1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/ISDOpcodes.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/CodeGen/ValueTypes.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/KnownBits.h" 61 #include "llvm/Support/MachineValueType.h" 62 #include "llvm/Support/ManagedStatic.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/Mutex.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/Target/TargetOptions.h" 68 #include "llvm/Transforms/Utils/SizeOpts.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <cstdlib> 73 #include <limits> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 /// makeVTList - Return an instance of the SDVTList struct initialized with the 82 /// specified members. 83 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 84 SDVTList Res = {VTs, NumVTs}; 85 return Res; 86 } 87 88 // Default null implementations of the callbacks. 89 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 90 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 92 93 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 94 95 #define DEBUG_TYPE "selectiondag" 96 97 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 98 cl::Hidden, cl::init(true), 99 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 100 101 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 102 cl::desc("Number limit for gluing ld/st of memcpy."), 103 cl::Hidden, cl::init(0)); 104 105 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 106 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 107 } 108 109 //===----------------------------------------------------------------------===// 110 // ConstantFPSDNode Class 111 //===----------------------------------------------------------------------===// 112 113 /// isExactlyValue - We don't rely on operator== working on double values, as 114 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 115 /// As such, this method can be used to do an exact bit-for-bit comparison of 116 /// two floating point values. 117 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 118 return getValueAPF().bitwiseIsEqual(V); 119 } 120 121 bool ConstantFPSDNode::isValueValidForType(EVT VT, 122 const APFloat& Val) { 123 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 124 125 // convert modifies in place, so make a copy. 126 APFloat Val2 = APFloat(Val); 127 bool losesInfo; 128 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 129 APFloat::rmNearestTiesToEven, 130 &losesInfo); 131 return !losesInfo; 132 } 133 134 //===----------------------------------------------------------------------===// 135 // ISD Namespace 136 //===----------------------------------------------------------------------===// 137 138 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 139 auto *BV = dyn_cast<BuildVectorSDNode>(N); 140 if (!BV) 141 return false; 142 143 APInt SplatUndef; 144 unsigned SplatBitSize; 145 bool HasUndefs; 146 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 147 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 148 EltSize) && 149 EltSize == SplatBitSize; 150 } 151 152 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 153 // specializations of the more general isConstantSplatVector()? 154 155 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 156 // Look through a bit convert. 157 while (N->getOpcode() == ISD::BITCAST) 158 N = N->getOperand(0).getNode(); 159 160 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 161 162 unsigned i = 0, e = N->getNumOperands(); 163 164 // Skip over all of the undef values. 165 while (i != e && N->getOperand(i).isUndef()) 166 ++i; 167 168 // Do not accept an all-undef vector. 169 if (i == e) return false; 170 171 // Do not accept build_vectors that aren't all constants or which have non-~0 172 // elements. We have to be a bit careful here, as the type of the constant 173 // may not be the same as the type of the vector elements due to type 174 // legalization (the elements are promoted to a legal type for the target and 175 // a vector of a type may be legal when the base element type is not). 176 // We only want to check enough bits to cover the vector elements, because 177 // we care if the resultant vector is all ones, not whether the individual 178 // constants are. 179 SDValue NotZero = N->getOperand(i); 180 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 181 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 182 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 183 return false; 184 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 185 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 186 return false; 187 } else 188 return false; 189 190 // Okay, we have at least one ~0 value, check to see if the rest match or are 191 // undefs. Even with the above element type twiddling, this should be OK, as 192 // the same type legalization should have applied to all the elements. 193 for (++i; i != e; ++i) 194 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 195 return false; 196 return true; 197 } 198 199 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 200 // Look through a bit convert. 201 while (N->getOpcode() == ISD::BITCAST) 202 N = N->getOperand(0).getNode(); 203 204 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 205 206 bool IsAllUndef = true; 207 for (const SDValue &Op : N->op_values()) { 208 if (Op.isUndef()) 209 continue; 210 IsAllUndef = false; 211 // Do not accept build_vectors that aren't all constants or which have non-0 212 // elements. We have to be a bit careful here, as the type of the constant 213 // may not be the same as the type of the vector elements due to type 214 // legalization (the elements are promoted to a legal type for the target 215 // and a vector of a type may be legal when the base element type is not). 216 // We only want to check enough bits to cover the vector elements, because 217 // we care if the resultant vector is all zeros, not whether the individual 218 // constants are. 219 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 220 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 221 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 222 return false; 223 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 224 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 225 return false; 226 } else 227 return false; 228 } 229 230 // Do not accept an all-undef vector. 231 if (IsAllUndef) 232 return false; 233 return true; 234 } 235 236 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 237 if (N->getOpcode() != ISD::BUILD_VECTOR) 238 return false; 239 240 for (const SDValue &Op : N->op_values()) { 241 if (Op.isUndef()) 242 continue; 243 if (!isa<ConstantSDNode>(Op)) 244 return false; 245 } 246 return true; 247 } 248 249 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 250 if (N->getOpcode() != ISD::BUILD_VECTOR) 251 return false; 252 253 for (const SDValue &Op : N->op_values()) { 254 if (Op.isUndef()) 255 continue; 256 if (!isa<ConstantFPSDNode>(Op)) 257 return false; 258 } 259 return true; 260 } 261 262 bool ISD::allOperandsUndef(const SDNode *N) { 263 // Return false if the node has no operands. 264 // This is "logically inconsistent" with the definition of "all" but 265 // is probably the desired behavior. 266 if (N->getNumOperands() == 0) 267 return false; 268 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 269 } 270 271 bool ISD::matchUnaryPredicate(SDValue Op, 272 std::function<bool(ConstantSDNode *)> Match, 273 bool AllowUndefs) { 274 // FIXME: Add support for scalar UNDEF cases? 275 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 276 return Match(Cst); 277 278 // FIXME: Add support for vector UNDEF cases? 279 if (ISD::BUILD_VECTOR != Op.getOpcode()) 280 return false; 281 282 EVT SVT = Op.getValueType().getScalarType(); 283 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 284 if (AllowUndefs && Op.getOperand(i).isUndef()) { 285 if (!Match(nullptr)) 286 return false; 287 continue; 288 } 289 290 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 291 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::matchBinaryPredicate( 298 SDValue LHS, SDValue RHS, 299 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 300 bool AllowUndefs, bool AllowTypeMismatch) { 301 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 302 return false; 303 304 // TODO: Add support for scalar UNDEF cases? 305 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 306 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 307 return Match(LHSCst, RHSCst); 308 309 // TODO: Add support for vector UNDEF cases? 310 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 311 ISD::BUILD_VECTOR != RHS.getOpcode()) 312 return false; 313 314 EVT SVT = LHS.getValueType().getScalarType(); 315 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 316 SDValue LHSOp = LHS.getOperand(i); 317 SDValue RHSOp = RHS.getOperand(i); 318 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 319 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 320 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 321 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 322 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 323 return false; 324 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 325 LHSOp.getValueType() != RHSOp.getValueType())) 326 return false; 327 if (!Match(LHSCst, RHSCst)) 328 return false; 329 } 330 return true; 331 } 332 333 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 334 switch (ExtType) { 335 case ISD::EXTLOAD: 336 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 337 case ISD::SEXTLOAD: 338 return ISD::SIGN_EXTEND; 339 case ISD::ZEXTLOAD: 340 return ISD::ZERO_EXTEND; 341 default: 342 break; 343 } 344 345 llvm_unreachable("Invalid LoadExtType"); 346 } 347 348 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 349 // To perform this operation, we just need to swap the L and G bits of the 350 // operation. 351 unsigned OldL = (Operation >> 2) & 1; 352 unsigned OldG = (Operation >> 1) & 1; 353 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 354 (OldL << 1) | // New G bit 355 (OldG << 2)); // New L bit. 356 } 357 358 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 359 unsigned Operation = Op; 360 if (isInteger) 361 Operation ^= 7; // Flip L, G, E bits, but not U. 362 else 363 Operation ^= 15; // Flip all of the condition bits. 364 365 if (Operation > ISD::SETTRUE2) 366 Operation &= ~8; // Don't let N and U bits get set. 367 368 return ISD::CondCode(Operation); 369 } 370 371 /// For an integer comparison, return 1 if the comparison is a signed operation 372 /// and 2 if the result is an unsigned comparison. Return zero if the operation 373 /// does not depend on the sign of the input (setne and seteq). 374 static int isSignedOp(ISD::CondCode Opcode) { 375 switch (Opcode) { 376 default: llvm_unreachable("Illegal integer setcc operation!"); 377 case ISD::SETEQ: 378 case ISD::SETNE: return 0; 379 case ISD::SETLT: 380 case ISD::SETLE: 381 case ISD::SETGT: 382 case ISD::SETGE: return 1; 383 case ISD::SETULT: 384 case ISD::SETULE: 385 case ISD::SETUGT: 386 case ISD::SETUGE: return 2; 387 } 388 } 389 390 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 391 bool IsInteger) { 392 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 393 // Cannot fold a signed integer setcc with an unsigned integer setcc. 394 return ISD::SETCC_INVALID; 395 396 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 397 398 // If the N and U bits get set, then the resultant comparison DOES suddenly 399 // care about orderedness, and it is true when ordered. 400 if (Op > ISD::SETTRUE2) 401 Op &= ~16; // Clear the U bit if the N bit is set. 402 403 // Canonicalize illegal integer setcc's. 404 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 405 Op = ISD::SETNE; 406 407 return ISD::CondCode(Op); 408 } 409 410 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 411 bool IsInteger) { 412 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 413 // Cannot fold a signed setcc with an unsigned setcc. 414 return ISD::SETCC_INVALID; 415 416 // Combine all of the condition bits. 417 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 418 419 // Canonicalize illegal integer setcc's. 420 if (IsInteger) { 421 switch (Result) { 422 default: break; 423 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 424 case ISD::SETOEQ: // SETEQ & SETU[LG]E 425 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 426 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 427 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 428 } 429 } 430 431 return Result; 432 } 433 434 //===----------------------------------------------------------------------===// 435 // SDNode Profile Support 436 //===----------------------------------------------------------------------===// 437 438 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 439 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 440 ID.AddInteger(OpC); 441 } 442 443 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 444 /// solely with their pointer. 445 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 446 ID.AddPointer(VTList.VTs); 447 } 448 449 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 450 static void AddNodeIDOperands(FoldingSetNodeID &ID, 451 ArrayRef<SDValue> Ops) { 452 for (auto& Op : Ops) { 453 ID.AddPointer(Op.getNode()); 454 ID.AddInteger(Op.getResNo()); 455 } 456 } 457 458 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 459 static void AddNodeIDOperands(FoldingSetNodeID &ID, 460 ArrayRef<SDUse> Ops) { 461 for (auto& Op : Ops) { 462 ID.AddPointer(Op.getNode()); 463 ID.AddInteger(Op.getResNo()); 464 } 465 } 466 467 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 468 SDVTList VTList, ArrayRef<SDValue> OpList) { 469 AddNodeIDOpcode(ID, OpC); 470 AddNodeIDValueTypes(ID, VTList); 471 AddNodeIDOperands(ID, OpList); 472 } 473 474 /// If this is an SDNode with special info, add this info to the NodeID data. 475 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 476 switch (N->getOpcode()) { 477 case ISD::TargetExternalSymbol: 478 case ISD::ExternalSymbol: 479 case ISD::MCSymbol: 480 llvm_unreachable("Should only be used on nodes with operands"); 481 default: break; // Normal nodes don't need extra info. 482 case ISD::TargetConstant: 483 case ISD::Constant: { 484 const ConstantSDNode *C = cast<ConstantSDNode>(N); 485 ID.AddPointer(C->getConstantIntValue()); 486 ID.AddBoolean(C->isOpaque()); 487 break; 488 } 489 case ISD::TargetConstantFP: 490 case ISD::ConstantFP: 491 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 492 break; 493 case ISD::TargetGlobalAddress: 494 case ISD::GlobalAddress: 495 case ISD::TargetGlobalTLSAddress: 496 case ISD::GlobalTLSAddress: { 497 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 498 ID.AddPointer(GA->getGlobal()); 499 ID.AddInteger(GA->getOffset()); 500 ID.AddInteger(GA->getTargetFlags()); 501 break; 502 } 503 case ISD::BasicBlock: 504 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 505 break; 506 case ISD::Register: 507 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 508 break; 509 case ISD::RegisterMask: 510 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 511 break; 512 case ISD::SRCVALUE: 513 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 514 break; 515 case ISD::FrameIndex: 516 case ISD::TargetFrameIndex: 517 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 518 break; 519 case ISD::LIFETIME_START: 520 case ISD::LIFETIME_END: 521 if (cast<LifetimeSDNode>(N)->hasOffset()) { 522 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 523 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 524 } 525 break; 526 case ISD::JumpTable: 527 case ISD::TargetJumpTable: 528 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 529 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 530 break; 531 case ISD::ConstantPool: 532 case ISD::TargetConstantPool: { 533 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 534 ID.AddInteger(CP->getAlignment()); 535 ID.AddInteger(CP->getOffset()); 536 if (CP->isMachineConstantPoolEntry()) 537 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 538 else 539 ID.AddPointer(CP->getConstVal()); 540 ID.AddInteger(CP->getTargetFlags()); 541 break; 542 } 543 case ISD::TargetIndex: { 544 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 545 ID.AddInteger(TI->getIndex()); 546 ID.AddInteger(TI->getOffset()); 547 ID.AddInteger(TI->getTargetFlags()); 548 break; 549 } 550 case ISD::LOAD: { 551 const LoadSDNode *LD = cast<LoadSDNode>(N); 552 ID.AddInteger(LD->getMemoryVT().getRawBits()); 553 ID.AddInteger(LD->getRawSubclassData()); 554 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 555 break; 556 } 557 case ISD::STORE: { 558 const StoreSDNode *ST = cast<StoreSDNode>(N); 559 ID.AddInteger(ST->getMemoryVT().getRawBits()); 560 ID.AddInteger(ST->getRawSubclassData()); 561 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 562 break; 563 } 564 case ISD::MLOAD: { 565 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 566 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 567 ID.AddInteger(MLD->getRawSubclassData()); 568 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 569 break; 570 } 571 case ISD::MSTORE: { 572 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 573 ID.AddInteger(MST->getMemoryVT().getRawBits()); 574 ID.AddInteger(MST->getRawSubclassData()); 575 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 576 break; 577 } 578 case ISD::MGATHER: { 579 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 580 ID.AddInteger(MG->getMemoryVT().getRawBits()); 581 ID.AddInteger(MG->getRawSubclassData()); 582 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 583 break; 584 } 585 case ISD::MSCATTER: { 586 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 587 ID.AddInteger(MS->getMemoryVT().getRawBits()); 588 ID.AddInteger(MS->getRawSubclassData()); 589 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 590 break; 591 } 592 case ISD::ATOMIC_CMP_SWAP: 593 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 594 case ISD::ATOMIC_SWAP: 595 case ISD::ATOMIC_LOAD_ADD: 596 case ISD::ATOMIC_LOAD_SUB: 597 case ISD::ATOMIC_LOAD_AND: 598 case ISD::ATOMIC_LOAD_CLR: 599 case ISD::ATOMIC_LOAD_OR: 600 case ISD::ATOMIC_LOAD_XOR: 601 case ISD::ATOMIC_LOAD_NAND: 602 case ISD::ATOMIC_LOAD_MIN: 603 case ISD::ATOMIC_LOAD_MAX: 604 case ISD::ATOMIC_LOAD_UMIN: 605 case ISD::ATOMIC_LOAD_UMAX: 606 case ISD::ATOMIC_LOAD: 607 case ISD::ATOMIC_STORE: { 608 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 609 ID.AddInteger(AT->getMemoryVT().getRawBits()); 610 ID.AddInteger(AT->getRawSubclassData()); 611 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 612 break; 613 } 614 case ISD::PREFETCH: { 615 const MemSDNode *PF = cast<MemSDNode>(N); 616 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 617 break; 618 } 619 case ISD::VECTOR_SHUFFLE: { 620 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 621 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 622 i != e; ++i) 623 ID.AddInteger(SVN->getMaskElt(i)); 624 break; 625 } 626 case ISD::TargetBlockAddress: 627 case ISD::BlockAddress: { 628 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 629 ID.AddPointer(BA->getBlockAddress()); 630 ID.AddInteger(BA->getOffset()); 631 ID.AddInteger(BA->getTargetFlags()); 632 break; 633 } 634 } // end switch (N->getOpcode()) 635 636 // Target specific memory nodes could also have address spaces to check. 637 if (N->isTargetMemoryOpcode()) 638 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 639 } 640 641 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 642 /// data. 643 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 644 AddNodeIDOpcode(ID, N->getOpcode()); 645 // Add the return value info. 646 AddNodeIDValueTypes(ID, N->getVTList()); 647 // Add the operand info. 648 AddNodeIDOperands(ID, N->ops()); 649 650 // Handle SDNode leafs with special info. 651 AddNodeIDCustom(ID, N); 652 } 653 654 //===----------------------------------------------------------------------===// 655 // SelectionDAG Class 656 //===----------------------------------------------------------------------===// 657 658 /// doNotCSE - Return true if CSE should not be performed for this node. 659 static bool doNotCSE(SDNode *N) { 660 if (N->getValueType(0) == MVT::Glue) 661 return true; // Never CSE anything that produces a flag. 662 663 switch (N->getOpcode()) { 664 default: break; 665 case ISD::HANDLENODE: 666 case ISD::EH_LABEL: 667 return true; // Never CSE these nodes. 668 } 669 670 // Check that remaining values produced are not flags. 671 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 672 if (N->getValueType(i) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 return false; 676 } 677 678 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 679 /// SelectionDAG. 680 void SelectionDAG::RemoveDeadNodes() { 681 // Create a dummy node (which is not added to allnodes), that adds a reference 682 // to the root node, preventing it from being deleted. 683 HandleSDNode Dummy(getRoot()); 684 685 SmallVector<SDNode*, 128> DeadNodes; 686 687 // Add all obviously-dead nodes to the DeadNodes worklist. 688 for (SDNode &Node : allnodes()) 689 if (Node.use_empty()) 690 DeadNodes.push_back(&Node); 691 692 RemoveDeadNodes(DeadNodes); 693 694 // If the root changed (e.g. it was a dead load, update the root). 695 setRoot(Dummy.getValue()); 696 } 697 698 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 699 /// given list, and any nodes that become unreachable as a result. 700 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 701 702 // Process the worklist, deleting the nodes and adding their uses to the 703 // worklist. 704 while (!DeadNodes.empty()) { 705 SDNode *N = DeadNodes.pop_back_val(); 706 // Skip to next node if we've already managed to delete the node. This could 707 // happen if replacing a node causes a node previously added to the node to 708 // be deleted. 709 if (N->getOpcode() == ISD::DELETED_NODE) 710 continue; 711 712 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 713 DUL->NodeDeleted(N, nullptr); 714 715 // Take the node out of the appropriate CSE map. 716 RemoveNodeFromCSEMaps(N); 717 718 // Next, brutally remove the operand list. This is safe to do, as there are 719 // no cycles in the graph. 720 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 721 SDUse &Use = *I++; 722 SDNode *Operand = Use.getNode(); 723 Use.set(SDValue()); 724 725 // Now that we removed this operand, see if there are no uses of it left. 726 if (Operand->use_empty()) 727 DeadNodes.push_back(Operand); 728 } 729 730 DeallocateNode(N); 731 } 732 } 733 734 void SelectionDAG::RemoveDeadNode(SDNode *N){ 735 SmallVector<SDNode*, 16> DeadNodes(1, N); 736 737 // Create a dummy node that adds a reference to the root node, preventing 738 // it from being deleted. (This matters if the root is an operand of the 739 // dead node.) 740 HandleSDNode Dummy(getRoot()); 741 742 RemoveDeadNodes(DeadNodes); 743 } 744 745 void SelectionDAG::DeleteNode(SDNode *N) { 746 // First take this out of the appropriate CSE map. 747 RemoveNodeFromCSEMaps(N); 748 749 // Finally, remove uses due to operands of this node, remove from the 750 // AllNodes list, and delete the node. 751 DeleteNodeNotInCSEMaps(N); 752 } 753 754 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 755 assert(N->getIterator() != AllNodes.begin() && 756 "Cannot delete the entry node!"); 757 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 758 759 // Drop all of the operands and decrement used node's use counts. 760 N->DropOperands(); 761 762 DeallocateNode(N); 763 } 764 765 void SDDbgInfo::erase(const SDNode *Node) { 766 DbgValMapType::iterator I = DbgValMap.find(Node); 767 if (I == DbgValMap.end()) 768 return; 769 for (auto &Val: I->second) 770 Val->setIsInvalidated(); 771 DbgValMap.erase(I); 772 } 773 774 void SelectionDAG::DeallocateNode(SDNode *N) { 775 // If we have operands, deallocate them. 776 removeOperands(N); 777 778 NodeAllocator.Deallocate(AllNodes.remove(N)); 779 780 // Set the opcode to DELETED_NODE to help catch bugs when node 781 // memory is reallocated. 782 // FIXME: There are places in SDag that have grown a dependency on the opcode 783 // value in the released node. 784 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 785 N->NodeType = ISD::DELETED_NODE; 786 787 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 788 // them and forget about that node. 789 DbgInfo->erase(N); 790 } 791 792 #ifndef NDEBUG 793 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 794 static void VerifySDNode(SDNode *N) { 795 switch (N->getOpcode()) { 796 default: 797 break; 798 case ISD::BUILD_PAIR: { 799 EVT VT = N->getValueType(0); 800 assert(N->getNumValues() == 1 && "Too many results!"); 801 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 802 "Wrong return type!"); 803 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 804 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 805 "Mismatched operand types!"); 806 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 807 "Wrong operand type!"); 808 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 809 "Wrong return type size"); 810 break; 811 } 812 case ISD::BUILD_VECTOR: { 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(N->getValueType(0).isVector() && "Wrong return type!"); 815 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 816 "Wrong number of operands!"); 817 EVT EltVT = N->getValueType(0).getVectorElementType(); 818 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 819 assert((I->getValueType() == EltVT || 820 (EltVT.isInteger() && I->getValueType().isInteger() && 821 EltVT.bitsLE(I->getValueType()))) && 822 "Wrong operand type!"); 823 assert(I->getValueType() == N->getOperand(0).getValueType() && 824 "Operands must all have the same type"); 825 } 826 break; 827 } 828 } 829 } 830 #endif // NDEBUG 831 832 /// Insert a newly allocated node into the DAG. 833 /// 834 /// Handles insertion into the all nodes list and CSE map, as well as 835 /// verification and other common operations when a new node is allocated. 836 void SelectionDAG::InsertNode(SDNode *N) { 837 AllNodes.push_back(N); 838 #ifndef NDEBUG 839 N->PersistentId = NextPersistentId++; 840 VerifySDNode(N); 841 #endif 842 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 843 DUL->NodeInserted(N); 844 } 845 846 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 847 /// correspond to it. This is useful when we're about to delete or repurpose 848 /// the node. We don't want future request for structurally identical nodes 849 /// to return N anymore. 850 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 851 bool Erased = false; 852 switch (N->getOpcode()) { 853 case ISD::HANDLENODE: return false; // noop. 854 case ISD::CONDCODE: 855 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 856 "Cond code doesn't exist!"); 857 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 858 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 859 break; 860 case ISD::ExternalSymbol: 861 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 862 break; 863 case ISD::TargetExternalSymbol: { 864 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 865 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 866 ESN->getSymbol(), ESN->getTargetFlags())); 867 break; 868 } 869 case ISD::MCSymbol: { 870 auto *MCSN = cast<MCSymbolSDNode>(N); 871 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 872 break; 873 } 874 case ISD::VALUETYPE: { 875 EVT VT = cast<VTSDNode>(N)->getVT(); 876 if (VT.isExtended()) { 877 Erased = ExtendedValueTypeNodes.erase(VT); 878 } else { 879 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 880 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 881 } 882 break; 883 } 884 default: 885 // Remove it from the CSE Map. 886 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 887 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 888 Erased = CSEMap.RemoveNode(N); 889 break; 890 } 891 #ifndef NDEBUG 892 // Verify that the node was actually in one of the CSE maps, unless it has a 893 // flag result (which cannot be CSE'd) or is one of the special cases that are 894 // not subject to CSE. 895 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 896 !N->isMachineOpcode() && !doNotCSE(N)) { 897 N->dump(this); 898 dbgs() << "\n"; 899 llvm_unreachable("Node is not in map!"); 900 } 901 #endif 902 return Erased; 903 } 904 905 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 906 /// maps and modified in place. Add it back to the CSE maps, unless an identical 907 /// node already exists, in which case transfer all its users to the existing 908 /// node. This transfer can potentially trigger recursive merging. 909 void 910 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 911 // For node types that aren't CSE'd, just act as if no identical node 912 // already exists. 913 if (!doNotCSE(N)) { 914 SDNode *Existing = CSEMap.GetOrInsertNode(N); 915 if (Existing != N) { 916 // If there was already an existing matching node, use ReplaceAllUsesWith 917 // to replace the dead one with the existing one. This can cause 918 // recursive merging of other unrelated nodes down the line. 919 ReplaceAllUsesWith(N, Existing); 920 921 // N is now dead. Inform the listeners and delete it. 922 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 923 DUL->NodeDeleted(N, Existing); 924 DeleteNodeNotInCSEMaps(N); 925 return; 926 } 927 } 928 929 // If the node doesn't already exist, we updated it. Inform listeners. 930 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 931 DUL->NodeUpdated(N); 932 } 933 934 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 935 /// were replaced with those specified. If this node is never memoized, 936 /// return null, otherwise return a pointer to the slot it would take. If a 937 /// node already exists with these operands, the slot will be non-null. 938 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 939 void *&InsertPos) { 940 if (doNotCSE(N)) 941 return nullptr; 942 943 SDValue Ops[] = { Op }; 944 FoldingSetNodeID ID; 945 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 946 AddNodeIDCustom(ID, N); 947 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 948 if (Node) 949 Node->intersectFlagsWith(N->getFlags()); 950 return Node; 951 } 952 953 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 954 /// were replaced with those specified. If this node is never memoized, 955 /// return null, otherwise return a pointer to the slot it would take. If a 956 /// node already exists with these operands, the slot will be non-null. 957 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 958 SDValue Op1, SDValue Op2, 959 void *&InsertPos) { 960 if (doNotCSE(N)) 961 return nullptr; 962 963 SDValue Ops[] = { Op1, Op2 }; 964 FoldingSetNodeID ID; 965 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 966 AddNodeIDCustom(ID, N); 967 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 968 if (Node) 969 Node->intersectFlagsWith(N->getFlags()); 970 return Node; 971 } 972 973 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 974 /// were replaced with those specified. If this node is never memoized, 975 /// return null, otherwise return a pointer to the slot it would take. If a 976 /// node already exists with these operands, the slot will be non-null. 977 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 978 void *&InsertPos) { 979 if (doNotCSE(N)) 980 return nullptr; 981 982 FoldingSetNodeID ID; 983 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 984 AddNodeIDCustom(ID, N); 985 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 986 if (Node) 987 Node->intersectFlagsWith(N->getFlags()); 988 return Node; 989 } 990 991 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 992 Type *Ty = VT == MVT::iPTR ? 993 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 994 VT.getTypeForEVT(*getContext()); 995 996 return getDataLayout().getABITypeAlignment(Ty); 997 } 998 999 // EntryNode could meaningfully have debug info if we can find it... 1000 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1001 : TM(tm), OptLevel(OL), 1002 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1003 Root(getEntryNode()) { 1004 InsertNode(&EntryNode); 1005 DbgInfo = new SDDbgInfo(); 1006 } 1007 1008 void SelectionDAG::init(MachineFunction &NewMF, 1009 OptimizationRemarkEmitter &NewORE, 1010 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1011 LegacyDivergenceAnalysis * Divergence, 1012 ProfileSummaryInfo *PSIin, 1013 BlockFrequencyInfo *BFIin) { 1014 MF = &NewMF; 1015 SDAGISelPass = PassPtr; 1016 ORE = &NewORE; 1017 TLI = getSubtarget().getTargetLowering(); 1018 TSI = getSubtarget().getSelectionDAGInfo(); 1019 LibInfo = LibraryInfo; 1020 Context = &MF->getFunction().getContext(); 1021 DA = Divergence; 1022 PSI = PSIin; 1023 BFI = BFIin; 1024 } 1025 1026 SelectionDAG::~SelectionDAG() { 1027 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1028 allnodes_clear(); 1029 OperandRecycler.clear(OperandAllocator); 1030 delete DbgInfo; 1031 } 1032 1033 bool SelectionDAG::shouldOptForSize() const { 1034 return MF->getFunction().hasOptSize() || 1035 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1036 } 1037 1038 void SelectionDAG::allnodes_clear() { 1039 assert(&*AllNodes.begin() == &EntryNode); 1040 AllNodes.remove(AllNodes.begin()); 1041 while (!AllNodes.empty()) 1042 DeallocateNode(&AllNodes.front()); 1043 #ifndef NDEBUG 1044 NextPersistentId = 0; 1045 #endif 1046 } 1047 1048 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1049 void *&InsertPos) { 1050 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1051 if (N) { 1052 switch (N->getOpcode()) { 1053 default: break; 1054 case ISD::Constant: 1055 case ISD::ConstantFP: 1056 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1057 "debug location. Use another overload."); 1058 } 1059 } 1060 return N; 1061 } 1062 1063 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1064 const SDLoc &DL, void *&InsertPos) { 1065 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1066 if (N) { 1067 switch (N->getOpcode()) { 1068 case ISD::Constant: 1069 case ISD::ConstantFP: 1070 // Erase debug location from the node if the node is used at several 1071 // different places. Do not propagate one location to all uses as it 1072 // will cause a worse single stepping debugging experience. 1073 if (N->getDebugLoc() != DL.getDebugLoc()) 1074 N->setDebugLoc(DebugLoc()); 1075 break; 1076 default: 1077 // When the node's point of use is located earlier in the instruction 1078 // sequence than its prior point of use, update its debug info to the 1079 // earlier location. 1080 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1081 N->setDebugLoc(DL.getDebugLoc()); 1082 break; 1083 } 1084 } 1085 return N; 1086 } 1087 1088 void SelectionDAG::clear() { 1089 allnodes_clear(); 1090 OperandRecycler.clear(OperandAllocator); 1091 OperandAllocator.Reset(); 1092 CSEMap.clear(); 1093 1094 ExtendedValueTypeNodes.clear(); 1095 ExternalSymbols.clear(); 1096 TargetExternalSymbols.clear(); 1097 MCSymbols.clear(); 1098 SDCallSiteDbgInfo.clear(); 1099 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1100 static_cast<CondCodeSDNode*>(nullptr)); 1101 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1102 static_cast<SDNode*>(nullptr)); 1103 1104 EntryNode.UseList = nullptr; 1105 InsertNode(&EntryNode); 1106 Root = getEntryNode(); 1107 DbgInfo->clear(); 1108 } 1109 1110 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) 1112 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1113 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1114 } 1115 1116 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) ? 1124 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1125 getNode(ISD::TRUNCATE, DL, VT, Op); 1126 } 1127 1128 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1129 return VT.bitsGT(Op.getValueType()) ? 1130 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1131 getNode(ISD::TRUNCATE, DL, VT, Op); 1132 } 1133 1134 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1135 EVT OpVT) { 1136 if (VT.bitsLE(Op.getValueType())) 1137 return getNode(ISD::TRUNCATE, SL, VT, Op); 1138 1139 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1140 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1141 } 1142 1143 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1144 assert(!VT.isVector() && 1145 "getZeroExtendInReg should use the vector element type instead of " 1146 "the vector type!"); 1147 if (Op.getValueType().getScalarType() == VT) return Op; 1148 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1149 APInt Imm = APInt::getLowBitsSet(BitWidth, 1150 VT.getSizeInBits()); 1151 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1152 getConstant(Imm, DL, Op.getValueType())); 1153 } 1154 1155 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 // Only unsigned pointer semantics are supported right now. In the future this 1157 // might delegate to TLI to check pointer signedness. 1158 return getZExtOrTrunc(Op, DL, VT); 1159 } 1160 1161 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1162 // Only unsigned pointer semantics are supported right now. In the future this 1163 // might delegate to TLI to check pointer signedness. 1164 return getZeroExtendInReg(Op, DL, VT); 1165 } 1166 1167 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1168 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1169 EVT EltVT = VT.getScalarType(); 1170 SDValue NegOne = 1171 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1172 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1173 } 1174 1175 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1176 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1177 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1178 } 1179 1180 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1181 EVT OpVT) { 1182 if (!V) 1183 return getConstant(0, DL, VT); 1184 1185 switch (TLI->getBooleanContents(OpVT)) { 1186 case TargetLowering::ZeroOrOneBooleanContent: 1187 case TargetLowering::UndefinedBooleanContent: 1188 return getConstant(1, DL, VT); 1189 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1190 return getAllOnesConstant(DL, VT); 1191 } 1192 llvm_unreachable("Unexpected boolean content enum!"); 1193 } 1194 1195 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1196 bool isT, bool isO) { 1197 EVT EltVT = VT.getScalarType(); 1198 assert((EltVT.getSizeInBits() >= 64 || 1199 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1200 "getConstant with a uint64_t value that doesn't fit in the type!"); 1201 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1202 } 1203 1204 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1205 bool isT, bool isO) { 1206 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1207 } 1208 1209 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1210 EVT VT, bool isT, bool isO) { 1211 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1212 1213 EVT EltVT = VT.getScalarType(); 1214 const ConstantInt *Elt = &Val; 1215 1216 // In some cases the vector type is legal but the element type is illegal and 1217 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1218 // inserted value (the type does not need to match the vector element type). 1219 // Any extra bits introduced will be truncated away. 1220 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1221 TargetLowering::TypePromoteInteger) { 1222 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1223 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1224 Elt = ConstantInt::get(*getContext(), NewVal); 1225 } 1226 // In other cases the element type is illegal and needs to be expanded, for 1227 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1228 // the value into n parts and use a vector type with n-times the elements. 1229 // Then bitcast to the type requested. 1230 // Legalizing constants too early makes the DAGCombiner's job harder so we 1231 // only legalize if the DAG tells us we must produce legal types. 1232 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1233 TLI->getTypeAction(*getContext(), EltVT) == 1234 TargetLowering::TypeExpandInteger) { 1235 const APInt &NewVal = Elt->getValue(); 1236 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1237 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1238 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1239 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1240 1241 // Check the temporary vector is the correct size. If this fails then 1242 // getTypeToTransformTo() probably returned a type whose size (in bits) 1243 // isn't a power-of-2 factor of the requested type size. 1244 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1245 1246 SmallVector<SDValue, 2> EltParts; 1247 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1248 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1249 .zextOrTrunc(ViaEltSizeInBits), DL, 1250 ViaEltVT, isT, isO)); 1251 } 1252 1253 // EltParts is currently in little endian order. If we actually want 1254 // big-endian order then reverse it now. 1255 if (getDataLayout().isBigEndian()) 1256 std::reverse(EltParts.begin(), EltParts.end()); 1257 1258 // The elements must be reversed when the element order is different 1259 // to the endianness of the elements (because the BITCAST is itself a 1260 // vector shuffle in this situation). However, we do not need any code to 1261 // perform this reversal because getConstant() is producing a vector 1262 // splat. 1263 // This situation occurs in MIPS MSA. 1264 1265 SmallVector<SDValue, 8> Ops; 1266 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1267 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1268 1269 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1270 return V; 1271 } 1272 1273 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1274 "APInt size does not match type size!"); 1275 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1276 FoldingSetNodeID ID; 1277 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1278 ID.AddPointer(Elt); 1279 ID.AddBoolean(isO); 1280 void *IP = nullptr; 1281 SDNode *N = nullptr; 1282 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1283 if (!VT.isVector()) 1284 return SDValue(N, 0); 1285 1286 if (!N) { 1287 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1288 CSEMap.InsertNode(N, IP); 1289 InsertNode(N); 1290 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1291 } 1292 1293 SDValue Result(N, 0); 1294 if (VT.isScalableVector()) 1295 Result = getSplatVector(VT, DL, Result); 1296 else if (VT.isVector()) 1297 Result = getSplatBuildVector(VT, DL, Result); 1298 1299 return Result; 1300 } 1301 1302 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1303 bool isTarget) { 1304 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1305 } 1306 1307 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1308 const SDLoc &DL, bool LegalTypes) { 1309 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1310 return getConstant(Val, DL, ShiftVT); 1311 } 1312 1313 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1314 bool isTarget) { 1315 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1316 } 1317 1318 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1319 EVT VT, bool isTarget) { 1320 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1321 1322 EVT EltVT = VT.getScalarType(); 1323 1324 // Do the map lookup using the actual bit pattern for the floating point 1325 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1326 // we don't have issues with SNANs. 1327 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1328 FoldingSetNodeID ID; 1329 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1330 ID.AddPointer(&V); 1331 void *IP = nullptr; 1332 SDNode *N = nullptr; 1333 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1334 if (!VT.isVector()) 1335 return SDValue(N, 0); 1336 1337 if (!N) { 1338 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1339 CSEMap.InsertNode(N, IP); 1340 InsertNode(N); 1341 } 1342 1343 SDValue Result(N, 0); 1344 if (VT.isVector()) 1345 Result = getSplatBuildVector(VT, DL, Result); 1346 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1347 return Result; 1348 } 1349 1350 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1351 bool isTarget) { 1352 EVT EltVT = VT.getScalarType(); 1353 if (EltVT == MVT::f32) 1354 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1355 else if (EltVT == MVT::f64) 1356 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1357 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1358 EltVT == MVT::f16) { 1359 bool Ignored; 1360 APFloat APF = APFloat(Val); 1361 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1362 &Ignored); 1363 return getConstantFP(APF, DL, VT, isTarget); 1364 } else 1365 llvm_unreachable("Unsupported type in getConstantFP"); 1366 } 1367 1368 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1369 EVT VT, int64_t Offset, bool isTargetGA, 1370 unsigned TargetFlags) { 1371 assert((TargetFlags == 0 || isTargetGA) && 1372 "Cannot set target flags on target-independent globals"); 1373 1374 // Truncate (with sign-extension) the offset value to the pointer size. 1375 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1376 if (BitWidth < 64) 1377 Offset = SignExtend64(Offset, BitWidth); 1378 1379 unsigned Opc; 1380 if (GV->isThreadLocal()) 1381 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1382 else 1383 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1384 1385 FoldingSetNodeID ID; 1386 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1387 ID.AddPointer(GV); 1388 ID.AddInteger(Offset); 1389 ID.AddInteger(TargetFlags); 1390 void *IP = nullptr; 1391 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1392 return SDValue(E, 0); 1393 1394 auto *N = newSDNode<GlobalAddressSDNode>( 1395 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1396 CSEMap.InsertNode(N, IP); 1397 InsertNode(N); 1398 return SDValue(N, 0); 1399 } 1400 1401 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1402 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1403 FoldingSetNodeID ID; 1404 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1405 ID.AddInteger(FI); 1406 void *IP = nullptr; 1407 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1408 return SDValue(E, 0); 1409 1410 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1411 CSEMap.InsertNode(N, IP); 1412 InsertNode(N); 1413 return SDValue(N, 0); 1414 } 1415 1416 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1417 unsigned TargetFlags) { 1418 assert((TargetFlags == 0 || isTarget) && 1419 "Cannot set target flags on target-independent jump tables"); 1420 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1421 FoldingSetNodeID ID; 1422 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1423 ID.AddInteger(JTI); 1424 ID.AddInteger(TargetFlags); 1425 void *IP = nullptr; 1426 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1427 return SDValue(E, 0); 1428 1429 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1430 CSEMap.InsertNode(N, IP); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1436 unsigned Alignment, int Offset, 1437 bool isTarget, 1438 unsigned TargetFlags) { 1439 assert((TargetFlags == 0 || isTarget) && 1440 "Cannot set target flags on target-independent globals"); 1441 if (Alignment == 0) 1442 Alignment = shouldOptForSize() 1443 ? getDataLayout().getABITypeAlignment(C->getType()) 1444 : getDataLayout().getPrefTypeAlignment(C->getType()); 1445 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1446 FoldingSetNodeID ID; 1447 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1448 ID.AddInteger(Alignment); 1449 ID.AddInteger(Offset); 1450 ID.AddPointer(C); 1451 ID.AddInteger(TargetFlags); 1452 void *IP = nullptr; 1453 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1454 return SDValue(E, 0); 1455 1456 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1457 TargetFlags); 1458 CSEMap.InsertNode(N, IP); 1459 InsertNode(N); 1460 return SDValue(N, 0); 1461 } 1462 1463 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1464 unsigned Alignment, int Offset, 1465 bool isTarget, 1466 unsigned TargetFlags) { 1467 assert((TargetFlags == 0 || isTarget) && 1468 "Cannot set target flags on target-independent globals"); 1469 if (Alignment == 0) 1470 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1471 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1472 FoldingSetNodeID ID; 1473 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1474 ID.AddInteger(Alignment); 1475 ID.AddInteger(Offset); 1476 C->addSelectionDAGCSEId(ID); 1477 ID.AddInteger(TargetFlags); 1478 void *IP = nullptr; 1479 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1480 return SDValue(E, 0); 1481 1482 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1483 TargetFlags); 1484 CSEMap.InsertNode(N, IP); 1485 InsertNode(N); 1486 return SDValue(N, 0); 1487 } 1488 1489 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1490 unsigned TargetFlags) { 1491 FoldingSetNodeID ID; 1492 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1493 ID.AddInteger(Index); 1494 ID.AddInteger(Offset); 1495 ID.AddInteger(TargetFlags); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1507 FoldingSetNodeID ID; 1508 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1509 ID.AddPointer(MBB); 1510 void *IP = nullptr; 1511 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1512 return SDValue(E, 0); 1513 1514 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1515 CSEMap.InsertNode(N, IP); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getValueType(EVT VT) { 1521 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1522 ValueTypeNodes.size()) 1523 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1524 1525 SDNode *&N = VT.isExtended() ? 1526 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1527 1528 if (N) return SDValue(N, 0); 1529 N = newSDNode<VTSDNode>(VT); 1530 InsertNode(N); 1531 return SDValue(N, 0); 1532 } 1533 1534 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1535 SDNode *&N = ExternalSymbols[Sym]; 1536 if (N) return SDValue(N, 0); 1537 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1538 InsertNode(N); 1539 return SDValue(N, 0); 1540 } 1541 1542 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1543 SDNode *&N = MCSymbols[Sym]; 1544 if (N) 1545 return SDValue(N, 0); 1546 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1547 InsertNode(N); 1548 return SDValue(N, 0); 1549 } 1550 1551 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1552 unsigned TargetFlags) { 1553 SDNode *&N = 1554 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1555 if (N) return SDValue(N, 0); 1556 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1557 InsertNode(N); 1558 return SDValue(N, 0); 1559 } 1560 1561 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1562 if ((unsigned)Cond >= CondCodeNodes.size()) 1563 CondCodeNodes.resize(Cond+1); 1564 1565 if (!CondCodeNodes[Cond]) { 1566 auto *N = newSDNode<CondCodeSDNode>(Cond); 1567 CondCodeNodes[Cond] = N; 1568 InsertNode(N); 1569 } 1570 1571 return SDValue(CondCodeNodes[Cond], 0); 1572 } 1573 1574 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1575 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1576 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1577 std::swap(N1, N2); 1578 ShuffleVectorSDNode::commuteMask(M); 1579 } 1580 1581 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1582 SDValue N2, ArrayRef<int> Mask) { 1583 assert(VT.getVectorNumElements() == Mask.size() && 1584 "Must have the same number of vector elements as mask elements!"); 1585 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1586 "Invalid VECTOR_SHUFFLE"); 1587 1588 // Canonicalize shuffle undef, undef -> undef 1589 if (N1.isUndef() && N2.isUndef()) 1590 return getUNDEF(VT); 1591 1592 // Validate that all indices in Mask are within the range of the elements 1593 // input to the shuffle. 1594 int NElts = Mask.size(); 1595 assert(llvm::all_of(Mask, 1596 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1597 "Index out of range"); 1598 1599 // Copy the mask so we can do any needed cleanup. 1600 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1601 1602 // Canonicalize shuffle v, v -> v, undef 1603 if (N1 == N2) { 1604 N2 = getUNDEF(VT); 1605 for (int i = 0; i != NElts; ++i) 1606 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1607 } 1608 1609 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1610 if (N1.isUndef()) 1611 commuteShuffle(N1, N2, MaskVec); 1612 1613 if (TLI->hasVectorBlend()) { 1614 // If shuffling a splat, try to blend the splat instead. We do this here so 1615 // that even when this arises during lowering we don't have to re-handle it. 1616 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1617 BitVector UndefElements; 1618 SDValue Splat = BV->getSplatValue(&UndefElements); 1619 if (!Splat) 1620 return; 1621 1622 for (int i = 0; i < NElts; ++i) { 1623 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1624 continue; 1625 1626 // If this input comes from undef, mark it as such. 1627 if (UndefElements[MaskVec[i] - Offset]) { 1628 MaskVec[i] = -1; 1629 continue; 1630 } 1631 1632 // If we can blend a non-undef lane, use that instead. 1633 if (!UndefElements[i]) 1634 MaskVec[i] = i + Offset; 1635 } 1636 }; 1637 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1638 BlendSplat(N1BV, 0); 1639 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1640 BlendSplat(N2BV, NElts); 1641 } 1642 1643 // Canonicalize all index into lhs, -> shuffle lhs, undef 1644 // Canonicalize all index into rhs, -> shuffle rhs, undef 1645 bool AllLHS = true, AllRHS = true; 1646 bool N2Undef = N2.isUndef(); 1647 for (int i = 0; i != NElts; ++i) { 1648 if (MaskVec[i] >= NElts) { 1649 if (N2Undef) 1650 MaskVec[i] = -1; 1651 else 1652 AllLHS = false; 1653 } else if (MaskVec[i] >= 0) { 1654 AllRHS = false; 1655 } 1656 } 1657 if (AllLHS && AllRHS) 1658 return getUNDEF(VT); 1659 if (AllLHS && !N2Undef) 1660 N2 = getUNDEF(VT); 1661 if (AllRHS) { 1662 N1 = getUNDEF(VT); 1663 commuteShuffle(N1, N2, MaskVec); 1664 } 1665 // Reset our undef status after accounting for the mask. 1666 N2Undef = N2.isUndef(); 1667 // Re-check whether both sides ended up undef. 1668 if (N1.isUndef() && N2Undef) 1669 return getUNDEF(VT); 1670 1671 // If Identity shuffle return that node. 1672 bool Identity = true, AllSame = true; 1673 for (int i = 0; i != NElts; ++i) { 1674 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1675 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1676 } 1677 if (Identity && NElts) 1678 return N1; 1679 1680 // Shuffling a constant splat doesn't change the result. 1681 if (N2Undef) { 1682 SDValue V = N1; 1683 1684 // Look through any bitcasts. We check that these don't change the number 1685 // (and size) of elements and just changes their types. 1686 while (V.getOpcode() == ISD::BITCAST) 1687 V = V->getOperand(0); 1688 1689 // A splat should always show up as a build vector node. 1690 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1691 BitVector UndefElements; 1692 SDValue Splat = BV->getSplatValue(&UndefElements); 1693 // If this is a splat of an undef, shuffling it is also undef. 1694 if (Splat && Splat.isUndef()) 1695 return getUNDEF(VT); 1696 1697 bool SameNumElts = 1698 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1699 1700 // We only have a splat which can skip shuffles if there is a splatted 1701 // value and no undef lanes rearranged by the shuffle. 1702 if (Splat && UndefElements.none()) { 1703 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1704 // number of elements match or the value splatted is a zero constant. 1705 if (SameNumElts) 1706 return N1; 1707 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1708 if (C->isNullValue()) 1709 return N1; 1710 } 1711 1712 // If the shuffle itself creates a splat, build the vector directly. 1713 if (AllSame && SameNumElts) { 1714 EVT BuildVT = BV->getValueType(0); 1715 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1716 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1717 1718 // We may have jumped through bitcasts, so the type of the 1719 // BUILD_VECTOR may not match the type of the shuffle. 1720 if (BuildVT != VT) 1721 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1722 return NewBV; 1723 } 1724 } 1725 } 1726 1727 FoldingSetNodeID ID; 1728 SDValue Ops[2] = { N1, N2 }; 1729 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1730 for (int i = 0; i != NElts; ++i) 1731 ID.AddInteger(MaskVec[i]); 1732 1733 void* IP = nullptr; 1734 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1735 return SDValue(E, 0); 1736 1737 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1738 // SDNode doesn't have access to it. This memory will be "leaked" when 1739 // the node is deallocated, but recovered when the NodeAllocator is released. 1740 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1741 llvm::copy(MaskVec, MaskAlloc); 1742 1743 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1744 dl.getDebugLoc(), MaskAlloc); 1745 createOperands(N, Ops); 1746 1747 CSEMap.InsertNode(N, IP); 1748 InsertNode(N); 1749 SDValue V = SDValue(N, 0); 1750 NewSDValueDbgMsg(V, "Creating new node: ", this); 1751 return V; 1752 } 1753 1754 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1755 EVT VT = SV.getValueType(0); 1756 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1757 ShuffleVectorSDNode::commuteMask(MaskVec); 1758 1759 SDValue Op0 = SV.getOperand(0); 1760 SDValue Op1 = SV.getOperand(1); 1761 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1762 } 1763 1764 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1765 FoldingSetNodeID ID; 1766 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1767 ID.AddInteger(RegNo); 1768 void *IP = nullptr; 1769 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1770 return SDValue(E, 0); 1771 1772 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1773 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1780 FoldingSetNodeID ID; 1781 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1782 ID.AddPointer(RegMask); 1783 void *IP = nullptr; 1784 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1785 return SDValue(E, 0); 1786 1787 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1788 CSEMap.InsertNode(N, IP); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1794 MCSymbol *Label) { 1795 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1796 } 1797 1798 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1799 SDValue Root, MCSymbol *Label) { 1800 FoldingSetNodeID ID; 1801 SDValue Ops[] = { Root }; 1802 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1803 ID.AddPointer(Label); 1804 void *IP = nullptr; 1805 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1806 return SDValue(E, 0); 1807 1808 auto *N = 1809 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1810 createOperands(N, Ops); 1811 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1818 int64_t Offset, bool isTarget, 1819 unsigned TargetFlags) { 1820 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1821 1822 FoldingSetNodeID ID; 1823 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1824 ID.AddPointer(BA); 1825 ID.AddInteger(Offset); 1826 ID.AddInteger(TargetFlags); 1827 void *IP = nullptr; 1828 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1829 return SDValue(E, 0); 1830 1831 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1832 CSEMap.InsertNode(N, IP); 1833 InsertNode(N); 1834 return SDValue(N, 0); 1835 } 1836 1837 SDValue SelectionDAG::getSrcValue(const Value *V) { 1838 assert((!V || V->getType()->isPointerTy()) && 1839 "SrcValue is not a pointer?"); 1840 1841 FoldingSetNodeID ID; 1842 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1843 ID.AddPointer(V); 1844 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = newSDNode<SrcValueSDNode>(V); 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1856 FoldingSetNodeID ID; 1857 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1858 ID.AddPointer(MD); 1859 1860 void *IP = nullptr; 1861 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1862 return SDValue(E, 0); 1863 1864 auto *N = newSDNode<MDNodeSDNode>(MD); 1865 CSEMap.InsertNode(N, IP); 1866 InsertNode(N); 1867 return SDValue(N, 0); 1868 } 1869 1870 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1871 if (VT == V.getValueType()) 1872 return V; 1873 1874 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1875 } 1876 1877 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1878 unsigned SrcAS, unsigned DestAS) { 1879 SDValue Ops[] = {Ptr}; 1880 FoldingSetNodeID ID; 1881 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1882 ID.AddInteger(SrcAS); 1883 ID.AddInteger(DestAS); 1884 1885 void *IP = nullptr; 1886 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1887 return SDValue(E, 0); 1888 1889 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1890 VT, SrcAS, DestAS); 1891 createOperands(N, Ops); 1892 1893 CSEMap.InsertNode(N, IP); 1894 InsertNode(N); 1895 return SDValue(N, 0); 1896 } 1897 1898 /// getShiftAmountOperand - Return the specified value casted to 1899 /// the target's desired shift amount type. 1900 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1901 EVT OpTy = Op.getValueType(); 1902 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1903 if (OpTy == ShTy || OpTy.isVector()) return Op; 1904 1905 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1906 } 1907 1908 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1909 SDLoc dl(Node); 1910 const TargetLowering &TLI = getTargetLoweringInfo(); 1911 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1912 EVT VT = Node->getValueType(0); 1913 SDValue Tmp1 = Node->getOperand(0); 1914 SDValue Tmp2 = Node->getOperand(1); 1915 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1916 1917 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1918 Tmp2, MachinePointerInfo(V)); 1919 SDValue VAList = VAListLoad; 1920 1921 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1922 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1923 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1924 1925 VAList = 1926 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1927 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1928 } 1929 1930 // Increment the pointer, VAList, to the next vaarg 1931 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1932 getConstant(getDataLayout().getTypeAllocSize( 1933 VT.getTypeForEVT(*getContext())), 1934 dl, VAList.getValueType())); 1935 // Store the incremented VAList to the legalized pointer 1936 Tmp1 = 1937 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1938 // Load the actual argument out of the pointer VAList 1939 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1940 } 1941 1942 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1943 SDLoc dl(Node); 1944 const TargetLowering &TLI = getTargetLoweringInfo(); 1945 // This defaults to loading a pointer from the input and storing it to the 1946 // output, returning the chain. 1947 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1948 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1949 SDValue Tmp1 = 1950 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1951 Node->getOperand(2), MachinePointerInfo(VS)); 1952 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1953 MachinePointerInfo(VD)); 1954 } 1955 1956 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1957 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1958 unsigned ByteSize = VT.getStoreSize(); 1959 Type *Ty = VT.getTypeForEVT(*getContext()); 1960 unsigned StackAlign = 1961 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1962 1963 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1964 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1965 } 1966 1967 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1968 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1969 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1970 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1971 const DataLayout &DL = getDataLayout(); 1972 unsigned Align = 1973 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1974 1975 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1976 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1977 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1978 } 1979 1980 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1981 ISD::CondCode Cond, const SDLoc &dl) { 1982 EVT OpVT = N1.getValueType(); 1983 1984 // These setcc operations always fold. 1985 switch (Cond) { 1986 default: break; 1987 case ISD::SETFALSE: 1988 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1989 case ISD::SETTRUE: 1990 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1991 1992 case ISD::SETOEQ: 1993 case ISD::SETOGT: 1994 case ISD::SETOGE: 1995 case ISD::SETOLT: 1996 case ISD::SETOLE: 1997 case ISD::SETONE: 1998 case ISD::SETO: 1999 case ISD::SETUO: 2000 case ISD::SETUEQ: 2001 case ISD::SETUNE: 2002 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2003 break; 2004 } 2005 2006 if (OpVT.isInteger()) { 2007 // For EQ and NE, we can always pick a value for the undef to make the 2008 // predicate pass or fail, so we can return undef. 2009 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2010 // icmp eq/ne X, undef -> undef. 2011 if ((N1.isUndef() || N2.isUndef()) && 2012 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2013 return getUNDEF(VT); 2014 2015 // If both operands are undef, we can return undef for int comparison. 2016 // icmp undef, undef -> undef. 2017 if (N1.isUndef() && N2.isUndef()) 2018 return getUNDEF(VT); 2019 2020 // icmp X, X -> true/false 2021 // icmp X, undef -> true/false because undef could be X. 2022 if (N1 == N2) 2023 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2024 } 2025 2026 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2027 const APInt &C2 = N2C->getAPIntValue(); 2028 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2029 const APInt &C1 = N1C->getAPIntValue(); 2030 2031 switch (Cond) { 2032 default: llvm_unreachable("Unknown integer setcc!"); 2033 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2034 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2035 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2036 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2037 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2038 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2039 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2040 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2041 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2042 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2043 } 2044 } 2045 } 2046 2047 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2048 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2049 2050 if (N1CFP && N2CFP) { 2051 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2052 switch (Cond) { 2053 default: break; 2054 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2055 return getUNDEF(VT); 2056 LLVM_FALLTHROUGH; 2057 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2058 OpVT); 2059 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2060 return getUNDEF(VT); 2061 LLVM_FALLTHROUGH; 2062 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2063 R==APFloat::cmpLessThan, dl, VT, 2064 OpVT); 2065 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2066 return getUNDEF(VT); 2067 LLVM_FALLTHROUGH; 2068 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2069 OpVT); 2070 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2071 return getUNDEF(VT); 2072 LLVM_FALLTHROUGH; 2073 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2074 VT, OpVT); 2075 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2076 return getUNDEF(VT); 2077 LLVM_FALLTHROUGH; 2078 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2079 R==APFloat::cmpEqual, dl, VT, 2080 OpVT); 2081 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2082 return getUNDEF(VT); 2083 LLVM_FALLTHROUGH; 2084 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2085 R==APFloat::cmpEqual, dl, VT, OpVT); 2086 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2087 OpVT); 2088 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2089 OpVT); 2090 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2091 R==APFloat::cmpEqual, dl, VT, 2092 OpVT); 2093 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2094 OpVT); 2095 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2096 R==APFloat::cmpLessThan, dl, VT, 2097 OpVT); 2098 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2099 R==APFloat::cmpUnordered, dl, VT, 2100 OpVT); 2101 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2102 VT, OpVT); 2103 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2104 OpVT); 2105 } 2106 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2107 // Ensure that the constant occurs on the RHS. 2108 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2109 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2110 return SDValue(); 2111 return getSetCC(dl, VT, N2, N1, SwappedCond); 2112 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2113 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2114 // If an operand is known to be a nan (or undef that could be a nan), we can 2115 // fold it. 2116 // Choosing NaN for the undef will always make unordered comparison succeed 2117 // and ordered comparison fails. 2118 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2119 switch (ISD::getUnorderedFlavor(Cond)) { 2120 default: 2121 llvm_unreachable("Unknown flavor!"); 2122 case 0: // Known false. 2123 return getBoolConstant(false, dl, VT, OpVT); 2124 case 1: // Known true. 2125 return getBoolConstant(true, dl, VT, OpVT); 2126 case 2: // Undefined. 2127 return getUNDEF(VT); 2128 } 2129 } 2130 2131 // Could not fold it. 2132 return SDValue(); 2133 } 2134 2135 /// See if the specified operand can be simplified with the knowledge that only 2136 /// the bits specified by DemandedBits are used. 2137 /// TODO: really we should be making this into the DAG equivalent of 2138 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2139 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2140 EVT VT = V.getValueType(); 2141 APInt DemandedElts = VT.isVector() 2142 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2143 : APInt(1, 1); 2144 return GetDemandedBits(V, DemandedBits, DemandedElts); 2145 } 2146 2147 /// See if the specified operand can be simplified with the knowledge that only 2148 /// the bits specified by DemandedBits are used in the elements specified by 2149 /// DemandedElts. 2150 /// TODO: really we should be making this into the DAG equivalent of 2151 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2152 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2153 const APInt &DemandedElts) { 2154 switch (V.getOpcode()) { 2155 default: 2156 break; 2157 case ISD::Constant: { 2158 auto *CV = cast<ConstantSDNode>(V.getNode()); 2159 assert(CV && "Const value should be ConstSDNode."); 2160 const APInt &CVal = CV->getAPIntValue(); 2161 APInt NewVal = CVal & DemandedBits; 2162 if (NewVal != CVal) 2163 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2164 break; 2165 } 2166 case ISD::OR: 2167 case ISD::XOR: 2168 case ISD::SIGN_EXTEND_INREG: 2169 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2170 *this, 0); 2171 case ISD::SRL: 2172 // Only look at single-use SRLs. 2173 if (!V.getNode()->hasOneUse()) 2174 break; 2175 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2176 // See if we can recursively simplify the LHS. 2177 unsigned Amt = RHSC->getZExtValue(); 2178 2179 // Watch out for shift count overflow though. 2180 if (Amt >= DemandedBits.getBitWidth()) 2181 break; 2182 APInt SrcDemandedBits = DemandedBits << Amt; 2183 if (SDValue SimplifyLHS = 2184 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2185 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2186 V.getOperand(1)); 2187 } 2188 break; 2189 case ISD::AND: { 2190 // X & -1 -> X (ignoring bits which aren't demanded). 2191 // Also handle the case where masked out bits in X are known to be zero. 2192 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2193 const APInt &AndVal = RHSC->getAPIntValue(); 2194 if (DemandedBits.isSubsetOf(AndVal) || 2195 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2196 AndVal)) 2197 return V.getOperand(0); 2198 } 2199 break; 2200 } 2201 case ISD::ANY_EXTEND: { 2202 SDValue Src = V.getOperand(0); 2203 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2204 // Being conservative here - only peek through if we only demand bits in the 2205 // non-extended source (even though the extended bits are technically 2206 // undef). 2207 if (DemandedBits.getActiveBits() > SrcBitWidth) 2208 break; 2209 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2210 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2211 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2212 break; 2213 } 2214 } 2215 return SDValue(); 2216 } 2217 2218 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2219 /// use this predicate to simplify operations downstream. 2220 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2221 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2222 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2223 } 2224 2225 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2226 /// this predicate to simplify operations downstream. Mask is known to be zero 2227 /// for bits that V cannot have. 2228 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2229 unsigned Depth) const { 2230 EVT VT = V.getValueType(); 2231 APInt DemandedElts = VT.isVector() 2232 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2233 : APInt(1, 1); 2234 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2235 } 2236 2237 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2238 /// DemandedElts. We use this predicate to simplify operations downstream. 2239 /// Mask is known to be zero for bits that V cannot have. 2240 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2241 const APInt &DemandedElts, 2242 unsigned Depth) const { 2243 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2244 } 2245 2246 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2247 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2248 unsigned Depth) const { 2249 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2250 } 2251 2252 /// isSplatValue - Return true if the vector V has the same value 2253 /// across all DemandedElts. 2254 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2255 APInt &UndefElts) { 2256 if (!DemandedElts) 2257 return false; // No demanded elts, better to assume we don't know anything. 2258 2259 EVT VT = V.getValueType(); 2260 assert(VT.isVector() && "Vector type expected"); 2261 2262 unsigned NumElts = VT.getVectorNumElements(); 2263 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2264 UndefElts = APInt::getNullValue(NumElts); 2265 2266 switch (V.getOpcode()) { 2267 case ISD::BUILD_VECTOR: { 2268 SDValue Scl; 2269 for (unsigned i = 0; i != NumElts; ++i) { 2270 SDValue Op = V.getOperand(i); 2271 if (Op.isUndef()) { 2272 UndefElts.setBit(i); 2273 continue; 2274 } 2275 if (!DemandedElts[i]) 2276 continue; 2277 if (Scl && Scl != Op) 2278 return false; 2279 Scl = Op; 2280 } 2281 return true; 2282 } 2283 case ISD::VECTOR_SHUFFLE: { 2284 // Check if this is a shuffle node doing a splat. 2285 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2286 int SplatIndex = -1; 2287 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2288 for (int i = 0; i != (int)NumElts; ++i) { 2289 int M = Mask[i]; 2290 if (M < 0) { 2291 UndefElts.setBit(i); 2292 continue; 2293 } 2294 if (!DemandedElts[i]) 2295 continue; 2296 if (0 <= SplatIndex && SplatIndex != M) 2297 return false; 2298 SplatIndex = M; 2299 } 2300 return true; 2301 } 2302 case ISD::EXTRACT_SUBVECTOR: { 2303 SDValue Src = V.getOperand(0); 2304 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2305 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2306 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2307 // Offset the demanded elts by the subvector index. 2308 uint64_t Idx = SubIdx->getZExtValue(); 2309 APInt UndefSrcElts; 2310 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2311 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2312 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2313 return true; 2314 } 2315 } 2316 break; 2317 } 2318 case ISD::ADD: 2319 case ISD::SUB: 2320 case ISD::AND: { 2321 APInt UndefLHS, UndefRHS; 2322 SDValue LHS = V.getOperand(0); 2323 SDValue RHS = V.getOperand(1); 2324 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2325 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2326 UndefElts = UndefLHS | UndefRHS; 2327 return true; 2328 } 2329 break; 2330 } 2331 } 2332 2333 return false; 2334 } 2335 2336 /// Helper wrapper to main isSplatValue function. 2337 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2338 EVT VT = V.getValueType(); 2339 assert(VT.isVector() && "Vector type expected"); 2340 unsigned NumElts = VT.getVectorNumElements(); 2341 2342 APInt UndefElts; 2343 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2344 return isSplatValue(V, DemandedElts, UndefElts) && 2345 (AllowUndefs || !UndefElts); 2346 } 2347 2348 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2349 V = peekThroughExtractSubvectors(V); 2350 2351 EVT VT = V.getValueType(); 2352 unsigned Opcode = V.getOpcode(); 2353 switch (Opcode) { 2354 default: { 2355 APInt UndefElts; 2356 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2357 if (isSplatValue(V, DemandedElts, UndefElts)) { 2358 // Handle case where all demanded elements are UNDEF. 2359 if (DemandedElts.isSubsetOf(UndefElts)) { 2360 SplatIdx = 0; 2361 return getUNDEF(VT); 2362 } 2363 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2364 return V; 2365 } 2366 break; 2367 } 2368 case ISD::VECTOR_SHUFFLE: { 2369 // Check if this is a shuffle node doing a splat. 2370 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2371 // getTargetVShiftNode currently struggles without the splat source. 2372 auto *SVN = cast<ShuffleVectorSDNode>(V); 2373 if (!SVN->isSplat()) 2374 break; 2375 int Idx = SVN->getSplatIndex(); 2376 int NumElts = V.getValueType().getVectorNumElements(); 2377 SplatIdx = Idx % NumElts; 2378 return V.getOperand(Idx / NumElts); 2379 } 2380 } 2381 2382 return SDValue(); 2383 } 2384 2385 SDValue SelectionDAG::getSplatValue(SDValue V) { 2386 int SplatIdx; 2387 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2388 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2389 SrcVector.getValueType().getScalarType(), SrcVector, 2390 getIntPtrConstant(SplatIdx, SDLoc(V))); 2391 return SDValue(); 2392 } 2393 2394 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2395 /// is less than the element bit-width of the shift node, return it. 2396 static const APInt *getValidShiftAmountConstant(SDValue V) { 2397 unsigned BitWidth = V.getScalarValueSizeInBits(); 2398 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2399 // Shifting more than the bitwidth is not valid. 2400 const APInt &ShAmt = SA->getAPIntValue(); 2401 if (ShAmt.ult(BitWidth)) 2402 return &ShAmt; 2403 } 2404 return nullptr; 2405 } 2406 2407 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less 2408 /// than the element bit-width of the shift node, return the minimum value. 2409 static const APInt *getValidMinimumShiftAmountConstant(SDValue V) { 2410 unsigned BitWidth = V.getScalarValueSizeInBits(); 2411 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2412 if (!BV) 2413 return nullptr; 2414 const APInt *MinShAmt = nullptr; 2415 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2416 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2417 if (!SA) 2418 return nullptr; 2419 // Shifting more than the bitwidth is not valid. 2420 const APInt &ShAmt = SA->getAPIntValue(); 2421 if (ShAmt.uge(BitWidth)) 2422 return nullptr; 2423 if (MinShAmt && MinShAmt->ule(ShAmt)) 2424 continue; 2425 MinShAmt = &ShAmt; 2426 } 2427 return MinShAmt; 2428 } 2429 2430 /// Determine which bits of Op are known to be either zero or one and return 2431 /// them in Known. For vectors, the known bits are those that are shared by 2432 /// every vector element. 2433 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2434 EVT VT = Op.getValueType(); 2435 APInt DemandedElts = VT.isVector() 2436 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2437 : APInt(1, 1); 2438 return computeKnownBits(Op, DemandedElts, Depth); 2439 } 2440 2441 /// Determine which bits of Op are known to be either zero or one and return 2442 /// them in Known. The DemandedElts argument allows us to only collect the known 2443 /// bits that are shared by the requested vector elements. 2444 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2445 unsigned Depth) const { 2446 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2447 2448 KnownBits Known(BitWidth); // Don't know anything. 2449 2450 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2451 // We know all of the bits for a constant! 2452 Known.One = C->getAPIntValue(); 2453 Known.Zero = ~Known.One; 2454 return Known; 2455 } 2456 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2457 // We know all of the bits for a constant fp! 2458 Known.One = C->getValueAPF().bitcastToAPInt(); 2459 Known.Zero = ~Known.One; 2460 return Known; 2461 } 2462 2463 if (Depth >= MaxRecursionDepth) 2464 return Known; // Limit search depth. 2465 2466 KnownBits Known2; 2467 unsigned NumElts = DemandedElts.getBitWidth(); 2468 assert((!Op.getValueType().isVector() || 2469 NumElts == Op.getValueType().getVectorNumElements()) && 2470 "Unexpected vector size"); 2471 2472 if (!DemandedElts) 2473 return Known; // No demanded elts, better to assume we don't know anything. 2474 2475 unsigned Opcode = Op.getOpcode(); 2476 switch (Opcode) { 2477 case ISD::BUILD_VECTOR: 2478 // Collect the known bits that are shared by every demanded vector element. 2479 Known.Zero.setAllBits(); Known.One.setAllBits(); 2480 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2481 if (!DemandedElts[i]) 2482 continue; 2483 2484 SDValue SrcOp = Op.getOperand(i); 2485 Known2 = computeKnownBits(SrcOp, Depth + 1); 2486 2487 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2488 if (SrcOp.getValueSizeInBits() != BitWidth) { 2489 assert(SrcOp.getValueSizeInBits() > BitWidth && 2490 "Expected BUILD_VECTOR implicit truncation"); 2491 Known2 = Known2.trunc(BitWidth); 2492 } 2493 2494 // Known bits are the values that are shared by every demanded element. 2495 Known.One &= Known2.One; 2496 Known.Zero &= Known2.Zero; 2497 2498 // If we don't know any bits, early out. 2499 if (Known.isUnknown()) 2500 break; 2501 } 2502 break; 2503 case ISD::VECTOR_SHUFFLE: { 2504 // Collect the known bits that are shared by every vector element referenced 2505 // by the shuffle. 2506 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2507 Known.Zero.setAllBits(); Known.One.setAllBits(); 2508 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2509 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2510 for (unsigned i = 0; i != NumElts; ++i) { 2511 if (!DemandedElts[i]) 2512 continue; 2513 2514 int M = SVN->getMaskElt(i); 2515 if (M < 0) { 2516 // For UNDEF elements, we don't know anything about the common state of 2517 // the shuffle result. 2518 Known.resetAll(); 2519 DemandedLHS.clearAllBits(); 2520 DemandedRHS.clearAllBits(); 2521 break; 2522 } 2523 2524 if ((unsigned)M < NumElts) 2525 DemandedLHS.setBit((unsigned)M % NumElts); 2526 else 2527 DemandedRHS.setBit((unsigned)M % NumElts); 2528 } 2529 // Known bits are the values that are shared by every demanded element. 2530 if (!!DemandedLHS) { 2531 SDValue LHS = Op.getOperand(0); 2532 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2533 Known.One &= Known2.One; 2534 Known.Zero &= Known2.Zero; 2535 } 2536 // If we don't know any bits, early out. 2537 if (Known.isUnknown()) 2538 break; 2539 if (!!DemandedRHS) { 2540 SDValue RHS = Op.getOperand(1); 2541 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2542 Known.One &= Known2.One; 2543 Known.Zero &= Known2.Zero; 2544 } 2545 break; 2546 } 2547 case ISD::CONCAT_VECTORS: { 2548 // Split DemandedElts and test each of the demanded subvectors. 2549 Known.Zero.setAllBits(); Known.One.setAllBits(); 2550 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2551 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2552 unsigned NumSubVectors = Op.getNumOperands(); 2553 for (unsigned i = 0; i != NumSubVectors; ++i) { 2554 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2555 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2556 if (!!DemandedSub) { 2557 SDValue Sub = Op.getOperand(i); 2558 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2559 Known.One &= Known2.One; 2560 Known.Zero &= Known2.Zero; 2561 } 2562 // If we don't know any bits, early out. 2563 if (Known.isUnknown()) 2564 break; 2565 } 2566 break; 2567 } 2568 case ISD::INSERT_SUBVECTOR: { 2569 // If we know the element index, demand any elements from the subvector and 2570 // the remainder from the src its inserted into, otherwise demand them all. 2571 SDValue Src = Op.getOperand(0); 2572 SDValue Sub = Op.getOperand(1); 2573 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2574 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2575 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2576 Known.One.setAllBits(); 2577 Known.Zero.setAllBits(); 2578 uint64_t Idx = SubIdx->getZExtValue(); 2579 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2580 if (!!DemandedSubElts) { 2581 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2582 if (Known.isUnknown()) 2583 break; // early-out. 2584 } 2585 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2586 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2587 if (!!DemandedSrcElts) { 2588 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2589 Known.One &= Known2.One; 2590 Known.Zero &= Known2.Zero; 2591 } 2592 } else { 2593 Known = computeKnownBits(Sub, Depth + 1); 2594 if (Known.isUnknown()) 2595 break; // early-out. 2596 Known2 = computeKnownBits(Src, Depth + 1); 2597 Known.One &= Known2.One; 2598 Known.Zero &= Known2.Zero; 2599 } 2600 break; 2601 } 2602 case ISD::EXTRACT_SUBVECTOR: { 2603 // If we know the element index, just demand that subvector elements, 2604 // otherwise demand them all. 2605 SDValue Src = Op.getOperand(0); 2606 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2607 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2608 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2609 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2610 // Offset the demanded elts by the subvector index. 2611 uint64_t Idx = SubIdx->getZExtValue(); 2612 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2613 } 2614 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2615 break; 2616 } 2617 case ISD::SCALAR_TO_VECTOR: { 2618 // We know about scalar_to_vector as much as we know about it source, 2619 // which becomes the first element of otherwise unknown vector. 2620 if (DemandedElts != 1) 2621 break; 2622 2623 SDValue N0 = Op.getOperand(0); 2624 Known = computeKnownBits(N0, Depth + 1); 2625 if (N0.getValueSizeInBits() != BitWidth) 2626 Known = Known.trunc(BitWidth); 2627 2628 break; 2629 } 2630 case ISD::BITCAST: { 2631 SDValue N0 = Op.getOperand(0); 2632 EVT SubVT = N0.getValueType(); 2633 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2634 2635 // Ignore bitcasts from unsupported types. 2636 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2637 break; 2638 2639 // Fast handling of 'identity' bitcasts. 2640 if (BitWidth == SubBitWidth) { 2641 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2642 break; 2643 } 2644 2645 bool IsLE = getDataLayout().isLittleEndian(); 2646 2647 // Bitcast 'small element' vector to 'large element' scalar/vector. 2648 if ((BitWidth % SubBitWidth) == 0) { 2649 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2650 2651 // Collect known bits for the (larger) output by collecting the known 2652 // bits from each set of sub elements and shift these into place. 2653 // We need to separately call computeKnownBits for each set of 2654 // sub elements as the knownbits for each is likely to be different. 2655 unsigned SubScale = BitWidth / SubBitWidth; 2656 APInt SubDemandedElts(NumElts * SubScale, 0); 2657 for (unsigned i = 0; i != NumElts; ++i) 2658 if (DemandedElts[i]) 2659 SubDemandedElts.setBit(i * SubScale); 2660 2661 for (unsigned i = 0; i != SubScale; ++i) { 2662 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2663 Depth + 1); 2664 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2665 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2666 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2667 } 2668 } 2669 2670 // Bitcast 'large element' scalar/vector to 'small element' vector. 2671 if ((SubBitWidth % BitWidth) == 0) { 2672 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2673 2674 // Collect known bits for the (smaller) output by collecting the known 2675 // bits from the overlapping larger input elements and extracting the 2676 // sub sections we actually care about. 2677 unsigned SubScale = SubBitWidth / BitWidth; 2678 APInt SubDemandedElts(NumElts / SubScale, 0); 2679 for (unsigned i = 0; i != NumElts; ++i) 2680 if (DemandedElts[i]) 2681 SubDemandedElts.setBit(i / SubScale); 2682 2683 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2684 2685 Known.Zero.setAllBits(); Known.One.setAllBits(); 2686 for (unsigned i = 0; i != NumElts; ++i) 2687 if (DemandedElts[i]) { 2688 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2689 unsigned Offset = (Shifts % SubScale) * BitWidth; 2690 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2691 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2692 // If we don't know any bits, early out. 2693 if (Known.isUnknown()) 2694 break; 2695 } 2696 } 2697 break; 2698 } 2699 case ISD::AND: 2700 // If either the LHS or the RHS are Zero, the result is zero. 2701 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2702 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2703 2704 // Output known-1 bits are only known if set in both the LHS & RHS. 2705 Known.One &= Known2.One; 2706 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2707 Known.Zero |= Known2.Zero; 2708 break; 2709 case ISD::OR: 2710 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2711 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2712 2713 // Output known-0 bits are only known if clear in both the LHS & RHS. 2714 Known.Zero &= Known2.Zero; 2715 // Output known-1 are known to be set if set in either the LHS | RHS. 2716 Known.One |= Known2.One; 2717 break; 2718 case ISD::XOR: { 2719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2721 2722 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2723 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2724 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2725 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2726 Known.Zero = KnownZeroOut; 2727 break; 2728 } 2729 case ISD::MUL: { 2730 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2731 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2732 2733 // If low bits are zero in either operand, output low known-0 bits. 2734 // Also compute a conservative estimate for high known-0 bits. 2735 // More trickiness is possible, but this is sufficient for the 2736 // interesting case of alignment computation. 2737 unsigned TrailZ = Known.countMinTrailingZeros() + 2738 Known2.countMinTrailingZeros(); 2739 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2740 Known2.countMinLeadingZeros(), 2741 BitWidth) - BitWidth; 2742 2743 Known.resetAll(); 2744 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2745 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2746 break; 2747 } 2748 case ISD::UDIV: { 2749 // For the purposes of computing leading zeros we can conservatively 2750 // treat a udiv as a logical right shift by the power of 2 known to 2751 // be less than the denominator. 2752 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2753 unsigned LeadZ = Known2.countMinLeadingZeros(); 2754 2755 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2756 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2757 if (RHSMaxLeadingZeros != BitWidth) 2758 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2759 2760 Known.Zero.setHighBits(LeadZ); 2761 break; 2762 } 2763 case ISD::SELECT: 2764 case ISD::VSELECT: 2765 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2766 // If we don't know any bits, early out. 2767 if (Known.isUnknown()) 2768 break; 2769 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2770 2771 // Only known if known in both the LHS and RHS. 2772 Known.One &= Known2.One; 2773 Known.Zero &= Known2.Zero; 2774 break; 2775 case ISD::SELECT_CC: 2776 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2777 // If we don't know any bits, early out. 2778 if (Known.isUnknown()) 2779 break; 2780 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2781 2782 // Only known if known in both the LHS and RHS. 2783 Known.One &= Known2.One; 2784 Known.Zero &= Known2.Zero; 2785 break; 2786 case ISD::SMULO: 2787 case ISD::UMULO: 2788 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2789 if (Op.getResNo() != 1) 2790 break; 2791 // The boolean result conforms to getBooleanContents. 2792 // If we know the result of a setcc has the top bits zero, use this info. 2793 // We know that we have an integer-based boolean since these operations 2794 // are only available for integer. 2795 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2796 TargetLowering::ZeroOrOneBooleanContent && 2797 BitWidth > 1) 2798 Known.Zero.setBitsFrom(1); 2799 break; 2800 case ISD::SETCC: 2801 // If we know the result of a setcc has the top bits zero, use this info. 2802 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2803 TargetLowering::ZeroOrOneBooleanContent && 2804 BitWidth > 1) 2805 Known.Zero.setBitsFrom(1); 2806 break; 2807 case ISD::SHL: 2808 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2809 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2810 unsigned Shift = ShAmt->getZExtValue(); 2811 Known.Zero <<= Shift; 2812 Known.One <<= Shift; 2813 // Low bits are known zero. 2814 Known.Zero.setLowBits(Shift); 2815 } 2816 break; 2817 case ISD::SRL: 2818 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2819 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2820 unsigned Shift = ShAmt->getZExtValue(); 2821 Known.Zero.lshrInPlace(Shift); 2822 Known.One.lshrInPlace(Shift); 2823 // High bits are known zero. 2824 Known.Zero.setHighBits(Shift); 2825 } else if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op)) { 2826 // Minimum shift high bits are known zero. 2827 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2828 } 2829 break; 2830 case ISD::SRA: 2831 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2832 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2833 unsigned Shift = ShAmt->getZExtValue(); 2834 // Sign extend known zero/one bit (else is unknown). 2835 Known.Zero.ashrInPlace(Shift); 2836 Known.One.ashrInPlace(Shift); 2837 } 2838 break; 2839 case ISD::FSHL: 2840 case ISD::FSHR: 2841 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2842 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2843 2844 // For fshl, 0-shift returns the 1st arg. 2845 // For fshr, 0-shift returns the 2nd arg. 2846 if (Amt == 0) { 2847 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2848 DemandedElts, Depth + 1); 2849 break; 2850 } 2851 2852 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2853 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2854 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2855 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2856 if (Opcode == ISD::FSHL) { 2857 Known.One <<= Amt; 2858 Known.Zero <<= Amt; 2859 Known2.One.lshrInPlace(BitWidth - Amt); 2860 Known2.Zero.lshrInPlace(BitWidth - Amt); 2861 } else { 2862 Known.One <<= BitWidth - Amt; 2863 Known.Zero <<= BitWidth - Amt; 2864 Known2.One.lshrInPlace(Amt); 2865 Known2.Zero.lshrInPlace(Amt); 2866 } 2867 Known.One |= Known2.One; 2868 Known.Zero |= Known2.Zero; 2869 } 2870 break; 2871 case ISD::SIGN_EXTEND_INREG: { 2872 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2873 unsigned EBits = EVT.getScalarSizeInBits(); 2874 2875 // Sign extension. Compute the demanded bits in the result that are not 2876 // present in the input. 2877 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2878 2879 APInt InSignMask = APInt::getSignMask(EBits); 2880 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2881 2882 // If the sign extended bits are demanded, we know that the sign 2883 // bit is demanded. 2884 InSignMask = InSignMask.zext(BitWidth); 2885 if (NewBits.getBoolValue()) 2886 InputDemandedBits |= InSignMask; 2887 2888 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2889 Known.One &= InputDemandedBits; 2890 Known.Zero &= InputDemandedBits; 2891 2892 // If the sign bit of the input is known set or clear, then we know the 2893 // top bits of the result. 2894 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2895 Known.Zero |= NewBits; 2896 Known.One &= ~NewBits; 2897 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2898 Known.One |= NewBits; 2899 Known.Zero &= ~NewBits; 2900 } else { // Input sign bit unknown 2901 Known.Zero &= ~NewBits; 2902 Known.One &= ~NewBits; 2903 } 2904 break; 2905 } 2906 case ISD::CTTZ: 2907 case ISD::CTTZ_ZERO_UNDEF: { 2908 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2909 // If we have a known 1, its position is our upper bound. 2910 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2911 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2912 Known.Zero.setBitsFrom(LowBits); 2913 break; 2914 } 2915 case ISD::CTLZ: 2916 case ISD::CTLZ_ZERO_UNDEF: { 2917 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2918 // If we have a known 1, its position is our upper bound. 2919 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2920 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2921 Known.Zero.setBitsFrom(LowBits); 2922 break; 2923 } 2924 case ISD::CTPOP: { 2925 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2926 // If we know some of the bits are zero, they can't be one. 2927 unsigned PossibleOnes = Known2.countMaxPopulation(); 2928 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2929 break; 2930 } 2931 case ISD::LOAD: { 2932 LoadSDNode *LD = cast<LoadSDNode>(Op); 2933 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2934 if (ISD::isNON_EXTLoad(LD) && Cst) { 2935 // Determine any common known bits from the loaded constant pool value. 2936 Type *CstTy = Cst->getType(); 2937 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2938 // If its a vector splat, then we can (quickly) reuse the scalar path. 2939 // NOTE: We assume all elements match and none are UNDEF. 2940 if (CstTy->isVectorTy()) { 2941 if (const Constant *Splat = Cst->getSplatValue()) { 2942 Cst = Splat; 2943 CstTy = Cst->getType(); 2944 } 2945 } 2946 // TODO - do we need to handle different bitwidths? 2947 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2948 // Iterate across all vector elements finding common known bits. 2949 Known.One.setAllBits(); 2950 Known.Zero.setAllBits(); 2951 for (unsigned i = 0; i != NumElts; ++i) { 2952 if (!DemandedElts[i]) 2953 continue; 2954 if (Constant *Elt = Cst->getAggregateElement(i)) { 2955 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2956 const APInt &Value = CInt->getValue(); 2957 Known.One &= Value; 2958 Known.Zero &= ~Value; 2959 continue; 2960 } 2961 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2962 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2963 Known.One &= Value; 2964 Known.Zero &= ~Value; 2965 continue; 2966 } 2967 } 2968 Known.One.clearAllBits(); 2969 Known.Zero.clearAllBits(); 2970 break; 2971 } 2972 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2973 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2974 const APInt &Value = CInt->getValue(); 2975 Known.One = Value; 2976 Known.Zero = ~Value; 2977 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2978 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2979 Known.One = Value; 2980 Known.Zero = ~Value; 2981 } 2982 } 2983 } 2984 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2985 // If this is a ZEXTLoad and we are looking at the loaded value. 2986 EVT VT = LD->getMemoryVT(); 2987 unsigned MemBits = VT.getScalarSizeInBits(); 2988 Known.Zero.setBitsFrom(MemBits); 2989 } else if (const MDNode *Ranges = LD->getRanges()) { 2990 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2991 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2992 } 2993 break; 2994 } 2995 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2996 EVT InVT = Op.getOperand(0).getValueType(); 2997 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2998 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2999 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3000 break; 3001 } 3002 case ISD::ZERO_EXTEND: { 3003 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3004 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3005 break; 3006 } 3007 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3008 EVT InVT = Op.getOperand(0).getValueType(); 3009 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3010 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3011 // If the sign bit is known to be zero or one, then sext will extend 3012 // it to the top bits, else it will just zext. 3013 Known = Known.sext(BitWidth); 3014 break; 3015 } 3016 case ISD::SIGN_EXTEND: { 3017 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3018 // If the sign bit is known to be zero or one, then sext will extend 3019 // it to the top bits, else it will just zext. 3020 Known = Known.sext(BitWidth); 3021 break; 3022 } 3023 case ISD::ANY_EXTEND: { 3024 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3025 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3026 break; 3027 } 3028 case ISD::TRUNCATE: { 3029 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 Known = Known.trunc(BitWidth); 3031 break; 3032 } 3033 case ISD::AssertZext: { 3034 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3035 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3036 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3037 Known.Zero |= (~InMask); 3038 Known.One &= (~Known.Zero); 3039 break; 3040 } 3041 case ISD::FGETSIGN: 3042 // All bits are zero except the low bit. 3043 Known.Zero.setBitsFrom(1); 3044 break; 3045 case ISD::USUBO: 3046 case ISD::SSUBO: 3047 if (Op.getResNo() == 1) { 3048 // If we know the result of a setcc has the top bits zero, use this info. 3049 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3050 TargetLowering::ZeroOrOneBooleanContent && 3051 BitWidth > 1) 3052 Known.Zero.setBitsFrom(1); 3053 break; 3054 } 3055 LLVM_FALLTHROUGH; 3056 case ISD::SUB: 3057 case ISD::SUBC: { 3058 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3059 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3060 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3061 Known, Known2); 3062 break; 3063 } 3064 case ISD::UADDO: 3065 case ISD::SADDO: 3066 case ISD::ADDCARRY: 3067 if (Op.getResNo() == 1) { 3068 // If we know the result of a setcc has the top bits zero, use this info. 3069 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3070 TargetLowering::ZeroOrOneBooleanContent && 3071 BitWidth > 1) 3072 Known.Zero.setBitsFrom(1); 3073 break; 3074 } 3075 LLVM_FALLTHROUGH; 3076 case ISD::ADD: 3077 case ISD::ADDC: 3078 case ISD::ADDE: { 3079 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3080 3081 // With ADDE and ADDCARRY, a carry bit may be added in. 3082 KnownBits Carry(1); 3083 if (Opcode == ISD::ADDE) 3084 // Can't track carry from glue, set carry to unknown. 3085 Carry.resetAll(); 3086 else if (Opcode == ISD::ADDCARRY) 3087 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3088 // the trouble (how often will we find a known carry bit). And I haven't 3089 // tested this very much yet, but something like this might work: 3090 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3091 // Carry = Carry.zextOrTrunc(1, false); 3092 Carry.resetAll(); 3093 else 3094 Carry.setAllZero(); 3095 3096 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3097 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3098 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3099 break; 3100 } 3101 case ISD::SREM: 3102 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3103 const APInt &RA = Rem->getAPIntValue().abs(); 3104 if (RA.isPowerOf2()) { 3105 APInt LowBits = RA - 1; 3106 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3107 3108 // The low bits of the first operand are unchanged by the srem. 3109 Known.Zero = Known2.Zero & LowBits; 3110 Known.One = Known2.One & LowBits; 3111 3112 // If the first operand is non-negative or has all low bits zero, then 3113 // the upper bits are all zero. 3114 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3115 Known.Zero |= ~LowBits; 3116 3117 // If the first operand is negative and not all low bits are zero, then 3118 // the upper bits are all one. 3119 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3120 Known.One |= ~LowBits; 3121 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3122 } 3123 } 3124 break; 3125 case ISD::UREM: { 3126 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3127 const APInt &RA = Rem->getAPIntValue(); 3128 if (RA.isPowerOf2()) { 3129 APInt LowBits = (RA - 1); 3130 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3131 3132 // The upper bits are all zero, the lower ones are unchanged. 3133 Known.Zero = Known2.Zero | ~LowBits; 3134 Known.One = Known2.One & LowBits; 3135 break; 3136 } 3137 } 3138 3139 // Since the result is less than or equal to either operand, any leading 3140 // zero bits in either operand must also exist in the result. 3141 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3142 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3143 3144 uint32_t Leaders = 3145 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3146 Known.resetAll(); 3147 Known.Zero.setHighBits(Leaders); 3148 break; 3149 } 3150 case ISD::EXTRACT_ELEMENT: { 3151 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3152 const unsigned Index = Op.getConstantOperandVal(1); 3153 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3154 3155 // Remove low part of known bits mask 3156 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3157 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3158 3159 // Remove high part of known bit mask 3160 Known = Known.trunc(EltBitWidth); 3161 break; 3162 } 3163 case ISD::EXTRACT_VECTOR_ELT: { 3164 SDValue InVec = Op.getOperand(0); 3165 SDValue EltNo = Op.getOperand(1); 3166 EVT VecVT = InVec.getValueType(); 3167 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3168 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3169 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3170 // anything about the extended bits. 3171 if (BitWidth > EltBitWidth) 3172 Known = Known.trunc(EltBitWidth); 3173 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3174 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3175 // If we know the element index, just demand that vector element. 3176 unsigned Idx = ConstEltNo->getZExtValue(); 3177 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3178 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3179 } else { 3180 // Unknown element index, so ignore DemandedElts and demand them all. 3181 Known = computeKnownBits(InVec, Depth + 1); 3182 } 3183 if (BitWidth > EltBitWidth) 3184 Known = Known.zext(BitWidth, false /* => any extend */); 3185 break; 3186 } 3187 case ISD::INSERT_VECTOR_ELT: { 3188 SDValue InVec = Op.getOperand(0); 3189 SDValue InVal = Op.getOperand(1); 3190 SDValue EltNo = Op.getOperand(2); 3191 3192 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3193 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3194 // If we know the element index, split the demand between the 3195 // source vector and the inserted element. 3196 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3197 unsigned EltIdx = CEltNo->getZExtValue(); 3198 3199 // If we demand the inserted element then add its common known bits. 3200 if (DemandedElts[EltIdx]) { 3201 Known2 = computeKnownBits(InVal, Depth + 1); 3202 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3203 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3204 } 3205 3206 // If we demand the source vector then add its common known bits, ensuring 3207 // that we don't demand the inserted element. 3208 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3209 if (!!VectorElts) { 3210 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3211 Known.One &= Known2.One; 3212 Known.Zero &= Known2.Zero; 3213 } 3214 } else { 3215 // Unknown element index, so ignore DemandedElts and demand them all. 3216 Known = computeKnownBits(InVec, Depth + 1); 3217 Known2 = computeKnownBits(InVal, Depth + 1); 3218 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3219 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3220 } 3221 break; 3222 } 3223 case ISD::BITREVERSE: { 3224 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3225 Known.Zero = Known2.Zero.reverseBits(); 3226 Known.One = Known2.One.reverseBits(); 3227 break; 3228 } 3229 case ISD::BSWAP: { 3230 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 Known.Zero = Known2.Zero.byteSwap(); 3232 Known.One = Known2.One.byteSwap(); 3233 break; 3234 } 3235 case ISD::ABS: { 3236 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3237 3238 // If the source's MSB is zero then we know the rest of the bits already. 3239 if (Known2.isNonNegative()) { 3240 Known.Zero = Known2.Zero; 3241 Known.One = Known2.One; 3242 break; 3243 } 3244 3245 // We only know that the absolute values's MSB will be zero iff there is 3246 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3247 Known2.One.clearSignBit(); 3248 if (Known2.One.getBoolValue()) { 3249 Known.Zero = APInt::getSignMask(BitWidth); 3250 break; 3251 } 3252 break; 3253 } 3254 case ISD::UMIN: { 3255 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3256 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3257 3258 // UMIN - we know that the result will have the maximum of the 3259 // known zero leading bits of the inputs. 3260 unsigned LeadZero = Known.countMinLeadingZeros(); 3261 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3262 3263 Known.Zero &= Known2.Zero; 3264 Known.One &= Known2.One; 3265 Known.Zero.setHighBits(LeadZero); 3266 break; 3267 } 3268 case ISD::UMAX: { 3269 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3270 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3271 3272 // UMAX - we know that the result will have the maximum of the 3273 // known one leading bits of the inputs. 3274 unsigned LeadOne = Known.countMinLeadingOnes(); 3275 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3276 3277 Known.Zero &= Known2.Zero; 3278 Known.One &= Known2.One; 3279 Known.One.setHighBits(LeadOne); 3280 break; 3281 } 3282 case ISD::SMIN: 3283 case ISD::SMAX: { 3284 // If we have a clamp pattern, we know that the number of sign bits will be 3285 // the minimum of the clamp min/max range. 3286 bool IsMax = (Opcode == ISD::SMAX); 3287 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3288 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3289 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3290 CstHigh = 3291 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3292 if (CstLow && CstHigh) { 3293 if (!IsMax) 3294 std::swap(CstLow, CstHigh); 3295 3296 const APInt &ValueLow = CstLow->getAPIntValue(); 3297 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3298 if (ValueLow.sle(ValueHigh)) { 3299 unsigned LowSignBits = ValueLow.getNumSignBits(); 3300 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3301 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3302 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3303 Known.One.setHighBits(MinSignBits); 3304 break; 3305 } 3306 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3307 Known.Zero.setHighBits(MinSignBits); 3308 break; 3309 } 3310 } 3311 } 3312 3313 // Fallback - just get the shared known bits of the operands. 3314 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3315 if (Known.isUnknown()) break; // Early-out 3316 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3317 Known.Zero &= Known2.Zero; 3318 Known.One &= Known2.One; 3319 break; 3320 } 3321 case ISD::FrameIndex: 3322 case ISD::TargetFrameIndex: 3323 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3324 break; 3325 3326 default: 3327 if (Opcode < ISD::BUILTIN_OP_END) 3328 break; 3329 LLVM_FALLTHROUGH; 3330 case ISD::INTRINSIC_WO_CHAIN: 3331 case ISD::INTRINSIC_W_CHAIN: 3332 case ISD::INTRINSIC_VOID: 3333 // Allow the target to implement this method for its nodes. 3334 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3335 break; 3336 } 3337 3338 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3339 return Known; 3340 } 3341 3342 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3343 SDValue N1) const { 3344 // X + 0 never overflow 3345 if (isNullConstant(N1)) 3346 return OFK_Never; 3347 3348 KnownBits N1Known = computeKnownBits(N1); 3349 if (N1Known.Zero.getBoolValue()) { 3350 KnownBits N0Known = computeKnownBits(N0); 3351 3352 bool overflow; 3353 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3354 if (!overflow) 3355 return OFK_Never; 3356 } 3357 3358 // mulhi + 1 never overflow 3359 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3360 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3361 return OFK_Never; 3362 3363 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3364 KnownBits N0Known = computeKnownBits(N0); 3365 3366 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3367 return OFK_Never; 3368 } 3369 3370 return OFK_Sometime; 3371 } 3372 3373 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3374 EVT OpVT = Val.getValueType(); 3375 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3376 3377 // Is the constant a known power of 2? 3378 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3379 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3380 3381 // A left-shift of a constant one will have exactly one bit set because 3382 // shifting the bit off the end is undefined. 3383 if (Val.getOpcode() == ISD::SHL) { 3384 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3385 if (C && C->getAPIntValue() == 1) 3386 return true; 3387 } 3388 3389 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3390 // one bit set. 3391 if (Val.getOpcode() == ISD::SRL) { 3392 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3393 if (C && C->getAPIntValue().isSignMask()) 3394 return true; 3395 } 3396 3397 // Are all operands of a build vector constant powers of two? 3398 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3399 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3400 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3401 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3402 return false; 3403 })) 3404 return true; 3405 3406 // More could be done here, though the above checks are enough 3407 // to handle some common cases. 3408 3409 // Fall back to computeKnownBits to catch other known cases. 3410 KnownBits Known = computeKnownBits(Val); 3411 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3412 } 3413 3414 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3415 EVT VT = Op.getValueType(); 3416 APInt DemandedElts = VT.isVector() 3417 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3418 : APInt(1, 1); 3419 return ComputeNumSignBits(Op, DemandedElts, Depth); 3420 } 3421 3422 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3423 unsigned Depth) const { 3424 EVT VT = Op.getValueType(); 3425 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3426 unsigned VTBits = VT.getScalarSizeInBits(); 3427 unsigned NumElts = DemandedElts.getBitWidth(); 3428 unsigned Tmp, Tmp2; 3429 unsigned FirstAnswer = 1; 3430 3431 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3432 const APInt &Val = C->getAPIntValue(); 3433 return Val.getNumSignBits(); 3434 } 3435 3436 if (Depth >= MaxRecursionDepth) 3437 return 1; // Limit search depth. 3438 3439 if (!DemandedElts) 3440 return 1; // No demanded elts, better to assume we don't know anything. 3441 3442 unsigned Opcode = Op.getOpcode(); 3443 switch (Opcode) { 3444 default: break; 3445 case ISD::AssertSext: 3446 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3447 return VTBits-Tmp+1; 3448 case ISD::AssertZext: 3449 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3450 return VTBits-Tmp; 3451 3452 case ISD::BUILD_VECTOR: 3453 Tmp = VTBits; 3454 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3455 if (!DemandedElts[i]) 3456 continue; 3457 3458 SDValue SrcOp = Op.getOperand(i); 3459 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3460 3461 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3462 if (SrcOp.getValueSizeInBits() != VTBits) { 3463 assert(SrcOp.getValueSizeInBits() > VTBits && 3464 "Expected BUILD_VECTOR implicit truncation"); 3465 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3466 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3467 } 3468 Tmp = std::min(Tmp, Tmp2); 3469 } 3470 return Tmp; 3471 3472 case ISD::VECTOR_SHUFFLE: { 3473 // Collect the minimum number of sign bits that are shared by every vector 3474 // element referenced by the shuffle. 3475 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3476 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3477 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3478 for (unsigned i = 0; i != NumElts; ++i) { 3479 int M = SVN->getMaskElt(i); 3480 if (!DemandedElts[i]) 3481 continue; 3482 // For UNDEF elements, we don't know anything about the common state of 3483 // the shuffle result. 3484 if (M < 0) 3485 return 1; 3486 if ((unsigned)M < NumElts) 3487 DemandedLHS.setBit((unsigned)M % NumElts); 3488 else 3489 DemandedRHS.setBit((unsigned)M % NumElts); 3490 } 3491 Tmp = std::numeric_limits<unsigned>::max(); 3492 if (!!DemandedLHS) 3493 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3494 if (!!DemandedRHS) { 3495 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3496 Tmp = std::min(Tmp, Tmp2); 3497 } 3498 // If we don't know anything, early out and try computeKnownBits fall-back. 3499 if (Tmp == 1) 3500 break; 3501 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3502 return Tmp; 3503 } 3504 3505 case ISD::BITCAST: { 3506 SDValue N0 = Op.getOperand(0); 3507 EVT SrcVT = N0.getValueType(); 3508 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3509 3510 // Ignore bitcasts from unsupported types.. 3511 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3512 break; 3513 3514 // Fast handling of 'identity' bitcasts. 3515 if (VTBits == SrcBits) 3516 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3517 3518 bool IsLE = getDataLayout().isLittleEndian(); 3519 3520 // Bitcast 'large element' scalar/vector to 'small element' vector. 3521 if ((SrcBits % VTBits) == 0) { 3522 assert(VT.isVector() && "Expected bitcast to vector"); 3523 3524 unsigned Scale = SrcBits / VTBits; 3525 APInt SrcDemandedElts(NumElts / Scale, 0); 3526 for (unsigned i = 0; i != NumElts; ++i) 3527 if (DemandedElts[i]) 3528 SrcDemandedElts.setBit(i / Scale); 3529 3530 // Fast case - sign splat can be simply split across the small elements. 3531 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3532 if (Tmp == SrcBits) 3533 return VTBits; 3534 3535 // Slow case - determine how far the sign extends into each sub-element. 3536 Tmp2 = VTBits; 3537 for (unsigned i = 0; i != NumElts; ++i) 3538 if (DemandedElts[i]) { 3539 unsigned SubOffset = i % Scale; 3540 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3541 SubOffset = SubOffset * VTBits; 3542 if (Tmp <= SubOffset) 3543 return 1; 3544 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3545 } 3546 return Tmp2; 3547 } 3548 break; 3549 } 3550 3551 case ISD::SIGN_EXTEND: 3552 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3553 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3554 case ISD::SIGN_EXTEND_INREG: 3555 // Max of the input and what this extends. 3556 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3557 Tmp = VTBits-Tmp+1; 3558 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3559 return std::max(Tmp, Tmp2); 3560 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3561 SDValue Src = Op.getOperand(0); 3562 EVT SrcVT = Src.getValueType(); 3563 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3564 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3565 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3566 } 3567 3568 case ISD::SRA: 3569 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3570 // SRA X, C -> adds C sign bits. 3571 if (ConstantSDNode *C = 3572 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3573 APInt ShiftVal = C->getAPIntValue(); 3574 ShiftVal += Tmp; 3575 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3576 } 3577 return Tmp; 3578 case ISD::SHL: 3579 if (ConstantSDNode *C = 3580 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3581 // shl destroys sign bits. 3582 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3583 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3584 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3585 return Tmp - C->getZExtValue(); 3586 } 3587 break; 3588 case ISD::AND: 3589 case ISD::OR: 3590 case ISD::XOR: // NOT is handled here. 3591 // Logical binary ops preserve the number of sign bits at the worst. 3592 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3593 if (Tmp != 1) { 3594 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3595 FirstAnswer = std::min(Tmp, Tmp2); 3596 // We computed what we know about the sign bits as our first 3597 // answer. Now proceed to the generic code that uses 3598 // computeKnownBits, and pick whichever answer is better. 3599 } 3600 break; 3601 3602 case ISD::SELECT: 3603 case ISD::VSELECT: 3604 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3605 if (Tmp == 1) return 1; // Early out. 3606 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3607 return std::min(Tmp, Tmp2); 3608 case ISD::SELECT_CC: 3609 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3610 if (Tmp == 1) return 1; // Early out. 3611 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3612 return std::min(Tmp, Tmp2); 3613 3614 case ISD::SMIN: 3615 case ISD::SMAX: { 3616 // If we have a clamp pattern, we know that the number of sign bits will be 3617 // the minimum of the clamp min/max range. 3618 bool IsMax = (Opcode == ISD::SMAX); 3619 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3620 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3621 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3622 CstHigh = 3623 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3624 if (CstLow && CstHigh) { 3625 if (!IsMax) 3626 std::swap(CstLow, CstHigh); 3627 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3628 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3629 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3630 return std::min(Tmp, Tmp2); 3631 } 3632 } 3633 3634 // Fallback - just get the minimum number of sign bits of the operands. 3635 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3636 if (Tmp == 1) 3637 return 1; // Early out. 3638 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3639 return std::min(Tmp, Tmp2); 3640 } 3641 case ISD::UMIN: 3642 case ISD::UMAX: 3643 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3644 if (Tmp == 1) 3645 return 1; // Early out. 3646 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3647 return std::min(Tmp, Tmp2); 3648 case ISD::SADDO: 3649 case ISD::UADDO: 3650 case ISD::SSUBO: 3651 case ISD::USUBO: 3652 case ISD::SMULO: 3653 case ISD::UMULO: 3654 if (Op.getResNo() != 1) 3655 break; 3656 // The boolean result conforms to getBooleanContents. Fall through. 3657 // If setcc returns 0/-1, all bits are sign bits. 3658 // We know that we have an integer-based boolean since these operations 3659 // are only available for integer. 3660 if (TLI->getBooleanContents(VT.isVector(), false) == 3661 TargetLowering::ZeroOrNegativeOneBooleanContent) 3662 return VTBits; 3663 break; 3664 case ISD::SETCC: 3665 // If setcc returns 0/-1, all bits are sign bits. 3666 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3667 TargetLowering::ZeroOrNegativeOneBooleanContent) 3668 return VTBits; 3669 break; 3670 case ISD::ROTL: 3671 case ISD::ROTR: 3672 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3673 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3674 3675 // Handle rotate right by N like a rotate left by 32-N. 3676 if (Opcode == ISD::ROTR) 3677 RotAmt = (VTBits - RotAmt) % VTBits; 3678 3679 // If we aren't rotating out all of the known-in sign bits, return the 3680 // number that are left. This handles rotl(sext(x), 1) for example. 3681 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3682 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3683 } 3684 break; 3685 case ISD::ADD: 3686 case ISD::ADDC: 3687 // Add can have at most one carry bit. Thus we know that the output 3688 // is, at worst, one more bit than the inputs. 3689 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3690 if (Tmp == 1) return 1; // Early out. 3691 3692 // Special case decrementing a value (ADD X, -1): 3693 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3694 if (CRHS->isAllOnesValue()) { 3695 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3696 3697 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3698 // sign bits set. 3699 if ((Known.Zero | 1).isAllOnesValue()) 3700 return VTBits; 3701 3702 // If we are subtracting one from a positive number, there is no carry 3703 // out of the result. 3704 if (Known.isNonNegative()) 3705 return Tmp; 3706 } 3707 3708 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3709 if (Tmp2 == 1) return 1; 3710 return std::min(Tmp, Tmp2)-1; 3711 3712 case ISD::SUB: 3713 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3714 if (Tmp2 == 1) return 1; 3715 3716 // Handle NEG. 3717 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3718 if (CLHS->isNullValue()) { 3719 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3720 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3721 // sign bits set. 3722 if ((Known.Zero | 1).isAllOnesValue()) 3723 return VTBits; 3724 3725 // If the input is known to be positive (the sign bit is known clear), 3726 // the output of the NEG has the same number of sign bits as the input. 3727 if (Known.isNonNegative()) 3728 return Tmp2; 3729 3730 // Otherwise, we treat this like a SUB. 3731 } 3732 3733 // Sub can have at most one carry bit. Thus we know that the output 3734 // is, at worst, one more bit than the inputs. 3735 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3736 if (Tmp == 1) return 1; // Early out. 3737 return std::min(Tmp, Tmp2)-1; 3738 case ISD::MUL: { 3739 // The output of the Mul can be at most twice the valid bits in the inputs. 3740 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3741 if (SignBitsOp0 == 1) 3742 break; 3743 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3744 if (SignBitsOp1 == 1) 3745 break; 3746 unsigned OutValidBits = 3747 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3748 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3749 } 3750 case ISD::TRUNCATE: { 3751 // Check if the sign bits of source go down as far as the truncated value. 3752 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3753 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3754 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3755 return NumSrcSignBits - (NumSrcBits - VTBits); 3756 break; 3757 } 3758 case ISD::EXTRACT_ELEMENT: { 3759 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3760 const int BitWidth = Op.getValueSizeInBits(); 3761 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3762 3763 // Get reverse index (starting from 1), Op1 value indexes elements from 3764 // little end. Sign starts at big end. 3765 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3766 3767 // If the sign portion ends in our element the subtraction gives correct 3768 // result. Otherwise it gives either negative or > bitwidth result 3769 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3770 } 3771 case ISD::INSERT_VECTOR_ELT: { 3772 SDValue InVec = Op.getOperand(0); 3773 SDValue InVal = Op.getOperand(1); 3774 SDValue EltNo = Op.getOperand(2); 3775 3776 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3777 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3778 // If we know the element index, split the demand between the 3779 // source vector and the inserted element. 3780 unsigned EltIdx = CEltNo->getZExtValue(); 3781 3782 // If we demand the inserted element then get its sign bits. 3783 Tmp = std::numeric_limits<unsigned>::max(); 3784 if (DemandedElts[EltIdx]) { 3785 // TODO - handle implicit truncation of inserted elements. 3786 if (InVal.getScalarValueSizeInBits() != VTBits) 3787 break; 3788 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3789 } 3790 3791 // If we demand the source vector then get its sign bits, and determine 3792 // the minimum. 3793 APInt VectorElts = DemandedElts; 3794 VectorElts.clearBit(EltIdx); 3795 if (!!VectorElts) { 3796 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3797 Tmp = std::min(Tmp, Tmp2); 3798 } 3799 } else { 3800 // Unknown element index, so ignore DemandedElts and demand them all. 3801 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3802 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3803 Tmp = std::min(Tmp, Tmp2); 3804 } 3805 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3806 return Tmp; 3807 } 3808 case ISD::EXTRACT_VECTOR_ELT: { 3809 SDValue InVec = Op.getOperand(0); 3810 SDValue EltNo = Op.getOperand(1); 3811 EVT VecVT = InVec.getValueType(); 3812 const unsigned BitWidth = Op.getValueSizeInBits(); 3813 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3814 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3815 3816 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3817 // anything about sign bits. But if the sizes match we can derive knowledge 3818 // about sign bits from the vector operand. 3819 if (BitWidth != EltBitWidth) 3820 break; 3821 3822 // If we know the element index, just demand that vector element, else for 3823 // an unknown element index, ignore DemandedElts and demand them all. 3824 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3825 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3826 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3827 DemandedSrcElts = 3828 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3829 3830 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3831 } 3832 case ISD::EXTRACT_SUBVECTOR: { 3833 // If we know the element index, just demand that subvector elements, 3834 // otherwise demand them all. 3835 SDValue Src = Op.getOperand(0); 3836 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3837 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3838 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3839 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3840 // Offset the demanded elts by the subvector index. 3841 uint64_t Idx = SubIdx->getZExtValue(); 3842 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3843 } 3844 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3845 } 3846 case ISD::CONCAT_VECTORS: { 3847 // Determine the minimum number of sign bits across all demanded 3848 // elts of the input vectors. Early out if the result is already 1. 3849 Tmp = std::numeric_limits<unsigned>::max(); 3850 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3851 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3852 unsigned NumSubVectors = Op.getNumOperands(); 3853 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3854 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3855 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3856 if (!DemandedSub) 3857 continue; 3858 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3859 Tmp = std::min(Tmp, Tmp2); 3860 } 3861 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3862 return Tmp; 3863 } 3864 case ISD::INSERT_SUBVECTOR: { 3865 // If we know the element index, demand any elements from the subvector and 3866 // the remainder from the src its inserted into, otherwise demand them all. 3867 SDValue Src = Op.getOperand(0); 3868 SDValue Sub = Op.getOperand(1); 3869 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3870 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3871 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3872 Tmp = std::numeric_limits<unsigned>::max(); 3873 uint64_t Idx = SubIdx->getZExtValue(); 3874 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3875 if (!!DemandedSubElts) { 3876 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3877 if (Tmp == 1) return 1; // early-out 3878 } 3879 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3880 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3881 if (!!DemandedSrcElts) { 3882 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3883 Tmp = std::min(Tmp, Tmp2); 3884 } 3885 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3886 return Tmp; 3887 } 3888 3889 // Not able to determine the index so just assume worst case. 3890 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3891 if (Tmp == 1) return 1; // early-out 3892 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3893 Tmp = std::min(Tmp, Tmp2); 3894 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3895 return Tmp; 3896 } 3897 } 3898 3899 // If we are looking at the loaded value of the SDNode. 3900 if (Op.getResNo() == 0) { 3901 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3902 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3903 unsigned ExtType = LD->getExtensionType(); 3904 switch (ExtType) { 3905 default: break; 3906 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3907 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3908 return VTBits - Tmp + 1; 3909 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3910 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3911 return VTBits - Tmp; 3912 case ISD::NON_EXTLOAD: 3913 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3914 // We only need to handle vectors - computeKnownBits should handle 3915 // scalar cases. 3916 Type *CstTy = Cst->getType(); 3917 if (CstTy->isVectorTy() && 3918 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3919 Tmp = VTBits; 3920 for (unsigned i = 0; i != NumElts; ++i) { 3921 if (!DemandedElts[i]) 3922 continue; 3923 if (Constant *Elt = Cst->getAggregateElement(i)) { 3924 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3925 const APInt &Value = CInt->getValue(); 3926 Tmp = std::min(Tmp, Value.getNumSignBits()); 3927 continue; 3928 } 3929 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3930 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3931 Tmp = std::min(Tmp, Value.getNumSignBits()); 3932 continue; 3933 } 3934 } 3935 // Unknown type. Conservatively assume no bits match sign bit. 3936 return 1; 3937 } 3938 return Tmp; 3939 } 3940 } 3941 break; 3942 } 3943 } 3944 } 3945 3946 // Allow the target to implement this method for its nodes. 3947 if (Opcode >= ISD::BUILTIN_OP_END || 3948 Opcode == ISD::INTRINSIC_WO_CHAIN || 3949 Opcode == ISD::INTRINSIC_W_CHAIN || 3950 Opcode == ISD::INTRINSIC_VOID) { 3951 unsigned NumBits = 3952 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3953 if (NumBits > 1) 3954 FirstAnswer = std::max(FirstAnswer, NumBits); 3955 } 3956 3957 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3958 // use this information. 3959 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3960 3961 APInt Mask; 3962 if (Known.isNonNegative()) { // sign bit is 0 3963 Mask = Known.Zero; 3964 } else if (Known.isNegative()) { // sign bit is 1; 3965 Mask = Known.One; 3966 } else { 3967 // Nothing known. 3968 return FirstAnswer; 3969 } 3970 3971 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3972 // the number of identical bits in the top of the input value. 3973 Mask = ~Mask; 3974 Mask <<= Mask.getBitWidth()-VTBits; 3975 // Return # leading zeros. We use 'min' here in case Val was zero before 3976 // shifting. We don't want to return '64' as for an i32 "0". 3977 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3978 } 3979 3980 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3981 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3982 !isa<ConstantSDNode>(Op.getOperand(1))) 3983 return false; 3984 3985 if (Op.getOpcode() == ISD::OR && 3986 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3987 return false; 3988 3989 return true; 3990 } 3991 3992 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3993 // If we're told that NaNs won't happen, assume they won't. 3994 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3995 return true; 3996 3997 if (Depth >= MaxRecursionDepth) 3998 return false; // Limit search depth. 3999 4000 // TODO: Handle vectors. 4001 // If the value is a constant, we can obviously see if it is a NaN or not. 4002 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4003 return !C->getValueAPF().isNaN() || 4004 (SNaN && !C->getValueAPF().isSignaling()); 4005 } 4006 4007 unsigned Opcode = Op.getOpcode(); 4008 switch (Opcode) { 4009 case ISD::FADD: 4010 case ISD::FSUB: 4011 case ISD::FMUL: 4012 case ISD::FDIV: 4013 case ISD::FREM: 4014 case ISD::FSIN: 4015 case ISD::FCOS: { 4016 if (SNaN) 4017 return true; 4018 // TODO: Need isKnownNeverInfinity 4019 return false; 4020 } 4021 case ISD::FCANONICALIZE: 4022 case ISD::FEXP: 4023 case ISD::FEXP2: 4024 case ISD::FTRUNC: 4025 case ISD::FFLOOR: 4026 case ISD::FCEIL: 4027 case ISD::FROUND: 4028 case ISD::FRINT: 4029 case ISD::FNEARBYINT: { 4030 if (SNaN) 4031 return true; 4032 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4033 } 4034 case ISD::FABS: 4035 case ISD::FNEG: 4036 case ISD::FCOPYSIGN: { 4037 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4038 } 4039 case ISD::SELECT: 4040 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4041 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4042 case ISD::FP_EXTEND: 4043 case ISD::FP_ROUND: { 4044 if (SNaN) 4045 return true; 4046 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4047 } 4048 case ISD::SINT_TO_FP: 4049 case ISD::UINT_TO_FP: 4050 return true; 4051 case ISD::FMA: 4052 case ISD::FMAD: { 4053 if (SNaN) 4054 return true; 4055 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4056 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4057 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4058 } 4059 case ISD::FSQRT: // Need is known positive 4060 case ISD::FLOG: 4061 case ISD::FLOG2: 4062 case ISD::FLOG10: 4063 case ISD::FPOWI: 4064 case ISD::FPOW: { 4065 if (SNaN) 4066 return true; 4067 // TODO: Refine on operand 4068 return false; 4069 } 4070 case ISD::FMINNUM: 4071 case ISD::FMAXNUM: { 4072 // Only one needs to be known not-nan, since it will be returned if the 4073 // other ends up being one. 4074 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4075 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4076 } 4077 case ISD::FMINNUM_IEEE: 4078 case ISD::FMAXNUM_IEEE: { 4079 if (SNaN) 4080 return true; 4081 // This can return a NaN if either operand is an sNaN, or if both operands 4082 // are NaN. 4083 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4084 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4085 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4086 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4087 } 4088 case ISD::FMINIMUM: 4089 case ISD::FMAXIMUM: { 4090 // TODO: Does this quiet or return the origina NaN as-is? 4091 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4092 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4093 } 4094 case ISD::EXTRACT_VECTOR_ELT: { 4095 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4096 } 4097 default: 4098 if (Opcode >= ISD::BUILTIN_OP_END || 4099 Opcode == ISD::INTRINSIC_WO_CHAIN || 4100 Opcode == ISD::INTRINSIC_W_CHAIN || 4101 Opcode == ISD::INTRINSIC_VOID) { 4102 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4103 } 4104 4105 return false; 4106 } 4107 } 4108 4109 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4110 assert(Op.getValueType().isFloatingPoint() && 4111 "Floating point type expected"); 4112 4113 // If the value is a constant, we can obviously see if it is a zero or not. 4114 // TODO: Add BuildVector support. 4115 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4116 return !C->isZero(); 4117 return false; 4118 } 4119 4120 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4121 assert(!Op.getValueType().isFloatingPoint() && 4122 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4123 4124 // If the value is a constant, we can obviously see if it is a zero or not. 4125 if (ISD::matchUnaryPredicate( 4126 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4127 return true; 4128 4129 // TODO: Recognize more cases here. 4130 switch (Op.getOpcode()) { 4131 default: break; 4132 case ISD::OR: 4133 if (isKnownNeverZero(Op.getOperand(1)) || 4134 isKnownNeverZero(Op.getOperand(0))) 4135 return true; 4136 break; 4137 } 4138 4139 return false; 4140 } 4141 4142 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4143 // Check the obvious case. 4144 if (A == B) return true; 4145 4146 // For for negative and positive zero. 4147 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4148 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4149 if (CA->isZero() && CB->isZero()) return true; 4150 4151 // Otherwise they may not be equal. 4152 return false; 4153 } 4154 4155 // FIXME: unify with llvm::haveNoCommonBitsSet. 4156 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4157 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4158 assert(A.getValueType() == B.getValueType() && 4159 "Values must have the same type"); 4160 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4161 } 4162 4163 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4164 ArrayRef<SDValue> Ops, 4165 SelectionDAG &DAG) { 4166 int NumOps = Ops.size(); 4167 assert(NumOps != 0 && "Can't build an empty vector!"); 4168 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4169 "Incorrect element count in BUILD_VECTOR!"); 4170 4171 // BUILD_VECTOR of UNDEFs is UNDEF. 4172 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4173 return DAG.getUNDEF(VT); 4174 4175 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4176 SDValue IdentitySrc; 4177 bool IsIdentity = true; 4178 for (int i = 0; i != NumOps; ++i) { 4179 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4180 Ops[i].getOperand(0).getValueType() != VT || 4181 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4182 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4183 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4184 IsIdentity = false; 4185 break; 4186 } 4187 IdentitySrc = Ops[i].getOperand(0); 4188 } 4189 if (IsIdentity) 4190 return IdentitySrc; 4191 4192 return SDValue(); 4193 } 4194 4195 /// Try to simplify vector concatenation to an input value, undef, or build 4196 /// vector. 4197 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4198 ArrayRef<SDValue> Ops, 4199 SelectionDAG &DAG) { 4200 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4201 assert(llvm::all_of(Ops, 4202 [Ops](SDValue Op) { 4203 return Ops[0].getValueType() == Op.getValueType(); 4204 }) && 4205 "Concatenation of vectors with inconsistent value types!"); 4206 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4207 VT.getVectorNumElements() && 4208 "Incorrect element count in vector concatenation!"); 4209 4210 if (Ops.size() == 1) 4211 return Ops[0]; 4212 4213 // Concat of UNDEFs is UNDEF. 4214 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4215 return DAG.getUNDEF(VT); 4216 4217 // Scan the operands and look for extract operations from a single source 4218 // that correspond to insertion at the same location via this concatenation: 4219 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4220 SDValue IdentitySrc; 4221 bool IsIdentity = true; 4222 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4223 SDValue Op = Ops[i]; 4224 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4225 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4226 Op.getOperand(0).getValueType() != VT || 4227 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4228 !isa<ConstantSDNode>(Op.getOperand(1)) || 4229 Op.getConstantOperandVal(1) != IdentityIndex) { 4230 IsIdentity = false; 4231 break; 4232 } 4233 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4234 "Unexpected identity source vector for concat of extracts"); 4235 IdentitySrc = Op.getOperand(0); 4236 } 4237 if (IsIdentity) { 4238 assert(IdentitySrc && "Failed to set source vector of extracts"); 4239 return IdentitySrc; 4240 } 4241 4242 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4243 // simplified to one big BUILD_VECTOR. 4244 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4245 EVT SVT = VT.getScalarType(); 4246 SmallVector<SDValue, 16> Elts; 4247 for (SDValue Op : Ops) { 4248 EVT OpVT = Op.getValueType(); 4249 if (Op.isUndef()) 4250 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4251 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4252 Elts.append(Op->op_begin(), Op->op_end()); 4253 else 4254 return SDValue(); 4255 } 4256 4257 // BUILD_VECTOR requires all inputs to be of the same type, find the 4258 // maximum type and extend them all. 4259 for (SDValue Op : Elts) 4260 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4261 4262 if (SVT.bitsGT(VT.getScalarType())) 4263 for (SDValue &Op : Elts) 4264 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4265 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4266 : DAG.getSExtOrTrunc(Op, DL, SVT); 4267 4268 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4269 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4270 return V; 4271 } 4272 4273 /// Gets or creates the specified node. 4274 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4275 FoldingSetNodeID ID; 4276 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4277 void *IP = nullptr; 4278 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4279 return SDValue(E, 0); 4280 4281 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4282 getVTList(VT)); 4283 CSEMap.InsertNode(N, IP); 4284 4285 InsertNode(N); 4286 SDValue V = SDValue(N, 0); 4287 NewSDValueDbgMsg(V, "Creating new node: ", this); 4288 return V; 4289 } 4290 4291 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4292 SDValue Operand, const SDNodeFlags Flags) { 4293 // Constant fold unary operations with an integer constant operand. Even 4294 // opaque constant will be folded, because the folding of unary operations 4295 // doesn't create new constants with different values. Nevertheless, the 4296 // opaque flag is preserved during folding to prevent future folding with 4297 // other constants. 4298 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4299 const APInt &Val = C->getAPIntValue(); 4300 switch (Opcode) { 4301 default: break; 4302 case ISD::SIGN_EXTEND: 4303 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4304 C->isTargetOpcode(), C->isOpaque()); 4305 case ISD::TRUNCATE: 4306 if (C->isOpaque()) 4307 break; 4308 LLVM_FALLTHROUGH; 4309 case ISD::ANY_EXTEND: 4310 case ISD::ZERO_EXTEND: 4311 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4312 C->isTargetOpcode(), C->isOpaque()); 4313 case ISD::UINT_TO_FP: 4314 case ISD::SINT_TO_FP: { 4315 APFloat apf(EVTToAPFloatSemantics(VT), 4316 APInt::getNullValue(VT.getSizeInBits())); 4317 (void)apf.convertFromAPInt(Val, 4318 Opcode==ISD::SINT_TO_FP, 4319 APFloat::rmNearestTiesToEven); 4320 return getConstantFP(apf, DL, VT); 4321 } 4322 case ISD::BITCAST: 4323 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4324 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4325 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4326 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4327 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4328 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4329 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4330 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4331 break; 4332 case ISD::ABS: 4333 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4334 C->isOpaque()); 4335 case ISD::BITREVERSE: 4336 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4337 C->isOpaque()); 4338 case ISD::BSWAP: 4339 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4340 C->isOpaque()); 4341 case ISD::CTPOP: 4342 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4343 C->isOpaque()); 4344 case ISD::CTLZ: 4345 case ISD::CTLZ_ZERO_UNDEF: 4346 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4347 C->isOpaque()); 4348 case ISD::CTTZ: 4349 case ISD::CTTZ_ZERO_UNDEF: 4350 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4351 C->isOpaque()); 4352 case ISD::FP16_TO_FP: { 4353 bool Ignored; 4354 APFloat FPV(APFloat::IEEEhalf(), 4355 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4356 4357 // This can return overflow, underflow, or inexact; we don't care. 4358 // FIXME need to be more flexible about rounding mode. 4359 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4360 APFloat::rmNearestTiesToEven, &Ignored); 4361 return getConstantFP(FPV, DL, VT); 4362 } 4363 } 4364 } 4365 4366 // Constant fold unary operations with a floating point constant operand. 4367 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4368 APFloat V = C->getValueAPF(); // make copy 4369 switch (Opcode) { 4370 case ISD::FNEG: 4371 V.changeSign(); 4372 return getConstantFP(V, DL, VT); 4373 case ISD::FABS: 4374 V.clearSign(); 4375 return getConstantFP(V, DL, VT); 4376 case ISD::FCEIL: { 4377 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4378 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4379 return getConstantFP(V, DL, VT); 4380 break; 4381 } 4382 case ISD::FTRUNC: { 4383 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4384 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4385 return getConstantFP(V, DL, VT); 4386 break; 4387 } 4388 case ISD::FFLOOR: { 4389 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4390 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4391 return getConstantFP(V, DL, VT); 4392 break; 4393 } 4394 case ISD::FP_EXTEND: { 4395 bool ignored; 4396 // This can return overflow, underflow, or inexact; we don't care. 4397 // FIXME need to be more flexible about rounding mode. 4398 (void)V.convert(EVTToAPFloatSemantics(VT), 4399 APFloat::rmNearestTiesToEven, &ignored); 4400 return getConstantFP(V, DL, VT); 4401 } 4402 case ISD::FP_TO_SINT: 4403 case ISD::FP_TO_UINT: { 4404 bool ignored; 4405 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4406 // FIXME need to be more flexible about rounding mode. 4407 APFloat::opStatus s = 4408 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4409 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4410 break; 4411 return getConstant(IntVal, DL, VT); 4412 } 4413 case ISD::BITCAST: 4414 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4415 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4416 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4417 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4418 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4419 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4420 break; 4421 case ISD::FP_TO_FP16: { 4422 bool Ignored; 4423 // This can return overflow, underflow, or inexact; we don't care. 4424 // FIXME need to be more flexible about rounding mode. 4425 (void)V.convert(APFloat::IEEEhalf(), 4426 APFloat::rmNearestTiesToEven, &Ignored); 4427 return getConstant(V.bitcastToAPInt(), DL, VT); 4428 } 4429 } 4430 } 4431 4432 // Constant fold unary operations with a vector integer or float operand. 4433 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4434 if (BV->isConstant()) { 4435 switch (Opcode) { 4436 default: 4437 // FIXME: Entirely reasonable to perform folding of other unary 4438 // operations here as the need arises. 4439 break; 4440 case ISD::FNEG: 4441 case ISD::FABS: 4442 case ISD::FCEIL: 4443 case ISD::FTRUNC: 4444 case ISD::FFLOOR: 4445 case ISD::FP_EXTEND: 4446 case ISD::FP_TO_SINT: 4447 case ISD::FP_TO_UINT: 4448 case ISD::TRUNCATE: 4449 case ISD::ANY_EXTEND: 4450 case ISD::ZERO_EXTEND: 4451 case ISD::SIGN_EXTEND: 4452 case ISD::UINT_TO_FP: 4453 case ISD::SINT_TO_FP: 4454 case ISD::ABS: 4455 case ISD::BITREVERSE: 4456 case ISD::BSWAP: 4457 case ISD::CTLZ: 4458 case ISD::CTLZ_ZERO_UNDEF: 4459 case ISD::CTTZ: 4460 case ISD::CTTZ_ZERO_UNDEF: 4461 case ISD::CTPOP: { 4462 SDValue Ops = { Operand }; 4463 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4464 return Fold; 4465 } 4466 } 4467 } 4468 } 4469 4470 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4471 switch (Opcode) { 4472 case ISD::TokenFactor: 4473 case ISD::MERGE_VALUES: 4474 case ISD::CONCAT_VECTORS: 4475 return Operand; // Factor, merge or concat of one node? No need. 4476 case ISD::BUILD_VECTOR: { 4477 // Attempt to simplify BUILD_VECTOR. 4478 SDValue Ops[] = {Operand}; 4479 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4480 return V; 4481 break; 4482 } 4483 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4484 case ISD::FP_EXTEND: 4485 assert(VT.isFloatingPoint() && 4486 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4487 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4488 assert((!VT.isVector() || 4489 VT.getVectorNumElements() == 4490 Operand.getValueType().getVectorNumElements()) && 4491 "Vector element count mismatch!"); 4492 assert(Operand.getValueType().bitsLT(VT) && 4493 "Invalid fpext node, dst < src!"); 4494 if (Operand.isUndef()) 4495 return getUNDEF(VT); 4496 break; 4497 case ISD::FP_TO_SINT: 4498 case ISD::FP_TO_UINT: 4499 if (Operand.isUndef()) 4500 return getUNDEF(VT); 4501 break; 4502 case ISD::SINT_TO_FP: 4503 case ISD::UINT_TO_FP: 4504 // [us]itofp(undef) = 0, because the result value is bounded. 4505 if (Operand.isUndef()) 4506 return getConstantFP(0.0, DL, VT); 4507 break; 4508 case ISD::SIGN_EXTEND: 4509 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4510 "Invalid SIGN_EXTEND!"); 4511 assert(VT.isVector() == Operand.getValueType().isVector() && 4512 "SIGN_EXTEND result type type should be vector iff the operand " 4513 "type is vector!"); 4514 if (Operand.getValueType() == VT) return Operand; // noop extension 4515 assert((!VT.isVector() || 4516 VT.getVectorNumElements() == 4517 Operand.getValueType().getVectorNumElements()) && 4518 "Vector element count mismatch!"); 4519 assert(Operand.getValueType().bitsLT(VT) && 4520 "Invalid sext node, dst < src!"); 4521 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4522 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4523 else if (OpOpcode == ISD::UNDEF) 4524 // sext(undef) = 0, because the top bits will all be the same. 4525 return getConstant(0, DL, VT); 4526 break; 4527 case ISD::ZERO_EXTEND: 4528 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4529 "Invalid ZERO_EXTEND!"); 4530 assert(VT.isVector() == Operand.getValueType().isVector() && 4531 "ZERO_EXTEND result type type should be vector iff the operand " 4532 "type is vector!"); 4533 if (Operand.getValueType() == VT) return Operand; // noop extension 4534 assert((!VT.isVector() || 4535 VT.getVectorNumElements() == 4536 Operand.getValueType().getVectorNumElements()) && 4537 "Vector element count mismatch!"); 4538 assert(Operand.getValueType().bitsLT(VT) && 4539 "Invalid zext node, dst < src!"); 4540 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4541 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4542 else if (OpOpcode == ISD::UNDEF) 4543 // zext(undef) = 0, because the top bits will be zero. 4544 return getConstant(0, DL, VT); 4545 break; 4546 case ISD::ANY_EXTEND: 4547 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4548 "Invalid ANY_EXTEND!"); 4549 assert(VT.isVector() == Operand.getValueType().isVector() && 4550 "ANY_EXTEND result type type should be vector iff the operand " 4551 "type is vector!"); 4552 if (Operand.getValueType() == VT) return Operand; // noop extension 4553 assert((!VT.isVector() || 4554 VT.getVectorNumElements() == 4555 Operand.getValueType().getVectorNumElements()) && 4556 "Vector element count mismatch!"); 4557 assert(Operand.getValueType().bitsLT(VT) && 4558 "Invalid anyext node, dst < src!"); 4559 4560 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4561 OpOpcode == ISD::ANY_EXTEND) 4562 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4563 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4564 else if (OpOpcode == ISD::UNDEF) 4565 return getUNDEF(VT); 4566 4567 // (ext (trunc x)) -> x 4568 if (OpOpcode == ISD::TRUNCATE) { 4569 SDValue OpOp = Operand.getOperand(0); 4570 if (OpOp.getValueType() == VT) { 4571 transferDbgValues(Operand, OpOp); 4572 return OpOp; 4573 } 4574 } 4575 break; 4576 case ISD::TRUNCATE: 4577 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4578 "Invalid TRUNCATE!"); 4579 assert(VT.isVector() == Operand.getValueType().isVector() && 4580 "TRUNCATE result type type should be vector iff the operand " 4581 "type is vector!"); 4582 if (Operand.getValueType() == VT) return Operand; // noop truncate 4583 assert((!VT.isVector() || 4584 VT.getVectorNumElements() == 4585 Operand.getValueType().getVectorNumElements()) && 4586 "Vector element count mismatch!"); 4587 assert(Operand.getValueType().bitsGT(VT) && 4588 "Invalid truncate node, src < dst!"); 4589 if (OpOpcode == ISD::TRUNCATE) 4590 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4591 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4592 OpOpcode == ISD::ANY_EXTEND) { 4593 // If the source is smaller than the dest, we still need an extend. 4594 if (Operand.getOperand(0).getValueType().getScalarType() 4595 .bitsLT(VT.getScalarType())) 4596 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4597 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4598 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4599 return Operand.getOperand(0); 4600 } 4601 if (OpOpcode == ISD::UNDEF) 4602 return getUNDEF(VT); 4603 break; 4604 case ISD::ANY_EXTEND_VECTOR_INREG: 4605 case ISD::ZERO_EXTEND_VECTOR_INREG: 4606 case ISD::SIGN_EXTEND_VECTOR_INREG: 4607 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4608 assert(Operand.getValueType().bitsLE(VT) && 4609 "The input must be the same size or smaller than the result."); 4610 assert(VT.getVectorNumElements() < 4611 Operand.getValueType().getVectorNumElements() && 4612 "The destination vector type must have fewer lanes than the input."); 4613 break; 4614 case ISD::ABS: 4615 assert(VT.isInteger() && VT == Operand.getValueType() && 4616 "Invalid ABS!"); 4617 if (OpOpcode == ISD::UNDEF) 4618 return getUNDEF(VT); 4619 break; 4620 case ISD::BSWAP: 4621 assert(VT.isInteger() && VT == Operand.getValueType() && 4622 "Invalid BSWAP!"); 4623 assert((VT.getScalarSizeInBits() % 16 == 0) && 4624 "BSWAP types must be a multiple of 16 bits!"); 4625 if (OpOpcode == ISD::UNDEF) 4626 return getUNDEF(VT); 4627 break; 4628 case ISD::BITREVERSE: 4629 assert(VT.isInteger() && VT == Operand.getValueType() && 4630 "Invalid BITREVERSE!"); 4631 if (OpOpcode == ISD::UNDEF) 4632 return getUNDEF(VT); 4633 break; 4634 case ISD::BITCAST: 4635 // Basic sanity checking. 4636 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4637 "Cannot BITCAST between types of different sizes!"); 4638 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4639 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4640 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4641 if (OpOpcode == ISD::UNDEF) 4642 return getUNDEF(VT); 4643 break; 4644 case ISD::SCALAR_TO_VECTOR: 4645 assert(VT.isVector() && !Operand.getValueType().isVector() && 4646 (VT.getVectorElementType() == Operand.getValueType() || 4647 (VT.getVectorElementType().isInteger() && 4648 Operand.getValueType().isInteger() && 4649 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4650 "Illegal SCALAR_TO_VECTOR node!"); 4651 if (OpOpcode == ISD::UNDEF) 4652 return getUNDEF(VT); 4653 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4654 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4655 isa<ConstantSDNode>(Operand.getOperand(1)) && 4656 Operand.getConstantOperandVal(1) == 0 && 4657 Operand.getOperand(0).getValueType() == VT) 4658 return Operand.getOperand(0); 4659 break; 4660 case ISD::FNEG: 4661 // Negation of an unknown bag of bits is still completely undefined. 4662 if (OpOpcode == ISD::UNDEF) 4663 return getUNDEF(VT); 4664 4665 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4666 if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 4667 OpOpcode == ISD::FSUB) 4668 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4669 Operand.getOperand(0), Flags); 4670 if (OpOpcode == ISD::FNEG) // --X -> X 4671 return Operand.getOperand(0); 4672 break; 4673 case ISD::FABS: 4674 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4675 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4676 break; 4677 } 4678 4679 SDNode *N; 4680 SDVTList VTs = getVTList(VT); 4681 SDValue Ops[] = {Operand}; 4682 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4683 FoldingSetNodeID ID; 4684 AddNodeIDNode(ID, Opcode, VTs, Ops); 4685 void *IP = nullptr; 4686 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4687 E->intersectFlagsWith(Flags); 4688 return SDValue(E, 0); 4689 } 4690 4691 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4692 N->setFlags(Flags); 4693 createOperands(N, Ops); 4694 CSEMap.InsertNode(N, IP); 4695 } else { 4696 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4697 createOperands(N, Ops); 4698 } 4699 4700 InsertNode(N); 4701 SDValue V = SDValue(N, 0); 4702 NewSDValueDbgMsg(V, "Creating new node: ", this); 4703 return V; 4704 } 4705 4706 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4707 const APInt &C2) { 4708 switch (Opcode) { 4709 case ISD::ADD: return std::make_pair(C1 + C2, true); 4710 case ISD::SUB: return std::make_pair(C1 - C2, true); 4711 case ISD::MUL: return std::make_pair(C1 * C2, true); 4712 case ISD::AND: return std::make_pair(C1 & C2, true); 4713 case ISD::OR: return std::make_pair(C1 | C2, true); 4714 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4715 case ISD::SHL: return std::make_pair(C1 << C2, true); 4716 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4717 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4718 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4719 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4720 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4721 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4722 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4723 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4724 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4725 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4726 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4727 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4728 case ISD::UDIV: 4729 if (!C2.getBoolValue()) 4730 break; 4731 return std::make_pair(C1.udiv(C2), true); 4732 case ISD::UREM: 4733 if (!C2.getBoolValue()) 4734 break; 4735 return std::make_pair(C1.urem(C2), true); 4736 case ISD::SDIV: 4737 if (!C2.getBoolValue()) 4738 break; 4739 return std::make_pair(C1.sdiv(C2), true); 4740 case ISD::SREM: 4741 if (!C2.getBoolValue()) 4742 break; 4743 return std::make_pair(C1.srem(C2), true); 4744 } 4745 return std::make_pair(APInt(1, 0), false); 4746 } 4747 4748 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4749 EVT VT, const ConstantSDNode *C1, 4750 const ConstantSDNode *C2) { 4751 if (C1->isOpaque() || C2->isOpaque()) 4752 return SDValue(); 4753 4754 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4755 C2->getAPIntValue()); 4756 if (!Folded.second) 4757 return SDValue(); 4758 return getConstant(Folded.first, DL, VT); 4759 } 4760 4761 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4762 const GlobalAddressSDNode *GA, 4763 const SDNode *N2) { 4764 if (GA->getOpcode() != ISD::GlobalAddress) 4765 return SDValue(); 4766 if (!TLI->isOffsetFoldingLegal(GA)) 4767 return SDValue(); 4768 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4769 if (!C2) 4770 return SDValue(); 4771 int64_t Offset = C2->getSExtValue(); 4772 switch (Opcode) { 4773 case ISD::ADD: break; 4774 case ISD::SUB: Offset = -uint64_t(Offset); break; 4775 default: return SDValue(); 4776 } 4777 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4778 GA->getOffset() + uint64_t(Offset)); 4779 } 4780 4781 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4782 switch (Opcode) { 4783 case ISD::SDIV: 4784 case ISD::UDIV: 4785 case ISD::SREM: 4786 case ISD::UREM: { 4787 // If a divisor is zero/undef or any element of a divisor vector is 4788 // zero/undef, the whole op is undef. 4789 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4790 SDValue Divisor = Ops[1]; 4791 if (Divisor.isUndef() || isNullConstant(Divisor)) 4792 return true; 4793 4794 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4795 llvm::any_of(Divisor->op_values(), 4796 [](SDValue V) { return V.isUndef() || 4797 isNullConstant(V); }); 4798 // TODO: Handle signed overflow. 4799 } 4800 // TODO: Handle oversized shifts. 4801 default: 4802 return false; 4803 } 4804 } 4805 4806 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4807 EVT VT, SDNode *N1, SDNode *N2) { 4808 // If the opcode is a target-specific ISD node, there's nothing we can 4809 // do here and the operand rules may not line up with the below, so 4810 // bail early. 4811 if (Opcode >= ISD::BUILTIN_OP_END) 4812 return SDValue(); 4813 4814 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4815 return getUNDEF(VT); 4816 4817 // Handle the case of two scalars. 4818 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4819 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4820 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4821 assert((!Folded || !VT.isVector()) && 4822 "Can't fold vectors ops with scalar operands"); 4823 return Folded; 4824 } 4825 } 4826 4827 // fold (add Sym, c) -> Sym+c 4828 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4829 return FoldSymbolOffset(Opcode, VT, GA, N2); 4830 if (TLI->isCommutativeBinOp(Opcode)) 4831 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4832 return FoldSymbolOffset(Opcode, VT, GA, N1); 4833 4834 // For vectors, extract each constant element and fold them individually. 4835 // Either input may be an undef value. 4836 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4837 if (!BV1 && !N1->isUndef()) 4838 return SDValue(); 4839 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4840 if (!BV2 && !N2->isUndef()) 4841 return SDValue(); 4842 // If both operands are undef, that's handled the same way as scalars. 4843 if (!BV1 && !BV2) 4844 return SDValue(); 4845 4846 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4847 "Vector binop with different number of elements in operands?"); 4848 4849 EVT SVT = VT.getScalarType(); 4850 EVT LegalSVT = SVT; 4851 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4852 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4853 if (LegalSVT.bitsLT(SVT)) 4854 return SDValue(); 4855 } 4856 SmallVector<SDValue, 4> Outputs; 4857 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4858 for (unsigned I = 0; I != NumOps; ++I) { 4859 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4860 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4861 if (SVT.isInteger()) { 4862 if (V1->getValueType(0).bitsGT(SVT)) 4863 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4864 if (V2->getValueType(0).bitsGT(SVT)) 4865 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4866 } 4867 4868 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4869 return SDValue(); 4870 4871 // Fold one vector element. 4872 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4873 if (LegalSVT != SVT) 4874 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4875 4876 // Scalar folding only succeeded if the result is a constant or UNDEF. 4877 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4878 ScalarResult.getOpcode() != ISD::ConstantFP) 4879 return SDValue(); 4880 Outputs.push_back(ScalarResult); 4881 } 4882 4883 assert(VT.getVectorNumElements() == Outputs.size() && 4884 "Vector size mismatch!"); 4885 4886 // We may have a vector type but a scalar result. Create a splat. 4887 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4888 4889 // Build a big vector out of the scalar elements we generated. 4890 return getBuildVector(VT, SDLoc(), Outputs); 4891 } 4892 4893 // TODO: Merge with FoldConstantArithmetic 4894 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4895 const SDLoc &DL, EVT VT, 4896 ArrayRef<SDValue> Ops, 4897 const SDNodeFlags Flags) { 4898 // If the opcode is a target-specific ISD node, there's nothing we can 4899 // do here and the operand rules may not line up with the below, so 4900 // bail early. 4901 if (Opcode >= ISD::BUILTIN_OP_END) 4902 return SDValue(); 4903 4904 if (isUndef(Opcode, Ops)) 4905 return getUNDEF(VT); 4906 4907 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4908 if (!VT.isVector()) 4909 return SDValue(); 4910 4911 unsigned NumElts = VT.getVectorNumElements(); 4912 4913 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4914 return !Op.getValueType().isVector() || 4915 Op.getValueType().getVectorNumElements() == NumElts; 4916 }; 4917 4918 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4919 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4920 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4921 (BV && BV->isConstant()); 4922 }; 4923 4924 // All operands must be vector types with the same number of elements as 4925 // the result type and must be either UNDEF or a build vector of constant 4926 // or UNDEF scalars. 4927 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4928 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4929 return SDValue(); 4930 4931 // If we are comparing vectors, then the result needs to be a i1 boolean 4932 // that is then sign-extended back to the legal result type. 4933 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4934 4935 // Find legal integer scalar type for constant promotion and 4936 // ensure that its scalar size is at least as large as source. 4937 EVT LegalSVT = VT.getScalarType(); 4938 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4939 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4940 if (LegalSVT.bitsLT(VT.getScalarType())) 4941 return SDValue(); 4942 } 4943 4944 // Constant fold each scalar lane separately. 4945 SmallVector<SDValue, 4> ScalarResults; 4946 for (unsigned i = 0; i != NumElts; i++) { 4947 SmallVector<SDValue, 4> ScalarOps; 4948 for (SDValue Op : Ops) { 4949 EVT InSVT = Op.getValueType().getScalarType(); 4950 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4951 if (!InBV) { 4952 // We've checked that this is UNDEF or a constant of some kind. 4953 if (Op.isUndef()) 4954 ScalarOps.push_back(getUNDEF(InSVT)); 4955 else 4956 ScalarOps.push_back(Op); 4957 continue; 4958 } 4959 4960 SDValue ScalarOp = InBV->getOperand(i); 4961 EVT ScalarVT = ScalarOp.getValueType(); 4962 4963 // Build vector (integer) scalar operands may need implicit 4964 // truncation - do this before constant folding. 4965 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4966 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4967 4968 ScalarOps.push_back(ScalarOp); 4969 } 4970 4971 // Constant fold the scalar operands. 4972 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4973 4974 // Legalize the (integer) scalar constant if necessary. 4975 if (LegalSVT != SVT) 4976 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4977 4978 // Scalar folding only succeeded if the result is a constant or UNDEF. 4979 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4980 ScalarResult.getOpcode() != ISD::ConstantFP) 4981 return SDValue(); 4982 ScalarResults.push_back(ScalarResult); 4983 } 4984 4985 SDValue V = getBuildVector(VT, DL, ScalarResults); 4986 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4987 return V; 4988 } 4989 4990 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4991 EVT VT, SDValue N1, SDValue N2) { 4992 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4993 // should. That will require dealing with a potentially non-default 4994 // rounding mode, checking the "opStatus" return value from the APFloat 4995 // math calculations, and possibly other variations. 4996 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4997 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4998 if (N1CFP && N2CFP) { 4999 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5000 switch (Opcode) { 5001 case ISD::FADD: 5002 C1.add(C2, APFloat::rmNearestTiesToEven); 5003 return getConstantFP(C1, DL, VT); 5004 case ISD::FSUB: 5005 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5006 return getConstantFP(C1, DL, VT); 5007 case ISD::FMUL: 5008 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5009 return getConstantFP(C1, DL, VT); 5010 case ISD::FDIV: 5011 C1.divide(C2, APFloat::rmNearestTiesToEven); 5012 return getConstantFP(C1, DL, VT); 5013 case ISD::FREM: 5014 C1.mod(C2); 5015 return getConstantFP(C1, DL, VT); 5016 case ISD::FCOPYSIGN: 5017 C1.copySign(C2); 5018 return getConstantFP(C1, DL, VT); 5019 default: break; 5020 } 5021 } 5022 if (N1CFP && Opcode == ISD::FP_ROUND) { 5023 APFloat C1 = N1CFP->getValueAPF(); // make copy 5024 bool Unused; 5025 // This can return overflow, underflow, or inexact; we don't care. 5026 // FIXME need to be more flexible about rounding mode. 5027 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5028 &Unused); 5029 return getConstantFP(C1, DL, VT); 5030 } 5031 5032 switch (Opcode) { 5033 case ISD::FADD: 5034 case ISD::FSUB: 5035 case ISD::FMUL: 5036 case ISD::FDIV: 5037 case ISD::FREM: 5038 // If both operands are undef, the result is undef. If 1 operand is undef, 5039 // the result is NaN. This should match the behavior of the IR optimizer. 5040 if (N1.isUndef() && N2.isUndef()) 5041 return getUNDEF(VT); 5042 if (N1.isUndef() || N2.isUndef()) 5043 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5044 } 5045 return SDValue(); 5046 } 5047 5048 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5049 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5050 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5051 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5052 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5053 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5054 5055 // Canonicalize constant to RHS if commutative. 5056 if (TLI->isCommutativeBinOp(Opcode)) { 5057 if (N1C && !N2C) { 5058 std::swap(N1C, N2C); 5059 std::swap(N1, N2); 5060 } else if (N1CFP && !N2CFP) { 5061 std::swap(N1CFP, N2CFP); 5062 std::swap(N1, N2); 5063 } 5064 } 5065 5066 switch (Opcode) { 5067 default: break; 5068 case ISD::TokenFactor: 5069 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5070 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5071 // Fold trivial token factors. 5072 if (N1.getOpcode() == ISD::EntryToken) return N2; 5073 if (N2.getOpcode() == ISD::EntryToken) return N1; 5074 if (N1 == N2) return N1; 5075 break; 5076 case ISD::BUILD_VECTOR: { 5077 // Attempt to simplify BUILD_VECTOR. 5078 SDValue Ops[] = {N1, N2}; 5079 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5080 return V; 5081 break; 5082 } 5083 case ISD::CONCAT_VECTORS: { 5084 SDValue Ops[] = {N1, N2}; 5085 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5086 return V; 5087 break; 5088 } 5089 case ISD::AND: 5090 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5091 assert(N1.getValueType() == N2.getValueType() && 5092 N1.getValueType() == VT && "Binary operator types must match!"); 5093 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5094 // worth handling here. 5095 if (N2C && N2C->isNullValue()) 5096 return N2; 5097 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5098 return N1; 5099 break; 5100 case ISD::OR: 5101 case ISD::XOR: 5102 case ISD::ADD: 5103 case ISD::SUB: 5104 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5105 assert(N1.getValueType() == N2.getValueType() && 5106 N1.getValueType() == VT && "Binary operator types must match!"); 5107 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5108 // it's worth handling here. 5109 if (N2C && N2C->isNullValue()) 5110 return N1; 5111 break; 5112 case ISD::UDIV: 5113 case ISD::UREM: 5114 case ISD::MULHU: 5115 case ISD::MULHS: 5116 case ISD::MUL: 5117 case ISD::SDIV: 5118 case ISD::SREM: 5119 case ISD::SMIN: 5120 case ISD::SMAX: 5121 case ISD::UMIN: 5122 case ISD::UMAX: 5123 case ISD::SADDSAT: 5124 case ISD::SSUBSAT: 5125 case ISD::UADDSAT: 5126 case ISD::USUBSAT: 5127 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5128 assert(N1.getValueType() == N2.getValueType() && 5129 N1.getValueType() == VT && "Binary operator types must match!"); 5130 break; 5131 case ISD::FADD: 5132 case ISD::FSUB: 5133 case ISD::FMUL: 5134 case ISD::FDIV: 5135 case ISD::FREM: 5136 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5137 assert(N1.getValueType() == N2.getValueType() && 5138 N1.getValueType() == VT && "Binary operator types must match!"); 5139 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5140 return V; 5141 break; 5142 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5143 assert(N1.getValueType() == VT && 5144 N1.getValueType().isFloatingPoint() && 5145 N2.getValueType().isFloatingPoint() && 5146 "Invalid FCOPYSIGN!"); 5147 break; 5148 case ISD::SHL: 5149 case ISD::SRA: 5150 case ISD::SRL: 5151 if (SDValue V = simplifyShift(N1, N2)) 5152 return V; 5153 LLVM_FALLTHROUGH; 5154 case ISD::ROTL: 5155 case ISD::ROTR: 5156 assert(VT == N1.getValueType() && 5157 "Shift operators return type must be the same as their first arg"); 5158 assert(VT.isInteger() && N2.getValueType().isInteger() && 5159 "Shifts only work on integers"); 5160 assert((!VT.isVector() || VT == N2.getValueType()) && 5161 "Vector shift amounts must be in the same as their first arg"); 5162 // Verify that the shift amount VT is big enough to hold valid shift 5163 // amounts. This catches things like trying to shift an i1024 value by an 5164 // i8, which is easy to fall into in generic code that uses 5165 // TLI.getShiftAmount(). 5166 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5167 "Invalid use of small shift amount with oversized value!"); 5168 5169 // Always fold shifts of i1 values so the code generator doesn't need to 5170 // handle them. Since we know the size of the shift has to be less than the 5171 // size of the value, the shift/rotate count is guaranteed to be zero. 5172 if (VT == MVT::i1) 5173 return N1; 5174 if (N2C && N2C->isNullValue()) 5175 return N1; 5176 break; 5177 case ISD::FP_ROUND: 5178 assert(VT.isFloatingPoint() && 5179 N1.getValueType().isFloatingPoint() && 5180 VT.bitsLE(N1.getValueType()) && 5181 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5182 "Invalid FP_ROUND!"); 5183 if (N1.getValueType() == VT) return N1; // noop conversion. 5184 break; 5185 case ISD::AssertSext: 5186 case ISD::AssertZext: { 5187 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5188 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5189 assert(VT.isInteger() && EVT.isInteger() && 5190 "Cannot *_EXTEND_INREG FP types"); 5191 assert(!EVT.isVector() && 5192 "AssertSExt/AssertZExt type should be the vector element type " 5193 "rather than the vector type!"); 5194 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5195 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5196 break; 5197 } 5198 case ISD::SIGN_EXTEND_INREG: { 5199 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5200 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5201 assert(VT.isInteger() && EVT.isInteger() && 5202 "Cannot *_EXTEND_INREG FP types"); 5203 assert(EVT.isVector() == VT.isVector() && 5204 "SIGN_EXTEND_INREG type should be vector iff the operand " 5205 "type is vector!"); 5206 assert((!EVT.isVector() || 5207 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5208 "Vector element counts must match in SIGN_EXTEND_INREG"); 5209 assert(EVT.bitsLE(VT) && "Not extending!"); 5210 if (EVT == VT) return N1; // Not actually extending 5211 5212 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5213 unsigned FromBits = EVT.getScalarSizeInBits(); 5214 Val <<= Val.getBitWidth() - FromBits; 5215 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5216 return getConstant(Val, DL, ConstantVT); 5217 }; 5218 5219 if (N1C) { 5220 const APInt &Val = N1C->getAPIntValue(); 5221 return SignExtendInReg(Val, VT); 5222 } 5223 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5224 SmallVector<SDValue, 8> Ops; 5225 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5226 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5227 SDValue Op = N1.getOperand(i); 5228 if (Op.isUndef()) { 5229 Ops.push_back(getUNDEF(OpVT)); 5230 continue; 5231 } 5232 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5233 APInt Val = C->getAPIntValue(); 5234 Ops.push_back(SignExtendInReg(Val, OpVT)); 5235 } 5236 return getBuildVector(VT, DL, Ops); 5237 } 5238 break; 5239 } 5240 case ISD::EXTRACT_VECTOR_ELT: 5241 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5242 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5243 element type of the vector."); 5244 5245 // Extract from an undefined value or using an undefined index is undefined. 5246 if (N1.isUndef() || N2.isUndef()) 5247 return getUNDEF(VT); 5248 5249 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5250 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5251 return getUNDEF(VT); 5252 5253 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5254 // expanding copies of large vectors from registers. 5255 if (N2C && 5256 N1.getOpcode() == ISD::CONCAT_VECTORS && 5257 N1.getNumOperands() > 0) { 5258 unsigned Factor = 5259 N1.getOperand(0).getValueType().getVectorNumElements(); 5260 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5261 N1.getOperand(N2C->getZExtValue() / Factor), 5262 getConstant(N2C->getZExtValue() % Factor, DL, 5263 N2.getValueType())); 5264 } 5265 5266 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5267 // expanding large vector constants. 5268 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5269 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5270 5271 if (VT != Elt.getValueType()) 5272 // If the vector element type is not legal, the BUILD_VECTOR operands 5273 // are promoted and implicitly truncated, and the result implicitly 5274 // extended. Make that explicit here. 5275 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5276 5277 return Elt; 5278 } 5279 5280 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5281 // operations are lowered to scalars. 5282 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5283 // If the indices are the same, return the inserted element else 5284 // if the indices are known different, extract the element from 5285 // the original vector. 5286 SDValue N1Op2 = N1.getOperand(2); 5287 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5288 5289 if (N1Op2C && N2C) { 5290 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5291 if (VT == N1.getOperand(1).getValueType()) 5292 return N1.getOperand(1); 5293 else 5294 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5295 } 5296 5297 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5298 } 5299 } 5300 5301 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5302 // when vector types are scalarized and v1iX is legal. 5303 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5304 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5305 N1.getValueType().getVectorNumElements() == 1) { 5306 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5307 N1.getOperand(1)); 5308 } 5309 break; 5310 case ISD::EXTRACT_ELEMENT: 5311 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5312 assert(!N1.getValueType().isVector() && !VT.isVector() && 5313 (N1.getValueType().isInteger() == VT.isInteger()) && 5314 N1.getValueType() != VT && 5315 "Wrong types for EXTRACT_ELEMENT!"); 5316 5317 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5318 // 64-bit integers into 32-bit parts. Instead of building the extract of 5319 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5320 if (N1.getOpcode() == ISD::BUILD_PAIR) 5321 return N1.getOperand(N2C->getZExtValue()); 5322 5323 // EXTRACT_ELEMENT of a constant int is also very common. 5324 if (N1C) { 5325 unsigned ElementSize = VT.getSizeInBits(); 5326 unsigned Shift = ElementSize * N2C->getZExtValue(); 5327 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5328 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5329 } 5330 break; 5331 case ISD::EXTRACT_SUBVECTOR: 5332 if (VT.isSimple() && N1.getValueType().isSimple()) { 5333 assert(VT.isVector() && N1.getValueType().isVector() && 5334 "Extract subvector VTs must be a vectors!"); 5335 assert(VT.getVectorElementType() == 5336 N1.getValueType().getVectorElementType() && 5337 "Extract subvector VTs must have the same element type!"); 5338 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5339 "Extract subvector must be from larger vector to smaller vector!"); 5340 5341 if (N2C) { 5342 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5343 <= N1.getValueType().getVectorNumElements()) 5344 && "Extract subvector overflow!"); 5345 } 5346 5347 // Trivial extraction. 5348 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5349 return N1; 5350 5351 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5352 if (N1.isUndef()) 5353 return getUNDEF(VT); 5354 5355 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5356 // the concat have the same type as the extract. 5357 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5358 N1.getNumOperands() > 0 && 5359 VT == N1.getOperand(0).getValueType()) { 5360 unsigned Factor = VT.getVectorNumElements(); 5361 return N1.getOperand(N2C->getZExtValue() / Factor); 5362 } 5363 5364 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5365 // during shuffle legalization. 5366 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5367 VT == N1.getOperand(1).getValueType()) 5368 return N1.getOperand(1); 5369 } 5370 break; 5371 } 5372 5373 // Perform trivial constant folding. 5374 if (SDValue SV = 5375 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5376 return SV; 5377 5378 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5379 return V; 5380 5381 // Canonicalize an UNDEF to the RHS, even over a constant. 5382 if (N1.isUndef()) { 5383 if (TLI->isCommutativeBinOp(Opcode)) { 5384 std::swap(N1, N2); 5385 } else { 5386 switch (Opcode) { 5387 case ISD::SIGN_EXTEND_INREG: 5388 case ISD::SUB: 5389 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5390 case ISD::UDIV: 5391 case ISD::SDIV: 5392 case ISD::UREM: 5393 case ISD::SREM: 5394 case ISD::SSUBSAT: 5395 case ISD::USUBSAT: 5396 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5397 } 5398 } 5399 } 5400 5401 // Fold a bunch of operators when the RHS is undef. 5402 if (N2.isUndef()) { 5403 switch (Opcode) { 5404 case ISD::XOR: 5405 if (N1.isUndef()) 5406 // Handle undef ^ undef -> 0 special case. This is a common 5407 // idiom (misuse). 5408 return getConstant(0, DL, VT); 5409 LLVM_FALLTHROUGH; 5410 case ISD::ADD: 5411 case ISD::SUB: 5412 case ISD::UDIV: 5413 case ISD::SDIV: 5414 case ISD::UREM: 5415 case ISD::SREM: 5416 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5417 case ISD::MUL: 5418 case ISD::AND: 5419 case ISD::SSUBSAT: 5420 case ISD::USUBSAT: 5421 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5422 case ISD::OR: 5423 case ISD::SADDSAT: 5424 case ISD::UADDSAT: 5425 return getAllOnesConstant(DL, VT); 5426 } 5427 } 5428 5429 // Memoize this node if possible. 5430 SDNode *N; 5431 SDVTList VTs = getVTList(VT); 5432 SDValue Ops[] = {N1, N2}; 5433 if (VT != MVT::Glue) { 5434 FoldingSetNodeID ID; 5435 AddNodeIDNode(ID, Opcode, VTs, Ops); 5436 void *IP = nullptr; 5437 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5438 E->intersectFlagsWith(Flags); 5439 return SDValue(E, 0); 5440 } 5441 5442 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5443 N->setFlags(Flags); 5444 createOperands(N, Ops); 5445 CSEMap.InsertNode(N, IP); 5446 } else { 5447 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5448 createOperands(N, Ops); 5449 } 5450 5451 InsertNode(N); 5452 SDValue V = SDValue(N, 0); 5453 NewSDValueDbgMsg(V, "Creating new node: ", this); 5454 return V; 5455 } 5456 5457 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5458 SDValue N1, SDValue N2, SDValue N3, 5459 const SDNodeFlags Flags) { 5460 // Perform various simplifications. 5461 switch (Opcode) { 5462 case ISD::FMA: { 5463 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5464 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5465 N3.getValueType() == VT && "FMA types must match!"); 5466 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5467 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5468 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5469 if (N1CFP && N2CFP && N3CFP) { 5470 APFloat V1 = N1CFP->getValueAPF(); 5471 const APFloat &V2 = N2CFP->getValueAPF(); 5472 const APFloat &V3 = N3CFP->getValueAPF(); 5473 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5474 return getConstantFP(V1, DL, VT); 5475 } 5476 break; 5477 } 5478 case ISD::BUILD_VECTOR: { 5479 // Attempt to simplify BUILD_VECTOR. 5480 SDValue Ops[] = {N1, N2, N3}; 5481 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5482 return V; 5483 break; 5484 } 5485 case ISD::CONCAT_VECTORS: { 5486 SDValue Ops[] = {N1, N2, N3}; 5487 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5488 return V; 5489 break; 5490 } 5491 case ISD::SETCC: { 5492 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5493 assert(N1.getValueType() == N2.getValueType() && 5494 "SETCC operands must have the same type!"); 5495 assert(VT.isVector() == N1.getValueType().isVector() && 5496 "SETCC type should be vector iff the operand type is vector!"); 5497 assert((!VT.isVector() || 5498 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5499 "SETCC vector element counts must match!"); 5500 // Use FoldSetCC to simplify SETCC's. 5501 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5502 return V; 5503 // Vector constant folding. 5504 SDValue Ops[] = {N1, N2, N3}; 5505 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5506 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5507 return V; 5508 } 5509 break; 5510 } 5511 case ISD::SELECT: 5512 case ISD::VSELECT: 5513 if (SDValue V = simplifySelect(N1, N2, N3)) 5514 return V; 5515 break; 5516 case ISD::VECTOR_SHUFFLE: 5517 llvm_unreachable("should use getVectorShuffle constructor!"); 5518 case ISD::INSERT_VECTOR_ELT: { 5519 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5520 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5521 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5522 return getUNDEF(VT); 5523 5524 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5525 if (N3.isUndef()) 5526 return getUNDEF(VT); 5527 5528 // If the inserted element is an UNDEF, just use the input vector. 5529 if (N2.isUndef()) 5530 return N1; 5531 5532 break; 5533 } 5534 case ISD::INSERT_SUBVECTOR: { 5535 // Inserting undef into undef is still undef. 5536 if (N1.isUndef() && N2.isUndef()) 5537 return getUNDEF(VT); 5538 SDValue Index = N3; 5539 if (VT.isSimple() && N1.getValueType().isSimple() 5540 && N2.getValueType().isSimple()) { 5541 assert(VT.isVector() && N1.getValueType().isVector() && 5542 N2.getValueType().isVector() && 5543 "Insert subvector VTs must be a vectors"); 5544 assert(VT == N1.getValueType() && 5545 "Dest and insert subvector source types must match!"); 5546 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5547 "Insert subvector must be from smaller vector to larger vector!"); 5548 if (isa<ConstantSDNode>(Index)) { 5549 assert((N2.getValueType().getVectorNumElements() + 5550 cast<ConstantSDNode>(Index)->getZExtValue() 5551 <= VT.getVectorNumElements()) 5552 && "Insert subvector overflow!"); 5553 } 5554 5555 // Trivial insertion. 5556 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5557 return N2; 5558 5559 // If this is an insert of an extracted vector into an undef vector, we 5560 // can just use the input to the extract. 5561 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5562 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5563 return N2.getOperand(0); 5564 } 5565 break; 5566 } 5567 case ISD::BITCAST: 5568 // Fold bit_convert nodes from a type to themselves. 5569 if (N1.getValueType() == VT) 5570 return N1; 5571 break; 5572 } 5573 5574 // Memoize node if it doesn't produce a flag. 5575 SDNode *N; 5576 SDVTList VTs = getVTList(VT); 5577 SDValue Ops[] = {N1, N2, N3}; 5578 if (VT != MVT::Glue) { 5579 FoldingSetNodeID ID; 5580 AddNodeIDNode(ID, Opcode, VTs, Ops); 5581 void *IP = nullptr; 5582 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5583 E->intersectFlagsWith(Flags); 5584 return SDValue(E, 0); 5585 } 5586 5587 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5588 N->setFlags(Flags); 5589 createOperands(N, Ops); 5590 CSEMap.InsertNode(N, IP); 5591 } else { 5592 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5593 createOperands(N, Ops); 5594 } 5595 5596 InsertNode(N); 5597 SDValue V = SDValue(N, 0); 5598 NewSDValueDbgMsg(V, "Creating new node: ", this); 5599 return V; 5600 } 5601 5602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5603 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5604 SDValue Ops[] = { N1, N2, N3, N4 }; 5605 return getNode(Opcode, DL, VT, Ops); 5606 } 5607 5608 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5609 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5610 SDValue N5) { 5611 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5612 return getNode(Opcode, DL, VT, Ops); 5613 } 5614 5615 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5616 /// the incoming stack arguments to be loaded from the stack. 5617 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5618 SmallVector<SDValue, 8> ArgChains; 5619 5620 // Include the original chain at the beginning of the list. When this is 5621 // used by target LowerCall hooks, this helps legalize find the 5622 // CALLSEQ_BEGIN node. 5623 ArgChains.push_back(Chain); 5624 5625 // Add a chain value for each stack argument. 5626 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5627 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5628 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5629 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5630 if (FI->getIndex() < 0) 5631 ArgChains.push_back(SDValue(L, 1)); 5632 5633 // Build a tokenfactor for all the chains. 5634 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5635 } 5636 5637 /// getMemsetValue - Vectorized representation of the memset value 5638 /// operand. 5639 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5640 const SDLoc &dl) { 5641 assert(!Value.isUndef()); 5642 5643 unsigned NumBits = VT.getScalarSizeInBits(); 5644 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5645 assert(C->getAPIntValue().getBitWidth() == 8); 5646 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5647 if (VT.isInteger()) { 5648 bool IsOpaque = VT.getSizeInBits() > 64 || 5649 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5650 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5651 } 5652 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5653 VT); 5654 } 5655 5656 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5657 EVT IntVT = VT.getScalarType(); 5658 if (!IntVT.isInteger()) 5659 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5660 5661 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5662 if (NumBits > 8) { 5663 // Use a multiplication with 0x010101... to extend the input to the 5664 // required length. 5665 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5666 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5667 DAG.getConstant(Magic, dl, IntVT)); 5668 } 5669 5670 if (VT != Value.getValueType() && !VT.isInteger()) 5671 Value = DAG.getBitcast(VT.getScalarType(), Value); 5672 if (VT != Value.getValueType()) 5673 Value = DAG.getSplatBuildVector(VT, dl, Value); 5674 5675 return Value; 5676 } 5677 5678 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5679 /// used when a memcpy is turned into a memset when the source is a constant 5680 /// string ptr. 5681 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5682 const TargetLowering &TLI, 5683 const ConstantDataArraySlice &Slice) { 5684 // Handle vector with all elements zero. 5685 if (Slice.Array == nullptr) { 5686 if (VT.isInteger()) 5687 return DAG.getConstant(0, dl, VT); 5688 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5689 return DAG.getConstantFP(0.0, dl, VT); 5690 else if (VT.isVector()) { 5691 unsigned NumElts = VT.getVectorNumElements(); 5692 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5693 return DAG.getNode(ISD::BITCAST, dl, VT, 5694 DAG.getConstant(0, dl, 5695 EVT::getVectorVT(*DAG.getContext(), 5696 EltVT, NumElts))); 5697 } else 5698 llvm_unreachable("Expected type!"); 5699 } 5700 5701 assert(!VT.isVector() && "Can't handle vector type here!"); 5702 unsigned NumVTBits = VT.getSizeInBits(); 5703 unsigned NumVTBytes = NumVTBits / 8; 5704 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5705 5706 APInt Val(NumVTBits, 0); 5707 if (DAG.getDataLayout().isLittleEndian()) { 5708 for (unsigned i = 0; i != NumBytes; ++i) 5709 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5710 } else { 5711 for (unsigned i = 0; i != NumBytes; ++i) 5712 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5713 } 5714 5715 // If the "cost" of materializing the integer immediate is less than the cost 5716 // of a load, then it is cost effective to turn the load into the immediate. 5717 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5718 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5719 return DAG.getConstant(Val, dl, VT); 5720 return SDValue(nullptr, 0); 5721 } 5722 5723 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5724 const SDLoc &DL) { 5725 EVT VT = Base.getValueType(); 5726 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5727 } 5728 5729 /// Returns true if memcpy source is constant data. 5730 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5731 uint64_t SrcDelta = 0; 5732 GlobalAddressSDNode *G = nullptr; 5733 if (Src.getOpcode() == ISD::GlobalAddress) 5734 G = cast<GlobalAddressSDNode>(Src); 5735 else if (Src.getOpcode() == ISD::ADD && 5736 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5737 Src.getOperand(1).getOpcode() == ISD::Constant) { 5738 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5739 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5740 } 5741 if (!G) 5742 return false; 5743 5744 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5745 SrcDelta + G->getOffset()); 5746 } 5747 5748 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5749 SelectionDAG &DAG) { 5750 // On Darwin, -Os means optimize for size without hurting performance, so 5751 // only really optimize for size when -Oz (MinSize) is used. 5752 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5753 return MF.getFunction().hasMinSize(); 5754 return DAG.shouldOptForSize(); 5755 } 5756 5757 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5758 SmallVector<SDValue, 32> &OutChains, unsigned From, 5759 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5760 SmallVector<SDValue, 16> &OutStoreChains) { 5761 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5762 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5763 SmallVector<SDValue, 16> GluedLoadChains; 5764 for (unsigned i = From; i < To; ++i) { 5765 OutChains.push_back(OutLoadChains[i]); 5766 GluedLoadChains.push_back(OutLoadChains[i]); 5767 } 5768 5769 // Chain for all loads. 5770 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5771 GluedLoadChains); 5772 5773 for (unsigned i = From; i < To; ++i) { 5774 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5775 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5776 ST->getBasePtr(), ST->getMemoryVT(), 5777 ST->getMemOperand()); 5778 OutChains.push_back(NewStore); 5779 } 5780 } 5781 5782 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5783 SDValue Chain, SDValue Dst, SDValue Src, 5784 uint64_t Size, unsigned Alignment, 5785 bool isVol, bool AlwaysInline, 5786 MachinePointerInfo DstPtrInfo, 5787 MachinePointerInfo SrcPtrInfo) { 5788 // Turn a memcpy of undef to nop. 5789 // FIXME: We need to honor volatile even is Src is undef. 5790 if (Src.isUndef()) 5791 return Chain; 5792 5793 // Expand memcpy to a series of load and store ops if the size operand falls 5794 // below a certain threshold. 5795 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5796 // rather than maybe a humongous number of loads and stores. 5797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5798 const DataLayout &DL = DAG.getDataLayout(); 5799 LLVMContext &C = *DAG.getContext(); 5800 std::vector<EVT> MemOps; 5801 bool DstAlignCanChange = false; 5802 MachineFunction &MF = DAG.getMachineFunction(); 5803 MachineFrameInfo &MFI = MF.getFrameInfo(); 5804 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5805 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5806 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5807 DstAlignCanChange = true; 5808 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5809 if (Alignment > SrcAlign) 5810 SrcAlign = Alignment; 5811 ConstantDataArraySlice Slice; 5812 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5813 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5814 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5815 5816 if (!TLI.findOptimalMemOpLowering( 5817 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment), 5818 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5819 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5820 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5821 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5822 return SDValue(); 5823 5824 if (DstAlignCanChange) { 5825 Type *Ty = MemOps[0].getTypeForEVT(C); 5826 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5827 5828 // Don't promote to an alignment that would require dynamic stack 5829 // realignment. 5830 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5831 if (!TRI->needsStackRealignment(MF)) 5832 while (NewAlign > Alignment && 5833 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 5834 NewAlign /= 2; 5835 5836 if (NewAlign > Alignment) { 5837 // Give the stack frame object a larger alignment if needed. 5838 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5839 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5840 Alignment = NewAlign; 5841 } 5842 } 5843 5844 MachineMemOperand::Flags MMOFlags = 5845 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5846 SmallVector<SDValue, 16> OutLoadChains; 5847 SmallVector<SDValue, 16> OutStoreChains; 5848 SmallVector<SDValue, 32> OutChains; 5849 unsigned NumMemOps = MemOps.size(); 5850 uint64_t SrcOff = 0, DstOff = 0; 5851 for (unsigned i = 0; i != NumMemOps; ++i) { 5852 EVT VT = MemOps[i]; 5853 unsigned VTSize = VT.getSizeInBits() / 8; 5854 SDValue Value, Store; 5855 5856 if (VTSize > Size) { 5857 // Issuing an unaligned load / store pair that overlaps with the previous 5858 // pair. Adjust the offset accordingly. 5859 assert(i == NumMemOps-1 && i != 0); 5860 SrcOff -= VTSize - Size; 5861 DstOff -= VTSize - Size; 5862 } 5863 5864 if (CopyFromConstant && 5865 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5866 // It's unlikely a store of a vector immediate can be done in a single 5867 // instruction. It would require a load from a constantpool first. 5868 // We only handle zero vectors here. 5869 // FIXME: Handle other cases where store of vector immediate is done in 5870 // a single instruction. 5871 ConstantDataArraySlice SubSlice; 5872 if (SrcOff < Slice.Length) { 5873 SubSlice = Slice; 5874 SubSlice.move(SrcOff); 5875 } else { 5876 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5877 SubSlice.Array = nullptr; 5878 SubSlice.Offset = 0; 5879 SubSlice.Length = VTSize; 5880 } 5881 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5882 if (Value.getNode()) { 5883 Store = DAG.getStore( 5884 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5885 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 5886 OutChains.push_back(Store); 5887 } 5888 } 5889 5890 if (!Store.getNode()) { 5891 // The type might not be legal for the target. This should only happen 5892 // if the type is smaller than a legal type, as on PPC, so the right 5893 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5894 // to Load/Store if NVT==VT. 5895 // FIXME does the case above also need this? 5896 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5897 assert(NVT.bitsGE(VT)); 5898 5899 bool isDereferenceable = 5900 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5901 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5902 if (isDereferenceable) 5903 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5904 5905 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5906 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5907 SrcPtrInfo.getWithOffset(SrcOff), VT, 5908 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5909 OutLoadChains.push_back(Value.getValue(1)); 5910 5911 Store = DAG.getTruncStore( 5912 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5913 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 5914 OutStoreChains.push_back(Store); 5915 } 5916 SrcOff += VTSize; 5917 DstOff += VTSize; 5918 Size -= VTSize; 5919 } 5920 5921 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5922 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5923 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5924 5925 if (NumLdStInMemcpy) { 5926 // It may be that memcpy might be converted to memset if it's memcpy 5927 // of constants. In such a case, we won't have loads and stores, but 5928 // just stores. In the absence of loads, there is nothing to gang up. 5929 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5930 // If target does not care, just leave as it. 5931 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5932 OutChains.push_back(OutLoadChains[i]); 5933 OutChains.push_back(OutStoreChains[i]); 5934 } 5935 } else { 5936 // Ld/St less than/equal limit set by target. 5937 if (NumLdStInMemcpy <= GluedLdStLimit) { 5938 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5939 NumLdStInMemcpy, OutLoadChains, 5940 OutStoreChains); 5941 } else { 5942 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5943 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5944 unsigned GlueIter = 0; 5945 5946 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5947 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5948 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5949 5950 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5951 OutLoadChains, OutStoreChains); 5952 GlueIter += GluedLdStLimit; 5953 } 5954 5955 // Residual ld/st. 5956 if (RemainingLdStInMemcpy) { 5957 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5958 RemainingLdStInMemcpy, OutLoadChains, 5959 OutStoreChains); 5960 } 5961 } 5962 } 5963 } 5964 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5965 } 5966 5967 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5968 SDValue Chain, SDValue Dst, SDValue Src, 5969 uint64_t Size, unsigned Align, 5970 bool isVol, bool AlwaysInline, 5971 MachinePointerInfo DstPtrInfo, 5972 MachinePointerInfo SrcPtrInfo) { 5973 // Turn a memmove of undef to nop. 5974 // FIXME: We need to honor volatile even is Src is undef. 5975 if (Src.isUndef()) 5976 return Chain; 5977 5978 // Expand memmove to a series of load and store ops if the size operand falls 5979 // below a certain threshold. 5980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5981 const DataLayout &DL = DAG.getDataLayout(); 5982 LLVMContext &C = *DAG.getContext(); 5983 std::vector<EVT> MemOps; 5984 bool DstAlignCanChange = false; 5985 MachineFunction &MF = DAG.getMachineFunction(); 5986 MachineFrameInfo &MFI = MF.getFrameInfo(); 5987 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5988 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5989 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5990 DstAlignCanChange = true; 5991 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5992 if (Align > SrcAlign) 5993 SrcAlign = Align; 5994 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5995 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 5996 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 5997 // correct code. 5998 bool AllowOverlap = false; 5999 if (!TLI.findOptimalMemOpLowering( 6000 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 6001 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 6002 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6003 MF.getFunction().getAttributes())) 6004 return SDValue(); 6005 6006 if (DstAlignCanChange) { 6007 Type *Ty = MemOps[0].getTypeForEVT(C); 6008 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 6009 if (NewAlign > Align) { 6010 // Give the stack frame object a larger alignment if needed. 6011 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6012 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6013 Align = NewAlign; 6014 } 6015 } 6016 6017 MachineMemOperand::Flags MMOFlags = 6018 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6019 uint64_t SrcOff = 0, DstOff = 0; 6020 SmallVector<SDValue, 8> LoadValues; 6021 SmallVector<SDValue, 8> LoadChains; 6022 SmallVector<SDValue, 8> OutChains; 6023 unsigned NumMemOps = MemOps.size(); 6024 for (unsigned i = 0; i < NumMemOps; i++) { 6025 EVT VT = MemOps[i]; 6026 unsigned VTSize = VT.getSizeInBits() / 8; 6027 SDValue Value; 6028 6029 bool isDereferenceable = 6030 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6031 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6032 if (isDereferenceable) 6033 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6034 6035 Value = 6036 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6037 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6038 LoadValues.push_back(Value); 6039 LoadChains.push_back(Value.getValue(1)); 6040 SrcOff += VTSize; 6041 } 6042 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6043 OutChains.clear(); 6044 for (unsigned i = 0; i < NumMemOps; i++) { 6045 EVT VT = MemOps[i]; 6046 unsigned VTSize = VT.getSizeInBits() / 8; 6047 SDValue Store; 6048 6049 Store = DAG.getStore(Chain, dl, LoadValues[i], 6050 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6051 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6052 OutChains.push_back(Store); 6053 DstOff += VTSize; 6054 } 6055 6056 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6057 } 6058 6059 /// Lower the call to 'memset' intrinsic function into a series of store 6060 /// operations. 6061 /// 6062 /// \param DAG Selection DAG where lowered code is placed. 6063 /// \param dl Link to corresponding IR location. 6064 /// \param Chain Control flow dependency. 6065 /// \param Dst Pointer to destination memory location. 6066 /// \param Src Value of byte to write into the memory. 6067 /// \param Size Number of bytes to write. 6068 /// \param Align Alignment of the destination in bytes. 6069 /// \param isVol True if destination is volatile. 6070 /// \param DstPtrInfo IR information on the memory pointer. 6071 /// \returns New head in the control flow, if lowering was successful, empty 6072 /// SDValue otherwise. 6073 /// 6074 /// The function tries to replace 'llvm.memset' intrinsic with several store 6075 /// operations and value calculation code. This is usually profitable for small 6076 /// memory size. 6077 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6078 SDValue Chain, SDValue Dst, SDValue Src, 6079 uint64_t Size, unsigned Align, bool isVol, 6080 MachinePointerInfo DstPtrInfo) { 6081 // Turn a memset of undef to nop. 6082 // FIXME: We need to honor volatile even is Src is undef. 6083 if (Src.isUndef()) 6084 return Chain; 6085 6086 // Expand memset to a series of load/store ops if the size operand 6087 // falls below a certain threshold. 6088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6089 std::vector<EVT> MemOps; 6090 bool DstAlignCanChange = false; 6091 MachineFunction &MF = DAG.getMachineFunction(); 6092 MachineFrameInfo &MFI = MF.getFrameInfo(); 6093 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6094 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6095 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6096 DstAlignCanChange = true; 6097 bool IsZeroVal = 6098 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6099 if (!TLI.findOptimalMemOpLowering( 6100 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6101 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6102 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6103 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6104 MF.getFunction().getAttributes())) 6105 return SDValue(); 6106 6107 if (DstAlignCanChange) { 6108 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6109 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6110 if (NewAlign > Align) { 6111 // Give the stack frame object a larger alignment if needed. 6112 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6113 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6114 Align = NewAlign; 6115 } 6116 } 6117 6118 SmallVector<SDValue, 8> OutChains; 6119 uint64_t DstOff = 0; 6120 unsigned NumMemOps = MemOps.size(); 6121 6122 // Find the largest store and generate the bit pattern for it. 6123 EVT LargestVT = MemOps[0]; 6124 for (unsigned i = 1; i < NumMemOps; i++) 6125 if (MemOps[i].bitsGT(LargestVT)) 6126 LargestVT = MemOps[i]; 6127 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6128 6129 for (unsigned i = 0; i < NumMemOps; i++) { 6130 EVT VT = MemOps[i]; 6131 unsigned VTSize = VT.getSizeInBits() / 8; 6132 if (VTSize > Size) { 6133 // Issuing an unaligned load / store pair that overlaps with the previous 6134 // pair. Adjust the offset accordingly. 6135 assert(i == NumMemOps-1 && i != 0); 6136 DstOff -= VTSize - Size; 6137 } 6138 6139 // If this store is smaller than the largest store see whether we can get 6140 // the smaller value for free with a truncate. 6141 SDValue Value = MemSetValue; 6142 if (VT.bitsLT(LargestVT)) { 6143 if (!LargestVT.isVector() && !VT.isVector() && 6144 TLI.isTruncateFree(LargestVT, VT)) 6145 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6146 else 6147 Value = getMemsetValue(Src, VT, DAG, dl); 6148 } 6149 assert(Value.getValueType() == VT && "Value with wrong type."); 6150 SDValue Store = DAG.getStore( 6151 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6152 DstPtrInfo.getWithOffset(DstOff), Align, 6153 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6154 OutChains.push_back(Store); 6155 DstOff += VT.getSizeInBits() / 8; 6156 Size -= VTSize; 6157 } 6158 6159 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6160 } 6161 6162 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6163 unsigned AS) { 6164 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6165 // pointer operands can be losslessly bitcasted to pointers of address space 0 6166 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6167 report_fatal_error("cannot lower memory intrinsic in address space " + 6168 Twine(AS)); 6169 } 6170 } 6171 6172 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6173 SDValue Src, SDValue Size, unsigned Align, 6174 bool isVol, bool AlwaysInline, bool isTailCall, 6175 MachinePointerInfo DstPtrInfo, 6176 MachinePointerInfo SrcPtrInfo) { 6177 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6178 6179 // Check to see if we should lower the memcpy to loads and stores first. 6180 // For cases within the target-specified limits, this is the best choice. 6181 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6182 if (ConstantSize) { 6183 // Memcpy with size zero? Just return the original chain. 6184 if (ConstantSize->isNullValue()) 6185 return Chain; 6186 6187 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6188 ConstantSize->getZExtValue(),Align, 6189 isVol, false, DstPtrInfo, SrcPtrInfo); 6190 if (Result.getNode()) 6191 return Result; 6192 } 6193 6194 // Then check to see if we should lower the memcpy with target-specific 6195 // code. If the target chooses to do this, this is the next best. 6196 if (TSI) { 6197 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6198 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6199 DstPtrInfo, SrcPtrInfo); 6200 if (Result.getNode()) 6201 return Result; 6202 } 6203 6204 // If we really need inline code and the target declined to provide it, 6205 // use a (potentially long) sequence of loads and stores. 6206 if (AlwaysInline) { 6207 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6208 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6209 ConstantSize->getZExtValue(), Align, isVol, 6210 true, DstPtrInfo, SrcPtrInfo); 6211 } 6212 6213 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6214 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6215 6216 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6217 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6218 // respect volatile, so they may do things like read or write memory 6219 // beyond the given memory regions. But fixing this isn't easy, and most 6220 // people don't care. 6221 6222 // Emit a library call. 6223 TargetLowering::ArgListTy Args; 6224 TargetLowering::ArgListEntry Entry; 6225 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6226 Entry.Node = Dst; Args.push_back(Entry); 6227 Entry.Node = Src; Args.push_back(Entry); 6228 6229 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6230 Entry.Node = Size; Args.push_back(Entry); 6231 // FIXME: pass in SDLoc 6232 TargetLowering::CallLoweringInfo CLI(*this); 6233 CLI.setDebugLoc(dl) 6234 .setChain(Chain) 6235 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6236 Dst.getValueType().getTypeForEVT(*getContext()), 6237 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6238 TLI->getPointerTy(getDataLayout())), 6239 std::move(Args)) 6240 .setDiscardResult() 6241 .setTailCall(isTailCall); 6242 6243 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6244 return CallResult.second; 6245 } 6246 6247 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6248 SDValue Dst, unsigned DstAlign, 6249 SDValue Src, unsigned SrcAlign, 6250 SDValue Size, Type *SizeTy, 6251 unsigned ElemSz, bool isTailCall, 6252 MachinePointerInfo DstPtrInfo, 6253 MachinePointerInfo SrcPtrInfo) { 6254 // Emit a library call. 6255 TargetLowering::ArgListTy Args; 6256 TargetLowering::ArgListEntry Entry; 6257 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6258 Entry.Node = Dst; 6259 Args.push_back(Entry); 6260 6261 Entry.Node = Src; 6262 Args.push_back(Entry); 6263 6264 Entry.Ty = SizeTy; 6265 Entry.Node = Size; 6266 Args.push_back(Entry); 6267 6268 RTLIB::Libcall LibraryCall = 6269 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6270 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6271 report_fatal_error("Unsupported element size"); 6272 6273 TargetLowering::CallLoweringInfo CLI(*this); 6274 CLI.setDebugLoc(dl) 6275 .setChain(Chain) 6276 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6277 Type::getVoidTy(*getContext()), 6278 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6279 TLI->getPointerTy(getDataLayout())), 6280 std::move(Args)) 6281 .setDiscardResult() 6282 .setTailCall(isTailCall); 6283 6284 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6285 return CallResult.second; 6286 } 6287 6288 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6289 SDValue Src, SDValue Size, unsigned Align, 6290 bool isVol, bool isTailCall, 6291 MachinePointerInfo DstPtrInfo, 6292 MachinePointerInfo SrcPtrInfo) { 6293 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6294 6295 // Check to see if we should lower the memmove to loads and stores first. 6296 // For cases within the target-specified limits, this is the best choice. 6297 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6298 if (ConstantSize) { 6299 // Memmove with size zero? Just return the original chain. 6300 if (ConstantSize->isNullValue()) 6301 return Chain; 6302 6303 SDValue Result = 6304 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6305 ConstantSize->getZExtValue(), Align, isVol, 6306 false, DstPtrInfo, SrcPtrInfo); 6307 if (Result.getNode()) 6308 return Result; 6309 } 6310 6311 // Then check to see if we should lower the memmove with target-specific 6312 // code. If the target chooses to do this, this is the next best. 6313 if (TSI) { 6314 SDValue Result = TSI->EmitTargetCodeForMemmove( 6315 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6316 if (Result.getNode()) 6317 return Result; 6318 } 6319 6320 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6321 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6322 6323 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6324 // not be safe. See memcpy above for more details. 6325 6326 // Emit a library call. 6327 TargetLowering::ArgListTy Args; 6328 TargetLowering::ArgListEntry Entry; 6329 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6330 Entry.Node = Dst; Args.push_back(Entry); 6331 Entry.Node = Src; Args.push_back(Entry); 6332 6333 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6334 Entry.Node = Size; Args.push_back(Entry); 6335 // FIXME: pass in SDLoc 6336 TargetLowering::CallLoweringInfo CLI(*this); 6337 CLI.setDebugLoc(dl) 6338 .setChain(Chain) 6339 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6340 Dst.getValueType().getTypeForEVT(*getContext()), 6341 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6342 TLI->getPointerTy(getDataLayout())), 6343 std::move(Args)) 6344 .setDiscardResult() 6345 .setTailCall(isTailCall); 6346 6347 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6348 return CallResult.second; 6349 } 6350 6351 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6352 SDValue Dst, unsigned DstAlign, 6353 SDValue Src, unsigned SrcAlign, 6354 SDValue Size, Type *SizeTy, 6355 unsigned ElemSz, bool isTailCall, 6356 MachinePointerInfo DstPtrInfo, 6357 MachinePointerInfo SrcPtrInfo) { 6358 // Emit a library call. 6359 TargetLowering::ArgListTy Args; 6360 TargetLowering::ArgListEntry Entry; 6361 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6362 Entry.Node = Dst; 6363 Args.push_back(Entry); 6364 6365 Entry.Node = Src; 6366 Args.push_back(Entry); 6367 6368 Entry.Ty = SizeTy; 6369 Entry.Node = Size; 6370 Args.push_back(Entry); 6371 6372 RTLIB::Libcall LibraryCall = 6373 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6374 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6375 report_fatal_error("Unsupported element size"); 6376 6377 TargetLowering::CallLoweringInfo CLI(*this); 6378 CLI.setDebugLoc(dl) 6379 .setChain(Chain) 6380 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6381 Type::getVoidTy(*getContext()), 6382 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6383 TLI->getPointerTy(getDataLayout())), 6384 std::move(Args)) 6385 .setDiscardResult() 6386 .setTailCall(isTailCall); 6387 6388 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6389 return CallResult.second; 6390 } 6391 6392 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6393 SDValue Src, SDValue Size, unsigned Align, 6394 bool isVol, bool isTailCall, 6395 MachinePointerInfo DstPtrInfo) { 6396 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6397 6398 // Check to see if we should lower the memset to stores first. 6399 // For cases within the target-specified limits, this is the best choice. 6400 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6401 if (ConstantSize) { 6402 // Memset with size zero? Just return the original chain. 6403 if (ConstantSize->isNullValue()) 6404 return Chain; 6405 6406 SDValue Result = 6407 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6408 Align, isVol, DstPtrInfo); 6409 6410 if (Result.getNode()) 6411 return Result; 6412 } 6413 6414 // Then check to see if we should lower the memset with target-specific 6415 // code. If the target chooses to do this, this is the next best. 6416 if (TSI) { 6417 SDValue Result = TSI->EmitTargetCodeForMemset( 6418 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6419 if (Result.getNode()) 6420 return Result; 6421 } 6422 6423 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6424 6425 // Emit a library call. 6426 TargetLowering::ArgListTy Args; 6427 TargetLowering::ArgListEntry Entry; 6428 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6429 Args.push_back(Entry); 6430 Entry.Node = Src; 6431 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6432 Args.push_back(Entry); 6433 Entry.Node = Size; 6434 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6435 Args.push_back(Entry); 6436 6437 // FIXME: pass in SDLoc 6438 TargetLowering::CallLoweringInfo CLI(*this); 6439 CLI.setDebugLoc(dl) 6440 .setChain(Chain) 6441 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6442 Dst.getValueType().getTypeForEVT(*getContext()), 6443 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6444 TLI->getPointerTy(getDataLayout())), 6445 std::move(Args)) 6446 .setDiscardResult() 6447 .setTailCall(isTailCall); 6448 6449 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6450 return CallResult.second; 6451 } 6452 6453 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6454 SDValue Dst, unsigned DstAlign, 6455 SDValue Value, SDValue Size, Type *SizeTy, 6456 unsigned ElemSz, bool isTailCall, 6457 MachinePointerInfo DstPtrInfo) { 6458 // Emit a library call. 6459 TargetLowering::ArgListTy Args; 6460 TargetLowering::ArgListEntry Entry; 6461 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6462 Entry.Node = Dst; 6463 Args.push_back(Entry); 6464 6465 Entry.Ty = Type::getInt8Ty(*getContext()); 6466 Entry.Node = Value; 6467 Args.push_back(Entry); 6468 6469 Entry.Ty = SizeTy; 6470 Entry.Node = Size; 6471 Args.push_back(Entry); 6472 6473 RTLIB::Libcall LibraryCall = 6474 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6475 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6476 report_fatal_error("Unsupported element size"); 6477 6478 TargetLowering::CallLoweringInfo CLI(*this); 6479 CLI.setDebugLoc(dl) 6480 .setChain(Chain) 6481 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6482 Type::getVoidTy(*getContext()), 6483 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6484 TLI->getPointerTy(getDataLayout())), 6485 std::move(Args)) 6486 .setDiscardResult() 6487 .setTailCall(isTailCall); 6488 6489 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6490 return CallResult.second; 6491 } 6492 6493 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6494 SDVTList VTList, ArrayRef<SDValue> Ops, 6495 MachineMemOperand *MMO) { 6496 FoldingSetNodeID ID; 6497 ID.AddInteger(MemVT.getRawBits()); 6498 AddNodeIDNode(ID, Opcode, VTList, Ops); 6499 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6500 void* IP = nullptr; 6501 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6502 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6503 return SDValue(E, 0); 6504 } 6505 6506 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6507 VTList, MemVT, MMO); 6508 createOperands(N, Ops); 6509 6510 CSEMap.InsertNode(N, IP); 6511 InsertNode(N); 6512 return SDValue(N, 0); 6513 } 6514 6515 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6516 EVT MemVT, SDVTList VTs, SDValue Chain, 6517 SDValue Ptr, SDValue Cmp, SDValue Swp, 6518 MachineMemOperand *MMO) { 6519 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6520 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6521 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6522 6523 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6524 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6525 } 6526 6527 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6528 SDValue Chain, SDValue Ptr, SDValue Val, 6529 MachineMemOperand *MMO) { 6530 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6531 Opcode == ISD::ATOMIC_LOAD_SUB || 6532 Opcode == ISD::ATOMIC_LOAD_AND || 6533 Opcode == ISD::ATOMIC_LOAD_CLR || 6534 Opcode == ISD::ATOMIC_LOAD_OR || 6535 Opcode == ISD::ATOMIC_LOAD_XOR || 6536 Opcode == ISD::ATOMIC_LOAD_NAND || 6537 Opcode == ISD::ATOMIC_LOAD_MIN || 6538 Opcode == ISD::ATOMIC_LOAD_MAX || 6539 Opcode == ISD::ATOMIC_LOAD_UMIN || 6540 Opcode == ISD::ATOMIC_LOAD_UMAX || 6541 Opcode == ISD::ATOMIC_LOAD_FADD || 6542 Opcode == ISD::ATOMIC_LOAD_FSUB || 6543 Opcode == ISD::ATOMIC_SWAP || 6544 Opcode == ISD::ATOMIC_STORE) && 6545 "Invalid Atomic Op"); 6546 6547 EVT VT = Val.getValueType(); 6548 6549 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6550 getVTList(VT, MVT::Other); 6551 SDValue Ops[] = {Chain, Ptr, Val}; 6552 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6553 } 6554 6555 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6556 EVT VT, SDValue Chain, SDValue Ptr, 6557 MachineMemOperand *MMO) { 6558 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6559 6560 SDVTList VTs = getVTList(VT, MVT::Other); 6561 SDValue Ops[] = {Chain, Ptr}; 6562 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6563 } 6564 6565 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6566 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6567 if (Ops.size() == 1) 6568 return Ops[0]; 6569 6570 SmallVector<EVT, 4> VTs; 6571 VTs.reserve(Ops.size()); 6572 for (unsigned i = 0; i < Ops.size(); ++i) 6573 VTs.push_back(Ops[i].getValueType()); 6574 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6575 } 6576 6577 SDValue SelectionDAG::getMemIntrinsicNode( 6578 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6579 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6580 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6581 if (Align == 0) // Ensure that codegen never sees alignment 0 6582 Align = getEVTAlignment(MemVT); 6583 6584 if (!Size) 6585 Size = MemVT.getStoreSize(); 6586 6587 MachineFunction &MF = getMachineFunction(); 6588 MachineMemOperand *MMO = 6589 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6590 6591 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6592 } 6593 6594 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6595 SDVTList VTList, 6596 ArrayRef<SDValue> Ops, EVT MemVT, 6597 MachineMemOperand *MMO) { 6598 assert((Opcode == ISD::INTRINSIC_VOID || 6599 Opcode == ISD::INTRINSIC_W_CHAIN || 6600 Opcode == ISD::PREFETCH || 6601 Opcode == ISD::LIFETIME_START || 6602 Opcode == ISD::LIFETIME_END || 6603 ((int)Opcode <= std::numeric_limits<int>::max() && 6604 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6605 "Opcode is not a memory-accessing opcode!"); 6606 6607 // Memoize the node unless it returns a flag. 6608 MemIntrinsicSDNode *N; 6609 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6610 FoldingSetNodeID ID; 6611 AddNodeIDNode(ID, Opcode, VTList, Ops); 6612 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6613 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6614 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6615 void *IP = nullptr; 6616 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6617 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6618 return SDValue(E, 0); 6619 } 6620 6621 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6622 VTList, MemVT, MMO); 6623 createOperands(N, Ops); 6624 6625 CSEMap.InsertNode(N, IP); 6626 } else { 6627 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6628 VTList, MemVT, MMO); 6629 createOperands(N, Ops); 6630 } 6631 InsertNode(N); 6632 SDValue V(N, 0); 6633 NewSDValueDbgMsg(V, "Creating new node: ", this); 6634 return V; 6635 } 6636 6637 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6638 SDValue Chain, int FrameIndex, 6639 int64_t Size, int64_t Offset) { 6640 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6641 const auto VTs = getVTList(MVT::Other); 6642 SDValue Ops[2] = { 6643 Chain, 6644 getFrameIndex(FrameIndex, 6645 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6646 true)}; 6647 6648 FoldingSetNodeID ID; 6649 AddNodeIDNode(ID, Opcode, VTs, Ops); 6650 ID.AddInteger(FrameIndex); 6651 ID.AddInteger(Size); 6652 ID.AddInteger(Offset); 6653 void *IP = nullptr; 6654 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6655 return SDValue(E, 0); 6656 6657 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6658 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6659 createOperands(N, Ops); 6660 CSEMap.InsertNode(N, IP); 6661 InsertNode(N); 6662 SDValue V(N, 0); 6663 NewSDValueDbgMsg(V, "Creating new node: ", this); 6664 return V; 6665 } 6666 6667 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6668 /// MachinePointerInfo record from it. This is particularly useful because the 6669 /// code generator has many cases where it doesn't bother passing in a 6670 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6671 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6672 SelectionDAG &DAG, SDValue Ptr, 6673 int64_t Offset = 0) { 6674 // If this is FI+Offset, we can model it. 6675 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6676 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6677 FI->getIndex(), Offset); 6678 6679 // If this is (FI+Offset1)+Offset2, we can model it. 6680 if (Ptr.getOpcode() != ISD::ADD || 6681 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6682 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6683 return Info; 6684 6685 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6686 return MachinePointerInfo::getFixedStack( 6687 DAG.getMachineFunction(), FI, 6688 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6689 } 6690 6691 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6692 /// MachinePointerInfo record from it. This is particularly useful because the 6693 /// code generator has many cases where it doesn't bother passing in a 6694 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6695 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6696 SelectionDAG &DAG, SDValue Ptr, 6697 SDValue OffsetOp) { 6698 // If the 'Offset' value isn't a constant, we can't handle this. 6699 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6700 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6701 if (OffsetOp.isUndef()) 6702 return InferPointerInfo(Info, DAG, Ptr); 6703 return Info; 6704 } 6705 6706 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6707 EVT VT, const SDLoc &dl, SDValue Chain, 6708 SDValue Ptr, SDValue Offset, 6709 MachinePointerInfo PtrInfo, EVT MemVT, 6710 unsigned Alignment, 6711 MachineMemOperand::Flags MMOFlags, 6712 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6713 assert(Chain.getValueType() == MVT::Other && 6714 "Invalid chain type"); 6715 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6716 Alignment = getEVTAlignment(MemVT); 6717 6718 MMOFlags |= MachineMemOperand::MOLoad; 6719 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6720 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6721 // clients. 6722 if (PtrInfo.V.isNull()) 6723 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6724 6725 MachineFunction &MF = getMachineFunction(); 6726 MachineMemOperand *MMO = MF.getMachineMemOperand( 6727 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6728 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6729 } 6730 6731 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6732 EVT VT, const SDLoc &dl, SDValue Chain, 6733 SDValue Ptr, SDValue Offset, EVT MemVT, 6734 MachineMemOperand *MMO) { 6735 if (VT == MemVT) { 6736 ExtType = ISD::NON_EXTLOAD; 6737 } else if (ExtType == ISD::NON_EXTLOAD) { 6738 assert(VT == MemVT && "Non-extending load from different memory type!"); 6739 } else { 6740 // Extending load. 6741 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6742 "Should only be an extending load, not truncating!"); 6743 assert(VT.isInteger() == MemVT.isInteger() && 6744 "Cannot convert from FP to Int or Int -> FP!"); 6745 assert(VT.isVector() == MemVT.isVector() && 6746 "Cannot use an ext load to convert to or from a vector!"); 6747 assert((!VT.isVector() || 6748 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6749 "Cannot use an ext load to change the number of vector elements!"); 6750 } 6751 6752 bool Indexed = AM != ISD::UNINDEXED; 6753 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6754 6755 SDVTList VTs = Indexed ? 6756 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6757 SDValue Ops[] = { Chain, Ptr, Offset }; 6758 FoldingSetNodeID ID; 6759 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6760 ID.AddInteger(MemVT.getRawBits()); 6761 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6762 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6763 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6764 void *IP = nullptr; 6765 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6766 cast<LoadSDNode>(E)->refineAlignment(MMO); 6767 return SDValue(E, 0); 6768 } 6769 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6770 ExtType, MemVT, MMO); 6771 createOperands(N, Ops); 6772 6773 CSEMap.InsertNode(N, IP); 6774 InsertNode(N); 6775 SDValue V(N, 0); 6776 NewSDValueDbgMsg(V, "Creating new node: ", this); 6777 return V; 6778 } 6779 6780 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6781 SDValue Ptr, MachinePointerInfo PtrInfo, 6782 unsigned Alignment, 6783 MachineMemOperand::Flags MMOFlags, 6784 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6785 SDValue Undef = getUNDEF(Ptr.getValueType()); 6786 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6787 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6788 } 6789 6790 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6791 SDValue Ptr, MachineMemOperand *MMO) { 6792 SDValue Undef = getUNDEF(Ptr.getValueType()); 6793 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6794 VT, MMO); 6795 } 6796 6797 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6798 EVT VT, SDValue Chain, SDValue Ptr, 6799 MachinePointerInfo PtrInfo, EVT MemVT, 6800 unsigned Alignment, 6801 MachineMemOperand::Flags MMOFlags, 6802 const AAMDNodes &AAInfo) { 6803 SDValue Undef = getUNDEF(Ptr.getValueType()); 6804 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6805 MemVT, Alignment, MMOFlags, AAInfo); 6806 } 6807 6808 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6809 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6810 MachineMemOperand *MMO) { 6811 SDValue Undef = getUNDEF(Ptr.getValueType()); 6812 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6813 MemVT, MMO); 6814 } 6815 6816 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6817 SDValue Base, SDValue Offset, 6818 ISD::MemIndexedMode AM) { 6819 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6820 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6821 // Don't propagate the invariant or dereferenceable flags. 6822 auto MMOFlags = 6823 LD->getMemOperand()->getFlags() & 6824 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6825 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6826 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6827 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6828 LD->getAAInfo()); 6829 } 6830 6831 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6832 SDValue Ptr, MachinePointerInfo PtrInfo, 6833 unsigned Alignment, 6834 MachineMemOperand::Flags MMOFlags, 6835 const AAMDNodes &AAInfo) { 6836 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6837 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6838 Alignment = getEVTAlignment(Val.getValueType()); 6839 6840 MMOFlags |= MachineMemOperand::MOStore; 6841 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6842 6843 if (PtrInfo.V.isNull()) 6844 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6845 6846 MachineFunction &MF = getMachineFunction(); 6847 MachineMemOperand *MMO = MF.getMachineMemOperand( 6848 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6849 return getStore(Chain, dl, Val, Ptr, MMO); 6850 } 6851 6852 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6853 SDValue Ptr, MachineMemOperand *MMO) { 6854 assert(Chain.getValueType() == MVT::Other && 6855 "Invalid chain type"); 6856 EVT VT = Val.getValueType(); 6857 SDVTList VTs = getVTList(MVT::Other); 6858 SDValue Undef = getUNDEF(Ptr.getValueType()); 6859 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6860 FoldingSetNodeID ID; 6861 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6862 ID.AddInteger(VT.getRawBits()); 6863 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6864 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6865 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6866 void *IP = nullptr; 6867 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6868 cast<StoreSDNode>(E)->refineAlignment(MMO); 6869 return SDValue(E, 0); 6870 } 6871 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6872 ISD::UNINDEXED, false, VT, MMO); 6873 createOperands(N, Ops); 6874 6875 CSEMap.InsertNode(N, IP); 6876 InsertNode(N); 6877 SDValue V(N, 0); 6878 NewSDValueDbgMsg(V, "Creating new node: ", this); 6879 return V; 6880 } 6881 6882 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6883 SDValue Ptr, MachinePointerInfo PtrInfo, 6884 EVT SVT, unsigned Alignment, 6885 MachineMemOperand::Flags MMOFlags, 6886 const AAMDNodes &AAInfo) { 6887 assert(Chain.getValueType() == MVT::Other && 6888 "Invalid chain type"); 6889 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6890 Alignment = getEVTAlignment(SVT); 6891 6892 MMOFlags |= MachineMemOperand::MOStore; 6893 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6894 6895 if (PtrInfo.V.isNull()) 6896 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6897 6898 MachineFunction &MF = getMachineFunction(); 6899 MachineMemOperand *MMO = MF.getMachineMemOperand( 6900 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6901 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6902 } 6903 6904 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6905 SDValue Ptr, EVT SVT, 6906 MachineMemOperand *MMO) { 6907 EVT VT = Val.getValueType(); 6908 6909 assert(Chain.getValueType() == MVT::Other && 6910 "Invalid chain type"); 6911 if (VT == SVT) 6912 return getStore(Chain, dl, Val, Ptr, MMO); 6913 6914 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6915 "Should only be a truncating store, not extending!"); 6916 assert(VT.isInteger() == SVT.isInteger() && 6917 "Can't do FP-INT conversion!"); 6918 assert(VT.isVector() == SVT.isVector() && 6919 "Cannot use trunc store to convert to or from a vector!"); 6920 assert((!VT.isVector() || 6921 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6922 "Cannot use trunc store to change the number of vector elements!"); 6923 6924 SDVTList VTs = getVTList(MVT::Other); 6925 SDValue Undef = getUNDEF(Ptr.getValueType()); 6926 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6927 FoldingSetNodeID ID; 6928 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6929 ID.AddInteger(SVT.getRawBits()); 6930 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6931 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6932 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6933 void *IP = nullptr; 6934 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6935 cast<StoreSDNode>(E)->refineAlignment(MMO); 6936 return SDValue(E, 0); 6937 } 6938 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6939 ISD::UNINDEXED, true, SVT, MMO); 6940 createOperands(N, Ops); 6941 6942 CSEMap.InsertNode(N, IP); 6943 InsertNode(N); 6944 SDValue V(N, 0); 6945 NewSDValueDbgMsg(V, "Creating new node: ", this); 6946 return V; 6947 } 6948 6949 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6950 SDValue Base, SDValue Offset, 6951 ISD::MemIndexedMode AM) { 6952 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6953 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6954 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6955 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6956 FoldingSetNodeID ID; 6957 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6958 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6959 ID.AddInteger(ST->getRawSubclassData()); 6960 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6961 void *IP = nullptr; 6962 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6963 return SDValue(E, 0); 6964 6965 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6966 ST->isTruncatingStore(), ST->getMemoryVT(), 6967 ST->getMemOperand()); 6968 createOperands(N, Ops); 6969 6970 CSEMap.InsertNode(N, IP); 6971 InsertNode(N); 6972 SDValue V(N, 0); 6973 NewSDValueDbgMsg(V, "Creating new node: ", this); 6974 return V; 6975 } 6976 6977 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6978 SDValue Ptr, SDValue Mask, SDValue PassThru, 6979 EVT MemVT, MachineMemOperand *MMO, 6980 ISD::LoadExtType ExtTy, bool isExpanding) { 6981 SDVTList VTs = getVTList(VT, MVT::Other); 6982 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6983 FoldingSetNodeID ID; 6984 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6985 ID.AddInteger(MemVT.getRawBits()); 6986 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6987 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6988 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6989 void *IP = nullptr; 6990 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6991 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6992 return SDValue(E, 0); 6993 } 6994 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6995 ExtTy, isExpanding, MemVT, MMO); 6996 createOperands(N, Ops); 6997 6998 CSEMap.InsertNode(N, IP); 6999 InsertNode(N); 7000 SDValue V(N, 0); 7001 NewSDValueDbgMsg(V, "Creating new node: ", this); 7002 return V; 7003 } 7004 7005 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7006 SDValue Val, SDValue Ptr, SDValue Mask, 7007 EVT MemVT, MachineMemOperand *MMO, 7008 bool IsTruncating, bool IsCompressing) { 7009 assert(Chain.getValueType() == MVT::Other && 7010 "Invalid chain type"); 7011 SDVTList VTs = getVTList(MVT::Other); 7012 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 7013 FoldingSetNodeID ID; 7014 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7015 ID.AddInteger(MemVT.getRawBits()); 7016 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7017 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 7018 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7019 void *IP = nullptr; 7020 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7021 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7022 return SDValue(E, 0); 7023 } 7024 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7025 IsTruncating, IsCompressing, MemVT, MMO); 7026 createOperands(N, Ops); 7027 7028 CSEMap.InsertNode(N, IP); 7029 InsertNode(N); 7030 SDValue V(N, 0); 7031 NewSDValueDbgMsg(V, "Creating new node: ", this); 7032 return V; 7033 } 7034 7035 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7036 ArrayRef<SDValue> Ops, 7037 MachineMemOperand *MMO, 7038 ISD::MemIndexType IndexType) { 7039 assert(Ops.size() == 6 && "Incompatible number of operands"); 7040 7041 FoldingSetNodeID ID; 7042 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7043 ID.AddInteger(VT.getRawBits()); 7044 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7045 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7046 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7047 void *IP = nullptr; 7048 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7049 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7050 return SDValue(E, 0); 7051 } 7052 7053 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7054 VTs, VT, MMO, IndexType); 7055 createOperands(N, Ops); 7056 7057 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7058 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7059 assert(N->getMask().getValueType().getVectorNumElements() == 7060 N->getValueType(0).getVectorNumElements() && 7061 "Vector width mismatch between mask and data"); 7062 assert(N->getIndex().getValueType().getVectorNumElements() >= 7063 N->getValueType(0).getVectorNumElements() && 7064 "Vector width mismatch between index and data"); 7065 assert(isa<ConstantSDNode>(N->getScale()) && 7066 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7067 "Scale should be a constant power of 2"); 7068 7069 CSEMap.InsertNode(N, IP); 7070 InsertNode(N); 7071 SDValue V(N, 0); 7072 NewSDValueDbgMsg(V, "Creating new node: ", this); 7073 return V; 7074 } 7075 7076 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7077 ArrayRef<SDValue> Ops, 7078 MachineMemOperand *MMO, 7079 ISD::MemIndexType IndexType) { 7080 assert(Ops.size() == 6 && "Incompatible number of operands"); 7081 7082 FoldingSetNodeID ID; 7083 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7084 ID.AddInteger(VT.getRawBits()); 7085 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7086 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7087 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7088 void *IP = nullptr; 7089 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7090 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7091 return SDValue(E, 0); 7092 } 7093 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7094 VTs, VT, MMO, IndexType); 7095 createOperands(N, Ops); 7096 7097 assert(N->getMask().getValueType().getVectorNumElements() == 7098 N->getValue().getValueType().getVectorNumElements() && 7099 "Vector width mismatch between mask and data"); 7100 assert(N->getIndex().getValueType().getVectorNumElements() >= 7101 N->getValue().getValueType().getVectorNumElements() && 7102 "Vector width mismatch between index and data"); 7103 assert(isa<ConstantSDNode>(N->getScale()) && 7104 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7105 "Scale should be a constant power of 2"); 7106 7107 CSEMap.InsertNode(N, IP); 7108 InsertNode(N); 7109 SDValue V(N, 0); 7110 NewSDValueDbgMsg(V, "Creating new node: ", this); 7111 return V; 7112 } 7113 7114 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7115 // select undef, T, F --> T (if T is a constant), otherwise F 7116 // select, ?, undef, F --> F 7117 // select, ?, T, undef --> T 7118 if (Cond.isUndef()) 7119 return isConstantValueOfAnyType(T) ? T : F; 7120 if (T.isUndef()) 7121 return F; 7122 if (F.isUndef()) 7123 return T; 7124 7125 // select true, T, F --> T 7126 // select false, T, F --> F 7127 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7128 return CondC->isNullValue() ? F : T; 7129 7130 // TODO: This should simplify VSELECT with constant condition using something 7131 // like this (but check boolean contents to be complete?): 7132 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7133 // return T; 7134 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7135 // return F; 7136 7137 // select ?, T, T --> T 7138 if (T == F) 7139 return T; 7140 7141 return SDValue(); 7142 } 7143 7144 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7145 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7146 if (X.isUndef()) 7147 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7148 // shift X, undef --> undef (because it may shift by the bitwidth) 7149 if (Y.isUndef()) 7150 return getUNDEF(X.getValueType()); 7151 7152 // shift 0, Y --> 0 7153 // shift X, 0 --> X 7154 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7155 return X; 7156 7157 // shift X, C >= bitwidth(X) --> undef 7158 // All vector elements must be too big (or undef) to avoid partial undefs. 7159 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7160 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7161 }; 7162 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7163 return getUNDEF(X.getValueType()); 7164 7165 return SDValue(); 7166 } 7167 7168 // TODO: Use fast-math-flags to enable more simplifications. 7169 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7170 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7171 if (!YC) 7172 return SDValue(); 7173 7174 // X + -0.0 --> X 7175 if (Opcode == ISD::FADD) 7176 if (YC->getValueAPF().isNegZero()) 7177 return X; 7178 7179 // X - +0.0 --> X 7180 if (Opcode == ISD::FSUB) 7181 if (YC->getValueAPF().isPosZero()) 7182 return X; 7183 7184 // X * 1.0 --> X 7185 // X / 1.0 --> X 7186 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7187 if (YC->getValueAPF().isExactlyValue(1.0)) 7188 return X; 7189 7190 return SDValue(); 7191 } 7192 7193 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7194 SDValue Ptr, SDValue SV, unsigned Align) { 7195 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7196 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7197 } 7198 7199 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7200 ArrayRef<SDUse> Ops) { 7201 switch (Ops.size()) { 7202 case 0: return getNode(Opcode, DL, VT); 7203 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7204 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7205 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7206 default: break; 7207 } 7208 7209 // Copy from an SDUse array into an SDValue array for use with 7210 // the regular getNode logic. 7211 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7212 return getNode(Opcode, DL, VT, NewOps); 7213 } 7214 7215 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7216 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7217 unsigned NumOps = Ops.size(); 7218 switch (NumOps) { 7219 case 0: return getNode(Opcode, DL, VT); 7220 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7221 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7222 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7223 default: break; 7224 } 7225 7226 switch (Opcode) { 7227 default: break; 7228 case ISD::BUILD_VECTOR: 7229 // Attempt to simplify BUILD_VECTOR. 7230 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7231 return V; 7232 break; 7233 case ISD::CONCAT_VECTORS: 7234 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7235 return V; 7236 break; 7237 case ISD::SELECT_CC: 7238 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7239 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7240 "LHS and RHS of condition must have same type!"); 7241 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7242 "True and False arms of SelectCC must have same type!"); 7243 assert(Ops[2].getValueType() == VT && 7244 "select_cc node must be of same type as true and false value!"); 7245 break; 7246 case ISD::BR_CC: 7247 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7248 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7249 "LHS/RHS of comparison should match types!"); 7250 break; 7251 } 7252 7253 // Memoize nodes. 7254 SDNode *N; 7255 SDVTList VTs = getVTList(VT); 7256 7257 if (VT != MVT::Glue) { 7258 FoldingSetNodeID ID; 7259 AddNodeIDNode(ID, Opcode, VTs, Ops); 7260 void *IP = nullptr; 7261 7262 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7263 return SDValue(E, 0); 7264 7265 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7266 createOperands(N, Ops); 7267 7268 CSEMap.InsertNode(N, IP); 7269 } else { 7270 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7271 createOperands(N, Ops); 7272 } 7273 7274 InsertNode(N); 7275 SDValue V(N, 0); 7276 NewSDValueDbgMsg(V, "Creating new node: ", this); 7277 return V; 7278 } 7279 7280 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7281 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7282 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7283 } 7284 7285 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7286 ArrayRef<SDValue> Ops) { 7287 if (VTList.NumVTs == 1) 7288 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7289 7290 #if 0 7291 switch (Opcode) { 7292 // FIXME: figure out how to safely handle things like 7293 // int foo(int x) { return 1 << (x & 255); } 7294 // int bar() { return foo(256); } 7295 case ISD::SRA_PARTS: 7296 case ISD::SRL_PARTS: 7297 case ISD::SHL_PARTS: 7298 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7299 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7300 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7301 else if (N3.getOpcode() == ISD::AND) 7302 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7303 // If the and is only masking out bits that cannot effect the shift, 7304 // eliminate the and. 7305 unsigned NumBits = VT.getScalarSizeInBits()*2; 7306 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7307 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7308 } 7309 break; 7310 } 7311 #endif 7312 7313 // Memoize the node unless it returns a flag. 7314 SDNode *N; 7315 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7316 FoldingSetNodeID ID; 7317 AddNodeIDNode(ID, Opcode, VTList, Ops); 7318 void *IP = nullptr; 7319 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7320 return SDValue(E, 0); 7321 7322 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7323 createOperands(N, Ops); 7324 CSEMap.InsertNode(N, IP); 7325 } else { 7326 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7327 createOperands(N, Ops); 7328 } 7329 InsertNode(N); 7330 SDValue V(N, 0); 7331 NewSDValueDbgMsg(V, "Creating new node: ", this); 7332 return V; 7333 } 7334 7335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7336 SDVTList VTList) { 7337 return getNode(Opcode, DL, VTList, None); 7338 } 7339 7340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7341 SDValue N1) { 7342 SDValue Ops[] = { N1 }; 7343 return getNode(Opcode, DL, VTList, Ops); 7344 } 7345 7346 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7347 SDValue N1, SDValue N2) { 7348 SDValue Ops[] = { N1, N2 }; 7349 return getNode(Opcode, DL, VTList, Ops); 7350 } 7351 7352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7353 SDValue N1, SDValue N2, SDValue N3) { 7354 SDValue Ops[] = { N1, N2, N3 }; 7355 return getNode(Opcode, DL, VTList, Ops); 7356 } 7357 7358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7359 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7360 SDValue Ops[] = { N1, N2, N3, N4 }; 7361 return getNode(Opcode, DL, VTList, Ops); 7362 } 7363 7364 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7365 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7366 SDValue N5) { 7367 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7368 return getNode(Opcode, DL, VTList, Ops); 7369 } 7370 7371 SDVTList SelectionDAG::getVTList(EVT VT) { 7372 return makeVTList(SDNode::getValueTypeList(VT), 1); 7373 } 7374 7375 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7376 FoldingSetNodeID ID; 7377 ID.AddInteger(2U); 7378 ID.AddInteger(VT1.getRawBits()); 7379 ID.AddInteger(VT2.getRawBits()); 7380 7381 void *IP = nullptr; 7382 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7383 if (!Result) { 7384 EVT *Array = Allocator.Allocate<EVT>(2); 7385 Array[0] = VT1; 7386 Array[1] = VT2; 7387 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7388 VTListMap.InsertNode(Result, IP); 7389 } 7390 return Result->getSDVTList(); 7391 } 7392 7393 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7394 FoldingSetNodeID ID; 7395 ID.AddInteger(3U); 7396 ID.AddInteger(VT1.getRawBits()); 7397 ID.AddInteger(VT2.getRawBits()); 7398 ID.AddInteger(VT3.getRawBits()); 7399 7400 void *IP = nullptr; 7401 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7402 if (!Result) { 7403 EVT *Array = Allocator.Allocate<EVT>(3); 7404 Array[0] = VT1; 7405 Array[1] = VT2; 7406 Array[2] = VT3; 7407 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7408 VTListMap.InsertNode(Result, IP); 7409 } 7410 return Result->getSDVTList(); 7411 } 7412 7413 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7414 FoldingSetNodeID ID; 7415 ID.AddInteger(4U); 7416 ID.AddInteger(VT1.getRawBits()); 7417 ID.AddInteger(VT2.getRawBits()); 7418 ID.AddInteger(VT3.getRawBits()); 7419 ID.AddInteger(VT4.getRawBits()); 7420 7421 void *IP = nullptr; 7422 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7423 if (!Result) { 7424 EVT *Array = Allocator.Allocate<EVT>(4); 7425 Array[0] = VT1; 7426 Array[1] = VT2; 7427 Array[2] = VT3; 7428 Array[3] = VT4; 7429 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7430 VTListMap.InsertNode(Result, IP); 7431 } 7432 return Result->getSDVTList(); 7433 } 7434 7435 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7436 unsigned NumVTs = VTs.size(); 7437 FoldingSetNodeID ID; 7438 ID.AddInteger(NumVTs); 7439 for (unsigned index = 0; index < NumVTs; index++) { 7440 ID.AddInteger(VTs[index].getRawBits()); 7441 } 7442 7443 void *IP = nullptr; 7444 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7445 if (!Result) { 7446 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7447 llvm::copy(VTs, Array); 7448 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7449 VTListMap.InsertNode(Result, IP); 7450 } 7451 return Result->getSDVTList(); 7452 } 7453 7454 7455 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7456 /// specified operands. If the resultant node already exists in the DAG, 7457 /// this does not modify the specified node, instead it returns the node that 7458 /// already exists. If the resultant node does not exist in the DAG, the 7459 /// input node is returned. As a degenerate case, if you specify the same 7460 /// input operands as the node already has, the input node is returned. 7461 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7462 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7463 7464 // Check to see if there is no change. 7465 if (Op == N->getOperand(0)) return N; 7466 7467 // See if the modified node already exists. 7468 void *InsertPos = nullptr; 7469 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7470 return Existing; 7471 7472 // Nope it doesn't. Remove the node from its current place in the maps. 7473 if (InsertPos) 7474 if (!RemoveNodeFromCSEMaps(N)) 7475 InsertPos = nullptr; 7476 7477 // Now we update the operands. 7478 N->OperandList[0].set(Op); 7479 7480 updateDivergence(N); 7481 // If this gets put into a CSE map, add it. 7482 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7483 return N; 7484 } 7485 7486 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7487 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7488 7489 // Check to see if there is no change. 7490 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7491 return N; // No operands changed, just return the input node. 7492 7493 // See if the modified node already exists. 7494 void *InsertPos = nullptr; 7495 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7496 return Existing; 7497 7498 // Nope it doesn't. Remove the node from its current place in the maps. 7499 if (InsertPos) 7500 if (!RemoveNodeFromCSEMaps(N)) 7501 InsertPos = nullptr; 7502 7503 // Now we update the operands. 7504 if (N->OperandList[0] != Op1) 7505 N->OperandList[0].set(Op1); 7506 if (N->OperandList[1] != Op2) 7507 N->OperandList[1].set(Op2); 7508 7509 updateDivergence(N); 7510 // If this gets put into a CSE map, add it. 7511 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7512 return N; 7513 } 7514 7515 SDNode *SelectionDAG:: 7516 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7517 SDValue Ops[] = { Op1, Op2, Op3 }; 7518 return UpdateNodeOperands(N, Ops); 7519 } 7520 7521 SDNode *SelectionDAG:: 7522 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7523 SDValue Op3, SDValue Op4) { 7524 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7525 return UpdateNodeOperands(N, Ops); 7526 } 7527 7528 SDNode *SelectionDAG:: 7529 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7530 SDValue Op3, SDValue Op4, SDValue Op5) { 7531 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7532 return UpdateNodeOperands(N, Ops); 7533 } 7534 7535 SDNode *SelectionDAG:: 7536 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7537 unsigned NumOps = Ops.size(); 7538 assert(N->getNumOperands() == NumOps && 7539 "Update with wrong number of operands"); 7540 7541 // If no operands changed just return the input node. 7542 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7543 return N; 7544 7545 // See if the modified node already exists. 7546 void *InsertPos = nullptr; 7547 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7548 return Existing; 7549 7550 // Nope it doesn't. Remove the node from its current place in the maps. 7551 if (InsertPos) 7552 if (!RemoveNodeFromCSEMaps(N)) 7553 InsertPos = nullptr; 7554 7555 // Now we update the operands. 7556 for (unsigned i = 0; i != NumOps; ++i) 7557 if (N->OperandList[i] != Ops[i]) 7558 N->OperandList[i].set(Ops[i]); 7559 7560 updateDivergence(N); 7561 // If this gets put into a CSE map, add it. 7562 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7563 return N; 7564 } 7565 7566 /// DropOperands - Release the operands and set this node to have 7567 /// zero operands. 7568 void SDNode::DropOperands() { 7569 // Unlike the code in MorphNodeTo that does this, we don't need to 7570 // watch for dead nodes here. 7571 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7572 SDUse &Use = *I++; 7573 Use.set(SDValue()); 7574 } 7575 } 7576 7577 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7578 ArrayRef<MachineMemOperand *> NewMemRefs) { 7579 if (NewMemRefs.empty()) { 7580 N->clearMemRefs(); 7581 return; 7582 } 7583 7584 // Check if we can avoid allocating by storing a single reference directly. 7585 if (NewMemRefs.size() == 1) { 7586 N->MemRefs = NewMemRefs[0]; 7587 N->NumMemRefs = 1; 7588 return; 7589 } 7590 7591 MachineMemOperand **MemRefsBuffer = 7592 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7593 llvm::copy(NewMemRefs, MemRefsBuffer); 7594 N->MemRefs = MemRefsBuffer; 7595 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7596 } 7597 7598 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7599 /// machine opcode. 7600 /// 7601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7602 EVT VT) { 7603 SDVTList VTs = getVTList(VT); 7604 return SelectNodeTo(N, MachineOpc, VTs, None); 7605 } 7606 7607 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7608 EVT VT, SDValue Op1) { 7609 SDVTList VTs = getVTList(VT); 7610 SDValue Ops[] = { Op1 }; 7611 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7612 } 7613 7614 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7615 EVT VT, SDValue Op1, 7616 SDValue Op2) { 7617 SDVTList VTs = getVTList(VT); 7618 SDValue Ops[] = { Op1, Op2 }; 7619 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7620 } 7621 7622 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7623 EVT VT, SDValue Op1, 7624 SDValue Op2, SDValue Op3) { 7625 SDVTList VTs = getVTList(VT); 7626 SDValue Ops[] = { Op1, Op2, Op3 }; 7627 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7628 } 7629 7630 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7631 EVT VT, ArrayRef<SDValue> Ops) { 7632 SDVTList VTs = getVTList(VT); 7633 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7634 } 7635 7636 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7637 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7638 SDVTList VTs = getVTList(VT1, VT2); 7639 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7640 } 7641 7642 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7643 EVT VT1, EVT VT2) { 7644 SDVTList VTs = getVTList(VT1, VT2); 7645 return SelectNodeTo(N, MachineOpc, VTs, None); 7646 } 7647 7648 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7649 EVT VT1, EVT VT2, EVT VT3, 7650 ArrayRef<SDValue> Ops) { 7651 SDVTList VTs = getVTList(VT1, VT2, VT3); 7652 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7653 } 7654 7655 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7656 EVT VT1, EVT VT2, 7657 SDValue Op1, SDValue Op2) { 7658 SDVTList VTs = getVTList(VT1, VT2); 7659 SDValue Ops[] = { Op1, Op2 }; 7660 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7661 } 7662 7663 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7664 SDVTList VTs,ArrayRef<SDValue> Ops) { 7665 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7666 // Reset the NodeID to -1. 7667 New->setNodeId(-1); 7668 if (New != N) { 7669 ReplaceAllUsesWith(N, New); 7670 RemoveDeadNode(N); 7671 } 7672 return New; 7673 } 7674 7675 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7676 /// the line number information on the merged node since it is not possible to 7677 /// preserve the information that operation is associated with multiple lines. 7678 /// This will make the debugger working better at -O0, were there is a higher 7679 /// probability having other instructions associated with that line. 7680 /// 7681 /// For IROrder, we keep the smaller of the two 7682 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7683 DebugLoc NLoc = N->getDebugLoc(); 7684 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7685 N->setDebugLoc(DebugLoc()); 7686 } 7687 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7688 N->setIROrder(Order); 7689 return N; 7690 } 7691 7692 /// MorphNodeTo - This *mutates* the specified node to have the specified 7693 /// return type, opcode, and operands. 7694 /// 7695 /// Note that MorphNodeTo returns the resultant node. If there is already a 7696 /// node of the specified opcode and operands, it returns that node instead of 7697 /// the current one. Note that the SDLoc need not be the same. 7698 /// 7699 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7700 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7701 /// node, and because it doesn't require CSE recalculation for any of 7702 /// the node's users. 7703 /// 7704 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7705 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7706 /// the legalizer which maintain worklists that would need to be updated when 7707 /// deleting things. 7708 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7709 SDVTList VTs, ArrayRef<SDValue> Ops) { 7710 // If an identical node already exists, use it. 7711 void *IP = nullptr; 7712 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7713 FoldingSetNodeID ID; 7714 AddNodeIDNode(ID, Opc, VTs, Ops); 7715 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7716 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7717 } 7718 7719 if (!RemoveNodeFromCSEMaps(N)) 7720 IP = nullptr; 7721 7722 // Start the morphing. 7723 N->NodeType = Opc; 7724 N->ValueList = VTs.VTs; 7725 N->NumValues = VTs.NumVTs; 7726 7727 // Clear the operands list, updating used nodes to remove this from their 7728 // use list. Keep track of any operands that become dead as a result. 7729 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7730 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7731 SDUse &Use = *I++; 7732 SDNode *Used = Use.getNode(); 7733 Use.set(SDValue()); 7734 if (Used->use_empty()) 7735 DeadNodeSet.insert(Used); 7736 } 7737 7738 // For MachineNode, initialize the memory references information. 7739 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7740 MN->clearMemRefs(); 7741 7742 // Swap for an appropriately sized array from the recycler. 7743 removeOperands(N); 7744 createOperands(N, Ops); 7745 7746 // Delete any nodes that are still dead after adding the uses for the 7747 // new operands. 7748 if (!DeadNodeSet.empty()) { 7749 SmallVector<SDNode *, 16> DeadNodes; 7750 for (SDNode *N : DeadNodeSet) 7751 if (N->use_empty()) 7752 DeadNodes.push_back(N); 7753 RemoveDeadNodes(DeadNodes); 7754 } 7755 7756 if (IP) 7757 CSEMap.InsertNode(N, IP); // Memoize the new node. 7758 return N; 7759 } 7760 7761 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7762 unsigned OrigOpc = Node->getOpcode(); 7763 unsigned NewOpc; 7764 switch (OrigOpc) { 7765 default: 7766 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7767 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7768 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7769 #include "llvm/IR/ConstrainedOps.def" 7770 } 7771 7772 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7773 7774 // We're taking this node out of the chain, so we need to re-link things. 7775 SDValue InputChain = Node->getOperand(0); 7776 SDValue OutputChain = SDValue(Node, 1); 7777 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7778 7779 SmallVector<SDValue, 3> Ops; 7780 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7781 Ops.push_back(Node->getOperand(i)); 7782 7783 SDVTList VTs = getVTList(Node->getValueType(0)); 7784 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7785 7786 // MorphNodeTo can operate in two ways: if an existing node with the 7787 // specified operands exists, it can just return it. Otherwise, it 7788 // updates the node in place to have the requested operands. 7789 if (Res == Node) { 7790 // If we updated the node in place, reset the node ID. To the isel, 7791 // this should be just like a newly allocated machine node. 7792 Res->setNodeId(-1); 7793 } else { 7794 ReplaceAllUsesWith(Node, Res); 7795 RemoveDeadNode(Node); 7796 } 7797 7798 return Res; 7799 } 7800 7801 /// getMachineNode - These are used for target selectors to create a new node 7802 /// with specified return type(s), MachineInstr opcode, and operands. 7803 /// 7804 /// Note that getMachineNode returns the resultant node. If there is already a 7805 /// node of the specified opcode and operands, it returns that node instead of 7806 /// the current one. 7807 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7808 EVT VT) { 7809 SDVTList VTs = getVTList(VT); 7810 return getMachineNode(Opcode, dl, VTs, None); 7811 } 7812 7813 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7814 EVT VT, SDValue Op1) { 7815 SDVTList VTs = getVTList(VT); 7816 SDValue Ops[] = { Op1 }; 7817 return getMachineNode(Opcode, dl, VTs, Ops); 7818 } 7819 7820 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7821 EVT VT, SDValue Op1, SDValue Op2) { 7822 SDVTList VTs = getVTList(VT); 7823 SDValue Ops[] = { Op1, Op2 }; 7824 return getMachineNode(Opcode, dl, VTs, Ops); 7825 } 7826 7827 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7828 EVT VT, SDValue Op1, SDValue Op2, 7829 SDValue Op3) { 7830 SDVTList VTs = getVTList(VT); 7831 SDValue Ops[] = { Op1, Op2, Op3 }; 7832 return getMachineNode(Opcode, dl, VTs, Ops); 7833 } 7834 7835 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7836 EVT VT, ArrayRef<SDValue> Ops) { 7837 SDVTList VTs = getVTList(VT); 7838 return getMachineNode(Opcode, dl, VTs, Ops); 7839 } 7840 7841 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7842 EVT VT1, EVT VT2, SDValue Op1, 7843 SDValue Op2) { 7844 SDVTList VTs = getVTList(VT1, VT2); 7845 SDValue Ops[] = { Op1, Op2 }; 7846 return getMachineNode(Opcode, dl, VTs, Ops); 7847 } 7848 7849 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7850 EVT VT1, EVT VT2, SDValue Op1, 7851 SDValue Op2, SDValue Op3) { 7852 SDVTList VTs = getVTList(VT1, VT2); 7853 SDValue Ops[] = { Op1, Op2, Op3 }; 7854 return getMachineNode(Opcode, dl, VTs, Ops); 7855 } 7856 7857 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7858 EVT VT1, EVT VT2, 7859 ArrayRef<SDValue> Ops) { 7860 SDVTList VTs = getVTList(VT1, VT2); 7861 return getMachineNode(Opcode, dl, VTs, Ops); 7862 } 7863 7864 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7865 EVT VT1, EVT VT2, EVT VT3, 7866 SDValue Op1, SDValue Op2) { 7867 SDVTList VTs = getVTList(VT1, VT2, VT3); 7868 SDValue Ops[] = { Op1, Op2 }; 7869 return getMachineNode(Opcode, dl, VTs, Ops); 7870 } 7871 7872 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7873 EVT VT1, EVT VT2, EVT VT3, 7874 SDValue Op1, SDValue Op2, 7875 SDValue Op3) { 7876 SDVTList VTs = getVTList(VT1, VT2, VT3); 7877 SDValue Ops[] = { Op1, Op2, Op3 }; 7878 return getMachineNode(Opcode, dl, VTs, Ops); 7879 } 7880 7881 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7882 EVT VT1, EVT VT2, EVT VT3, 7883 ArrayRef<SDValue> Ops) { 7884 SDVTList VTs = getVTList(VT1, VT2, VT3); 7885 return getMachineNode(Opcode, dl, VTs, Ops); 7886 } 7887 7888 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7889 ArrayRef<EVT> ResultTys, 7890 ArrayRef<SDValue> Ops) { 7891 SDVTList VTs = getVTList(ResultTys); 7892 return getMachineNode(Opcode, dl, VTs, Ops); 7893 } 7894 7895 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7896 SDVTList VTs, 7897 ArrayRef<SDValue> Ops) { 7898 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7899 MachineSDNode *N; 7900 void *IP = nullptr; 7901 7902 if (DoCSE) { 7903 FoldingSetNodeID ID; 7904 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7905 IP = nullptr; 7906 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7907 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7908 } 7909 } 7910 7911 // Allocate a new MachineSDNode. 7912 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7913 createOperands(N, Ops); 7914 7915 if (DoCSE) 7916 CSEMap.InsertNode(N, IP); 7917 7918 InsertNode(N); 7919 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 7920 return N; 7921 } 7922 7923 /// getTargetExtractSubreg - A convenience function for creating 7924 /// TargetOpcode::EXTRACT_SUBREG nodes. 7925 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7926 SDValue Operand) { 7927 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7928 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7929 VT, Operand, SRIdxVal); 7930 return SDValue(Subreg, 0); 7931 } 7932 7933 /// getTargetInsertSubreg - A convenience function for creating 7934 /// TargetOpcode::INSERT_SUBREG nodes. 7935 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7936 SDValue Operand, SDValue Subreg) { 7937 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7938 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7939 VT, Operand, Subreg, SRIdxVal); 7940 return SDValue(Result, 0); 7941 } 7942 7943 /// getNodeIfExists - Get the specified node if it's already available, or 7944 /// else return NULL. 7945 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7946 ArrayRef<SDValue> Ops, 7947 const SDNodeFlags Flags) { 7948 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7949 FoldingSetNodeID ID; 7950 AddNodeIDNode(ID, Opcode, VTList, Ops); 7951 void *IP = nullptr; 7952 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7953 E->intersectFlagsWith(Flags); 7954 return E; 7955 } 7956 } 7957 return nullptr; 7958 } 7959 7960 /// getDbgValue - Creates a SDDbgValue node. 7961 /// 7962 /// SDNode 7963 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7964 SDNode *N, unsigned R, bool IsIndirect, 7965 const DebugLoc &DL, unsigned O) { 7966 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7967 "Expected inlined-at fields to agree"); 7968 return new (DbgInfo->getAlloc()) 7969 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7970 } 7971 7972 /// Constant 7973 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7974 DIExpression *Expr, 7975 const Value *C, 7976 const DebugLoc &DL, unsigned O) { 7977 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7978 "Expected inlined-at fields to agree"); 7979 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7980 } 7981 7982 /// FrameIndex 7983 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7984 DIExpression *Expr, unsigned FI, 7985 bool IsIndirect, 7986 const DebugLoc &DL, 7987 unsigned O) { 7988 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7989 "Expected inlined-at fields to agree"); 7990 return new (DbgInfo->getAlloc()) 7991 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7992 } 7993 7994 /// VReg 7995 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7996 DIExpression *Expr, 7997 unsigned VReg, bool IsIndirect, 7998 const DebugLoc &DL, unsigned O) { 7999 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8000 "Expected inlined-at fields to agree"); 8001 return new (DbgInfo->getAlloc()) 8002 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8003 } 8004 8005 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8006 unsigned OffsetInBits, unsigned SizeInBits, 8007 bool InvalidateDbg) { 8008 SDNode *FromNode = From.getNode(); 8009 SDNode *ToNode = To.getNode(); 8010 assert(FromNode && ToNode && "Can't modify dbg values"); 8011 8012 // PR35338 8013 // TODO: assert(From != To && "Redundant dbg value transfer"); 8014 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8015 if (From == To || FromNode == ToNode) 8016 return; 8017 8018 if (!FromNode->getHasDebugValue()) 8019 return; 8020 8021 SmallVector<SDDbgValue *, 2> ClonedDVs; 8022 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8023 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8024 continue; 8025 8026 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8027 8028 // Just transfer the dbg value attached to From. 8029 if (Dbg->getResNo() != From.getResNo()) 8030 continue; 8031 8032 DIVariable *Var = Dbg->getVariable(); 8033 auto *Expr = Dbg->getExpression(); 8034 // If a fragment is requested, update the expression. 8035 if (SizeInBits) { 8036 // When splitting a larger (e.g., sign-extended) value whose 8037 // lower bits are described with an SDDbgValue, do not attempt 8038 // to transfer the SDDbgValue to the upper bits. 8039 if (auto FI = Expr->getFragmentInfo()) 8040 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8041 continue; 8042 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8043 SizeInBits); 8044 if (!Fragment) 8045 continue; 8046 Expr = *Fragment; 8047 } 8048 // Clone the SDDbgValue and move it to To. 8049 SDDbgValue *Clone = 8050 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8051 Dbg->getDebugLoc(), Dbg->getOrder()); 8052 ClonedDVs.push_back(Clone); 8053 8054 if (InvalidateDbg) { 8055 // Invalidate value and indicate the SDDbgValue should not be emitted. 8056 Dbg->setIsInvalidated(); 8057 Dbg->setIsEmitted(); 8058 } 8059 } 8060 8061 for (SDDbgValue *Dbg : ClonedDVs) 8062 AddDbgValue(Dbg, ToNode, false); 8063 } 8064 8065 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8066 if (!N.getHasDebugValue()) 8067 return; 8068 8069 SmallVector<SDDbgValue *, 2> ClonedDVs; 8070 for (auto DV : GetDbgValues(&N)) { 8071 if (DV->isInvalidated()) 8072 continue; 8073 switch (N.getOpcode()) { 8074 default: 8075 break; 8076 case ISD::ADD: 8077 SDValue N0 = N.getOperand(0); 8078 SDValue N1 = N.getOperand(1); 8079 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8080 isConstantIntBuildVectorOrConstantInt(N1)) { 8081 uint64_t Offset = N.getConstantOperandVal(1); 8082 // Rewrite an ADD constant node into a DIExpression. Since we are 8083 // performing arithmetic to compute the variable's *value* in the 8084 // DIExpression, we need to mark the expression with a 8085 // DW_OP_stack_value. 8086 auto *DIExpr = DV->getExpression(); 8087 DIExpr = 8088 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8089 SDDbgValue *Clone = 8090 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8091 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8092 ClonedDVs.push_back(Clone); 8093 DV->setIsInvalidated(); 8094 DV->setIsEmitted(); 8095 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8096 N0.getNode()->dumprFull(this); 8097 dbgs() << " into " << *DIExpr << '\n'); 8098 } 8099 } 8100 } 8101 8102 for (SDDbgValue *Dbg : ClonedDVs) 8103 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8104 } 8105 8106 /// Creates a SDDbgLabel node. 8107 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8108 const DebugLoc &DL, unsigned O) { 8109 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8110 "Expected inlined-at fields to agree"); 8111 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8112 } 8113 8114 namespace { 8115 8116 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8117 /// pointed to by a use iterator is deleted, increment the use iterator 8118 /// so that it doesn't dangle. 8119 /// 8120 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8121 SDNode::use_iterator &UI; 8122 SDNode::use_iterator &UE; 8123 8124 void NodeDeleted(SDNode *N, SDNode *E) override { 8125 // Increment the iterator as needed. 8126 while (UI != UE && N == *UI) 8127 ++UI; 8128 } 8129 8130 public: 8131 RAUWUpdateListener(SelectionDAG &d, 8132 SDNode::use_iterator &ui, 8133 SDNode::use_iterator &ue) 8134 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8135 }; 8136 8137 } // end anonymous namespace 8138 8139 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8140 /// This can cause recursive merging of nodes in the DAG. 8141 /// 8142 /// This version assumes From has a single result value. 8143 /// 8144 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8145 SDNode *From = FromN.getNode(); 8146 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8147 "Cannot replace with this method!"); 8148 assert(From != To.getNode() && "Cannot replace uses of with self"); 8149 8150 // Preserve Debug Values 8151 transferDbgValues(FromN, To); 8152 8153 // Iterate over all the existing uses of From. New uses will be added 8154 // to the beginning of the use list, which we avoid visiting. 8155 // This specifically avoids visiting uses of From that arise while the 8156 // replacement is happening, because any such uses would be the result 8157 // of CSE: If an existing node looks like From after one of its operands 8158 // is replaced by To, we don't want to replace of all its users with To 8159 // too. See PR3018 for more info. 8160 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8161 RAUWUpdateListener Listener(*this, UI, UE); 8162 while (UI != UE) { 8163 SDNode *User = *UI; 8164 8165 // This node is about to morph, remove its old self from the CSE maps. 8166 RemoveNodeFromCSEMaps(User); 8167 8168 // A user can appear in a use list multiple times, and when this 8169 // happens the uses are usually next to each other in the list. 8170 // To help reduce the number of CSE recomputations, process all 8171 // the uses of this user that we can find this way. 8172 do { 8173 SDUse &Use = UI.getUse(); 8174 ++UI; 8175 Use.set(To); 8176 if (To->isDivergent() != From->isDivergent()) 8177 updateDivergence(User); 8178 } while (UI != UE && *UI == User); 8179 // Now that we have modified User, add it back to the CSE maps. If it 8180 // already exists there, recursively merge the results together. 8181 AddModifiedNodeToCSEMaps(User); 8182 } 8183 8184 // If we just RAUW'd the root, take note. 8185 if (FromN == getRoot()) 8186 setRoot(To); 8187 } 8188 8189 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8190 /// This can cause recursive merging of nodes in the DAG. 8191 /// 8192 /// This version assumes that for each value of From, there is a 8193 /// corresponding value in To in the same position with the same type. 8194 /// 8195 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8196 #ifndef NDEBUG 8197 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8198 assert((!From->hasAnyUseOfValue(i) || 8199 From->getValueType(i) == To->getValueType(i)) && 8200 "Cannot use this version of ReplaceAllUsesWith!"); 8201 #endif 8202 8203 // Handle the trivial case. 8204 if (From == To) 8205 return; 8206 8207 // Preserve Debug Info. Only do this if there's a use. 8208 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8209 if (From->hasAnyUseOfValue(i)) { 8210 assert((i < To->getNumValues()) && "Invalid To location"); 8211 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8212 } 8213 8214 // Iterate over just the existing users of From. See the comments in 8215 // the ReplaceAllUsesWith above. 8216 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8217 RAUWUpdateListener Listener(*this, UI, UE); 8218 while (UI != UE) { 8219 SDNode *User = *UI; 8220 8221 // This node is about to morph, remove its old self from the CSE maps. 8222 RemoveNodeFromCSEMaps(User); 8223 8224 // A user can appear in a use list multiple times, and when this 8225 // happens the uses are usually next to each other in the list. 8226 // To help reduce the number of CSE recomputations, process all 8227 // the uses of this user that we can find this way. 8228 do { 8229 SDUse &Use = UI.getUse(); 8230 ++UI; 8231 Use.setNode(To); 8232 if (To->isDivergent() != From->isDivergent()) 8233 updateDivergence(User); 8234 } while (UI != UE && *UI == User); 8235 8236 // Now that we have modified User, add it back to the CSE maps. If it 8237 // already exists there, recursively merge the results together. 8238 AddModifiedNodeToCSEMaps(User); 8239 } 8240 8241 // If we just RAUW'd the root, take note. 8242 if (From == getRoot().getNode()) 8243 setRoot(SDValue(To, getRoot().getResNo())); 8244 } 8245 8246 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8247 /// This can cause recursive merging of nodes in the DAG. 8248 /// 8249 /// This version can replace From with any result values. To must match the 8250 /// number and types of values returned by From. 8251 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8252 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8253 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8254 8255 // Preserve Debug Info. 8256 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8257 transferDbgValues(SDValue(From, i), To[i]); 8258 8259 // Iterate over just the existing users of From. See the comments in 8260 // the ReplaceAllUsesWith above. 8261 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8262 RAUWUpdateListener Listener(*this, UI, UE); 8263 while (UI != UE) { 8264 SDNode *User = *UI; 8265 8266 // This node is about to morph, remove its old self from the CSE maps. 8267 RemoveNodeFromCSEMaps(User); 8268 8269 // A user can appear in a use list multiple times, and when this happens the 8270 // uses are usually next to each other in the list. To help reduce the 8271 // number of CSE and divergence recomputations, process all the uses of this 8272 // user that we can find this way. 8273 bool To_IsDivergent = false; 8274 do { 8275 SDUse &Use = UI.getUse(); 8276 const SDValue &ToOp = To[Use.getResNo()]; 8277 ++UI; 8278 Use.set(ToOp); 8279 To_IsDivergent |= ToOp->isDivergent(); 8280 } while (UI != UE && *UI == User); 8281 8282 if (To_IsDivergent != From->isDivergent()) 8283 updateDivergence(User); 8284 8285 // Now that we have modified User, add it back to the CSE maps. If it 8286 // already exists there, recursively merge the results together. 8287 AddModifiedNodeToCSEMaps(User); 8288 } 8289 8290 // If we just RAUW'd the root, take note. 8291 if (From == getRoot().getNode()) 8292 setRoot(SDValue(To[getRoot().getResNo()])); 8293 } 8294 8295 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8296 /// uses of other values produced by From.getNode() alone. The Deleted 8297 /// vector is handled the same way as for ReplaceAllUsesWith. 8298 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8299 // Handle the really simple, really trivial case efficiently. 8300 if (From == To) return; 8301 8302 // Handle the simple, trivial, case efficiently. 8303 if (From.getNode()->getNumValues() == 1) { 8304 ReplaceAllUsesWith(From, To); 8305 return; 8306 } 8307 8308 // Preserve Debug Info. 8309 transferDbgValues(From, To); 8310 8311 // Iterate over just the existing users of From. See the comments in 8312 // the ReplaceAllUsesWith above. 8313 SDNode::use_iterator UI = From.getNode()->use_begin(), 8314 UE = From.getNode()->use_end(); 8315 RAUWUpdateListener Listener(*this, UI, UE); 8316 while (UI != UE) { 8317 SDNode *User = *UI; 8318 bool UserRemovedFromCSEMaps = false; 8319 8320 // A user can appear in a use list multiple times, and when this 8321 // happens the uses are usually next to each other in the list. 8322 // To help reduce the number of CSE recomputations, process all 8323 // the uses of this user that we can find this way. 8324 do { 8325 SDUse &Use = UI.getUse(); 8326 8327 // Skip uses of different values from the same node. 8328 if (Use.getResNo() != From.getResNo()) { 8329 ++UI; 8330 continue; 8331 } 8332 8333 // If this node hasn't been modified yet, it's still in the CSE maps, 8334 // so remove its old self from the CSE maps. 8335 if (!UserRemovedFromCSEMaps) { 8336 RemoveNodeFromCSEMaps(User); 8337 UserRemovedFromCSEMaps = true; 8338 } 8339 8340 ++UI; 8341 Use.set(To); 8342 if (To->isDivergent() != From->isDivergent()) 8343 updateDivergence(User); 8344 } while (UI != UE && *UI == User); 8345 // We are iterating over all uses of the From node, so if a use 8346 // doesn't use the specific value, no changes are made. 8347 if (!UserRemovedFromCSEMaps) 8348 continue; 8349 8350 // Now that we have modified User, add it back to the CSE maps. If it 8351 // already exists there, recursively merge the results together. 8352 AddModifiedNodeToCSEMaps(User); 8353 } 8354 8355 // If we just RAUW'd the root, take note. 8356 if (From == getRoot()) 8357 setRoot(To); 8358 } 8359 8360 namespace { 8361 8362 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8363 /// to record information about a use. 8364 struct UseMemo { 8365 SDNode *User; 8366 unsigned Index; 8367 SDUse *Use; 8368 }; 8369 8370 /// operator< - Sort Memos by User. 8371 bool operator<(const UseMemo &L, const UseMemo &R) { 8372 return (intptr_t)L.User < (intptr_t)R.User; 8373 } 8374 8375 } // end anonymous namespace 8376 8377 void SelectionDAG::updateDivergence(SDNode * N) 8378 { 8379 if (TLI->isSDNodeAlwaysUniform(N)) 8380 return; 8381 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8382 for (auto &Op : N->ops()) { 8383 if (Op.Val.getValueType() != MVT::Other) 8384 IsDivergent |= Op.getNode()->isDivergent(); 8385 } 8386 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8387 N->SDNodeBits.IsDivergent = IsDivergent; 8388 for (auto U : N->uses()) { 8389 updateDivergence(U); 8390 } 8391 } 8392 } 8393 8394 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8395 DenseMap<SDNode *, unsigned> Degree; 8396 Order.reserve(AllNodes.size()); 8397 for (auto &N : allnodes()) { 8398 unsigned NOps = N.getNumOperands(); 8399 Degree[&N] = NOps; 8400 if (0 == NOps) 8401 Order.push_back(&N); 8402 } 8403 for (size_t I = 0; I != Order.size(); ++I) { 8404 SDNode *N = Order[I]; 8405 for (auto U : N->uses()) { 8406 unsigned &UnsortedOps = Degree[U]; 8407 if (0 == --UnsortedOps) 8408 Order.push_back(U); 8409 } 8410 } 8411 } 8412 8413 #ifndef NDEBUG 8414 void SelectionDAG::VerifyDAGDiverence() { 8415 std::vector<SDNode *> TopoOrder; 8416 CreateTopologicalOrder(TopoOrder); 8417 const TargetLowering &TLI = getTargetLoweringInfo(); 8418 DenseMap<const SDNode *, bool> DivergenceMap; 8419 for (auto &N : allnodes()) { 8420 DivergenceMap[&N] = false; 8421 } 8422 for (auto N : TopoOrder) { 8423 bool IsDivergent = DivergenceMap[N]; 8424 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8425 for (auto &Op : N->ops()) { 8426 if (Op.Val.getValueType() != MVT::Other) 8427 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8428 } 8429 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8430 DivergenceMap[N] = true; 8431 } 8432 } 8433 for (auto &N : allnodes()) { 8434 (void)N; 8435 assert(DivergenceMap[&N] == N.isDivergent() && 8436 "Divergence bit inconsistency detected\n"); 8437 } 8438 } 8439 #endif 8440 8441 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8442 /// uses of other values produced by From.getNode() alone. The same value 8443 /// may appear in both the From and To list. The Deleted vector is 8444 /// handled the same way as for ReplaceAllUsesWith. 8445 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8446 const SDValue *To, 8447 unsigned Num){ 8448 // Handle the simple, trivial case efficiently. 8449 if (Num == 1) 8450 return ReplaceAllUsesOfValueWith(*From, *To); 8451 8452 transferDbgValues(*From, *To); 8453 8454 // Read up all the uses and make records of them. This helps 8455 // processing new uses that are introduced during the 8456 // replacement process. 8457 SmallVector<UseMemo, 4> Uses; 8458 for (unsigned i = 0; i != Num; ++i) { 8459 unsigned FromResNo = From[i].getResNo(); 8460 SDNode *FromNode = From[i].getNode(); 8461 for (SDNode::use_iterator UI = FromNode->use_begin(), 8462 E = FromNode->use_end(); UI != E; ++UI) { 8463 SDUse &Use = UI.getUse(); 8464 if (Use.getResNo() == FromResNo) { 8465 UseMemo Memo = { *UI, i, &Use }; 8466 Uses.push_back(Memo); 8467 } 8468 } 8469 } 8470 8471 // Sort the uses, so that all the uses from a given User are together. 8472 llvm::sort(Uses); 8473 8474 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8475 UseIndex != UseIndexEnd; ) { 8476 // We know that this user uses some value of From. If it is the right 8477 // value, update it. 8478 SDNode *User = Uses[UseIndex].User; 8479 8480 // This node is about to morph, remove its old self from the CSE maps. 8481 RemoveNodeFromCSEMaps(User); 8482 8483 // The Uses array is sorted, so all the uses for a given User 8484 // are next to each other in the list. 8485 // To help reduce the number of CSE recomputations, process all 8486 // the uses of this user that we can find this way. 8487 do { 8488 unsigned i = Uses[UseIndex].Index; 8489 SDUse &Use = *Uses[UseIndex].Use; 8490 ++UseIndex; 8491 8492 Use.set(To[i]); 8493 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8494 8495 // Now that we have modified User, add it back to the CSE maps. If it 8496 // already exists there, recursively merge the results together. 8497 AddModifiedNodeToCSEMaps(User); 8498 } 8499 } 8500 8501 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8502 /// based on their topological order. It returns the maximum id and a vector 8503 /// of the SDNodes* in assigned order by reference. 8504 unsigned SelectionDAG::AssignTopologicalOrder() { 8505 unsigned DAGSize = 0; 8506 8507 // SortedPos tracks the progress of the algorithm. Nodes before it are 8508 // sorted, nodes after it are unsorted. When the algorithm completes 8509 // it is at the end of the list. 8510 allnodes_iterator SortedPos = allnodes_begin(); 8511 8512 // Visit all the nodes. Move nodes with no operands to the front of 8513 // the list immediately. Annotate nodes that do have operands with their 8514 // operand count. Before we do this, the Node Id fields of the nodes 8515 // may contain arbitrary values. After, the Node Id fields for nodes 8516 // before SortedPos will contain the topological sort index, and the 8517 // Node Id fields for nodes At SortedPos and after will contain the 8518 // count of outstanding operands. 8519 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8520 SDNode *N = &*I++; 8521 checkForCycles(N, this); 8522 unsigned Degree = N->getNumOperands(); 8523 if (Degree == 0) { 8524 // A node with no uses, add it to the result array immediately. 8525 N->setNodeId(DAGSize++); 8526 allnodes_iterator Q(N); 8527 if (Q != SortedPos) 8528 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8529 assert(SortedPos != AllNodes.end() && "Overran node list"); 8530 ++SortedPos; 8531 } else { 8532 // Temporarily use the Node Id as scratch space for the degree count. 8533 N->setNodeId(Degree); 8534 } 8535 } 8536 8537 // Visit all the nodes. As we iterate, move nodes into sorted order, 8538 // such that by the time the end is reached all nodes will be sorted. 8539 for (SDNode &Node : allnodes()) { 8540 SDNode *N = &Node; 8541 checkForCycles(N, this); 8542 // N is in sorted position, so all its uses have one less operand 8543 // that needs to be sorted. 8544 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8545 UI != UE; ++UI) { 8546 SDNode *P = *UI; 8547 unsigned Degree = P->getNodeId(); 8548 assert(Degree != 0 && "Invalid node degree"); 8549 --Degree; 8550 if (Degree == 0) { 8551 // All of P's operands are sorted, so P may sorted now. 8552 P->setNodeId(DAGSize++); 8553 if (P->getIterator() != SortedPos) 8554 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8555 assert(SortedPos != AllNodes.end() && "Overran node list"); 8556 ++SortedPos; 8557 } else { 8558 // Update P's outstanding operand count. 8559 P->setNodeId(Degree); 8560 } 8561 } 8562 if (Node.getIterator() == SortedPos) { 8563 #ifndef NDEBUG 8564 allnodes_iterator I(N); 8565 SDNode *S = &*++I; 8566 dbgs() << "Overran sorted position:\n"; 8567 S->dumprFull(this); dbgs() << "\n"; 8568 dbgs() << "Checking if this is due to cycles\n"; 8569 checkForCycles(this, true); 8570 #endif 8571 llvm_unreachable(nullptr); 8572 } 8573 } 8574 8575 assert(SortedPos == AllNodes.end() && 8576 "Topological sort incomplete!"); 8577 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8578 "First node in topological sort is not the entry token!"); 8579 assert(AllNodes.front().getNodeId() == 0 && 8580 "First node in topological sort has non-zero id!"); 8581 assert(AllNodes.front().getNumOperands() == 0 && 8582 "First node in topological sort has operands!"); 8583 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8584 "Last node in topologic sort has unexpected id!"); 8585 assert(AllNodes.back().use_empty() && 8586 "Last node in topologic sort has users!"); 8587 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8588 return DAGSize; 8589 } 8590 8591 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8592 /// value is produced by SD. 8593 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8594 if (SD) { 8595 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8596 SD->setHasDebugValue(true); 8597 } 8598 DbgInfo->add(DB, SD, isParameter); 8599 } 8600 8601 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8602 DbgInfo->add(DB); 8603 } 8604 8605 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8606 SDValue NewMemOp) { 8607 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8608 // The new memory operation must have the same position as the old load in 8609 // terms of memory dependency. Create a TokenFactor for the old load and new 8610 // memory operation and update uses of the old load's output chain to use that 8611 // TokenFactor. 8612 SDValue OldChain = SDValue(OldLoad, 1); 8613 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8614 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8615 return NewChain; 8616 8617 SDValue TokenFactor = 8618 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8619 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8620 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8621 return TokenFactor; 8622 } 8623 8624 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8625 Function **OutFunction) { 8626 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8627 8628 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8629 auto *Module = MF->getFunction().getParent(); 8630 auto *Function = Module->getFunction(Symbol); 8631 8632 if (OutFunction != nullptr) 8633 *OutFunction = Function; 8634 8635 if (Function != nullptr) { 8636 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8637 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8638 } 8639 8640 std::string ErrorStr; 8641 raw_string_ostream ErrorFormatter(ErrorStr); 8642 8643 ErrorFormatter << "Undefined external symbol "; 8644 ErrorFormatter << '"' << Symbol << '"'; 8645 ErrorFormatter.flush(); 8646 8647 report_fatal_error(ErrorStr); 8648 } 8649 8650 //===----------------------------------------------------------------------===// 8651 // SDNode Class 8652 //===----------------------------------------------------------------------===// 8653 8654 bool llvm::isNullConstant(SDValue V) { 8655 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8656 return Const != nullptr && Const->isNullValue(); 8657 } 8658 8659 bool llvm::isNullFPConstant(SDValue V) { 8660 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8661 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8662 } 8663 8664 bool llvm::isAllOnesConstant(SDValue V) { 8665 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8666 return Const != nullptr && Const->isAllOnesValue(); 8667 } 8668 8669 bool llvm::isOneConstant(SDValue V) { 8670 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8671 return Const != nullptr && Const->isOne(); 8672 } 8673 8674 SDValue llvm::peekThroughBitcasts(SDValue V) { 8675 while (V.getOpcode() == ISD::BITCAST) 8676 V = V.getOperand(0); 8677 return V; 8678 } 8679 8680 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8681 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8682 V = V.getOperand(0); 8683 return V; 8684 } 8685 8686 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8687 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8688 V = V.getOperand(0); 8689 return V; 8690 } 8691 8692 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8693 if (V.getOpcode() != ISD::XOR) 8694 return false; 8695 V = peekThroughBitcasts(V.getOperand(1)); 8696 unsigned NumBits = V.getScalarValueSizeInBits(); 8697 ConstantSDNode *C = 8698 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8699 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8700 } 8701 8702 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8703 bool AllowTruncation) { 8704 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8705 return CN; 8706 8707 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8708 BitVector UndefElements; 8709 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8710 8711 // BuildVectors can truncate their operands. Ignore that case here unless 8712 // AllowTruncation is set. 8713 if (CN && (UndefElements.none() || AllowUndefs)) { 8714 EVT CVT = CN->getValueType(0); 8715 EVT NSVT = N.getValueType().getScalarType(); 8716 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8717 if (AllowTruncation || (CVT == NSVT)) 8718 return CN; 8719 } 8720 } 8721 8722 return nullptr; 8723 } 8724 8725 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8726 bool AllowUndefs, 8727 bool AllowTruncation) { 8728 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8729 return CN; 8730 8731 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8732 BitVector UndefElements; 8733 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8734 8735 // BuildVectors can truncate their operands. Ignore that case here unless 8736 // AllowTruncation is set. 8737 if (CN && (UndefElements.none() || AllowUndefs)) { 8738 EVT CVT = CN->getValueType(0); 8739 EVT NSVT = N.getValueType().getScalarType(); 8740 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8741 if (AllowTruncation || (CVT == NSVT)) 8742 return CN; 8743 } 8744 } 8745 8746 return nullptr; 8747 } 8748 8749 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8750 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8751 return CN; 8752 8753 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8754 BitVector UndefElements; 8755 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8756 if (CN && (UndefElements.none() || AllowUndefs)) 8757 return CN; 8758 } 8759 8760 return nullptr; 8761 } 8762 8763 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8764 const APInt &DemandedElts, 8765 bool AllowUndefs) { 8766 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8767 return CN; 8768 8769 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8770 BitVector UndefElements; 8771 ConstantFPSDNode *CN = 8772 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8773 if (CN && (UndefElements.none() || AllowUndefs)) 8774 return CN; 8775 } 8776 8777 return nullptr; 8778 } 8779 8780 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8781 // TODO: may want to use peekThroughBitcast() here. 8782 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8783 return C && C->isNullValue(); 8784 } 8785 8786 bool llvm::isOneOrOneSplat(SDValue N) { 8787 // TODO: may want to use peekThroughBitcast() here. 8788 unsigned BitWidth = N.getScalarValueSizeInBits(); 8789 ConstantSDNode *C = isConstOrConstSplat(N); 8790 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8791 } 8792 8793 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8794 N = peekThroughBitcasts(N); 8795 unsigned BitWidth = N.getScalarValueSizeInBits(); 8796 ConstantSDNode *C = isConstOrConstSplat(N); 8797 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8798 } 8799 8800 HandleSDNode::~HandleSDNode() { 8801 DropOperands(); 8802 } 8803 8804 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8805 const DebugLoc &DL, 8806 const GlobalValue *GA, EVT VT, 8807 int64_t o, unsigned TF) 8808 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8809 TheGlobal = GA; 8810 } 8811 8812 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8813 EVT VT, unsigned SrcAS, 8814 unsigned DestAS) 8815 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8816 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8817 8818 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8819 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8820 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8821 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8822 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8823 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8824 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8825 8826 // We check here that the size of the memory operand fits within the size of 8827 // the MMO. This is because the MMO might indicate only a possible address 8828 // range instead of specifying the affected memory addresses precisely. 8829 // TODO: Make MachineMemOperands aware of scalable vectors. 8830 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 8831 "Size mismatch!"); 8832 } 8833 8834 /// Profile - Gather unique data for the node. 8835 /// 8836 void SDNode::Profile(FoldingSetNodeID &ID) const { 8837 AddNodeIDNode(ID, this); 8838 } 8839 8840 namespace { 8841 8842 struct EVTArray { 8843 std::vector<EVT> VTs; 8844 8845 EVTArray() { 8846 VTs.reserve(MVT::LAST_VALUETYPE); 8847 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8848 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8849 } 8850 }; 8851 8852 } // end anonymous namespace 8853 8854 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8855 static ManagedStatic<EVTArray> SimpleVTArray; 8856 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8857 8858 /// getValueTypeList - Return a pointer to the specified value type. 8859 /// 8860 const EVT *SDNode::getValueTypeList(EVT VT) { 8861 if (VT.isExtended()) { 8862 sys::SmartScopedLock<true> Lock(*VTMutex); 8863 return &(*EVTs->insert(VT).first); 8864 } else { 8865 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8866 "Value type out of range!"); 8867 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8868 } 8869 } 8870 8871 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8872 /// indicated value. This method ignores uses of other values defined by this 8873 /// operation. 8874 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8875 assert(Value < getNumValues() && "Bad value!"); 8876 8877 // TODO: Only iterate over uses of a given value of the node 8878 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8879 if (UI.getUse().getResNo() == Value) { 8880 if (NUses == 0) 8881 return false; 8882 --NUses; 8883 } 8884 } 8885 8886 // Found exactly the right number of uses? 8887 return NUses == 0; 8888 } 8889 8890 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8891 /// value. This method ignores uses of other values defined by this operation. 8892 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8893 assert(Value < getNumValues() && "Bad value!"); 8894 8895 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8896 if (UI.getUse().getResNo() == Value) 8897 return true; 8898 8899 return false; 8900 } 8901 8902 /// isOnlyUserOf - Return true if this node is the only use of N. 8903 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8904 bool Seen = false; 8905 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8906 SDNode *User = *I; 8907 if (User == this) 8908 Seen = true; 8909 else 8910 return false; 8911 } 8912 8913 return Seen; 8914 } 8915 8916 /// Return true if the only users of N are contained in Nodes. 8917 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8918 bool Seen = false; 8919 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8920 SDNode *User = *I; 8921 if (llvm::any_of(Nodes, 8922 [&User](const SDNode *Node) { return User == Node; })) 8923 Seen = true; 8924 else 8925 return false; 8926 } 8927 8928 return Seen; 8929 } 8930 8931 /// isOperand - Return true if this node is an operand of N. 8932 bool SDValue::isOperandOf(const SDNode *N) const { 8933 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8934 } 8935 8936 bool SDNode::isOperandOf(const SDNode *N) const { 8937 return any_of(N->op_values(), 8938 [this](SDValue Op) { return this == Op.getNode(); }); 8939 } 8940 8941 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8942 /// be a chain) reaches the specified operand without crossing any 8943 /// side-effecting instructions on any chain path. In practice, this looks 8944 /// through token factors and non-volatile loads. In order to remain efficient, 8945 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8946 /// 8947 /// Note that we only need to examine chains when we're searching for 8948 /// side-effects; SelectionDAG requires that all side-effects are represented 8949 /// by chains, even if another operand would force a specific ordering. This 8950 /// constraint is necessary to allow transformations like splitting loads. 8951 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8952 unsigned Depth) const { 8953 if (*this == Dest) return true; 8954 8955 // Don't search too deeply, we just want to be able to see through 8956 // TokenFactor's etc. 8957 if (Depth == 0) return false; 8958 8959 // If this is a token factor, all inputs to the TF happen in parallel. 8960 if (getOpcode() == ISD::TokenFactor) { 8961 // First, try a shallow search. 8962 if (is_contained((*this)->ops(), Dest)) { 8963 // We found the chain we want as an operand of this TokenFactor. 8964 // Essentially, we reach the chain without side-effects if we could 8965 // serialize the TokenFactor into a simple chain of operations with 8966 // Dest as the last operation. This is automatically true if the 8967 // chain has one use: there are no other ordering constraints. 8968 // If the chain has more than one use, we give up: some other 8969 // use of Dest might force a side-effect between Dest and the current 8970 // node. 8971 if (Dest.hasOneUse()) 8972 return true; 8973 } 8974 // Next, try a deep search: check whether every operand of the TokenFactor 8975 // reaches Dest. 8976 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8977 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8978 }); 8979 } 8980 8981 // Loads don't have side effects, look through them. 8982 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8983 if (Ld->isUnordered()) 8984 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8985 } 8986 return false; 8987 } 8988 8989 bool SDNode::hasPredecessor(const SDNode *N) const { 8990 SmallPtrSet<const SDNode *, 32> Visited; 8991 SmallVector<const SDNode *, 16> Worklist; 8992 Worklist.push_back(this); 8993 return hasPredecessorHelper(N, Visited, Worklist); 8994 } 8995 8996 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8997 this->Flags.intersectWith(Flags); 8998 } 8999 9000 SDValue 9001 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9002 ArrayRef<ISD::NodeType> CandidateBinOps, 9003 bool AllowPartials) { 9004 // The pattern must end in an extract from index 0. 9005 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9006 !isNullConstant(Extract->getOperand(1))) 9007 return SDValue(); 9008 9009 // Match against one of the candidate binary ops. 9010 SDValue Op = Extract->getOperand(0); 9011 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9012 return Op.getOpcode() == unsigned(BinOp); 9013 })) 9014 return SDValue(); 9015 9016 // Floating-point reductions may require relaxed constraints on the final step 9017 // of the reduction because they may reorder intermediate operations. 9018 unsigned CandidateBinOp = Op.getOpcode(); 9019 if (Op.getValueType().isFloatingPoint()) { 9020 SDNodeFlags Flags = Op->getFlags(); 9021 switch (CandidateBinOp) { 9022 case ISD::FADD: 9023 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9024 return SDValue(); 9025 break; 9026 default: 9027 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9028 } 9029 } 9030 9031 // Matching failed - attempt to see if we did enough stages that a partial 9032 // reduction from a subvector is possible. 9033 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9034 if (!AllowPartials || !Op) 9035 return SDValue(); 9036 EVT OpVT = Op.getValueType(); 9037 EVT OpSVT = OpVT.getScalarType(); 9038 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9039 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9040 return SDValue(); 9041 BinOp = (ISD::NodeType)CandidateBinOp; 9042 return getNode( 9043 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9044 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9045 }; 9046 9047 // At each stage, we're looking for something that looks like: 9048 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9049 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9050 // i32 undef, i32 undef, i32 undef, i32 undef> 9051 // %a = binop <8 x i32> %op, %s 9052 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9053 // we expect something like: 9054 // <4,5,6,7,u,u,u,u> 9055 // <2,3,u,u,u,u,u,u> 9056 // <1,u,u,u,u,u,u,u> 9057 // While a partial reduction match would be: 9058 // <2,3,u,u,u,u,u,u> 9059 // <1,u,u,u,u,u,u,u> 9060 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9061 SDValue PrevOp; 9062 for (unsigned i = 0; i < Stages; ++i) { 9063 unsigned MaskEnd = (1 << i); 9064 9065 if (Op.getOpcode() != CandidateBinOp) 9066 return PartialReduction(PrevOp, MaskEnd); 9067 9068 SDValue Op0 = Op.getOperand(0); 9069 SDValue Op1 = Op.getOperand(1); 9070 9071 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9072 if (Shuffle) { 9073 Op = Op1; 9074 } else { 9075 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9076 Op = Op0; 9077 } 9078 9079 // The first operand of the shuffle should be the same as the other operand 9080 // of the binop. 9081 if (!Shuffle || Shuffle->getOperand(0) != Op) 9082 return PartialReduction(PrevOp, MaskEnd); 9083 9084 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9085 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9086 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9087 return PartialReduction(PrevOp, MaskEnd); 9088 9089 PrevOp = Op; 9090 } 9091 9092 BinOp = (ISD::NodeType)CandidateBinOp; 9093 return Op; 9094 } 9095 9096 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9097 assert(N->getNumValues() == 1 && 9098 "Can't unroll a vector with multiple results!"); 9099 9100 EVT VT = N->getValueType(0); 9101 unsigned NE = VT.getVectorNumElements(); 9102 EVT EltVT = VT.getVectorElementType(); 9103 SDLoc dl(N); 9104 9105 SmallVector<SDValue, 8> Scalars; 9106 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9107 9108 // If ResNE is 0, fully unroll the vector op. 9109 if (ResNE == 0) 9110 ResNE = NE; 9111 else if (NE > ResNE) 9112 NE = ResNE; 9113 9114 unsigned i; 9115 for (i= 0; i != NE; ++i) { 9116 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9117 SDValue Operand = N->getOperand(j); 9118 EVT OperandVT = Operand.getValueType(); 9119 if (OperandVT.isVector()) { 9120 // A vector operand; extract a single element. 9121 EVT OperandEltVT = OperandVT.getVectorElementType(); 9122 Operands[j] = 9123 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9124 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9125 } else { 9126 // A scalar operand; just use it as is. 9127 Operands[j] = Operand; 9128 } 9129 } 9130 9131 switch (N->getOpcode()) { 9132 default: { 9133 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9134 N->getFlags())); 9135 break; 9136 } 9137 case ISD::VSELECT: 9138 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9139 break; 9140 case ISD::SHL: 9141 case ISD::SRA: 9142 case ISD::SRL: 9143 case ISD::ROTL: 9144 case ISD::ROTR: 9145 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9146 getShiftAmountOperand(Operands[0].getValueType(), 9147 Operands[1]))); 9148 break; 9149 case ISD::SIGN_EXTEND_INREG: { 9150 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9151 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9152 Operands[0], 9153 getValueType(ExtVT))); 9154 } 9155 } 9156 } 9157 9158 for (; i < ResNE; ++i) 9159 Scalars.push_back(getUNDEF(EltVT)); 9160 9161 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9162 return getBuildVector(VecVT, dl, Scalars); 9163 } 9164 9165 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9166 SDNode *N, unsigned ResNE) { 9167 unsigned Opcode = N->getOpcode(); 9168 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9169 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9170 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9171 "Expected an overflow opcode"); 9172 9173 EVT ResVT = N->getValueType(0); 9174 EVT OvVT = N->getValueType(1); 9175 EVT ResEltVT = ResVT.getVectorElementType(); 9176 EVT OvEltVT = OvVT.getVectorElementType(); 9177 SDLoc dl(N); 9178 9179 // If ResNE is 0, fully unroll the vector op. 9180 unsigned NE = ResVT.getVectorNumElements(); 9181 if (ResNE == 0) 9182 ResNE = NE; 9183 else if (NE > ResNE) 9184 NE = ResNE; 9185 9186 SmallVector<SDValue, 8> LHSScalars; 9187 SmallVector<SDValue, 8> RHSScalars; 9188 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9189 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9190 9191 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9192 SDVTList VTs = getVTList(ResEltVT, SVT); 9193 SmallVector<SDValue, 8> ResScalars; 9194 SmallVector<SDValue, 8> OvScalars; 9195 for (unsigned i = 0; i < NE; ++i) { 9196 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9197 SDValue Ov = 9198 getSelect(dl, OvEltVT, Res.getValue(1), 9199 getBoolConstant(true, dl, OvEltVT, ResVT), 9200 getConstant(0, dl, OvEltVT)); 9201 9202 ResScalars.push_back(Res); 9203 OvScalars.push_back(Ov); 9204 } 9205 9206 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9207 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9208 9209 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9210 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9211 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9212 getBuildVector(NewOvVT, dl, OvScalars)); 9213 } 9214 9215 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9216 LoadSDNode *Base, 9217 unsigned Bytes, 9218 int Dist) const { 9219 if (LD->isVolatile() || Base->isVolatile()) 9220 return false; 9221 // TODO: probably too restrictive for atomics, revisit 9222 if (!LD->isSimple()) 9223 return false; 9224 if (LD->isIndexed() || Base->isIndexed()) 9225 return false; 9226 if (LD->getChain() != Base->getChain()) 9227 return false; 9228 EVT VT = LD->getValueType(0); 9229 if (VT.getSizeInBits() / 8 != Bytes) 9230 return false; 9231 9232 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9233 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9234 9235 int64_t Offset = 0; 9236 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9237 return (Dist * Bytes == Offset); 9238 return false; 9239 } 9240 9241 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9242 /// it cannot be inferred. 9243 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9244 // If this is a GlobalAddress + cst, return the alignment. 9245 const GlobalValue *GV = nullptr; 9246 int64_t GVOffset = 0; 9247 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9248 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9249 KnownBits Known(IdxWidth); 9250 llvm::computeKnownBits(GV, Known, getDataLayout()); 9251 unsigned AlignBits = Known.countMinTrailingZeros(); 9252 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9253 if (Align) 9254 return MinAlign(Align, GVOffset); 9255 } 9256 9257 // If this is a direct reference to a stack slot, use information about the 9258 // stack slot's alignment. 9259 int FrameIdx = INT_MIN; 9260 int64_t FrameOffset = 0; 9261 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9262 FrameIdx = FI->getIndex(); 9263 } else if (isBaseWithConstantOffset(Ptr) && 9264 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9265 // Handle FI+Cst 9266 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9267 FrameOffset = Ptr.getConstantOperandVal(1); 9268 } 9269 9270 if (FrameIdx != INT_MIN) { 9271 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9272 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9273 FrameOffset); 9274 return FIInfoAlign; 9275 } 9276 9277 return 0; 9278 } 9279 9280 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9281 /// which is split (or expanded) into two not necessarily identical pieces. 9282 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9283 // Currently all types are split in half. 9284 EVT LoVT, HiVT; 9285 if (!VT.isVector()) 9286 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9287 else 9288 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9289 9290 return std::make_pair(LoVT, HiVT); 9291 } 9292 9293 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9294 /// low/high part. 9295 std::pair<SDValue, SDValue> 9296 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9297 const EVT &HiVT) { 9298 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9299 N.getValueType().getVectorNumElements() && 9300 "More vector elements requested than available!"); 9301 SDValue Lo, Hi; 9302 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9303 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9304 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9305 getConstant(LoVT.getVectorNumElements(), DL, 9306 TLI->getVectorIdxTy(getDataLayout()))); 9307 return std::make_pair(Lo, Hi); 9308 } 9309 9310 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9311 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9312 EVT VT = N.getValueType(); 9313 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9314 NextPowerOf2(VT.getVectorNumElements())); 9315 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9316 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9317 } 9318 9319 void SelectionDAG::ExtractVectorElements(SDValue Op, 9320 SmallVectorImpl<SDValue> &Args, 9321 unsigned Start, unsigned Count) { 9322 EVT VT = Op.getValueType(); 9323 if (Count == 0) 9324 Count = VT.getVectorNumElements(); 9325 9326 EVT EltVT = VT.getVectorElementType(); 9327 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9328 SDLoc SL(Op); 9329 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9330 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9331 Op, getConstant(i, SL, IdxTy))); 9332 } 9333 } 9334 9335 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9336 unsigned GlobalAddressSDNode::getAddressSpace() const { 9337 return getGlobal()->getType()->getAddressSpace(); 9338 } 9339 9340 Type *ConstantPoolSDNode::getType() const { 9341 if (isMachineConstantPoolEntry()) 9342 return Val.MachineCPVal->getType(); 9343 return Val.ConstVal->getType(); 9344 } 9345 9346 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9347 unsigned &SplatBitSize, 9348 bool &HasAnyUndefs, 9349 unsigned MinSplatBits, 9350 bool IsBigEndian) const { 9351 EVT VT = getValueType(0); 9352 assert(VT.isVector() && "Expected a vector type"); 9353 unsigned VecWidth = VT.getSizeInBits(); 9354 if (MinSplatBits > VecWidth) 9355 return false; 9356 9357 // FIXME: The widths are based on this node's type, but build vectors can 9358 // truncate their operands. 9359 SplatValue = APInt(VecWidth, 0); 9360 SplatUndef = APInt(VecWidth, 0); 9361 9362 // Get the bits. Bits with undefined values (when the corresponding element 9363 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9364 // in SplatValue. If any of the values are not constant, give up and return 9365 // false. 9366 unsigned int NumOps = getNumOperands(); 9367 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9368 unsigned EltWidth = VT.getScalarSizeInBits(); 9369 9370 for (unsigned j = 0; j < NumOps; ++j) { 9371 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9372 SDValue OpVal = getOperand(i); 9373 unsigned BitPos = j * EltWidth; 9374 9375 if (OpVal.isUndef()) 9376 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9377 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9378 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9379 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9380 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9381 else 9382 return false; 9383 } 9384 9385 // The build_vector is all constants or undefs. Find the smallest element 9386 // size that splats the vector. 9387 HasAnyUndefs = (SplatUndef != 0); 9388 9389 // FIXME: This does not work for vectors with elements less than 8 bits. 9390 while (VecWidth > 8) { 9391 unsigned HalfSize = VecWidth / 2; 9392 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9393 APInt LowValue = SplatValue.trunc(HalfSize); 9394 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9395 APInt LowUndef = SplatUndef.trunc(HalfSize); 9396 9397 // If the two halves do not match (ignoring undef bits), stop here. 9398 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9399 MinSplatBits > HalfSize) 9400 break; 9401 9402 SplatValue = HighValue | LowValue; 9403 SplatUndef = HighUndef & LowUndef; 9404 9405 VecWidth = HalfSize; 9406 } 9407 9408 SplatBitSize = VecWidth; 9409 return true; 9410 } 9411 9412 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9413 BitVector *UndefElements) const { 9414 if (UndefElements) { 9415 UndefElements->clear(); 9416 UndefElements->resize(getNumOperands()); 9417 } 9418 assert(getNumOperands() == DemandedElts.getBitWidth() && 9419 "Unexpected vector size"); 9420 if (!DemandedElts) 9421 return SDValue(); 9422 SDValue Splatted; 9423 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9424 if (!DemandedElts[i]) 9425 continue; 9426 SDValue Op = getOperand(i); 9427 if (Op.isUndef()) { 9428 if (UndefElements) 9429 (*UndefElements)[i] = true; 9430 } else if (!Splatted) { 9431 Splatted = Op; 9432 } else if (Splatted != Op) { 9433 return SDValue(); 9434 } 9435 } 9436 9437 if (!Splatted) { 9438 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9439 assert(getOperand(FirstDemandedIdx).isUndef() && 9440 "Can only have a splat without a constant for all undefs."); 9441 return getOperand(FirstDemandedIdx); 9442 } 9443 9444 return Splatted; 9445 } 9446 9447 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9448 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9449 return getSplatValue(DemandedElts, UndefElements); 9450 } 9451 9452 ConstantSDNode * 9453 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9454 BitVector *UndefElements) const { 9455 return dyn_cast_or_null<ConstantSDNode>( 9456 getSplatValue(DemandedElts, UndefElements)); 9457 } 9458 9459 ConstantSDNode * 9460 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9461 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9462 } 9463 9464 ConstantFPSDNode * 9465 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9466 BitVector *UndefElements) const { 9467 return dyn_cast_or_null<ConstantFPSDNode>( 9468 getSplatValue(DemandedElts, UndefElements)); 9469 } 9470 9471 ConstantFPSDNode * 9472 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9473 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9474 } 9475 9476 int32_t 9477 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9478 uint32_t BitWidth) const { 9479 if (ConstantFPSDNode *CN = 9480 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9481 bool IsExact; 9482 APSInt IntVal(BitWidth); 9483 const APFloat &APF = CN->getValueAPF(); 9484 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9485 APFloat::opOK || 9486 !IsExact) 9487 return -1; 9488 9489 return IntVal.exactLogBase2(); 9490 } 9491 return -1; 9492 } 9493 9494 bool BuildVectorSDNode::isConstant() const { 9495 for (const SDValue &Op : op_values()) { 9496 unsigned Opc = Op.getOpcode(); 9497 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9498 return false; 9499 } 9500 return true; 9501 } 9502 9503 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9504 // Find the first non-undef value in the shuffle mask. 9505 unsigned i, e; 9506 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9507 /* search */; 9508 9509 // If all elements are undefined, this shuffle can be considered a splat 9510 // (although it should eventually get simplified away completely). 9511 if (i == e) 9512 return true; 9513 9514 // Make sure all remaining elements are either undef or the same as the first 9515 // non-undef value. 9516 for (int Idx = Mask[i]; i != e; ++i) 9517 if (Mask[i] >= 0 && Mask[i] != Idx) 9518 return false; 9519 return true; 9520 } 9521 9522 // Returns the SDNode if it is a constant integer BuildVector 9523 // or constant integer. 9524 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9525 if (isa<ConstantSDNode>(N)) 9526 return N.getNode(); 9527 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9528 return N.getNode(); 9529 // Treat a GlobalAddress supporting constant offset folding as a 9530 // constant integer. 9531 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9532 if (GA->getOpcode() == ISD::GlobalAddress && 9533 TLI->isOffsetFoldingLegal(GA)) 9534 return GA; 9535 return nullptr; 9536 } 9537 9538 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9539 if (isa<ConstantFPSDNode>(N)) 9540 return N.getNode(); 9541 9542 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9543 return N.getNode(); 9544 9545 return nullptr; 9546 } 9547 9548 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9549 assert(!Node->OperandList && "Node already has operands"); 9550 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9551 "too many operands to fit into SDNode"); 9552 SDUse *Ops = OperandRecycler.allocate( 9553 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9554 9555 bool IsDivergent = false; 9556 for (unsigned I = 0; I != Vals.size(); ++I) { 9557 Ops[I].setUser(Node); 9558 Ops[I].setInitial(Vals[I]); 9559 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9560 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9561 } 9562 Node->NumOperands = Vals.size(); 9563 Node->OperandList = Ops; 9564 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9565 if (!TLI->isSDNodeAlwaysUniform(Node)) 9566 Node->SDNodeBits.IsDivergent = IsDivergent; 9567 checkForCycles(Node); 9568 } 9569 9570 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9571 SmallVectorImpl<SDValue> &Vals) { 9572 size_t Limit = SDNode::getMaxNumOperands(); 9573 while (Vals.size() > Limit) { 9574 unsigned SliceIdx = Vals.size() - Limit; 9575 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9576 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9577 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9578 Vals.emplace_back(NewTF); 9579 } 9580 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9581 } 9582 9583 #ifndef NDEBUG 9584 static void checkForCyclesHelper(const SDNode *N, 9585 SmallPtrSetImpl<const SDNode*> &Visited, 9586 SmallPtrSetImpl<const SDNode*> &Checked, 9587 const llvm::SelectionDAG *DAG) { 9588 // If this node has already been checked, don't check it again. 9589 if (Checked.count(N)) 9590 return; 9591 9592 // If a node has already been visited on this depth-first walk, reject it as 9593 // a cycle. 9594 if (!Visited.insert(N).second) { 9595 errs() << "Detected cycle in SelectionDAG\n"; 9596 dbgs() << "Offending node:\n"; 9597 N->dumprFull(DAG); dbgs() << "\n"; 9598 abort(); 9599 } 9600 9601 for (const SDValue &Op : N->op_values()) 9602 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9603 9604 Checked.insert(N); 9605 Visited.erase(N); 9606 } 9607 #endif 9608 9609 void llvm::checkForCycles(const llvm::SDNode *N, 9610 const llvm::SelectionDAG *DAG, 9611 bool force) { 9612 #ifndef NDEBUG 9613 bool check = force; 9614 #ifdef EXPENSIVE_CHECKS 9615 check = true; 9616 #endif // EXPENSIVE_CHECKS 9617 if (check) { 9618 assert(N && "Checking nonexistent SDNode"); 9619 SmallPtrSet<const SDNode*, 32> visited; 9620 SmallPtrSet<const SDNode*, 32> checked; 9621 checkForCyclesHelper(N, visited, checked, DAG); 9622 } 9623 #endif // !NDEBUG 9624 } 9625 9626 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9627 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9628 } 9629