TLI->isCommutativeBinOp(Opcode)) { 5209 if (N1C && !N2C) { 5210 std::swap(N1C, N2C); 5211 std::swap(N1, N2); 5212 } else if (N1CFP && !N2CFP) { 5213 std::swap(N1CFP, N2CFP); 5214 std::swap(N1, N2); 5215 } 5216 } 5217 5218 switch (Opcode) { 5219 default: break; 5220 case ISD::TokenFactor: 5221 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5222 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5223 // Fold trivial token factors. 5224 if (N1.getOpcode() == ISD::EntryToken) return N2; 5225 if (N2.getOpcode() == ISD::EntryToken) return N1; 5226 if (N1 == N2) return N1; 5227 break; 5228 case ISD::BUILD_VECTOR: { 5229 // Attempt to simplify BUILD_VECTOR. 5230 SDValue Ops[] = {N1, N2}; 5231 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5232 return V; 5233 break; 5234 } 5235 case ISD::CONCAT_VECTORS: { 5236 SDValue Ops[] = {N1, N2}; 5237 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5238 return V; 5239 break; 5240 } 5241 case ISD::AND: 5242 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5243 assert(N1.getValueType() == N2.getValueType() && 5244 N1.getValueType() == VT && "Binary operator types must match!"); 5245 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5246 // worth handling here. 5247 if (N2C && N2C->isNullValue()) 5248 return N2; 5249 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5250 return N1; 5251 break; 5252 case ISD::OR: 5253 case ISD::XOR: 5254 case ISD::ADD: 5255 case ISD::SUB: 5256 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5257 assert(N1.getValueType() == N2.getValueType() && 5258 N1.getValueType() == VT && "Binary operator types must match!"); 5259 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5260 // it's worth handling here. 5261 if (N2C && N2C->isNullValue()) 5262 return N1; 5263 break; 5264 case ISD::MUL: 5265 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5266 assert(N1.getValueType() == N2.getValueType() && 5267 N1.getValueType() == VT && "Binary operator types must match!"); 5268 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5269 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5270 APInt N2CImm = N2C->getAPIntValue(); 5271 return getVScale(DL, VT, MulImm * N2CImm); 5272 } 5273 break; 5274 case ISD::UDIV: 5275 case ISD::UREM: 5276 case ISD::MULHU: 5277 case ISD::MULHS: 5278 case ISD::SDIV: 5279 case ISD::SREM: 5280 case ISD::SADDSAT: 5281 case ISD::SSUBSAT: 5282 case ISD::UADDSAT: 5283 case ISD::USUBSAT: 5284 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5285 assert(N1.getValueType() == N2.getValueType() && 5286 N1.getValueType() == VT && "Binary operator types must match!"); 5287 break; 5288 case ISD::SMIN: 5289 case ISD::UMAX: 5290 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5291 assert(N1.getValueType() == N2.getValueType() && 5292 N1.getValueType() == VT && "Binary operator types must match!"); 5293 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5294 return getNode(ISD::OR, DL, VT, N1, N2); 5295 break; 5296 case ISD::SMAX: 5297 case ISD::UMIN: 5298 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5299 assert(N1.getValueType() == N2.getValueType() && 5300 N1.getValueType() == VT && "Binary operator types must match!"); 5301 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5302 return getNode(ISD::AND, DL, VT, N1, N2); 5303 break; 5304 case ISD::FADD: 5305 case ISD::FSUB: 5306 case ISD::FMUL: 5307 case ISD::FDIV: 5308 case ISD::FREM: 5309 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5310 assert(N1.getValueType() == N2.getValueType() && 5311 N1.getValueType() == VT && "Binary operator types must match!"); 5312 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5313 return V; 5314 break; 5315 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5316 assert(N1.getValueType() == VT && 5317 N1.getValueType().isFloatingPoint() && 5318 N2.getValueType().isFloatingPoint() && 5319 "Invalid FCOPYSIGN!"); 5320 break; 5321 case ISD::SHL: 5322 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5323 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5324 APInt ShiftImm = N2C->getAPIntValue(); 5325 return getVScale(DL, VT, MulImm << ShiftImm); 5326 } 5327 LLVM_FALLTHROUGH; 5328 case ISD::SRA: 5329 case ISD::SRL: 5330 if (SDValue V = simplifyShift(N1, N2)) 5331 return V; 5332 LLVM_FALLTHROUGH; 5333 case ISD::ROTL: 5334 case ISD::ROTR: 5335 assert(VT == N1.getValueType() && 5336 "Shift operators return type must be the same as their first arg"); 5337 assert(VT.isInteger() && N2.getValueType().isInteger() && 5338 "Shifts only work on integers"); 5339 assert((!VT.isVector() || VT == N2.getValueType()) && 5340 "Vector shift amounts must be in the same as their first arg"); 5341 // Verify that the shift amount VT is big enough to hold valid shift 5342 // amounts. This catches things like trying to shift an i1024 value by an 5343 // i8, which is easy to fall into in generic code that uses 5344 // TLI.getShiftAmount(). 5345 assert(N2.getValueType().getScalarSizeInBits() >= 5346 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5347 "Invalid use of small shift amount with oversized value!"); 5348 5349 // Always fold shifts of i1 values so the code generator doesn't need to 5350 // handle them. Since we know the size of the shift has to be less than the 5351 // size of the value, the shift/rotate count is guaranteed to be zero. 5352 if (VT == MVT::i1) 5353 return N1; 5354 if (N2C && N2C->isNullValue()) 5355 return N1; 5356 break; 5357 case ISD::FP_ROUND: 5358 assert(VT.isFloatingPoint() && 5359 N1.getValueType().isFloatingPoint() && 5360 VT.bitsLE(N1.getValueType()) && 5361 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5362 "Invalid FP_ROUND!"); 5363 if (N1.getValueType() == VT) return N1; // noop conversion. 5364 break; 5365 case ISD::AssertSext: 5366 case ISD::AssertZext: { 5367 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5368 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5369 assert(VT.isInteger() && EVT.isInteger() && 5370 "Cannot *_EXTEND_INREG FP types"); 5371 assert(!EVT.isVector() && 5372 "AssertSExt/AssertZExt type should be the vector element type " 5373 "rather than the vector type!"); 5374 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5375 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5376 break; 5377 } 5378 case ISD::SIGN_EXTEND_INREG: { 5379 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5380 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5381 assert(VT.isInteger() && EVT.isInteger() && 5382 "Cannot *_EXTEND_INREG FP types"); 5383 assert(EVT.isVector() == VT.isVector() && 5384 "SIGN_EXTEND_INREG type should be vector iff the operand " 5385 "type is vector!"); 5386 assert((!EVT.isVector() || 5387 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5388 "Vector element counts must match in SIGN_EXTEND_INREG"); 5389 assert(EVT.bitsLE(VT) && "Not extending!"); 5390 if (EVT == VT) return N1; // Not actually extending 5391 5392 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5393 unsigned FromBits = EVT.getScalarSizeInBits(); 5394 Val <<= Val.getBitWidth() - FromBits; 5395 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5396 return getConstant(Val, DL, ConstantVT); 5397 }; 5398 5399 if (N1C) { 5400 const APInt &Val = N1C->getAPIntValue(); 5401 return SignExtendInReg(Val, VT); 5402 } 5403 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5404 SmallVector<SDValue, 8> Ops; 5405 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5406 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5407 SDValue Op = N1.getOperand(i); 5408 if (Op.isUndef()) { 5409 Ops.push_back(getUNDEF(OpVT)); 5410 continue; 5411 } 5412 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5413 APInt Val = C->getAPIntValue(); 5414 Ops.push_back(SignExtendInReg(Val, OpVT)); 5415 } 5416 return getBuildVector(VT, DL, Ops); 5417 } 5418 break; 5419 } 5420 case ISD::EXTRACT_VECTOR_ELT: 5421 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5422 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5423 element type of the vector."); 5424 5425 // Extract from an undefined value or using an undefined index is undefined. 5426 if (N1.isUndef() || N2.isUndef()) 5427 return getUNDEF(VT); 5428 5429 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5430 // vectors. For scalable vectors we will provide appropriate support for 5431 // dealing with arbitrary indices. 5432 if (N2C && N1.getValueType().isFixedLengthVector() && 5433 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5434 return getUNDEF(VT); 5435 5436 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5437 // expanding copies of large vectors from registers. This only works for 5438 // fixed length vectors, since we need to know the exact number of 5439 // elements. 5440 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5441 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5442 unsigned Factor = 5443 N1.getOperand(0).getValueType().getVectorNumElements(); 5444 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5445 N1.getOperand(N2C->getZExtValue() / Factor), 5446 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5447 } 5448 5449 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5450 // lowering is expanding large vector constants. 5451 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5452 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5453 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5454 N1.getValueType().isFixedLengthVector()) && 5455 "BUILD_VECTOR used for scalable vectors"); 5456 unsigned Index = 5457 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5458 SDValue Elt = N1.getOperand(Index); 5459 5460 if (VT != Elt.getValueType()) 5461 // If the vector element type is not legal, the BUILD_VECTOR operands 5462 // are promoted and implicitly truncated, and the result implicitly 5463 // extended. Make that explicit here. 5464 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5465 5466 return Elt; 5467 } 5468 5469 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5470 // operations are lowered to scalars. 5471 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5472 // If the indices are the same, return the inserted element else 5473 // if the indices are known different, extract the element from 5474 // the original vector. 5475 SDValue N1Op2 = N1.getOperand(2); 5476 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5477 5478 if (N1Op2C && N2C) { 5479 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5480 if (VT == N1.getOperand(1).getValueType()) 5481 return N1.getOperand(1); 5482 else 5483 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5484 } 5485 5486 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5487 } 5488 } 5489 5490 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5491 // when vector types are scalarized and v1iX is legal. 5492 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5493 // Here we are completely ignoring the extract element index (N2), 5494 // which is fine for fixed width vectors, since any index other than 0 5495 // is undefined anyway. However, this cannot be ignored for scalable 5496 // vectors - in theory we could support this, but we don't want to do this 5497 // without a profitability check. 5498 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5499 N1.getValueType().isFixedLengthVector() && 5500 N1.getValueType().getVectorNumElements() == 1) { 5501 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5502 N1.getOperand(1)); 5503 } 5504 break; 5505 case ISD::EXTRACT_ELEMENT: 5506 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5507 assert(!N1.getValueType().isVector() && !VT.isVector() && 5508 (N1.getValueType().isInteger() == VT.isInteger()) && 5509 N1.getValueType() != VT && 5510 "Wrong types for EXTRACT_ELEMENT!"); 5511 5512 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5513 // 64-bit integers into 32-bit parts. Instead of building the extract of 5514 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5515 if (N1.getOpcode() == ISD::BUILD_PAIR) 5516 return N1.getOperand(N2C->getZExtValue()); 5517 5518 // EXTRACT_ELEMENT of a constant int is also very common. 5519 if (N1C) { 5520 unsigned ElementSize = VT.getSizeInBits(); 5521 unsigned Shift = ElementSize * N2C->getZExtValue(); 5522 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5523 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5524 } 5525 break; 5526 case ISD::EXTRACT_SUBVECTOR: 5527 EVT N1VT = N1.getValueType(); 5528 assert(VT.isVector() && N1VT.isVector() && 5529 "Extract subvector VTs must be vectors!"); 5530 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5531 "Extract subvector VTs must have the same element type!"); 5532 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5533 "Cannot extract a scalable vector from a fixed length vector!"); 5534 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5535 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5536 "Extract subvector must be from larger vector to smaller vector!"); 5537 assert(N2C && "Extract subvector index must be a constant"); 5538 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5539 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5540 N1VT.getVectorMinNumElements()) && 5541 "Extract subvector overflow!"); 5542 assert(N2C->getAPIntValue().getBitWidth() == 5543 TLI->getVectorIdxTy(getDataLayout()) 5544 .getSizeInBits() 5545 .getFixedSize() && 5546 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5547 5548 // Trivial extraction. 5549 if (VT == N1VT) 5550 return N1; 5551 5552 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5553 if (N1.isUndef()) 5554 return getUNDEF(VT); 5555 5556 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5557 // the concat have the same type as the extract. 5558 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5559 VT == N1.getOperand(0).getValueType()) { 5560 unsigned Factor = VT.getVectorMinNumElements(); 5561 return N1.getOperand(N2C->getZExtValue() / Factor); 5562 } 5563 5564 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5565 // during shuffle legalization. 5566 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5567 VT == N1.getOperand(1).getValueType()) 5568 return N1.getOperand(1); 5569 break; 5570 } 5571 5572 // Perform trivial constant folding. 5573 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5574 return SV; 5575 5576 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5577 return V; 5578 5579 // Canonicalize an UNDEF to the RHS, even over a constant. 5580 if (N1.isUndef()) { 5581 if (TLI->isCommutativeBinOp(Opcode)) { 5582 std::swap(N1, N2); 5583 } else { 5584 switch (Opcode) { 5585 case ISD::SIGN_EXTEND_INREG: 5586 case ISD::SUB: 5587 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5588 case ISD::UDIV: 5589 case ISD::SDIV: 5590 case ISD::UREM: 5591 case ISD::SREM: 5592 case ISD::SSUBSAT: 5593 case ISD::USUBSAT: 5594 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5595 } 5596 } 5597 } 5598 5599 // Fold a bunch of operators when the RHS is undef. 5600 if (N2.isUndef()) { 5601 switch (Opcode) { 5602 case ISD::XOR: 5603 if (N1.isUndef()) 5604 // Handle undef ^ undef -> 0 special case. This is a common 5605 // idiom (misuse). 5606 return getConstant(0, DL, VT); 5607 LLVM_FALLTHROUGH; 5608 case ISD::ADD: 5609 case ISD::SUB: 5610 case ISD::UDIV: 5611 case ISD::SDIV: 5612 case ISD::UREM: 5613 case ISD::SREM: 5614 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5615 case ISD::MUL: 5616 case ISD::AND: 5617 case ISD::SSUBSAT: 5618 case ISD::USUBSAT: 5619 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5620 case ISD::OR: 5621 case ISD::SADDSAT: 5622 case ISD::UADDSAT: 5623 return getAllOnesConstant(DL, VT); 5624 } 5625 } 5626 5627 // Memoize this node if possible. 5628 SDNode *N; 5629 SDVTList VTs = getVTList(VT); 5630 SDValue Ops[] = {N1, N2}; 5631 if (VT != MVT::Glue) { 5632 FoldingSetNodeID ID; 5633 AddNodeIDNode(ID, Opcode, VTs, Ops); 5634 void *IP = nullptr; 5635 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5636 E->intersectFlagsWith(Flags); 5637 return SDValue(E, 0); 5638 } 5639 5640 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5641 N->setFlags(Flags); 5642 createOperands(N, Ops); 5643 CSEMap.InsertNode(N, IP); 5644 } else { 5645 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5646 createOperands(N, Ops); 5647 } 5648 5649 InsertNode(N); 5650 SDValue V = SDValue(N, 0); 5651 NewSDValueDbgMsg(V, "Creating new node: ", this); 5652 return V; 5653 } 5654 5655 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5656 SDValue N1, SDValue N2, SDValue N3) { 5657 SDNodeFlags Flags; 5658 if (Inserter) 5659 Flags = Inserter->getFlags(); 5660 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5661 } 5662 5663 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5664 SDValue N1, SDValue N2, SDValue N3, 5665 const SDNodeFlags Flags) { 5666 // Perform various simplifications. 5667 switch (Opcode) { 5668 case ISD::FMA: { 5669 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5670 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5671 N3.getValueType() == VT && "FMA types must match!"); 5672 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5673 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5674 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5675 if (N1CFP && N2CFP && N3CFP) { 5676 APFloat V1 = N1CFP->getValueAPF(); 5677 const APFloat &V2 = N2CFP->getValueAPF(); 5678 const APFloat &V3 = N3CFP->getValueAPF(); 5679 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5680 return getConstantFP(V1, DL, VT); 5681 } 5682 break; 5683 } 5684 case ISD::BUILD_VECTOR: { 5685 // Attempt to simplify BUILD_VECTOR. 5686 SDValue Ops[] = {N1, N2, N3}; 5687 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5688 return V; 5689 break; 5690 } 5691 case ISD::CONCAT_VECTORS: { 5692 SDValue Ops[] = {N1, N2, N3}; 5693 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5694 return V; 5695 break; 5696 } 5697 case ISD::SETCC: { 5698 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5699 assert(N1.getValueType() == N2.getValueType() && 5700 "SETCC operands must have the same type!"); 5701 assert(VT.isVector() == N1.getValueType().isVector() && 5702 "SETCC type should be vector iff the operand type is vector!"); 5703 assert((!VT.isVector() || VT.getVectorElementCount() == 5704 N1.getValueType().getVectorElementCount()) && 5705 "SETCC vector element counts must match!"); 5706 // Use FoldSetCC to simplify SETCC's. 5707 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5708 return V; 5709 // Vector constant folding. 5710 SDValue Ops[] = {N1, N2, N3}; 5711 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5712 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5713 return V; 5714 } 5715 break; 5716 } 5717 case ISD::SELECT: 5718 case ISD::VSELECT: 5719 if (SDValue V = simplifySelect(N1, N2, N3)) 5720 return V; 5721 break; 5722 case ISD::VECTOR_SHUFFLE: 5723 llvm_unreachable("should use getVectorShuffle constructor!"); 5724 case ISD::INSERT_VECTOR_ELT: { 5725 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5726 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5727 // for scalable vectors where we will generate appropriate code to 5728 // deal with out-of-bounds cases correctly. 5729 if (N3C && N1.getValueType().isFixedLengthVector() && 5730 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5731 return getUNDEF(VT); 5732 5733 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5734 if (N3.isUndef()) 5735 return getUNDEF(VT); 5736 5737 // If the inserted element is an UNDEF, just use the input vector. 5738 if (N2.isUndef()) 5739 return N1; 5740 5741 break; 5742 } 5743 case ISD::INSERT_SUBVECTOR: { 5744 // Inserting undef into undef is still undef. 5745 if (N1.isUndef() && N2.isUndef()) 5746 return getUNDEF(VT); 5747 5748 EVT N2VT = N2.getValueType(); 5749 assert(VT == N1.getValueType() && 5750 "Dest and insert subvector source types must match!"); 5751 assert(VT.isVector() && N2VT.isVector() && 5752 "Insert subvector VTs must be vectors!"); 5753 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5754 "Cannot insert a scalable vector into a fixed length vector!"); 5755 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5756 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5757 "Insert subvector must be from smaller vector to larger vector!"); 5758 assert(isa<ConstantSDNode>(N3) && 5759 "Insert subvector index must be constant"); 5760 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5761 (N2VT.getVectorMinNumElements() + 5762 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5763 VT.getVectorMinNumElements()) && 5764 "Insert subvector overflow!"); 5765 5766 // Trivial insertion. 5767 if (VT == N2VT) 5768 return N2; 5769 5770 // If this is an insert of an extracted vector into an undef vector, we 5771 // can just use the input to the extract. 5772 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5773 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5774 return N2.getOperand(0); 5775 break; 5776 } 5777 case ISD::BITCAST: 5778 // Fold bit_convert nodes from a type to themselves. 5779 if (N1.getValueType() == VT) 5780 return N1; 5781 break; 5782 } 5783 5784 // Memoize node if it doesn't produce a flag. 5785 SDNode *N; 5786 SDVTList VTs = getVTList(VT); 5787 SDValue Ops[] = {N1, N2, N3}; 5788 if (VT != MVT::Glue) { 5789 FoldingSetNodeID ID; 5790 AddNodeIDNode(ID, Opcode, VTs, Ops); 5791 void *IP = nullptr; 5792 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5793 E->intersectFlagsWith(Flags); 5794 return SDValue(E, 0); 5795 } 5796 5797 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5798 N->setFlags(Flags); 5799 createOperands(N, Ops); 5800 CSEMap.InsertNode(N, IP); 5801 } else { 5802 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5803 createOperands(N, Ops); 5804 } 5805 5806 InsertNode(N); 5807 SDValue V = SDValue(N, 0); 5808 NewSDValueDbgMsg(V, "Creating new node: ", this); 5809 return V; 5810 } 5811 5812 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5813 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5814 SDValue Ops[] = { N1, N2, N3, N4 }; 5815 return getNode(Opcode, DL, VT, Ops); 5816 } 5817 5818 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5819 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5820 SDValue N5) { 5821 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5822 return getNode(Opcode, DL, VT, Ops); 5823 } 5824 5825 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5826 /// the incoming stack arguments to be loaded from the stack. 5827 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5828 SmallVector<SDValue, 8> ArgChains; 5829 5830 // Include the original chain at the beginning of the list. When this is 5831 // used by target LowerCall hooks, this helps legalize find the 5832 // CALLSEQ_BEGIN node. 5833 ArgChains.push_back(Chain); 5834 5835 // Add a chain value for each stack argument. 5836 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5837 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5838 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5839 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5840 if (FI->getIndex() < 0) 5841 ArgChains.push_back(SDValue(L, 1)); 5842 5843 // Build a tokenfactor for all the chains. 5844 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5845 } 5846 5847 /// getMemsetValue - Vectorized representation of the memset value 5848 /// operand. 5849 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5850 const SDLoc &dl) { 5851 assert(!Value.isUndef()); 5852 5853 unsigned NumBits = VT.getScalarSizeInBits(); 5854 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5855 assert(C->getAPIntValue().getBitWidth() == 8); 5856 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5857 if (VT.isInteger()) { 5858 bool IsOpaque = VT.getSizeInBits() > 64 || 5859 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5860 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5861 } 5862 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5863 VT); 5864 } 5865 5866 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5867 EVT IntVT = VT.getScalarType(); 5868 if (!IntVT.isInteger()) 5869 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5870 5871 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5872 if (NumBits > 8) { 5873 // Use a multiplication with 0x010101... to extend the input to the 5874 // required length. 5875 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5876 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5877 DAG.getConstant(Magic, dl, IntVT)); 5878 } 5879 5880 if (VT != Value.getValueType() && !VT.isInteger()) 5881 Value = DAG.getBitcast(VT.getScalarType(), Value); 5882 if (VT != Value.getValueType()) 5883 Value = DAG.getSplatBuildVector(VT, dl, Value); 5884 5885 return Value; 5886 } 5887 5888 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5889 /// used when a memcpy is turned into a memset when the source is a constant 5890 /// string ptr. 5891 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5892 const TargetLowering &TLI, 5893 const ConstantDataArraySlice &Slice) { 5894 // Handle vector with all elements zero. 5895 if (Slice.Array == nullptr) { 5896 if (VT.isInteger()) 5897 return DAG.getConstant(0, dl, VT); 5898 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5899 return DAG.getConstantFP(0.0, dl, VT); 5900 else if (VT.isVector()) { 5901 unsigned NumElts = VT.getVectorNumElements(); 5902 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5903 return DAG.getNode(ISD::BITCAST, dl, VT, 5904 DAG.getConstant(0, dl, 5905 EVT::getVectorVT(*DAG.getContext(), 5906 EltVT, NumElts))); 5907 } else 5908 llvm_unreachable("Expected type!"); 5909 } 5910 5911 assert(!VT.isVector() && "Can't handle vector type here!"); 5912 unsigned NumVTBits = VT.getSizeInBits(); 5913 unsigned NumVTBytes = NumVTBits / 8; 5914 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5915 5916 APInt Val(NumVTBits, 0); 5917 if (DAG.getDataLayout().isLittleEndian()) { 5918 for (unsigned i = 0; i != NumBytes; ++i) 5919 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5920 } else { 5921 for (unsigned i = 0; i != NumBytes; ++i) 5922 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5923 } 5924 5925 // If the "cost" of materializing the integer immediate is less than the cost 5926 // of a load, then it is cost effective to turn the load into the immediate. 5927 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5928 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5929 return DAG.getConstant(Val, dl, VT); 5930 return SDValue(nullptr, 0); 5931 } 5932 5933 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5934 const SDLoc &DL, 5935 const SDNodeFlags Flags) { 5936 EVT VT = Base.getValueType(); 5937 SDValue Index; 5938 5939 if (Offset.isScalable()) 5940 Index = getVScale(DL, Base.getValueType(), 5941 APInt(Base.getValueSizeInBits().getFixedSize(), 5942 Offset.getKnownMinSize())); 5943 else 5944 Index = getConstant(Offset.getFixedSize(), DL, VT); 5945 5946 return getMemBasePlusOffset(Base, Index, DL, Flags); 5947 } 5948 5949 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5950 const SDLoc &DL, 5951 const SDNodeFlags Flags) { 5952 assert(Offset.getValueType().isInteger()); 5953 EVT BasePtrVT = Ptr.getValueType(); 5954 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5955 } 5956 5957 /// Returns true if memcpy source is constant data. 5958 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5959 uint64_t SrcDelta = 0; 5960 GlobalAddressSDNode *G = nullptr; 5961 if (Src.getOpcode() == ISD::GlobalAddress) 5962 G = cast<GlobalAddressSDNode>(Src); 5963 else if (Src.getOpcode() == ISD::ADD && 5964 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5965 Src.getOperand(1).getOpcode() == ISD::Constant) { 5966 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5967 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5968 } 5969 if (!G) 5970 return false; 5971 5972 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5973 SrcDelta + G->getOffset()); 5974 } 5975 5976 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5977 SelectionDAG &DAG) { 5978 // On Darwin, -Os means optimize for size without hurting performance, so 5979 // only really optimize for size when -Oz (MinSize) is used. 5980 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5981 return MF.getFunction().hasMinSize(); 5982 return DAG.shouldOptForSize(); 5983 } 5984 5985 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5986 SmallVector<SDValue, 32> &OutChains, unsigned From, 5987 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5988 SmallVector<SDValue, 16> &OutStoreChains) { 5989 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5990 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5991 SmallVector<SDValue, 16> GluedLoadChains; 5992 for (unsigned i = From; i < To; ++i) { 5993 OutChains.push_back(OutLoadChains[i]); 5994 GluedLoadChains.push_back(OutLoadChains[i]); 5995 } 5996 5997 // Chain for all loads. 5998 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5999 GluedLoadChains); 6000 6001 for (unsigned i = From; i < To; ++i) { 6002 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6003 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6004 ST->getBasePtr(), ST->getMemoryVT(), 6005 ST->getMemOperand()); 6006 OutChains.push_back(NewStore); 6007 } 6008 } 6009 6010 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6011 SDValue Chain, SDValue Dst, SDValue Src, 6012 uint64_t Size, Align Alignment, 6013 bool isVol, bool AlwaysInline, 6014 MachinePointerInfo DstPtrInfo, 6015 MachinePointerInfo SrcPtrInfo) { 6016 // Turn a memcpy of undef to nop. 6017 // FIXME: We need to honor volatile even is Src is undef. 6018 if (Src.isUndef()) 6019 return Chain; 6020 6021 // Expand memcpy to a series of load and store ops if the size operand falls 6022 // below a certain threshold. 6023 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6024 // rather than maybe a humongous number of loads and stores. 6025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6026 const DataLayout &DL = DAG.getDataLayout(); 6027 LLVMContext &C = *DAG.getContext(); 6028 std::vector<EVT> MemOps; 6029 bool DstAlignCanChange = false; 6030 MachineFunction &MF = DAG.getMachineFunction(); 6031 MachineFrameInfo &MFI = MF.getFrameInfo(); 6032 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6033 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6034 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6035 DstAlignCanChange = true; 6036 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6037 if (!SrcAlign || Alignment > *SrcAlign) 6038 SrcAlign = Alignment; 6039 assert(SrcAlign && "SrcAlign must be set"); 6040 ConstantDataArraySlice Slice; 6041 // If marked as volatile, perform a copy even when marked as constant. 6042 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6043 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6044 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6045 const MemOp Op = isZeroConstant 6046 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6047 /*IsZeroMemset*/ true, isVol) 6048 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6049 *SrcAlign, isVol, CopyFromConstant); 6050 if (!TLI.findOptimalMemOpLowering( 6051 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6052 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6053 return SDValue(); 6054 6055 if (DstAlignCanChange) { 6056 Type *Ty = MemOps[0].getTypeForEVT(C); 6057 Align NewAlign = DL.getABITypeAlign(Ty); 6058 6059 // Don't promote to an alignment that would require dynamic stack 6060 // realignment. 6061 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6062 if (!TRI->needsStackRealignment(MF)) 6063 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6064 NewAlign = NewAlign / 2; 6065 6066 if (NewAlign > Alignment) { 6067 // Give the stack frame object a larger alignment if needed. 6068 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6069 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6070 Alignment = NewAlign; 6071 } 6072 } 6073 6074 MachineMemOperand::Flags MMOFlags = 6075 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6076 SmallVector<SDValue, 16> OutLoadChains; 6077 SmallVector<SDValue, 16> OutStoreChains; 6078 SmallVector<SDValue, 32> OutChains; 6079 unsigned NumMemOps = MemOps.size(); 6080 uint64_t SrcOff = 0, DstOff = 0; 6081 for (unsigned i = 0; i != NumMemOps; ++i) { 6082 EVT VT = MemOps[i]; 6083 unsigned VTSize = VT.getSizeInBits() / 8; 6084 SDValue Value, Store; 6085 6086 if (VTSize > Size) { 6087 // Issuing an unaligned load / store pair that overlaps with the previous 6088 // pair. Adjust the offset accordingly. 6089 assert(i == NumMemOps-1 && i != 0); 6090 SrcOff -= VTSize - Size; 6091 DstOff -= VTSize - Size; 6092 } 6093 6094 if (CopyFromConstant && 6095 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6096 // It's unlikely a store of a vector immediate can be done in a single 6097 // instruction. It would require a load from a constantpool first. 6098 // We only handle zero vectors here. 6099 // FIXME: Handle other cases where store of vector immediate is done in 6100 // a single instruction. 6101 ConstantDataArraySlice SubSlice; 6102 if (SrcOff < Slice.Length) { 6103 SubSlice = Slice; 6104 SubSlice.move(SrcOff); 6105 } else { 6106 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6107 SubSlice.Array = nullptr; 6108 SubSlice.Offset = 0; 6109 SubSlice.Length = VTSize; 6110 } 6111 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6112 if (Value.getNode()) { 6113 Store = DAG.getStore( 6114 Chain, dl, Value, 6115 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6116 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6117 OutChains.push_back(Store); 6118 } 6119 } 6120 6121 if (!Store.getNode()) { 6122 // The type might not be legal for the target. This should only happen 6123 // if the type is smaller than a legal type, as on PPC, so the right 6124 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6125 // to Load/Store if NVT==VT. 6126 // FIXME does the case above also need this? 6127 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6128 assert(NVT.bitsGE(VT)); 6129 6130 bool isDereferenceable = 6131 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6132 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6133 if (isDereferenceable) 6134 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6135 6136 Value = DAG.getExtLoad( 6137 ISD::EXTLOAD, dl, NVT, Chain, 6138 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6139 SrcPtrInfo.getWithOffset(SrcOff), VT, 6140 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6141 OutLoadChains.push_back(Value.getValue(1)); 6142 6143 Store = DAG.getTruncStore( 6144 Chain, dl, Value, 6145 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6146 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6147 OutStoreChains.push_back(Store); 6148 } 6149 SrcOff += VTSize; 6150 DstOff += VTSize; 6151 Size -= VTSize; 6152 } 6153 6154 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6155 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6156 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6157 6158 if (NumLdStInMemcpy) { 6159 // It may be that memcpy might be converted to memset if it's memcpy 6160 // of constants. In such a case, we won't have loads and stores, but 6161 // just stores. In the absence of loads, there is nothing to gang up. 6162 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6163 // If target does not care, just leave as it. 6164 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6165 OutChains.push_back(OutLoadChains[i]); 6166 OutChains.push_back(OutStoreChains[i]); 6167 } 6168 } else { 6169 // Ld/St less than/equal limit set by target. 6170 if (NumLdStInMemcpy <= GluedLdStLimit) { 6171 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6172 NumLdStInMemcpy, OutLoadChains, 6173 OutStoreChains); 6174 } else { 6175 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6176 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6177 unsigned GlueIter = 0; 6178 6179 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6180 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6181 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6182 6183 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6184 OutLoadChains, OutStoreChains); 6185 GlueIter += GluedLdStLimit; 6186 } 6187 6188 // Residual ld/st. 6189 if (RemainingLdStInMemcpy) { 6190 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6191 RemainingLdStInMemcpy, OutLoadChains, 6192 OutStoreChains); 6193 } 6194 } 6195 } 6196 } 6197 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6198 } 6199 6200 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6201 SDValue Chain, SDValue Dst, SDValue Src, 6202 uint64_t Size, Align Alignment, 6203 bool isVol, bool AlwaysInline, 6204 MachinePointerInfo DstPtrInfo, 6205 MachinePointerInfo SrcPtrInfo) { 6206 // Turn a memmove of undef to nop. 6207 // FIXME: We need to honor volatile even is Src is undef. 6208 if (Src.isUndef()) 6209 return Chain; 6210 6211 // Expand memmove to a series of load and store ops if the size operand falls 6212 // below a certain threshold. 6213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6214 const DataLayout &DL = DAG.getDataLayout(); 6215 LLVMContext &C = *DAG.getContext(); 6216 std::vector<EVT> MemOps; 6217 bool DstAlignCanChange = false; 6218 MachineFunction &MF = DAG.getMachineFunction(); 6219 MachineFrameInfo &MFI = MF.getFrameInfo(); 6220 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6221 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6222 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6223 DstAlignCanChange = true; 6224 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6225 if (!SrcAlign || Alignment > *SrcAlign) 6226 SrcAlign = Alignment; 6227 assert(SrcAlign && "SrcAlign must be set"); 6228 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6229 if (!TLI.findOptimalMemOpLowering( 6230 MemOps, Limit, 6231 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6232 /*IsVolatile*/ true), 6233 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6234 MF.getFunction().getAttributes())) 6235 return SDValue(); 6236 6237 if (DstAlignCanChange) { 6238 Type *Ty = MemOps[0].getTypeForEVT(C); 6239 Align NewAlign = DL.getABITypeAlign(Ty); 6240 if (NewAlign > Alignment) { 6241 // Give the stack frame object a larger alignment if needed. 6242 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6243 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6244 Alignment = NewAlign; 6245 } 6246 } 6247 6248 MachineMemOperand::Flags MMOFlags = 6249 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6250 uint64_t SrcOff = 0, DstOff = 0; 6251 SmallVector<SDValue, 8> LoadValues; 6252 SmallVector<SDValue, 8> LoadChains; 6253 SmallVector<SDValue, 8> OutChains; 6254 unsigned NumMemOps = MemOps.size(); 6255 for (unsigned i = 0; i < NumMemOps; i++) { 6256 EVT VT = MemOps[i]; 6257 unsigned VTSize = VT.getSizeInBits() / 8; 6258 SDValue Value; 6259 6260 bool isDereferenceable = 6261 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6262 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6263 if (isDereferenceable) 6264 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6265 6266 Value = 6267 DAG.getLoad(VT, dl, Chain, 6268 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6269 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6270 LoadValues.push_back(Value); 6271 LoadChains.push_back(Value.getValue(1)); 6272 SrcOff += VTSize; 6273 } 6274 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6275 OutChains.clear(); 6276 for (unsigned i = 0; i < NumMemOps; i++) { 6277 EVT VT = MemOps[i]; 6278 unsigned VTSize = VT.getSizeInBits() / 8; 6279 SDValue Store; 6280 6281 Store = 6282 DAG.getStore(Chain, dl, LoadValues[i], 6283 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6284 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6285 OutChains.push_back(Store); 6286 DstOff += VTSize; 6287 } 6288 6289 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6290 } 6291 6292 /// Lower the call to 'memset' intrinsic function into a series of store 6293 /// operations. 6294 /// 6295 /// \param DAG Selection DAG where lowered code is placed. 6296 /// \param dl Link to corresponding IR location. 6297 /// \param Chain Control flow dependency. 6298 /// \param Dst Pointer to destination memory location. 6299 /// \param Src Value of byte to write into the memory. 6300 /// \param Size Number of bytes to write. 6301 /// \param Alignment Alignment of the destination in bytes. 6302 /// \param isVol True if destination is volatile. 6303 /// \param DstPtrInfo IR information on the memory pointer. 6304 /// \returns New head in the control flow, if lowering was successful, empty 6305 /// SDValue otherwise. 6306 /// 6307 /// The function tries to replace 'llvm.memset' intrinsic with several store 6308 /// operations and value calculation code. This is usually profitable for small 6309 /// memory size. 6310 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6311 SDValue Chain, SDValue Dst, SDValue Src, 6312 uint64_t Size, Align Alignment, bool isVol, 6313 MachinePointerInfo DstPtrInfo) { 6314 // Turn a memset of undef to nop. 6315 // FIXME: We need to honor volatile even is Src is undef. 6316 if (Src.isUndef()) 6317 return Chain; 6318 6319 // Expand memset to a series of load/store ops if the size operand 6320 // falls below a certain threshold. 6321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6322 std::vector<EVT> MemOps; 6323 bool DstAlignCanChange = false; 6324 MachineFunction &MF = DAG.getMachineFunction(); 6325 MachineFrameInfo &MFI = MF.getFrameInfo(); 6326 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6327 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6328 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6329 DstAlignCanChange = true; 6330 bool IsZeroVal = 6331 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6332 if (!TLI.findOptimalMemOpLowering( 6333 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6334 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6335 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6336 return SDValue(); 6337 6338 if (DstAlignCanChange) { 6339 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6340 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6341 if (NewAlign > Alignment) { 6342 // Give the stack frame object a larger alignment if needed. 6343 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6344 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6345 Alignment = NewAlign; 6346 } 6347 } 6348 6349 SmallVector<SDValue, 8> OutChains; 6350 uint64_t DstOff = 0; 6351 unsigned NumMemOps = MemOps.size(); 6352 6353 // Find the largest store and generate the bit pattern for it. 6354 EVT LargestVT = MemOps[0]; 6355 for (unsigned i = 1; i < NumMemOps; i++) 6356 if (MemOps[i].bitsGT(LargestVT)) 6357 LargestVT = MemOps[i]; 6358 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6359 6360 for (unsigned i = 0; i < NumMemOps; i++) { 6361 EVT VT = MemOps[i]; 6362 unsigned VTSize = VT.getSizeInBits() / 8; 6363 if (VTSize > Size) { 6364 // Issuing an unaligned load / store pair that overlaps with the previous 6365 // pair. Adjust the offset accordingly. 6366 assert(i == NumMemOps-1 && i != 0); 6367 DstOff -= VTSize - Size; 6368 } 6369 6370 // If this store is smaller than the largest store see whether we can get 6371 // the smaller value for free with a truncate. 6372 SDValue Value = MemSetValue; 6373 if (VT.bitsLT(LargestVT)) { 6374 if (!LargestVT.isVector() && !VT.isVector() && 6375 TLI.isTruncateFree(LargestVT, VT)) 6376 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6377 else 6378 Value = getMemsetValue(Src, VT, DAG, dl); 6379 } 6380 assert(Value.getValueType() == VT && "Value with wrong type."); 6381 SDValue Store = DAG.getStore( 6382 Chain, dl, Value, 6383 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6384 DstPtrInfo.getWithOffset(DstOff), Alignment, 6385 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6386 OutChains.push_back(Store); 6387 DstOff += VT.getSizeInBits() / 8; 6388 Size -= VTSize; 6389 } 6390 6391 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6392 } 6393 6394 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6395 unsigned AS) { 6396 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6397 // pointer operands can be losslessly bitcasted to pointers of address space 0 6398 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6399 report_fatal_error("cannot lower memory intrinsic in address space " + 6400 Twine(AS)); 6401 } 6402 } 6403 6404 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6405 SDValue Src, SDValue Size, Align Alignment, 6406 bool isVol, bool AlwaysInline, bool isTailCall, 6407 MachinePointerInfo DstPtrInfo, 6408 MachinePointerInfo SrcPtrInfo) { 6409 // Check to see if we should lower the memcpy to loads and stores first. 6410 // For cases within the target-specified limits, this is the best choice. 6411 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6412 if (ConstantSize) { 6413 // Memcpy with size zero? Just return the original chain. 6414 if (ConstantSize->isNullValue()) 6415 return Chain; 6416 6417 SDValue Result = getMemcpyLoadsAndStores( 6418 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6419 isVol, false, DstPtrInfo, SrcPtrInfo); 6420 if (Result.getNode()) 6421 return Result; 6422 } 6423 6424 // Then check to see if we should lower the memcpy with target-specific 6425 // code. If the target chooses to do this, this is the next best. 6426 if (TSI) { 6427 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6428 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6429 DstPtrInfo, SrcPtrInfo); 6430 if (Result.getNode()) 6431 return Result; 6432 } 6433 6434 // If we really need inline code and the target declined to provide it, 6435 // use a (potentially long) sequence of loads and stores. 6436 if (AlwaysInline) { 6437 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6438 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6439 ConstantSize->getZExtValue(), Alignment, 6440 isVol, true, DstPtrInfo, SrcPtrInfo); 6441 } 6442 6443 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6444 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6445 6446 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6447 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6448 // respect volatile, so they may do things like read or write memory 6449 // beyond the given memory regions. But fixing this isn't easy, and most 6450 // people don't care. 6451 6452 // Emit a library call. 6453 TargetLowering::ArgListTy Args; 6454 TargetLowering::ArgListEntry Entry; 6455 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6456 Entry.Node = Dst; Args.push_back(Entry); 6457 Entry.Node = Src; Args.push_back(Entry); 6458 6459 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6460 Entry.Node = Size; Args.push_back(Entry); 6461 // FIXME: pass in SDLoc 6462 TargetLowering::CallLoweringInfo CLI(*this); 6463 CLI.setDebugLoc(dl) 6464 .setChain(Chain) 6465 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6466 Dst.getValueType().getTypeForEVT(*getContext()), 6467 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6468 TLI->getPointerTy(getDataLayout())), 6469 std::move(Args)) 6470 .setDiscardResult() 6471 .setTailCall(isTailCall); 6472 6473 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6474 return CallResult.second; 6475 } 6476 6477 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6478 SDValue Dst, unsigned DstAlign, 6479 SDValue Src, unsigned SrcAlign, 6480 SDValue Size, Type *SizeTy, 6481 unsigned ElemSz, bool isTailCall, 6482 MachinePointerInfo DstPtrInfo, 6483 MachinePointerInfo SrcPtrInfo) { 6484 // Emit a library call. 6485 TargetLowering::ArgListTy Args; 6486 TargetLowering::ArgListEntry Entry; 6487 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6488 Entry.Node = Dst; 6489 Args.push_back(Entry); 6490 6491 Entry.Node = Src; 6492 Args.push_back(Entry); 6493 6494 Entry.Ty = SizeTy; 6495 Entry.Node = Size; 6496 Args.push_back(Entry); 6497 6498 RTLIB::Libcall LibraryCall = 6499 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6500 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6501 report_fatal_error("Unsupported element size"); 6502 6503 TargetLowering::CallLoweringInfo CLI(*this); 6504 CLI.setDebugLoc(dl) 6505 .setChain(Chain) 6506 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6507 Type::getVoidTy(*getContext()), 6508 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6509 TLI->getPointerTy(getDataLayout())), 6510 std::move(Args)) 6511 .setDiscardResult() 6512 .setTailCall(isTailCall); 6513 6514 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6515 return CallResult.second; 6516 } 6517 6518 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6519 SDValue Src, SDValue Size, Align Alignment, 6520 bool isVol, bool isTailCall, 6521 MachinePointerInfo DstPtrInfo, 6522 MachinePointerInfo SrcPtrInfo) { 6523 // Check to see if we should lower the memmove to loads and stores first. 6524 // For cases within the target-specified limits, this is the best choice. 6525 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6526 if (ConstantSize) { 6527 // Memmove with size zero? Just return the original chain. 6528 if (ConstantSize->isNullValue()) 6529 return Chain; 6530 6531 SDValue Result = getMemmoveLoadsAndStores( 6532 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6533 isVol, false, DstPtrInfo, SrcPtrInfo); 6534 if (Result.getNode()) 6535 return Result; 6536 } 6537 6538 // Then check to see if we should lower the memmove with target-specific 6539 // code. If the target chooses to do this, this is the next best. 6540 if (TSI) { 6541 SDValue Result = 6542 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6543 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6544 if (Result.getNode()) 6545 return Result; 6546 } 6547 6548 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6549 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6550 6551 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6552 // not be safe. See memcpy above for more details. 6553 6554 // Emit a library call. 6555 TargetLowering::ArgListTy Args; 6556 TargetLowering::ArgListEntry Entry; 6557 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6558 Entry.Node = Dst; Args.push_back(Entry); 6559 Entry.Node = Src; Args.push_back(Entry); 6560 6561 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6562 Entry.Node = Size; Args.push_back(Entry); 6563 // FIXME: pass in SDLoc 6564 TargetLowering::CallLoweringInfo CLI(*this); 6565 CLI.setDebugLoc(dl) 6566 .setChain(Chain) 6567 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6568 Dst.getValueType().getTypeForEVT(*getContext()), 6569 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6570 TLI->getPointerTy(getDataLayout())), 6571 std::move(Args)) 6572 .setDiscardResult() 6573 .setTailCall(isTailCall); 6574 6575 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6576 return CallResult.second; 6577 } 6578 6579 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6580 SDValue Dst, unsigned DstAlign, 6581 SDValue Src, unsigned SrcAlign, 6582 SDValue Size, Type *SizeTy, 6583 unsigned ElemSz, bool isTailCall, 6584 MachinePointerInfo DstPtrInfo, 6585 MachinePointerInfo SrcPtrInfo) { 6586 // Emit a library call. 6587 TargetLowering::ArgListTy Args; 6588 TargetLowering::ArgListEntry Entry; 6589 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6590 Entry.Node = Dst; 6591 Args.push_back(Entry); 6592 6593 Entry.Node = Src; 6594 Args.push_back(Entry); 6595 6596 Entry.Ty = SizeTy; 6597 Entry.Node = Size; 6598 Args.push_back(Entry); 6599 6600 RTLIB::Libcall LibraryCall = 6601 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6602 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6603 report_fatal_error("Unsupported element size"); 6604 6605 TargetLowering::CallLoweringInfo CLI(*this); 6606 CLI.setDebugLoc(dl) 6607 .setChain(Chain) 6608 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6609 Type::getVoidTy(*getContext()), 6610 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6611 TLI->getPointerTy(getDataLayout())), 6612 std::move(Args)) 6613 .setDiscardResult() 6614 .setTailCall(isTailCall); 6615 6616 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6617 return CallResult.second; 6618 } 6619 6620 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6621 SDValue Src, SDValue Size, Align Alignment, 6622 bool isVol, bool isTailCall, 6623 MachinePointerInfo DstPtrInfo) { 6624 // Check to see if we should lower the memset to stores first. 6625 // For cases within the target-specified limits, this is the best choice. 6626 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6627 if (ConstantSize) { 6628 // Memset with size zero? Just return the original chain. 6629 if (ConstantSize->isNullValue()) 6630 return Chain; 6631 6632 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6633 ConstantSize->getZExtValue(), Alignment, 6634 isVol, DstPtrInfo); 6635 6636 if (Result.getNode()) 6637 return Result; 6638 } 6639 6640 // Then check to see if we should lower the memset with target-specific 6641 // code. If the target chooses to do this, this is the next best. 6642 if (TSI) { 6643 SDValue Result = TSI->EmitTargetCodeForMemset( 6644 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6645 if (Result.getNode()) 6646 return Result; 6647 } 6648 6649 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6650 6651 // Emit a library call. 6652 TargetLowering::ArgListTy Args; 6653 TargetLowering::ArgListEntry Entry; 6654 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6655 Args.push_back(Entry); 6656 Entry.Node = Src; 6657 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6658 Args.push_back(Entry); 6659 Entry.Node = Size; 6660 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6661 Args.push_back(Entry); 6662 6663 // FIXME: pass in SDLoc 6664 TargetLowering::CallLoweringInfo CLI(*this); 6665 CLI.setDebugLoc(dl) 6666 .setChain(Chain) 6667 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6668 Dst.getValueType().getTypeForEVT(*getContext()), 6669 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6670 TLI->getPointerTy(getDataLayout())), 6671 std::move(Args)) 6672 .setDiscardResult() 6673 .setTailCall(isTailCall); 6674 6675 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6676 return CallResult.second; 6677 } 6678 6679 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6680 SDValue Dst, unsigned DstAlign, 6681 SDValue Value, SDValue Size, Type *SizeTy, 6682 unsigned ElemSz, bool isTailCall, 6683 MachinePointerInfo DstPtrInfo) { 6684 // Emit a library call. 6685 TargetLowering::ArgListTy Args; 6686 TargetLowering::ArgListEntry Entry; 6687 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6688 Entry.Node = Dst; 6689 Args.push_back(Entry); 6690 6691 Entry.Ty = Type::getInt8Ty(*getContext()); 6692 Entry.Node = Value; 6693 Args.push_back(Entry); 6694 6695 Entry.Ty = SizeTy; 6696 Entry.Node = Size; 6697 Args.push_back(Entry); 6698 6699 RTLIB::Libcall LibraryCall = 6700 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6701 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6702 report_fatal_error("Unsupported element size"); 6703 6704 TargetLowering::CallLoweringInfo CLI(*this); 6705 CLI.setDebugLoc(dl) 6706 .setChain(Chain) 6707 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6708 Type::getVoidTy(*getContext()), 6709 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6710 TLI->getPointerTy(getDataLayout())), 6711 std::move(Args)) 6712 .setDiscardResult() 6713 .setTailCall(isTailCall); 6714 6715 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6716 return CallResult.second; 6717 } 6718 6719 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6720 SDVTList VTList, ArrayRef<SDValue> Ops, 6721 MachineMemOperand *MMO) { 6722 FoldingSetNodeID ID; 6723 ID.AddInteger(MemVT.getRawBits()); 6724 AddNodeIDNode(ID, Opcode, VTList, Ops); 6725 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6726 void* IP = nullptr; 6727 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6728 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6729 return SDValue(E, 0); 6730 } 6731 6732 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6733 VTList, MemVT, MMO); 6734 createOperands(N, Ops); 6735 6736 CSEMap.InsertNode(N, IP); 6737 InsertNode(N); 6738 return SDValue(N, 0); 6739 } 6740 6741 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6742 EVT MemVT, SDVTList VTs, SDValue Chain, 6743 SDValue Ptr, SDValue Cmp, SDValue Swp, 6744 MachineMemOperand *MMO) { 6745 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6746 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6747 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6748 6749 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6750 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6751 } 6752 6753 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6754 SDValue Chain, SDValue Ptr, SDValue Val, 6755 MachineMemOperand *MMO) { 6756 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6757 Opcode == ISD::ATOMIC_LOAD_SUB || 6758 Opcode == ISD::ATOMIC_LOAD_AND || 6759 Opcode == ISD::ATOMIC_LOAD_CLR || 6760 Opcode == ISD::ATOMIC_LOAD_OR || 6761 Opcode == ISD::ATOMIC_LOAD_XOR || 6762 Opcode == ISD::ATOMIC_LOAD_NAND || 6763 Opcode == ISD::ATOMIC_LOAD_MIN || 6764 Opcode == ISD::ATOMIC_LOAD_MAX || 6765 Opcode == ISD::ATOMIC_LOAD_UMIN || 6766 Opcode == ISD::ATOMIC_LOAD_UMAX || 6767 Opcode == ISD::ATOMIC_LOAD_FADD || 6768 Opcode == ISD::ATOMIC_LOAD_FSUB || 6769 Opcode == ISD::ATOMIC_SWAP || 6770 Opcode == ISD::ATOMIC_STORE) && 6771 "Invalid Atomic Op"); 6772 6773 EVT VT = Val.getValueType(); 6774 6775 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6776 getVTList(VT, MVT::Other); 6777 SDValue Ops[] = {Chain, Ptr, Val}; 6778 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6779 } 6780 6781 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6782 EVT VT, SDValue Chain, SDValue Ptr, 6783 MachineMemOperand *MMO) { 6784 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6785 6786 SDVTList VTs = getVTList(VT, MVT::Other); 6787 SDValue Ops[] = {Chain, Ptr}; 6788 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6789 } 6790 6791 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6792 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6793 if (Ops.size() == 1) 6794 return Ops[0]; 6795 6796 SmallVector<EVT, 4> VTs; 6797 VTs.reserve(Ops.size()); 6798 for (unsigned i = 0; i < Ops.size(); ++i) 6799 VTs.push_back(Ops[i].getValueType()); 6800 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6801 } 6802 6803 SDValue SelectionDAG::getMemIntrinsicNode( 6804 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6805 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6806 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6807 if (!Size && MemVT.isScalableVector()) 6808 Size = MemoryLocation::UnknownSize; 6809 else if (!Size) 6810 Size = MemVT.getStoreSize(); 6811 6812 MachineFunction &MF = getMachineFunction(); 6813 MachineMemOperand *MMO = 6814 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6815 6816 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6817 } 6818 6819 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6820 SDVTList VTList, 6821 ArrayRef<SDValue> Ops, EVT MemVT, 6822 MachineMemOperand *MMO) { 6823 assert((Opcode == ISD::INTRINSIC_VOID || 6824 Opcode == ISD::INTRINSIC_W_CHAIN || 6825 Opcode == ISD::PREFETCH || 6826 ((int)Opcode <= std::numeric_limits<int>::max() && 6827 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6828 "Opcode is not a memory-accessing opcode!"); 6829 6830 // Memoize the node unless it returns a flag. 6831 MemIntrinsicSDNode *N; 6832 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6833 FoldingSetNodeID ID; 6834 AddNodeIDNode(ID, Opcode, VTList, Ops); 6835 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6836 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6837 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6838 void *IP = nullptr; 6839 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6840 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6841 return SDValue(E, 0); 6842 } 6843 6844 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6845 VTList, MemVT, MMO); 6846 createOperands(N, Ops); 6847 6848 CSEMap.InsertNode(N, IP); 6849 } else { 6850 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6851 VTList, MemVT, MMO); 6852 createOperands(N, Ops); 6853 } 6854 InsertNode(N); 6855 SDValue V(N, 0); 6856 NewSDValueDbgMsg(V, "Creating new node: ", this); 6857 return V; 6858 } 6859 6860 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6861 SDValue Chain, int FrameIndex, 6862 int64_t Size, int64_t Offset) { 6863 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6864 const auto VTs = getVTList(MVT::Other); 6865 SDValue Ops[2] = { 6866 Chain, 6867 getFrameIndex(FrameIndex, 6868 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6869 true)}; 6870 6871 FoldingSetNodeID ID; 6872 AddNodeIDNode(ID, Opcode, VTs, Ops); 6873 ID.AddInteger(FrameIndex); 6874 ID.AddInteger(Size); 6875 ID.AddInteger(Offset); 6876 void *IP = nullptr; 6877 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6878 return SDValue(E, 0); 6879 6880 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6881 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6882 createOperands(N, Ops); 6883 CSEMap.InsertNode(N, IP); 6884 InsertNode(N); 6885 SDValue V(N, 0); 6886 NewSDValueDbgMsg(V, "Creating new node: ", this); 6887 return V; 6888 } 6889 6890 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6891 /// MachinePointerInfo record from it. This is particularly useful because the 6892 /// code generator has many cases where it doesn't bother passing in a 6893 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6894 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6895 SelectionDAG &DAG, SDValue Ptr, 6896 int64_t Offset = 0) { 6897 // If this is FI+Offset, we can model it. 6898 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6899 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6900 FI->getIndex(), Offset); 6901 6902 // If this is (FI+Offset1)+Offset2, we can model it. 6903 if (Ptr.getOpcode() != ISD::ADD || 6904 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6905 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6906 return Info; 6907 6908 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6909 return MachinePointerInfo::getFixedStack( 6910 DAG.getMachineFunction(), FI, 6911 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6912 } 6913 6914 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6915 /// MachinePointerInfo record from it. This is particularly useful because the 6916 /// code generator has many cases where it doesn't bother passing in a 6917 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6918 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6919 SelectionDAG &DAG, SDValue Ptr, 6920 SDValue OffsetOp) { 6921 // If the 'Offset' value isn't a constant, we can't handle this. 6922 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6923 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6924 if (OffsetOp.isUndef()) 6925 return InferPointerInfo(Info, DAG, Ptr); 6926 return Info; 6927 } 6928 6929 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6930 EVT VT, const SDLoc &dl, SDValue Chain, 6931 SDValue Ptr, SDValue Offset, 6932 MachinePointerInfo PtrInfo, EVT MemVT, 6933 Align Alignment, 6934 MachineMemOperand::Flags MMOFlags, 6935 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6936 assert(Chain.getValueType() == MVT::Other && 6937 "Invalid chain type"); 6938 6939 MMOFlags |= MachineMemOperand::MOLoad; 6940 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6941 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6942 // clients. 6943 if (PtrInfo.V.isNull()) 6944 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6945 6946 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6947 MachineFunction &MF = getMachineFunction(); 6948 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6949 Alignment, AAInfo, Ranges); 6950 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6951 } 6952 6953 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6954 EVT VT, const SDLoc &dl, SDValue Chain, 6955 SDValue Ptr, SDValue Offset, EVT MemVT, 6956 MachineMemOperand *MMO) { 6957 if (VT == MemVT) { 6958 ExtType = ISD::NON_EXTLOAD; 6959 } else if (ExtType == ISD::NON_EXTLOAD) { 6960 assert(VT == MemVT && "Non-extending load from different memory type!"); 6961 } else { 6962 // Extending load. 6963 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6964 "Should only be an extending load, not truncating!"); 6965 assert(VT.isInteger() == MemVT.isInteger() && 6966 "Cannot convert from FP to Int or Int -> FP!"); 6967 assert(VT.isVector() == MemVT.isVector() && 6968 "Cannot use an ext load to convert to or from a vector!"); 6969 assert((!VT.isVector() || 6970 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6971 "Cannot use an ext load to change the number of vector elements!"); 6972 } 6973 6974 bool Indexed = AM != ISD::UNINDEXED; 6975 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6976 6977 SDVTList VTs = Indexed ? 6978 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6979 SDValue Ops[] = { Chain, Ptr, Offset }; 6980 FoldingSetNodeID ID; 6981 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6982 ID.AddInteger(MemVT.getRawBits()); 6983 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6984 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6985 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6986 void *IP = nullptr; 6987 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6988 cast<LoadSDNode>(E)->refineAlignment(MMO); 6989 return SDValue(E, 0); 6990 } 6991 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6992 ExtType, MemVT, MMO); 6993 createOperands(N, Ops); 6994 6995 CSEMap.InsertNode(N, IP); 6996 InsertNode(N); 6997 SDValue V(N, 0); 6998 NewSDValueDbgMsg(V, "Creating new node: ", this); 6999 return V; 7000 } 7001 7002 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7003 SDValue Ptr, MachinePointerInfo PtrInfo, 7004 MaybeAlign Alignment, 7005 MachineMemOperand::Flags MMOFlags, 7006 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7007 SDValue Undef = getUNDEF(Ptr.getValueType()); 7008 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7009 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7010 } 7011 7012 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7013 SDValue Ptr, MachineMemOperand *MMO) { 7014 SDValue Undef = getUNDEF(Ptr.getValueType()); 7015 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7016 VT, MMO); 7017 } 7018 7019 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7020 EVT VT, SDValue Chain, SDValue Ptr, 7021 MachinePointerInfo PtrInfo, EVT MemVT, 7022 MaybeAlign Alignment, 7023 MachineMemOperand::Flags MMOFlags, 7024 const AAMDNodes &AAInfo) { 7025 SDValue Undef = getUNDEF(Ptr.getValueType()); 7026 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7027 MemVT, Alignment, MMOFlags, AAInfo); 7028 } 7029 7030 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7031 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7032 MachineMemOperand *MMO) { 7033 SDValue Undef = getUNDEF(Ptr.getValueType()); 7034 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7035 MemVT, MMO); 7036 } 7037 7038 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7039 SDValue Base, SDValue Offset, 7040 ISD::MemIndexedMode AM) { 7041 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7042 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7043 // Don't propagate the invariant or dereferenceable flags. 7044 auto MMOFlags = 7045 LD->getMemOperand()->getFlags() & 7046 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7047 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7048 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7049 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7050 } 7051 7052 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7053 SDValue Ptr, MachinePointerInfo PtrInfo, 7054 Align Alignment, 7055 MachineMemOperand::Flags MMOFlags, 7056 const AAMDNodes &AAInfo) { 7057 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7058 7059 MMOFlags |= MachineMemOperand::MOStore; 7060 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7061 7062 if (PtrInfo.V.isNull()) 7063 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7064 7065 MachineFunction &MF = getMachineFunction(); 7066 uint64_t Size = 7067 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7068 MachineMemOperand *MMO = 7069 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7070 return getStore(Chain, dl, Val, Ptr, MMO); 7071 } 7072 7073 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7074 SDValue Ptr, MachineMemOperand *MMO) { 7075 assert(Chain.getValueType() == MVT::Other && 7076 "Invalid chain type"); 7077 EVT VT = Val.getValueType(); 7078 SDVTList VTs = getVTList(MVT::Other); 7079 SDValue Undef = getUNDEF(Ptr.getValueType()); 7080 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7081 FoldingSetNodeID ID; 7082 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7083 ID.AddInteger(VT.getRawBits()); 7084 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7085 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7086 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7087 void *IP = nullptr; 7088 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7089 cast<StoreSDNode>(E)->refineAlignment(MMO); 7090 return SDValue(E, 0); 7091 } 7092 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7093 ISD::UNINDEXED, false, VT, MMO); 7094 createOperands(N, Ops); 7095 7096 CSEMap.InsertNode(N, IP); 7097 InsertNode(N); 7098 SDValue V(N, 0); 7099 NewSDValueDbgMsg(V, "Creating new node: ", this); 7100 return V; 7101 } 7102 7103 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7104 SDValue Ptr, MachinePointerInfo PtrInfo, 7105 EVT SVT, Align Alignment, 7106 MachineMemOperand::Flags MMOFlags, 7107 const AAMDNodes &AAInfo) { 7108 assert(Chain.getValueType() == MVT::Other && 7109 "Invalid chain type"); 7110 7111 MMOFlags |= MachineMemOperand::MOStore; 7112 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7113 7114 if (PtrInfo.V.isNull()) 7115 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7116 7117 MachineFunction &MF = getMachineFunction(); 7118 MachineMemOperand *MMO = MF.getMachineMemOperand( 7119 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7120 Alignment, AAInfo); 7121 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7122 } 7123 7124 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7125 SDValue Ptr, EVT SVT, 7126 MachineMemOperand *MMO) { 7127 EVT VT = Val.getValueType(); 7128 7129 assert(Chain.getValueType() == MVT::Other && 7130 "Invalid chain type"); 7131 if (VT == SVT) 7132 return getStore(Chain, dl, Val, Ptr, MMO); 7133 7134 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7135 "Should only be a truncating store, not extending!"); 7136 assert(VT.isInteger() == SVT.isInteger() && 7137 "Can't do FP-INT conversion!"); 7138 assert(VT.isVector() == SVT.isVector() && 7139 "Cannot use trunc store to convert to or from a vector!"); 7140 assert((!VT.isVector() || 7141 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7142 "Cannot use trunc store to change the number of vector elements!"); 7143 7144 SDVTList VTs = getVTList(MVT::Other); 7145 SDValue Undef = getUNDEF(Ptr.getValueType()); 7146 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7147 FoldingSetNodeID ID; 7148 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7149 ID.AddInteger(SVT.getRawBits()); 7150 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7151 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7152 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7153 void *IP = nullptr; 7154 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7155 cast<StoreSDNode>(E)->refineAlignment(MMO); 7156 return SDValue(E, 0); 7157 } 7158 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7159 ISD::UNINDEXED, true, SVT, MMO); 7160 createOperands(N, Ops); 7161 7162 CSEMap.InsertNode(N, IP); 7163 InsertNode(N); 7164 SDValue V(N, 0); 7165 NewSDValueDbgMsg(V, "Creating new node: ", this); 7166 return V; 7167 } 7168 7169 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7170 SDValue Base, SDValue Offset, 7171 ISD::MemIndexedMode AM) { 7172 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7173 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7174 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7175 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7176 FoldingSetNodeID ID; 7177 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7178 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7179 ID.AddInteger(ST->getRawSubclassData()); 7180 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7181 void *IP = nullptr; 7182 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7183 return SDValue(E, 0); 7184 7185 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7186 ST->isTruncatingStore(), ST->getMemoryVT(), 7187 ST->getMemOperand()); 7188 createOperands(N, Ops); 7189 7190 CSEMap.InsertNode(N, IP); 7191 InsertNode(N); 7192 SDValue V(N, 0); 7193 NewSDValueDbgMsg(V, "Creating new node: ", this); 7194 return V; 7195 } 7196 7197 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7198 SDValue Base, SDValue Offset, SDValue Mask, 7199 SDValue PassThru, EVT MemVT, 7200 MachineMemOperand *MMO, 7201 ISD::MemIndexedMode AM, 7202 ISD::LoadExtType ExtTy, bool isExpanding) { 7203 bool Indexed = AM != ISD::UNINDEXED; 7204 assert((Indexed || Offset.isUndef()) && 7205 "Unindexed masked load with an offset!"); 7206 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7207 : getVTList(VT, MVT::Other); 7208 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7209 FoldingSetNodeID ID; 7210 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7211 ID.AddInteger(MemVT.getRawBits()); 7212 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7213 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7214 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7215 void *IP = nullptr; 7216 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7217 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7218 return SDValue(E, 0); 7219 } 7220 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7221 AM, ExtTy, isExpanding, MemVT, MMO); 7222 createOperands(N, Ops); 7223 7224 CSEMap.InsertNode(N, IP); 7225 InsertNode(N); 7226 SDValue V(N, 0); 7227 NewSDValueDbgMsg(V, "Creating new node: ", this); 7228 return V; 7229 } 7230 7231 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7232 SDValue Base, SDValue Offset, 7233 ISD::MemIndexedMode AM) { 7234 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7235 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7236 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7237 Offset, LD->getMask(), LD->getPassThru(), 7238 LD->getMemoryVT(), LD->getMemOperand(), AM, 7239 LD->getExtensionType(), LD->isExpandingLoad()); 7240 } 7241 7242 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7243 SDValue Val, SDValue Base, SDValue Offset, 7244 SDValue Mask, EVT MemVT, 7245 MachineMemOperand *MMO, 7246 ISD::MemIndexedMode AM, bool IsTruncating, 7247 bool IsCompressing) { 7248 assert(Chain.getValueType() == MVT::Other && 7249 "Invalid chain type"); 7250 bool Indexed = AM != ISD::UNINDEXED; 7251 assert((Indexed || Offset.isUndef()) && 7252 "Unindexed masked store with an offset!"); 7253 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7254 : getVTList(MVT::Other); 7255 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7256 FoldingSetNodeID ID; 7257 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7258 ID.AddInteger(MemVT.getRawBits()); 7259 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7260 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7261 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7262 void *IP = nullptr; 7263 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7264 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7265 return SDValue(E, 0); 7266 } 7267 auto *N = 7268 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7269 IsTruncating, IsCompressing, MemVT, MMO); 7270 createOperands(N, Ops); 7271 7272 CSEMap.InsertNode(N, IP); 7273 InsertNode(N); 7274 SDValue V(N, 0); 7275 NewSDValueDbgMsg(V, "Creating new node: ", this); 7276 return V; 7277 } 7278 7279 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7280 SDValue Base, SDValue Offset, 7281 ISD::MemIndexedMode AM) { 7282 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7283 assert(ST->getOffset().isUndef() && 7284 "Masked store is already a indexed store!"); 7285 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7286 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7287 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7288 } 7289 7290 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7291 ArrayRef<SDValue> Ops, 7292 MachineMemOperand *MMO, 7293 ISD::MemIndexType IndexType) { 7294 assert(Ops.size() == 6 && "Incompatible number of operands"); 7295 7296 FoldingSetNodeID ID; 7297 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7298 ID.AddInteger(VT.getRawBits()); 7299 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7300 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7301 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7302 void *IP = nullptr; 7303 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7304 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7305 return SDValue(E, 0); 7306 } 7307 7308 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7309 VTs, VT, MMO, IndexType); 7310 createOperands(N, Ops); 7311 7312 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7313 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7314 assert(N->getMask().getValueType().getVectorNumElements() == 7315 N->getValueType(0).getVectorNumElements() && 7316 "Vector width mismatch between mask and data"); 7317 assert(N->getIndex().getValueType().getVectorNumElements() >= 7318 N->getValueType(0).getVectorNumElements() && 7319 "Vector width mismatch between index and data"); 7320 assert(isa<ConstantSDNode>(N->getScale()) && 7321 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7322 "Scale should be a constant power of 2"); 7323 7324 CSEMap.InsertNode(N, IP); 7325 InsertNode(N); 7326 SDValue V(N, 0); 7327 NewSDValueDbgMsg(V, "Creating new node: ", this); 7328 return V; 7329 } 7330 7331 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7332 ArrayRef<SDValue> Ops, 7333 MachineMemOperand *MMO, 7334 ISD::MemIndexType IndexType, 7335 bool IsTrunc) { 7336 assert(Ops.size() == 6 && "Incompatible number of operands"); 7337 7338 FoldingSetNodeID ID; 7339 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7340 ID.AddInteger(VT.getRawBits()); 7341 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7342 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7343 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7344 void *IP = nullptr; 7345 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7346 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7347 return SDValue(E, 0); 7348 } 7349 7350 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7351 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7352 VTs, VT, MMO, IndexType, IsTrunc); 7353 createOperands(N, Ops); 7354 7355 assert(N->getMask().getValueType().getVectorElementCount() == 7356 N->getValue().getValueType().getVectorElementCount() && 7357 "Vector width mismatch between mask and data"); 7358 assert( 7359 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7360 N->getValue().getValueType().getVectorElementCount().isScalable() && 7361 "Scalable flags of index and data do not match"); 7362 assert(ElementCount::isKnownGE( 7363 N->getIndex().getValueType().getVectorElementCount(), 7364 N->getValue().getValueType().getVectorElementCount()) && 7365 "Vector width mismatch between index and data"); 7366 assert(isa<ConstantSDNode>(N->getScale()) && 7367 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7368 "Scale should be a constant power of 2"); 7369 7370 CSEMap.InsertNode(N, IP); 7371 InsertNode(N); 7372 SDValue V(N, 0); 7373 NewSDValueDbgMsg(V, "Creating new node: ", this); 7374 return V; 7375 } 7376 7377 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7378 // select undef, T, F --> T (if T is a constant), otherwise F 7379 // select, ?, undef, F --> F 7380 // select, ?, T, undef --> T 7381 if (Cond.isUndef()) 7382 return isConstantValueOfAnyType(T) ? T : F; 7383 if (T.isUndef()) 7384 return F; 7385 if (F.isUndef()) 7386 return T; 7387 7388 // select true, T, F --> T 7389 // select false, T, F --> F 7390 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7391 return CondC->isNullValue() ? F : T; 7392 7393 // TODO: This should simplify VSELECT with constant condition using something 7394 // like this (but check boolean contents to be complete?): 7395 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7396 // return T; 7397 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7398 // return F; 7399 7400 // select ?, T, T --> T 7401 if (T == F) 7402 return T; 7403 7404 return SDValue(); 7405 } 7406 7407 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7408 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7409 if (X.isUndef()) 7410 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7411 // shift X, undef --> undef (because it may shift by the bitwidth) 7412 if (Y.isUndef()) 7413 return getUNDEF(X.getValueType()); 7414 7415 // shift 0, Y --> 0 7416 // shift X, 0 --> X 7417 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7418 return X; 7419 7420 // shift X, C >= bitwidth(X) --> undef 7421 // All vector elements must be too big (or undef) to avoid partial undefs. 7422 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7423 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7424 }; 7425 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7426 return getUNDEF(X.getValueType()); 7427 7428 return SDValue(); 7429 } 7430 7431 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7432 SDNodeFlags Flags) { 7433 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7434 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7435 // operation is poison. That result can be relaxed to undef. 7436 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7437 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7438 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7439 (YC && YC->getValueAPF().isNaN()); 7440 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7441 (YC && YC->getValueAPF().isInfinity()); 7442 7443 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7444 return getUNDEF(X.getValueType()); 7445 7446 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7447 return getUNDEF(X.getValueType()); 7448 7449 if (!YC) 7450 return SDValue(); 7451 7452 // X + -0.0 --> X 7453 if (Opcode == ISD::FADD) 7454 if (YC->getValueAPF().isNegZero()) 7455 return X; 7456 7457 // X - +0.0 --> X 7458 if (Opcode == ISD::FSUB) 7459 if (YC->getValueAPF().isPosZero()) 7460 return X; 7461 7462 // X * 1.0 --> X 7463 // X / 1.0 --> X 7464 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7465 if (YC->getValueAPF().isExactlyValue(1.0)) 7466 return X; 7467 7468 // X * 0.0 --> 0.0 7469 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7470 if (YC->getValueAPF().isZero()) 7471 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7472 7473 return SDValue(); 7474 } 7475 7476 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7477 SDValue Ptr, SDValue SV, unsigned Align) { 7478 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7479 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7480 } 7481 7482 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7483 ArrayRef<SDUse> Ops) { 7484 switch (Ops.size()) { 7485 case 0: return getNode(Opcode, DL, VT); 7486 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7487 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7488 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7489 default: break; 7490 } 7491 7492 // Copy from an SDUse array into an SDValue array for use with 7493 // the regular getNode logic. 7494 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7495 return getNode(Opcode, DL, VT, NewOps); 7496 } 7497 7498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7499 ArrayRef<SDValue> Ops) { 7500 SDNodeFlags Flags; 7501 if (Inserter) 7502 Flags = Inserter->getFlags(); 7503 return getNode(Opcode, DL, VT, Ops, Flags); 7504 } 7505 7506 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7507 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7508 unsigned NumOps = Ops.size(); 7509 switch (NumOps) { 7510 case 0: return getNode(Opcode, DL, VT); 7511 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7512 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7513 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7514 default: break; 7515 } 7516 7517 switch (Opcode) { 7518 default: break; 7519 case ISD::BUILD_VECTOR: 7520 // Attempt to simplify BUILD_VECTOR. 7521 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7522 return V; 7523 break; 7524 case ISD::CONCAT_VECTORS: 7525 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7526 return V; 7527 break; 7528 case ISD::SELECT_CC: 7529 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7530 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7531 "LHS and RHS of condition must have same type!"); 7532 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7533 "True and False arms of SelectCC must have same type!"); 7534 assert(Ops[2].getValueType() == VT && 7535 "select_cc node must be of same type as true and false value!"); 7536 break; 7537 case ISD::BR_CC: 7538 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7539 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7540 "LHS/RHS of comparison should match types!"); 7541 break; 7542 } 7543 7544 // Memoize nodes. 7545 SDNode *N; 7546 SDVTList VTs = getVTList(VT); 7547 7548 if (VT != MVT::Glue) { 7549 FoldingSetNodeID ID; 7550 AddNodeIDNode(ID, Opcode, VTs, Ops); 7551 void *IP = nullptr; 7552 7553 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7554 return SDValue(E, 0); 7555 7556 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7557 createOperands(N, Ops); 7558 7559 CSEMap.InsertNode(N, IP); 7560 } else { 7561 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7562 createOperands(N, Ops); 7563 } 7564 7565 N->setFlags(Flags); 7566 InsertNode(N); 7567 SDValue V(N, 0); 7568 NewSDValueDbgMsg(V, "Creating new node: ", this); 7569 return V; 7570 } 7571 7572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7573 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7574 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7575 } 7576 7577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7578 ArrayRef<SDValue> Ops) { 7579 SDNodeFlags Flags; 7580 if (Inserter) 7581 Flags = Inserter->getFlags(); 7582 return getNode(Opcode, DL, VTList, Ops, Flags); 7583 } 7584 7585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7586 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7587 if (VTList.NumVTs == 1) 7588 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7589 7590 switch (Opcode) { 7591 case ISD::STRICT_FP_EXTEND: 7592 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7593 "Invalid STRICT_FP_EXTEND!"); 7594 assert(VTList.VTs[0].isFloatingPoint() && 7595 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7596 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7597 "STRICT_FP_EXTEND result type should be vector iff the operand " 7598 "type is vector!"); 7599 assert((!VTList.VTs[0].isVector() || 7600 VTList.VTs[0].getVectorNumElements() == 7601 Ops[1].getValueType().getVectorNumElements()) && 7602 "Vector element count mismatch!"); 7603 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7604 "Invalid fpext node, dst <= src!"); 7605 break; 7606 case ISD::STRICT_FP_ROUND: 7607 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7608 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7609 "STRICT_FP_ROUND result type should be vector iff the operand " 7610 "type is vector!"); 7611 assert((!VTList.VTs[0].isVector() || 7612 VTList.VTs[0].getVectorNumElements() == 7613 Ops[1].getValueType().getVectorNumElements()) && 7614 "Vector element count mismatch!"); 7615 assert(VTList.VTs[0].isFloatingPoint() && 7616 Ops[1].getValueType().isFloatingPoint() && 7617 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7618 isa<ConstantSDNode>(Ops[2]) && 7619 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7620 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7621 "Invalid STRICT_FP_ROUND!"); 7622 break; 7623 #if 0 7624 // FIXME: figure out how to safely handle things like 7625 // int foo(int x) { return 1 << (x & 255); } 7626 // int bar() { return foo(256); } 7627 case ISD::SRA_PARTS: 7628 case ISD::SRL_PARTS: 7629 case ISD::SHL_PARTS: 7630 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7631 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7632 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7633 else if (N3.getOpcode() == ISD::AND) 7634 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7635 // If the and is only masking out bits that cannot effect the shift, 7636 // eliminate the and. 7637 unsigned NumBits = VT.getScalarSizeInBits()*2; 7638 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7639 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7640 } 7641 break; 7642 #endif 7643 } 7644 7645 // Memoize the node unless it returns a flag. 7646 SDNode *N; 7647 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7648 FoldingSetNodeID ID; 7649 AddNodeIDNode(ID, Opcode, VTList, Ops); 7650 void *IP = nullptr; 7651 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7652 return SDValue(E, 0); 7653 7654 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7655 createOperands(N, Ops); 7656 CSEMap.InsertNode(N, IP); 7657 } else { 7658 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7659 createOperands(N, Ops); 7660 } 7661 7662 N->setFlags(Flags); 7663 InsertNode(N); 7664 SDValue V(N, 0); 7665 NewSDValueDbgMsg(V, "Creating new node: ", this); 7666 return V; 7667 } 7668 7669 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7670 SDVTList VTList) { 7671 return getNode(Opcode, DL, VTList, None); 7672 } 7673 7674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7675 SDValue N1) { 7676 SDValue Ops[] = { N1 }; 7677 return getNode(Opcode, DL, VTList, Ops); 7678 } 7679 7680 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7681 SDValue N1, SDValue N2) { 7682 SDValue Ops[] = { N1, N2 }; 7683 return getNode(Opcode, DL, VTList, Ops); 7684 } 7685 7686 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7687 SDValue N1, SDValue N2, SDValue N3) { 7688 SDValue Ops[] = { N1, N2, N3 }; 7689 return getNode(Opcode, DL, VTList, Ops); 7690 } 7691 7692 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7693 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7694 SDValue Ops[] = { N1, N2, N3, N4 }; 7695 return getNode(Opcode, DL, VTList, Ops); 7696 } 7697 7698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7699 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7700 SDValue N5) { 7701 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7702 return getNode(Opcode, DL, VTList, Ops); 7703 } 7704 7705 SDVTList SelectionDAG::getVTList(EVT VT) { 7706 return makeVTList(SDNode::getValueTypeList(VT), 1); 7707 } 7708 7709 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7710 FoldingSetNodeID ID; 7711 ID.AddInteger(2U); 7712 ID.AddInteger(VT1.getRawBits()); 7713 ID.AddInteger(VT2.getRawBits()); 7714 7715 void *IP = nullptr; 7716 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7717 if (!Result) { 7718 EVT *Array = Allocator.Allocate<EVT>(2); 7719 Array[0] = VT1; 7720 Array[1] = VT2; 7721 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7722 VTListMap.InsertNode(Result, IP); 7723 } 7724 return Result->getSDVTList(); 7725 } 7726 7727 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7728 FoldingSetNodeID ID; 7729 ID.AddInteger(3U); 7730 ID.AddInteger(VT1.getRawBits()); 7731 ID.AddInteger(VT2.getRawBits()); 7732 ID.AddInteger(VT3.getRawBits()); 7733 7734 void *IP = nullptr; 7735 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7736 if (!Result) { 7737 EVT *Array = Allocator.Allocate<EVT>(3); 7738 Array[0] = VT1; 7739 Array[1] = VT2; 7740 Array[2] = VT3; 7741 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7742 VTListMap.InsertNode(Result, IP); 7743 } 7744 return Result->getSDVTList(); 7745 } 7746 7747 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7748 FoldingSetNodeID ID; 7749 ID.AddInteger(4U); 7750 ID.AddInteger(VT1.getRawBits()); 7751 ID.AddInteger(VT2.getRawBits()); 7752 ID.AddInteger(VT3.getRawBits()); 7753 ID.AddInteger(VT4.getRawBits()); 7754 7755 void *IP = nullptr; 7756 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7757 if (!Result) { 7758 EVT *Array = Allocator.Allocate<EVT>(4); 7759 Array[0] = VT1; 7760 Array[1] = VT2; 7761 Array[2] = VT3; 7762 Array[3] = VT4; 7763 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7764 VTListMap.InsertNode(Result, IP); 7765 } 7766 return Result->getSDVTList(); 7767 } 7768 7769 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7770 unsigned NumVTs = VTs.size(); 7771 FoldingSetNodeID ID; 7772 ID.AddInteger(NumVTs); 7773 for (unsigned index = 0; index < NumVTs; index++) { 7774 ID.AddInteger(VTs[index].getRawBits()); 7775 } 7776 7777 void *IP = nullptr; 7778 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7779 if (!Result) { 7780 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7781 llvm::copy(VTs, Array); 7782 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7783 VTListMap.InsertNode(Result, IP); 7784 } 7785 return Result->getSDVTList(); 7786 } 7787 7788 7789 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7790 /// specified operands. If the resultant node already exists in the DAG, 7791 /// this does not modify the specified node, instead it returns the node that 7792 /// already exists. If the resultant node does not exist in the DAG, the 7793 /// input node is returned. As a degenerate case, if you specify the same 7794 /// input operands as the node already has, the input node is returned. 7795 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7796 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7797 7798 // Check to see if there is no change. 7799 if (Op == N->getOperand(0)) return N; 7800 7801 // See if the modified node already exists. 7802 void *InsertPos = nullptr; 7803 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7804 return Existing; 7805 7806 // Nope it doesn't. Remove the node from its current place in the maps. 7807 if (InsertPos) 7808 if (!RemoveNodeFromCSEMaps(N)) 7809 InsertPos = nullptr; 7810 7811 // Now we update the operands. 7812 N->OperandList[0].set(Op); 7813 7814 updateDivergence(N); 7815 // If this gets put into a CSE map, add it. 7816 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7817 return N; 7818 } 7819 7820 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7821 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7822 7823 // Check to see if there is no change. 7824 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7825 return N; // No operands changed, just return the input node. 7826 7827 // See if the modified node already exists. 7828 void *InsertPos = nullptr; 7829 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7830 return Existing; 7831 7832 // Nope it doesn't. Remove the node from its current place in the maps. 7833 if (InsertPos) 7834 if (!RemoveNodeFromCSEMaps(N)) 7835 InsertPos = nullptr; 7836 7837 // Now we update the operands. 7838 if (N->OperandList[0] != Op1) 7839 N->OperandList[0].set(Op1); 7840 if (N->OperandList[1] != Op2) 7841 N->OperandList[1].set(Op2); 7842 7843 updateDivergence(N); 7844 // If this gets put into a CSE map, add it. 7845 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7846 return N; 7847 } 7848 7849 SDNode *SelectionDAG:: 7850 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7851 SDValue Ops[] = { Op1, Op2, Op3 }; 7852 return UpdateNodeOperands(N, Ops); 7853 } 7854 7855 SDNode *SelectionDAG:: 7856 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7857 SDValue Op3, SDValue Op4) { 7858 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7859 return UpdateNodeOperands(N, Ops); 7860 } 7861 7862 SDNode *SelectionDAG:: 7863 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7864 SDValue Op3, SDValue Op4, SDValue Op5) { 7865 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7866 return UpdateNodeOperands(N, Ops); 7867 } 7868 7869 SDNode *SelectionDAG:: 7870 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7871 unsigned NumOps = Ops.size(); 7872 assert(N->getNumOperands() == NumOps && 7873 "Update with wrong number of operands"); 7874 7875 // If no operands changed just return the input node. 7876 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7877 return N; 7878 7879 // See if the modified node already exists. 7880 void *InsertPos = nullptr; 7881 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7882 return Existing; 7883 7884 // Nope it doesn't. Remove the node from its current place in the maps. 7885 if (InsertPos) 7886 if (!RemoveNodeFromCSEMaps(N)) 7887 InsertPos = nullptr; 7888 7889 // Now we update the operands. 7890 for (unsigned i = 0; i != NumOps; ++i) 7891 if (N->OperandList[i] != Ops[i]) 7892 N->OperandList[i].set(Ops[i]); 7893 7894 updateDivergence(N); 7895 // If this gets put into a CSE map, add it. 7896 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7897 return N; 7898 } 7899 7900 /// DropOperands - Release the operands and set this node to have 7901 /// zero operands. 7902 void SDNode::DropOperands() { 7903 // Unlike the code in MorphNodeTo that does this, we don't need to 7904 // watch for dead nodes here. 7905 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7906 SDUse &Use = *I++; 7907 Use.set(SDValue()); 7908 } 7909 } 7910 7911 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7912 ArrayRef<MachineMemOperand *> NewMemRefs) { 7913 if (NewMemRefs.empty()) { 7914 N->clearMemRefs(); 7915 return; 7916 } 7917 7918 // Check if we can avoid allocating by storing a single reference directly. 7919 if (NewMemRefs.size() == 1) { 7920 N->MemRefs = NewMemRefs[0]; 7921 N->NumMemRefs = 1; 7922 return; 7923 } 7924 7925 MachineMemOperand **MemRefsBuffer = 7926 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7927 llvm::copy(NewMemRefs, MemRefsBuffer); 7928 N->MemRefs = MemRefsBuffer; 7929 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7930 } 7931 7932 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7933 /// machine opcode. 7934 /// 7935 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7936 EVT VT) { 7937 SDVTList VTs = getVTList(VT); 7938 return SelectNodeTo(N, MachineOpc, VTs, None); 7939 } 7940 7941 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7942 EVT VT, SDValue Op1) { 7943 SDVTList VTs = getVTList(VT); 7944 SDValue Ops[] = { Op1 }; 7945 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7946 } 7947 7948 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7949 EVT VT, SDValue Op1, 7950 SDValue Op2) { 7951 SDVTList VTs = getVTList(VT); 7952 SDValue Ops[] = { Op1, Op2 }; 7953 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7954 } 7955 7956 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7957 EVT VT, SDValue Op1, 7958 SDValue Op2, SDValue Op3) { 7959 SDVTList VTs = getVTList(VT); 7960 SDValue Ops[] = { Op1, Op2, Op3 }; 7961 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7962 } 7963 7964 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7965 EVT VT, ArrayRef<SDValue> Ops) { 7966 SDVTList VTs = getVTList(VT); 7967 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7968 } 7969 7970 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7971 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7972 SDVTList VTs = getVTList(VT1, VT2); 7973 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7974 } 7975 7976 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7977 EVT VT1, EVT VT2) { 7978 SDVTList VTs = getVTList(VT1, VT2); 7979 return SelectNodeTo(N, MachineOpc, VTs, None); 7980 } 7981 7982 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7983 EVT VT1, EVT VT2, EVT VT3, 7984 ArrayRef<SDValue> Ops) { 7985 SDVTList VTs = getVTList(VT1, VT2, VT3); 7986 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7987 } 7988 7989 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7990 EVT VT1, EVT VT2, 7991 SDValue Op1, SDValue Op2) { 7992 SDVTList VTs = getVTList(VT1, VT2); 7993 SDValue Ops[] = { Op1, Op2 }; 7994 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7995 } 7996 7997 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7998 SDVTList VTs,ArrayRef<SDValue> Ops) { 7999 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8000 // Reset the NodeID to -1. 8001 New->setNodeId(-1); 8002 if (New != N) { 8003 ReplaceAllUsesWith(N, New); 8004 RemoveDeadNode(N); 8005 } 8006 return New; 8007 } 8008 8009 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8010 /// the line number information on the merged node since it is not possible to 8011 /// preserve the information that operation is associated with multiple lines. 8012 /// This will make the debugger working better at -O0, were there is a higher 8013 /// probability having other instructions associated with that line. 8014 /// 8015 /// For IROrder, we keep the smaller of the two 8016 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8017 DebugLoc NLoc = N->getDebugLoc(); 8018 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8019 N->setDebugLoc(DebugLoc()); 8020 } 8021 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8022 N->setIROrder(Order); 8023 return N; 8024 } 8025 8026 /// MorphNodeTo - This *mutates* the specified node to have the specified 8027 /// return type, opcode, and operands. 8028 /// 8029 /// Note that MorphNodeTo returns the resultant node. If there is already a 8030 /// node of the specified opcode and operands, it returns that node instead of 8031 /// the current one. Note that the SDLoc need not be the same. 8032 /// 8033 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8034 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8035 /// node, and because it doesn't require CSE recalculation for any of 8036 /// the node's users. 8037 /// 8038 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8039 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8040 /// the legalizer which maintain worklists that would need to be updated when 8041 /// deleting things. 8042 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8043 SDVTList VTs, ArrayRef<SDValue> Ops) { 8044 // If an identical node already exists, use it. 8045 void *IP = nullptr; 8046 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8047 FoldingSetNodeID ID; 8048 AddNodeIDNode(ID, Opc, VTs, Ops); 8049 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8050 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8051 } 8052 8053 if (!RemoveNodeFromCSEMaps(N)) 8054 IP = nullptr; 8055 8056 // Start the morphing. 8057 N->NodeType = Opc; 8058 N->ValueList = VTs.VTs; 8059 N->NumValues = VTs.NumVTs; 8060 8061 // Clear the operands list, updating used nodes to remove this from their 8062 // use list. Keep track of any operands that become dead as a result. 8063 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8064 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8065 SDUse &Use = *I++; 8066 SDNode *Used = Use.getNode(); 8067 Use.set(SDValue()); 8068 if (Used->use_empty()) 8069 DeadNodeSet.insert(Used); 8070 } 8071 8072 // For MachineNode, initialize the memory references information. 8073 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8074 MN->clearMemRefs(); 8075 8076 // Swap for an appropriately sized array from the recycler. 8077 removeOperands(N); 8078 createOperands(N, Ops); 8079 8080 // Delete any nodes that are still dead after adding the uses for the 8081 // new operands. 8082 if (!DeadNodeSet.empty()) { 8083 SmallVector<SDNode *, 16> DeadNodes; 8084 for (SDNode *N : DeadNodeSet) 8085 if (N->use_empty()) 8086 DeadNodes.push_back(N); 8087 RemoveDeadNodes(DeadNodes); 8088 } 8089 8090 if (IP) 8091 CSEMap.InsertNode(N, IP); // Memoize the new node. 8092 return N; 8093 } 8094 8095 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8096 unsigned OrigOpc = Node->getOpcode(); 8097 unsigned NewOpc; 8098 switch (OrigOpc) { 8099 default: 8100 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8101 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8102 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8103 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8104 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8105 #include "llvm/IR/ConstrainedOps.def" 8106 } 8107 8108 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8109 8110 // We're taking this node out of the chain, so we need to re-link things. 8111 SDValue InputChain = Node->getOperand(0); 8112 SDValue OutputChain = SDValue(Node, 1); 8113 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8114 8115 SmallVector<SDValue, 3> Ops; 8116 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8117 Ops.push_back(Node->getOperand(i)); 8118 8119 SDVTList VTs = getVTList(Node->getValueType(0)); 8120 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8121 8122 // MorphNodeTo can operate in two ways: if an existing node with the 8123 // specified operands exists, it can just return it. Otherwise, it 8124 // updates the node in place to have the requested operands. 8125 if (Res == Node) { 8126 // If we updated the node in place, reset the node ID. To the isel, 8127 // this should be just like a newly allocated machine node. 8128 Res->setNodeId(-1); 8129 } else { 8130 ReplaceAllUsesWith(Node, Res); 8131 RemoveDeadNode(Node); 8132 } 8133 8134 return Res; 8135 } 8136 8137 /// getMachineNode - These are used for target selectors to create a new node 8138 /// with specified return type(s), MachineInstr opcode, and operands. 8139 /// 8140 /// Note that getMachineNode returns the resultant node. If there is already a 8141 /// node of the specified opcode and operands, it returns that node instead of 8142 /// the current one. 8143 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8144 EVT VT) { 8145 SDVTList VTs = getVTList(VT); 8146 return getMachineNode(Opcode, dl, VTs, None); 8147 } 8148 8149 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8150 EVT VT, SDValue Op1) { 8151 SDVTList VTs = getVTList(VT); 8152 SDValue Ops[] = { Op1 }; 8153 return getMachineNode(Opcode, dl, VTs, Ops); 8154 } 8155 8156 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8157 EVT VT, SDValue Op1, SDValue Op2) { 8158 SDVTList VTs = getVTList(VT); 8159 SDValue Ops[] = { Op1, Op2 }; 8160 return getMachineNode(Opcode, dl, VTs, Ops); 8161 } 8162 8163 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8164 EVT VT, SDValue Op1, SDValue Op2, 8165 SDValue Op3) { 8166 SDVTList VTs = getVTList(VT); 8167 SDValue Ops[] = { Op1, Op2, Op3 }; 8168 return getMachineNode(Opcode, dl, VTs, Ops); 8169 } 8170 8171 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8172 EVT VT, ArrayRef<SDValue> Ops) { 8173 SDVTList VTs = getVTList(VT); 8174 return getMachineNode(Opcode, dl, VTs, Ops); 8175 } 8176 8177 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8178 EVT VT1, EVT VT2, SDValue Op1, 8179 SDValue Op2) { 8180 SDVTList VTs = getVTList(VT1, VT2); 8181 SDValue Ops[] = { Op1, Op2 }; 8182 return getMachineNode(Opcode, dl, VTs, Ops); 8183 } 8184 8185 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8186 EVT VT1, EVT VT2, SDValue Op1, 8187 SDValue Op2, SDValue Op3) { 8188 SDVTList VTs = getVTList(VT1, VT2); 8189 SDValue Ops[] = { Op1, Op2, Op3 }; 8190 return getMachineNode(Opcode, dl, VTs, Ops); 8191 } 8192 8193 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8194 EVT VT1, EVT VT2, 8195 ArrayRef<SDValue> Ops) { 8196 SDVTList VTs = getVTList(VT1, VT2); 8197 return getMachineNode(Opcode, dl, VTs, Ops); 8198 } 8199 8200 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8201 EVT VT1, EVT VT2, EVT VT3, 8202 SDValue Op1, SDValue Op2) { 8203 SDVTList VTs = getVTList(VT1, VT2, VT3); 8204 SDValue Ops[] = { Op1, Op2 }; 8205 return getMachineNode(Opcode, dl, VTs, Ops); 8206 } 8207 8208 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8209 EVT VT1, EVT VT2, EVT VT3, 8210 SDValue Op1, SDValue Op2, 8211 SDValue Op3) { 8212 SDVTList VTs = getVTList(VT1, VT2, VT3); 8213 SDValue Ops[] = { Op1, Op2, Op3 }; 8214 return getMachineNode(Opcode, dl, VTs, Ops); 8215 } 8216 8217 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8218 EVT VT1, EVT VT2, EVT VT3, 8219 ArrayRef<SDValue> Ops) { 8220 SDVTList VTs = getVTList(VT1, VT2, VT3); 8221 return getMachineNode(Opcode, dl, VTs, Ops); 8222 } 8223 8224 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8225 ArrayRef<EVT> ResultTys, 8226 ArrayRef<SDValue> Ops) { 8227 SDVTList VTs = getVTList(ResultTys); 8228 return getMachineNode(Opcode, dl, VTs, Ops); 8229 } 8230 8231 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8232 SDVTList VTs, 8233 ArrayRef<SDValue> Ops) { 8234 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8235 MachineSDNode *N; 8236 void *IP = nullptr; 8237 8238 if (DoCSE) { 8239 FoldingSetNodeID ID; 8240 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8241 IP = nullptr; 8242 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8243 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8244 } 8245 } 8246 8247 // Allocate a new MachineSDNode. 8248 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8249 createOperands(N, Ops); 8250 8251 if (DoCSE) 8252 CSEMap.InsertNode(N, IP); 8253 8254 InsertNode(N); 8255 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8256 return N; 8257 } 8258 8259 /// getTargetExtractSubreg - A convenience function for creating 8260 /// TargetOpcode::EXTRACT_SUBREG nodes. 8261 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8262 SDValue Operand) { 8263 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8264 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8265 VT, Operand, SRIdxVal); 8266 return SDValue(Subreg, 0); 8267 } 8268 8269 /// getTargetInsertSubreg - A convenience function for creating 8270 /// TargetOpcode::INSERT_SUBREG nodes. 8271 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8272 SDValue Operand, SDValue Subreg) { 8273 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8274 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8275 VT, Operand, Subreg, SRIdxVal); 8276 return SDValue(Result, 0); 8277 } 8278 8279 /// getNodeIfExists - Get the specified node if it's already available, or 8280 /// else return NULL. 8281 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8282 ArrayRef<SDValue> Ops) { 8283 SDNodeFlags Flags; 8284 if (Inserter) 8285 Flags = Inserter->getFlags(); 8286 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8287 } 8288 8289 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8290 ArrayRef<SDValue> Ops, 8291 const SDNodeFlags Flags) { 8292 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8293 FoldingSetNodeID ID; 8294 AddNodeIDNode(ID, Opcode, VTList, Ops); 8295 void *IP = nullptr; 8296 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8297 E->intersectFlagsWith(Flags); 8298 return E; 8299 } 8300 } 8301 return nullptr; 8302 } 8303 8304 /// getDbgValue - Creates a SDDbgValue node. 8305 /// 8306 /// SDNode 8307 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8308 SDNode *N, unsigned R, bool IsIndirect, 8309 const DebugLoc &DL, unsigned O) { 8310 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8311 "Expected inlined-at fields to agree"); 8312 return new (DbgInfo->getAlloc()) 8313 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8314 } 8315 8316 /// Constant 8317 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8318 DIExpression *Expr, 8319 const Value *C, 8320 const DebugLoc &DL, unsigned O) { 8321 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8322 "Expected inlined-at fields to agree"); 8323 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8324 } 8325 8326 /// FrameIndex 8327 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8328 DIExpression *Expr, unsigned FI, 8329 bool IsIndirect, 8330 const DebugLoc &DL, 8331 unsigned O) { 8332 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8333 "Expected inlined-at fields to agree"); 8334 return new (DbgInfo->getAlloc()) 8335 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8336 } 8337 8338 /// VReg 8339 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8340 DIExpression *Expr, 8341 unsigned VReg, bool IsIndirect, 8342 const DebugLoc &DL, unsigned O) { 8343 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8344 "Expected inlined-at fields to agree"); 8345 return new (DbgInfo->getAlloc()) 8346 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8347 } 8348 8349 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8350 unsigned OffsetInBits, unsigned SizeInBits, 8351 bool InvalidateDbg) { 8352 SDNode *FromNode = From.getNode(); 8353 SDNode *ToNode = To.getNode(); 8354 assert(FromNode && ToNode && "Can't modify dbg values"); 8355 8356 // PR35338 8357 // TODO: assert(From != To && "Redundant dbg value transfer"); 8358 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8359 if (From == To || FromNode == ToNode) 8360 return; 8361 8362 if (!FromNode->getHasDebugValue()) 8363 return; 8364 8365 SmallVector<SDDbgValue *, 2> ClonedDVs; 8366 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8367 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8368 continue; 8369 8370 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8371 8372 // Just transfer the dbg value attached to From. 8373 if (Dbg->getResNo() != From.getResNo()) 8374 continue; 8375 8376 DIVariable *Var = Dbg->getVariable(); 8377 auto *Expr = Dbg->getExpression(); 8378 // If a fragment is requested, update the expression. 8379 if (SizeInBits) { 8380 // When splitting a larger (e.g., sign-extended) value whose 8381 // lower bits are described with an SDDbgValue, do not attempt 8382 // to transfer the SDDbgValue to the upper bits. 8383 if (auto FI = Expr->getFragmentInfo()) 8384 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8385 continue; 8386 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8387 SizeInBits); 8388 if (!Fragment) 8389 continue; 8390 Expr = *Fragment; 8391 } 8392 // Clone the SDDbgValue and move it to To. 8393 SDDbgValue *Clone = getDbgValue( 8394 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8395 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8396 ClonedDVs.push_back(Clone); 8397 8398 if (InvalidateDbg) { 8399 // Invalidate value and indicate the SDDbgValue should not be emitted. 8400 Dbg->setIsInvalidated(); 8401 Dbg->setIsEmitted(); 8402 } 8403 } 8404 8405 for (SDDbgValue *Dbg : ClonedDVs) 8406 AddDbgValue(Dbg, ToNode, false); 8407 } 8408 8409 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8410 if (!N.getHasDebugValue()) 8411 return; 8412 8413 SmallVector<SDDbgValue *, 2> ClonedDVs; 8414 for (auto DV : GetDbgValues(&N)) { 8415 if (DV->isInvalidated()) 8416 continue; 8417 switch (N.getOpcode()) { 8418 default: 8419 break; 8420 case ISD::ADD: 8421 SDValue N0 = N.getOperand(0); 8422 SDValue N1 = N.getOperand(1); 8423 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8424 isConstantIntBuildVectorOrConstantInt(N1)) { 8425 uint64_t Offset = N.getConstantOperandVal(1); 8426 // Rewrite an ADD constant node into a DIExpression. Since we are 8427 // performing arithmetic to compute the variable's *value* in the 8428 // DIExpression, we need to mark the expression with a 8429 // DW_OP_stack_value. 8430 auto *DIExpr = DV->getExpression(); 8431 DIExpr = 8432 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8433 SDDbgValue *Clone = 8434 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8435 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8436 ClonedDVs.push_back(Clone); 8437 DV->setIsInvalidated(); 8438 DV->setIsEmitted(); 8439 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8440 N0.getNode()->dumprFull(this); 8441 dbgs() << " into " << *DIExpr << '\n'); 8442 } 8443 } 8444 } 8445 8446 for (SDDbgValue *Dbg : ClonedDVs) 8447 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8448 } 8449 8450 /// Creates a SDDbgLabel node. 8451 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8452 const DebugLoc &DL, unsigned O) { 8453 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8454 "Expected inlined-at fields to agree"); 8455 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8456 } 8457 8458 namespace { 8459 8460 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8461 /// pointed to by a use iterator is deleted, increment the use iterator 8462 /// so that it doesn't dangle. 8463 /// 8464 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8465 SDNode::use_iterator &UI; 8466 SDNode::use_iterator &UE; 8467 8468 void NodeDeleted(SDNode *N, SDNode *E) override { 8469 // Increment the iterator as needed. 8470 while (UI != UE && N == *UI) 8471 ++UI; 8472 } 8473 8474 public: 8475 RAUWUpdateListener(SelectionDAG &d, 8476 SDNode::use_iterator &ui, 8477 SDNode::use_iterator &ue) 8478 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8479 }; 8480 8481 } // end anonymous namespace 8482 8483 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8484 /// This can cause recursive merging of nodes in the DAG. 8485 /// 8486 /// This version assumes From has a single result value. 8487 /// 8488 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8489 SDNode *From = FromN.getNode(); 8490 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8491 "Cannot replace with this method!"); 8492 assert(From != To.getNode() && "Cannot replace uses of with self"); 8493 8494 // Preserve Debug Values 8495 transferDbgValues(FromN, To); 8496 8497 // Iterate over all the existing uses of From. New uses will be added 8498 // to the beginning of the use list, which we avoid visiting. 8499 // This specifically avoids visiting uses of From that arise while the 8500 // replacement is happening, because any such uses would be the result 8501 // of CSE: If an existing node looks like From after one of its operands 8502 // is replaced by To, we don't want to replace of all its users with To 8503 // too. See PR3018 for more info. 8504 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8505 RAUWUpdateListener Listener(*this, UI, UE); 8506 while (UI != UE) { 8507 SDNode *User = *UI; 8508 8509 // This node is about to morph, remove its old self from the CSE maps. 8510 RemoveNodeFromCSEMaps(User); 8511 8512 // A user can appear in a use list multiple times, and when this 8513 // happens the uses are usually next to each other in the list. 8514 // To help reduce the number of CSE recomputations, process all 8515 // the uses of this user that we can find this way. 8516 do { 8517 SDUse &Use = UI.getUse(); 8518 ++UI; 8519 Use.set(To); 8520 if (To->isDivergent() != From->isDivergent()) 8521 updateDivergence(User); 8522 } while (UI != UE && *UI == User); 8523 // Now that we have modified User, add it back to the CSE maps. If it 8524 // already exists there, recursively merge the results together. 8525 AddModifiedNodeToCSEMaps(User); 8526 } 8527 8528 // If we just RAUW'd the root, take note. 8529 if (FromN == getRoot()) 8530 setRoot(To); 8531 } 8532 8533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8534 /// This can cause recursive merging of nodes in the DAG. 8535 /// 8536 /// This version assumes that for each value of From, there is a 8537 /// corresponding value in To in the same position with the same type. 8538 /// 8539 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8540 #ifndef NDEBUG 8541 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8542 assert((!From->hasAnyUseOfValue(i) || 8543 From->getValueType(i) == To->getValueType(i)) && 8544 "Cannot use this version of ReplaceAllUsesWith!"); 8545 #endif 8546 8547 // Handle the trivial case. 8548 if (From == To) 8549 return; 8550 8551 // Preserve Debug Info. Only do this if there's a use. 8552 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8553 if (From->hasAnyUseOfValue(i)) { 8554 assert((i < To->getNumValues()) && "Invalid To location"); 8555 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8556 } 8557 8558 // Iterate over just the existing users of From. See the comments in 8559 // the ReplaceAllUsesWith above. 8560 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8561 RAUWUpdateListener Listener(*this, UI, UE); 8562 while (UI != UE) { 8563 SDNode *User = *UI; 8564 8565 // This node is about to morph, remove its old self from the CSE maps. 8566 RemoveNodeFromCSEMaps(User); 8567 8568 // A user can appear in a use list multiple times, and when this 8569 // happens the uses are usually next to each other in the list. 8570 // To help reduce the number of CSE recomputations, process all 8571 // the uses of this user that we can find this way. 8572 do { 8573 SDUse &Use = UI.getUse(); 8574 ++UI; 8575 Use.setNode(To); 8576 if (To->isDivergent() != From->isDivergent()) 8577 updateDivergence(User); 8578 } while (UI != UE && *UI == User); 8579 8580 // Now that we have modified User, add it back to the CSE maps. If it 8581 // already exists there, recursively merge the results together. 8582 AddModifiedNodeToCSEMaps(User); 8583 } 8584 8585 // If we just RAUW'd the root, take note. 8586 if (From == getRoot().getNode()) 8587 setRoot(SDValue(To, getRoot().getResNo())); 8588 } 8589 8590 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8591 /// This can cause recursive merging of nodes in the DAG. 8592 /// 8593 /// This version can replace From with any result values. To must match the 8594 /// number and types of values returned by From. 8595 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8596 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8597 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8598 8599 // Preserve Debug Info. 8600 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8601 transferDbgValues(SDValue(From, i), To[i]); 8602 8603 // Iterate over just the existing users of From. See the comments in 8604 // the ReplaceAllUsesWith above. 8605 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8606 RAUWUpdateListener Listener(*this, UI, UE); 8607 while (UI != UE) { 8608 SDNode *User = *UI; 8609 8610 // This node is about to morph, remove its old self from the CSE maps. 8611 RemoveNodeFromCSEMaps(User); 8612 8613 // A user can appear in a use list multiple times, and when this happens the 8614 // uses are usually next to each other in the list. To help reduce the 8615 // number of CSE and divergence recomputations, process all the uses of this 8616 // user that we can find this way. 8617 bool To_IsDivergent = false; 8618 do { 8619 SDUse &Use = UI.getUse(); 8620 const SDValue &ToOp = To[Use.getResNo()]; 8621 ++UI; 8622 Use.set(ToOp); 8623 To_IsDivergent |= ToOp->isDivergent(); 8624 } while (UI != UE && *UI == User); 8625 8626 if (To_IsDivergent != From->isDivergent()) 8627 updateDivergence(User); 8628 8629 // Now that we have modified User, add it back to the CSE maps. If it 8630 // already exists there, recursively merge the results together. 8631 AddModifiedNodeToCSEMaps(User); 8632 } 8633 8634 // If we just RAUW'd the root, take note. 8635 if (From == getRoot().getNode()) 8636 setRoot(SDValue(To[getRoot().getResNo()])); 8637 } 8638 8639 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8640 /// uses of other values produced by From.getNode() alone. The Deleted 8641 /// vector is handled the same way as for ReplaceAllUsesWith. 8642 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8643 // Handle the really simple, really trivial case efficiently. 8644 if (From == To) return; 8645 8646 // Handle the simple, trivial, case efficiently. 8647 if (From.getNode()->getNumValues() == 1) { 8648 ReplaceAllUsesWith(From, To); 8649 return; 8650 } 8651 8652 // Preserve Debug Info. 8653 transferDbgValues(From, To); 8654 8655 // Iterate over just the existing users of From. See the comments in 8656 // the ReplaceAllUsesWith above. 8657 SDNode::use_iterator UI = From.getNode()->use_begin(), 8658 UE = From.getNode()->use_end(); 8659 RAUWUpdateListener Listener(*this, UI, UE); 8660 while (UI != UE) { 8661 SDNode *User = *UI; 8662 bool UserRemovedFromCSEMaps = false; 8663 8664 // A user can appear in a use list multiple times, and when this 8665 // happens the uses are usually next to each other in the list. 8666 // To help reduce the number of CSE recomputations, process all 8667 // the uses of this user that we can find this way. 8668 do { 8669 SDUse &Use = UI.getUse(); 8670 8671 // Skip uses of different values from the same node. 8672 if (Use.getResNo() != From.getResNo()) { 8673 ++UI; 8674 continue; 8675 } 8676 8677 // If this node hasn't been modified yet, it's still in the CSE maps, 8678 // so remove its old self from the CSE maps. 8679 if (!UserRemovedFromCSEMaps) { 8680 RemoveNodeFromCSEMaps(User); 8681 UserRemovedFromCSEMaps = true; 8682 } 8683 8684 ++UI; 8685 Use.set(To); 8686 if (To->isDivergent() != From->isDivergent()) 8687 updateDivergence(User); 8688 } while (UI != UE && *UI == User); 8689 // We are iterating over all uses of the From node, so if a use 8690 // doesn't use the specific value, no changes are made. 8691 if (!UserRemovedFromCSEMaps) 8692 continue; 8693 8694 // Now that we have modified User, add it back to the CSE maps. If it 8695 // already exists there, recursively merge the results together. 8696 AddModifiedNodeToCSEMaps(User); 8697 } 8698 8699 // If we just RAUW'd the root, take note. 8700 if (From == getRoot()) 8701 setRoot(To); 8702 } 8703 8704 namespace { 8705 8706 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8707 /// to record information about a use. 8708 struct UseMemo { 8709 SDNode *User; 8710 unsigned Index; 8711 SDUse *Use; 8712 }; 8713 8714 /// operator< - Sort Memos by User. 8715 bool operator<(const UseMemo &L, const UseMemo &R) { 8716 return (intptr_t)L.User < (intptr_t)R.User; 8717 } 8718 8719 } // end anonymous namespace 8720 8721 bool SelectionDAG::calculateDivergence(SDNode *N) { 8722 if (TLI->isSDNodeAlwaysUniform(N)) { 8723 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8724 "Conflicting divergence information!"); 8725 return false; 8726 } 8727 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8728 return true; 8729 for (auto &Op : N->ops()) { 8730 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8731 return true; 8732 } 8733 return false; 8734 } 8735 8736 void SelectionDAG::updateDivergence(SDNode *N) { 8737 SmallVector<SDNode *, 16> Worklist(1, N); 8738 do { 8739 N = Worklist.pop_back_val(); 8740 bool IsDivergent = calculateDivergence(N); 8741 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8742 N->SDNodeBits.IsDivergent = IsDivergent; 8743 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8744 } 8745 } while (!Worklist.empty()); 8746 } 8747 8748 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8749 DenseMap<SDNode *, unsigned> Degree; 8750 Order.reserve(AllNodes.size()); 8751 for (auto &N : allnodes()) { 8752 unsigned NOps = N.getNumOperands(); 8753 Degree[&N] = NOps; 8754 if (0 == NOps) 8755 Order.push_back(&N); 8756 } 8757 for (size_t I = 0; I != Order.size(); ++I) { 8758 SDNode *N = Order[I]; 8759 for (auto U : N->uses()) { 8760 unsigned &UnsortedOps = Degree[U]; 8761 if (0 == --UnsortedOps) 8762 Order.push_back(U); 8763 } 8764 } 8765 } 8766 8767 #ifndef NDEBUG 8768 void SelectionDAG::VerifyDAGDiverence() { 8769 std::vector<SDNode *> TopoOrder; 8770 CreateTopologicalOrder(TopoOrder); 8771 for (auto *N : TopoOrder) { 8772 assert(calculateDivergence(N) == N->isDivergent() && 8773 "Divergence bit inconsistency detected"); 8774 } 8775 } 8776 #endif 8777 8778 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8779 /// uses of other values produced by From.getNode() alone. The same value 8780 /// may appear in both the From and To list. The Deleted vector is 8781 /// handled the same way as for ReplaceAllUsesWith. 8782 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8783 const SDValue *To, 8784 unsigned Num){ 8785 // Handle the simple, trivial case efficiently. 8786 if (Num == 1) 8787 return ReplaceAllUsesOfValueWith(*From, *To); 8788 8789 transferDbgValues(*From, *To); 8790 8791 // Read up all the uses and make records of them. This helps 8792 // processing new uses that are introduced during the 8793 // replacement process. 8794 SmallVector<UseMemo, 4> Uses; 8795 for (unsigned i = 0; i != Num; ++i) { 8796 unsigned FromResNo = From[i].getResNo(); 8797 SDNode *FromNode = From[i].getNode(); 8798 for (SDNode::use_iterator UI = FromNode->use_begin(), 8799 E = FromNode->use_end(); UI != E; ++UI) { 8800 SDUse &Use = UI.getUse(); 8801 if (Use.getResNo() == FromResNo) { 8802 UseMemo Memo = { *UI, i, &Use }; 8803 Uses.push_back(Memo); 8804 } 8805 } 8806 } 8807 8808 // Sort the uses, so that all the uses from a given User are together. 8809 llvm::sort(Uses); 8810 8811 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8812 UseIndex != UseIndexEnd; ) { 8813 // We know that this user uses some value of From. If it is the right 8814 // value, update it. 8815 SDNode *User = Uses[UseIndex].User; 8816 8817 // This node is about to morph, remove its old self from the CSE maps. 8818 RemoveNodeFromCSEMaps(User); 8819 8820 // The Uses array is sorted, so all the uses for a given User 8821 // are next to each other in the list. 8822 // To help reduce the number of CSE recomputations, process all 8823 // the uses of this user that we can find this way. 8824 do { 8825 unsigned i = Uses[UseIndex].Index; 8826 SDUse &Use = *Uses[UseIndex].Use; 8827 ++UseIndex; 8828 8829 Use.set(To[i]); 8830 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8831 8832 // Now that we have modified User, add it back to the CSE maps. If it 8833 // already exists there, recursively merge the results together. 8834 AddModifiedNodeToCSEMaps(User); 8835 } 8836 } 8837 8838 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8839 /// based on their topological order. It returns the maximum id and a vector 8840 /// of the SDNodes* in assigned order by reference. 8841 unsigned SelectionDAG::AssignTopologicalOrder() { 8842 unsigned DAGSize = 0; 8843 8844 // SortedPos tracks the progress of the algorithm. Nodes before it are 8845 // sorted, nodes after it are unsorted. When the algorithm completes 8846 // it is at the end of the list. 8847 allnodes_iterator SortedPos = allnodes_begin(); 8848 8849 // Visit all the nodes. Move nodes with no operands to the front of 8850 // the list immediately. Annotate nodes that do have operands with their 8851 // operand count. Before we do this, the Node Id fields of the nodes 8852 // may contain arbitrary values. After, the Node Id fields for nodes 8853 // before SortedPos will contain the topological sort index, and the 8854 // Node Id fields for nodes At SortedPos and after will contain the 8855 // count of outstanding operands. 8856 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8857 SDNode *N = &*I++; 8858 checkForCycles(N, this); 8859 unsigned Degree = N->getNumOperands(); 8860 if (Degree == 0) { 8861 // A node with no uses, add it to the result array immediately. 8862 N->setNodeId(DAGSize++); 8863 allnodes_iterator Q(N); 8864 if (Q != SortedPos) 8865 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8866 assert(SortedPos != AllNodes.end() && "Overran node list"); 8867 ++SortedPos; 8868 } else { 8869 // Temporarily use the Node Id as scratch space for the degree count. 8870 N->setNodeId(Degree); 8871 } 8872 } 8873 8874 // Visit all the nodes. As we iterate, move nodes into sorted order, 8875 // such that by the time the end is reached all nodes will be sorted. 8876 for (SDNode &Node : allnodes()) { 8877 SDNode *N = &Node; 8878 checkForCycles(N, this); 8879 // N is in sorted position, so all its uses have one less operand 8880 // that needs to be sorted. 8881 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8882 UI != UE; ++UI) { 8883 SDNode *P = *UI; 8884 unsigned Degree = P->getNodeId(); 8885 assert(Degree != 0 && "Invalid node degree"); 8886 --Degree; 8887 if (Degree == 0) { 8888 // All of P's operands are sorted, so P may sorted now. 8889 P->setNodeId(DAGSize++); 8890 if (P->getIterator() != SortedPos) 8891 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8892 assert(SortedPos != AllNodes.end() && "Overran node list"); 8893 ++SortedPos; 8894 } else { 8895 // Update P's outstanding operand count. 8896 P->setNodeId(Degree); 8897 } 8898 } 8899 if (Node.getIterator() == SortedPos) { 8900 #ifndef NDEBUG 8901 allnodes_iterator I(N); 8902 SDNode *S = &*++I; 8903 dbgs() << "Overran sorted position:\n"; 8904 S->dumprFull(this); dbgs() << "\n"; 8905 dbgs() << "Checking if this is due to cycles\n"; 8906 checkForCycles(this, true); 8907 #endif 8908 llvm_unreachable(nullptr); 8909 } 8910 } 8911 8912 assert(SortedPos == AllNodes.end() && 8913 "Topological sort incomplete!"); 8914 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8915 "First node in topological sort is not the entry token!"); 8916 assert(AllNodes.front().getNodeId() == 0 && 8917 "First node in topological sort has non-zero id!"); 8918 assert(AllNodes.front().getNumOperands() == 0 && 8919 "First node in topological sort has operands!"); 8920 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8921 "Last node in topologic sort has unexpected id!"); 8922 assert(AllNodes.back().use_empty() && 8923 "Last node in topologic sort has users!"); 8924 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8925 return DAGSize; 8926 } 8927 8928 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8929 /// value is produced by SD. 8930 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8931 if (SD) { 8932 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8933 SD->setHasDebugValue(true); 8934 } 8935 DbgInfo->add(DB, SD, isParameter); 8936 } 8937 8938 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8939 DbgInfo->add(DB); 8940 } 8941 8942 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8943 SDValue NewMemOp) { 8944 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8945 // The new memory operation must have the same position as the old load in 8946 // terms of memory dependency. Create a TokenFactor for the old load and new 8947 // memory operation and update uses of the old load's output chain to use that 8948 // TokenFactor. 8949 SDValue OldChain = SDValue(OldLoad, 1); 8950 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8951 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8952 return NewChain; 8953 8954 SDValue TokenFactor = 8955 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8956 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8957 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8958 return TokenFactor; 8959 } 8960 8961 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8962 Function **OutFunction) { 8963 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8964 8965 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8966 auto *Module = MF->getFunction().getParent(); 8967 auto *Function = Module->getFunction(Symbol); 8968 8969 if (OutFunction != nullptr) 8970 *OutFunction = Function; 8971 8972 if (Function != nullptr) { 8973 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8974 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8975 } 8976 8977 std::string ErrorStr; 8978 raw_string_ostream ErrorFormatter(ErrorStr); 8979 8980 ErrorFormatter << "Undefined external symbol "; 8981 ErrorFormatter << '"' << Symbol << '"'; 8982 ErrorFormatter.flush(); 8983 8984 report_fatal_error(ErrorStr); 8985 } 8986 8987 //===----------------------------------------------------------------------===// 8988 // SDNode Class 8989 //===----------------------------------------------------------------------===// 8990 8991 bool llvm::isNullConstant(SDValue V) { 8992 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8993 return Const != nullptr && Const->isNullValue(); 8994 } 8995 8996 bool llvm::isNullFPConstant(SDValue V) { 8997 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8998 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8999 } 9000 9001 bool llvm::isAllOnesConstant(SDValue V) { 9002 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9003 return Const != nullptr && Const->isAllOnesValue(); 9004 } 9005 9006 bool llvm::isOneConstant(SDValue V) { 9007 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9008 return Const != nullptr && Const->isOne(); 9009 } 9010 9011 SDValue llvm::peekThroughBitcasts(SDValue V) { 9012 while (V.getOpcode() == ISD::BITCAST) 9013 V = V.getOperand(0); 9014 return V; 9015 } 9016 9017 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9018 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9019 V = V.getOperand(0); 9020 return V; 9021 } 9022 9023 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9024 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9025 V = V.getOperand(0); 9026 return V; 9027 } 9028 9029 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9030 if (V.getOpcode() != ISD::XOR) 9031 return false; 9032 V = peekThroughBitcasts(V.getOperand(1)); 9033 unsigned NumBits = V.getScalarValueSizeInBits(); 9034 ConstantSDNode *C = 9035 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9036 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9037 } 9038 9039 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9040 bool AllowTruncation) { 9041 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9042 return CN; 9043 9044 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9045 BitVector UndefElements; 9046 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9047 9048 // BuildVectors can truncate their operands. Ignore that case here unless 9049 // AllowTruncation is set. 9050 if (CN && (UndefElements.none() || AllowUndefs)) { 9051 EVT CVT = CN->getValueType(0); 9052 EVT NSVT = N.getValueType().getScalarType(); 9053 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9054 if (AllowTruncation || (CVT == NSVT)) 9055 return CN; 9056 } 9057 } 9058 9059 return nullptr; 9060 } 9061 9062 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9063 bool AllowUndefs, 9064 bool AllowTruncation) { 9065 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9066 return CN; 9067 9068 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9069 BitVector UndefElements; 9070 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9071 9072 // BuildVectors can truncate their operands. Ignore that case here unless 9073 // AllowTruncation is set. 9074 if (CN && (UndefElements.none() || AllowUndefs)) { 9075 EVT CVT = CN->getValueType(0); 9076 EVT NSVT = N.getValueType().getScalarType(); 9077 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9078 if (AllowTruncation || (CVT == NSVT)) 9079 return CN; 9080 } 9081 } 9082 9083 return nullptr; 9084 } 9085 9086 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9087 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9088 return CN; 9089 9090 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9091 BitVector UndefElements; 9092 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9093 if (CN && (UndefElements.none() || AllowUndefs)) 9094 return CN; 9095 } 9096 9097 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9098 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9099 return CN; 9100 9101 return nullptr; 9102 } 9103 9104 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9105 const APInt &DemandedElts, 9106 bool AllowUndefs) { 9107 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9108 return CN; 9109 9110 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9111 BitVector UndefElements; 9112 ConstantFPSDNode *CN = 9113 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9114 if (CN && (UndefElements.none() || AllowUndefs)) 9115 return CN; 9116 } 9117 9118 return nullptr; 9119 } 9120 9121 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9122 // TODO: may want to use peekThroughBitcast() here. 9123 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9124 return C && C->isNullValue(); 9125 } 9126 9127 bool llvm::isOneOrOneSplat(SDValue N) { 9128 // TODO: may want to use peekThroughBitcast() here. 9129 unsigned BitWidth = N.getScalarValueSizeInBits(); 9130 ConstantSDNode *C = isConstOrConstSplat(N); 9131 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9132 } 9133 9134 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9135 N = peekThroughBitcasts(N); 9136 unsigned BitWidth = N.getScalarValueSizeInBits(); 9137 ConstantSDNode *C = isConstOrConstSplat(N); 9138 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9139 } 9140 9141 HandleSDNode::~HandleSDNode() { 9142 DropOperands(); 9143 } 9144 9145 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9146 const DebugLoc &DL, 9147 const GlobalValue *GA, EVT VT, 9148 int64_t o, unsigned TF) 9149 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9150 TheGlobal = GA; 9151 } 9152 9153 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9154 EVT VT, unsigned SrcAS, 9155 unsigned DestAS) 9156 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9157 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9158 9159 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9160 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9161 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9162 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9163 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9164 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9165 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9166 9167 // We check here that the size of the memory operand fits within the size of 9168 // the MMO. This is because the MMO might indicate only a possible address 9169 // range instead of specifying the affected memory addresses precisely. 9170 // TODO: Make MachineMemOperands aware of scalable vectors. 9171 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9172 "Size mismatch!"); 9173 } 9174 9175 /// Profile - Gather unique data for the node. 9176 /// 9177 void SDNode::Profile(FoldingSetNodeID &ID) const { 9178 AddNodeIDNode(ID, this); 9179 } 9180 9181 namespace { 9182 9183 struct EVTArray { 9184 std::vector<EVT> VTs; 9185 9186 EVTArray() { 9187 VTs.reserve(MVT::LAST_VALUETYPE); 9188 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9189 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9190 } 9191 }; 9192 9193 } // end anonymous namespace 9194 9195 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9196 static ManagedStatic<EVTArray> SimpleVTArray; 9197 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9198 9199 /// getValueTypeList - Return a pointer to the specified value type. 9200 /// 9201 const EVT *SDNode::getValueTypeList(EVT VT) { 9202 if (VT.isExtended()) { 9203 sys::SmartScopedLock<true> Lock(*VTMutex); 9204 return &(*EVTs->insert(VT).first); 9205 } else { 9206 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9207 "Value type out of range!"); 9208 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9209 } 9210 } 9211 9212 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9213 /// indicated value. This method ignores uses of other values defined by this 9214 /// operation. 9215 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9216 assert(Value < getNumValues() && "Bad value!"); 9217 9218 // TODO: Only iterate over uses of a given value of the node 9219 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9220 if (UI.getUse().getResNo() == Value) { 9221 if (NUses == 0) 9222 return false; 9223 --NUses; 9224 } 9225 } 9226 9227 // Found exactly the right number of uses? 9228 return NUses == 0; 9229 } 9230 9231 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9232 /// value. This method ignores uses of other values defined by this operation. 9233 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9234 assert(Value < getNumValues() && "Bad value!"); 9235 9236 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9237 if (UI.getUse().getResNo() == Value) 9238 return true; 9239 9240 return false; 9241 } 9242 9243 /// isOnlyUserOf - Return true if this node is the only use of N. 9244 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9245 bool Seen = false; 9246 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9247 SDNode *User = *I; 9248 if (User == this) 9249 Seen = true; 9250 else 9251 return false; 9252 } 9253 9254 return Seen; 9255 } 9256 9257 /// Return true if the only users of N are contained in Nodes. 9258 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9259 bool Seen = false; 9260 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9261 SDNode *User = *I; 9262 if (llvm::any_of(Nodes, 9263 [&User](const SDNode *Node) { return User == Node; })) 9264 Seen = true; 9265 else 9266 return false; 9267 } 9268 9269 return Seen; 9270 } 9271 9272 /// isOperand - Return true if this node is an operand of N. 9273 bool SDValue::isOperandOf(const SDNode *N) const { 9274 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9275 } 9276 9277 bool SDNode::isOperandOf(const SDNode *N) const { 9278 return any_of(N->op_values(), 9279 [this](SDValue Op) { return this == Op.getNode(); }); 9280 } 9281 9282 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9283 /// be a chain) reaches the specified operand without crossing any 9284 /// side-effecting instructions on any chain path. In practice, this looks 9285 /// through token factors and non-volatile loads. In order to remain efficient, 9286 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9287 /// 9288 /// Note that we only need to examine chains when we're searching for 9289 /// side-effects; SelectionDAG requires that all side-effects are represented 9290 /// by chains, even if another operand would force a specific ordering. This 9291 /// constraint is necessary to allow transformations like splitting loads. 9292 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9293 unsigned Depth) const { 9294 if (*this == Dest) return true; 9295 9296 // Don't search too deeply, we just want to be able to see through 9297 // TokenFactor's etc. 9298 if (Depth == 0) return false; 9299 9300 // If this is a token factor, all inputs to the TF happen in parallel. 9301 if (getOpcode() == ISD::TokenFactor) { 9302 // First, try a shallow search. 9303 if (is_contained((*this)->ops(), Dest)) { 9304 // We found the chain we want as an operand of this TokenFactor. 9305 // Essentially, we reach the chain without side-effects if we could 9306 // serialize the TokenFactor into a simple chain of operations with 9307 // Dest as the last operation. This is automatically true if the 9308 // chain has one use: there are no other ordering constraints. 9309 // If the chain has more than one use, we give up: some other 9310 // use of Dest might force a side-effect between Dest and the current 9311 // node. 9312 if (Dest.hasOneUse()) 9313 return true; 9314 } 9315 // Next, try a deep search: check whether every operand of the TokenFactor 9316 // reaches Dest. 9317 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9318 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9319 }); 9320 } 9321 9322 // Loads don't have side effects, look through them. 9323 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9324 if (Ld->isUnordered()) 9325 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9326 } 9327 return false; 9328 } 9329 9330 bool SDNode::hasPredecessor(const SDNode *N) const { 9331 SmallPtrSet<const SDNode *, 32> Visited; 9332 SmallVector<const SDNode *, 16> Worklist; 9333 Worklist.push_back(this); 9334 return hasPredecessorHelper(N, Visited, Worklist); 9335 } 9336 9337 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9338 this->Flags.intersectWith(Flags); 9339 } 9340 9341 SDValue 9342 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9343 ArrayRef<ISD::NodeType> CandidateBinOps, 9344 bool AllowPartials) { 9345 // The pattern must end in an extract from index 0. 9346 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9347 !isNullConstant(Extract->getOperand(1))) 9348 return SDValue(); 9349 9350 // Match against one of the candidate binary ops. 9351 SDValue Op = Extract->getOperand(0); 9352 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9353 return Op.getOpcode() == unsigned(BinOp); 9354 })) 9355 return SDValue(); 9356 9357 // Floating-point reductions may require relaxed constraints on the final step 9358 // of the reduction because they may reorder intermediate operations. 9359 unsigned CandidateBinOp = Op.getOpcode(); 9360 if (Op.getValueType().isFloatingPoint()) { 9361 SDNodeFlags Flags = Op->getFlags(); 9362 switch (CandidateBinOp) { 9363 case ISD::FADD: 9364 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9365 return SDValue(); 9366 break; 9367 default: 9368 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9369 } 9370 } 9371 9372 // Matching failed - attempt to see if we did enough stages that a partial 9373 // reduction from a subvector is possible. 9374 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9375 if (!AllowPartials || !Op) 9376 return SDValue(); 9377 EVT OpVT = Op.getValueType(); 9378 EVT OpSVT = OpVT.getScalarType(); 9379 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9380 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9381 return SDValue(); 9382 BinOp = (ISD::NodeType)CandidateBinOp; 9383 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9384 getVectorIdxConstant(0, SDLoc(Op))); 9385 }; 9386 9387 // At each stage, we're looking for something that looks like: 9388 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9389 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9390 // i32 undef, i32 undef, i32 undef, i32 undef> 9391 // %a = binop <8 x i32> %op, %s 9392 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9393 // we expect something like: 9394 // <4,5,6,7,u,u,u,u> 9395 // <2,3,u,u,u,u,u,u> 9396 // <1,u,u,u,u,u,u,u> 9397 // While a partial reduction match would be: 9398 // <2,3,u,u,u,u,u,u> 9399 // <1,u,u,u,u,u,u,u> 9400 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9401 SDValue PrevOp; 9402 for (unsigned i = 0; i < Stages; ++i) { 9403 unsigned MaskEnd = (1 << i); 9404 9405 if (Op.getOpcode() != CandidateBinOp) 9406 return PartialReduction(PrevOp, MaskEnd); 9407 9408 SDValue Op0 = Op.getOperand(0); 9409 SDValue Op1 = Op.getOperand(1); 9410 9411 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9412 if (Shuffle) { 9413 Op = Op1; 9414 } else { 9415 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9416 Op = Op0; 9417 } 9418 9419 // The first operand of the shuffle should be the same as the other operand 9420 // of the binop. 9421 if (!Shuffle || Shuffle->getOperand(0) != Op) 9422 return PartialReduction(PrevOp, MaskEnd); 9423 9424 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9425 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9426 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9427 return PartialReduction(PrevOp, MaskEnd); 9428 9429 PrevOp = Op; 9430 } 9431 9432 // Handle subvector reductions, which tend to appear after the shuffle 9433 // reduction stages. 9434 while (Op.getOpcode() == CandidateBinOp) { 9435 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9436 SDValue Op0 = Op.getOperand(0); 9437 SDValue Op1 = Op.getOperand(1); 9438 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9439 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9440 Op0.getOperand(0) != Op1.getOperand(0)) 9441 break; 9442 SDValue Src = Op0.getOperand(0); 9443 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9444 if (NumSrcElts != (2 * NumElts)) 9445 break; 9446 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9447 Op1.getConstantOperandAPInt(1) == NumElts) && 9448 !(Op1.getConstantOperandAPInt(1) == 0 && 9449 Op0.getConstantOperandAPInt(1) == NumElts)) 9450 break; 9451 Op = Src; 9452 } 9453 9454 BinOp = (ISD::NodeType)CandidateBinOp; 9455 return Op; 9456 } 9457 9458 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9459 assert(N->getNumValues() == 1 && 9460 "Can't unroll a vector with multiple results!"); 9461 9462 EVT VT = N->getValueType(0); 9463 unsigned NE = VT.getVectorNumElements(); 9464 EVT EltVT = VT.getVectorElementType(); 9465 SDLoc dl(N); 9466 9467 SmallVector<SDValue, 8> Scalars; 9468 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9469 9470 // If ResNE is 0, fully unroll the vector op. 9471 if (ResNE == 0) 9472 ResNE = NE; 9473 else if (NE > ResNE) 9474 NE = ResNE; 9475 9476 unsigned i; 9477 for (i= 0; i != NE; ++i) { 9478 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9479 SDValue Operand = N->getOperand(j); 9480 EVT OperandVT = Operand.getValueType(); 9481 if (OperandVT.isVector()) { 9482 // A vector operand; extract a single element. 9483 EVT OperandEltVT = OperandVT.getVectorElementType(); 9484 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9485 Operand, getVectorIdxConstant(i, dl)); 9486 } else { 9487 // A scalar operand; just use it as is. 9488 Operands[j] = Operand; 9489 } 9490 } 9491 9492 switch (N->getOpcode()) { 9493 default: { 9494 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9495 N->getFlags())); 9496 break; 9497 } 9498 case ISD::VSELECT: 9499 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9500 break; 9501 case ISD::SHL: 9502 case ISD::SRA: 9503 case ISD::SRL: 9504 case ISD::ROTL: 9505 case ISD::ROTR: 9506 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9507 getShiftAmountOperand(Operands[0].getValueType(), 9508 Operands[1]))); 9509 break; 9510 case ISD::SIGN_EXTEND_INREG: { 9511 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9512 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9513 Operands[0], 9514 getValueType(ExtVT))); 9515 } 9516 } 9517 } 9518 9519 for (; i < ResNE; ++i) 9520 Scalars.push_back(getUNDEF(EltVT)); 9521 9522 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9523 return getBuildVector(VecVT, dl, Scalars); 9524 } 9525 9526 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9527 SDNode *N, unsigned ResNE) { 9528 unsigned Opcode = N->getOpcode(); 9529 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9530 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9531 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9532 "Expected an overflow opcode"); 9533 9534 EVT ResVT = N->getValueType(0); 9535 EVT OvVT = N->getValueType(1); 9536 EVT ResEltVT = ResVT.getVectorElementType(); 9537 EVT OvEltVT = OvVT.getVectorElementType(); 9538 SDLoc dl(N); 9539 9540 // If ResNE is 0, fully unroll the vector op. 9541 unsigned NE = ResVT.getVectorNumElements(); 9542 if (ResNE == 0) 9543 ResNE = NE; 9544 else if (NE > ResNE) 9545 NE = ResNE; 9546 9547 SmallVector<SDValue, 8> LHSScalars; 9548 SmallVector<SDValue, 8> RHSScalars; 9549 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9550 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9551 9552 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9553 SDVTList VTs = getVTList(ResEltVT, SVT); 9554 SmallVector<SDValue, 8> ResScalars; 9555 SmallVector<SDValue, 8> OvScalars; 9556 for (unsigned i = 0; i < NE; ++i) { 9557 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9558 SDValue Ov = 9559 getSelect(dl, OvEltVT, Res.getValue(1), 9560 getBoolConstant(true, dl, OvEltVT, ResVT), 9561 getConstant(0, dl, OvEltVT)); 9562 9563 ResScalars.push_back(Res); 9564 OvScalars.push_back(Ov); 9565 } 9566 9567 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9568 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9569 9570 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9571 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9572 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9573 getBuildVector(NewOvVT, dl, OvScalars)); 9574 } 9575 9576 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9577 LoadSDNode *Base, 9578 unsigned Bytes, 9579 int Dist) const { 9580 if (LD->isVolatile() || Base->isVolatile()) 9581 return false; 9582 // TODO: probably too restrictive for atomics, revisit 9583 if (!LD->isSimple()) 9584 return false; 9585 if (LD->isIndexed() || Base->isIndexed()) 9586 return false; 9587 if (LD->getChain() != Base->getChain()) 9588 return false; 9589 EVT VT = LD->getValueType(0); 9590 if (VT.getSizeInBits() / 8 != Bytes) 9591 return false; 9592 9593 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9594 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9595 9596 int64_t Offset = 0; 9597 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9598 return (Dist * Bytes == Offset); 9599 return false; 9600 } 9601 9602 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9603 /// if it cannot be inferred. 9604 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9605 // If this is a GlobalAddress + cst, return the alignment. 9606 const GlobalValue *GV = nullptr; 9607 int64_t GVOffset = 0; 9608 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9609 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9610 KnownBits Known(PtrWidth); 9611 llvm::computeKnownBits(GV, Known, getDataLayout()); 9612 unsigned AlignBits = Known.countMinTrailingZeros(); 9613 if (AlignBits) 9614 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9615 } 9616 9617 // If this is a direct reference to a stack slot, use information about the 9618 // stack slot's alignment. 9619 int FrameIdx = INT_MIN; 9620 int64_t FrameOffset = 0; 9621 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9622 FrameIdx = FI->getIndex(); 9623 } else if (isBaseWithConstantOffset(Ptr) && 9624 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9625 // Handle FI+Cst 9626 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9627 FrameOffset = Ptr.getConstantOperandVal(1); 9628 } 9629 9630 if (FrameIdx != INT_MIN) { 9631 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9632 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9633 } 9634 9635 return None; 9636 } 9637 9638 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9639 /// which is split (or expanded) into two not necessarily identical pieces. 9640 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9641 // Currently all types are split in half. 9642 EVT LoVT, HiVT; 9643 if (!VT.isVector()) 9644 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9645 else 9646 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9647 9648 return std::make_pair(LoVT, HiVT); 9649 } 9650 9651 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9652 /// type, dependent on an enveloping VT that has been split into two identical 9653 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9654 std::pair<EVT, EVT> 9655 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9656 bool *HiIsEmpty) const { 9657 EVT EltTp = VT.getVectorElementType(); 9658 // Examples: 9659 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9660 // custom VL=9 with enveloping VL=8/8 yields 8/1 9661 // custom VL=10 with enveloping VL=8/8 yields 8/2 9662 // etc. 9663 ElementCount VTNumElts = VT.getVectorElementCount(); 9664 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9665 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9666 "Mixing fixed width and scalable vectors when enveloping a type"); 9667 EVT LoVT, HiVT; 9668 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9669 LoVT = EnvVT; 9670 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9671 *HiIsEmpty = false; 9672 } else { 9673 // Flag that hi type has zero storage size, but return split envelop type 9674 // (this would be easier if vector types with zero elements were allowed). 9675 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9676 HiVT = EnvVT; 9677 *HiIsEmpty = true; 9678 } 9679 return std::make_pair(LoVT, HiVT); 9680 } 9681 9682 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9683 /// low/high part. 9684 std::pair<SDValue, SDValue> 9685 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9686 const EVT &HiVT) { 9687 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9688 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9689 "Splitting vector with an invalid mixture of fixed and scalable " 9690 "vector types"); 9691 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9692 N.getValueType().getVectorMinNumElements() && 9693 "More vector elements requested than available!"); 9694 SDValue Lo, Hi; 9695 Lo = 9696 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9697 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9698 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9699 // IDX with the runtime scaling factor of the result vector type. For 9700 // fixed-width result vectors, that runtime scaling factor is 1. 9701 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9702 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9703 return std::make_pair(Lo, Hi); 9704 } 9705 9706 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9707 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9708 EVT VT = N.getValueType(); 9709 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9710 NextPowerOf2(VT.getVectorNumElements())); 9711 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9712 getVectorIdxConstant(0, DL)); 9713 } 9714 9715 void SelectionDAG::ExtractVectorElements(SDValue Op, 9716 SmallVectorImpl<SDValue> &Args, 9717 unsigned Start, unsigned Count, 9718 EVT EltVT) { 9719 EVT VT = Op.getValueType(); 9720 if (Count == 0) 9721 Count = VT.getVectorNumElements(); 9722 if (EltVT == EVT()) 9723 EltVT = VT.getVectorElementType(); 9724 SDLoc SL(Op); 9725 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9726 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9727 getVectorIdxConstant(i, SL))); 9728 } 9729 } 9730 9731 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9732 unsigned GlobalAddressSDNode::getAddressSpace() const { 9733 return getGlobal()->getType()->getAddressSpace(); 9734 } 9735 9736 Type *ConstantPoolSDNode::getType() const { 9737 if (isMachineConstantPoolEntry()) 9738 return Val.MachineCPVal->getType(); 9739 return Val.ConstVal->getType(); 9740 } 9741 9742 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9743 unsigned &SplatBitSize, 9744 bool &HasAnyUndefs, 9745 unsigned MinSplatBits, 9746 bool IsBigEndian) const { 9747 EVT VT = getValueType(0); 9748 assert(VT.isVector() && "Expected a vector type"); 9749 unsigned VecWidth = VT.getSizeInBits(); 9750 if (MinSplatBits > VecWidth) 9751 return false; 9752 9753 // FIXME: The widths are based on this node's type, but build vectors can 9754 // truncate their operands. 9755 SplatValue = APInt(VecWidth, 0); 9756 SplatUndef = APInt(VecWidth, 0); 9757 9758 // Get the bits. Bits with undefined values (when the corresponding element 9759 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9760 // in SplatValue. If any of the values are not constant, give up and return 9761 // false. 9762 unsigned int NumOps = getNumOperands(); 9763 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9764 unsigned EltWidth = VT.getScalarSizeInBits(); 9765 9766 for (unsigned j = 0; j < NumOps; ++j) { 9767 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9768 SDValue OpVal = getOperand(i); 9769 unsigned BitPos = j * EltWidth; 9770 9771 if (OpVal.isUndef()) 9772 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9773 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9774 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9775 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9776 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9777 else 9778 return false; 9779 } 9780 9781 // The build_vector is all constants or undefs. Find the smallest element 9782 // size that splats the vector. 9783 HasAnyUndefs = (SplatUndef != 0); 9784 9785 // FIXME: This does not work for vectors with elements less than 8 bits. 9786 while (VecWidth > 8) { 9787 unsigned HalfSize = VecWidth / 2; 9788 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9789 APInt LowValue = SplatValue.trunc(HalfSize); 9790 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9791 APInt LowUndef = SplatUndef.trunc(HalfSize); 9792 9793 // If the two halves do not match (ignoring undef bits), stop here. 9794 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9795 MinSplatBits > HalfSize) 9796 break; 9797 9798 SplatValue = HighValue | LowValue; 9799 SplatUndef = HighUndef & LowUndef; 9800 9801 VecWidth = HalfSize; 9802 } 9803 9804 SplatBitSize = VecWidth; 9805 return true; 9806 } 9807 9808 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9809 BitVector *UndefElements) const { 9810 unsigned NumOps = getNumOperands(); 9811 if (UndefElements) { 9812 UndefElements->clear(); 9813 UndefElements->resize(NumOps); 9814 } 9815 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9816 if (!DemandedElts) 9817 return SDValue(); 9818 SDValue Splatted; 9819 for (unsigned i = 0; i != NumOps; ++i) { 9820 if (!DemandedElts[i]) 9821 continue; 9822 SDValue Op = getOperand(i); 9823 if (Op.isUndef()) { 9824 if (UndefElements) 9825 (*UndefElements)[i] = true; 9826 } else if (!Splatted) { 9827 Splatted = Op; 9828 } else if (Splatted != Op) { 9829 return SDValue(); 9830 } 9831 } 9832 9833 if (!Splatted) { 9834 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9835 assert(getOperand(FirstDemandedIdx).isUndef() && 9836 "Can only have a splat without a constant for all undefs."); 9837 return getOperand(FirstDemandedIdx); 9838 } 9839 9840 return Splatted; 9841 } 9842 9843 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9844 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9845 return getSplatValue(DemandedElts, UndefElements); 9846 } 9847 9848 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9849 SmallVectorImpl<SDValue> &Sequence, 9850 BitVector *UndefElements) const { 9851 unsigned NumOps = getNumOperands(); 9852 Sequence.clear(); 9853 if (UndefElements) { 9854 UndefElements->clear(); 9855 UndefElements->resize(NumOps); 9856 } 9857 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9858 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9859 return false; 9860 9861 // Set the undefs even if we don't find a sequence (like getSplatValue). 9862 if (UndefElements) 9863 for (unsigned I = 0; I != NumOps; ++I) 9864 if (DemandedElts[I] && getOperand(I).isUndef()) 9865 (*UndefElements)[I] = true; 9866 9867 // Iteratively widen the sequence length looking for repetitions. 9868 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9869 Sequence.append(SeqLen, SDValue()); 9870 for (unsigned I = 0; I != NumOps; ++I) { 9871 if (!DemandedElts[I]) 9872 continue; 9873 SDValue &SeqOp = Sequence[I % SeqLen]; 9874 SDValue Op = getOperand(I); 9875 if (Op.isUndef()) { 9876 if (!SeqOp) 9877 SeqOp = Op; 9878 continue; 9879 } 9880 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9881 Sequence.clear(); 9882 break; 9883 } 9884 SeqOp = Op; 9885 } 9886 if (!Sequence.empty()) 9887 return true; 9888 } 9889 9890 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9891 return false; 9892 } 9893 9894 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9895 BitVector *UndefElements) const { 9896 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9897 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 9898 } 9899 9900 ConstantSDNode * 9901 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9902 BitVector *UndefElements) const { 9903 return dyn_cast_or_null<ConstantSDNode>( 9904 getSplatValue(DemandedElts, UndefElements)); 9905 } 9906 9907 ConstantSDNode * 9908 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9909 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9910 } 9911 9912 ConstantFPSDNode * 9913 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9914 BitVector *UndefElements) const { 9915 return dyn_cast_or_null<ConstantFPSDNode>( 9916 getSplatValue(DemandedElts, UndefElements)); 9917 } 9918 9919 ConstantFPSDNode * 9920 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9921 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9922 } 9923 9924 int32_t 9925 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9926 uint32_t BitWidth) const { 9927 if (ConstantFPSDNode *CN = 9928 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9929 bool IsExact; 9930 APSInt IntVal(BitWidth); 9931 const APFloat &APF = CN->getValueAPF(); 9932 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9933 APFloat::opOK || 9934 !IsExact) 9935 return -1; 9936 9937 return IntVal.exactLogBase2(); 9938 } 9939 return -1; 9940 } 9941 9942 bool BuildVectorSDNode::isConstant() const { 9943 for (const SDValue &Op : op_values()) { 9944 unsigned Opc = Op.getOpcode(); 9945 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9946 return false; 9947 } 9948 return true; 9949 } 9950 9951 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9952 // Find the first non-undef value in the shuffle mask. 9953 unsigned i, e; 9954 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9955 /* search */; 9956 9957 // If all elements are undefined, this shuffle can be considered a splat 9958 // (although it should eventually get simplified away completely). 9959 if (i == e) 9960 return true; 9961 9962 // Make sure all remaining elements are either undef or the same as the first 9963 // non-undef value. 9964 for (int Idx = Mask[i]; i != e; ++i) 9965 if (Mask[i] >= 0 && Mask[i] != Idx) 9966 return false; 9967 return true; 9968 } 9969 9970 // Returns the SDNode if it is a constant integer BuildVector 9971 // or constant integer. 9972 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9973 if (isa<ConstantSDNode>(N)) 9974 return N.getNode(); 9975 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9976 return N.getNode(); 9977 // Treat a GlobalAddress supporting constant offset folding as a 9978 // constant integer. 9979 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9980 if (GA->getOpcode() == ISD::GlobalAddress && 9981 TLI->isOffsetFoldingLegal(GA)) 9982 return GA; 9983 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9984 isa<ConstantSDNode>(N.getOperand(0))) 9985 return N.getNode(); 9986 return nullptr; 9987 } 9988 9989 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9990 if (isa<ConstantFPSDNode>(N)) 9991 return N.getNode(); 9992 9993 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9994 return N.getNode(); 9995 9996 return nullptr; 9997 } 9998 9999 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10000 assert(!Node->OperandList && "Node already has operands"); 10001 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10002 "too many operands to fit into SDNode"); 10003 SDUse *Ops = OperandRecycler.allocate( 10004 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10005 10006 bool IsDivergent = false; 10007 for (unsigned I = 0; I != Vals.size(); ++I) { 10008 Ops[I].setUser(Node); 10009 Ops[I].setInitial(Vals[I]); 10010 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10011 IsDivergent |= Ops[I].getNode()->isDivergent(); 10012 } 10013 Node->NumOperands = Vals.size(); 10014 Node->OperandList = Ops; 10015 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10016 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10017 Node->SDNodeBits.IsDivergent = IsDivergent; 10018 } 10019 checkForCycles(Node); 10020 } 10021 10022 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10023 SmallVectorImpl<SDValue> &Vals) { 10024 size_t Limit = SDNode::getMaxNumOperands(); 10025 while (Vals.size() > Limit) { 10026 unsigned SliceIdx = Vals.size() - Limit; 10027 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10028 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10029 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10030 Vals.emplace_back(NewTF); 10031 } 10032 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10033 } 10034 10035 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10036 EVT VT, SDNodeFlags Flags) { 10037 switch (Opcode) { 10038 default: 10039 return SDValue(); 10040 case ISD::ADD: 10041 case ISD::OR: 10042 case ISD::XOR: 10043 case ISD::UMAX: 10044 return getConstant(0, DL, VT); 10045 case ISD::MUL: 10046 return getConstant(1, DL, VT); 10047 case ISD::AND: 10048 case ISD::UMIN: 10049 return getAllOnesConstant(DL, VT); 10050 case ISD::SMAX: 10051 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10052 case ISD::SMIN: 10053 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10054 case ISD::FADD: 10055 return getConstantFP(-0.0, DL, VT); 10056 case ISD::FMUL: 10057 return getConstantFP(1.0, DL, VT); 10058 case ISD::FMINNUM: 10059 case ISD::FMAXNUM: { 10060 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10061 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10062 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10063 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10064 APFloat::getLargest(Semantics); 10065 if (Opcode == ISD::FMAXNUM) 10066 NeutralAF.changeSign(); 10067 10068 return getConstantFP(NeutralAF, DL, VT); 10069 } 10070 } 10071 } 10072 10073 #ifndef NDEBUG 10074 static void checkForCyclesHelper(const SDNode *N, 10075 SmallPtrSetImpl<const SDNode*> &Visited, 10076 SmallPtrSetImpl<const SDNode*> &Checked, 10077 const llvm::SelectionDAG *DAG) { 10078 // If this node has already been checked, don't check it again. 10079 if (Checked.count(N)) 10080 return; 10081 10082 // If a node has already been visited on this depth-first walk, reject it as 10083 // a cycle. 10084 if (!Visited.insert(N).second) { 10085 errs() << "Detected cycle in SelectionDAG\n"; 10086 dbgs() << "Offending node:\n"; 10087 N->dumprFull(DAG); dbgs() << "\n"; 10088 abort(); 10089 } 10090 10091 for (const SDValue &Op : N->op_values()) 10092 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10093 10094 Checked.insert(N); 10095 Visited.erase(N); 10096 } 10097 #endif 10098 10099 void llvm::checkForCycles(const llvm::SDNode *N, 10100 const llvm::SelectionDAG *DAG, 10101 bool force) { 10102 #ifndef NDEBUG 10103 bool check = force; 10104 #ifdef EXPENSIVE_CHECKS 10105 check = true; 10106 #endif // EXPENSIVE_CHECKS 10107 if (check) { 10108 assert(N && "Checking nonexistent SDNode"); 10109 SmallPtrSet<const SDNode*, 32> visited; 10110 SmallPtrSet<const SDNode*, 32> checked; 10111 checkForCyclesHelper(N, visited, checked, DAG); 10112 } 10113 #endif // !NDEBUG 10114 } 10115 10116 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10117 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10118 } 10119