1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/Analysis.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (auto& Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (auto& Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   case ISD::AssertAlign:
848     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849     break;
850   } // end switch (N->getOpcode())
851 
852   // Target specific memory nodes could also have address spaces and flags
853   // to check.
854   if (N->isTargetMemoryOpcode()) {
855     const MemSDNode *MN = cast<MemSDNode>(N);
856     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MN->getMemOperand()->getFlags());
858   }
859 }
860 
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864   AddNodeIDOpcode(ID, N->getOpcode());
865   // Add the return value info.
866   AddNodeIDValueTypes(ID, N->getVTList());
867   // Add the operand info.
868   AddNodeIDOperands(ID, N->ops());
869 
870   // Handle SDNode leafs with special info.
871   AddNodeIDCustom(ID, N);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 //                              SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877 
878 /// doNotCSE - Return true if CSE should not be performed for this node.
879 static bool doNotCSE(SDNode *N) {
880   if (N->getValueType(0) == MVT::Glue)
881     return true; // Never CSE anything that produces a flag.
882 
883   switch (N->getOpcode()) {
884   default: break;
885   case ISD::HANDLENODE:
886   case ISD::EH_LABEL:
887     return true;   // Never CSE these nodes.
888   }
889 
890   // Check that remaining values produced are not flags.
891   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892     if (N->getValueType(i) == MVT::Glue)
893       return true; // Never CSE anything that produces a flag.
894 
895   return false;
896 }
897 
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
900 void SelectionDAG::RemoveDeadNodes() {
901   // Create a dummy node (which is not added to allnodes), that adds a reference
902   // to the root node, preventing it from being deleted.
903   HandleSDNode Dummy(getRoot());
904 
905   SmallVector<SDNode*, 128> DeadNodes;
906 
907   // Add all obviously-dead nodes to the DeadNodes worklist.
908   for (SDNode &Node : allnodes())
909     if (Node.use_empty())
910       DeadNodes.push_back(&Node);
911 
912   RemoveDeadNodes(DeadNodes);
913 
914   // If the root changed (e.g. it was a dead load, update the root).
915   setRoot(Dummy.getValue());
916 }
917 
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921 
922   // Process the worklist, deleting the nodes and adding their uses to the
923   // worklist.
924   while (!DeadNodes.empty()) {
925     SDNode *N = DeadNodes.pop_back_val();
926     // Skip to next node if we've already managed to delete the node. This could
927     // happen if replacing a node causes a node previously added to the node to
928     // be deleted.
929     if (N->getOpcode() == ISD::DELETED_NODE)
930       continue;
931 
932     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933       DUL->NodeDeleted(N, nullptr);
934 
935     // Take the node out of the appropriate CSE map.
936     RemoveNodeFromCSEMaps(N);
937 
938     // Next, brutally remove the operand list.  This is safe to do, as there are
939     // no cycles in the graph.
940     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941       SDUse &Use = *I++;
942       SDNode *Operand = Use.getNode();
943       Use.set(SDValue());
944 
945       // Now that we removed this operand, see if there are no uses of it left.
946       if (Operand->use_empty())
947         DeadNodes.push_back(Operand);
948     }
949 
950     DeallocateNode(N);
951   }
952 }
953 
954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955   SmallVector<SDNode*, 16> DeadNodes(1, N);
956 
957   // Create a dummy node that adds a reference to the root node, preventing
958   // it from being deleted.  (This matters if the root is an operand of the
959   // dead node.)
960   HandleSDNode Dummy(getRoot());
961 
962   RemoveDeadNodes(DeadNodes);
963 }
964 
965 void SelectionDAG::DeleteNode(SDNode *N) {
966   // First take this out of the appropriate CSE map.
967   RemoveNodeFromCSEMaps(N);
968 
969   // Finally, remove uses due to operands of this node, remove from the
970   // AllNodes list, and delete the node.
971   DeleteNodeNotInCSEMaps(N);
972 }
973 
974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975   assert(N->getIterator() != AllNodes.begin() &&
976          "Cannot delete the entry node!");
977   assert(N->use_empty() && "Cannot delete a node that is not dead!");
978 
979   // Drop all of the operands and decrement used node's use counts.
980   N->DropOperands();
981 
982   DeallocateNode(N);
983 }
984 
985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986   assert(!(V->isVariadic() && isParameter));
987   if (isParameter)
988     ByvalParmDbgValues.push_back(V);
989   else
990     DbgValues.push_back(V);
991   for (const SDNode *Node : V->getSDNodes())
992     if (Node)
993       DbgValMap[Node].push_back(V);
994 }
995 
996 void SDDbgInfo::erase(const SDNode *Node) {
997   DbgValMapType::iterator I = DbgValMap.find(Node);
998   if (I == DbgValMap.end())
999     return;
1000   for (auto &Val: I->second)
1001     Val->setIsInvalidated();
1002   DbgValMap.erase(I);
1003 }
1004 
1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006   // If we have operands, deallocate them.
1007   removeOperands(N);
1008 
1009   NodeAllocator.Deallocate(AllNodes.remove(N));
1010 
1011   // Set the opcode to DELETED_NODE to help catch bugs when node
1012   // memory is reallocated.
1013   // FIXME: There are places in SDag that have grown a dependency on the opcode
1014   // value in the released node.
1015   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016   N->NodeType = ISD::DELETED_NODE;
1017 
1018   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019   // them and forget about that node.
1020   DbgInfo->erase(N);
1021 }
1022 
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1025 static void VerifySDNode(SDNode *N) {
1026   switch (N->getOpcode()) {
1027   default:
1028     break;
1029   case ISD::BUILD_PAIR: {
1030     EVT VT = N->getValueType(0);
1031     assert(N->getNumValues() == 1 && "Too many results!");
1032     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033            "Wrong return type!");
1034     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036            "Mismatched operand types!");
1037     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038            "Wrong operand type!");
1039     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040            "Wrong return type size");
1041     break;
1042   }
1043   case ISD::BUILD_VECTOR: {
1044     assert(N->getNumValues() == 1 && "Too many results!");
1045     assert(N->getValueType(0).isVector() && "Wrong return type!");
1046     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047            "Wrong number of operands!");
1048     EVT EltVT = N->getValueType(0).getVectorElementType();
1049     for (const SDUse &Op : N->ops()) {
1050       assert((Op.getValueType() == EltVT ||
1051               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052                EltVT.bitsLE(Op.getValueType()))) &&
1053              "Wrong operand type!");
1054       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055              "Operands must all have the same type");
1056     }
1057     break;
1058   }
1059   }
1060 }
1061 #endif // NDEBUG
1062 
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
1067 void SelectionDAG::InsertNode(SDNode *N) {
1068   AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070   N->PersistentId = NextPersistentId++;
1071   VerifySDNode(N);
1072 #endif
1073   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074     DUL->NodeInserted(N);
1075 }
1076 
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it.  This is useful when we're about to delete or repurpose
1079 /// the node.  We don't want future request for structurally identical nodes
1080 /// to return N anymore.
1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082   bool Erased = false;
1083   switch (N->getOpcode()) {
1084   case ISD::HANDLENODE: return false;  // noop.
1085   case ISD::CONDCODE:
1086     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087            "Cond code doesn't exist!");
1088     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090     break;
1091   case ISD::ExternalSymbol:
1092     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093     break;
1094   case ISD::TargetExternalSymbol: {
1095     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097         ESN->getSymbol(), ESN->getTargetFlags()));
1098     break;
1099   }
1100   case ISD::MCSymbol: {
1101     auto *MCSN = cast<MCSymbolSDNode>(N);
1102     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103     break;
1104   }
1105   case ISD::VALUETYPE: {
1106     EVT VT = cast<VTSDNode>(N)->getVT();
1107     if (VT.isExtended()) {
1108       Erased = ExtendedValueTypeNodes.erase(VT);
1109     } else {
1110       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112     }
1113     break;
1114   }
1115   default:
1116     // Remove it from the CSE Map.
1117     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119     Erased = CSEMap.RemoveNode(N);
1120     break;
1121   }
1122 #ifndef NDEBUG
1123   // Verify that the node was actually in one of the CSE maps, unless it has a
1124   // flag result (which cannot be CSE'd) or is one of the special cases that are
1125   // not subject to CSE.
1126   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127       !N->isMachineOpcode() && !doNotCSE(N)) {
1128     N->dump(this);
1129     dbgs() << "\n";
1130     llvm_unreachable("Node is not in map!");
1131   }
1132 #endif
1133   return Erased;
1134 }
1135 
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142   // For node types that aren't CSE'd, just act as if no identical node
1143   // already exists.
1144   if (!doNotCSE(N)) {
1145     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146     if (Existing != N) {
1147       // If there was already an existing matching node, use ReplaceAllUsesWith
1148       // to replace the dead one with the existing one.  This can cause
1149       // recursive merging of other unrelated nodes down the line.
1150       ReplaceAllUsesWith(N, Existing);
1151 
1152       // N is now dead. Inform the listeners and delete it.
1153       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154         DUL->NodeDeleted(N, Existing);
1155       DeleteNodeNotInCSEMaps(N);
1156       return;
1157     }
1158   }
1159 
1160   // If the node doesn't already exist, we updated it.  Inform listeners.
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeUpdated(N);
1163 }
1164 
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified.  If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take.  If a
1168 /// node already exists with these operands, the slot will be non-null.
1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170                                            void *&InsertPos) {
1171   if (doNotCSE(N))
1172     return nullptr;
1173 
1174   SDValue Ops[] = { Op };
1175   FoldingSetNodeID ID;
1176   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177   AddNodeIDCustom(ID, N);
1178   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179   if (Node)
1180     Node->intersectFlagsWith(N->getFlags());
1181   return Node;
1182 }
1183 
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified.  If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take.  If a
1187 /// node already exists with these operands, the slot will be non-null.
1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189                                            SDValue Op1, SDValue Op2,
1190                                            void *&InsertPos) {
1191   if (doNotCSE(N))
1192     return nullptr;
1193 
1194   SDValue Ops[] = { Op1, Op2 };
1195   FoldingSetNodeID ID;
1196   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197   AddNodeIDCustom(ID, N);
1198   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199   if (Node)
1200     Node->intersectFlagsWith(N->getFlags());
1201   return Node;
1202 }
1203 
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified.  If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take.  If a
1207 /// node already exists with these operands, the slot will be non-null.
1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209                                            void *&InsertPos) {
1210   if (doNotCSE(N))
1211     return nullptr;
1212 
1213   FoldingSetNodeID ID;
1214   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215   AddNodeIDCustom(ID, N);
1216   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217   if (Node)
1218     Node->intersectFlagsWith(N->getFlags());
1219   return Node;
1220 }
1221 
1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223   Type *Ty = VT == MVT::iPTR ?
1224                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225                    VT.getTypeForEVT(*getContext());
1226 
1227   return getDataLayout().getABITypeAlign(Ty);
1228 }
1229 
1230 // EntryNode could meaningfully have debug info if we can find it...
1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232     : TM(tm), OptLevel(OL),
1233       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234       Root(getEntryNode()) {
1235   InsertNode(&EntryNode);
1236   DbgInfo = new SDDbgInfo();
1237 }
1238 
1239 void SelectionDAG::init(MachineFunction &NewMF,
1240                         OptimizationRemarkEmitter &NewORE,
1241                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242                         LegacyDivergenceAnalysis * Divergence,
1243                         ProfileSummaryInfo *PSIin,
1244                         BlockFrequencyInfo *BFIin) {
1245   MF = &NewMF;
1246   SDAGISelPass = PassPtr;
1247   ORE = &NewORE;
1248   TLI = getSubtarget().getTargetLowering();
1249   TSI = getSubtarget().getSelectionDAGInfo();
1250   LibInfo = LibraryInfo;
1251   Context = &MF->getFunction().getContext();
1252   DA = Divergence;
1253   PSI = PSIin;
1254   BFI = BFIin;
1255 }
1256 
1257 SelectionDAG::~SelectionDAG() {
1258   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259   allnodes_clear();
1260   OperandRecycler.clear(OperandAllocator);
1261   delete DbgInfo;
1262 }
1263 
1264 bool SelectionDAG::shouldOptForSize() const {
1265   return MF->getFunction().hasOptSize() ||
1266       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268 
1269 void SelectionDAG::allnodes_clear() {
1270   assert(&*AllNodes.begin() == &EntryNode);
1271   AllNodes.remove(AllNodes.begin());
1272   while (!AllNodes.empty())
1273     DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275   NextPersistentId = 0;
1276 #endif
1277 }
1278 
1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280                                           void *&InsertPos) {
1281   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282   if (N) {
1283     switch (N->getOpcode()) {
1284     default: break;
1285     case ISD::Constant:
1286     case ISD::ConstantFP:
1287       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288                        "debug location.  Use another overload.");
1289     }
1290   }
1291   return N;
1292 }
1293 
1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295                                           const SDLoc &DL, void *&InsertPos) {
1296   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297   if (N) {
1298     switch (N->getOpcode()) {
1299     case ISD::Constant:
1300     case ISD::ConstantFP:
1301       // Erase debug location from the node if the node is used at several
1302       // different places. Do not propagate one location to all uses as it
1303       // will cause a worse single stepping debugging experience.
1304       if (N->getDebugLoc() != DL.getDebugLoc())
1305         N->setDebugLoc(DebugLoc());
1306       break;
1307     default:
1308       // When the node's point of use is located earlier in the instruction
1309       // sequence than its prior point of use, update its debug info to the
1310       // earlier location.
1311       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312         N->setDebugLoc(DL.getDebugLoc());
1313       break;
1314     }
1315   }
1316   return N;
1317 }
1318 
1319 void SelectionDAG::clear() {
1320   allnodes_clear();
1321   OperandRecycler.clear(OperandAllocator);
1322   OperandAllocator.Reset();
1323   CSEMap.clear();
1324 
1325   ExtendedValueTypeNodes.clear();
1326   ExternalSymbols.clear();
1327   TargetExternalSymbols.clear();
1328   MCSymbols.clear();
1329   SDCallSiteDbgInfo.clear();
1330   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331             static_cast<CondCodeSDNode*>(nullptr));
1332   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333             static_cast<SDNode*>(nullptr));
1334 
1335   EntryNode.UseList = nullptr;
1336   InsertNode(&EntryNode);
1337   Root = getEntryNode();
1338   DbgInfo->clear();
1339 }
1340 
1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342   return VT.bitsGT(Op.getValueType())
1343              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346 
1347 std::pair<SDValue, SDValue>
1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349                                        const SDLoc &DL, EVT VT) {
1350   assert(!VT.bitsEq(Op.getValueType()) &&
1351          "Strict no-op FP extend/round not allowed.");
1352   SDValue Res =
1353       VT.bitsGT(Op.getValueType())
1354           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356                     {Chain, Op, getIntPtrConstant(0, DL)});
1357 
1358   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360 
1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   return VT.bitsGT(Op.getValueType()) ?
1363     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364     getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366 
1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368   return VT.bitsGT(Op.getValueType()) ?
1369     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370     getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372 
1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374   return VT.bitsGT(Op.getValueType()) ?
1375     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376     getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378 
1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380                                         EVT OpVT) {
1381   if (VT.bitsLE(Op.getValueType()))
1382     return getNode(ISD::TRUNCATE, SL, VT, Op);
1383 
1384   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387 
1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389   EVT OpVT = Op.getValueType();
1390   assert(VT.isInteger() && OpVT.isInteger() &&
1391          "Cannot getZeroExtendInReg FP types");
1392   assert(VT.isVector() == OpVT.isVector() &&
1393          "getZeroExtendInReg type should be vector iff the operand "
1394          "type is vector!");
1395   assert((!VT.isVector() ||
1396           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397          "Vector element counts must match in getZeroExtendInReg");
1398   assert(VT.bitsLE(OpVT) && "Not extending!");
1399   if (OpVT == VT)
1400     return Op;
1401   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402                                    VT.getScalarSizeInBits());
1403   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405 
1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407   // Only unsigned pointer semantics are supported right now. In the future this
1408   // might delegate to TLI to check pointer signedness.
1409   return getZExtOrTrunc(Op, DL, VT);
1410 }
1411 
1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413   // Only unsigned pointer semantics are supported right now. In the future this
1414   // might delegate to TLI to check pointer signedness.
1415   return getZeroExtendInReg(Op, DL, VT);
1416 }
1417 
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422 
1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427 
1428 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1429                                       EVT OpVT) {
1430   if (!V)
1431     return getConstant(0, DL, VT);
1432 
1433   switch (TLI->getBooleanContents(OpVT)) {
1434   case TargetLowering::ZeroOrOneBooleanContent:
1435   case TargetLowering::UndefinedBooleanContent:
1436     return getConstant(1, DL, VT);
1437   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1438     return getAllOnesConstant(DL, VT);
1439   }
1440   llvm_unreachable("Unexpected boolean content enum!");
1441 }
1442 
1443 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1444                                   bool isT, bool isO) {
1445   EVT EltVT = VT.getScalarType();
1446   assert((EltVT.getSizeInBits() >= 64 ||
1447           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1448          "getConstant with a uint64_t value that doesn't fit in the type!");
1449   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1450 }
1451 
1452 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1453                                   bool isT, bool isO) {
1454   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1455 }
1456 
1457 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1458                                   EVT VT, bool isT, bool isO) {
1459   assert(VT.isInteger() && "Cannot create FP integer constant!");
1460 
1461   EVT EltVT = VT.getScalarType();
1462   const ConstantInt *Elt = &Val;
1463 
1464   // In some cases the vector type is legal but the element type is illegal and
1465   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1466   // inserted value (the type does not need to match the vector element type).
1467   // Any extra bits introduced will be truncated away.
1468   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1469                            TargetLowering::TypePromoteInteger) {
1470     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1471     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1472     Elt = ConstantInt::get(*getContext(), NewVal);
1473   }
1474   // In other cases the element type is illegal and needs to be expanded, for
1475   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1476   // the value into n parts and use a vector type with n-times the elements.
1477   // Then bitcast to the type requested.
1478   // Legalizing constants too early makes the DAGCombiner's job harder so we
1479   // only legalize if the DAG tells us we must produce legal types.
1480   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1481            TLI->getTypeAction(*getContext(), EltVT) ==
1482                TargetLowering::TypeExpandInteger) {
1483     const APInt &NewVal = Elt->getValue();
1484     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1485     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1486 
1487     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1488     if (VT.isScalableVector()) {
1489       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1490              "Can only handle an even split!");
1491       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1492 
1493       SmallVector<SDValue, 2> ScalarParts;
1494       for (unsigned i = 0; i != Parts; ++i)
1495         ScalarParts.push_back(getConstant(
1496             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1497             ViaEltVT, isT, isO));
1498 
1499       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1500     }
1501 
1502     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1503     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1504 
1505     // Check the temporary vector is the correct size. If this fails then
1506     // getTypeToTransformTo() probably returned a type whose size (in bits)
1507     // isn't a power-of-2 factor of the requested type size.
1508     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1509 
1510     SmallVector<SDValue, 2> EltParts;
1511     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1512       EltParts.push_back(getConstant(
1513           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1514           ViaEltVT, isT, isO));
1515 
1516     // EltParts is currently in little endian order. If we actually want
1517     // big-endian order then reverse it now.
1518     if (getDataLayout().isBigEndian())
1519       std::reverse(EltParts.begin(), EltParts.end());
1520 
1521     // The elements must be reversed when the element order is different
1522     // to the endianness of the elements (because the BITCAST is itself a
1523     // vector shuffle in this situation). However, we do not need any code to
1524     // perform this reversal because getConstant() is producing a vector
1525     // splat.
1526     // This situation occurs in MIPS MSA.
1527 
1528     SmallVector<SDValue, 8> Ops;
1529     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1530       llvm::append_range(Ops, EltParts);
1531 
1532     SDValue V =
1533         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1534     return V;
1535   }
1536 
1537   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1538          "APInt size does not match type size!");
1539   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1540   FoldingSetNodeID ID;
1541   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1542   ID.AddPointer(Elt);
1543   ID.AddBoolean(isO);
1544   void *IP = nullptr;
1545   SDNode *N = nullptr;
1546   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1547     if (!VT.isVector())
1548       return SDValue(N, 0);
1549 
1550   if (!N) {
1551     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1552     CSEMap.InsertNode(N, IP);
1553     InsertNode(N);
1554     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1555   }
1556 
1557   SDValue Result(N, 0);
1558   if (VT.isScalableVector())
1559     Result = getSplatVector(VT, DL, Result);
1560   else if (VT.isVector())
1561     Result = getSplatBuildVector(VT, DL, Result);
1562 
1563   return Result;
1564 }
1565 
1566 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1567                                         bool isTarget) {
1568   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1569 }
1570 
1571 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1572                                              const SDLoc &DL, bool LegalTypes) {
1573   assert(VT.isInteger() && "Shift amount is not an integer type!");
1574   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1575   return getConstant(Val, DL, ShiftVT);
1576 }
1577 
1578 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1579                                            bool isTarget) {
1580   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1581 }
1582 
1583 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1584                                     bool isTarget) {
1585   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1586 }
1587 
1588 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1589                                     EVT VT, bool isTarget) {
1590   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1591 
1592   EVT EltVT = VT.getScalarType();
1593 
1594   // Do the map lookup using the actual bit pattern for the floating point
1595   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1596   // we don't have issues with SNANs.
1597   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1600   ID.AddPointer(&V);
1601   void *IP = nullptr;
1602   SDNode *N = nullptr;
1603   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1604     if (!VT.isVector())
1605       return SDValue(N, 0);
1606 
1607   if (!N) {
1608     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1609     CSEMap.InsertNode(N, IP);
1610     InsertNode(N);
1611   }
1612 
1613   SDValue Result(N, 0);
1614   if (VT.isScalableVector())
1615     Result = getSplatVector(VT, DL, Result);
1616   else if (VT.isVector())
1617     Result = getSplatBuildVector(VT, DL, Result);
1618   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1619   return Result;
1620 }
1621 
1622 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1623                                     bool isTarget) {
1624   EVT EltVT = VT.getScalarType();
1625   if (EltVT == MVT::f32)
1626     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1627   if (EltVT == MVT::f64)
1628     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1629   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1630       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1631     bool Ignored;
1632     APFloat APF = APFloat(Val);
1633     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1634                 &Ignored);
1635     return getConstantFP(APF, DL, VT, isTarget);
1636   }
1637   llvm_unreachable("Unsupported type in getConstantFP");
1638 }
1639 
1640 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1641                                        EVT VT, int64_t Offset, bool isTargetGA,
1642                                        unsigned TargetFlags) {
1643   assert((TargetFlags == 0 || isTargetGA) &&
1644          "Cannot set target flags on target-independent globals");
1645 
1646   // Truncate (with sign-extension) the offset value to the pointer size.
1647   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1648   if (BitWidth < 64)
1649     Offset = SignExtend64(Offset, BitWidth);
1650 
1651   unsigned Opc;
1652   if (GV->isThreadLocal())
1653     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1654   else
1655     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1656 
1657   FoldingSetNodeID ID;
1658   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1659   ID.AddPointer(GV);
1660   ID.AddInteger(Offset);
1661   ID.AddInteger(TargetFlags);
1662   void *IP = nullptr;
1663   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1664     return SDValue(E, 0);
1665 
1666   auto *N = newSDNode<GlobalAddressSDNode>(
1667       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1668   CSEMap.InsertNode(N, IP);
1669     InsertNode(N);
1670   return SDValue(N, 0);
1671 }
1672 
1673 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1674   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1675   FoldingSetNodeID ID;
1676   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1677   ID.AddInteger(FI);
1678   void *IP = nullptr;
1679   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1680     return SDValue(E, 0);
1681 
1682   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1683   CSEMap.InsertNode(N, IP);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1689                                    unsigned TargetFlags) {
1690   assert((TargetFlags == 0 || isTarget) &&
1691          "Cannot set target flags on target-independent jump tables");
1692   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1693   FoldingSetNodeID ID;
1694   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1695   ID.AddInteger(JTI);
1696   ID.AddInteger(TargetFlags);
1697   void *IP = nullptr;
1698   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1699     return SDValue(E, 0);
1700 
1701   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1702   CSEMap.InsertNode(N, IP);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1708                                       MaybeAlign Alignment, int Offset,
1709                                       bool isTarget, unsigned TargetFlags) {
1710   assert((TargetFlags == 0 || isTarget) &&
1711          "Cannot set target flags on target-independent globals");
1712   if (!Alignment)
1713     Alignment = shouldOptForSize()
1714                     ? getDataLayout().getABITypeAlign(C->getType())
1715                     : getDataLayout().getPrefTypeAlign(C->getType());
1716   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1717   FoldingSetNodeID ID;
1718   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1719   ID.AddInteger(Alignment->value());
1720   ID.AddInteger(Offset);
1721   ID.AddPointer(C);
1722   ID.AddInteger(TargetFlags);
1723   void *IP = nullptr;
1724   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1725     return SDValue(E, 0);
1726 
1727   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1728                                           TargetFlags);
1729   CSEMap.InsertNode(N, IP);
1730   InsertNode(N);
1731   SDValue V = SDValue(N, 0);
1732   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1733   return V;
1734 }
1735 
1736 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1737                                       MaybeAlign Alignment, int Offset,
1738                                       bool isTarget, unsigned TargetFlags) {
1739   assert((TargetFlags == 0 || isTarget) &&
1740          "Cannot set target flags on target-independent globals");
1741   if (!Alignment)
1742     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1743   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1744   FoldingSetNodeID ID;
1745   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1746   ID.AddInteger(Alignment->value());
1747   ID.AddInteger(Offset);
1748   C->addSelectionDAGCSEId(ID);
1749   ID.AddInteger(TargetFlags);
1750   void *IP = nullptr;
1751   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1752     return SDValue(E, 0);
1753 
1754   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1755                                           TargetFlags);
1756   CSEMap.InsertNode(N, IP);
1757   InsertNode(N);
1758   return SDValue(N, 0);
1759 }
1760 
1761 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1762                                      unsigned TargetFlags) {
1763   FoldingSetNodeID ID;
1764   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1765   ID.AddInteger(Index);
1766   ID.AddInteger(Offset);
1767   ID.AddInteger(TargetFlags);
1768   void *IP = nullptr;
1769   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1770     return SDValue(E, 0);
1771 
1772   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1773   CSEMap.InsertNode(N, IP);
1774   InsertNode(N);
1775   return SDValue(N, 0);
1776 }
1777 
1778 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1779   FoldingSetNodeID ID;
1780   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1781   ID.AddPointer(MBB);
1782   void *IP = nullptr;
1783   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1784     return SDValue(E, 0);
1785 
1786   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1787   CSEMap.InsertNode(N, IP);
1788   InsertNode(N);
1789   return SDValue(N, 0);
1790 }
1791 
1792 SDValue SelectionDAG::getValueType(EVT VT) {
1793   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1794       ValueTypeNodes.size())
1795     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1796 
1797   SDNode *&N = VT.isExtended() ?
1798     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1799 
1800   if (N) return SDValue(N, 0);
1801   N = newSDNode<VTSDNode>(VT);
1802   InsertNode(N);
1803   return SDValue(N, 0);
1804 }
1805 
1806 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1807   SDNode *&N = ExternalSymbols[Sym];
1808   if (N) return SDValue(N, 0);
1809   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1810   InsertNode(N);
1811   return SDValue(N, 0);
1812 }
1813 
1814 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1815   SDNode *&N = MCSymbols[Sym];
1816   if (N)
1817     return SDValue(N, 0);
1818   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1819   InsertNode(N);
1820   return SDValue(N, 0);
1821 }
1822 
1823 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1824                                               unsigned TargetFlags) {
1825   SDNode *&N =
1826       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1827   if (N) return SDValue(N, 0);
1828   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1829   InsertNode(N);
1830   return SDValue(N, 0);
1831 }
1832 
1833 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1834   if ((unsigned)Cond >= CondCodeNodes.size())
1835     CondCodeNodes.resize(Cond+1);
1836 
1837   if (!CondCodeNodes[Cond]) {
1838     auto *N = newSDNode<CondCodeSDNode>(Cond);
1839     CondCodeNodes[Cond] = N;
1840     InsertNode(N);
1841   }
1842 
1843   return SDValue(CondCodeNodes[Cond], 0);
1844 }
1845 
1846 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1847   APInt One(ResVT.getScalarSizeInBits(), 1);
1848   return getStepVector(DL, ResVT, One);
1849 }
1850 
1851 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1852   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1853   if (ResVT.isScalableVector())
1854     return getNode(
1855         ISD::STEP_VECTOR, DL, ResVT,
1856         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1857 
1858   SmallVector<SDValue, 16> OpsStepConstants;
1859   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1860     OpsStepConstants.push_back(
1861         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1862   return getBuildVector(ResVT, DL, OpsStepConstants);
1863 }
1864 
1865 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1866 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1867 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1868   std::swap(N1, N2);
1869   ShuffleVectorSDNode::commuteMask(M);
1870 }
1871 
1872 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1873                                        SDValue N2, ArrayRef<int> Mask) {
1874   assert(VT.getVectorNumElements() == Mask.size() &&
1875          "Must have the same number of vector elements as mask elements!");
1876   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1877          "Invalid VECTOR_SHUFFLE");
1878 
1879   // Canonicalize shuffle undef, undef -> undef
1880   if (N1.isUndef() && N2.isUndef())
1881     return getUNDEF(VT);
1882 
1883   // Validate that all indices in Mask are within the range of the elements
1884   // input to the shuffle.
1885   int NElts = Mask.size();
1886   assert(llvm::all_of(Mask,
1887                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1888          "Index out of range");
1889 
1890   // Copy the mask so we can do any needed cleanup.
1891   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1892 
1893   // Canonicalize shuffle v, v -> v, undef
1894   if (N1 == N2) {
1895     N2 = getUNDEF(VT);
1896     for (int i = 0; i != NElts; ++i)
1897       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1898   }
1899 
1900   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1901   if (N1.isUndef())
1902     commuteShuffle(N1, N2, MaskVec);
1903 
1904   if (TLI->hasVectorBlend()) {
1905     // If shuffling a splat, try to blend the splat instead. We do this here so
1906     // that even when this arises during lowering we don't have to re-handle it.
1907     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1908       BitVector UndefElements;
1909       SDValue Splat = BV->getSplatValue(&UndefElements);
1910       if (!Splat)
1911         return;
1912 
1913       for (int i = 0; i < NElts; ++i) {
1914         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1915           continue;
1916 
1917         // If this input comes from undef, mark it as such.
1918         if (UndefElements[MaskVec[i] - Offset]) {
1919           MaskVec[i] = -1;
1920           continue;
1921         }
1922 
1923         // If we can blend a non-undef lane, use that instead.
1924         if (!UndefElements[i])
1925           MaskVec[i] = i + Offset;
1926       }
1927     };
1928     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1929       BlendSplat(N1BV, 0);
1930     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1931       BlendSplat(N2BV, NElts);
1932   }
1933 
1934   // Canonicalize all index into lhs, -> shuffle lhs, undef
1935   // Canonicalize all index into rhs, -> shuffle rhs, undef
1936   bool AllLHS = true, AllRHS = true;
1937   bool N2Undef = N2.isUndef();
1938   for (int i = 0; i != NElts; ++i) {
1939     if (MaskVec[i] >= NElts) {
1940       if (N2Undef)
1941         MaskVec[i] = -1;
1942       else
1943         AllLHS = false;
1944     } else if (MaskVec[i] >= 0) {
1945       AllRHS = false;
1946     }
1947   }
1948   if (AllLHS && AllRHS)
1949     return getUNDEF(VT);
1950   if (AllLHS && !N2Undef)
1951     N2 = getUNDEF(VT);
1952   if (AllRHS) {
1953     N1 = getUNDEF(VT);
1954     commuteShuffle(N1, N2, MaskVec);
1955   }
1956   // Reset our undef status after accounting for the mask.
1957   N2Undef = N2.isUndef();
1958   // Re-check whether both sides ended up undef.
1959   if (N1.isUndef() && N2Undef)
1960     return getUNDEF(VT);
1961 
1962   // If Identity shuffle return that node.
1963   bool Identity = true, AllSame = true;
1964   for (int i = 0; i != NElts; ++i) {
1965     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1966     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1967   }
1968   if (Identity && NElts)
1969     return N1;
1970 
1971   // Shuffling a constant splat doesn't change the result.
1972   if (N2Undef) {
1973     SDValue V = N1;
1974 
1975     // Look through any bitcasts. We check that these don't change the number
1976     // (and size) of elements and just changes their types.
1977     while (V.getOpcode() == ISD::BITCAST)
1978       V = V->getOperand(0);
1979 
1980     // A splat should always show up as a build vector node.
1981     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1982       BitVector UndefElements;
1983       SDValue Splat = BV->getSplatValue(&UndefElements);
1984       // If this is a splat of an undef, shuffling it is also undef.
1985       if (Splat && Splat.isUndef())
1986         return getUNDEF(VT);
1987 
1988       bool SameNumElts =
1989           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1990 
1991       // We only have a splat which can skip shuffles if there is a splatted
1992       // value and no undef lanes rearranged by the shuffle.
1993       if (Splat && UndefElements.none()) {
1994         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1995         // number of elements match or the value splatted is a zero constant.
1996         if (SameNumElts)
1997           return N1;
1998         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1999           if (C->isZero())
2000             return N1;
2001       }
2002 
2003       // If the shuffle itself creates a splat, build the vector directly.
2004       if (AllSame && SameNumElts) {
2005         EVT BuildVT = BV->getValueType(0);
2006         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2007         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2008 
2009         // We may have jumped through bitcasts, so the type of the
2010         // BUILD_VECTOR may not match the type of the shuffle.
2011         if (BuildVT != VT)
2012           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2013         return NewBV;
2014       }
2015     }
2016   }
2017 
2018   FoldingSetNodeID ID;
2019   SDValue Ops[2] = { N1, N2 };
2020   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2021   for (int i = 0; i != NElts; ++i)
2022     ID.AddInteger(MaskVec[i]);
2023 
2024   void* IP = nullptr;
2025   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2026     return SDValue(E, 0);
2027 
2028   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2029   // SDNode doesn't have access to it.  This memory will be "leaked" when
2030   // the node is deallocated, but recovered when the NodeAllocator is released.
2031   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2032   llvm::copy(MaskVec, MaskAlloc);
2033 
2034   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2035                                            dl.getDebugLoc(), MaskAlloc);
2036   createOperands(N, Ops);
2037 
2038   CSEMap.InsertNode(N, IP);
2039   InsertNode(N);
2040   SDValue V = SDValue(N, 0);
2041   NewSDValueDbgMsg(V, "Creating new node: ", this);
2042   return V;
2043 }
2044 
2045 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2046   EVT VT = SV.getValueType(0);
2047   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2048   ShuffleVectorSDNode::commuteMask(MaskVec);
2049 
2050   SDValue Op0 = SV.getOperand(0);
2051   SDValue Op1 = SV.getOperand(1);
2052   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2053 }
2054 
2055 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2056   FoldingSetNodeID ID;
2057   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2058   ID.AddInteger(RegNo);
2059   void *IP = nullptr;
2060   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2061     return SDValue(E, 0);
2062 
2063   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2064   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2065   CSEMap.InsertNode(N, IP);
2066   InsertNode(N);
2067   return SDValue(N, 0);
2068 }
2069 
2070 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2071   FoldingSetNodeID ID;
2072   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2073   ID.AddPointer(RegMask);
2074   void *IP = nullptr;
2075   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2076     return SDValue(E, 0);
2077 
2078   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
2084 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2085                                  MCSymbol *Label) {
2086   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2087 }
2088 
2089 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2090                                    SDValue Root, MCSymbol *Label) {
2091   FoldingSetNodeID ID;
2092   SDValue Ops[] = { Root };
2093   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2094   ID.AddPointer(Label);
2095   void *IP = nullptr;
2096   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2097     return SDValue(E, 0);
2098 
2099   auto *N =
2100       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2101   createOperands(N, Ops);
2102 
2103   CSEMap.InsertNode(N, IP);
2104   InsertNode(N);
2105   return SDValue(N, 0);
2106 }
2107 
2108 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2109                                       int64_t Offset, bool isTarget,
2110                                       unsigned TargetFlags) {
2111   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2112 
2113   FoldingSetNodeID ID;
2114   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2115   ID.AddPointer(BA);
2116   ID.AddInteger(Offset);
2117   ID.AddInteger(TargetFlags);
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getSrcValue(const Value *V) {
2129   FoldingSetNodeID ID;
2130   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2131   ID.AddPointer(V);
2132 
2133   void *IP = nullptr;
2134   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2135     return SDValue(E, 0);
2136 
2137   auto *N = newSDNode<SrcValueSDNode>(V);
2138   CSEMap.InsertNode(N, IP);
2139   InsertNode(N);
2140   return SDValue(N, 0);
2141 }
2142 
2143 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2144   FoldingSetNodeID ID;
2145   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2146   ID.AddPointer(MD);
2147 
2148   void *IP = nullptr;
2149   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2150     return SDValue(E, 0);
2151 
2152   auto *N = newSDNode<MDNodeSDNode>(MD);
2153   CSEMap.InsertNode(N, IP);
2154   InsertNode(N);
2155   return SDValue(N, 0);
2156 }
2157 
2158 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2159   if (VT == V.getValueType())
2160     return V;
2161 
2162   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2163 }
2164 
2165 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2166                                        unsigned SrcAS, unsigned DestAS) {
2167   SDValue Ops[] = {Ptr};
2168   FoldingSetNodeID ID;
2169   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2170   ID.AddInteger(SrcAS);
2171   ID.AddInteger(DestAS);
2172 
2173   void *IP = nullptr;
2174   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2175     return SDValue(E, 0);
2176 
2177   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2178                                            VT, SrcAS, DestAS);
2179   createOperands(N, Ops);
2180 
2181   CSEMap.InsertNode(N, IP);
2182   InsertNode(N);
2183   return SDValue(N, 0);
2184 }
2185 
2186 SDValue SelectionDAG::getFreeze(SDValue V) {
2187   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2188 }
2189 
2190 /// getShiftAmountOperand - Return the specified value casted to
2191 /// the target's desired shift amount type.
2192 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2193   EVT OpTy = Op.getValueType();
2194   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2195   if (OpTy == ShTy || OpTy.isVector()) return Op;
2196 
2197   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2198 }
2199 
2200 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2201   SDLoc dl(Node);
2202   const TargetLowering &TLI = getTargetLoweringInfo();
2203   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2204   EVT VT = Node->getValueType(0);
2205   SDValue Tmp1 = Node->getOperand(0);
2206   SDValue Tmp2 = Node->getOperand(1);
2207   const MaybeAlign MA(Node->getConstantOperandVal(3));
2208 
2209   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2210                                Tmp2, MachinePointerInfo(V));
2211   SDValue VAList = VAListLoad;
2212 
2213   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2214     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2215                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2216 
2217     VAList =
2218         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2219                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2220   }
2221 
2222   // Increment the pointer, VAList, to the next vaarg
2223   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2224                  getConstant(getDataLayout().getTypeAllocSize(
2225                                                VT.getTypeForEVT(*getContext())),
2226                              dl, VAList.getValueType()));
2227   // Store the incremented VAList to the legalized pointer
2228   Tmp1 =
2229       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2230   // Load the actual argument out of the pointer VAList
2231   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2232 }
2233 
2234 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2235   SDLoc dl(Node);
2236   const TargetLowering &TLI = getTargetLoweringInfo();
2237   // This defaults to loading a pointer from the input and storing it to the
2238   // output, returning the chain.
2239   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2240   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2241   SDValue Tmp1 =
2242       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2243               Node->getOperand(2), MachinePointerInfo(VS));
2244   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2245                   MachinePointerInfo(VD));
2246 }
2247 
2248 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2249   const DataLayout &DL = getDataLayout();
2250   Type *Ty = VT.getTypeForEVT(*getContext());
2251   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2252 
2253   if (TLI->isTypeLegal(VT) || !VT.isVector())
2254     return RedAlign;
2255 
2256   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2257   const Align StackAlign = TFI->getStackAlign();
2258 
2259   // See if we can choose a smaller ABI alignment in cases where it's an
2260   // illegal vector type that will get broken down.
2261   if (RedAlign > StackAlign) {
2262     EVT IntermediateVT;
2263     MVT RegisterVT;
2264     unsigned NumIntermediates;
2265     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2266                                 NumIntermediates, RegisterVT);
2267     Ty = IntermediateVT.getTypeForEVT(*getContext());
2268     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2269     if (RedAlign2 < RedAlign)
2270       RedAlign = RedAlign2;
2271   }
2272 
2273   return RedAlign;
2274 }
2275 
2276 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2277   MachineFrameInfo &MFI = MF->getFrameInfo();
2278   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2279   int StackID = 0;
2280   if (Bytes.isScalable())
2281     StackID = TFI->getStackIDForScalableVectors();
2282   // The stack id gives an indication of whether the object is scalable or
2283   // not, so it's safe to pass in the minimum size here.
2284   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2285                                        false, nullptr, StackID);
2286   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2287 }
2288 
2289 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2290   Type *Ty = VT.getTypeForEVT(*getContext());
2291   Align StackAlign =
2292       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2293   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2294 }
2295 
2296 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2297   TypeSize VT1Size = VT1.getStoreSize();
2298   TypeSize VT2Size = VT2.getStoreSize();
2299   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2300          "Don't know how to choose the maximum size when creating a stack "
2301          "temporary");
2302   TypeSize Bytes =
2303       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2304 
2305   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2306   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2307   const DataLayout &DL = getDataLayout();
2308   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2309   return CreateStackTemporary(Bytes, Align);
2310 }
2311 
2312 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2313                                 ISD::CondCode Cond, const SDLoc &dl) {
2314   EVT OpVT = N1.getValueType();
2315 
2316   // These setcc operations always fold.
2317   switch (Cond) {
2318   default: break;
2319   case ISD::SETFALSE:
2320   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2321   case ISD::SETTRUE:
2322   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2323 
2324   case ISD::SETOEQ:
2325   case ISD::SETOGT:
2326   case ISD::SETOGE:
2327   case ISD::SETOLT:
2328   case ISD::SETOLE:
2329   case ISD::SETONE:
2330   case ISD::SETO:
2331   case ISD::SETUO:
2332   case ISD::SETUEQ:
2333   case ISD::SETUNE:
2334     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2335     break;
2336   }
2337 
2338   if (OpVT.isInteger()) {
2339     // For EQ and NE, we can always pick a value for the undef to make the
2340     // predicate pass or fail, so we can return undef.
2341     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2342     // icmp eq/ne X, undef -> undef.
2343     if ((N1.isUndef() || N2.isUndef()) &&
2344         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2345       return getUNDEF(VT);
2346 
2347     // If both operands are undef, we can return undef for int comparison.
2348     // icmp undef, undef -> undef.
2349     if (N1.isUndef() && N2.isUndef())
2350       return getUNDEF(VT);
2351 
2352     // icmp X, X -> true/false
2353     // icmp X, undef -> true/false because undef could be X.
2354     if (N1 == N2)
2355       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2356   }
2357 
2358   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2359     const APInt &C2 = N2C->getAPIntValue();
2360     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2361       const APInt &C1 = N1C->getAPIntValue();
2362 
2363       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2364                              dl, VT, OpVT);
2365     }
2366   }
2367 
2368   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2369   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2370 
2371   if (N1CFP && N2CFP) {
2372     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2373     switch (Cond) {
2374     default: break;
2375     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2376                         return getUNDEF(VT);
2377                       LLVM_FALLTHROUGH;
2378     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2379                                              OpVT);
2380     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2381                         return getUNDEF(VT);
2382                       LLVM_FALLTHROUGH;
2383     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2384                                              R==APFloat::cmpLessThan, dl, VT,
2385                                              OpVT);
2386     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2387                         return getUNDEF(VT);
2388                       LLVM_FALLTHROUGH;
2389     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2390                                              OpVT);
2391     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2392                         return getUNDEF(VT);
2393                       LLVM_FALLTHROUGH;
2394     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2395                                              VT, OpVT);
2396     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2397                         return getUNDEF(VT);
2398                       LLVM_FALLTHROUGH;
2399     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2400                                              R==APFloat::cmpEqual, dl, VT,
2401                                              OpVT);
2402     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2403                         return getUNDEF(VT);
2404                       LLVM_FALLTHROUGH;
2405     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2406                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2407     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2408                                              OpVT);
2409     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2410                                              OpVT);
2411     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2412                                              R==APFloat::cmpEqual, dl, VT,
2413                                              OpVT);
2414     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2415                                              OpVT);
2416     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2417                                              R==APFloat::cmpLessThan, dl, VT,
2418                                              OpVT);
2419     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2420                                              R==APFloat::cmpUnordered, dl, VT,
2421                                              OpVT);
2422     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2423                                              VT, OpVT);
2424     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2425                                              OpVT);
2426     }
2427   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2428     // Ensure that the constant occurs on the RHS.
2429     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2430     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2431       return SDValue();
2432     return getSetCC(dl, VT, N2, N1, SwappedCond);
2433   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2434              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2435     // If an operand is known to be a nan (or undef that could be a nan), we can
2436     // fold it.
2437     // Choosing NaN for the undef will always make unordered comparison succeed
2438     // and ordered comparison fails.
2439     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2440     switch (ISD::getUnorderedFlavor(Cond)) {
2441     default:
2442       llvm_unreachable("Unknown flavor!");
2443     case 0: // Known false.
2444       return getBoolConstant(false, dl, VT, OpVT);
2445     case 1: // Known true.
2446       return getBoolConstant(true, dl, VT, OpVT);
2447     case 2: // Undefined.
2448       return getUNDEF(VT);
2449     }
2450   }
2451 
2452   // Could not fold it.
2453   return SDValue();
2454 }
2455 
2456 /// See if the specified operand can be simplified with the knowledge that only
2457 /// the bits specified by DemandedBits are used.
2458 /// TODO: really we should be making this into the DAG equivalent of
2459 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2460 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2461   EVT VT = V.getValueType();
2462 
2463   if (VT.isScalableVector())
2464     return SDValue();
2465 
2466   APInt DemandedElts = VT.isVector()
2467                            ? APInt::getAllOnes(VT.getVectorNumElements())
2468                            : APInt(1, 1);
2469   return GetDemandedBits(V, DemandedBits, DemandedElts);
2470 }
2471 
2472 /// See if the specified operand can be simplified with the knowledge that only
2473 /// the bits specified by DemandedBits are used in the elements specified by
2474 /// DemandedElts.
2475 /// TODO: really we should be making this into the DAG equivalent of
2476 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2477 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2478                                       const APInt &DemandedElts) {
2479   switch (V.getOpcode()) {
2480   default:
2481     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2482                                                 *this);
2483   case ISD::Constant: {
2484     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2485     APInt NewVal = CVal & DemandedBits;
2486     if (NewVal != CVal)
2487       return getConstant(NewVal, SDLoc(V), V.getValueType());
2488     break;
2489   }
2490   case ISD::SRL:
2491     // Only look at single-use SRLs.
2492     if (!V.getNode()->hasOneUse())
2493       break;
2494     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2495       // See if we can recursively simplify the LHS.
2496       unsigned Amt = RHSC->getZExtValue();
2497 
2498       // Watch out for shift count overflow though.
2499       if (Amt >= DemandedBits.getBitWidth())
2500         break;
2501       APInt SrcDemandedBits = DemandedBits << Amt;
2502       if (SDValue SimplifyLHS =
2503               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2504         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2505                        V.getOperand(1));
2506     }
2507     break;
2508   }
2509   return SDValue();
2510 }
2511 
2512 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2513 /// use this predicate to simplify operations downstream.
2514 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2515   unsigned BitWidth = Op.getScalarValueSizeInBits();
2516   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2517 }
2518 
2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2520 /// this predicate to simplify operations downstream.  Mask is known to be zero
2521 /// for bits that V cannot have.
2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2523                                      unsigned Depth) const {
2524   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2525 }
2526 
2527 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2528 /// DemandedElts.  We use this predicate to simplify operations downstream.
2529 /// Mask is known to be zero for bits that V cannot have.
2530 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2531                                      const APInt &DemandedElts,
2532                                      unsigned Depth) const {
2533   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2534 }
2535 
2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2538                                         unsigned Depth) const {
2539   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2540 }
2541 
2542 /// isSplatValue - Return true if the vector V has the same value
2543 /// across all DemandedElts. For scalable vectors it does not make
2544 /// sense to specify which elements are demanded or undefined, therefore
2545 /// they are simply ignored.
2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2547                                 APInt &UndefElts, unsigned Depth) const {
2548   unsigned Opcode = V.getOpcode();
2549   EVT VT = V.getValueType();
2550   assert(VT.isVector() && "Vector type expected");
2551 
2552   if (!VT.isScalableVector() && !DemandedElts)
2553     return false; // No demanded elts, better to assume we don't know anything.
2554 
2555   if (Depth >= MaxRecursionDepth)
2556     return false; // Limit search depth.
2557 
2558   // Deal with some common cases here that work for both fixed and scalable
2559   // vector types.
2560   switch (Opcode) {
2561   case ISD::SPLAT_VECTOR:
2562     UndefElts = V.getOperand(0).isUndef()
2563                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2564                     : APInt(DemandedElts.getBitWidth(), 0);
2565     return true;
2566   case ISD::ADD:
2567   case ISD::SUB:
2568   case ISD::AND:
2569   case ISD::XOR:
2570   case ISD::OR: {
2571     APInt UndefLHS, UndefRHS;
2572     SDValue LHS = V.getOperand(0);
2573     SDValue RHS = V.getOperand(1);
2574     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2575         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2576       UndefElts = UndefLHS | UndefRHS;
2577       return true;
2578     }
2579     return false;
2580   }
2581   case ISD::ABS:
2582   case ISD::TRUNCATE:
2583   case ISD::SIGN_EXTEND:
2584   case ISD::ZERO_EXTEND:
2585     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2586   default:
2587     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2588         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2589       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2590     break;
2591 }
2592 
2593   // We don't support other cases than those above for scalable vectors at
2594   // the moment.
2595   if (VT.isScalableVector())
2596     return false;
2597 
2598   unsigned NumElts = VT.getVectorNumElements();
2599   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2600   UndefElts = APInt::getZero(NumElts);
2601 
2602   switch (Opcode) {
2603   case ISD::BUILD_VECTOR: {
2604     SDValue Scl;
2605     for (unsigned i = 0; i != NumElts; ++i) {
2606       SDValue Op = V.getOperand(i);
2607       if (Op.isUndef()) {
2608         UndefElts.setBit(i);
2609         continue;
2610       }
2611       if (!DemandedElts[i])
2612         continue;
2613       if (Scl && Scl != Op)
2614         return false;
2615       Scl = Op;
2616     }
2617     return true;
2618   }
2619   case ISD::VECTOR_SHUFFLE: {
2620     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2621     APInt DemandedLHS = APInt::getNullValue(NumElts);
2622     APInt DemandedRHS = APInt::getNullValue(NumElts);
2623     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2624     for (int i = 0; i != (int)NumElts; ++i) {
2625       int M = Mask[i];
2626       if (M < 0) {
2627         UndefElts.setBit(i);
2628         continue;
2629       }
2630       if (!DemandedElts[i])
2631         continue;
2632       if (M < (int)NumElts)
2633         DemandedLHS.setBit(M);
2634       else
2635         DemandedRHS.setBit(M - NumElts);
2636     }
2637 
2638     // If we aren't demanding either op, assume there's no splat.
2639     // If we are demanding both ops, assume there's no splat.
2640     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2641         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2642       return false;
2643 
2644     // See if the demanded elts of the source op is a splat or we only demand
2645     // one element, which should always be a splat.
2646     // TODO: Handle source ops splats with undefs.
2647     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2648       APInt SrcUndefs;
2649       return (SrcElts.countPopulation() == 1) ||
2650              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2651               (SrcElts & SrcUndefs).isZero());
2652     };
2653     if (!DemandedLHS.isZero())
2654       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2655     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2656   }
2657   case ISD::EXTRACT_SUBVECTOR: {
2658     // Offset the demanded elts by the subvector index.
2659     SDValue Src = V.getOperand(0);
2660     // We don't support scalable vectors at the moment.
2661     if (Src.getValueType().isScalableVector())
2662       return false;
2663     uint64_t Idx = V.getConstantOperandVal(1);
2664     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2665     APInt UndefSrcElts;
2666     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2667     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2668       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2669       return true;
2670     }
2671     break;
2672   }
2673   case ISD::ANY_EXTEND_VECTOR_INREG:
2674   case ISD::SIGN_EXTEND_VECTOR_INREG:
2675   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2676     // Widen the demanded elts by the src element count.
2677     SDValue Src = V.getOperand(0);
2678     // We don't support scalable vectors at the moment.
2679     if (Src.getValueType().isScalableVector())
2680       return false;
2681     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2682     APInt UndefSrcElts;
2683     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2684     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2685       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2686       return true;
2687     }
2688     break;
2689   }
2690   case ISD::BITCAST: {
2691     SDValue Src = V.getOperand(0);
2692     EVT SrcVT = Src.getValueType();
2693     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2694     unsigned BitWidth = VT.getScalarSizeInBits();
2695 
2696     // Ignore bitcasts from unsupported types.
2697     // TODO: Add fp support?
2698     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2699       break;
2700 
2701     // Bitcast 'small element' vector to 'large element' vector.
2702     if ((BitWidth % SrcBitWidth) == 0) {
2703       // See if each sub element is a splat.
2704       unsigned Scale = BitWidth / SrcBitWidth;
2705       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2706       APInt ScaledDemandedElts =
2707           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2708       for (unsigned I = 0; I != Scale; ++I) {
2709         APInt SubUndefElts;
2710         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2711         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2712         SubDemandedElts &= ScaledDemandedElts;
2713         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2714           return false;
2715         // TODO: Add support for merging sub undef elements.
2716         if (SubDemandedElts.isSubsetOf(SubUndefElts))
2717           return false;
2718       }
2719       return true;
2720     }
2721     break;
2722   }
2723   }
2724 
2725   return false;
2726 }
2727 
2728 /// Helper wrapper to main isSplatValue function.
2729 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2730   EVT VT = V.getValueType();
2731   assert(VT.isVector() && "Vector type expected");
2732 
2733   APInt UndefElts;
2734   APInt DemandedElts;
2735 
2736   // For now we don't support this with scalable vectors.
2737   if (!VT.isScalableVector())
2738     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2739   return isSplatValue(V, DemandedElts, UndefElts) &&
2740          (AllowUndefs || !UndefElts);
2741 }
2742 
2743 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2744   V = peekThroughExtractSubvectors(V);
2745 
2746   EVT VT = V.getValueType();
2747   unsigned Opcode = V.getOpcode();
2748   switch (Opcode) {
2749   default: {
2750     APInt UndefElts;
2751     APInt DemandedElts;
2752 
2753     if (!VT.isScalableVector())
2754       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2755 
2756     if (isSplatValue(V, DemandedElts, UndefElts)) {
2757       if (VT.isScalableVector()) {
2758         // DemandedElts and UndefElts are ignored for scalable vectors, since
2759         // the only supported cases are SPLAT_VECTOR nodes.
2760         SplatIdx = 0;
2761       } else {
2762         // Handle case where all demanded elements are UNDEF.
2763         if (DemandedElts.isSubsetOf(UndefElts)) {
2764           SplatIdx = 0;
2765           return getUNDEF(VT);
2766         }
2767         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2768       }
2769       return V;
2770     }
2771     break;
2772   }
2773   case ISD::SPLAT_VECTOR:
2774     SplatIdx = 0;
2775     return V;
2776   case ISD::VECTOR_SHUFFLE: {
2777     if (VT.isScalableVector())
2778       return SDValue();
2779 
2780     // Check if this is a shuffle node doing a splat.
2781     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2782     // getTargetVShiftNode currently struggles without the splat source.
2783     auto *SVN = cast<ShuffleVectorSDNode>(V);
2784     if (!SVN->isSplat())
2785       break;
2786     int Idx = SVN->getSplatIndex();
2787     int NumElts = V.getValueType().getVectorNumElements();
2788     SplatIdx = Idx % NumElts;
2789     return V.getOperand(Idx / NumElts);
2790   }
2791   }
2792 
2793   return SDValue();
2794 }
2795 
2796 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2797   int SplatIdx;
2798   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2799     EVT SVT = SrcVector.getValueType().getScalarType();
2800     EVT LegalSVT = SVT;
2801     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2802       if (!SVT.isInteger())
2803         return SDValue();
2804       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2805       if (LegalSVT.bitsLT(SVT))
2806         return SDValue();
2807     }
2808     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2809                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2810   }
2811   return SDValue();
2812 }
2813 
2814 const APInt *
2815 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2816                                           const APInt &DemandedElts) const {
2817   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2818           V.getOpcode() == ISD::SRA) &&
2819          "Unknown shift node");
2820   unsigned BitWidth = V.getScalarValueSizeInBits();
2821   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2822     // Shifting more than the bitwidth is not valid.
2823     const APInt &ShAmt = SA->getAPIntValue();
2824     if (ShAmt.ult(BitWidth))
2825       return &ShAmt;
2826   }
2827   return nullptr;
2828 }
2829 
2830 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2831     SDValue V, const APInt &DemandedElts) const {
2832   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2833           V.getOpcode() == ISD::SRA) &&
2834          "Unknown shift node");
2835   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2836     return ValidAmt;
2837   unsigned BitWidth = V.getScalarValueSizeInBits();
2838   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2839   if (!BV)
2840     return nullptr;
2841   const APInt *MinShAmt = nullptr;
2842   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2843     if (!DemandedElts[i])
2844       continue;
2845     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2846     if (!SA)
2847       return nullptr;
2848     // Shifting more than the bitwidth is not valid.
2849     const APInt &ShAmt = SA->getAPIntValue();
2850     if (ShAmt.uge(BitWidth))
2851       return nullptr;
2852     if (MinShAmt && MinShAmt->ule(ShAmt))
2853       continue;
2854     MinShAmt = &ShAmt;
2855   }
2856   return MinShAmt;
2857 }
2858 
2859 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2860     SDValue V, const APInt &DemandedElts) const {
2861   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2862           V.getOpcode() == ISD::SRA) &&
2863          "Unknown shift node");
2864   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2865     return ValidAmt;
2866   unsigned BitWidth = V.getScalarValueSizeInBits();
2867   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2868   if (!BV)
2869     return nullptr;
2870   const APInt *MaxShAmt = nullptr;
2871   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2872     if (!DemandedElts[i])
2873       continue;
2874     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2875     if (!SA)
2876       return nullptr;
2877     // Shifting more than the bitwidth is not valid.
2878     const APInt &ShAmt = SA->getAPIntValue();
2879     if (ShAmt.uge(BitWidth))
2880       return nullptr;
2881     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2882       continue;
2883     MaxShAmt = &ShAmt;
2884   }
2885   return MaxShAmt;
2886 }
2887 
2888 /// Determine which bits of Op are known to be either zero or one and return
2889 /// them in Known. For vectors, the known bits are those that are shared by
2890 /// every vector element.
2891 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2892   EVT VT = Op.getValueType();
2893 
2894   // TOOD: Until we have a plan for how to represent demanded elements for
2895   // scalable vectors, we can just bail out for now.
2896   if (Op.getValueType().isScalableVector()) {
2897     unsigned BitWidth = Op.getScalarValueSizeInBits();
2898     return KnownBits(BitWidth);
2899   }
2900 
2901   APInt DemandedElts = VT.isVector()
2902                            ? APInt::getAllOnes(VT.getVectorNumElements())
2903                            : APInt(1, 1);
2904   return computeKnownBits(Op, DemandedElts, Depth);
2905 }
2906 
2907 /// Determine which bits of Op are known to be either zero or one and return
2908 /// them in Known. The DemandedElts argument allows us to only collect the known
2909 /// bits that are shared by the requested vector elements.
2910 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2911                                          unsigned Depth) const {
2912   unsigned BitWidth = Op.getScalarValueSizeInBits();
2913 
2914   KnownBits Known(BitWidth);   // Don't know anything.
2915 
2916   // TOOD: Until we have a plan for how to represent demanded elements for
2917   // scalable vectors, we can just bail out for now.
2918   if (Op.getValueType().isScalableVector())
2919     return Known;
2920 
2921   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2922     // We know all of the bits for a constant!
2923     return KnownBits::makeConstant(C->getAPIntValue());
2924   }
2925   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2926     // We know all of the bits for a constant fp!
2927     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2928   }
2929 
2930   if (Depth >= MaxRecursionDepth)
2931     return Known;  // Limit search depth.
2932 
2933   KnownBits Known2;
2934   unsigned NumElts = DemandedElts.getBitWidth();
2935   assert((!Op.getValueType().isVector() ||
2936           NumElts == Op.getValueType().getVectorNumElements()) &&
2937          "Unexpected vector size");
2938 
2939   if (!DemandedElts)
2940     return Known;  // No demanded elts, better to assume we don't know anything.
2941 
2942   unsigned Opcode = Op.getOpcode();
2943   switch (Opcode) {
2944   case ISD::BUILD_VECTOR:
2945     // Collect the known bits that are shared by every demanded vector element.
2946     Known.Zero.setAllBits(); Known.One.setAllBits();
2947     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2948       if (!DemandedElts[i])
2949         continue;
2950 
2951       SDValue SrcOp = Op.getOperand(i);
2952       Known2 = computeKnownBits(SrcOp, Depth + 1);
2953 
2954       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2955       if (SrcOp.getValueSizeInBits() != BitWidth) {
2956         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2957                "Expected BUILD_VECTOR implicit truncation");
2958         Known2 = Known2.trunc(BitWidth);
2959       }
2960 
2961       // Known bits are the values that are shared by every demanded element.
2962       Known = KnownBits::commonBits(Known, Known2);
2963 
2964       // If we don't know any bits, early out.
2965       if (Known.isUnknown())
2966         break;
2967     }
2968     break;
2969   case ISD::VECTOR_SHUFFLE: {
2970     // Collect the known bits that are shared by every vector element referenced
2971     // by the shuffle.
2972     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2973     Known.Zero.setAllBits(); Known.One.setAllBits();
2974     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2975     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2976     for (unsigned i = 0; i != NumElts; ++i) {
2977       if (!DemandedElts[i])
2978         continue;
2979 
2980       int M = SVN->getMaskElt(i);
2981       if (M < 0) {
2982         // For UNDEF elements, we don't know anything about the common state of
2983         // the shuffle result.
2984         Known.resetAll();
2985         DemandedLHS.clearAllBits();
2986         DemandedRHS.clearAllBits();
2987         break;
2988       }
2989 
2990       if ((unsigned)M < NumElts)
2991         DemandedLHS.setBit((unsigned)M % NumElts);
2992       else
2993         DemandedRHS.setBit((unsigned)M % NumElts);
2994     }
2995     // Known bits are the values that are shared by every demanded element.
2996     if (!!DemandedLHS) {
2997       SDValue LHS = Op.getOperand(0);
2998       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2999       Known = KnownBits::commonBits(Known, Known2);
3000     }
3001     // If we don't know any bits, early out.
3002     if (Known.isUnknown())
3003       break;
3004     if (!!DemandedRHS) {
3005       SDValue RHS = Op.getOperand(1);
3006       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3007       Known = KnownBits::commonBits(Known, Known2);
3008     }
3009     break;
3010   }
3011   case ISD::CONCAT_VECTORS: {
3012     // Split DemandedElts and test each of the demanded subvectors.
3013     Known.Zero.setAllBits(); Known.One.setAllBits();
3014     EVT SubVectorVT = Op.getOperand(0).getValueType();
3015     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3016     unsigned NumSubVectors = Op.getNumOperands();
3017     for (unsigned i = 0; i != NumSubVectors; ++i) {
3018       APInt DemandedSub =
3019           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3020       if (!!DemandedSub) {
3021         SDValue Sub = Op.getOperand(i);
3022         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3023         Known = KnownBits::commonBits(Known, Known2);
3024       }
3025       // If we don't know any bits, early out.
3026       if (Known.isUnknown())
3027         break;
3028     }
3029     break;
3030   }
3031   case ISD::INSERT_SUBVECTOR: {
3032     // Demand any elements from the subvector and the remainder from the src its
3033     // inserted into.
3034     SDValue Src = Op.getOperand(0);
3035     SDValue Sub = Op.getOperand(1);
3036     uint64_t Idx = Op.getConstantOperandVal(2);
3037     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3038     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3039     APInt DemandedSrcElts = DemandedElts;
3040     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3041 
3042     Known.One.setAllBits();
3043     Known.Zero.setAllBits();
3044     if (!!DemandedSubElts) {
3045       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3046       if (Known.isUnknown())
3047         break; // early-out.
3048     }
3049     if (!!DemandedSrcElts) {
3050       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3051       Known = KnownBits::commonBits(Known, Known2);
3052     }
3053     break;
3054   }
3055   case ISD::EXTRACT_SUBVECTOR: {
3056     // Offset the demanded elts by the subvector index.
3057     SDValue Src = Op.getOperand(0);
3058     // Bail until we can represent demanded elements for scalable vectors.
3059     if (Src.getValueType().isScalableVector())
3060       break;
3061     uint64_t Idx = Op.getConstantOperandVal(1);
3062     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3063     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3064     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3065     break;
3066   }
3067   case ISD::SCALAR_TO_VECTOR: {
3068     // We know about scalar_to_vector as much as we know about it source,
3069     // which becomes the first element of otherwise unknown vector.
3070     if (DemandedElts != 1)
3071       break;
3072 
3073     SDValue N0 = Op.getOperand(0);
3074     Known = computeKnownBits(N0, Depth + 1);
3075     if (N0.getValueSizeInBits() != BitWidth)
3076       Known = Known.trunc(BitWidth);
3077 
3078     break;
3079   }
3080   case ISD::BITCAST: {
3081     SDValue N0 = Op.getOperand(0);
3082     EVT SubVT = N0.getValueType();
3083     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3084 
3085     // Ignore bitcasts from unsupported types.
3086     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3087       break;
3088 
3089     // Fast handling of 'identity' bitcasts.
3090     if (BitWidth == SubBitWidth) {
3091       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3092       break;
3093     }
3094 
3095     bool IsLE = getDataLayout().isLittleEndian();
3096 
3097     // Bitcast 'small element' vector to 'large element' scalar/vector.
3098     if ((BitWidth % SubBitWidth) == 0) {
3099       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3100 
3101       // Collect known bits for the (larger) output by collecting the known
3102       // bits from each set of sub elements and shift these into place.
3103       // We need to separately call computeKnownBits for each set of
3104       // sub elements as the knownbits for each is likely to be different.
3105       unsigned SubScale = BitWidth / SubBitWidth;
3106       APInt SubDemandedElts(NumElts * SubScale, 0);
3107       for (unsigned i = 0; i != NumElts; ++i)
3108         if (DemandedElts[i])
3109           SubDemandedElts.setBit(i * SubScale);
3110 
3111       for (unsigned i = 0; i != SubScale; ++i) {
3112         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3113                          Depth + 1);
3114         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3115         Known.insertBits(Known2, SubBitWidth * Shifts);
3116       }
3117     }
3118 
3119     // Bitcast 'large element' scalar/vector to 'small element' vector.
3120     if ((SubBitWidth % BitWidth) == 0) {
3121       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3122 
3123       // Collect known bits for the (smaller) output by collecting the known
3124       // bits from the overlapping larger input elements and extracting the
3125       // sub sections we actually care about.
3126       unsigned SubScale = SubBitWidth / BitWidth;
3127       APInt SubDemandedElts =
3128           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3129       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3130 
3131       Known.Zero.setAllBits(); Known.One.setAllBits();
3132       for (unsigned i = 0; i != NumElts; ++i)
3133         if (DemandedElts[i]) {
3134           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3135           unsigned Offset = (Shifts % SubScale) * BitWidth;
3136           Known = KnownBits::commonBits(Known,
3137                                         Known2.extractBits(BitWidth, Offset));
3138           // If we don't know any bits, early out.
3139           if (Known.isUnknown())
3140             break;
3141         }
3142     }
3143     break;
3144   }
3145   case ISD::AND:
3146     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3147     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3148 
3149     Known &= Known2;
3150     break;
3151   case ISD::OR:
3152     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3153     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3154 
3155     Known |= Known2;
3156     break;
3157   case ISD::XOR:
3158     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3159     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160 
3161     Known ^= Known2;
3162     break;
3163   case ISD::MUL: {
3164     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3167     // TODO: SelfMultiply can be poison, but not undef.
3168     if (SelfMultiply)
3169       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3170           Op.getOperand(0), DemandedElts, false, Depth + 1);
3171     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3172     break;
3173   }
3174   case ISD::MULHU: {
3175     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3176     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3177     Known = KnownBits::mulhu(Known, Known2);
3178     break;
3179   }
3180   case ISD::MULHS: {
3181     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3182     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3183     Known = KnownBits::mulhs(Known, Known2);
3184     break;
3185   }
3186   case ISD::UMUL_LOHI: {
3187     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3188     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3189     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3190     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3191     if (Op.getResNo() == 0)
3192       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3193     else
3194       Known = KnownBits::mulhu(Known, Known2);
3195     break;
3196   }
3197   case ISD::SMUL_LOHI: {
3198     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3199     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3200     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3201     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3202     if (Op.getResNo() == 0)
3203       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3204     else
3205       Known = KnownBits::mulhs(Known, Known2);
3206     break;
3207   }
3208   case ISD::UDIV: {
3209     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3211     Known = KnownBits::udiv(Known, Known2);
3212     break;
3213   }
3214   case ISD::AVGCEILU: {
3215     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3217     Known = Known.zext(BitWidth + 1);
3218     Known2 = Known2.zext(BitWidth + 1);
3219     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3220     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3221     Known = Known.extractBits(BitWidth, 1);
3222     break;
3223   }
3224   case ISD::SELECT:
3225   case ISD::VSELECT:
3226     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3227     // If we don't know any bits, early out.
3228     if (Known.isUnknown())
3229       break;
3230     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3231 
3232     // Only known if known in both the LHS and RHS.
3233     Known = KnownBits::commonBits(Known, Known2);
3234     break;
3235   case ISD::SELECT_CC:
3236     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3237     // If we don't know any bits, early out.
3238     if (Known.isUnknown())
3239       break;
3240     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3241 
3242     // Only known if known in both the LHS and RHS.
3243     Known = KnownBits::commonBits(Known, Known2);
3244     break;
3245   case ISD::SMULO:
3246   case ISD::UMULO:
3247     if (Op.getResNo() != 1)
3248       break;
3249     // The boolean result conforms to getBooleanContents.
3250     // If we know the result of a setcc has the top bits zero, use this info.
3251     // We know that we have an integer-based boolean since these operations
3252     // are only available for integer.
3253     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3254             TargetLowering::ZeroOrOneBooleanContent &&
3255         BitWidth > 1)
3256       Known.Zero.setBitsFrom(1);
3257     break;
3258   case ISD::SETCC:
3259   case ISD::STRICT_FSETCC:
3260   case ISD::STRICT_FSETCCS: {
3261     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3262     // If we know the result of a setcc has the top bits zero, use this info.
3263     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3264             TargetLowering::ZeroOrOneBooleanContent &&
3265         BitWidth > 1)
3266       Known.Zero.setBitsFrom(1);
3267     break;
3268   }
3269   case ISD::SHL:
3270     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3271     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3272     Known = KnownBits::shl(Known, Known2);
3273 
3274     // Minimum shift low bits are known zero.
3275     if (const APInt *ShMinAmt =
3276             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3277       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3278     break;
3279   case ISD::SRL:
3280     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3281     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3282     Known = KnownBits::lshr(Known, Known2);
3283 
3284     // Minimum shift high bits are known zero.
3285     if (const APInt *ShMinAmt =
3286             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3287       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3288     break;
3289   case ISD::SRA:
3290     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3291     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3292     Known = KnownBits::ashr(Known, Known2);
3293     // TODO: Add minimum shift high known sign bits.
3294     break;
3295   case ISD::FSHL:
3296   case ISD::FSHR:
3297     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3298       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3299 
3300       // For fshl, 0-shift returns the 1st arg.
3301       // For fshr, 0-shift returns the 2nd arg.
3302       if (Amt == 0) {
3303         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3304                                  DemandedElts, Depth + 1);
3305         break;
3306       }
3307 
3308       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3309       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3310       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3311       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3312       if (Opcode == ISD::FSHL) {
3313         Known.One <<= Amt;
3314         Known.Zero <<= Amt;
3315         Known2.One.lshrInPlace(BitWidth - Amt);
3316         Known2.Zero.lshrInPlace(BitWidth - Amt);
3317       } else {
3318         Known.One <<= BitWidth - Amt;
3319         Known.Zero <<= BitWidth - Amt;
3320         Known2.One.lshrInPlace(Amt);
3321         Known2.Zero.lshrInPlace(Amt);
3322       }
3323       Known.One |= Known2.One;
3324       Known.Zero |= Known2.Zero;
3325     }
3326     break;
3327   case ISD::SIGN_EXTEND_INREG: {
3328     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3329     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3330     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3331     break;
3332   }
3333   case ISD::CTTZ:
3334   case ISD::CTTZ_ZERO_UNDEF: {
3335     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3336     // If we have a known 1, its position is our upper bound.
3337     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3338     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3339     Known.Zero.setBitsFrom(LowBits);
3340     break;
3341   }
3342   case ISD::CTLZ:
3343   case ISD::CTLZ_ZERO_UNDEF: {
3344     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3345     // If we have a known 1, its position is our upper bound.
3346     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3347     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3348     Known.Zero.setBitsFrom(LowBits);
3349     break;
3350   }
3351   case ISD::CTPOP: {
3352     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3353     // If we know some of the bits are zero, they can't be one.
3354     unsigned PossibleOnes = Known2.countMaxPopulation();
3355     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3356     break;
3357   }
3358   case ISD::PARITY: {
3359     // Parity returns 0 everywhere but the LSB.
3360     Known.Zero.setBitsFrom(1);
3361     break;
3362   }
3363   case ISD::LOAD: {
3364     LoadSDNode *LD = cast<LoadSDNode>(Op);
3365     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3366     if (ISD::isNON_EXTLoad(LD) && Cst) {
3367       // Determine any common known bits from the loaded constant pool value.
3368       Type *CstTy = Cst->getType();
3369       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3370         // If its a vector splat, then we can (quickly) reuse the scalar path.
3371         // NOTE: We assume all elements match and none are UNDEF.
3372         if (CstTy->isVectorTy()) {
3373           if (const Constant *Splat = Cst->getSplatValue()) {
3374             Cst = Splat;
3375             CstTy = Cst->getType();
3376           }
3377         }
3378         // TODO - do we need to handle different bitwidths?
3379         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3380           // Iterate across all vector elements finding common known bits.
3381           Known.One.setAllBits();
3382           Known.Zero.setAllBits();
3383           for (unsigned i = 0; i != NumElts; ++i) {
3384             if (!DemandedElts[i])
3385               continue;
3386             if (Constant *Elt = Cst->getAggregateElement(i)) {
3387               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3388                 const APInt &Value = CInt->getValue();
3389                 Known.One &= Value;
3390                 Known.Zero &= ~Value;
3391                 continue;
3392               }
3393               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3394                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3395                 Known.One &= Value;
3396                 Known.Zero &= ~Value;
3397                 continue;
3398               }
3399             }
3400             Known.One.clearAllBits();
3401             Known.Zero.clearAllBits();
3402             break;
3403           }
3404         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3405           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3406             Known = KnownBits::makeConstant(CInt->getValue());
3407           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3408             Known =
3409                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3410           }
3411         }
3412       }
3413     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3414       // If this is a ZEXTLoad and we are looking at the loaded value.
3415       EVT VT = LD->getMemoryVT();
3416       unsigned MemBits = VT.getScalarSizeInBits();
3417       Known.Zero.setBitsFrom(MemBits);
3418     } else if (const MDNode *Ranges = LD->getRanges()) {
3419       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3420         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3421     }
3422     break;
3423   }
3424   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3425     EVT InVT = Op.getOperand(0).getValueType();
3426     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3427     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3428     Known = Known.zext(BitWidth);
3429     break;
3430   }
3431   case ISD::ZERO_EXTEND: {
3432     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3433     Known = Known.zext(BitWidth);
3434     break;
3435   }
3436   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3437     EVT InVT = Op.getOperand(0).getValueType();
3438     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3439     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3440     // If the sign bit is known to be zero or one, then sext will extend
3441     // it to the top bits, else it will just zext.
3442     Known = Known.sext(BitWidth);
3443     break;
3444   }
3445   case ISD::SIGN_EXTEND: {
3446     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3447     // If the sign bit is known to be zero or one, then sext will extend
3448     // it to the top bits, else it will just zext.
3449     Known = Known.sext(BitWidth);
3450     break;
3451   }
3452   case ISD::ANY_EXTEND_VECTOR_INREG: {
3453     EVT InVT = Op.getOperand(0).getValueType();
3454     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3455     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3456     Known = Known.anyext(BitWidth);
3457     break;
3458   }
3459   case ISD::ANY_EXTEND: {
3460     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known = Known.anyext(BitWidth);
3462     break;
3463   }
3464   case ISD::TRUNCATE: {
3465     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3466     Known = Known.trunc(BitWidth);
3467     break;
3468   }
3469   case ISD::AssertZext: {
3470     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3471     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3472     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3473     Known.Zero |= (~InMask);
3474     Known.One  &= (~Known.Zero);
3475     break;
3476   }
3477   case ISD::AssertAlign: {
3478     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3479     assert(LogOfAlign != 0);
3480 
3481     // TODO: Should use maximum with source
3482     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3483     // well as clearing one bits.
3484     Known.Zero.setLowBits(LogOfAlign);
3485     Known.One.clearLowBits(LogOfAlign);
3486     break;
3487   }
3488   case ISD::FGETSIGN:
3489     // All bits are zero except the low bit.
3490     Known.Zero.setBitsFrom(1);
3491     break;
3492   case ISD::USUBO:
3493   case ISD::SSUBO:
3494     if (Op.getResNo() == 1) {
3495       // If we know the result of a setcc has the top bits zero, use this info.
3496       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3497               TargetLowering::ZeroOrOneBooleanContent &&
3498           BitWidth > 1)
3499         Known.Zero.setBitsFrom(1);
3500       break;
3501     }
3502     LLVM_FALLTHROUGH;
3503   case ISD::SUB:
3504   case ISD::SUBC: {
3505     assert(Op.getResNo() == 0 &&
3506            "We only compute knownbits for the difference here.");
3507 
3508     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3509     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3510     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3511                                         Known, Known2);
3512     break;
3513   }
3514   case ISD::UADDO:
3515   case ISD::SADDO:
3516   case ISD::ADDCARRY:
3517     if (Op.getResNo() == 1) {
3518       // If we know the result of a setcc has the top bits zero, use this info.
3519       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3520               TargetLowering::ZeroOrOneBooleanContent &&
3521           BitWidth > 1)
3522         Known.Zero.setBitsFrom(1);
3523       break;
3524     }
3525     LLVM_FALLTHROUGH;
3526   case ISD::ADD:
3527   case ISD::ADDC:
3528   case ISD::ADDE: {
3529     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3530 
3531     // With ADDE and ADDCARRY, a carry bit may be added in.
3532     KnownBits Carry(1);
3533     if (Opcode == ISD::ADDE)
3534       // Can't track carry from glue, set carry to unknown.
3535       Carry.resetAll();
3536     else if (Opcode == ISD::ADDCARRY)
3537       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3538       // the trouble (how often will we find a known carry bit). And I haven't
3539       // tested this very much yet, but something like this might work:
3540       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3541       //   Carry = Carry.zextOrTrunc(1, false);
3542       Carry.resetAll();
3543     else
3544       Carry.setAllZero();
3545 
3546     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3547     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3548     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3549     break;
3550   }
3551   case ISD::SREM: {
3552     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3554     Known = KnownBits::srem(Known, Known2);
3555     break;
3556   }
3557   case ISD::UREM: {
3558     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3559     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3560     Known = KnownBits::urem(Known, Known2);
3561     break;
3562   }
3563   case ISD::EXTRACT_ELEMENT: {
3564     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3565     const unsigned Index = Op.getConstantOperandVal(1);
3566     const unsigned EltBitWidth = Op.getValueSizeInBits();
3567 
3568     // Remove low part of known bits mask
3569     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3570     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3571 
3572     // Remove high part of known bit mask
3573     Known = Known.trunc(EltBitWidth);
3574     break;
3575   }
3576   case ISD::EXTRACT_VECTOR_ELT: {
3577     SDValue InVec = Op.getOperand(0);
3578     SDValue EltNo = Op.getOperand(1);
3579     EVT VecVT = InVec.getValueType();
3580     // computeKnownBits not yet implemented for scalable vectors.
3581     if (VecVT.isScalableVector())
3582       break;
3583     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3584     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3585 
3586     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3587     // anything about the extended bits.
3588     if (BitWidth > EltBitWidth)
3589       Known = Known.trunc(EltBitWidth);
3590 
3591     // If we know the element index, just demand that vector element, else for
3592     // an unknown element index, ignore DemandedElts and demand them all.
3593     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3594     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3595     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3596       DemandedSrcElts =
3597           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3598 
3599     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3600     if (BitWidth > EltBitWidth)
3601       Known = Known.anyext(BitWidth);
3602     break;
3603   }
3604   case ISD::INSERT_VECTOR_ELT: {
3605     // If we know the element index, split the demand between the
3606     // source vector and the inserted element, otherwise assume we need
3607     // the original demanded vector elements and the value.
3608     SDValue InVec = Op.getOperand(0);
3609     SDValue InVal = Op.getOperand(1);
3610     SDValue EltNo = Op.getOperand(2);
3611     bool DemandedVal = true;
3612     APInt DemandedVecElts = DemandedElts;
3613     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3614     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3615       unsigned EltIdx = CEltNo->getZExtValue();
3616       DemandedVal = !!DemandedElts[EltIdx];
3617       DemandedVecElts.clearBit(EltIdx);
3618     }
3619     Known.One.setAllBits();
3620     Known.Zero.setAllBits();
3621     if (DemandedVal) {
3622       Known2 = computeKnownBits(InVal, Depth + 1);
3623       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3624     }
3625     if (!!DemandedVecElts) {
3626       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3627       Known = KnownBits::commonBits(Known, Known2);
3628     }
3629     break;
3630   }
3631   case ISD::BITREVERSE: {
3632     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3633     Known = Known2.reverseBits();
3634     break;
3635   }
3636   case ISD::BSWAP: {
3637     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3638     Known = Known2.byteSwap();
3639     break;
3640   }
3641   case ISD::ABS: {
3642     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3643     Known = Known2.abs();
3644     break;
3645   }
3646   case ISD::USUBSAT: {
3647     // The result of usubsat will never be larger than the LHS.
3648     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3649     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3650     break;
3651   }
3652   case ISD::UMIN: {
3653     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3654     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3655     Known = KnownBits::umin(Known, Known2);
3656     break;
3657   }
3658   case ISD::UMAX: {
3659     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3660     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661     Known = KnownBits::umax(Known, Known2);
3662     break;
3663   }
3664   case ISD::SMIN:
3665   case ISD::SMAX: {
3666     // If we have a clamp pattern, we know that the number of sign bits will be
3667     // the minimum of the clamp min/max range.
3668     bool IsMax = (Opcode == ISD::SMAX);
3669     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3670     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3671       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3672         CstHigh =
3673             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3674     if (CstLow && CstHigh) {
3675       if (!IsMax)
3676         std::swap(CstLow, CstHigh);
3677 
3678       const APInt &ValueLow = CstLow->getAPIntValue();
3679       const APInt &ValueHigh = CstHigh->getAPIntValue();
3680       if (ValueLow.sle(ValueHigh)) {
3681         unsigned LowSignBits = ValueLow.getNumSignBits();
3682         unsigned HighSignBits = ValueHigh.getNumSignBits();
3683         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3684         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3685           Known.One.setHighBits(MinSignBits);
3686           break;
3687         }
3688         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3689           Known.Zero.setHighBits(MinSignBits);
3690           break;
3691         }
3692       }
3693     }
3694 
3695     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3696     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3697     if (IsMax)
3698       Known = KnownBits::smax(Known, Known2);
3699     else
3700       Known = KnownBits::smin(Known, Known2);
3701     break;
3702   }
3703   case ISD::FP_TO_UINT_SAT: {
3704     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3705     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3706     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3707     break;
3708   }
3709   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3710     if (Op.getResNo() == 1) {
3711       // The boolean result conforms to getBooleanContents.
3712       // If we know the result of a setcc has the top bits zero, use this info.
3713       // We know that we have an integer-based boolean since these operations
3714       // are only available for integer.
3715       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3716               TargetLowering::ZeroOrOneBooleanContent &&
3717           BitWidth > 1)
3718         Known.Zero.setBitsFrom(1);
3719       break;
3720     }
3721     LLVM_FALLTHROUGH;
3722   case ISD::ATOMIC_CMP_SWAP:
3723   case ISD::ATOMIC_SWAP:
3724   case ISD::ATOMIC_LOAD_ADD:
3725   case ISD::ATOMIC_LOAD_SUB:
3726   case ISD::ATOMIC_LOAD_AND:
3727   case ISD::ATOMIC_LOAD_CLR:
3728   case ISD::ATOMIC_LOAD_OR:
3729   case ISD::ATOMIC_LOAD_XOR:
3730   case ISD::ATOMIC_LOAD_NAND:
3731   case ISD::ATOMIC_LOAD_MIN:
3732   case ISD::ATOMIC_LOAD_MAX:
3733   case ISD::ATOMIC_LOAD_UMIN:
3734   case ISD::ATOMIC_LOAD_UMAX:
3735   case ISD::ATOMIC_LOAD: {
3736     unsigned MemBits =
3737         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3738     // If we are looking at the loaded value.
3739     if (Op.getResNo() == 0) {
3740       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3741         Known.Zero.setBitsFrom(MemBits);
3742     }
3743     break;
3744   }
3745   case ISD::FrameIndex:
3746   case ISD::TargetFrameIndex:
3747     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3748                                        Known, getMachineFunction());
3749     break;
3750 
3751   default:
3752     if (Opcode < ISD::BUILTIN_OP_END)
3753       break;
3754     LLVM_FALLTHROUGH;
3755   case ISD::INTRINSIC_WO_CHAIN:
3756   case ISD::INTRINSIC_W_CHAIN:
3757   case ISD::INTRINSIC_VOID:
3758     // Allow the target to implement this method for its nodes.
3759     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3760     break;
3761   }
3762 
3763   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3764   return Known;
3765 }
3766 
3767 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3768                                                              SDValue N1) const {
3769   // X + 0 never overflow
3770   if (isNullConstant(N1))
3771     return OFK_Never;
3772 
3773   KnownBits N1Known = computeKnownBits(N1);
3774   if (N1Known.Zero.getBoolValue()) {
3775     KnownBits N0Known = computeKnownBits(N0);
3776 
3777     bool overflow;
3778     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3779     if (!overflow)
3780       return OFK_Never;
3781   }
3782 
3783   // mulhi + 1 never overflow
3784   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3785       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3786     return OFK_Never;
3787 
3788   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3789     KnownBits N0Known = computeKnownBits(N0);
3790 
3791     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3792       return OFK_Never;
3793   }
3794 
3795   return OFK_Sometime;
3796 }
3797 
3798 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3799   EVT OpVT = Val.getValueType();
3800   unsigned BitWidth = OpVT.getScalarSizeInBits();
3801 
3802   // Is the constant a known power of 2?
3803   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3804     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3805 
3806   // A left-shift of a constant one will have exactly one bit set because
3807   // shifting the bit off the end is undefined.
3808   if (Val.getOpcode() == ISD::SHL) {
3809     auto *C = isConstOrConstSplat(Val.getOperand(0));
3810     if (C && C->getAPIntValue() == 1)
3811       return true;
3812   }
3813 
3814   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3815   // one bit set.
3816   if (Val.getOpcode() == ISD::SRL) {
3817     auto *C = isConstOrConstSplat(Val.getOperand(0));
3818     if (C && C->getAPIntValue().isSignMask())
3819       return true;
3820   }
3821 
3822   // Are all operands of a build vector constant powers of two?
3823   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3824     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3825           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3826             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3827           return false;
3828         }))
3829       return true;
3830 
3831   // Is the operand of a splat vector a constant power of two?
3832   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3833     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3834       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3835         return true;
3836 
3837   // More could be done here, though the above checks are enough
3838   // to handle some common cases.
3839 
3840   // Fall back to computeKnownBits to catch other known cases.
3841   KnownBits Known = computeKnownBits(Val);
3842   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3843 }
3844 
3845 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3846   EVT VT = Op.getValueType();
3847 
3848   // TODO: Assume we don't know anything for now.
3849   if (VT.isScalableVector())
3850     return 1;
3851 
3852   APInt DemandedElts = VT.isVector()
3853                            ? APInt::getAllOnes(VT.getVectorNumElements())
3854                            : APInt(1, 1);
3855   return ComputeNumSignBits(Op, DemandedElts, Depth);
3856 }
3857 
3858 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3859                                           unsigned Depth) const {
3860   EVT VT = Op.getValueType();
3861   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3862   unsigned VTBits = VT.getScalarSizeInBits();
3863   unsigned NumElts = DemandedElts.getBitWidth();
3864   unsigned Tmp, Tmp2;
3865   unsigned FirstAnswer = 1;
3866 
3867   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3868     const APInt &Val = C->getAPIntValue();
3869     return Val.getNumSignBits();
3870   }
3871 
3872   if (Depth >= MaxRecursionDepth)
3873     return 1;  // Limit search depth.
3874 
3875   if (!DemandedElts || VT.isScalableVector())
3876     return 1;  // No demanded elts, better to assume we don't know anything.
3877 
3878   unsigned Opcode = Op.getOpcode();
3879   switch (Opcode) {
3880   default: break;
3881   case ISD::AssertSext:
3882     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3883     return VTBits-Tmp+1;
3884   case ISD::AssertZext:
3885     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3886     return VTBits-Tmp;
3887 
3888   case ISD::BUILD_VECTOR:
3889     Tmp = VTBits;
3890     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3891       if (!DemandedElts[i])
3892         continue;
3893 
3894       SDValue SrcOp = Op.getOperand(i);
3895       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3896 
3897       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3898       if (SrcOp.getValueSizeInBits() != VTBits) {
3899         assert(SrcOp.getValueSizeInBits() > VTBits &&
3900                "Expected BUILD_VECTOR implicit truncation");
3901         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3902         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3903       }
3904       Tmp = std::min(Tmp, Tmp2);
3905     }
3906     return Tmp;
3907 
3908   case ISD::VECTOR_SHUFFLE: {
3909     // Collect the minimum number of sign bits that are shared by every vector
3910     // element referenced by the shuffle.
3911     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3912     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3913     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3914     for (unsigned i = 0; i != NumElts; ++i) {
3915       int M = SVN->getMaskElt(i);
3916       if (!DemandedElts[i])
3917         continue;
3918       // For UNDEF elements, we don't know anything about the common state of
3919       // the shuffle result.
3920       if (M < 0)
3921         return 1;
3922       if ((unsigned)M < NumElts)
3923         DemandedLHS.setBit((unsigned)M % NumElts);
3924       else
3925         DemandedRHS.setBit((unsigned)M % NumElts);
3926     }
3927     Tmp = std::numeric_limits<unsigned>::max();
3928     if (!!DemandedLHS)
3929       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3930     if (!!DemandedRHS) {
3931       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3932       Tmp = std::min(Tmp, Tmp2);
3933     }
3934     // If we don't know anything, early out and try computeKnownBits fall-back.
3935     if (Tmp == 1)
3936       break;
3937     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3938     return Tmp;
3939   }
3940 
3941   case ISD::BITCAST: {
3942     SDValue N0 = Op.getOperand(0);
3943     EVT SrcVT = N0.getValueType();
3944     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3945 
3946     // Ignore bitcasts from unsupported types..
3947     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3948       break;
3949 
3950     // Fast handling of 'identity' bitcasts.
3951     if (VTBits == SrcBits)
3952       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3953 
3954     bool IsLE = getDataLayout().isLittleEndian();
3955 
3956     // Bitcast 'large element' scalar/vector to 'small element' vector.
3957     if ((SrcBits % VTBits) == 0) {
3958       assert(VT.isVector() && "Expected bitcast to vector");
3959 
3960       unsigned Scale = SrcBits / VTBits;
3961       APInt SrcDemandedElts =
3962           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3963 
3964       // Fast case - sign splat can be simply split across the small elements.
3965       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3966       if (Tmp == SrcBits)
3967         return VTBits;
3968 
3969       // Slow case - determine how far the sign extends into each sub-element.
3970       Tmp2 = VTBits;
3971       for (unsigned i = 0; i != NumElts; ++i)
3972         if (DemandedElts[i]) {
3973           unsigned SubOffset = i % Scale;
3974           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3975           SubOffset = SubOffset * VTBits;
3976           if (Tmp <= SubOffset)
3977             return 1;
3978           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3979         }
3980       return Tmp2;
3981     }
3982     break;
3983   }
3984 
3985   case ISD::FP_TO_SINT_SAT:
3986     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3987     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3988     return VTBits - Tmp + 1;
3989   case ISD::SIGN_EXTEND:
3990     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3991     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3992   case ISD::SIGN_EXTEND_INREG:
3993     // Max of the input and what this extends.
3994     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3995     Tmp = VTBits-Tmp+1;
3996     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3997     return std::max(Tmp, Tmp2);
3998   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3999     SDValue Src = Op.getOperand(0);
4000     EVT SrcVT = Src.getValueType();
4001     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
4002     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4003     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4004   }
4005   case ISD::SRA:
4006     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4007     // SRA X, C -> adds C sign bits.
4008     if (const APInt *ShAmt =
4009             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4010       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4011     return Tmp;
4012   case ISD::SHL:
4013     if (const APInt *ShAmt =
4014             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4015       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4016       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4017       if (ShAmt->ult(Tmp))
4018         return Tmp - ShAmt->getZExtValue();
4019     }
4020     break;
4021   case ISD::AND:
4022   case ISD::OR:
4023   case ISD::XOR:    // NOT is handled here.
4024     // Logical binary ops preserve the number of sign bits at the worst.
4025     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4026     if (Tmp != 1) {
4027       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4028       FirstAnswer = std::min(Tmp, Tmp2);
4029       // We computed what we know about the sign bits as our first
4030       // answer. Now proceed to the generic code that uses
4031       // computeKnownBits, and pick whichever answer is better.
4032     }
4033     break;
4034 
4035   case ISD::SELECT:
4036   case ISD::VSELECT:
4037     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4038     if (Tmp == 1) return 1;  // Early out.
4039     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4040     return std::min(Tmp, Tmp2);
4041   case ISD::SELECT_CC:
4042     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4043     if (Tmp == 1) return 1;  // Early out.
4044     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4045     return std::min(Tmp, Tmp2);
4046 
4047   case ISD::SMIN:
4048   case ISD::SMAX: {
4049     // If we have a clamp pattern, we know that the number of sign bits will be
4050     // the minimum of the clamp min/max range.
4051     bool IsMax = (Opcode == ISD::SMAX);
4052     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4053     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4054       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4055         CstHigh =
4056             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4057     if (CstLow && CstHigh) {
4058       if (!IsMax)
4059         std::swap(CstLow, CstHigh);
4060       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4061         Tmp = CstLow->getAPIntValue().getNumSignBits();
4062         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4063         return std::min(Tmp, Tmp2);
4064       }
4065     }
4066 
4067     // Fallback - just get the minimum number of sign bits of the operands.
4068     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4069     if (Tmp == 1)
4070       return 1;  // Early out.
4071     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4072     return std::min(Tmp, Tmp2);
4073   }
4074   case ISD::UMIN:
4075   case ISD::UMAX:
4076     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4077     if (Tmp == 1)
4078       return 1;  // Early out.
4079     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4080     return std::min(Tmp, Tmp2);
4081   case ISD::SADDO:
4082   case ISD::UADDO:
4083   case ISD::SSUBO:
4084   case ISD::USUBO:
4085   case ISD::SMULO:
4086   case ISD::UMULO:
4087     if (Op.getResNo() != 1)
4088       break;
4089     // The boolean result conforms to getBooleanContents.  Fall through.
4090     // If setcc returns 0/-1, all bits are sign bits.
4091     // We know that we have an integer-based boolean since these operations
4092     // are only available for integer.
4093     if (TLI->getBooleanContents(VT.isVector(), false) ==
4094         TargetLowering::ZeroOrNegativeOneBooleanContent)
4095       return VTBits;
4096     break;
4097   case ISD::SETCC:
4098   case ISD::STRICT_FSETCC:
4099   case ISD::STRICT_FSETCCS: {
4100     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4101     // If setcc returns 0/-1, all bits are sign bits.
4102     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4103         TargetLowering::ZeroOrNegativeOneBooleanContent)
4104       return VTBits;
4105     break;
4106   }
4107   case ISD::ROTL:
4108   case ISD::ROTR:
4109     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 
4111     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4112     if (Tmp == VTBits)
4113       return VTBits;
4114 
4115     if (ConstantSDNode *C =
4116             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4117       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4118 
4119       // Handle rotate right by N like a rotate left by 32-N.
4120       if (Opcode == ISD::ROTR)
4121         RotAmt = (VTBits - RotAmt) % VTBits;
4122 
4123       // If we aren't rotating out all of the known-in sign bits, return the
4124       // number that are left.  This handles rotl(sext(x), 1) for example.
4125       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4126     }
4127     break;
4128   case ISD::ADD:
4129   case ISD::ADDC:
4130     // Add can have at most one carry bit.  Thus we know that the output
4131     // is, at worst, one more bit than the inputs.
4132     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133     if (Tmp == 1) return 1; // Early out.
4134 
4135     // Special case decrementing a value (ADD X, -1):
4136     if (ConstantSDNode *CRHS =
4137             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4138       if (CRHS->isAllOnes()) {
4139         KnownBits Known =
4140             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4141 
4142         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4143         // sign bits set.
4144         if ((Known.Zero | 1).isAllOnes())
4145           return VTBits;
4146 
4147         // If we are subtracting one from a positive number, there is no carry
4148         // out of the result.
4149         if (Known.isNonNegative())
4150           return Tmp;
4151       }
4152 
4153     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4154     if (Tmp2 == 1) return 1; // Early out.
4155     return std::min(Tmp, Tmp2) - 1;
4156   case ISD::SUB:
4157     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4158     if (Tmp2 == 1) return 1; // Early out.
4159 
4160     // Handle NEG.
4161     if (ConstantSDNode *CLHS =
4162             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4163       if (CLHS->isZero()) {
4164         KnownBits Known =
4165             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4166         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4167         // sign bits set.
4168         if ((Known.Zero | 1).isAllOnes())
4169           return VTBits;
4170 
4171         // If the input is known to be positive (the sign bit is known clear),
4172         // the output of the NEG has the same number of sign bits as the input.
4173         if (Known.isNonNegative())
4174           return Tmp2;
4175 
4176         // Otherwise, we treat this like a SUB.
4177       }
4178 
4179     // Sub can have at most one carry bit.  Thus we know that the output
4180     // is, at worst, one more bit than the inputs.
4181     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4182     if (Tmp == 1) return 1; // Early out.
4183     return std::min(Tmp, Tmp2) - 1;
4184   case ISD::MUL: {
4185     // The output of the Mul can be at most twice the valid bits in the inputs.
4186     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4187     if (SignBitsOp0 == 1)
4188       break;
4189     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4190     if (SignBitsOp1 == 1)
4191       break;
4192     unsigned OutValidBits =
4193         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4194     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4195   }
4196   case ISD::SREM:
4197     // The sign bit is the LHS's sign bit, except when the result of the
4198     // remainder is zero. The magnitude of the result should be less than or
4199     // equal to the magnitude of the LHS. Therefore, the result should have
4200     // at least as many sign bits as the left hand side.
4201     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202   case ISD::TRUNCATE: {
4203     // Check if the sign bits of source go down as far as the truncated value.
4204     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4205     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4206     if (NumSrcSignBits > (NumSrcBits - VTBits))
4207       return NumSrcSignBits - (NumSrcBits - VTBits);
4208     break;
4209   }
4210   case ISD::EXTRACT_ELEMENT: {
4211     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4212     const int BitWidth = Op.getValueSizeInBits();
4213     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4214 
4215     // Get reverse index (starting from 1), Op1 value indexes elements from
4216     // little end. Sign starts at big end.
4217     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4218 
4219     // If the sign portion ends in our element the subtraction gives correct
4220     // result. Otherwise it gives either negative or > bitwidth result
4221     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4222   }
4223   case ISD::INSERT_VECTOR_ELT: {
4224     // If we know the element index, split the demand between the
4225     // source vector and the inserted element, otherwise assume we need
4226     // the original demanded vector elements and the value.
4227     SDValue InVec = Op.getOperand(0);
4228     SDValue InVal = Op.getOperand(1);
4229     SDValue EltNo = Op.getOperand(2);
4230     bool DemandedVal = true;
4231     APInt DemandedVecElts = DemandedElts;
4232     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4233     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4234       unsigned EltIdx = CEltNo->getZExtValue();
4235       DemandedVal = !!DemandedElts[EltIdx];
4236       DemandedVecElts.clearBit(EltIdx);
4237     }
4238     Tmp = std::numeric_limits<unsigned>::max();
4239     if (DemandedVal) {
4240       // TODO - handle implicit truncation of inserted elements.
4241       if (InVal.getScalarValueSizeInBits() != VTBits)
4242         break;
4243       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4244       Tmp = std::min(Tmp, Tmp2);
4245     }
4246     if (!!DemandedVecElts) {
4247       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4248       Tmp = std::min(Tmp, Tmp2);
4249     }
4250     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4251     return Tmp;
4252   }
4253   case ISD::EXTRACT_VECTOR_ELT: {
4254     SDValue InVec = Op.getOperand(0);
4255     SDValue EltNo = Op.getOperand(1);
4256     EVT VecVT = InVec.getValueType();
4257     // ComputeNumSignBits not yet implemented for scalable vectors.
4258     if (VecVT.isScalableVector())
4259       break;
4260     const unsigned BitWidth = Op.getValueSizeInBits();
4261     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4262     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4263 
4264     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4265     // anything about sign bits. But if the sizes match we can derive knowledge
4266     // about sign bits from the vector operand.
4267     if (BitWidth != EltBitWidth)
4268       break;
4269 
4270     // If we know the element index, just demand that vector element, else for
4271     // an unknown element index, ignore DemandedElts and demand them all.
4272     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4273     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4274     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4275       DemandedSrcElts =
4276           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4277 
4278     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4279   }
4280   case ISD::EXTRACT_SUBVECTOR: {
4281     // Offset the demanded elts by the subvector index.
4282     SDValue Src = Op.getOperand(0);
4283     // Bail until we can represent demanded elements for scalable vectors.
4284     if (Src.getValueType().isScalableVector())
4285       break;
4286     uint64_t Idx = Op.getConstantOperandVal(1);
4287     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4288     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4289     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4290   }
4291   case ISD::CONCAT_VECTORS: {
4292     // Determine the minimum number of sign bits across all demanded
4293     // elts of the input vectors. Early out if the result is already 1.
4294     Tmp = std::numeric_limits<unsigned>::max();
4295     EVT SubVectorVT = Op.getOperand(0).getValueType();
4296     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4297     unsigned NumSubVectors = Op.getNumOperands();
4298     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4299       APInt DemandedSub =
4300           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4301       if (!DemandedSub)
4302         continue;
4303       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4304       Tmp = std::min(Tmp, Tmp2);
4305     }
4306     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4307     return Tmp;
4308   }
4309   case ISD::INSERT_SUBVECTOR: {
4310     // Demand any elements from the subvector and the remainder from the src its
4311     // inserted into.
4312     SDValue Src = Op.getOperand(0);
4313     SDValue Sub = Op.getOperand(1);
4314     uint64_t Idx = Op.getConstantOperandVal(2);
4315     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4316     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4317     APInt DemandedSrcElts = DemandedElts;
4318     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4319 
4320     Tmp = std::numeric_limits<unsigned>::max();
4321     if (!!DemandedSubElts) {
4322       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4323       if (Tmp == 1)
4324         return 1; // early-out
4325     }
4326     if (!!DemandedSrcElts) {
4327       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4328       Tmp = std::min(Tmp, Tmp2);
4329     }
4330     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4331     return Tmp;
4332   }
4333   case ISD::ATOMIC_CMP_SWAP:
4334   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4335   case ISD::ATOMIC_SWAP:
4336   case ISD::ATOMIC_LOAD_ADD:
4337   case ISD::ATOMIC_LOAD_SUB:
4338   case ISD::ATOMIC_LOAD_AND:
4339   case ISD::ATOMIC_LOAD_CLR:
4340   case ISD::ATOMIC_LOAD_OR:
4341   case ISD::ATOMIC_LOAD_XOR:
4342   case ISD::ATOMIC_LOAD_NAND:
4343   case ISD::ATOMIC_LOAD_MIN:
4344   case ISD::ATOMIC_LOAD_MAX:
4345   case ISD::ATOMIC_LOAD_UMIN:
4346   case ISD::ATOMIC_LOAD_UMAX:
4347   case ISD::ATOMIC_LOAD: {
4348     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4349     // If we are looking at the loaded value.
4350     if (Op.getResNo() == 0) {
4351       if (Tmp == VTBits)
4352         return 1; // early-out
4353       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4354         return VTBits - Tmp + 1;
4355       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4356         return VTBits - Tmp;
4357     }
4358     break;
4359   }
4360   }
4361 
4362   // If we are looking at the loaded value of the SDNode.
4363   if (Op.getResNo() == 0) {
4364     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4365     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4366       unsigned ExtType = LD->getExtensionType();
4367       switch (ExtType) {
4368       default: break;
4369       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4370         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4371         return VTBits - Tmp + 1;
4372       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4373         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4374         return VTBits - Tmp;
4375       case ISD::NON_EXTLOAD:
4376         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4377           // We only need to handle vectors - computeKnownBits should handle
4378           // scalar cases.
4379           Type *CstTy = Cst->getType();
4380           if (CstTy->isVectorTy() &&
4381               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4382               VTBits == CstTy->getScalarSizeInBits()) {
4383             Tmp = VTBits;
4384             for (unsigned i = 0; i != NumElts; ++i) {
4385               if (!DemandedElts[i])
4386                 continue;
4387               if (Constant *Elt = Cst->getAggregateElement(i)) {
4388                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4389                   const APInt &Value = CInt->getValue();
4390                   Tmp = std::min(Tmp, Value.getNumSignBits());
4391                   continue;
4392                 }
4393                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4394                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4395                   Tmp = std::min(Tmp, Value.getNumSignBits());
4396                   continue;
4397                 }
4398               }
4399               // Unknown type. Conservatively assume no bits match sign bit.
4400               return 1;
4401             }
4402             return Tmp;
4403           }
4404         }
4405         break;
4406       }
4407     }
4408   }
4409 
4410   // Allow the target to implement this method for its nodes.
4411   if (Opcode >= ISD::BUILTIN_OP_END ||
4412       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4413       Opcode == ISD::INTRINSIC_W_CHAIN ||
4414       Opcode == ISD::INTRINSIC_VOID) {
4415     unsigned NumBits =
4416         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4417     if (NumBits > 1)
4418       FirstAnswer = std::max(FirstAnswer, NumBits);
4419   }
4420 
4421   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4422   // use this information.
4423   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4424   return std::max(FirstAnswer, Known.countMinSignBits());
4425 }
4426 
4427 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4428                                                  unsigned Depth) const {
4429   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4430   return Op.getScalarValueSizeInBits() - SignBits + 1;
4431 }
4432 
4433 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4434                                                  const APInt &DemandedElts,
4435                                                  unsigned Depth) const {
4436   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4437   return Op.getScalarValueSizeInBits() - SignBits + 1;
4438 }
4439 
4440 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4441                                                     unsigned Depth) const {
4442   // Early out for FREEZE.
4443   if (Op.getOpcode() == ISD::FREEZE)
4444     return true;
4445 
4446   // TODO: Assume we don't know anything for now.
4447   EVT VT = Op.getValueType();
4448   if (VT.isScalableVector())
4449     return false;
4450 
4451   APInt DemandedElts = VT.isVector()
4452                            ? APInt::getAllOnes(VT.getVectorNumElements())
4453                            : APInt(1, 1);
4454   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4455 }
4456 
4457 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4458                                                     const APInt &DemandedElts,
4459                                                     bool PoisonOnly,
4460                                                     unsigned Depth) const {
4461   unsigned Opcode = Op.getOpcode();
4462 
4463   // Early out for FREEZE.
4464   if (Opcode == ISD::FREEZE)
4465     return true;
4466 
4467   if (Depth >= MaxRecursionDepth)
4468     return false; // Limit search depth.
4469 
4470   if (isIntOrFPConstant(Op))
4471     return true;
4472 
4473   switch (Opcode) {
4474   case ISD::UNDEF:
4475     return PoisonOnly;
4476 
4477   case ISD::BUILD_VECTOR:
4478     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4479     // this shouldn't affect the result.
4480     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4481       if (!DemandedElts[i])
4482         continue;
4483       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4484                                             Depth + 1))
4485         return false;
4486     }
4487     return true;
4488 
4489   // TODO: Search for noundef attributes from library functions.
4490 
4491   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4492 
4493   default:
4494     // Allow the target to implement this method for its nodes.
4495     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4496         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4497       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4498           Op, DemandedElts, *this, PoisonOnly, Depth);
4499     break;
4500   }
4501 
4502   return false;
4503 }
4504 
4505 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4506   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4507       !isa<ConstantSDNode>(Op.getOperand(1)))
4508     return false;
4509 
4510   if (Op.getOpcode() == ISD::OR &&
4511       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4512     return false;
4513 
4514   return true;
4515 }
4516 
4517 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4518   // If we're told that NaNs won't happen, assume they won't.
4519   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4520     return true;
4521 
4522   if (Depth >= MaxRecursionDepth)
4523     return false; // Limit search depth.
4524 
4525   // TODO: Handle vectors.
4526   // If the value is a constant, we can obviously see if it is a NaN or not.
4527   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4528     return !C->getValueAPF().isNaN() ||
4529            (SNaN && !C->getValueAPF().isSignaling());
4530   }
4531 
4532   unsigned Opcode = Op.getOpcode();
4533   switch (Opcode) {
4534   case ISD::FADD:
4535   case ISD::FSUB:
4536   case ISD::FMUL:
4537   case ISD::FDIV:
4538   case ISD::FREM:
4539   case ISD::FSIN:
4540   case ISD::FCOS: {
4541     if (SNaN)
4542       return true;
4543     // TODO: Need isKnownNeverInfinity
4544     return false;
4545   }
4546   case ISD::FCANONICALIZE:
4547   case ISD::FEXP:
4548   case ISD::FEXP2:
4549   case ISD::FTRUNC:
4550   case ISD::FFLOOR:
4551   case ISD::FCEIL:
4552   case ISD::FROUND:
4553   case ISD::FROUNDEVEN:
4554   case ISD::FRINT:
4555   case ISD::FNEARBYINT: {
4556     if (SNaN)
4557       return true;
4558     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4559   }
4560   case ISD::FABS:
4561   case ISD::FNEG:
4562   case ISD::FCOPYSIGN: {
4563     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4564   }
4565   case ISD::SELECT:
4566     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4567            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4568   case ISD::FP_EXTEND:
4569   case ISD::FP_ROUND: {
4570     if (SNaN)
4571       return true;
4572     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4573   }
4574   case ISD::SINT_TO_FP:
4575   case ISD::UINT_TO_FP:
4576     return true;
4577   case ISD::FMA:
4578   case ISD::FMAD: {
4579     if (SNaN)
4580       return true;
4581     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4582            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4583            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4584   }
4585   case ISD::FSQRT: // Need is known positive
4586   case ISD::FLOG:
4587   case ISD::FLOG2:
4588   case ISD::FLOG10:
4589   case ISD::FPOWI:
4590   case ISD::FPOW: {
4591     if (SNaN)
4592       return true;
4593     // TODO: Refine on operand
4594     return false;
4595   }
4596   case ISD::FMINNUM:
4597   case ISD::FMAXNUM: {
4598     // Only one needs to be known not-nan, since it will be returned if the
4599     // other ends up being one.
4600     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4601            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4602   }
4603   case ISD::FMINNUM_IEEE:
4604   case ISD::FMAXNUM_IEEE: {
4605     if (SNaN)
4606       return true;
4607     // This can return a NaN if either operand is an sNaN, or if both operands
4608     // are NaN.
4609     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4610             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4611            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4612             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4613   }
4614   case ISD::FMINIMUM:
4615   case ISD::FMAXIMUM: {
4616     // TODO: Does this quiet or return the origina NaN as-is?
4617     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4618            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4619   }
4620   case ISD::EXTRACT_VECTOR_ELT: {
4621     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4622   }
4623   default:
4624     if (Opcode >= ISD::BUILTIN_OP_END ||
4625         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4626         Opcode == ISD::INTRINSIC_W_CHAIN ||
4627         Opcode == ISD::INTRINSIC_VOID) {
4628       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4629     }
4630 
4631     return false;
4632   }
4633 }
4634 
4635 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4636   assert(Op.getValueType().isFloatingPoint() &&
4637          "Floating point type expected");
4638 
4639   // If the value is a constant, we can obviously see if it is a zero or not.
4640   // TODO: Add BuildVector support.
4641   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4642     return !C->isZero();
4643   return false;
4644 }
4645 
4646 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4647   assert(!Op.getValueType().isFloatingPoint() &&
4648          "Floating point types unsupported - use isKnownNeverZeroFloat");
4649 
4650   // If the value is a constant, we can obviously see if it is a zero or not.
4651   if (ISD::matchUnaryPredicate(Op,
4652                                [](ConstantSDNode *C) { return !C->isZero(); }))
4653     return true;
4654 
4655   // TODO: Recognize more cases here.
4656   switch (Op.getOpcode()) {
4657   default: break;
4658   case ISD::OR:
4659     if (isKnownNeverZero(Op.getOperand(1)) ||
4660         isKnownNeverZero(Op.getOperand(0)))
4661       return true;
4662     break;
4663   }
4664 
4665   return false;
4666 }
4667 
4668 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4669   // Check the obvious case.
4670   if (A == B) return true;
4671 
4672   // For for negative and positive zero.
4673   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4674     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4675       if (CA->isZero() && CB->isZero()) return true;
4676 
4677   // Otherwise they may not be equal.
4678   return false;
4679 }
4680 
4681 // FIXME: unify with llvm::haveNoCommonBitsSet.
4682 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4683   assert(A.getValueType() == B.getValueType() &&
4684          "Values must have the same type");
4685   // Match masked merge pattern (X & ~M) op (Y & M)
4686   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4687     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4688       if (isBitwiseNot(NotM, true)) {
4689         SDValue NotOperand = NotM->getOperand(0);
4690         return NotOperand == And->getOperand(0) ||
4691                NotOperand == And->getOperand(1);
4692       }
4693       return false;
4694     };
4695     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4696         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4697         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4698         MatchNoCommonBitsPattern(B->getOperand(1), A))
4699       return true;
4700   }
4701   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4702                                         computeKnownBits(B));
4703 }
4704 
4705 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4706                                SelectionDAG &DAG) {
4707   if (cast<ConstantSDNode>(Step)->isZero())
4708     return DAG.getConstant(0, DL, VT);
4709 
4710   return SDValue();
4711 }
4712 
4713 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4714                                 ArrayRef<SDValue> Ops,
4715                                 SelectionDAG &DAG) {
4716   int NumOps = Ops.size();
4717   assert(NumOps != 0 && "Can't build an empty vector!");
4718   assert(!VT.isScalableVector() &&
4719          "BUILD_VECTOR cannot be used with scalable types");
4720   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4721          "Incorrect element count in BUILD_VECTOR!");
4722 
4723   // BUILD_VECTOR of UNDEFs is UNDEF.
4724   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4725     return DAG.getUNDEF(VT);
4726 
4727   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4728   SDValue IdentitySrc;
4729   bool IsIdentity = true;
4730   for (int i = 0; i != NumOps; ++i) {
4731     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4732         Ops[i].getOperand(0).getValueType() != VT ||
4733         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4734         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4735         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4736       IsIdentity = false;
4737       break;
4738     }
4739     IdentitySrc = Ops[i].getOperand(0);
4740   }
4741   if (IsIdentity)
4742     return IdentitySrc;
4743 
4744   return SDValue();
4745 }
4746 
4747 /// Try to simplify vector concatenation to an input value, undef, or build
4748 /// vector.
4749 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4750                                   ArrayRef<SDValue> Ops,
4751                                   SelectionDAG &DAG) {
4752   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4753   assert(llvm::all_of(Ops,
4754                       [Ops](SDValue Op) {
4755                         return Ops[0].getValueType() == Op.getValueType();
4756                       }) &&
4757          "Concatenation of vectors with inconsistent value types!");
4758   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4759              VT.getVectorElementCount() &&
4760          "Incorrect element count in vector concatenation!");
4761 
4762   if (Ops.size() == 1)
4763     return Ops[0];
4764 
4765   // Concat of UNDEFs is UNDEF.
4766   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4767     return DAG.getUNDEF(VT);
4768 
4769   // Scan the operands and look for extract operations from a single source
4770   // that correspond to insertion at the same location via this concatenation:
4771   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4772   SDValue IdentitySrc;
4773   bool IsIdentity = true;
4774   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4775     SDValue Op = Ops[i];
4776     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4777     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4778         Op.getOperand(0).getValueType() != VT ||
4779         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4780         Op.getConstantOperandVal(1) != IdentityIndex) {
4781       IsIdentity = false;
4782       break;
4783     }
4784     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4785            "Unexpected identity source vector for concat of extracts");
4786     IdentitySrc = Op.getOperand(0);
4787   }
4788   if (IsIdentity) {
4789     assert(IdentitySrc && "Failed to set source vector of extracts");
4790     return IdentitySrc;
4791   }
4792 
4793   // The code below this point is only designed to work for fixed width
4794   // vectors, so we bail out for now.
4795   if (VT.isScalableVector())
4796     return SDValue();
4797 
4798   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4799   // simplified to one big BUILD_VECTOR.
4800   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4801   EVT SVT = VT.getScalarType();
4802   SmallVector<SDValue, 16> Elts;
4803   for (SDValue Op : Ops) {
4804     EVT OpVT = Op.getValueType();
4805     if (Op.isUndef())
4806       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4807     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4808       Elts.append(Op->op_begin(), Op->op_end());
4809     else
4810       return SDValue();
4811   }
4812 
4813   // BUILD_VECTOR requires all inputs to be of the same type, find the
4814   // maximum type and extend them all.
4815   for (SDValue Op : Elts)
4816     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4817 
4818   if (SVT.bitsGT(VT.getScalarType())) {
4819     for (SDValue &Op : Elts) {
4820       if (Op.isUndef())
4821         Op = DAG.getUNDEF(SVT);
4822       else
4823         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4824                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4825                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4826     }
4827   }
4828 
4829   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4830   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4831   return V;
4832 }
4833 
4834 /// Gets or creates the specified node.
4835 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4836   FoldingSetNodeID ID;
4837   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4838   void *IP = nullptr;
4839   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4840     return SDValue(E, 0);
4841 
4842   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4843                               getVTList(VT));
4844   CSEMap.InsertNode(N, IP);
4845 
4846   InsertNode(N);
4847   SDValue V = SDValue(N, 0);
4848   NewSDValueDbgMsg(V, "Creating new node: ", this);
4849   return V;
4850 }
4851 
4852 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4853                               SDValue Operand) {
4854   SDNodeFlags Flags;
4855   if (Inserter)
4856     Flags = Inserter->getFlags();
4857   return getNode(Opcode, DL, VT, Operand, Flags);
4858 }
4859 
4860 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4861                               SDValue Operand, const SDNodeFlags Flags) {
4862   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4863          "Operand is DELETED_NODE!");
4864   // Constant fold unary operations with an integer constant operand. Even
4865   // opaque constant will be folded, because the folding of unary operations
4866   // doesn't create new constants with different values. Nevertheless, the
4867   // opaque flag is preserved during folding to prevent future folding with
4868   // other constants.
4869   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4870     const APInt &Val = C->getAPIntValue();
4871     switch (Opcode) {
4872     default: break;
4873     case ISD::SIGN_EXTEND:
4874       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4875                          C->isTargetOpcode(), C->isOpaque());
4876     case ISD::TRUNCATE:
4877       if (C->isOpaque())
4878         break;
4879       LLVM_FALLTHROUGH;
4880     case ISD::ZERO_EXTEND:
4881       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4882                          C->isTargetOpcode(), C->isOpaque());
4883     case ISD::ANY_EXTEND:
4884       // Some targets like RISCV prefer to sign extend some types.
4885       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4886         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4887                            C->isTargetOpcode(), C->isOpaque());
4888       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4889                          C->isTargetOpcode(), C->isOpaque());
4890     case ISD::UINT_TO_FP:
4891     case ISD::SINT_TO_FP: {
4892       APFloat apf(EVTToAPFloatSemantics(VT),
4893                   APInt::getZero(VT.getSizeInBits()));
4894       (void)apf.convertFromAPInt(Val,
4895                                  Opcode==ISD::SINT_TO_FP,
4896                                  APFloat::rmNearestTiesToEven);
4897       return getConstantFP(apf, DL, VT);
4898     }
4899     case ISD::BITCAST:
4900       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4901         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4902       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4903         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4904       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4905         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4906       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4907         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4908       break;
4909     case ISD::ABS:
4910       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4911                          C->isOpaque());
4912     case ISD::BITREVERSE:
4913       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4914                          C->isOpaque());
4915     case ISD::BSWAP:
4916       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4917                          C->isOpaque());
4918     case ISD::CTPOP:
4919       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4920                          C->isOpaque());
4921     case ISD::CTLZ:
4922     case ISD::CTLZ_ZERO_UNDEF:
4923       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4924                          C->isOpaque());
4925     case ISD::CTTZ:
4926     case ISD::CTTZ_ZERO_UNDEF:
4927       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4928                          C->isOpaque());
4929     case ISD::FP16_TO_FP: {
4930       bool Ignored;
4931       APFloat FPV(APFloat::IEEEhalf(),
4932                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4933 
4934       // This can return overflow, underflow, or inexact; we don't care.
4935       // FIXME need to be more flexible about rounding mode.
4936       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4937                         APFloat::rmNearestTiesToEven, &Ignored);
4938       return getConstantFP(FPV, DL, VT);
4939     }
4940     case ISD::STEP_VECTOR: {
4941       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4942         return V;
4943       break;
4944     }
4945     }
4946   }
4947 
4948   // Constant fold unary operations with a floating point constant operand.
4949   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4950     APFloat V = C->getValueAPF();    // make copy
4951     switch (Opcode) {
4952     case ISD::FNEG:
4953       V.changeSign();
4954       return getConstantFP(V, DL, VT);
4955     case ISD::FABS:
4956       V.clearSign();
4957       return getConstantFP(V, DL, VT);
4958     case ISD::FCEIL: {
4959       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4960       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4961         return getConstantFP(V, DL, VT);
4962       break;
4963     }
4964     case ISD::FTRUNC: {
4965       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4966       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4967         return getConstantFP(V, DL, VT);
4968       break;
4969     }
4970     case ISD::FFLOOR: {
4971       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4972       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4973         return getConstantFP(V, DL, VT);
4974       break;
4975     }
4976     case ISD::FP_EXTEND: {
4977       bool ignored;
4978       // This can return overflow, underflow, or inexact; we don't care.
4979       // FIXME need to be more flexible about rounding mode.
4980       (void)V.convert(EVTToAPFloatSemantics(VT),
4981                       APFloat::rmNearestTiesToEven, &ignored);
4982       return getConstantFP(V, DL, VT);
4983     }
4984     case ISD::FP_TO_SINT:
4985     case ISD::FP_TO_UINT: {
4986       bool ignored;
4987       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4988       // FIXME need to be more flexible about rounding mode.
4989       APFloat::opStatus s =
4990           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4991       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4992         break;
4993       return getConstant(IntVal, DL, VT);
4994     }
4995     case ISD::BITCAST:
4996       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4997         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4998       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4999         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5000       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5001         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5002       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5003         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5004       break;
5005     case ISD::FP_TO_FP16: {
5006       bool Ignored;
5007       // This can return overflow, underflow, or inexact; we don't care.
5008       // FIXME need to be more flexible about rounding mode.
5009       (void)V.convert(APFloat::IEEEhalf(),
5010                       APFloat::rmNearestTiesToEven, &Ignored);
5011       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5012     }
5013     }
5014   }
5015 
5016   // Constant fold unary operations with a vector integer or float operand.
5017   switch (Opcode) {
5018   default:
5019     // FIXME: Entirely reasonable to perform folding of other unary
5020     // operations here as the need arises.
5021     break;
5022   case ISD::FNEG:
5023   case ISD::FABS:
5024   case ISD::FCEIL:
5025   case ISD::FTRUNC:
5026   case ISD::FFLOOR:
5027   case ISD::FP_EXTEND:
5028   case ISD::FP_TO_SINT:
5029   case ISD::FP_TO_UINT:
5030   case ISD::TRUNCATE:
5031   case ISD::ANY_EXTEND:
5032   case ISD::ZERO_EXTEND:
5033   case ISD::SIGN_EXTEND:
5034   case ISD::UINT_TO_FP:
5035   case ISD::SINT_TO_FP:
5036   case ISD::ABS:
5037   case ISD::BITREVERSE:
5038   case ISD::BSWAP:
5039   case ISD::CTLZ:
5040   case ISD::CTLZ_ZERO_UNDEF:
5041   case ISD::CTTZ:
5042   case ISD::CTTZ_ZERO_UNDEF:
5043   case ISD::CTPOP: {
5044     SDValue Ops = {Operand};
5045     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5046       return Fold;
5047   }
5048   }
5049 
5050   unsigned OpOpcode = Operand.getNode()->getOpcode();
5051   switch (Opcode) {
5052   case ISD::STEP_VECTOR:
5053     assert(VT.isScalableVector() &&
5054            "STEP_VECTOR can only be used with scalable types");
5055     assert(OpOpcode == ISD::TargetConstant &&
5056            VT.getVectorElementType() == Operand.getValueType() &&
5057            "Unexpected step operand");
5058     break;
5059   case ISD::FREEZE:
5060     assert(VT == Operand.getValueType() && "Unexpected VT!");
5061     break;
5062   case ISD::TokenFactor:
5063   case ISD::MERGE_VALUES:
5064   case ISD::CONCAT_VECTORS:
5065     return Operand;         // Factor, merge or concat of one node?  No need.
5066   case ISD::BUILD_VECTOR: {
5067     // Attempt to simplify BUILD_VECTOR.
5068     SDValue Ops[] = {Operand};
5069     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5070       return V;
5071     break;
5072   }
5073   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5074   case ISD::FP_EXTEND:
5075     assert(VT.isFloatingPoint() &&
5076            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5077     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5078     assert((!VT.isVector() ||
5079             VT.getVectorElementCount() ==
5080             Operand.getValueType().getVectorElementCount()) &&
5081            "Vector element count mismatch!");
5082     assert(Operand.getValueType().bitsLT(VT) &&
5083            "Invalid fpext node, dst < src!");
5084     if (Operand.isUndef())
5085       return getUNDEF(VT);
5086     break;
5087   case ISD::FP_TO_SINT:
5088   case ISD::FP_TO_UINT:
5089     if (Operand.isUndef())
5090       return getUNDEF(VT);
5091     break;
5092   case ISD::SINT_TO_FP:
5093   case ISD::UINT_TO_FP:
5094     // [us]itofp(undef) = 0, because the result value is bounded.
5095     if (Operand.isUndef())
5096       return getConstantFP(0.0, DL, VT);
5097     break;
5098   case ISD::SIGN_EXTEND:
5099     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5100            "Invalid SIGN_EXTEND!");
5101     assert(VT.isVector() == Operand.getValueType().isVector() &&
5102            "SIGN_EXTEND result type type should be vector iff the operand "
5103            "type is vector!");
5104     if (Operand.getValueType() == VT) return Operand;   // noop extension
5105     assert((!VT.isVector() ||
5106             VT.getVectorElementCount() ==
5107                 Operand.getValueType().getVectorElementCount()) &&
5108            "Vector element count mismatch!");
5109     assert(Operand.getValueType().bitsLT(VT) &&
5110            "Invalid sext node, dst < src!");
5111     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5112       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5113     if (OpOpcode == ISD::UNDEF)
5114       // sext(undef) = 0, because the top bits will all be the same.
5115       return getConstant(0, DL, VT);
5116     break;
5117   case ISD::ZERO_EXTEND:
5118     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5119            "Invalid ZERO_EXTEND!");
5120     assert(VT.isVector() == Operand.getValueType().isVector() &&
5121            "ZERO_EXTEND result type type should be vector iff the operand "
5122            "type is vector!");
5123     if (Operand.getValueType() == VT) return Operand;   // noop extension
5124     assert((!VT.isVector() ||
5125             VT.getVectorElementCount() ==
5126                 Operand.getValueType().getVectorElementCount()) &&
5127            "Vector element count mismatch!");
5128     assert(Operand.getValueType().bitsLT(VT) &&
5129            "Invalid zext node, dst < src!");
5130     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5131       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5132     if (OpOpcode == ISD::UNDEF)
5133       // zext(undef) = 0, because the top bits will be zero.
5134       return getConstant(0, DL, VT);
5135     break;
5136   case ISD::ANY_EXTEND:
5137     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5138            "Invalid ANY_EXTEND!");
5139     assert(VT.isVector() == Operand.getValueType().isVector() &&
5140            "ANY_EXTEND result type type should be vector iff the operand "
5141            "type is vector!");
5142     if (Operand.getValueType() == VT) return Operand;   // noop extension
5143     assert((!VT.isVector() ||
5144             VT.getVectorElementCount() ==
5145                 Operand.getValueType().getVectorElementCount()) &&
5146            "Vector element count mismatch!");
5147     assert(Operand.getValueType().bitsLT(VT) &&
5148            "Invalid anyext node, dst < src!");
5149 
5150     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5151         OpOpcode == ISD::ANY_EXTEND)
5152       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5153       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5154     if (OpOpcode == ISD::UNDEF)
5155       return getUNDEF(VT);
5156 
5157     // (ext (trunc x)) -> x
5158     if (OpOpcode == ISD::TRUNCATE) {
5159       SDValue OpOp = Operand.getOperand(0);
5160       if (OpOp.getValueType() == VT) {
5161         transferDbgValues(Operand, OpOp);
5162         return OpOp;
5163       }
5164     }
5165     break;
5166   case ISD::TRUNCATE:
5167     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5168            "Invalid TRUNCATE!");
5169     assert(VT.isVector() == Operand.getValueType().isVector() &&
5170            "TRUNCATE result type type should be vector iff the operand "
5171            "type is vector!");
5172     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5173     assert((!VT.isVector() ||
5174             VT.getVectorElementCount() ==
5175                 Operand.getValueType().getVectorElementCount()) &&
5176            "Vector element count mismatch!");
5177     assert(Operand.getValueType().bitsGT(VT) &&
5178            "Invalid truncate node, src < dst!");
5179     if (OpOpcode == ISD::TRUNCATE)
5180       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5181     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5182         OpOpcode == ISD::ANY_EXTEND) {
5183       // If the source is smaller than the dest, we still need an extend.
5184       if (Operand.getOperand(0).getValueType().getScalarType()
5185             .bitsLT(VT.getScalarType()))
5186         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5187       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5188         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5189       return Operand.getOperand(0);
5190     }
5191     if (OpOpcode == ISD::UNDEF)
5192       return getUNDEF(VT);
5193     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5194       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5195     break;
5196   case ISD::ANY_EXTEND_VECTOR_INREG:
5197   case ISD::ZERO_EXTEND_VECTOR_INREG:
5198   case ISD::SIGN_EXTEND_VECTOR_INREG:
5199     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5200     assert(Operand.getValueType().bitsLE(VT) &&
5201            "The input must be the same size or smaller than the result.");
5202     assert(VT.getVectorMinNumElements() <
5203                Operand.getValueType().getVectorMinNumElements() &&
5204            "The destination vector type must have fewer lanes than the input.");
5205     break;
5206   case ISD::ABS:
5207     assert(VT.isInteger() && VT == Operand.getValueType() &&
5208            "Invalid ABS!");
5209     if (OpOpcode == ISD::UNDEF)
5210       return getUNDEF(VT);
5211     break;
5212   case ISD::BSWAP:
5213     assert(VT.isInteger() && VT == Operand.getValueType() &&
5214            "Invalid BSWAP!");
5215     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5216            "BSWAP types must be a multiple of 16 bits!");
5217     if (OpOpcode == ISD::UNDEF)
5218       return getUNDEF(VT);
5219     // bswap(bswap(X)) -> X.
5220     if (OpOpcode == ISD::BSWAP)
5221       return Operand.getOperand(0);
5222     break;
5223   case ISD::BITREVERSE:
5224     assert(VT.isInteger() && VT == Operand.getValueType() &&
5225            "Invalid BITREVERSE!");
5226     if (OpOpcode == ISD::UNDEF)
5227       return getUNDEF(VT);
5228     break;
5229   case ISD::BITCAST:
5230     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5231            "Cannot BITCAST between types of different sizes!");
5232     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5233     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5234       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5235     if (OpOpcode == ISD::UNDEF)
5236       return getUNDEF(VT);
5237     break;
5238   case ISD::SCALAR_TO_VECTOR:
5239     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5240            (VT.getVectorElementType() == Operand.getValueType() ||
5241             (VT.getVectorElementType().isInteger() &&
5242              Operand.getValueType().isInteger() &&
5243              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5244            "Illegal SCALAR_TO_VECTOR node!");
5245     if (OpOpcode == ISD::UNDEF)
5246       return getUNDEF(VT);
5247     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5248     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5249         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5250         Operand.getConstantOperandVal(1) == 0 &&
5251         Operand.getOperand(0).getValueType() == VT)
5252       return Operand.getOperand(0);
5253     break;
5254   case ISD::FNEG:
5255     // Negation of an unknown bag of bits is still completely undefined.
5256     if (OpOpcode == ISD::UNDEF)
5257       return getUNDEF(VT);
5258 
5259     if (OpOpcode == ISD::FNEG)  // --X -> X
5260       return Operand.getOperand(0);
5261     break;
5262   case ISD::FABS:
5263     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5264       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5265     break;
5266   case ISD::VSCALE:
5267     assert(VT == Operand.getValueType() && "Unexpected VT!");
5268     break;
5269   case ISD::CTPOP:
5270     if (Operand.getValueType().getScalarType() == MVT::i1)
5271       return Operand;
5272     break;
5273   case ISD::CTLZ:
5274   case ISD::CTTZ:
5275     if (Operand.getValueType().getScalarType() == MVT::i1)
5276       return getNOT(DL, Operand, Operand.getValueType());
5277     break;
5278   case ISD::VECREDUCE_SMIN:
5279   case ISD::VECREDUCE_UMAX:
5280     if (Operand.getValueType().getScalarType() == MVT::i1)
5281       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5282     break;
5283   case ISD::VECREDUCE_SMAX:
5284   case ISD::VECREDUCE_UMIN:
5285     if (Operand.getValueType().getScalarType() == MVT::i1)
5286       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5287     break;
5288   }
5289 
5290   SDNode *N;
5291   SDVTList VTs = getVTList(VT);
5292   SDValue Ops[] = {Operand};
5293   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5294     FoldingSetNodeID ID;
5295     AddNodeIDNode(ID, Opcode, VTs, Ops);
5296     void *IP = nullptr;
5297     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5298       E->intersectFlagsWith(Flags);
5299       return SDValue(E, 0);
5300     }
5301 
5302     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5303     N->setFlags(Flags);
5304     createOperands(N, Ops);
5305     CSEMap.InsertNode(N, IP);
5306   } else {
5307     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5308     createOperands(N, Ops);
5309   }
5310 
5311   InsertNode(N);
5312   SDValue V = SDValue(N, 0);
5313   NewSDValueDbgMsg(V, "Creating new node: ", this);
5314   return V;
5315 }
5316 
5317 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5318                                        const APInt &C2) {
5319   switch (Opcode) {
5320   case ISD::ADD:  return C1 + C2;
5321   case ISD::SUB:  return C1 - C2;
5322   case ISD::MUL:  return C1 * C2;
5323   case ISD::AND:  return C1 & C2;
5324   case ISD::OR:   return C1 | C2;
5325   case ISD::XOR:  return C1 ^ C2;
5326   case ISD::SHL:  return C1 << C2;
5327   case ISD::SRL:  return C1.lshr(C2);
5328   case ISD::SRA:  return C1.ashr(C2);
5329   case ISD::ROTL: return C1.rotl(C2);
5330   case ISD::ROTR: return C1.rotr(C2);
5331   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5332   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5333   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5334   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5335   case ISD::SADDSAT: return C1.sadd_sat(C2);
5336   case ISD::UADDSAT: return C1.uadd_sat(C2);
5337   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5338   case ISD::USUBSAT: return C1.usub_sat(C2);
5339   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5340   case ISD::USHLSAT: return C1.ushl_sat(C2);
5341   case ISD::UDIV:
5342     if (!C2.getBoolValue())
5343       break;
5344     return C1.udiv(C2);
5345   case ISD::UREM:
5346     if (!C2.getBoolValue())
5347       break;
5348     return C1.urem(C2);
5349   case ISD::SDIV:
5350     if (!C2.getBoolValue())
5351       break;
5352     return C1.sdiv(C2);
5353   case ISD::SREM:
5354     if (!C2.getBoolValue())
5355       break;
5356     return C1.srem(C2);
5357   case ISD::MULHS: {
5358     unsigned FullWidth = C1.getBitWidth() * 2;
5359     APInt C1Ext = C1.sext(FullWidth);
5360     APInt C2Ext = C2.sext(FullWidth);
5361     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5362   }
5363   case ISD::MULHU: {
5364     unsigned FullWidth = C1.getBitWidth() * 2;
5365     APInt C1Ext = C1.zext(FullWidth);
5366     APInt C2Ext = C2.zext(FullWidth);
5367     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5368   }
5369   case ISD::AVGFLOORS: {
5370     unsigned FullWidth = C1.getBitWidth() + 1;
5371     APInt C1Ext = C1.sext(FullWidth);
5372     APInt C2Ext = C2.sext(FullWidth);
5373     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5374   }
5375   case ISD::AVGFLOORU: {
5376     unsigned FullWidth = C1.getBitWidth() + 1;
5377     APInt C1Ext = C1.zext(FullWidth);
5378     APInt C2Ext = C2.zext(FullWidth);
5379     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5380   }
5381   case ISD::AVGCEILS: {
5382     unsigned FullWidth = C1.getBitWidth() + 1;
5383     APInt C1Ext = C1.sext(FullWidth);
5384     APInt C2Ext = C2.sext(FullWidth);
5385     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5386   }
5387   case ISD::AVGCEILU: {
5388     unsigned FullWidth = C1.getBitWidth() + 1;
5389     APInt C1Ext = C1.zext(FullWidth);
5390     APInt C2Ext = C2.zext(FullWidth);
5391     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5392   }
5393   }
5394   return llvm::None;
5395 }
5396 
5397 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5398                                        const GlobalAddressSDNode *GA,
5399                                        const SDNode *N2) {
5400   if (GA->getOpcode() != ISD::GlobalAddress)
5401     return SDValue();
5402   if (!TLI->isOffsetFoldingLegal(GA))
5403     return SDValue();
5404   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5405   if (!C2)
5406     return SDValue();
5407   int64_t Offset = C2->getSExtValue();
5408   switch (Opcode) {
5409   case ISD::ADD: break;
5410   case ISD::SUB: Offset = -uint64_t(Offset); break;
5411   default: return SDValue();
5412   }
5413   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5414                           GA->getOffset() + uint64_t(Offset));
5415 }
5416 
5417 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5418   switch (Opcode) {
5419   case ISD::SDIV:
5420   case ISD::UDIV:
5421   case ISD::SREM:
5422   case ISD::UREM: {
5423     // If a divisor is zero/undef or any element of a divisor vector is
5424     // zero/undef, the whole op is undef.
5425     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5426     SDValue Divisor = Ops[1];
5427     if (Divisor.isUndef() || isNullConstant(Divisor))
5428       return true;
5429 
5430     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5431            llvm::any_of(Divisor->op_values(),
5432                         [](SDValue V) { return V.isUndef() ||
5433                                         isNullConstant(V); });
5434     // TODO: Handle signed overflow.
5435   }
5436   // TODO: Handle oversized shifts.
5437   default:
5438     return false;
5439   }
5440 }
5441 
5442 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5443                                              EVT VT, ArrayRef<SDValue> Ops) {
5444   // If the opcode is a target-specific ISD node, there's nothing we can
5445   // do here and the operand rules may not line up with the below, so
5446   // bail early.
5447   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5448   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5449   // foldCONCAT_VECTORS in getNode before this is called.
5450   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5451     return SDValue();
5452 
5453   unsigned NumOps = Ops.size();
5454   if (NumOps == 0)
5455     return SDValue();
5456 
5457   if (isUndef(Opcode, Ops))
5458     return getUNDEF(VT);
5459 
5460   // Handle binops special cases.
5461   if (NumOps == 2) {
5462     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5463       return CFP;
5464 
5465     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5466       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5467         if (C1->isOpaque() || C2->isOpaque())
5468           return SDValue();
5469 
5470         Optional<APInt> FoldAttempt =
5471             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5472         if (!FoldAttempt)
5473           return SDValue();
5474 
5475         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5476         assert((!Folded || !VT.isVector()) &&
5477                "Can't fold vectors ops with scalar operands");
5478         return Folded;
5479       }
5480     }
5481 
5482     // fold (add Sym, c) -> Sym+c
5483     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5484       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5485     if (TLI->isCommutativeBinOp(Opcode))
5486       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5487         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5488   }
5489 
5490   // This is for vector folding only from here on.
5491   if (!VT.isVector())
5492     return SDValue();
5493 
5494   ElementCount NumElts = VT.getVectorElementCount();
5495 
5496   // See if we can fold through bitcasted integer ops.
5497   // TODO: Can we handle undef elements?
5498   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5499       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5500       Ops[0].getOpcode() == ISD::BITCAST &&
5501       Ops[1].getOpcode() == ISD::BITCAST) {
5502     SDValue N1 = peekThroughBitcasts(Ops[0]);
5503     SDValue N2 = peekThroughBitcasts(Ops[1]);
5504     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5505     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5506     EVT BVVT = N1.getValueType();
5507     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5508       bool IsLE = getDataLayout().isLittleEndian();
5509       unsigned EltBits = VT.getScalarSizeInBits();
5510       SmallVector<APInt> RawBits1, RawBits2;
5511       BitVector UndefElts1, UndefElts2;
5512       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5513           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5514           UndefElts1.none() && UndefElts2.none()) {
5515         SmallVector<APInt> RawBits;
5516         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5517           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5518           if (!Fold)
5519             break;
5520           RawBits.push_back(Fold.getValue());
5521         }
5522         if (RawBits.size() == NumElts.getFixedValue()) {
5523           // We have constant folded, but we need to cast this again back to
5524           // the original (possibly legalized) type.
5525           SmallVector<APInt> DstBits;
5526           BitVector DstUndefs;
5527           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5528                                            DstBits, RawBits, DstUndefs,
5529                                            BitVector(RawBits.size(), false));
5530           EVT BVEltVT = BV1->getOperand(0).getValueType();
5531           unsigned BVEltBits = BVEltVT.getSizeInBits();
5532           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5533           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5534             if (DstUndefs[I])
5535               continue;
5536             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5537           }
5538           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5539         }
5540       }
5541     }
5542   }
5543 
5544   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5545   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5546   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5547       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5548     APInt RHSVal;
5549     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5550       APInt NewStep = Opcode == ISD::MUL
5551                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5552                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5553       return getStepVector(DL, VT, NewStep);
5554     }
5555   }
5556 
5557   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5558     return !Op.getValueType().isVector() ||
5559            Op.getValueType().getVectorElementCount() == NumElts;
5560   };
5561 
5562   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5563     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5564            Op.getOpcode() == ISD::BUILD_VECTOR ||
5565            Op.getOpcode() == ISD::SPLAT_VECTOR;
5566   };
5567 
5568   // All operands must be vector types with the same number of elements as
5569   // the result type and must be either UNDEF or a build/splat vector
5570   // or UNDEF scalars.
5571   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5572       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5573     return SDValue();
5574 
5575   // If we are comparing vectors, then the result needs to be a i1 boolean
5576   // that is then sign-extended back to the legal result type.
5577   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5578 
5579   // Find legal integer scalar type for constant promotion and
5580   // ensure that its scalar size is at least as large as source.
5581   EVT LegalSVT = VT.getScalarType();
5582   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5583     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5584     if (LegalSVT.bitsLT(VT.getScalarType()))
5585       return SDValue();
5586   }
5587 
5588   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5589   // only have one operand to check. For fixed-length vector types we may have
5590   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5591   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5592 
5593   // Constant fold each scalar lane separately.
5594   SmallVector<SDValue, 4> ScalarResults;
5595   for (unsigned I = 0; I != NumVectorElts; I++) {
5596     SmallVector<SDValue, 4> ScalarOps;
5597     for (SDValue Op : Ops) {
5598       EVT InSVT = Op.getValueType().getScalarType();
5599       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5600           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5601         if (Op.isUndef())
5602           ScalarOps.push_back(getUNDEF(InSVT));
5603         else
5604           ScalarOps.push_back(Op);
5605         continue;
5606       }
5607 
5608       SDValue ScalarOp =
5609           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5610       EVT ScalarVT = ScalarOp.getValueType();
5611 
5612       // Build vector (integer) scalar operands may need implicit
5613       // truncation - do this before constant folding.
5614       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5615         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5616 
5617       ScalarOps.push_back(ScalarOp);
5618     }
5619 
5620     // Constant fold the scalar operands.
5621     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5622 
5623     // Legalize the (integer) scalar constant if necessary.
5624     if (LegalSVT != SVT)
5625       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5626 
5627     // Scalar folding only succeeded if the result is a constant or UNDEF.
5628     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5629         ScalarResult.getOpcode() != ISD::ConstantFP)
5630       return SDValue();
5631     ScalarResults.push_back(ScalarResult);
5632   }
5633 
5634   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5635                                    : getBuildVector(VT, DL, ScalarResults);
5636   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5637   return V;
5638 }
5639 
5640 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5641                                          EVT VT, SDValue N1, SDValue N2) {
5642   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5643   //       should. That will require dealing with a potentially non-default
5644   //       rounding mode, checking the "opStatus" return value from the APFloat
5645   //       math calculations, and possibly other variations.
5646   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5647   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5648   if (N1CFP && N2CFP) {
5649     APFloat C1 = N1CFP->getValueAPF(); // make copy
5650     const APFloat &C2 = N2CFP->getValueAPF();
5651     switch (Opcode) {
5652     case ISD::FADD:
5653       C1.add(C2, APFloat::rmNearestTiesToEven);
5654       return getConstantFP(C1, DL, VT);
5655     case ISD::FSUB:
5656       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5657       return getConstantFP(C1, DL, VT);
5658     case ISD::FMUL:
5659       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5660       return getConstantFP(C1, DL, VT);
5661     case ISD::FDIV:
5662       C1.divide(C2, APFloat::rmNearestTiesToEven);
5663       return getConstantFP(C1, DL, VT);
5664     case ISD::FREM:
5665       C1.mod(C2);
5666       return getConstantFP(C1, DL, VT);
5667     case ISD::FCOPYSIGN:
5668       C1.copySign(C2);
5669       return getConstantFP(C1, DL, VT);
5670     case ISD::FMINNUM:
5671       return getConstantFP(minnum(C1, C2), DL, VT);
5672     case ISD::FMAXNUM:
5673       return getConstantFP(maxnum(C1, C2), DL, VT);
5674     case ISD::FMINIMUM:
5675       return getConstantFP(minimum(C1, C2), DL, VT);
5676     case ISD::FMAXIMUM:
5677       return getConstantFP(maximum(C1, C2), DL, VT);
5678     default: break;
5679     }
5680   }
5681   if (N1CFP && Opcode == ISD::FP_ROUND) {
5682     APFloat C1 = N1CFP->getValueAPF();    // make copy
5683     bool Unused;
5684     // This can return overflow, underflow, or inexact; we don't care.
5685     // FIXME need to be more flexible about rounding mode.
5686     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5687                       &Unused);
5688     return getConstantFP(C1, DL, VT);
5689   }
5690 
5691   switch (Opcode) {
5692   case ISD::FSUB:
5693     // -0.0 - undef --> undef (consistent with "fneg undef")
5694     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5695       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5696         return getUNDEF(VT);
5697     LLVM_FALLTHROUGH;
5698 
5699   case ISD::FADD:
5700   case ISD::FMUL:
5701   case ISD::FDIV:
5702   case ISD::FREM:
5703     // If both operands are undef, the result is undef. If 1 operand is undef,
5704     // the result is NaN. This should match the behavior of the IR optimizer.
5705     if (N1.isUndef() && N2.isUndef())
5706       return getUNDEF(VT);
5707     if (N1.isUndef() || N2.isUndef())
5708       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5709   }
5710   return SDValue();
5711 }
5712 
5713 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5714   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5715 
5716   // There's no need to assert on a byte-aligned pointer. All pointers are at
5717   // least byte aligned.
5718   if (A == Align(1))
5719     return Val;
5720 
5721   FoldingSetNodeID ID;
5722   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5723   ID.AddInteger(A.value());
5724 
5725   void *IP = nullptr;
5726   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5727     return SDValue(E, 0);
5728 
5729   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5730                                          Val.getValueType(), A);
5731   createOperands(N, {Val});
5732 
5733   CSEMap.InsertNode(N, IP);
5734   InsertNode(N);
5735 
5736   SDValue V(N, 0);
5737   NewSDValueDbgMsg(V, "Creating new node: ", this);
5738   return V;
5739 }
5740 
5741 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5742                               SDValue N1, SDValue N2) {
5743   SDNodeFlags Flags;
5744   if (Inserter)
5745     Flags = Inserter->getFlags();
5746   return getNode(Opcode, DL, VT, N1, N2, Flags);
5747 }
5748 
5749 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5750                                                 SDValue &N2) const {
5751   if (!TLI->isCommutativeBinOp(Opcode))
5752     return;
5753 
5754   // Canonicalize:
5755   //   binop(const, nonconst) -> binop(nonconst, const)
5756   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5757   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5758   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5759   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5760   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5761     std::swap(N1, N2);
5762 
5763   // Canonicalize:
5764   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5765   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5766            N2.getOpcode() == ISD::STEP_VECTOR)
5767     std::swap(N1, N2);
5768 }
5769 
5770 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5771                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5772   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5773          N2.getOpcode() != ISD::DELETED_NODE &&
5774          "Operand is DELETED_NODE!");
5775 
5776   canonicalizeCommutativeBinop(Opcode, N1, N2);
5777 
5778   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5779   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5780 
5781   // Don't allow undefs in vector splats - we might be returning N2 when folding
5782   // to zero etc.
5783   ConstantSDNode *N2CV =
5784       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5785 
5786   switch (Opcode) {
5787   default: break;
5788   case ISD::TokenFactor:
5789     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5790            N2.getValueType() == MVT::Other && "Invalid token factor!");
5791     // Fold trivial token factors.
5792     if (N1.getOpcode() == ISD::EntryToken) return N2;
5793     if (N2.getOpcode() == ISD::EntryToken) return N1;
5794     if (N1 == N2) return N1;
5795     break;
5796   case ISD::BUILD_VECTOR: {
5797     // Attempt to simplify BUILD_VECTOR.
5798     SDValue Ops[] = {N1, N2};
5799     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5800       return V;
5801     break;
5802   }
5803   case ISD::CONCAT_VECTORS: {
5804     SDValue Ops[] = {N1, N2};
5805     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5806       return V;
5807     break;
5808   }
5809   case ISD::AND:
5810     assert(VT.isInteger() && "This operator does not apply to FP types!");
5811     assert(N1.getValueType() == N2.getValueType() &&
5812            N1.getValueType() == VT && "Binary operator types must match!");
5813     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5814     // worth handling here.
5815     if (N2CV && N2CV->isZero())
5816       return N2;
5817     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5818       return N1;
5819     break;
5820   case ISD::OR:
5821   case ISD::XOR:
5822   case ISD::ADD:
5823   case ISD::SUB:
5824     assert(VT.isInteger() && "This operator does not apply to FP types!");
5825     assert(N1.getValueType() == N2.getValueType() &&
5826            N1.getValueType() == VT && "Binary operator types must match!");
5827     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5828     // it's worth handling here.
5829     if (N2CV && N2CV->isZero())
5830       return N1;
5831     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5832         VT.getVectorElementType() == MVT::i1)
5833       return getNode(ISD::XOR, DL, VT, N1, N2);
5834     break;
5835   case ISD::MUL:
5836     assert(VT.isInteger() && "This operator does not apply to FP types!");
5837     assert(N1.getValueType() == N2.getValueType() &&
5838            N1.getValueType() == VT && "Binary operator types must match!");
5839     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5840       return getNode(ISD::AND, DL, VT, N1, N2);
5841     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5842       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5843       const APInt &N2CImm = N2C->getAPIntValue();
5844       return getVScale(DL, VT, MulImm * N2CImm);
5845     }
5846     break;
5847   case ISD::UDIV:
5848   case ISD::UREM:
5849   case ISD::MULHU:
5850   case ISD::MULHS:
5851   case ISD::SDIV:
5852   case ISD::SREM:
5853   case ISD::SADDSAT:
5854   case ISD::SSUBSAT:
5855   case ISD::UADDSAT:
5856   case ISD::USUBSAT:
5857     assert(VT.isInteger() && "This operator does not apply to FP types!");
5858     assert(N1.getValueType() == N2.getValueType() &&
5859            N1.getValueType() == VT && "Binary operator types must match!");
5860     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5861       // fold (add_sat x, y) -> (or x, y) for bool types.
5862       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5863         return getNode(ISD::OR, DL, VT, N1, N2);
5864       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5865       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5866         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5867     }
5868     break;
5869   case ISD::SMIN:
5870   case ISD::UMAX:
5871     assert(VT.isInteger() && "This operator does not apply to FP types!");
5872     assert(N1.getValueType() == N2.getValueType() &&
5873            N1.getValueType() == VT && "Binary operator types must match!");
5874     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5875       return getNode(ISD::OR, DL, VT, N1, N2);
5876     break;
5877   case ISD::SMAX:
5878   case ISD::UMIN:
5879     assert(VT.isInteger() && "This operator does not apply to FP types!");
5880     assert(N1.getValueType() == N2.getValueType() &&
5881            N1.getValueType() == VT && "Binary operator types must match!");
5882     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5883       return getNode(ISD::AND, DL, VT, N1, N2);
5884     break;
5885   case ISD::FADD:
5886   case ISD::FSUB:
5887   case ISD::FMUL:
5888   case ISD::FDIV:
5889   case ISD::FREM:
5890     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5891     assert(N1.getValueType() == N2.getValueType() &&
5892            N1.getValueType() == VT && "Binary operator types must match!");
5893     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5894       return V;
5895     break;
5896   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5897     assert(N1.getValueType() == VT &&
5898            N1.getValueType().isFloatingPoint() &&
5899            N2.getValueType().isFloatingPoint() &&
5900            "Invalid FCOPYSIGN!");
5901     break;
5902   case ISD::SHL:
5903     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5904       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5905       const APInt &ShiftImm = N2C->getAPIntValue();
5906       return getVScale(DL, VT, MulImm << ShiftImm);
5907     }
5908     LLVM_FALLTHROUGH;
5909   case ISD::SRA:
5910   case ISD::SRL:
5911     if (SDValue V = simplifyShift(N1, N2))
5912       return V;
5913     LLVM_FALLTHROUGH;
5914   case ISD::ROTL:
5915   case ISD::ROTR:
5916     assert(VT == N1.getValueType() &&
5917            "Shift operators return type must be the same as their first arg");
5918     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5919            "Shifts only work on integers");
5920     assert((!VT.isVector() || VT == N2.getValueType()) &&
5921            "Vector shift amounts must be in the same as their first arg");
5922     // Verify that the shift amount VT is big enough to hold valid shift
5923     // amounts.  This catches things like trying to shift an i1024 value by an
5924     // i8, which is easy to fall into in generic code that uses
5925     // TLI.getShiftAmount().
5926     assert(N2.getValueType().getScalarSizeInBits() >=
5927                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5928            "Invalid use of small shift amount with oversized value!");
5929 
5930     // Always fold shifts of i1 values so the code generator doesn't need to
5931     // handle them.  Since we know the size of the shift has to be less than the
5932     // size of the value, the shift/rotate count is guaranteed to be zero.
5933     if (VT == MVT::i1)
5934       return N1;
5935     if (N2CV && N2CV->isZero())
5936       return N1;
5937     break;
5938   case ISD::FP_ROUND:
5939     assert(VT.isFloatingPoint() &&
5940            N1.getValueType().isFloatingPoint() &&
5941            VT.bitsLE(N1.getValueType()) &&
5942            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5943            "Invalid FP_ROUND!");
5944     if (N1.getValueType() == VT) return N1;  // noop conversion.
5945     break;
5946   case ISD::AssertSext:
5947   case ISD::AssertZext: {
5948     EVT EVT = cast<VTSDNode>(N2)->getVT();
5949     assert(VT == N1.getValueType() && "Not an inreg extend!");
5950     assert(VT.isInteger() && EVT.isInteger() &&
5951            "Cannot *_EXTEND_INREG FP types");
5952     assert(!EVT.isVector() &&
5953            "AssertSExt/AssertZExt type should be the vector element type "
5954            "rather than the vector type!");
5955     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5956     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5957     break;
5958   }
5959   case ISD::SIGN_EXTEND_INREG: {
5960     EVT EVT = cast<VTSDNode>(N2)->getVT();
5961     assert(VT == N1.getValueType() && "Not an inreg extend!");
5962     assert(VT.isInteger() && EVT.isInteger() &&
5963            "Cannot *_EXTEND_INREG FP types");
5964     assert(EVT.isVector() == VT.isVector() &&
5965            "SIGN_EXTEND_INREG type should be vector iff the operand "
5966            "type is vector!");
5967     assert((!EVT.isVector() ||
5968             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5969            "Vector element counts must match in SIGN_EXTEND_INREG");
5970     assert(EVT.bitsLE(VT) && "Not extending!");
5971     if (EVT == VT) return N1;  // Not actually extending
5972 
5973     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5974       unsigned FromBits = EVT.getScalarSizeInBits();
5975       Val <<= Val.getBitWidth() - FromBits;
5976       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5977       return getConstant(Val, DL, ConstantVT);
5978     };
5979 
5980     if (N1C) {
5981       const APInt &Val = N1C->getAPIntValue();
5982       return SignExtendInReg(Val, VT);
5983     }
5984 
5985     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5986       SmallVector<SDValue, 8> Ops;
5987       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5988       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5989         SDValue Op = N1.getOperand(i);
5990         if (Op.isUndef()) {
5991           Ops.push_back(getUNDEF(OpVT));
5992           continue;
5993         }
5994         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5995         APInt Val = C->getAPIntValue();
5996         Ops.push_back(SignExtendInReg(Val, OpVT));
5997       }
5998       return getBuildVector(VT, DL, Ops);
5999     }
6000     break;
6001   }
6002   case ISD::FP_TO_SINT_SAT:
6003   case ISD::FP_TO_UINT_SAT: {
6004     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6005            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6006     assert(N1.getValueType().isVector() == VT.isVector() &&
6007            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6008            "vector!");
6009     assert((!VT.isVector() || VT.getVectorNumElements() ==
6010                                   N1.getValueType().getVectorNumElements()) &&
6011            "Vector element counts must match in FP_TO_*INT_SAT");
6012     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6013            "Type to saturate to must be a scalar.");
6014     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6015            "Not extending!");
6016     break;
6017   }
6018   case ISD::EXTRACT_VECTOR_ELT:
6019     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6020            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6021              element type of the vector.");
6022 
6023     // Extract from an undefined value or using an undefined index is undefined.
6024     if (N1.isUndef() || N2.isUndef())
6025       return getUNDEF(VT);
6026 
6027     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6028     // vectors. For scalable vectors we will provide appropriate support for
6029     // dealing with arbitrary indices.
6030     if (N2C && N1.getValueType().isFixedLengthVector() &&
6031         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6032       return getUNDEF(VT);
6033 
6034     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6035     // expanding copies of large vectors from registers. This only works for
6036     // fixed length vectors, since we need to know the exact number of
6037     // elements.
6038     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6039         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6040       unsigned Factor =
6041         N1.getOperand(0).getValueType().getVectorNumElements();
6042       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6043                      N1.getOperand(N2C->getZExtValue() / Factor),
6044                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6045     }
6046 
6047     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6048     // lowering is expanding large vector constants.
6049     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6050                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6051       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6052               N1.getValueType().isFixedLengthVector()) &&
6053              "BUILD_VECTOR used for scalable vectors");
6054       unsigned Index =
6055           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6056       SDValue Elt = N1.getOperand(Index);
6057 
6058       if (VT != Elt.getValueType())
6059         // If the vector element type is not legal, the BUILD_VECTOR operands
6060         // are promoted and implicitly truncated, and the result implicitly
6061         // extended. Make that explicit here.
6062         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6063 
6064       return Elt;
6065     }
6066 
6067     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6068     // operations are lowered to scalars.
6069     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6070       // If the indices are the same, return the inserted element else
6071       // if the indices are known different, extract the element from
6072       // the original vector.
6073       SDValue N1Op2 = N1.getOperand(2);
6074       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6075 
6076       if (N1Op2C && N2C) {
6077         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6078           if (VT == N1.getOperand(1).getValueType())
6079             return N1.getOperand(1);
6080           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6081         }
6082         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6083       }
6084     }
6085 
6086     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6087     // when vector types are scalarized and v1iX is legal.
6088     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6089     // Here we are completely ignoring the extract element index (N2),
6090     // which is fine for fixed width vectors, since any index other than 0
6091     // is undefined anyway. However, this cannot be ignored for scalable
6092     // vectors - in theory we could support this, but we don't want to do this
6093     // without a profitability check.
6094     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6095         N1.getValueType().isFixedLengthVector() &&
6096         N1.getValueType().getVectorNumElements() == 1) {
6097       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6098                      N1.getOperand(1));
6099     }
6100     break;
6101   case ISD::EXTRACT_ELEMENT:
6102     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6103     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6104            (N1.getValueType().isInteger() == VT.isInteger()) &&
6105            N1.getValueType() != VT &&
6106            "Wrong types for EXTRACT_ELEMENT!");
6107 
6108     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6109     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6110     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6111     if (N1.getOpcode() == ISD::BUILD_PAIR)
6112       return N1.getOperand(N2C->getZExtValue());
6113 
6114     // EXTRACT_ELEMENT of a constant int is also very common.
6115     if (N1C) {
6116       unsigned ElementSize = VT.getSizeInBits();
6117       unsigned Shift = ElementSize * N2C->getZExtValue();
6118       const APInt &Val = N1C->getAPIntValue();
6119       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6120     }
6121     break;
6122   case ISD::EXTRACT_SUBVECTOR: {
6123     EVT N1VT = N1.getValueType();
6124     assert(VT.isVector() && N1VT.isVector() &&
6125            "Extract subvector VTs must be vectors!");
6126     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6127            "Extract subvector VTs must have the same element type!");
6128     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6129            "Cannot extract a scalable vector from a fixed length vector!");
6130     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6131             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6132            "Extract subvector must be from larger vector to smaller vector!");
6133     assert(N2C && "Extract subvector index must be a constant");
6134     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6135             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6136                 N1VT.getVectorMinNumElements()) &&
6137            "Extract subvector overflow!");
6138     assert(N2C->getAPIntValue().getBitWidth() ==
6139                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6140            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6141 
6142     // Trivial extraction.
6143     if (VT == N1VT)
6144       return N1;
6145 
6146     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6147     if (N1.isUndef())
6148       return getUNDEF(VT);
6149 
6150     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6151     // the concat have the same type as the extract.
6152     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6153         VT == N1.getOperand(0).getValueType()) {
6154       unsigned Factor = VT.getVectorMinNumElements();
6155       return N1.getOperand(N2C->getZExtValue() / Factor);
6156     }
6157 
6158     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6159     // during shuffle legalization.
6160     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6161         VT == N1.getOperand(1).getValueType())
6162       return N1.getOperand(1);
6163     break;
6164   }
6165   }
6166 
6167   // Perform trivial constant folding.
6168   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6169     return SV;
6170 
6171   // Canonicalize an UNDEF to the RHS, even over a constant.
6172   if (N1.isUndef()) {
6173     if (TLI->isCommutativeBinOp(Opcode)) {
6174       std::swap(N1, N2);
6175     } else {
6176       switch (Opcode) {
6177       case ISD::SIGN_EXTEND_INREG:
6178       case ISD::SUB:
6179         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6180       case ISD::UDIV:
6181       case ISD::SDIV:
6182       case ISD::UREM:
6183       case ISD::SREM:
6184       case ISD::SSUBSAT:
6185       case ISD::USUBSAT:
6186         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6187       }
6188     }
6189   }
6190 
6191   // Fold a bunch of operators when the RHS is undef.
6192   if (N2.isUndef()) {
6193     switch (Opcode) {
6194     case ISD::XOR:
6195       if (N1.isUndef())
6196         // Handle undef ^ undef -> 0 special case. This is a common
6197         // idiom (misuse).
6198         return getConstant(0, DL, VT);
6199       LLVM_FALLTHROUGH;
6200     case ISD::ADD:
6201     case ISD::SUB:
6202     case ISD::UDIV:
6203     case ISD::SDIV:
6204     case ISD::UREM:
6205     case ISD::SREM:
6206       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6207     case ISD::MUL:
6208     case ISD::AND:
6209     case ISD::SSUBSAT:
6210     case ISD::USUBSAT:
6211       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6212     case ISD::OR:
6213     case ISD::SADDSAT:
6214     case ISD::UADDSAT:
6215       return getAllOnesConstant(DL, VT);
6216     }
6217   }
6218 
6219   // Memoize this node if possible.
6220   SDNode *N;
6221   SDVTList VTs = getVTList(VT);
6222   SDValue Ops[] = {N1, N2};
6223   if (VT != MVT::Glue) {
6224     FoldingSetNodeID ID;
6225     AddNodeIDNode(ID, Opcode, VTs, Ops);
6226     void *IP = nullptr;
6227     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6228       E->intersectFlagsWith(Flags);
6229       return SDValue(E, 0);
6230     }
6231 
6232     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6233     N->setFlags(Flags);
6234     createOperands(N, Ops);
6235     CSEMap.InsertNode(N, IP);
6236   } else {
6237     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6238     createOperands(N, Ops);
6239   }
6240 
6241   InsertNode(N);
6242   SDValue V = SDValue(N, 0);
6243   NewSDValueDbgMsg(V, "Creating new node: ", this);
6244   return V;
6245 }
6246 
6247 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6248                               SDValue N1, SDValue N2, SDValue N3) {
6249   SDNodeFlags Flags;
6250   if (Inserter)
6251     Flags = Inserter->getFlags();
6252   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6253 }
6254 
6255 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6256                               SDValue N1, SDValue N2, SDValue N3,
6257                               const SDNodeFlags Flags) {
6258   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6259          N2.getOpcode() != ISD::DELETED_NODE &&
6260          N3.getOpcode() != ISD::DELETED_NODE &&
6261          "Operand is DELETED_NODE!");
6262   // Perform various simplifications.
6263   switch (Opcode) {
6264   case ISD::FMA: {
6265     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6266     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6267            N3.getValueType() == VT && "FMA types must match!");
6268     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6269     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6270     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6271     if (N1CFP && N2CFP && N3CFP) {
6272       APFloat  V1 = N1CFP->getValueAPF();
6273       const APFloat &V2 = N2CFP->getValueAPF();
6274       const APFloat &V3 = N3CFP->getValueAPF();
6275       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6276       return getConstantFP(V1, DL, VT);
6277     }
6278     break;
6279   }
6280   case ISD::BUILD_VECTOR: {
6281     // Attempt to simplify BUILD_VECTOR.
6282     SDValue Ops[] = {N1, N2, N3};
6283     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6284       return V;
6285     break;
6286   }
6287   case ISD::CONCAT_VECTORS: {
6288     SDValue Ops[] = {N1, N2, N3};
6289     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6290       return V;
6291     break;
6292   }
6293   case ISD::SETCC: {
6294     assert(VT.isInteger() && "SETCC result type must be an integer!");
6295     assert(N1.getValueType() == N2.getValueType() &&
6296            "SETCC operands must have the same type!");
6297     assert(VT.isVector() == N1.getValueType().isVector() &&
6298            "SETCC type should be vector iff the operand type is vector!");
6299     assert((!VT.isVector() || VT.getVectorElementCount() ==
6300                                   N1.getValueType().getVectorElementCount()) &&
6301            "SETCC vector element counts must match!");
6302     // Use FoldSetCC to simplify SETCC's.
6303     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6304       return V;
6305     // Vector constant folding.
6306     SDValue Ops[] = {N1, N2, N3};
6307     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6308       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6309       return V;
6310     }
6311     break;
6312   }
6313   case ISD::SELECT:
6314   case ISD::VSELECT:
6315     if (SDValue V = simplifySelect(N1, N2, N3))
6316       return V;
6317     break;
6318   case ISD::VECTOR_SHUFFLE:
6319     llvm_unreachable("should use getVectorShuffle constructor!");
6320   case ISD::VECTOR_SPLICE: {
6321     if (cast<ConstantSDNode>(N3)->isNullValue())
6322       return N1;
6323     break;
6324   }
6325   case ISD::INSERT_VECTOR_ELT: {
6326     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6327     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6328     // for scalable vectors where we will generate appropriate code to
6329     // deal with out-of-bounds cases correctly.
6330     if (N3C && N1.getValueType().isFixedLengthVector() &&
6331         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6332       return getUNDEF(VT);
6333 
6334     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6335     if (N3.isUndef())
6336       return getUNDEF(VT);
6337 
6338     // If the inserted element is an UNDEF, just use the input vector.
6339     if (N2.isUndef())
6340       return N1;
6341 
6342     break;
6343   }
6344   case ISD::INSERT_SUBVECTOR: {
6345     // Inserting undef into undef is still undef.
6346     if (N1.isUndef() && N2.isUndef())
6347       return getUNDEF(VT);
6348 
6349     EVT N2VT = N2.getValueType();
6350     assert(VT == N1.getValueType() &&
6351            "Dest and insert subvector source types must match!");
6352     assert(VT.isVector() && N2VT.isVector() &&
6353            "Insert subvector VTs must be vectors!");
6354     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6355            "Cannot insert a scalable vector into a fixed length vector!");
6356     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6357             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6358            "Insert subvector must be from smaller vector to larger vector!");
6359     assert(isa<ConstantSDNode>(N3) &&
6360            "Insert subvector index must be constant");
6361     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6362             (N2VT.getVectorMinNumElements() +
6363              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6364                 VT.getVectorMinNumElements()) &&
6365            "Insert subvector overflow!");
6366     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6367                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6368            "Constant index for INSERT_SUBVECTOR has an invalid size");
6369 
6370     // Trivial insertion.
6371     if (VT == N2VT)
6372       return N2;
6373 
6374     // If this is an insert of an extracted vector into an undef vector, we
6375     // can just use the input to the extract.
6376     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6377         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6378       return N2.getOperand(0);
6379     break;
6380   }
6381   case ISD::BITCAST:
6382     // Fold bit_convert nodes from a type to themselves.
6383     if (N1.getValueType() == VT)
6384       return N1;
6385     break;
6386   }
6387 
6388   // Memoize node if it doesn't produce a flag.
6389   SDNode *N;
6390   SDVTList VTs = getVTList(VT);
6391   SDValue Ops[] = {N1, N2, N3};
6392   if (VT != MVT::Glue) {
6393     FoldingSetNodeID ID;
6394     AddNodeIDNode(ID, Opcode, VTs, Ops);
6395     void *IP = nullptr;
6396     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6397       E->intersectFlagsWith(Flags);
6398       return SDValue(E, 0);
6399     }
6400 
6401     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6402     N->setFlags(Flags);
6403     createOperands(N, Ops);
6404     CSEMap.InsertNode(N, IP);
6405   } else {
6406     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6407     createOperands(N, Ops);
6408   }
6409 
6410   InsertNode(N);
6411   SDValue V = SDValue(N, 0);
6412   NewSDValueDbgMsg(V, "Creating new node: ", this);
6413   return V;
6414 }
6415 
6416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6417                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6418   SDValue Ops[] = { N1, N2, N3, N4 };
6419   return getNode(Opcode, DL, VT, Ops);
6420 }
6421 
6422 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6423                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6424                               SDValue N5) {
6425   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6426   return getNode(Opcode, DL, VT, Ops);
6427 }
6428 
6429 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6430 /// the incoming stack arguments to be loaded from the stack.
6431 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6432   SmallVector<SDValue, 8> ArgChains;
6433 
6434   // Include the original chain at the beginning of the list. When this is
6435   // used by target LowerCall hooks, this helps legalize find the
6436   // CALLSEQ_BEGIN node.
6437   ArgChains.push_back(Chain);
6438 
6439   // Add a chain value for each stack argument.
6440   for (SDNode *U : getEntryNode().getNode()->uses())
6441     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6442       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6443         if (FI->getIndex() < 0)
6444           ArgChains.push_back(SDValue(L, 1));
6445 
6446   // Build a tokenfactor for all the chains.
6447   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6448 }
6449 
6450 /// getMemsetValue - Vectorized representation of the memset value
6451 /// operand.
6452 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6453                               const SDLoc &dl) {
6454   assert(!Value.isUndef());
6455 
6456   unsigned NumBits = VT.getScalarSizeInBits();
6457   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6458     assert(C->getAPIntValue().getBitWidth() == 8);
6459     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6460     if (VT.isInteger()) {
6461       bool IsOpaque = VT.getSizeInBits() > 64 ||
6462           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6463       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6464     }
6465     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6466                              VT);
6467   }
6468 
6469   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6470   EVT IntVT = VT.getScalarType();
6471   if (!IntVT.isInteger())
6472     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6473 
6474   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6475   if (NumBits > 8) {
6476     // Use a multiplication with 0x010101... to extend the input to the
6477     // required length.
6478     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6479     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6480                         DAG.getConstant(Magic, dl, IntVT));
6481   }
6482 
6483   if (VT != Value.getValueType() && !VT.isInteger())
6484     Value = DAG.getBitcast(VT.getScalarType(), Value);
6485   if (VT != Value.getValueType())
6486     Value = DAG.getSplatBuildVector(VT, dl, Value);
6487 
6488   return Value;
6489 }
6490 
6491 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6492 /// used when a memcpy is turned into a memset when the source is a constant
6493 /// string ptr.
6494 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6495                                   const TargetLowering &TLI,
6496                                   const ConstantDataArraySlice &Slice) {
6497   // Handle vector with all elements zero.
6498   if (Slice.Array == nullptr) {
6499     if (VT.isInteger())
6500       return DAG.getConstant(0, dl, VT);
6501     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6502       return DAG.getConstantFP(0.0, dl, VT);
6503     if (VT.isVector()) {
6504       unsigned NumElts = VT.getVectorNumElements();
6505       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6506       return DAG.getNode(ISD::BITCAST, dl, VT,
6507                          DAG.getConstant(0, dl,
6508                                          EVT::getVectorVT(*DAG.getContext(),
6509                                                           EltVT, NumElts)));
6510     }
6511     llvm_unreachable("Expected type!");
6512   }
6513 
6514   assert(!VT.isVector() && "Can't handle vector type here!");
6515   unsigned NumVTBits = VT.getSizeInBits();
6516   unsigned NumVTBytes = NumVTBits / 8;
6517   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6518 
6519   APInt Val(NumVTBits, 0);
6520   if (DAG.getDataLayout().isLittleEndian()) {
6521     for (unsigned i = 0; i != NumBytes; ++i)
6522       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6523   } else {
6524     for (unsigned i = 0; i != NumBytes; ++i)
6525       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6526   }
6527 
6528   // If the "cost" of materializing the integer immediate is less than the cost
6529   // of a load, then it is cost effective to turn the load into the immediate.
6530   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6531   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6532     return DAG.getConstant(Val, dl, VT);
6533   return SDValue();
6534 }
6535 
6536 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6537                                            const SDLoc &DL,
6538                                            const SDNodeFlags Flags) {
6539   EVT VT = Base.getValueType();
6540   SDValue Index;
6541 
6542   if (Offset.isScalable())
6543     Index = getVScale(DL, Base.getValueType(),
6544                       APInt(Base.getValueSizeInBits().getFixedSize(),
6545                             Offset.getKnownMinSize()));
6546   else
6547     Index = getConstant(Offset.getFixedSize(), DL, VT);
6548 
6549   return getMemBasePlusOffset(Base, Index, DL, Flags);
6550 }
6551 
6552 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6553                                            const SDLoc &DL,
6554                                            const SDNodeFlags Flags) {
6555   assert(Offset.getValueType().isInteger());
6556   EVT BasePtrVT = Ptr.getValueType();
6557   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6558 }
6559 
6560 /// Returns true if memcpy source is constant data.
6561 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6562   uint64_t SrcDelta = 0;
6563   GlobalAddressSDNode *G = nullptr;
6564   if (Src.getOpcode() == ISD::GlobalAddress)
6565     G = cast<GlobalAddressSDNode>(Src);
6566   else if (Src.getOpcode() == ISD::ADD &&
6567            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6568            Src.getOperand(1).getOpcode() == ISD::Constant) {
6569     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6570     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6571   }
6572   if (!G)
6573     return false;
6574 
6575   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6576                                   SrcDelta + G->getOffset());
6577 }
6578 
6579 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6580                                       SelectionDAG &DAG) {
6581   // On Darwin, -Os means optimize for size without hurting performance, so
6582   // only really optimize for size when -Oz (MinSize) is used.
6583   if (MF.getTarget().getTargetTriple().isOSDarwin())
6584     return MF.getFunction().hasMinSize();
6585   return DAG.shouldOptForSize();
6586 }
6587 
6588 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6589                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6590                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6591                           SmallVector<SDValue, 16> &OutStoreChains) {
6592   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6593   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6594   SmallVector<SDValue, 16> GluedLoadChains;
6595   for (unsigned i = From; i < To; ++i) {
6596     OutChains.push_back(OutLoadChains[i]);
6597     GluedLoadChains.push_back(OutLoadChains[i]);
6598   }
6599 
6600   // Chain for all loads.
6601   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6602                                   GluedLoadChains);
6603 
6604   for (unsigned i = From; i < To; ++i) {
6605     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6606     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6607                                   ST->getBasePtr(), ST->getMemoryVT(),
6608                                   ST->getMemOperand());
6609     OutChains.push_back(NewStore);
6610   }
6611 }
6612 
6613 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6614                                        SDValue Chain, SDValue Dst, SDValue Src,
6615                                        uint64_t Size, Align Alignment,
6616                                        bool isVol, bool AlwaysInline,
6617                                        MachinePointerInfo DstPtrInfo,
6618                                        MachinePointerInfo SrcPtrInfo,
6619                                        const AAMDNodes &AAInfo) {
6620   // Turn a memcpy of undef to nop.
6621   // FIXME: We need to honor volatile even is Src is undef.
6622   if (Src.isUndef())
6623     return Chain;
6624 
6625   // Expand memcpy to a series of load and store ops if the size operand falls
6626   // below a certain threshold.
6627   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6628   // rather than maybe a humongous number of loads and stores.
6629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6630   const DataLayout &DL = DAG.getDataLayout();
6631   LLVMContext &C = *DAG.getContext();
6632   std::vector<EVT> MemOps;
6633   bool DstAlignCanChange = false;
6634   MachineFunction &MF = DAG.getMachineFunction();
6635   MachineFrameInfo &MFI = MF.getFrameInfo();
6636   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6637   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6638   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6639     DstAlignCanChange = true;
6640   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6641   if (!SrcAlign || Alignment > *SrcAlign)
6642     SrcAlign = Alignment;
6643   assert(SrcAlign && "SrcAlign must be set");
6644   ConstantDataArraySlice Slice;
6645   // If marked as volatile, perform a copy even when marked as constant.
6646   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6647   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6648   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6649   const MemOp Op = isZeroConstant
6650                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6651                                     /*IsZeroMemset*/ true, isVol)
6652                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6653                                      *SrcAlign, isVol, CopyFromConstant);
6654   if (!TLI.findOptimalMemOpLowering(
6655           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6656           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6657     return SDValue();
6658 
6659   if (DstAlignCanChange) {
6660     Type *Ty = MemOps[0].getTypeForEVT(C);
6661     Align NewAlign = DL.getABITypeAlign(Ty);
6662 
6663     // Don't promote to an alignment that would require dynamic stack
6664     // realignment.
6665     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6666     if (!TRI->hasStackRealignment(MF))
6667       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6668         NewAlign = NewAlign / 2;
6669 
6670     if (NewAlign > Alignment) {
6671       // Give the stack frame object a larger alignment if needed.
6672       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6673         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6674       Alignment = NewAlign;
6675     }
6676   }
6677 
6678   // Prepare AAInfo for loads/stores after lowering this memcpy.
6679   AAMDNodes NewAAInfo = AAInfo;
6680   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6681 
6682   MachineMemOperand::Flags MMOFlags =
6683       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6684   SmallVector<SDValue, 16> OutLoadChains;
6685   SmallVector<SDValue, 16> OutStoreChains;
6686   SmallVector<SDValue, 32> OutChains;
6687   unsigned NumMemOps = MemOps.size();
6688   uint64_t SrcOff = 0, DstOff = 0;
6689   for (unsigned i = 0; i != NumMemOps; ++i) {
6690     EVT VT = MemOps[i];
6691     unsigned VTSize = VT.getSizeInBits() / 8;
6692     SDValue Value, Store;
6693 
6694     if (VTSize > Size) {
6695       // Issuing an unaligned load / store pair  that overlaps with the previous
6696       // pair. Adjust the offset accordingly.
6697       assert(i == NumMemOps-1 && i != 0);
6698       SrcOff -= VTSize - Size;
6699       DstOff -= VTSize - Size;
6700     }
6701 
6702     if (CopyFromConstant &&
6703         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6704       // It's unlikely a store of a vector immediate can be done in a single
6705       // instruction. It would require a load from a constantpool first.
6706       // We only handle zero vectors here.
6707       // FIXME: Handle other cases where store of vector immediate is done in
6708       // a single instruction.
6709       ConstantDataArraySlice SubSlice;
6710       if (SrcOff < Slice.Length) {
6711         SubSlice = Slice;
6712         SubSlice.move(SrcOff);
6713       } else {
6714         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6715         SubSlice.Array = nullptr;
6716         SubSlice.Offset = 0;
6717         SubSlice.Length = VTSize;
6718       }
6719       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6720       if (Value.getNode()) {
6721         Store = DAG.getStore(
6722             Chain, dl, Value,
6723             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6724             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6725         OutChains.push_back(Store);
6726       }
6727     }
6728 
6729     if (!Store.getNode()) {
6730       // The type might not be legal for the target.  This should only happen
6731       // if the type is smaller than a legal type, as on PPC, so the right
6732       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6733       // to Load/Store if NVT==VT.
6734       // FIXME does the case above also need this?
6735       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6736       assert(NVT.bitsGE(VT));
6737 
6738       bool isDereferenceable =
6739         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6740       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6741       if (isDereferenceable)
6742         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6743 
6744       Value = DAG.getExtLoad(
6745           ISD::EXTLOAD, dl, NVT, Chain,
6746           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6747           SrcPtrInfo.getWithOffset(SrcOff), VT,
6748           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6749       OutLoadChains.push_back(Value.getValue(1));
6750 
6751       Store = DAG.getTruncStore(
6752           Chain, dl, Value,
6753           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6754           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6755       OutStoreChains.push_back(Store);
6756     }
6757     SrcOff += VTSize;
6758     DstOff += VTSize;
6759     Size -= VTSize;
6760   }
6761 
6762   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6763                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6764   unsigned NumLdStInMemcpy = OutStoreChains.size();
6765 
6766   if (NumLdStInMemcpy) {
6767     // It may be that memcpy might be converted to memset if it's memcpy
6768     // of constants. In such a case, we won't have loads and stores, but
6769     // just stores. In the absence of loads, there is nothing to gang up.
6770     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6771       // If target does not care, just leave as it.
6772       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6773         OutChains.push_back(OutLoadChains[i]);
6774         OutChains.push_back(OutStoreChains[i]);
6775       }
6776     } else {
6777       // Ld/St less than/equal limit set by target.
6778       if (NumLdStInMemcpy <= GluedLdStLimit) {
6779           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6780                                         NumLdStInMemcpy, OutLoadChains,
6781                                         OutStoreChains);
6782       } else {
6783         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6784         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6785         unsigned GlueIter = 0;
6786 
6787         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6788           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6789           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6790 
6791           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6792                                        OutLoadChains, OutStoreChains);
6793           GlueIter += GluedLdStLimit;
6794         }
6795 
6796         // Residual ld/st.
6797         if (RemainingLdStInMemcpy) {
6798           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6799                                         RemainingLdStInMemcpy, OutLoadChains,
6800                                         OutStoreChains);
6801         }
6802       }
6803     }
6804   }
6805   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6806 }
6807 
6808 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6809                                         SDValue Chain, SDValue Dst, SDValue Src,
6810                                         uint64_t Size, Align Alignment,
6811                                         bool isVol, bool AlwaysInline,
6812                                         MachinePointerInfo DstPtrInfo,
6813                                         MachinePointerInfo SrcPtrInfo,
6814                                         const AAMDNodes &AAInfo) {
6815   // Turn a memmove of undef to nop.
6816   // FIXME: We need to honor volatile even is Src is undef.
6817   if (Src.isUndef())
6818     return Chain;
6819 
6820   // Expand memmove to a series of load and store ops if the size operand falls
6821   // below a certain threshold.
6822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6823   const DataLayout &DL = DAG.getDataLayout();
6824   LLVMContext &C = *DAG.getContext();
6825   std::vector<EVT> MemOps;
6826   bool DstAlignCanChange = false;
6827   MachineFunction &MF = DAG.getMachineFunction();
6828   MachineFrameInfo &MFI = MF.getFrameInfo();
6829   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6830   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6831   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6832     DstAlignCanChange = true;
6833   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6834   if (!SrcAlign || Alignment > *SrcAlign)
6835     SrcAlign = Alignment;
6836   assert(SrcAlign && "SrcAlign must be set");
6837   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6838   if (!TLI.findOptimalMemOpLowering(
6839           MemOps, Limit,
6840           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6841                       /*IsVolatile*/ true),
6842           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6843           MF.getFunction().getAttributes()))
6844     return SDValue();
6845 
6846   if (DstAlignCanChange) {
6847     Type *Ty = MemOps[0].getTypeForEVT(C);
6848     Align NewAlign = DL.getABITypeAlign(Ty);
6849     if (NewAlign > Alignment) {
6850       // Give the stack frame object a larger alignment if needed.
6851       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6852         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6853       Alignment = NewAlign;
6854     }
6855   }
6856 
6857   // Prepare AAInfo for loads/stores after lowering this memmove.
6858   AAMDNodes NewAAInfo = AAInfo;
6859   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6860 
6861   MachineMemOperand::Flags MMOFlags =
6862       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6863   uint64_t SrcOff = 0, DstOff = 0;
6864   SmallVector<SDValue, 8> LoadValues;
6865   SmallVector<SDValue, 8> LoadChains;
6866   SmallVector<SDValue, 8> OutChains;
6867   unsigned NumMemOps = MemOps.size();
6868   for (unsigned i = 0; i < NumMemOps; i++) {
6869     EVT VT = MemOps[i];
6870     unsigned VTSize = VT.getSizeInBits() / 8;
6871     SDValue Value;
6872 
6873     bool isDereferenceable =
6874       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6875     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6876     if (isDereferenceable)
6877       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6878 
6879     Value = DAG.getLoad(
6880         VT, dl, Chain,
6881         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6882         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6883     LoadValues.push_back(Value);
6884     LoadChains.push_back(Value.getValue(1));
6885     SrcOff += VTSize;
6886   }
6887   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6888   OutChains.clear();
6889   for (unsigned i = 0; i < NumMemOps; i++) {
6890     EVT VT = MemOps[i];
6891     unsigned VTSize = VT.getSizeInBits() / 8;
6892     SDValue Store;
6893 
6894     Store = DAG.getStore(
6895         Chain, dl, LoadValues[i],
6896         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6897         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6898     OutChains.push_back(Store);
6899     DstOff += VTSize;
6900   }
6901 
6902   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6903 }
6904 
6905 /// Lower the call to 'memset' intrinsic function into a series of store
6906 /// operations.
6907 ///
6908 /// \param DAG Selection DAG where lowered code is placed.
6909 /// \param dl Link to corresponding IR location.
6910 /// \param Chain Control flow dependency.
6911 /// \param Dst Pointer to destination memory location.
6912 /// \param Src Value of byte to write into the memory.
6913 /// \param Size Number of bytes to write.
6914 /// \param Alignment Alignment of the destination in bytes.
6915 /// \param isVol True if destination is volatile.
6916 /// \param DstPtrInfo IR information on the memory pointer.
6917 /// \returns New head in the control flow, if lowering was successful, empty
6918 /// SDValue otherwise.
6919 ///
6920 /// The function tries to replace 'llvm.memset' intrinsic with several store
6921 /// operations and value calculation code. This is usually profitable for small
6922 /// memory size.
6923 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6924                                SDValue Chain, SDValue Dst, SDValue Src,
6925                                uint64_t Size, Align Alignment, bool isVol,
6926                                MachinePointerInfo DstPtrInfo,
6927                                const AAMDNodes &AAInfo) {
6928   // Turn a memset of undef to nop.
6929   // FIXME: We need to honor volatile even is Src is undef.
6930   if (Src.isUndef())
6931     return Chain;
6932 
6933   // Expand memset to a series of load/store ops if the size operand
6934   // falls below a certain threshold.
6935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6936   std::vector<EVT> MemOps;
6937   bool DstAlignCanChange = false;
6938   MachineFunction &MF = DAG.getMachineFunction();
6939   MachineFrameInfo &MFI = MF.getFrameInfo();
6940   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6941   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6942   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6943     DstAlignCanChange = true;
6944   bool IsZeroVal =
6945       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6946   if (!TLI.findOptimalMemOpLowering(
6947           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6948           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6949           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6950     return SDValue();
6951 
6952   if (DstAlignCanChange) {
6953     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6954     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6955     if (NewAlign > Alignment) {
6956       // Give the stack frame object a larger alignment if needed.
6957       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6958         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6959       Alignment = NewAlign;
6960     }
6961   }
6962 
6963   SmallVector<SDValue, 8> OutChains;
6964   uint64_t DstOff = 0;
6965   unsigned NumMemOps = MemOps.size();
6966 
6967   // Find the largest store and generate the bit pattern for it.
6968   EVT LargestVT = MemOps[0];
6969   for (unsigned i = 1; i < NumMemOps; i++)
6970     if (MemOps[i].bitsGT(LargestVT))
6971       LargestVT = MemOps[i];
6972   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6973 
6974   // Prepare AAInfo for loads/stores after lowering this memset.
6975   AAMDNodes NewAAInfo = AAInfo;
6976   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6977 
6978   for (unsigned i = 0; i < NumMemOps; i++) {
6979     EVT VT = MemOps[i];
6980     unsigned VTSize = VT.getSizeInBits() / 8;
6981     if (VTSize > Size) {
6982       // Issuing an unaligned load / store pair  that overlaps with the previous
6983       // pair. Adjust the offset accordingly.
6984       assert(i == NumMemOps-1 && i != 0);
6985       DstOff -= VTSize - Size;
6986     }
6987 
6988     // If this store is smaller than the largest store see whether we can get
6989     // the smaller value for free with a truncate.
6990     SDValue Value = MemSetValue;
6991     if (VT.bitsLT(LargestVT)) {
6992       if (!LargestVT.isVector() && !VT.isVector() &&
6993           TLI.isTruncateFree(LargestVT, VT))
6994         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6995       else
6996         Value = getMemsetValue(Src, VT, DAG, dl);
6997     }
6998     assert(Value.getValueType() == VT && "Value with wrong type.");
6999     SDValue Store = DAG.getStore(
7000         Chain, dl, Value,
7001         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7002         DstPtrInfo.getWithOffset(DstOff), Alignment,
7003         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7004         NewAAInfo);
7005     OutChains.push_back(Store);
7006     DstOff += VT.getSizeInBits() / 8;
7007     Size -= VTSize;
7008   }
7009 
7010   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7011 }
7012 
7013 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7014                                             unsigned AS) {
7015   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7016   // pointer operands can be losslessly bitcasted to pointers of address space 0
7017   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7018     report_fatal_error("cannot lower memory intrinsic in address space " +
7019                        Twine(AS));
7020   }
7021 }
7022 
7023 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7024                                 SDValue Src, SDValue Size, Align Alignment,
7025                                 bool isVol, bool AlwaysInline, bool isTailCall,
7026                                 MachinePointerInfo DstPtrInfo,
7027                                 MachinePointerInfo SrcPtrInfo,
7028                                 const AAMDNodes &AAInfo) {
7029   // Check to see if we should lower the memcpy to loads and stores first.
7030   // For cases within the target-specified limits, this is the best choice.
7031   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7032   if (ConstantSize) {
7033     // Memcpy with size zero? Just return the original chain.
7034     if (ConstantSize->isZero())
7035       return Chain;
7036 
7037     SDValue Result = getMemcpyLoadsAndStores(
7038         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7039         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7040     if (Result.getNode())
7041       return Result;
7042   }
7043 
7044   // Then check to see if we should lower the memcpy with target-specific
7045   // code. If the target chooses to do this, this is the next best.
7046   if (TSI) {
7047     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7048         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7049         DstPtrInfo, SrcPtrInfo);
7050     if (Result.getNode())
7051       return Result;
7052   }
7053 
7054   // If we really need inline code and the target declined to provide it,
7055   // use a (potentially long) sequence of loads and stores.
7056   if (AlwaysInline) {
7057     assert(ConstantSize && "AlwaysInline requires a constant size!");
7058     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
7059                                    ConstantSize->getZExtValue(), Alignment,
7060                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
7061   }
7062 
7063   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7064   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7065 
7066   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7067   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7068   // respect volatile, so they may do things like read or write memory
7069   // beyond the given memory regions. But fixing this isn't easy, and most
7070   // people don't care.
7071 
7072   // Emit a library call.
7073   TargetLowering::ArgListTy Args;
7074   TargetLowering::ArgListEntry Entry;
7075   Entry.Ty = Type::getInt8PtrTy(*getContext());
7076   Entry.Node = Dst; Args.push_back(Entry);
7077   Entry.Node = Src; Args.push_back(Entry);
7078 
7079   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7080   Entry.Node = Size; Args.push_back(Entry);
7081   // FIXME: pass in SDLoc
7082   TargetLowering::CallLoweringInfo CLI(*this);
7083   CLI.setDebugLoc(dl)
7084       .setChain(Chain)
7085       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7086                     Dst.getValueType().getTypeForEVT(*getContext()),
7087                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7088                                       TLI->getPointerTy(getDataLayout())),
7089                     std::move(Args))
7090       .setDiscardResult()
7091       .setTailCall(isTailCall);
7092 
7093   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7094   return CallResult.second;
7095 }
7096 
7097 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7098                                       SDValue Dst, unsigned DstAlign,
7099                                       SDValue Src, unsigned SrcAlign,
7100                                       SDValue Size, Type *SizeTy,
7101                                       unsigned ElemSz, bool isTailCall,
7102                                       MachinePointerInfo DstPtrInfo,
7103                                       MachinePointerInfo SrcPtrInfo) {
7104   // Emit a library call.
7105   TargetLowering::ArgListTy Args;
7106   TargetLowering::ArgListEntry Entry;
7107   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7108   Entry.Node = Dst;
7109   Args.push_back(Entry);
7110 
7111   Entry.Node = Src;
7112   Args.push_back(Entry);
7113 
7114   Entry.Ty = SizeTy;
7115   Entry.Node = Size;
7116   Args.push_back(Entry);
7117 
7118   RTLIB::Libcall LibraryCall =
7119       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7120   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7121     report_fatal_error("Unsupported element size");
7122 
7123   TargetLowering::CallLoweringInfo CLI(*this);
7124   CLI.setDebugLoc(dl)
7125       .setChain(Chain)
7126       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7127                     Type::getVoidTy(*getContext()),
7128                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7129                                       TLI->getPointerTy(getDataLayout())),
7130                     std::move(Args))
7131       .setDiscardResult()
7132       .setTailCall(isTailCall);
7133 
7134   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7135   return CallResult.second;
7136 }
7137 
7138 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7139                                  SDValue Src, SDValue Size, Align Alignment,
7140                                  bool isVol, bool isTailCall,
7141                                  MachinePointerInfo DstPtrInfo,
7142                                  MachinePointerInfo SrcPtrInfo,
7143                                  const AAMDNodes &AAInfo) {
7144   // Check to see if we should lower the memmove to loads and stores first.
7145   // For cases within the target-specified limits, this is the best choice.
7146   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7147   if (ConstantSize) {
7148     // Memmove with size zero? Just return the original chain.
7149     if (ConstantSize->isZero())
7150       return Chain;
7151 
7152     SDValue Result = getMemmoveLoadsAndStores(
7153         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7154         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7155     if (Result.getNode())
7156       return Result;
7157   }
7158 
7159   // Then check to see if we should lower the memmove with target-specific
7160   // code. If the target chooses to do this, this is the next best.
7161   if (TSI) {
7162     SDValue Result =
7163         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7164                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7165     if (Result.getNode())
7166       return Result;
7167   }
7168 
7169   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7170   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7171 
7172   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7173   // not be safe.  See memcpy above for more details.
7174 
7175   // Emit a library call.
7176   TargetLowering::ArgListTy Args;
7177   TargetLowering::ArgListEntry Entry;
7178   Entry.Ty = Type::getInt8PtrTy(*getContext());
7179   Entry.Node = Dst; Args.push_back(Entry);
7180   Entry.Node = Src; Args.push_back(Entry);
7181 
7182   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7183   Entry.Node = Size; Args.push_back(Entry);
7184   // FIXME:  pass in SDLoc
7185   TargetLowering::CallLoweringInfo CLI(*this);
7186   CLI.setDebugLoc(dl)
7187       .setChain(Chain)
7188       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7189                     Dst.getValueType().getTypeForEVT(*getContext()),
7190                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7191                                       TLI->getPointerTy(getDataLayout())),
7192                     std::move(Args))
7193       .setDiscardResult()
7194       .setTailCall(isTailCall);
7195 
7196   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7197   return CallResult.second;
7198 }
7199 
7200 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7201                                        SDValue Dst, unsigned DstAlign,
7202                                        SDValue Src, unsigned SrcAlign,
7203                                        SDValue Size, Type *SizeTy,
7204                                        unsigned ElemSz, bool isTailCall,
7205                                        MachinePointerInfo DstPtrInfo,
7206                                        MachinePointerInfo SrcPtrInfo) {
7207   // Emit a library call.
7208   TargetLowering::ArgListTy Args;
7209   TargetLowering::ArgListEntry Entry;
7210   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7211   Entry.Node = Dst;
7212   Args.push_back(Entry);
7213 
7214   Entry.Node = Src;
7215   Args.push_back(Entry);
7216 
7217   Entry.Ty = SizeTy;
7218   Entry.Node = Size;
7219   Args.push_back(Entry);
7220 
7221   RTLIB::Libcall LibraryCall =
7222       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7223   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7224     report_fatal_error("Unsupported element size");
7225 
7226   TargetLowering::CallLoweringInfo CLI(*this);
7227   CLI.setDebugLoc(dl)
7228       .setChain(Chain)
7229       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7230                     Type::getVoidTy(*getContext()),
7231                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7232                                       TLI->getPointerTy(getDataLayout())),
7233                     std::move(Args))
7234       .setDiscardResult()
7235       .setTailCall(isTailCall);
7236 
7237   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7238   return CallResult.second;
7239 }
7240 
7241 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7242                                 SDValue Src, SDValue Size, Align Alignment,
7243                                 bool isVol, bool isTailCall,
7244                                 MachinePointerInfo DstPtrInfo,
7245                                 const AAMDNodes &AAInfo) {
7246   // Check to see if we should lower the memset to stores first.
7247   // For cases within the target-specified limits, this is the best choice.
7248   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7249   if (ConstantSize) {
7250     // Memset with size zero? Just return the original chain.
7251     if (ConstantSize->isZero())
7252       return Chain;
7253 
7254     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7255                                      ConstantSize->getZExtValue(), Alignment,
7256                                      isVol, DstPtrInfo, AAInfo);
7257 
7258     if (Result.getNode())
7259       return Result;
7260   }
7261 
7262   // Then check to see if we should lower the memset with target-specific
7263   // code. If the target chooses to do this, this is the next best.
7264   if (TSI) {
7265     SDValue Result = TSI->EmitTargetCodeForMemset(
7266         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7267     if (Result.getNode())
7268       return Result;
7269   }
7270 
7271   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7272 
7273   // Emit a library call.
7274   TargetLowering::ArgListTy Args;
7275   TargetLowering::ArgListEntry Entry;
7276   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7277   Args.push_back(Entry);
7278   Entry.Node = Src;
7279   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7280   Args.push_back(Entry);
7281   Entry.Node = Size;
7282   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7283   Args.push_back(Entry);
7284 
7285   // FIXME: pass in SDLoc
7286   TargetLowering::CallLoweringInfo CLI(*this);
7287   CLI.setDebugLoc(dl)
7288       .setChain(Chain)
7289       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7290                     Dst.getValueType().getTypeForEVT(*getContext()),
7291                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7292                                       TLI->getPointerTy(getDataLayout())),
7293                     std::move(Args))
7294       .setDiscardResult()
7295       .setTailCall(isTailCall);
7296 
7297   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7298   return CallResult.second;
7299 }
7300 
7301 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7302                                       SDValue Dst, unsigned DstAlign,
7303                                       SDValue Value, SDValue Size, Type *SizeTy,
7304                                       unsigned ElemSz, bool isTailCall,
7305                                       MachinePointerInfo DstPtrInfo) {
7306   // Emit a library call.
7307   TargetLowering::ArgListTy Args;
7308   TargetLowering::ArgListEntry Entry;
7309   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7310   Entry.Node = Dst;
7311   Args.push_back(Entry);
7312 
7313   Entry.Ty = Type::getInt8Ty(*getContext());
7314   Entry.Node = Value;
7315   Args.push_back(Entry);
7316 
7317   Entry.Ty = SizeTy;
7318   Entry.Node = Size;
7319   Args.push_back(Entry);
7320 
7321   RTLIB::Libcall LibraryCall =
7322       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7323   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7324     report_fatal_error("Unsupported element size");
7325 
7326   TargetLowering::CallLoweringInfo CLI(*this);
7327   CLI.setDebugLoc(dl)
7328       .setChain(Chain)
7329       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7330                     Type::getVoidTy(*getContext()),
7331                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7332                                       TLI->getPointerTy(getDataLayout())),
7333                     std::move(Args))
7334       .setDiscardResult()
7335       .setTailCall(isTailCall);
7336 
7337   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7338   return CallResult.second;
7339 }
7340 
7341 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7342                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7343                                 MachineMemOperand *MMO) {
7344   FoldingSetNodeID ID;
7345   ID.AddInteger(MemVT.getRawBits());
7346   AddNodeIDNode(ID, Opcode, VTList, Ops);
7347   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7348   ID.AddInteger(MMO->getFlags());
7349   void* IP = nullptr;
7350   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7351     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7352     return SDValue(E, 0);
7353   }
7354 
7355   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7356                                     VTList, MemVT, MMO);
7357   createOperands(N, Ops);
7358 
7359   CSEMap.InsertNode(N, IP);
7360   InsertNode(N);
7361   return SDValue(N, 0);
7362 }
7363 
7364 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7365                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7366                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7367                                        MachineMemOperand *MMO) {
7368   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7369          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7370   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7371 
7372   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7373   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7374 }
7375 
7376 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7377                                 SDValue Chain, SDValue Ptr, SDValue Val,
7378                                 MachineMemOperand *MMO) {
7379   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7380           Opcode == ISD::ATOMIC_LOAD_SUB ||
7381           Opcode == ISD::ATOMIC_LOAD_AND ||
7382           Opcode == ISD::ATOMIC_LOAD_CLR ||
7383           Opcode == ISD::ATOMIC_LOAD_OR ||
7384           Opcode == ISD::ATOMIC_LOAD_XOR ||
7385           Opcode == ISD::ATOMIC_LOAD_NAND ||
7386           Opcode == ISD::ATOMIC_LOAD_MIN ||
7387           Opcode == ISD::ATOMIC_LOAD_MAX ||
7388           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7389           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7390           Opcode == ISD::ATOMIC_LOAD_FADD ||
7391           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7392           Opcode == ISD::ATOMIC_SWAP ||
7393           Opcode == ISD::ATOMIC_STORE) &&
7394          "Invalid Atomic Op");
7395 
7396   EVT VT = Val.getValueType();
7397 
7398   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7399                                                getVTList(VT, MVT::Other);
7400   SDValue Ops[] = {Chain, Ptr, Val};
7401   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7402 }
7403 
7404 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7405                                 EVT VT, SDValue Chain, SDValue Ptr,
7406                                 MachineMemOperand *MMO) {
7407   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7408 
7409   SDVTList VTs = getVTList(VT, MVT::Other);
7410   SDValue Ops[] = {Chain, Ptr};
7411   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7412 }
7413 
7414 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7415 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7416   if (Ops.size() == 1)
7417     return Ops[0];
7418 
7419   SmallVector<EVT, 4> VTs;
7420   VTs.reserve(Ops.size());
7421   for (const SDValue &Op : Ops)
7422     VTs.push_back(Op.getValueType());
7423   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7424 }
7425 
7426 SDValue SelectionDAG::getMemIntrinsicNode(
7427     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7428     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7429     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7430   if (!Size && MemVT.isScalableVector())
7431     Size = MemoryLocation::UnknownSize;
7432   else if (!Size)
7433     Size = MemVT.getStoreSize();
7434 
7435   MachineFunction &MF = getMachineFunction();
7436   MachineMemOperand *MMO =
7437       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7438 
7439   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7440 }
7441 
7442 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7443                                           SDVTList VTList,
7444                                           ArrayRef<SDValue> Ops, EVT MemVT,
7445                                           MachineMemOperand *MMO) {
7446   assert((Opcode == ISD::INTRINSIC_VOID ||
7447           Opcode == ISD::INTRINSIC_W_CHAIN ||
7448           Opcode == ISD::PREFETCH ||
7449           ((int)Opcode <= std::numeric_limits<int>::max() &&
7450            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7451          "Opcode is not a memory-accessing opcode!");
7452 
7453   // Memoize the node unless it returns a flag.
7454   MemIntrinsicSDNode *N;
7455   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7456     FoldingSetNodeID ID;
7457     AddNodeIDNode(ID, Opcode, VTList, Ops);
7458     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7459         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7460     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7461     ID.AddInteger(MMO->getFlags());
7462     void *IP = nullptr;
7463     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7464       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7465       return SDValue(E, 0);
7466     }
7467 
7468     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7469                                       VTList, MemVT, MMO);
7470     createOperands(N, Ops);
7471 
7472   CSEMap.InsertNode(N, IP);
7473   } else {
7474     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7475                                       VTList, MemVT, MMO);
7476     createOperands(N, Ops);
7477   }
7478   InsertNode(N);
7479   SDValue V(N, 0);
7480   NewSDValueDbgMsg(V, "Creating new node: ", this);
7481   return V;
7482 }
7483 
7484 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7485                                       SDValue Chain, int FrameIndex,
7486                                       int64_t Size, int64_t Offset) {
7487   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7488   const auto VTs = getVTList(MVT::Other);
7489   SDValue Ops[2] = {
7490       Chain,
7491       getFrameIndex(FrameIndex,
7492                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7493                     true)};
7494 
7495   FoldingSetNodeID ID;
7496   AddNodeIDNode(ID, Opcode, VTs, Ops);
7497   ID.AddInteger(FrameIndex);
7498   ID.AddInteger(Size);
7499   ID.AddInteger(Offset);
7500   void *IP = nullptr;
7501   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7502     return SDValue(E, 0);
7503 
7504   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7505       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7506   createOperands(N, Ops);
7507   CSEMap.InsertNode(N, IP);
7508   InsertNode(N);
7509   SDValue V(N, 0);
7510   NewSDValueDbgMsg(V, "Creating new node: ", this);
7511   return V;
7512 }
7513 
7514 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7515                                          uint64_t Guid, uint64_t Index,
7516                                          uint32_t Attr) {
7517   const unsigned Opcode = ISD::PSEUDO_PROBE;
7518   const auto VTs = getVTList(MVT::Other);
7519   SDValue Ops[] = {Chain};
7520   FoldingSetNodeID ID;
7521   AddNodeIDNode(ID, Opcode, VTs, Ops);
7522   ID.AddInteger(Guid);
7523   ID.AddInteger(Index);
7524   void *IP = nullptr;
7525   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7526     return SDValue(E, 0);
7527 
7528   auto *N = newSDNode<PseudoProbeSDNode>(
7529       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7530   createOperands(N, Ops);
7531   CSEMap.InsertNode(N, IP);
7532   InsertNode(N);
7533   SDValue V(N, 0);
7534   NewSDValueDbgMsg(V, "Creating new node: ", this);
7535   return V;
7536 }
7537 
7538 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7539 /// MachinePointerInfo record from it.  This is particularly useful because the
7540 /// code generator has many cases where it doesn't bother passing in a
7541 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7542 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7543                                            SelectionDAG &DAG, SDValue Ptr,
7544                                            int64_t Offset = 0) {
7545   // If this is FI+Offset, we can model it.
7546   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7547     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7548                                              FI->getIndex(), Offset);
7549 
7550   // If this is (FI+Offset1)+Offset2, we can model it.
7551   if (Ptr.getOpcode() != ISD::ADD ||
7552       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7553       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7554     return Info;
7555 
7556   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7557   return MachinePointerInfo::getFixedStack(
7558       DAG.getMachineFunction(), FI,
7559       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7560 }
7561 
7562 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7563 /// MachinePointerInfo record from it.  This is particularly useful because the
7564 /// code generator has many cases where it doesn't bother passing in a
7565 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7566 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7567                                            SelectionDAG &DAG, SDValue Ptr,
7568                                            SDValue OffsetOp) {
7569   // If the 'Offset' value isn't a constant, we can't handle this.
7570   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7571     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7572   if (OffsetOp.isUndef())
7573     return InferPointerInfo(Info, DAG, Ptr);
7574   return Info;
7575 }
7576 
7577 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7578                               EVT VT, const SDLoc &dl, SDValue Chain,
7579                               SDValue Ptr, SDValue Offset,
7580                               MachinePointerInfo PtrInfo, EVT MemVT,
7581                               Align Alignment,
7582                               MachineMemOperand::Flags MMOFlags,
7583                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7584   assert(Chain.getValueType() == MVT::Other &&
7585         "Invalid chain type");
7586 
7587   MMOFlags |= MachineMemOperand::MOLoad;
7588   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7589   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7590   // clients.
7591   if (PtrInfo.V.isNull())
7592     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7593 
7594   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7595   MachineFunction &MF = getMachineFunction();
7596   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7597                                                    Alignment, AAInfo, Ranges);
7598   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7599 }
7600 
7601 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7602                               EVT VT, const SDLoc &dl, SDValue Chain,
7603                               SDValue Ptr, SDValue Offset, EVT MemVT,
7604                               MachineMemOperand *MMO) {
7605   if (VT == MemVT) {
7606     ExtType = ISD::NON_EXTLOAD;
7607   } else if (ExtType == ISD::NON_EXTLOAD) {
7608     assert(VT == MemVT && "Non-extending load from different memory type!");
7609   } else {
7610     // Extending load.
7611     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7612            "Should only be an extending load, not truncating!");
7613     assert(VT.isInteger() == MemVT.isInteger() &&
7614            "Cannot convert from FP to Int or Int -> FP!");
7615     assert(VT.isVector() == MemVT.isVector() &&
7616            "Cannot use an ext load to convert to or from a vector!");
7617     assert((!VT.isVector() ||
7618             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7619            "Cannot use an ext load to change the number of vector elements!");
7620   }
7621 
7622   bool Indexed = AM != ISD::UNINDEXED;
7623   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7624 
7625   SDVTList VTs = Indexed ?
7626     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7627   SDValue Ops[] = { Chain, Ptr, Offset };
7628   FoldingSetNodeID ID;
7629   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7630   ID.AddInteger(MemVT.getRawBits());
7631   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7632       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7633   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7634   ID.AddInteger(MMO->getFlags());
7635   void *IP = nullptr;
7636   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7637     cast<LoadSDNode>(E)->refineAlignment(MMO);
7638     return SDValue(E, 0);
7639   }
7640   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7641                                   ExtType, MemVT, MMO);
7642   createOperands(N, Ops);
7643 
7644   CSEMap.InsertNode(N, IP);
7645   InsertNode(N);
7646   SDValue V(N, 0);
7647   NewSDValueDbgMsg(V, "Creating new node: ", this);
7648   return V;
7649 }
7650 
7651 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7652                               SDValue Ptr, MachinePointerInfo PtrInfo,
7653                               MaybeAlign Alignment,
7654                               MachineMemOperand::Flags MMOFlags,
7655                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7656   SDValue Undef = getUNDEF(Ptr.getValueType());
7657   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7658                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7659 }
7660 
7661 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7662                               SDValue Ptr, MachineMemOperand *MMO) {
7663   SDValue Undef = getUNDEF(Ptr.getValueType());
7664   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7665                  VT, MMO);
7666 }
7667 
7668 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7669                                  EVT VT, SDValue Chain, SDValue Ptr,
7670                                  MachinePointerInfo PtrInfo, EVT MemVT,
7671                                  MaybeAlign Alignment,
7672                                  MachineMemOperand::Flags MMOFlags,
7673                                  const AAMDNodes &AAInfo) {
7674   SDValue Undef = getUNDEF(Ptr.getValueType());
7675   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7676                  MemVT, Alignment, MMOFlags, AAInfo);
7677 }
7678 
7679 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7680                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7681                                  MachineMemOperand *MMO) {
7682   SDValue Undef = getUNDEF(Ptr.getValueType());
7683   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7684                  MemVT, MMO);
7685 }
7686 
7687 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7688                                      SDValue Base, SDValue Offset,
7689                                      ISD::MemIndexedMode AM) {
7690   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7691   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7692   // Don't propagate the invariant or dereferenceable flags.
7693   auto MMOFlags =
7694       LD->getMemOperand()->getFlags() &
7695       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7696   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7697                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7698                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7699 }
7700 
7701 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7702                                SDValue Ptr, MachinePointerInfo PtrInfo,
7703                                Align Alignment,
7704                                MachineMemOperand::Flags MMOFlags,
7705                                const AAMDNodes &AAInfo) {
7706   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7707 
7708   MMOFlags |= MachineMemOperand::MOStore;
7709   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7710 
7711   if (PtrInfo.V.isNull())
7712     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7713 
7714   MachineFunction &MF = getMachineFunction();
7715   uint64_t Size =
7716       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7717   MachineMemOperand *MMO =
7718       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7719   return getStore(Chain, dl, Val, Ptr, MMO);
7720 }
7721 
7722 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7723                                SDValue Ptr, MachineMemOperand *MMO) {
7724   assert(Chain.getValueType() == MVT::Other &&
7725         "Invalid chain type");
7726   EVT VT = Val.getValueType();
7727   SDVTList VTs = getVTList(MVT::Other);
7728   SDValue Undef = getUNDEF(Ptr.getValueType());
7729   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7730   FoldingSetNodeID ID;
7731   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7732   ID.AddInteger(VT.getRawBits());
7733   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7734       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7735   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7736   ID.AddInteger(MMO->getFlags());
7737   void *IP = nullptr;
7738   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7739     cast<StoreSDNode>(E)->refineAlignment(MMO);
7740     return SDValue(E, 0);
7741   }
7742   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7743                                    ISD::UNINDEXED, false, VT, MMO);
7744   createOperands(N, Ops);
7745 
7746   CSEMap.InsertNode(N, IP);
7747   InsertNode(N);
7748   SDValue V(N, 0);
7749   NewSDValueDbgMsg(V, "Creating new node: ", this);
7750   return V;
7751 }
7752 
7753 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7754                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7755                                     EVT SVT, Align Alignment,
7756                                     MachineMemOperand::Flags MMOFlags,
7757                                     const AAMDNodes &AAInfo) {
7758   assert(Chain.getValueType() == MVT::Other &&
7759         "Invalid chain type");
7760 
7761   MMOFlags |= MachineMemOperand::MOStore;
7762   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7763 
7764   if (PtrInfo.V.isNull())
7765     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7766 
7767   MachineFunction &MF = getMachineFunction();
7768   MachineMemOperand *MMO = MF.getMachineMemOperand(
7769       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7770       Alignment, AAInfo);
7771   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7772 }
7773 
7774 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7775                                     SDValue Ptr, EVT SVT,
7776                                     MachineMemOperand *MMO) {
7777   EVT VT = Val.getValueType();
7778 
7779   assert(Chain.getValueType() == MVT::Other &&
7780         "Invalid chain type");
7781   if (VT == SVT)
7782     return getStore(Chain, dl, Val, Ptr, MMO);
7783 
7784   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7785          "Should only be a truncating store, not extending!");
7786   assert(VT.isInteger() == SVT.isInteger() &&
7787          "Can't do FP-INT conversion!");
7788   assert(VT.isVector() == SVT.isVector() &&
7789          "Cannot use trunc store to convert to or from a vector!");
7790   assert((!VT.isVector() ||
7791           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7792          "Cannot use trunc store to change the number of vector elements!");
7793 
7794   SDVTList VTs = getVTList(MVT::Other);
7795   SDValue Undef = getUNDEF(Ptr.getValueType());
7796   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7797   FoldingSetNodeID ID;
7798   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7799   ID.AddInteger(SVT.getRawBits());
7800   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7801       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7802   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7803   ID.AddInteger(MMO->getFlags());
7804   void *IP = nullptr;
7805   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7806     cast<StoreSDNode>(E)->refineAlignment(MMO);
7807     return SDValue(E, 0);
7808   }
7809   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7810                                    ISD::UNINDEXED, true, SVT, MMO);
7811   createOperands(N, Ops);
7812 
7813   CSEMap.InsertNode(N, IP);
7814   InsertNode(N);
7815   SDValue V(N, 0);
7816   NewSDValueDbgMsg(V, "Creating new node: ", this);
7817   return V;
7818 }
7819 
7820 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7821                                       SDValue Base, SDValue Offset,
7822                                       ISD::MemIndexedMode AM) {
7823   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7824   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7825   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7826   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7827   FoldingSetNodeID ID;
7828   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7829   ID.AddInteger(ST->getMemoryVT().getRawBits());
7830   ID.AddInteger(ST->getRawSubclassData());
7831   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7832   ID.AddInteger(ST->getMemOperand()->getFlags());
7833   void *IP = nullptr;
7834   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7835     return SDValue(E, 0);
7836 
7837   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7838                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7839                                    ST->getMemOperand());
7840   createOperands(N, Ops);
7841 
7842   CSEMap.InsertNode(N, IP);
7843   InsertNode(N);
7844   SDValue V(N, 0);
7845   NewSDValueDbgMsg(V, "Creating new node: ", this);
7846   return V;
7847 }
7848 
7849 SDValue SelectionDAG::getLoadVP(
7850     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7851     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7852     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7853     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7854     const MDNode *Ranges, bool IsExpanding) {
7855   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7856 
7857   MMOFlags |= MachineMemOperand::MOLoad;
7858   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7859   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7860   // clients.
7861   if (PtrInfo.V.isNull())
7862     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7863 
7864   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7865   MachineFunction &MF = getMachineFunction();
7866   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7867                                                    Alignment, AAInfo, Ranges);
7868   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7869                    MMO, IsExpanding);
7870 }
7871 
7872 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7873                                 ISD::LoadExtType ExtType, EVT VT,
7874                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7875                                 SDValue Offset, SDValue Mask, SDValue EVL,
7876                                 EVT MemVT, MachineMemOperand *MMO,
7877                                 bool IsExpanding) {
7878   bool Indexed = AM != ISD::UNINDEXED;
7879   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7880 
7881   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7882                          : getVTList(VT, MVT::Other);
7883   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7884   FoldingSetNodeID ID;
7885   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7886   ID.AddInteger(VT.getRawBits());
7887   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7888       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7889   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7890   ID.AddInteger(MMO->getFlags());
7891   void *IP = nullptr;
7892   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7893     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7894     return SDValue(E, 0);
7895   }
7896   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7897                                     ExtType, IsExpanding, MemVT, MMO);
7898   createOperands(N, Ops);
7899 
7900   CSEMap.InsertNode(N, IP);
7901   InsertNode(N);
7902   SDValue V(N, 0);
7903   NewSDValueDbgMsg(V, "Creating new node: ", this);
7904   return V;
7905 }
7906 
7907 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7908                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7909                                 MachinePointerInfo PtrInfo,
7910                                 MaybeAlign Alignment,
7911                                 MachineMemOperand::Flags MMOFlags,
7912                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7913                                 bool IsExpanding) {
7914   SDValue Undef = getUNDEF(Ptr.getValueType());
7915   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7916                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7917                    IsExpanding);
7918 }
7919 
7920 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7921                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7922                                 MachineMemOperand *MMO, bool IsExpanding) {
7923   SDValue Undef = getUNDEF(Ptr.getValueType());
7924   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7925                    Mask, EVL, VT, MMO, IsExpanding);
7926 }
7927 
7928 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7929                                    EVT VT, SDValue Chain, SDValue Ptr,
7930                                    SDValue Mask, SDValue EVL,
7931                                    MachinePointerInfo PtrInfo, EVT MemVT,
7932                                    MaybeAlign Alignment,
7933                                    MachineMemOperand::Flags MMOFlags,
7934                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7935   SDValue Undef = getUNDEF(Ptr.getValueType());
7936   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7937                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7938                    IsExpanding);
7939 }
7940 
7941 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7942                                    EVT VT, SDValue Chain, SDValue Ptr,
7943                                    SDValue Mask, SDValue EVL, EVT MemVT,
7944                                    MachineMemOperand *MMO, bool IsExpanding) {
7945   SDValue Undef = getUNDEF(Ptr.getValueType());
7946   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7947                    EVL, MemVT, MMO, IsExpanding);
7948 }
7949 
7950 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7951                                        SDValue Base, SDValue Offset,
7952                                        ISD::MemIndexedMode AM) {
7953   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7954   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7955   // Don't propagate the invariant or dereferenceable flags.
7956   auto MMOFlags =
7957       LD->getMemOperand()->getFlags() &
7958       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7959   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7960                    LD->getChain(), Base, Offset, LD->getMask(),
7961                    LD->getVectorLength(), LD->getPointerInfo(),
7962                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7963                    nullptr, LD->isExpandingLoad());
7964 }
7965 
7966 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7967                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7968                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7969                                  ISD::MemIndexedMode AM, bool IsTruncating,
7970                                  bool IsCompressing) {
7971   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7972   bool Indexed = AM != ISD::UNINDEXED;
7973   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7974   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7975                          : getVTList(MVT::Other);
7976   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7977   FoldingSetNodeID ID;
7978   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7979   ID.AddInteger(MemVT.getRawBits());
7980   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7981       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7982   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7983   ID.AddInteger(MMO->getFlags());
7984   void *IP = nullptr;
7985   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7986     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7987     return SDValue(E, 0);
7988   }
7989   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7990                                      IsTruncating, IsCompressing, MemVT, MMO);
7991   createOperands(N, Ops);
7992 
7993   CSEMap.InsertNode(N, IP);
7994   InsertNode(N);
7995   SDValue V(N, 0);
7996   NewSDValueDbgMsg(V, "Creating new node: ", this);
7997   return V;
7998 }
7999 
8000 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8001                                       SDValue Val, SDValue Ptr, SDValue Mask,
8002                                       SDValue EVL, MachinePointerInfo PtrInfo,
8003                                       EVT SVT, Align Alignment,
8004                                       MachineMemOperand::Flags MMOFlags,
8005                                       const AAMDNodes &AAInfo,
8006                                       bool IsCompressing) {
8007   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8008 
8009   MMOFlags |= MachineMemOperand::MOStore;
8010   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8011 
8012   if (PtrInfo.V.isNull())
8013     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8014 
8015   MachineFunction &MF = getMachineFunction();
8016   MachineMemOperand *MMO = MF.getMachineMemOperand(
8017       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8018       Alignment, AAInfo);
8019   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8020                          IsCompressing);
8021 }
8022 
8023 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8024                                       SDValue Val, SDValue Ptr, SDValue Mask,
8025                                       SDValue EVL, EVT SVT,
8026                                       MachineMemOperand *MMO,
8027                                       bool IsCompressing) {
8028   EVT VT = Val.getValueType();
8029 
8030   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8031   if (VT == SVT)
8032     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8033                       EVL, VT, MMO, ISD::UNINDEXED,
8034                       /*IsTruncating*/ false, IsCompressing);
8035 
8036   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8037          "Should only be a truncating store, not extending!");
8038   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8039   assert(VT.isVector() == SVT.isVector() &&
8040          "Cannot use trunc store to convert to or from a vector!");
8041   assert((!VT.isVector() ||
8042           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8043          "Cannot use trunc store to change the number of vector elements!");
8044 
8045   SDVTList VTs = getVTList(MVT::Other);
8046   SDValue Undef = getUNDEF(Ptr.getValueType());
8047   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8048   FoldingSetNodeID ID;
8049   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8050   ID.AddInteger(SVT.getRawBits());
8051   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8052       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8053   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8054   ID.AddInteger(MMO->getFlags());
8055   void *IP = nullptr;
8056   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8057     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8058     return SDValue(E, 0);
8059   }
8060   auto *N =
8061       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8062                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8063   createOperands(N, Ops);
8064 
8065   CSEMap.InsertNode(N, IP);
8066   InsertNode(N);
8067   SDValue V(N, 0);
8068   NewSDValueDbgMsg(V, "Creating new node: ", this);
8069   return V;
8070 }
8071 
8072 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8073                                         SDValue Base, SDValue Offset,
8074                                         ISD::MemIndexedMode AM) {
8075   auto *ST = cast<VPStoreSDNode>(OrigStore);
8076   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8077   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8078   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8079                    Offset,         ST->getMask(),  ST->getVectorLength()};
8080   FoldingSetNodeID ID;
8081   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8082   ID.AddInteger(ST->getMemoryVT().getRawBits());
8083   ID.AddInteger(ST->getRawSubclassData());
8084   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8085   ID.AddInteger(ST->getMemOperand()->getFlags());
8086   void *IP = nullptr;
8087   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8088     return SDValue(E, 0);
8089 
8090   auto *N = newSDNode<VPStoreSDNode>(
8091       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8092       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8093   createOperands(N, Ops);
8094 
8095   CSEMap.InsertNode(N, IP);
8096   InsertNode(N);
8097   SDValue V(N, 0);
8098   NewSDValueDbgMsg(V, "Creating new node: ", this);
8099   return V;
8100 }
8101 
8102 SDValue SelectionDAG::getStridedLoadVP(
8103     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8104     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8105     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8106     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8107     const MDNode *Ranges, bool IsExpanding) {
8108   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8109 
8110   MMOFlags |= MachineMemOperand::MOLoad;
8111   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8112   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8113   // clients.
8114   if (PtrInfo.V.isNull())
8115     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8116 
8117   uint64_t Size = MemoryLocation::UnknownSize;
8118   MachineFunction &MF = getMachineFunction();
8119   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8120                                                    Alignment, AAInfo, Ranges);
8121   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8122                           EVL, MemVT, MMO, IsExpanding);
8123 }
8124 
8125 SDValue SelectionDAG::getStridedLoadVP(
8126     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8127     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8128     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8129   bool Indexed = AM != ISD::UNINDEXED;
8130   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8131 
8132   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8133   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8134                          : getVTList(VT, MVT::Other);
8135   FoldingSetNodeID ID;
8136   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8137   ID.AddInteger(VT.getRawBits());
8138   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8139       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8140   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8141 
8142   void *IP = nullptr;
8143   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8144     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8145     return SDValue(E, 0);
8146   }
8147 
8148   auto *N =
8149       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8150                                      ExtType, IsExpanding, MemVT, MMO);
8151   createOperands(N, Ops);
8152   CSEMap.InsertNode(N, IP);
8153   InsertNode(N);
8154   SDValue V(N, 0);
8155   NewSDValueDbgMsg(V, "Creating new node: ", this);
8156   return V;
8157 }
8158 
8159 SDValue SelectionDAG::getStridedLoadVP(
8160     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8161     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8162     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8163     const MDNode *Ranges, bool IsExpanding) {
8164   SDValue Undef = getUNDEF(Ptr.getValueType());
8165   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8166                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8167                           MMOFlags, AAInfo, Ranges, IsExpanding);
8168 }
8169 
8170 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8171                                        SDValue Ptr, SDValue Stride,
8172                                        SDValue Mask, SDValue EVL,
8173                                        MachineMemOperand *MMO,
8174                                        bool IsExpanding) {
8175   SDValue Undef = getUNDEF(Ptr.getValueType());
8176   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8177                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8178 }
8179 
8180 SDValue SelectionDAG::getExtStridedLoadVP(
8181     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8182     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8183     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8184     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8185     bool IsExpanding) {
8186   SDValue Undef = getUNDEF(Ptr.getValueType());
8187   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8188                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8189                           MMOFlags, AAInfo, nullptr, IsExpanding);
8190 }
8191 
8192 SDValue SelectionDAG::getExtStridedLoadVP(
8193     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8194     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8195     MachineMemOperand *MMO, bool IsExpanding) {
8196   SDValue Undef = getUNDEF(Ptr.getValueType());
8197   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8198                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8199 }
8200 
8201 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8202                                               SDValue Base, SDValue Offset,
8203                                               ISD::MemIndexedMode AM) {
8204   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8205   assert(SLD->getOffset().isUndef() &&
8206          "Strided load is already a indexed load!");
8207   // Don't propagate the invariant or dereferenceable flags.
8208   auto MMOFlags =
8209       SLD->getMemOperand()->getFlags() &
8210       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8211   return getStridedLoadVP(
8212       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8213       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8214       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8215       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8216 }
8217 
8218 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8219                                         SDValue Val, SDValue Ptr,
8220                                         SDValue Offset, SDValue Stride,
8221                                         SDValue Mask, SDValue EVL, EVT MemVT,
8222                                         MachineMemOperand *MMO,
8223                                         ISD::MemIndexedMode AM,
8224                                         bool IsTruncating, bool IsCompressing) {
8225   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8226   bool Indexed = AM != ISD::UNINDEXED;
8227   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8228   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8229                          : getVTList(MVT::Other);
8230   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8231   FoldingSetNodeID ID;
8232   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8233   ID.AddInteger(MemVT.getRawBits());
8234   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8235       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8236   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8237   void *IP = nullptr;
8238   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8239     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8240     return SDValue(E, 0);
8241   }
8242   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8243                                             VTs, AM, IsTruncating,
8244                                             IsCompressing, MemVT, MMO);
8245   createOperands(N, Ops);
8246 
8247   CSEMap.InsertNode(N, IP);
8248   InsertNode(N);
8249   SDValue V(N, 0);
8250   NewSDValueDbgMsg(V, "Creating new node: ", this);
8251   return V;
8252 }
8253 
8254 SDValue SelectionDAG::getTruncStridedStoreVP(
8255     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8256     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8257     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8258     bool IsCompressing) {
8259   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8260 
8261   MMOFlags |= MachineMemOperand::MOStore;
8262   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8263 
8264   if (PtrInfo.V.isNull())
8265     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8266 
8267   MachineFunction &MF = getMachineFunction();
8268   MachineMemOperand *MMO = MF.getMachineMemOperand(
8269       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8270   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8271                                 MMO, IsCompressing);
8272 }
8273 
8274 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8275                                              SDValue Val, SDValue Ptr,
8276                                              SDValue Stride, SDValue Mask,
8277                                              SDValue EVL, EVT SVT,
8278                                              MachineMemOperand *MMO,
8279                                              bool IsCompressing) {
8280   EVT VT = Val.getValueType();
8281 
8282   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8283   if (VT == SVT)
8284     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8285                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8286                              /*IsTruncating*/ false, IsCompressing);
8287 
8288   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8289          "Should only be a truncating store, not extending!");
8290   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8291   assert(VT.isVector() == SVT.isVector() &&
8292          "Cannot use trunc store to convert to or from a vector!");
8293   assert((!VT.isVector() ||
8294           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8295          "Cannot use trunc store to change the number of vector elements!");
8296 
8297   SDVTList VTs = getVTList(MVT::Other);
8298   SDValue Undef = getUNDEF(Ptr.getValueType());
8299   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8300   FoldingSetNodeID ID;
8301   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8302   ID.AddInteger(SVT.getRawBits());
8303   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8304       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8305   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8306   void *IP = nullptr;
8307   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8308     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8309     return SDValue(E, 0);
8310   }
8311   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8312                                             VTs, ISD::UNINDEXED, true,
8313                                             IsCompressing, SVT, MMO);
8314   createOperands(N, Ops);
8315 
8316   CSEMap.InsertNode(N, IP);
8317   InsertNode(N);
8318   SDValue V(N, 0);
8319   NewSDValueDbgMsg(V, "Creating new node: ", this);
8320   return V;
8321 }
8322 
8323 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8324                                                const SDLoc &DL, SDValue Base,
8325                                                SDValue Offset,
8326                                                ISD::MemIndexedMode AM) {
8327   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8328   assert(SST->getOffset().isUndef() &&
8329          "Strided store is already an indexed store!");
8330   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8331   SDValue Ops[] = {
8332       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8333       SST->getMask(),  SST->getVectorLength()};
8334   FoldingSetNodeID ID;
8335   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8336   ID.AddInteger(SST->getMemoryVT().getRawBits());
8337   ID.AddInteger(SST->getRawSubclassData());
8338   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8339   void *IP = nullptr;
8340   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8341     return SDValue(E, 0);
8342 
8343   auto *N = newSDNode<VPStridedStoreSDNode>(
8344       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8345       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8346   createOperands(N, Ops);
8347 
8348   CSEMap.InsertNode(N, IP);
8349   InsertNode(N);
8350   SDValue V(N, 0);
8351   NewSDValueDbgMsg(V, "Creating new node: ", this);
8352   return V;
8353 }
8354 
8355 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8356                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8357                                   ISD::MemIndexType IndexType) {
8358   assert(Ops.size() == 6 && "Incompatible number of operands");
8359 
8360   FoldingSetNodeID ID;
8361   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8362   ID.AddInteger(VT.getRawBits());
8363   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8364       dl.getIROrder(), VTs, VT, MMO, IndexType));
8365   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8366   ID.AddInteger(MMO->getFlags());
8367   void *IP = nullptr;
8368   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8369     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8370     return SDValue(E, 0);
8371   }
8372 
8373   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8374                                       VT, MMO, IndexType);
8375   createOperands(N, Ops);
8376 
8377   assert(N->getMask().getValueType().getVectorElementCount() ==
8378              N->getValueType(0).getVectorElementCount() &&
8379          "Vector width mismatch between mask and data");
8380   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8381              N->getValueType(0).getVectorElementCount().isScalable() &&
8382          "Scalable flags of index and data do not match");
8383   assert(ElementCount::isKnownGE(
8384              N->getIndex().getValueType().getVectorElementCount(),
8385              N->getValueType(0).getVectorElementCount()) &&
8386          "Vector width mismatch between index and data");
8387   assert(isa<ConstantSDNode>(N->getScale()) &&
8388          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8389          "Scale should be a constant power of 2");
8390 
8391   CSEMap.InsertNode(N, IP);
8392   InsertNode(N);
8393   SDValue V(N, 0);
8394   NewSDValueDbgMsg(V, "Creating new node: ", this);
8395   return V;
8396 }
8397 
8398 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8399                                    ArrayRef<SDValue> Ops,
8400                                    MachineMemOperand *MMO,
8401                                    ISD::MemIndexType IndexType) {
8402   assert(Ops.size() == 7 && "Incompatible number of operands");
8403 
8404   FoldingSetNodeID ID;
8405   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8406   ID.AddInteger(VT.getRawBits());
8407   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8408       dl.getIROrder(), VTs, VT, MMO, IndexType));
8409   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8410   ID.AddInteger(MMO->getFlags());
8411   void *IP = nullptr;
8412   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8413     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8414     return SDValue(E, 0);
8415   }
8416   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8417                                        VT, MMO, IndexType);
8418   createOperands(N, Ops);
8419 
8420   assert(N->getMask().getValueType().getVectorElementCount() ==
8421              N->getValue().getValueType().getVectorElementCount() &&
8422          "Vector width mismatch between mask and data");
8423   assert(
8424       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8425           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8426       "Scalable flags of index and data do not match");
8427   assert(ElementCount::isKnownGE(
8428              N->getIndex().getValueType().getVectorElementCount(),
8429              N->getValue().getValueType().getVectorElementCount()) &&
8430          "Vector width mismatch between index and data");
8431   assert(isa<ConstantSDNode>(N->getScale()) &&
8432          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8433          "Scale should be a constant power of 2");
8434 
8435   CSEMap.InsertNode(N, IP);
8436   InsertNode(N);
8437   SDValue V(N, 0);
8438   NewSDValueDbgMsg(V, "Creating new node: ", this);
8439   return V;
8440 }
8441 
8442 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8443                                     SDValue Base, SDValue Offset, SDValue Mask,
8444                                     SDValue PassThru, EVT MemVT,
8445                                     MachineMemOperand *MMO,
8446                                     ISD::MemIndexedMode AM,
8447                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8448   bool Indexed = AM != ISD::UNINDEXED;
8449   assert((Indexed || Offset.isUndef()) &&
8450          "Unindexed masked load with an offset!");
8451   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8452                          : getVTList(VT, MVT::Other);
8453   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8454   FoldingSetNodeID ID;
8455   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8456   ID.AddInteger(MemVT.getRawBits());
8457   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8458       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8459   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8460   ID.AddInteger(MMO->getFlags());
8461   void *IP = nullptr;
8462   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8463     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8464     return SDValue(E, 0);
8465   }
8466   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8467                                         AM, ExtTy, isExpanding, MemVT, MMO);
8468   createOperands(N, Ops);
8469 
8470   CSEMap.InsertNode(N, IP);
8471   InsertNode(N);
8472   SDValue V(N, 0);
8473   NewSDValueDbgMsg(V, "Creating new node: ", this);
8474   return V;
8475 }
8476 
8477 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8478                                            SDValue Base, SDValue Offset,
8479                                            ISD::MemIndexedMode AM) {
8480   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8481   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8482   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8483                        Offset, LD->getMask(), LD->getPassThru(),
8484                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8485                        LD->getExtensionType(), LD->isExpandingLoad());
8486 }
8487 
8488 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8489                                      SDValue Val, SDValue Base, SDValue Offset,
8490                                      SDValue Mask, EVT MemVT,
8491                                      MachineMemOperand *MMO,
8492                                      ISD::MemIndexedMode AM, bool IsTruncating,
8493                                      bool IsCompressing) {
8494   assert(Chain.getValueType() == MVT::Other &&
8495         "Invalid chain type");
8496   bool Indexed = AM != ISD::UNINDEXED;
8497   assert((Indexed || Offset.isUndef()) &&
8498          "Unindexed masked store with an offset!");
8499   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8500                          : getVTList(MVT::Other);
8501   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8502   FoldingSetNodeID ID;
8503   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8504   ID.AddInteger(MemVT.getRawBits());
8505   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8506       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8507   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8508   ID.AddInteger(MMO->getFlags());
8509   void *IP = nullptr;
8510   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8511     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8512     return SDValue(E, 0);
8513   }
8514   auto *N =
8515       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8516                                    IsTruncating, IsCompressing, MemVT, MMO);
8517   createOperands(N, Ops);
8518 
8519   CSEMap.InsertNode(N, IP);
8520   InsertNode(N);
8521   SDValue V(N, 0);
8522   NewSDValueDbgMsg(V, "Creating new node: ", this);
8523   return V;
8524 }
8525 
8526 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8527                                             SDValue Base, SDValue Offset,
8528                                             ISD::MemIndexedMode AM) {
8529   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8530   assert(ST->getOffset().isUndef() &&
8531          "Masked store is already a indexed store!");
8532   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8533                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8534                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8535 }
8536 
8537 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8538                                       ArrayRef<SDValue> Ops,
8539                                       MachineMemOperand *MMO,
8540                                       ISD::MemIndexType IndexType,
8541                                       ISD::LoadExtType ExtTy) {
8542   assert(Ops.size() == 6 && "Incompatible number of operands");
8543 
8544   FoldingSetNodeID ID;
8545   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8546   ID.AddInteger(MemVT.getRawBits());
8547   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8548       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8549   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8550   ID.AddInteger(MMO->getFlags());
8551   void *IP = nullptr;
8552   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8553     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8554     return SDValue(E, 0);
8555   }
8556 
8557   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8558   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8559                                           VTs, MemVT, MMO, IndexType, ExtTy);
8560   createOperands(N, Ops);
8561 
8562   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8563          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8564   assert(N->getMask().getValueType().getVectorElementCount() ==
8565              N->getValueType(0).getVectorElementCount() &&
8566          "Vector width mismatch between mask and data");
8567   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8568              N->getValueType(0).getVectorElementCount().isScalable() &&
8569          "Scalable flags of index and data do not match");
8570   assert(ElementCount::isKnownGE(
8571              N->getIndex().getValueType().getVectorElementCount(),
8572              N->getValueType(0).getVectorElementCount()) &&
8573          "Vector width mismatch between index and data");
8574   assert(isa<ConstantSDNode>(N->getScale()) &&
8575          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8576          "Scale should be a constant power of 2");
8577 
8578   CSEMap.InsertNode(N, IP);
8579   InsertNode(N);
8580   SDValue V(N, 0);
8581   NewSDValueDbgMsg(V, "Creating new node: ", this);
8582   return V;
8583 }
8584 
8585 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8586                                        ArrayRef<SDValue> Ops,
8587                                        MachineMemOperand *MMO,
8588                                        ISD::MemIndexType IndexType,
8589                                        bool IsTrunc) {
8590   assert(Ops.size() == 6 && "Incompatible number of operands");
8591 
8592   FoldingSetNodeID ID;
8593   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8594   ID.AddInteger(MemVT.getRawBits());
8595   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8596       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8597   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8598   ID.AddInteger(MMO->getFlags());
8599   void *IP = nullptr;
8600   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8601     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8602     return SDValue(E, 0);
8603   }
8604 
8605   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8606   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8607                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8608   createOperands(N, Ops);
8609 
8610   assert(N->getMask().getValueType().getVectorElementCount() ==
8611              N->getValue().getValueType().getVectorElementCount() &&
8612          "Vector width mismatch between mask and data");
8613   assert(
8614       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8615           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8616       "Scalable flags of index and data do not match");
8617   assert(ElementCount::isKnownGE(
8618              N->getIndex().getValueType().getVectorElementCount(),
8619              N->getValue().getValueType().getVectorElementCount()) &&
8620          "Vector width mismatch between index and data");
8621   assert(isa<ConstantSDNode>(N->getScale()) &&
8622          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8623          "Scale should be a constant power of 2");
8624 
8625   CSEMap.InsertNode(N, IP);
8626   InsertNode(N);
8627   SDValue V(N, 0);
8628   NewSDValueDbgMsg(V, "Creating new node: ", this);
8629   return V;
8630 }
8631 
8632 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8633   // select undef, T, F --> T (if T is a constant), otherwise F
8634   // select, ?, undef, F --> F
8635   // select, ?, T, undef --> T
8636   if (Cond.isUndef())
8637     return isConstantValueOfAnyType(T) ? T : F;
8638   if (T.isUndef())
8639     return F;
8640   if (F.isUndef())
8641     return T;
8642 
8643   // select true, T, F --> T
8644   // select false, T, F --> F
8645   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8646     return CondC->isZero() ? F : T;
8647 
8648   // TODO: This should simplify VSELECT with constant condition using something
8649   // like this (but check boolean contents to be complete?):
8650   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8651   //    return T;
8652   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8653   //    return F;
8654 
8655   // select ?, T, T --> T
8656   if (T == F)
8657     return T;
8658 
8659   return SDValue();
8660 }
8661 
8662 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8663   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8664   if (X.isUndef())
8665     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8666   // shift X, undef --> undef (because it may shift by the bitwidth)
8667   if (Y.isUndef())
8668     return getUNDEF(X.getValueType());
8669 
8670   // shift 0, Y --> 0
8671   // shift X, 0 --> X
8672   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8673     return X;
8674 
8675   // shift X, C >= bitwidth(X) --> undef
8676   // All vector elements must be too big (or undef) to avoid partial undefs.
8677   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8678     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8679   };
8680   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8681     return getUNDEF(X.getValueType());
8682 
8683   return SDValue();
8684 }
8685 
8686 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8687                                       SDNodeFlags Flags) {
8688   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8689   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8690   // operation is poison. That result can be relaxed to undef.
8691   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8692   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8693   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8694                 (YC && YC->getValueAPF().isNaN());
8695   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8696                 (YC && YC->getValueAPF().isInfinity());
8697 
8698   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8699     return getUNDEF(X.getValueType());
8700 
8701   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8702     return getUNDEF(X.getValueType());
8703 
8704   if (!YC)
8705     return SDValue();
8706 
8707   // X + -0.0 --> X
8708   if (Opcode == ISD::FADD)
8709     if (YC->getValueAPF().isNegZero())
8710       return X;
8711 
8712   // X - +0.0 --> X
8713   if (Opcode == ISD::FSUB)
8714     if (YC->getValueAPF().isPosZero())
8715       return X;
8716 
8717   // X * 1.0 --> X
8718   // X / 1.0 --> X
8719   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8720     if (YC->getValueAPF().isExactlyValue(1.0))
8721       return X;
8722 
8723   // X * 0.0 --> 0.0
8724   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8725     if (YC->getValueAPF().isZero())
8726       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8727 
8728   return SDValue();
8729 }
8730 
8731 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8732                                SDValue Ptr, SDValue SV, unsigned Align) {
8733   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8734   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8735 }
8736 
8737 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8738                               ArrayRef<SDUse> Ops) {
8739   switch (Ops.size()) {
8740   case 0: return getNode(Opcode, DL, VT);
8741   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8742   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8743   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8744   default: break;
8745   }
8746 
8747   // Copy from an SDUse array into an SDValue array for use with
8748   // the regular getNode logic.
8749   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8750   return getNode(Opcode, DL, VT, NewOps);
8751 }
8752 
8753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8754                               ArrayRef<SDValue> Ops) {
8755   SDNodeFlags Flags;
8756   if (Inserter)
8757     Flags = Inserter->getFlags();
8758   return getNode(Opcode, DL, VT, Ops, Flags);
8759 }
8760 
8761 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8762                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8763   unsigned NumOps = Ops.size();
8764   switch (NumOps) {
8765   case 0: return getNode(Opcode, DL, VT);
8766   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8767   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8768   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8769   default: break;
8770   }
8771 
8772 #ifndef NDEBUG
8773   for (auto &Op : Ops)
8774     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8775            "Operand is DELETED_NODE!");
8776 #endif
8777 
8778   switch (Opcode) {
8779   default: break;
8780   case ISD::BUILD_VECTOR:
8781     // Attempt to simplify BUILD_VECTOR.
8782     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8783       return V;
8784     break;
8785   case ISD::CONCAT_VECTORS:
8786     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8787       return V;
8788     break;
8789   case ISD::SELECT_CC:
8790     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8791     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8792            "LHS and RHS of condition must have same type!");
8793     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8794            "True and False arms of SelectCC must have same type!");
8795     assert(Ops[2].getValueType() == VT &&
8796            "select_cc node must be of same type as true and false value!");
8797     break;
8798   case ISD::BR_CC:
8799     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8800     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8801            "LHS/RHS of comparison should match types!");
8802     break;
8803   }
8804 
8805   // Memoize nodes.
8806   SDNode *N;
8807   SDVTList VTs = getVTList(VT);
8808 
8809   if (VT != MVT::Glue) {
8810     FoldingSetNodeID ID;
8811     AddNodeIDNode(ID, Opcode, VTs, Ops);
8812     void *IP = nullptr;
8813 
8814     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8815       return SDValue(E, 0);
8816 
8817     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8818     createOperands(N, Ops);
8819 
8820     CSEMap.InsertNode(N, IP);
8821   } else {
8822     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8823     createOperands(N, Ops);
8824   }
8825 
8826   N->setFlags(Flags);
8827   InsertNode(N);
8828   SDValue V(N, 0);
8829   NewSDValueDbgMsg(V, "Creating new node: ", this);
8830   return V;
8831 }
8832 
8833 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8834                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8835   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8836 }
8837 
8838 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8839                               ArrayRef<SDValue> Ops) {
8840   SDNodeFlags Flags;
8841   if (Inserter)
8842     Flags = Inserter->getFlags();
8843   return getNode(Opcode, DL, VTList, Ops, Flags);
8844 }
8845 
8846 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8847                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8848   if (VTList.NumVTs == 1)
8849     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8850 
8851 #ifndef NDEBUG
8852   for (auto &Op : Ops)
8853     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8854            "Operand is DELETED_NODE!");
8855 #endif
8856 
8857   switch (Opcode) {
8858   case ISD::STRICT_FP_EXTEND:
8859     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8860            "Invalid STRICT_FP_EXTEND!");
8861     assert(VTList.VTs[0].isFloatingPoint() &&
8862            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8863     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8864            "STRICT_FP_EXTEND result type should be vector iff the operand "
8865            "type is vector!");
8866     assert((!VTList.VTs[0].isVector() ||
8867             VTList.VTs[0].getVectorNumElements() ==
8868             Ops[1].getValueType().getVectorNumElements()) &&
8869            "Vector element count mismatch!");
8870     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8871            "Invalid fpext node, dst <= src!");
8872     break;
8873   case ISD::STRICT_FP_ROUND:
8874     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8875     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8876            "STRICT_FP_ROUND result type should be vector iff the operand "
8877            "type is vector!");
8878     assert((!VTList.VTs[0].isVector() ||
8879             VTList.VTs[0].getVectorNumElements() ==
8880             Ops[1].getValueType().getVectorNumElements()) &&
8881            "Vector element count mismatch!");
8882     assert(VTList.VTs[0].isFloatingPoint() &&
8883            Ops[1].getValueType().isFloatingPoint() &&
8884            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8885            isa<ConstantSDNode>(Ops[2]) &&
8886            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8887             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8888            "Invalid STRICT_FP_ROUND!");
8889     break;
8890 #if 0
8891   // FIXME: figure out how to safely handle things like
8892   // int foo(int x) { return 1 << (x & 255); }
8893   // int bar() { return foo(256); }
8894   case ISD::SRA_PARTS:
8895   case ISD::SRL_PARTS:
8896   case ISD::SHL_PARTS:
8897     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8898         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8899       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8900     else if (N3.getOpcode() == ISD::AND)
8901       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8902         // If the and is only masking out bits that cannot effect the shift,
8903         // eliminate the and.
8904         unsigned NumBits = VT.getScalarSizeInBits()*2;
8905         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8906           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8907       }
8908     break;
8909 #endif
8910   }
8911 
8912   // Memoize the node unless it returns a flag.
8913   SDNode *N;
8914   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8915     FoldingSetNodeID ID;
8916     AddNodeIDNode(ID, Opcode, VTList, Ops);
8917     void *IP = nullptr;
8918     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8919       return SDValue(E, 0);
8920 
8921     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8922     createOperands(N, Ops);
8923     CSEMap.InsertNode(N, IP);
8924   } else {
8925     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8926     createOperands(N, Ops);
8927   }
8928 
8929   N->setFlags(Flags);
8930   InsertNode(N);
8931   SDValue V(N, 0);
8932   NewSDValueDbgMsg(V, "Creating new node: ", this);
8933   return V;
8934 }
8935 
8936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8937                               SDVTList VTList) {
8938   return getNode(Opcode, DL, VTList, None);
8939 }
8940 
8941 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8942                               SDValue N1) {
8943   SDValue Ops[] = { N1 };
8944   return getNode(Opcode, DL, VTList, Ops);
8945 }
8946 
8947 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8948                               SDValue N1, SDValue N2) {
8949   SDValue Ops[] = { N1, N2 };
8950   return getNode(Opcode, DL, VTList, Ops);
8951 }
8952 
8953 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8954                               SDValue N1, SDValue N2, SDValue N3) {
8955   SDValue Ops[] = { N1, N2, N3 };
8956   return getNode(Opcode, DL, VTList, Ops);
8957 }
8958 
8959 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8960                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8961   SDValue Ops[] = { N1, N2, N3, N4 };
8962   return getNode(Opcode, DL, VTList, Ops);
8963 }
8964 
8965 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8966                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8967                               SDValue N5) {
8968   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8969   return getNode(Opcode, DL, VTList, Ops);
8970 }
8971 
8972 SDVTList SelectionDAG::getVTList(EVT VT) {
8973   return makeVTList(SDNode::getValueTypeList(VT), 1);
8974 }
8975 
8976 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8977   FoldingSetNodeID ID;
8978   ID.AddInteger(2U);
8979   ID.AddInteger(VT1.getRawBits());
8980   ID.AddInteger(VT2.getRawBits());
8981 
8982   void *IP = nullptr;
8983   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8984   if (!Result) {
8985     EVT *Array = Allocator.Allocate<EVT>(2);
8986     Array[0] = VT1;
8987     Array[1] = VT2;
8988     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8989     VTListMap.InsertNode(Result, IP);
8990   }
8991   return Result->getSDVTList();
8992 }
8993 
8994 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8995   FoldingSetNodeID ID;
8996   ID.AddInteger(3U);
8997   ID.AddInteger(VT1.getRawBits());
8998   ID.AddInteger(VT2.getRawBits());
8999   ID.AddInteger(VT3.getRawBits());
9000 
9001   void *IP = nullptr;
9002   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9003   if (!Result) {
9004     EVT *Array = Allocator.Allocate<EVT>(3);
9005     Array[0] = VT1;
9006     Array[1] = VT2;
9007     Array[2] = VT3;
9008     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9009     VTListMap.InsertNode(Result, IP);
9010   }
9011   return Result->getSDVTList();
9012 }
9013 
9014 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9015   FoldingSetNodeID ID;
9016   ID.AddInteger(4U);
9017   ID.AddInteger(VT1.getRawBits());
9018   ID.AddInteger(VT2.getRawBits());
9019   ID.AddInteger(VT3.getRawBits());
9020   ID.AddInteger(VT4.getRawBits());
9021 
9022   void *IP = nullptr;
9023   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9024   if (!Result) {
9025     EVT *Array = Allocator.Allocate<EVT>(4);
9026     Array[0] = VT1;
9027     Array[1] = VT2;
9028     Array[2] = VT3;
9029     Array[3] = VT4;
9030     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9031     VTListMap.InsertNode(Result, IP);
9032   }
9033   return Result->getSDVTList();
9034 }
9035 
9036 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9037   unsigned NumVTs = VTs.size();
9038   FoldingSetNodeID ID;
9039   ID.AddInteger(NumVTs);
9040   for (unsigned index = 0; index < NumVTs; index++) {
9041     ID.AddInteger(VTs[index].getRawBits());
9042   }
9043 
9044   void *IP = nullptr;
9045   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9046   if (!Result) {
9047     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9048     llvm::copy(VTs, Array);
9049     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9050     VTListMap.InsertNode(Result, IP);
9051   }
9052   return Result->getSDVTList();
9053 }
9054 
9055 
9056 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9057 /// specified operands.  If the resultant node already exists in the DAG,
9058 /// this does not modify the specified node, instead it returns the node that
9059 /// already exists.  If the resultant node does not exist in the DAG, the
9060 /// input node is returned.  As a degenerate case, if you specify the same
9061 /// input operands as the node already has, the input node is returned.
9062 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9063   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9064 
9065   // Check to see if there is no change.
9066   if (Op == N->getOperand(0)) return N;
9067 
9068   // See if the modified node already exists.
9069   void *InsertPos = nullptr;
9070   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9071     return Existing;
9072 
9073   // Nope it doesn't.  Remove the node from its current place in the maps.
9074   if (InsertPos)
9075     if (!RemoveNodeFromCSEMaps(N))
9076       InsertPos = nullptr;
9077 
9078   // Now we update the operands.
9079   N->OperandList[0].set(Op);
9080 
9081   updateDivergence(N);
9082   // If this gets put into a CSE map, add it.
9083   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9084   return N;
9085 }
9086 
9087 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9088   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9089 
9090   // Check to see if there is no change.
9091   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9092     return N;   // No operands changed, just return the input node.
9093 
9094   // See if the modified node already exists.
9095   void *InsertPos = nullptr;
9096   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9097     return Existing;
9098 
9099   // Nope it doesn't.  Remove the node from its current place in the maps.
9100   if (InsertPos)
9101     if (!RemoveNodeFromCSEMaps(N))
9102       InsertPos = nullptr;
9103 
9104   // Now we update the operands.
9105   if (N->OperandList[0] != Op1)
9106     N->OperandList[0].set(Op1);
9107   if (N->OperandList[1] != Op2)
9108     N->OperandList[1].set(Op2);
9109 
9110   updateDivergence(N);
9111   // If this gets put into a CSE map, add it.
9112   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9113   return N;
9114 }
9115 
9116 SDNode *SelectionDAG::
9117 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9118   SDValue Ops[] = { Op1, Op2, Op3 };
9119   return UpdateNodeOperands(N, Ops);
9120 }
9121 
9122 SDNode *SelectionDAG::
9123 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9124                    SDValue Op3, SDValue Op4) {
9125   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9126   return UpdateNodeOperands(N, Ops);
9127 }
9128 
9129 SDNode *SelectionDAG::
9130 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9131                    SDValue Op3, SDValue Op4, SDValue Op5) {
9132   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9133   return UpdateNodeOperands(N, Ops);
9134 }
9135 
9136 SDNode *SelectionDAG::
9137 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9138   unsigned NumOps = Ops.size();
9139   assert(N->getNumOperands() == NumOps &&
9140          "Update with wrong number of operands");
9141 
9142   // If no operands changed just return the input node.
9143   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9144     return N;
9145 
9146   // See if the modified node already exists.
9147   void *InsertPos = nullptr;
9148   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9149     return Existing;
9150 
9151   // Nope it doesn't.  Remove the node from its current place in the maps.
9152   if (InsertPos)
9153     if (!RemoveNodeFromCSEMaps(N))
9154       InsertPos = nullptr;
9155 
9156   // Now we update the operands.
9157   for (unsigned i = 0; i != NumOps; ++i)
9158     if (N->OperandList[i] != Ops[i])
9159       N->OperandList[i].set(Ops[i]);
9160 
9161   updateDivergence(N);
9162   // If this gets put into a CSE map, add it.
9163   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9164   return N;
9165 }
9166 
9167 /// DropOperands - Release the operands and set this node to have
9168 /// zero operands.
9169 void SDNode::DropOperands() {
9170   // Unlike the code in MorphNodeTo that does this, we don't need to
9171   // watch for dead nodes here.
9172   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9173     SDUse &Use = *I++;
9174     Use.set(SDValue());
9175   }
9176 }
9177 
9178 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9179                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9180   if (NewMemRefs.empty()) {
9181     N->clearMemRefs();
9182     return;
9183   }
9184 
9185   // Check if we can avoid allocating by storing a single reference directly.
9186   if (NewMemRefs.size() == 1) {
9187     N->MemRefs = NewMemRefs[0];
9188     N->NumMemRefs = 1;
9189     return;
9190   }
9191 
9192   MachineMemOperand **MemRefsBuffer =
9193       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9194   llvm::copy(NewMemRefs, MemRefsBuffer);
9195   N->MemRefs = MemRefsBuffer;
9196   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9197 }
9198 
9199 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9200 /// machine opcode.
9201 ///
9202 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9203                                    EVT VT) {
9204   SDVTList VTs = getVTList(VT);
9205   return SelectNodeTo(N, MachineOpc, VTs, None);
9206 }
9207 
9208 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9209                                    EVT VT, SDValue Op1) {
9210   SDVTList VTs = getVTList(VT);
9211   SDValue Ops[] = { Op1 };
9212   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9213 }
9214 
9215 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9216                                    EVT VT, SDValue Op1,
9217                                    SDValue Op2) {
9218   SDVTList VTs = getVTList(VT);
9219   SDValue Ops[] = { Op1, Op2 };
9220   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9221 }
9222 
9223 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9224                                    EVT VT, SDValue Op1,
9225                                    SDValue Op2, SDValue Op3) {
9226   SDVTList VTs = getVTList(VT);
9227   SDValue Ops[] = { Op1, Op2, Op3 };
9228   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9229 }
9230 
9231 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9232                                    EVT VT, ArrayRef<SDValue> Ops) {
9233   SDVTList VTs = getVTList(VT);
9234   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9235 }
9236 
9237 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9238                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9239   SDVTList VTs = getVTList(VT1, VT2);
9240   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9241 }
9242 
9243 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9244                                    EVT VT1, EVT VT2) {
9245   SDVTList VTs = getVTList(VT1, VT2);
9246   return SelectNodeTo(N, MachineOpc, VTs, None);
9247 }
9248 
9249 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9250                                    EVT VT1, EVT VT2, EVT VT3,
9251                                    ArrayRef<SDValue> Ops) {
9252   SDVTList VTs = getVTList(VT1, VT2, VT3);
9253   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9254 }
9255 
9256 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9257                                    EVT VT1, EVT VT2,
9258                                    SDValue Op1, SDValue Op2) {
9259   SDVTList VTs = getVTList(VT1, VT2);
9260   SDValue Ops[] = { Op1, Op2 };
9261   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9262 }
9263 
9264 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9265                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9266   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9267   // Reset the NodeID to -1.
9268   New->setNodeId(-1);
9269   if (New != N) {
9270     ReplaceAllUsesWith(N, New);
9271     RemoveDeadNode(N);
9272   }
9273   return New;
9274 }
9275 
9276 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9277 /// the line number information on the merged node since it is not possible to
9278 /// preserve the information that operation is associated with multiple lines.
9279 /// This will make the debugger working better at -O0, were there is a higher
9280 /// probability having other instructions associated with that line.
9281 ///
9282 /// For IROrder, we keep the smaller of the two
9283 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9284   DebugLoc NLoc = N->getDebugLoc();
9285   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9286     N->setDebugLoc(DebugLoc());
9287   }
9288   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9289   N->setIROrder(Order);
9290   return N;
9291 }
9292 
9293 /// MorphNodeTo - This *mutates* the specified node to have the specified
9294 /// return type, opcode, and operands.
9295 ///
9296 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9297 /// node of the specified opcode and operands, it returns that node instead of
9298 /// the current one.  Note that the SDLoc need not be the same.
9299 ///
9300 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9301 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9302 /// node, and because it doesn't require CSE recalculation for any of
9303 /// the node's users.
9304 ///
9305 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9306 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9307 /// the legalizer which maintain worklists that would need to be updated when
9308 /// deleting things.
9309 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9310                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9311   // If an identical node already exists, use it.
9312   void *IP = nullptr;
9313   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9314     FoldingSetNodeID ID;
9315     AddNodeIDNode(ID, Opc, VTs, Ops);
9316     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9317       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9318   }
9319 
9320   if (!RemoveNodeFromCSEMaps(N))
9321     IP = nullptr;
9322 
9323   // Start the morphing.
9324   N->NodeType = Opc;
9325   N->ValueList = VTs.VTs;
9326   N->NumValues = VTs.NumVTs;
9327 
9328   // Clear the operands list, updating used nodes to remove this from their
9329   // use list.  Keep track of any operands that become dead as a result.
9330   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9331   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9332     SDUse &Use = *I++;
9333     SDNode *Used = Use.getNode();
9334     Use.set(SDValue());
9335     if (Used->use_empty())
9336       DeadNodeSet.insert(Used);
9337   }
9338 
9339   // For MachineNode, initialize the memory references information.
9340   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9341     MN->clearMemRefs();
9342 
9343   // Swap for an appropriately sized array from the recycler.
9344   removeOperands(N);
9345   createOperands(N, Ops);
9346 
9347   // Delete any nodes that are still dead after adding the uses for the
9348   // new operands.
9349   if (!DeadNodeSet.empty()) {
9350     SmallVector<SDNode *, 16> DeadNodes;
9351     for (SDNode *N : DeadNodeSet)
9352       if (N->use_empty())
9353         DeadNodes.push_back(N);
9354     RemoveDeadNodes(DeadNodes);
9355   }
9356 
9357   if (IP)
9358     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9359   return N;
9360 }
9361 
9362 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9363   unsigned OrigOpc = Node->getOpcode();
9364   unsigned NewOpc;
9365   switch (OrigOpc) {
9366   default:
9367     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9368 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9369   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9370 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9371   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9372 #include "llvm/IR/ConstrainedOps.def"
9373   }
9374 
9375   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9376 
9377   // We're taking this node out of the chain, so we need to re-link things.
9378   SDValue InputChain = Node->getOperand(0);
9379   SDValue OutputChain = SDValue(Node, 1);
9380   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9381 
9382   SmallVector<SDValue, 3> Ops;
9383   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9384     Ops.push_back(Node->getOperand(i));
9385 
9386   SDVTList VTs = getVTList(Node->getValueType(0));
9387   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9388 
9389   // MorphNodeTo can operate in two ways: if an existing node with the
9390   // specified operands exists, it can just return it.  Otherwise, it
9391   // updates the node in place to have the requested operands.
9392   if (Res == Node) {
9393     // If we updated the node in place, reset the node ID.  To the isel,
9394     // this should be just like a newly allocated machine node.
9395     Res->setNodeId(-1);
9396   } else {
9397     ReplaceAllUsesWith(Node, Res);
9398     RemoveDeadNode(Node);
9399   }
9400 
9401   return Res;
9402 }
9403 
9404 /// getMachineNode - These are used for target selectors to create a new node
9405 /// with specified return type(s), MachineInstr opcode, and operands.
9406 ///
9407 /// Note that getMachineNode returns the resultant node.  If there is already a
9408 /// node of the specified opcode and operands, it returns that node instead of
9409 /// the current one.
9410 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9411                                             EVT VT) {
9412   SDVTList VTs = getVTList(VT);
9413   return getMachineNode(Opcode, dl, VTs, None);
9414 }
9415 
9416 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9417                                             EVT VT, SDValue Op1) {
9418   SDVTList VTs = getVTList(VT);
9419   SDValue Ops[] = { Op1 };
9420   return getMachineNode(Opcode, dl, VTs, Ops);
9421 }
9422 
9423 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9424                                             EVT VT, SDValue Op1, SDValue Op2) {
9425   SDVTList VTs = getVTList(VT);
9426   SDValue Ops[] = { Op1, Op2 };
9427   return getMachineNode(Opcode, dl, VTs, Ops);
9428 }
9429 
9430 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9431                                             EVT VT, SDValue Op1, SDValue Op2,
9432                                             SDValue Op3) {
9433   SDVTList VTs = getVTList(VT);
9434   SDValue Ops[] = { Op1, Op2, Op3 };
9435   return getMachineNode(Opcode, dl, VTs, Ops);
9436 }
9437 
9438 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9439                                             EVT VT, ArrayRef<SDValue> Ops) {
9440   SDVTList VTs = getVTList(VT);
9441   return getMachineNode(Opcode, dl, VTs, Ops);
9442 }
9443 
9444 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9445                                             EVT VT1, EVT VT2, SDValue Op1,
9446                                             SDValue Op2) {
9447   SDVTList VTs = getVTList(VT1, VT2);
9448   SDValue Ops[] = { Op1, Op2 };
9449   return getMachineNode(Opcode, dl, VTs, Ops);
9450 }
9451 
9452 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9453                                             EVT VT1, EVT VT2, SDValue Op1,
9454                                             SDValue Op2, SDValue Op3) {
9455   SDVTList VTs = getVTList(VT1, VT2);
9456   SDValue Ops[] = { Op1, Op2, Op3 };
9457   return getMachineNode(Opcode, dl, VTs, Ops);
9458 }
9459 
9460 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9461                                             EVT VT1, EVT VT2,
9462                                             ArrayRef<SDValue> Ops) {
9463   SDVTList VTs = getVTList(VT1, VT2);
9464   return getMachineNode(Opcode, dl, VTs, Ops);
9465 }
9466 
9467 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9468                                             EVT VT1, EVT VT2, EVT VT3,
9469                                             SDValue Op1, SDValue Op2) {
9470   SDVTList VTs = getVTList(VT1, VT2, VT3);
9471   SDValue Ops[] = { Op1, Op2 };
9472   return getMachineNode(Opcode, dl, VTs, Ops);
9473 }
9474 
9475 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9476                                             EVT VT1, EVT VT2, EVT VT3,
9477                                             SDValue Op1, SDValue Op2,
9478                                             SDValue Op3) {
9479   SDVTList VTs = getVTList(VT1, VT2, VT3);
9480   SDValue Ops[] = { Op1, Op2, Op3 };
9481   return getMachineNode(Opcode, dl, VTs, Ops);
9482 }
9483 
9484 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9485                                             EVT VT1, EVT VT2, EVT VT3,
9486                                             ArrayRef<SDValue> Ops) {
9487   SDVTList VTs = getVTList(VT1, VT2, VT3);
9488   return getMachineNode(Opcode, dl, VTs, Ops);
9489 }
9490 
9491 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9492                                             ArrayRef<EVT> ResultTys,
9493                                             ArrayRef<SDValue> Ops) {
9494   SDVTList VTs = getVTList(ResultTys);
9495   return getMachineNode(Opcode, dl, VTs, Ops);
9496 }
9497 
9498 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9499                                             SDVTList VTs,
9500                                             ArrayRef<SDValue> Ops) {
9501   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9502   MachineSDNode *N;
9503   void *IP = nullptr;
9504 
9505   if (DoCSE) {
9506     FoldingSetNodeID ID;
9507     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9508     IP = nullptr;
9509     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9510       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9511     }
9512   }
9513 
9514   // Allocate a new MachineSDNode.
9515   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9516   createOperands(N, Ops);
9517 
9518   if (DoCSE)
9519     CSEMap.InsertNode(N, IP);
9520 
9521   InsertNode(N);
9522   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9523   return N;
9524 }
9525 
9526 /// getTargetExtractSubreg - A convenience function for creating
9527 /// TargetOpcode::EXTRACT_SUBREG nodes.
9528 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9529                                              SDValue Operand) {
9530   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9531   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9532                                   VT, Operand, SRIdxVal);
9533   return SDValue(Subreg, 0);
9534 }
9535 
9536 /// getTargetInsertSubreg - A convenience function for creating
9537 /// TargetOpcode::INSERT_SUBREG nodes.
9538 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9539                                             SDValue Operand, SDValue Subreg) {
9540   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9541   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9542                                   VT, Operand, Subreg, SRIdxVal);
9543   return SDValue(Result, 0);
9544 }
9545 
9546 /// getNodeIfExists - Get the specified node if it's already available, or
9547 /// else return NULL.
9548 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9549                                       ArrayRef<SDValue> Ops) {
9550   SDNodeFlags Flags;
9551   if (Inserter)
9552     Flags = Inserter->getFlags();
9553   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9554 }
9555 
9556 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9557                                       ArrayRef<SDValue> Ops,
9558                                       const SDNodeFlags Flags) {
9559   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9560     FoldingSetNodeID ID;
9561     AddNodeIDNode(ID, Opcode, VTList, Ops);
9562     void *IP = nullptr;
9563     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9564       E->intersectFlagsWith(Flags);
9565       return E;
9566     }
9567   }
9568   return nullptr;
9569 }
9570 
9571 /// doesNodeExist - Check if a node exists without modifying its flags.
9572 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9573                                  ArrayRef<SDValue> Ops) {
9574   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9575     FoldingSetNodeID ID;
9576     AddNodeIDNode(ID, Opcode, VTList, Ops);
9577     void *IP = nullptr;
9578     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9579       return true;
9580   }
9581   return false;
9582 }
9583 
9584 /// getDbgValue - Creates a SDDbgValue node.
9585 ///
9586 /// SDNode
9587 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9588                                       SDNode *N, unsigned R, bool IsIndirect,
9589                                       const DebugLoc &DL, unsigned O) {
9590   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9591          "Expected inlined-at fields to agree");
9592   return new (DbgInfo->getAlloc())
9593       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9594                  {}, IsIndirect, DL, O,
9595                  /*IsVariadic=*/false);
9596 }
9597 
9598 /// Constant
9599 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9600                                               DIExpression *Expr,
9601                                               const Value *C,
9602                                               const DebugLoc &DL, unsigned O) {
9603   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9604          "Expected inlined-at fields to agree");
9605   return new (DbgInfo->getAlloc())
9606       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9607                  /*IsIndirect=*/false, DL, O,
9608                  /*IsVariadic=*/false);
9609 }
9610 
9611 /// FrameIndex
9612 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9613                                                 DIExpression *Expr, unsigned FI,
9614                                                 bool IsIndirect,
9615                                                 const DebugLoc &DL,
9616                                                 unsigned O) {
9617   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9618          "Expected inlined-at fields to agree");
9619   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9620 }
9621 
9622 /// FrameIndex with dependencies
9623 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9624                                                 DIExpression *Expr, unsigned FI,
9625                                                 ArrayRef<SDNode *> Dependencies,
9626                                                 bool IsIndirect,
9627                                                 const DebugLoc &DL,
9628                                                 unsigned O) {
9629   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9630          "Expected inlined-at fields to agree");
9631   return new (DbgInfo->getAlloc())
9632       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9633                  Dependencies, IsIndirect, DL, O,
9634                  /*IsVariadic=*/false);
9635 }
9636 
9637 /// VReg
9638 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9639                                           unsigned VReg, bool IsIndirect,
9640                                           const DebugLoc &DL, unsigned O) {
9641   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9642          "Expected inlined-at fields to agree");
9643   return new (DbgInfo->getAlloc())
9644       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9645                  {}, IsIndirect, DL, O,
9646                  /*IsVariadic=*/false);
9647 }
9648 
9649 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9650                                           ArrayRef<SDDbgOperand> Locs,
9651                                           ArrayRef<SDNode *> Dependencies,
9652                                           bool IsIndirect, const DebugLoc &DL,
9653                                           unsigned O, bool IsVariadic) {
9654   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9655          "Expected inlined-at fields to agree");
9656   return new (DbgInfo->getAlloc())
9657       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9658                  DL, O, IsVariadic);
9659 }
9660 
9661 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9662                                      unsigned OffsetInBits, unsigned SizeInBits,
9663                                      bool InvalidateDbg) {
9664   SDNode *FromNode = From.getNode();
9665   SDNode *ToNode = To.getNode();
9666   assert(FromNode && ToNode && "Can't modify dbg values");
9667 
9668   // PR35338
9669   // TODO: assert(From != To && "Redundant dbg value transfer");
9670   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9671   if (From == To || FromNode == ToNode)
9672     return;
9673 
9674   if (!FromNode->getHasDebugValue())
9675     return;
9676 
9677   SDDbgOperand FromLocOp =
9678       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9679   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9680 
9681   SmallVector<SDDbgValue *, 2> ClonedDVs;
9682   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9683     if (Dbg->isInvalidated())
9684       continue;
9685 
9686     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9687 
9688     // Create a new location ops vector that is equal to the old vector, but
9689     // with each instance of FromLocOp replaced with ToLocOp.
9690     bool Changed = false;
9691     auto NewLocOps = Dbg->copyLocationOps();
9692     std::replace_if(
9693         NewLocOps.begin(), NewLocOps.end(),
9694         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9695           bool Match = Op == FromLocOp;
9696           Changed |= Match;
9697           return Match;
9698         },
9699         ToLocOp);
9700     // Ignore this SDDbgValue if we didn't find a matching location.
9701     if (!Changed)
9702       continue;
9703 
9704     DIVariable *Var = Dbg->getVariable();
9705     auto *Expr = Dbg->getExpression();
9706     // If a fragment is requested, update the expression.
9707     if (SizeInBits) {
9708       // When splitting a larger (e.g., sign-extended) value whose
9709       // lower bits are described with an SDDbgValue, do not attempt
9710       // to transfer the SDDbgValue to the upper bits.
9711       if (auto FI = Expr->getFragmentInfo())
9712         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9713           continue;
9714       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9715                                                              SizeInBits);
9716       if (!Fragment)
9717         continue;
9718       Expr = *Fragment;
9719     }
9720 
9721     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9722     // Clone the SDDbgValue and move it to To.
9723     SDDbgValue *Clone = getDbgValueList(
9724         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9725         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9726         Dbg->isVariadic());
9727     ClonedDVs.push_back(Clone);
9728 
9729     if (InvalidateDbg) {
9730       // Invalidate value and indicate the SDDbgValue should not be emitted.
9731       Dbg->setIsInvalidated();
9732       Dbg->setIsEmitted();
9733     }
9734   }
9735 
9736   for (SDDbgValue *Dbg : ClonedDVs) {
9737     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9738            "Transferred DbgValues should depend on the new SDNode");
9739     AddDbgValue(Dbg, false);
9740   }
9741 }
9742 
9743 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9744   if (!N.getHasDebugValue())
9745     return;
9746 
9747   SmallVector<SDDbgValue *, 2> ClonedDVs;
9748   for (auto DV : GetDbgValues(&N)) {
9749     if (DV->isInvalidated())
9750       continue;
9751     switch (N.getOpcode()) {
9752     default:
9753       break;
9754     case ISD::ADD:
9755       SDValue N0 = N.getOperand(0);
9756       SDValue N1 = N.getOperand(1);
9757       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9758           isConstantIntBuildVectorOrConstantInt(N1)) {
9759         uint64_t Offset = N.getConstantOperandVal(1);
9760 
9761         // Rewrite an ADD constant node into a DIExpression. Since we are
9762         // performing arithmetic to compute the variable's *value* in the
9763         // DIExpression, we need to mark the expression with a
9764         // DW_OP_stack_value.
9765         auto *DIExpr = DV->getExpression();
9766         auto NewLocOps = DV->copyLocationOps();
9767         bool Changed = false;
9768         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9769           // We're not given a ResNo to compare against because the whole
9770           // node is going away. We know that any ISD::ADD only has one
9771           // result, so we can assume any node match is using the result.
9772           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9773               NewLocOps[i].getSDNode() != &N)
9774             continue;
9775           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9776           SmallVector<uint64_t, 3> ExprOps;
9777           DIExpression::appendOffset(ExprOps, Offset);
9778           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9779           Changed = true;
9780         }
9781         (void)Changed;
9782         assert(Changed && "Salvage target doesn't use N");
9783 
9784         auto AdditionalDependencies = DV->getAdditionalDependencies();
9785         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9786                                             NewLocOps, AdditionalDependencies,
9787                                             DV->isIndirect(), DV->getDebugLoc(),
9788                                             DV->getOrder(), DV->isVariadic());
9789         ClonedDVs.push_back(Clone);
9790         DV->setIsInvalidated();
9791         DV->setIsEmitted();
9792         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9793                    N0.getNode()->dumprFull(this);
9794                    dbgs() << " into " << *DIExpr << '\n');
9795       }
9796     }
9797   }
9798 
9799   for (SDDbgValue *Dbg : ClonedDVs) {
9800     assert(!Dbg->getSDNodes().empty() &&
9801            "Salvaged DbgValue should depend on a new SDNode");
9802     AddDbgValue(Dbg, false);
9803   }
9804 }
9805 
9806 /// Creates a SDDbgLabel node.
9807 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9808                                       const DebugLoc &DL, unsigned O) {
9809   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9810          "Expected inlined-at fields to agree");
9811   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9812 }
9813 
9814 namespace {
9815 
9816 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9817 /// pointed to by a use iterator is deleted, increment the use iterator
9818 /// so that it doesn't dangle.
9819 ///
9820 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9821   SDNode::use_iterator &UI;
9822   SDNode::use_iterator &UE;
9823 
9824   void NodeDeleted(SDNode *N, SDNode *E) override {
9825     // Increment the iterator as needed.
9826     while (UI != UE && N == *UI)
9827       ++UI;
9828   }
9829 
9830 public:
9831   RAUWUpdateListener(SelectionDAG &d,
9832                      SDNode::use_iterator &ui,
9833                      SDNode::use_iterator &ue)
9834     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9835 };
9836 
9837 } // end anonymous namespace
9838 
9839 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9840 /// This can cause recursive merging of nodes in the DAG.
9841 ///
9842 /// This version assumes From has a single result value.
9843 ///
9844 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9845   SDNode *From = FromN.getNode();
9846   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9847          "Cannot replace with this method!");
9848   assert(From != To.getNode() && "Cannot replace uses of with self");
9849 
9850   // Preserve Debug Values
9851   transferDbgValues(FromN, To);
9852 
9853   // Iterate over all the existing uses of From. New uses will be added
9854   // to the beginning of the use list, which we avoid visiting.
9855   // This specifically avoids visiting uses of From that arise while the
9856   // replacement is happening, because any such uses would be the result
9857   // of CSE: If an existing node looks like From after one of its operands
9858   // is replaced by To, we don't want to replace of all its users with To
9859   // too. See PR3018 for more info.
9860   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9861   RAUWUpdateListener Listener(*this, UI, UE);
9862   while (UI != UE) {
9863     SDNode *User = *UI;
9864 
9865     // This node is about to morph, remove its old self from the CSE maps.
9866     RemoveNodeFromCSEMaps(User);
9867 
9868     // A user can appear in a use list multiple times, and when this
9869     // happens the uses are usually next to each other in the list.
9870     // To help reduce the number of CSE recomputations, process all
9871     // the uses of this user that we can find this way.
9872     do {
9873       SDUse &Use = UI.getUse();
9874       ++UI;
9875       Use.set(To);
9876       if (To->isDivergent() != From->isDivergent())
9877         updateDivergence(User);
9878     } while (UI != UE && *UI == User);
9879     // Now that we have modified User, add it back to the CSE maps.  If it
9880     // already exists there, recursively merge the results together.
9881     AddModifiedNodeToCSEMaps(User);
9882   }
9883 
9884   // If we just RAUW'd the root, take note.
9885   if (FromN == getRoot())
9886     setRoot(To);
9887 }
9888 
9889 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9890 /// This can cause recursive merging of nodes in the DAG.
9891 ///
9892 /// This version assumes that for each value of From, there is a
9893 /// corresponding value in To in the same position with the same type.
9894 ///
9895 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9896 #ifndef NDEBUG
9897   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9898     assert((!From->hasAnyUseOfValue(i) ||
9899             From->getValueType(i) == To->getValueType(i)) &&
9900            "Cannot use this version of ReplaceAllUsesWith!");
9901 #endif
9902 
9903   // Handle the trivial case.
9904   if (From == To)
9905     return;
9906 
9907   // Preserve Debug Info. Only do this if there's a use.
9908   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9909     if (From->hasAnyUseOfValue(i)) {
9910       assert((i < To->getNumValues()) && "Invalid To location");
9911       transferDbgValues(SDValue(From, i), SDValue(To, i));
9912     }
9913 
9914   // Iterate over just the existing users of From. See the comments in
9915   // the ReplaceAllUsesWith above.
9916   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9917   RAUWUpdateListener Listener(*this, UI, UE);
9918   while (UI != UE) {
9919     SDNode *User = *UI;
9920 
9921     // This node is about to morph, remove its old self from the CSE maps.
9922     RemoveNodeFromCSEMaps(User);
9923 
9924     // A user can appear in a use list multiple times, and when this
9925     // happens the uses are usually next to each other in the list.
9926     // To help reduce the number of CSE recomputations, process all
9927     // the uses of this user that we can find this way.
9928     do {
9929       SDUse &Use = UI.getUse();
9930       ++UI;
9931       Use.setNode(To);
9932       if (To->isDivergent() != From->isDivergent())
9933         updateDivergence(User);
9934     } while (UI != UE && *UI == User);
9935 
9936     // Now that we have modified User, add it back to the CSE maps.  If it
9937     // already exists there, recursively merge the results together.
9938     AddModifiedNodeToCSEMaps(User);
9939   }
9940 
9941   // If we just RAUW'd the root, take note.
9942   if (From == getRoot().getNode())
9943     setRoot(SDValue(To, getRoot().getResNo()));
9944 }
9945 
9946 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9947 /// This can cause recursive merging of nodes in the DAG.
9948 ///
9949 /// This version can replace From with any result values.  To must match the
9950 /// number and types of values returned by From.
9951 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9952   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9953     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9954 
9955   // Preserve Debug Info.
9956   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9957     transferDbgValues(SDValue(From, i), To[i]);
9958 
9959   // Iterate over just the existing users of From. See the comments in
9960   // the ReplaceAllUsesWith above.
9961   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9962   RAUWUpdateListener Listener(*this, UI, UE);
9963   while (UI != UE) {
9964     SDNode *User = *UI;
9965 
9966     // This node is about to morph, remove its old self from the CSE maps.
9967     RemoveNodeFromCSEMaps(User);
9968 
9969     // A user can appear in a use list multiple times, and when this happens the
9970     // uses are usually next to each other in the list.  To help reduce the
9971     // number of CSE and divergence recomputations, process all the uses of this
9972     // user that we can find this way.
9973     bool To_IsDivergent = false;
9974     do {
9975       SDUse &Use = UI.getUse();
9976       const SDValue &ToOp = To[Use.getResNo()];
9977       ++UI;
9978       Use.set(ToOp);
9979       To_IsDivergent |= ToOp->isDivergent();
9980     } while (UI != UE && *UI == User);
9981 
9982     if (To_IsDivergent != From->isDivergent())
9983       updateDivergence(User);
9984 
9985     // Now that we have modified User, add it back to the CSE maps.  If it
9986     // already exists there, recursively merge the results together.
9987     AddModifiedNodeToCSEMaps(User);
9988   }
9989 
9990   // If we just RAUW'd the root, take note.
9991   if (From == getRoot().getNode())
9992     setRoot(SDValue(To[getRoot().getResNo()]));
9993 }
9994 
9995 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9996 /// uses of other values produced by From.getNode() alone.  The Deleted
9997 /// vector is handled the same way as for ReplaceAllUsesWith.
9998 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9999   // Handle the really simple, really trivial case efficiently.
10000   if (From == To) return;
10001 
10002   // Handle the simple, trivial, case efficiently.
10003   if (From.getNode()->getNumValues() == 1) {
10004     ReplaceAllUsesWith(From, To);
10005     return;
10006   }
10007 
10008   // Preserve Debug Info.
10009   transferDbgValues(From, To);
10010 
10011   // Iterate over just the existing users of From. See the comments in
10012   // the ReplaceAllUsesWith above.
10013   SDNode::use_iterator UI = From.getNode()->use_begin(),
10014                        UE = From.getNode()->use_end();
10015   RAUWUpdateListener Listener(*this, UI, UE);
10016   while (UI != UE) {
10017     SDNode *User = *UI;
10018     bool UserRemovedFromCSEMaps = false;
10019 
10020     // A user can appear in a use list multiple times, and when this
10021     // happens the uses are usually next to each other in the list.
10022     // To help reduce the number of CSE recomputations, process all
10023     // the uses of this user that we can find this way.
10024     do {
10025       SDUse &Use = UI.getUse();
10026 
10027       // Skip uses of different values from the same node.
10028       if (Use.getResNo() != From.getResNo()) {
10029         ++UI;
10030         continue;
10031       }
10032 
10033       // If this node hasn't been modified yet, it's still in the CSE maps,
10034       // so remove its old self from the CSE maps.
10035       if (!UserRemovedFromCSEMaps) {
10036         RemoveNodeFromCSEMaps(User);
10037         UserRemovedFromCSEMaps = true;
10038       }
10039 
10040       ++UI;
10041       Use.set(To);
10042       if (To->isDivergent() != From->isDivergent())
10043         updateDivergence(User);
10044     } while (UI != UE && *UI == User);
10045     // We are iterating over all uses of the From node, so if a use
10046     // doesn't use the specific value, no changes are made.
10047     if (!UserRemovedFromCSEMaps)
10048       continue;
10049 
10050     // Now that we have modified User, add it back to the CSE maps.  If it
10051     // already exists there, recursively merge the results together.
10052     AddModifiedNodeToCSEMaps(User);
10053   }
10054 
10055   // If we just RAUW'd the root, take note.
10056   if (From == getRoot())
10057     setRoot(To);
10058 }
10059 
10060 namespace {
10061 
10062 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10063 /// to record information about a use.
10064 struct UseMemo {
10065   SDNode *User;
10066   unsigned Index;
10067   SDUse *Use;
10068 };
10069 
10070 /// operator< - Sort Memos by User.
10071 bool operator<(const UseMemo &L, const UseMemo &R) {
10072   return (intptr_t)L.User < (intptr_t)R.User;
10073 }
10074 
10075 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10076 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10077 /// the node already has been taken care of recursively.
10078 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10079   SmallVector<UseMemo, 4> &Uses;
10080 
10081   void NodeDeleted(SDNode *N, SDNode *E) override {
10082     for (UseMemo &Memo : Uses)
10083       if (Memo.User == N)
10084         Memo.User = nullptr;
10085   }
10086 
10087 public:
10088   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10089       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10090 };
10091 
10092 } // end anonymous namespace
10093 
10094 bool SelectionDAG::calculateDivergence(SDNode *N) {
10095   if (TLI->isSDNodeAlwaysUniform(N)) {
10096     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10097            "Conflicting divergence information!");
10098     return false;
10099   }
10100   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10101     return true;
10102   for (auto &Op : N->ops()) {
10103     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10104       return true;
10105   }
10106   return false;
10107 }
10108 
10109 void SelectionDAG::updateDivergence(SDNode *N) {
10110   SmallVector<SDNode *, 16> Worklist(1, N);
10111   do {
10112     N = Worklist.pop_back_val();
10113     bool IsDivergent = calculateDivergence(N);
10114     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10115       N->SDNodeBits.IsDivergent = IsDivergent;
10116       llvm::append_range(Worklist, N->uses());
10117     }
10118   } while (!Worklist.empty());
10119 }
10120 
10121 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10122   DenseMap<SDNode *, unsigned> Degree;
10123   Order.reserve(AllNodes.size());
10124   for (auto &N : allnodes()) {
10125     unsigned NOps = N.getNumOperands();
10126     Degree[&N] = NOps;
10127     if (0 == NOps)
10128       Order.push_back(&N);
10129   }
10130   for (size_t I = 0; I != Order.size(); ++I) {
10131     SDNode *N = Order[I];
10132     for (auto U : N->uses()) {
10133       unsigned &UnsortedOps = Degree[U];
10134       if (0 == --UnsortedOps)
10135         Order.push_back(U);
10136     }
10137   }
10138 }
10139 
10140 #ifndef NDEBUG
10141 void SelectionDAG::VerifyDAGDivergence() {
10142   std::vector<SDNode *> TopoOrder;
10143   CreateTopologicalOrder(TopoOrder);
10144   for (auto *N : TopoOrder) {
10145     assert(calculateDivergence(N) == N->isDivergent() &&
10146            "Divergence bit inconsistency detected");
10147   }
10148 }
10149 #endif
10150 
10151 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10152 /// uses of other values produced by From.getNode() alone.  The same value
10153 /// may appear in both the From and To list.  The Deleted vector is
10154 /// handled the same way as for ReplaceAllUsesWith.
10155 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10156                                               const SDValue *To,
10157                                               unsigned Num){
10158   // Handle the simple, trivial case efficiently.
10159   if (Num == 1)
10160     return ReplaceAllUsesOfValueWith(*From, *To);
10161 
10162   transferDbgValues(*From, *To);
10163 
10164   // Read up all the uses and make records of them. This helps
10165   // processing new uses that are introduced during the
10166   // replacement process.
10167   SmallVector<UseMemo, 4> Uses;
10168   for (unsigned i = 0; i != Num; ++i) {
10169     unsigned FromResNo = From[i].getResNo();
10170     SDNode *FromNode = From[i].getNode();
10171     for (SDNode::use_iterator UI = FromNode->use_begin(),
10172          E = FromNode->use_end(); UI != E; ++UI) {
10173       SDUse &Use = UI.getUse();
10174       if (Use.getResNo() == FromResNo) {
10175         UseMemo Memo = { *UI, i, &Use };
10176         Uses.push_back(Memo);
10177       }
10178     }
10179   }
10180 
10181   // Sort the uses, so that all the uses from a given User are together.
10182   llvm::sort(Uses);
10183   RAUOVWUpdateListener Listener(*this, Uses);
10184 
10185   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10186        UseIndex != UseIndexEnd; ) {
10187     // We know that this user uses some value of From.  If it is the right
10188     // value, update it.
10189     SDNode *User = Uses[UseIndex].User;
10190     // If the node has been deleted by recursive CSE updates when updating
10191     // another node, then just skip this entry.
10192     if (User == nullptr) {
10193       ++UseIndex;
10194       continue;
10195     }
10196 
10197     // This node is about to morph, remove its old self from the CSE maps.
10198     RemoveNodeFromCSEMaps(User);
10199 
10200     // The Uses array is sorted, so all the uses for a given User
10201     // are next to each other in the list.
10202     // To help reduce the number of CSE recomputations, process all
10203     // the uses of this user that we can find this way.
10204     do {
10205       unsigned i = Uses[UseIndex].Index;
10206       SDUse &Use = *Uses[UseIndex].Use;
10207       ++UseIndex;
10208 
10209       Use.set(To[i]);
10210     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10211 
10212     // Now that we have modified User, add it back to the CSE maps.  If it
10213     // already exists there, recursively merge the results together.
10214     AddModifiedNodeToCSEMaps(User);
10215   }
10216 }
10217 
10218 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10219 /// based on their topological order. It returns the maximum id and a vector
10220 /// of the SDNodes* in assigned order by reference.
10221 unsigned SelectionDAG::AssignTopologicalOrder() {
10222   unsigned DAGSize = 0;
10223 
10224   // SortedPos tracks the progress of the algorithm. Nodes before it are
10225   // sorted, nodes after it are unsorted. When the algorithm completes
10226   // it is at the end of the list.
10227   allnodes_iterator SortedPos = allnodes_begin();
10228 
10229   // Visit all the nodes. Move nodes with no operands to the front of
10230   // the list immediately. Annotate nodes that do have operands with their
10231   // operand count. Before we do this, the Node Id fields of the nodes
10232   // may contain arbitrary values. After, the Node Id fields for nodes
10233   // before SortedPos will contain the topological sort index, and the
10234   // Node Id fields for nodes At SortedPos and after will contain the
10235   // count of outstanding operands.
10236   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10237     checkForCycles(&N, this);
10238     unsigned Degree = N.getNumOperands();
10239     if (Degree == 0) {
10240       // A node with no uses, add it to the result array immediately.
10241       N.setNodeId(DAGSize++);
10242       allnodes_iterator Q(&N);
10243       if (Q != SortedPos)
10244         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10245       assert(SortedPos != AllNodes.end() && "Overran node list");
10246       ++SortedPos;
10247     } else {
10248       // Temporarily use the Node Id as scratch space for the degree count.
10249       N.setNodeId(Degree);
10250     }
10251   }
10252 
10253   // Visit all the nodes. As we iterate, move nodes into sorted order,
10254   // such that by the time the end is reached all nodes will be sorted.
10255   for (SDNode &Node : allnodes()) {
10256     SDNode *N = &Node;
10257     checkForCycles(N, this);
10258     // N is in sorted position, so all its uses have one less operand
10259     // that needs to be sorted.
10260     for (SDNode *P : N->uses()) {
10261       unsigned Degree = P->getNodeId();
10262       assert(Degree != 0 && "Invalid node degree");
10263       --Degree;
10264       if (Degree == 0) {
10265         // All of P's operands are sorted, so P may sorted now.
10266         P->setNodeId(DAGSize++);
10267         if (P->getIterator() != SortedPos)
10268           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10269         assert(SortedPos != AllNodes.end() && "Overran node list");
10270         ++SortedPos;
10271       } else {
10272         // Update P's outstanding operand count.
10273         P->setNodeId(Degree);
10274       }
10275     }
10276     if (Node.getIterator() == SortedPos) {
10277 #ifndef NDEBUG
10278       allnodes_iterator I(N);
10279       SDNode *S = &*++I;
10280       dbgs() << "Overran sorted position:\n";
10281       S->dumprFull(this); dbgs() << "\n";
10282       dbgs() << "Checking if this is due to cycles\n";
10283       checkForCycles(this, true);
10284 #endif
10285       llvm_unreachable(nullptr);
10286     }
10287   }
10288 
10289   assert(SortedPos == AllNodes.end() &&
10290          "Topological sort incomplete!");
10291   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10292          "First node in topological sort is not the entry token!");
10293   assert(AllNodes.front().getNodeId() == 0 &&
10294          "First node in topological sort has non-zero id!");
10295   assert(AllNodes.front().getNumOperands() == 0 &&
10296          "First node in topological sort has operands!");
10297   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10298          "Last node in topologic sort has unexpected id!");
10299   assert(AllNodes.back().use_empty() &&
10300          "Last node in topologic sort has users!");
10301   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10302   return DAGSize;
10303 }
10304 
10305 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10306 /// value is produced by SD.
10307 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10308   for (SDNode *SD : DB->getSDNodes()) {
10309     if (!SD)
10310       continue;
10311     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10312     SD->setHasDebugValue(true);
10313   }
10314   DbgInfo->add(DB, isParameter);
10315 }
10316 
10317 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10318 
10319 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10320                                                    SDValue NewMemOpChain) {
10321   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10322   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10323   // The new memory operation must have the same position as the old load in
10324   // terms of memory dependency. Create a TokenFactor for the old load and new
10325   // memory operation and update uses of the old load's output chain to use that
10326   // TokenFactor.
10327   if (OldChain == NewMemOpChain || OldChain.use_empty())
10328     return NewMemOpChain;
10329 
10330   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10331                                 OldChain, NewMemOpChain);
10332   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10333   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10334   return TokenFactor;
10335 }
10336 
10337 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10338                                                    SDValue NewMemOp) {
10339   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10340   SDValue OldChain = SDValue(OldLoad, 1);
10341   SDValue NewMemOpChain = NewMemOp.getValue(1);
10342   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10343 }
10344 
10345 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10346                                                      Function **OutFunction) {
10347   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10348 
10349   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10350   auto *Module = MF->getFunction().getParent();
10351   auto *Function = Module->getFunction(Symbol);
10352 
10353   if (OutFunction != nullptr)
10354       *OutFunction = Function;
10355 
10356   if (Function != nullptr) {
10357     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10358     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10359   }
10360 
10361   std::string ErrorStr;
10362   raw_string_ostream ErrorFormatter(ErrorStr);
10363   ErrorFormatter << "Undefined external symbol ";
10364   ErrorFormatter << '"' << Symbol << '"';
10365   report_fatal_error(Twine(ErrorFormatter.str()));
10366 }
10367 
10368 //===----------------------------------------------------------------------===//
10369 //                              SDNode Class
10370 //===----------------------------------------------------------------------===//
10371 
10372 bool llvm::isNullConstant(SDValue V) {
10373   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10374   return Const != nullptr && Const->isZero();
10375 }
10376 
10377 bool llvm::isNullFPConstant(SDValue V) {
10378   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10379   return Const != nullptr && Const->isZero() && !Const->isNegative();
10380 }
10381 
10382 bool llvm::isAllOnesConstant(SDValue V) {
10383   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10384   return Const != nullptr && Const->isAllOnes();
10385 }
10386 
10387 bool llvm::isOneConstant(SDValue V) {
10388   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10389   return Const != nullptr && Const->isOne();
10390 }
10391 
10392 SDValue llvm::peekThroughBitcasts(SDValue V) {
10393   while (V.getOpcode() == ISD::BITCAST)
10394     V = V.getOperand(0);
10395   return V;
10396 }
10397 
10398 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10399   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10400     V = V.getOperand(0);
10401   return V;
10402 }
10403 
10404 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10405   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10406     V = V.getOperand(0);
10407   return V;
10408 }
10409 
10410 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10411   if (V.getOpcode() != ISD::XOR)
10412     return false;
10413   V = peekThroughBitcasts(V.getOperand(1));
10414   unsigned NumBits = V.getScalarValueSizeInBits();
10415   ConstantSDNode *C =
10416       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10417   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10418 }
10419 
10420 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10421                                           bool AllowTruncation) {
10422   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10423     return CN;
10424 
10425   // SplatVectors can truncate their operands. Ignore that case here unless
10426   // AllowTruncation is set.
10427   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10428     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10429     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10430       EVT CVT = CN->getValueType(0);
10431       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10432       if (AllowTruncation || CVT == VecEltVT)
10433         return CN;
10434     }
10435   }
10436 
10437   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10438     BitVector UndefElements;
10439     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10440 
10441     // BuildVectors can truncate their operands. Ignore that case here unless
10442     // AllowTruncation is set.
10443     if (CN && (UndefElements.none() || AllowUndefs)) {
10444       EVT CVT = CN->getValueType(0);
10445       EVT NSVT = N.getValueType().getScalarType();
10446       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10447       if (AllowTruncation || (CVT == NSVT))
10448         return CN;
10449     }
10450   }
10451 
10452   return nullptr;
10453 }
10454 
10455 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10456                                           bool AllowUndefs,
10457                                           bool AllowTruncation) {
10458   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10459     return CN;
10460 
10461   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10462     BitVector UndefElements;
10463     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10464 
10465     // BuildVectors can truncate their operands. Ignore that case here unless
10466     // AllowTruncation is set.
10467     if (CN && (UndefElements.none() || AllowUndefs)) {
10468       EVT CVT = CN->getValueType(0);
10469       EVT NSVT = N.getValueType().getScalarType();
10470       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10471       if (AllowTruncation || (CVT == NSVT))
10472         return CN;
10473     }
10474   }
10475 
10476   return nullptr;
10477 }
10478 
10479 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10480   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10481     return CN;
10482 
10483   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10484     BitVector UndefElements;
10485     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10486     if (CN && (UndefElements.none() || AllowUndefs))
10487       return CN;
10488   }
10489 
10490   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10491     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10492       return CN;
10493 
10494   return nullptr;
10495 }
10496 
10497 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10498                                               const APInt &DemandedElts,
10499                                               bool AllowUndefs) {
10500   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10501     return CN;
10502 
10503   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10504     BitVector UndefElements;
10505     ConstantFPSDNode *CN =
10506         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10507     if (CN && (UndefElements.none() || AllowUndefs))
10508       return CN;
10509   }
10510 
10511   return nullptr;
10512 }
10513 
10514 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10515   // TODO: may want to use peekThroughBitcast() here.
10516   ConstantSDNode *C =
10517       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10518   return C && C->isZero();
10519 }
10520 
10521 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10522   // TODO: may want to use peekThroughBitcast() here.
10523   unsigned BitWidth = N.getScalarValueSizeInBits();
10524   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10525   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10526 }
10527 
10528 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10529   N = peekThroughBitcasts(N);
10530   unsigned BitWidth = N.getScalarValueSizeInBits();
10531   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10532   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10533 }
10534 
10535 HandleSDNode::~HandleSDNode() {
10536   DropOperands();
10537 }
10538 
10539 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10540                                          const DebugLoc &DL,
10541                                          const GlobalValue *GA, EVT VT,
10542                                          int64_t o, unsigned TF)
10543     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10544   TheGlobal = GA;
10545 }
10546 
10547 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10548                                          EVT VT, unsigned SrcAS,
10549                                          unsigned DestAS)
10550     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10551       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10552 
10553 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10554                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10555     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10556   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10557   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10558   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10559   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10560 
10561   // We check here that the size of the memory operand fits within the size of
10562   // the MMO. This is because the MMO might indicate only a possible address
10563   // range instead of specifying the affected memory addresses precisely.
10564   // TODO: Make MachineMemOperands aware of scalable vectors.
10565   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10566          "Size mismatch!");
10567 }
10568 
10569 /// Profile - Gather unique data for the node.
10570 ///
10571 void SDNode::Profile(FoldingSetNodeID &ID) const {
10572   AddNodeIDNode(ID, this);
10573 }
10574 
10575 namespace {
10576 
10577   struct EVTArray {
10578     std::vector<EVT> VTs;
10579 
10580     EVTArray() {
10581       VTs.reserve(MVT::VALUETYPE_SIZE);
10582       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10583         VTs.push_back(MVT((MVT::SimpleValueType)i));
10584     }
10585   };
10586 
10587 } // end anonymous namespace
10588 
10589 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10590 static ManagedStatic<EVTArray> SimpleVTArray;
10591 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10592 
10593 /// getValueTypeList - Return a pointer to the specified value type.
10594 ///
10595 const EVT *SDNode::getValueTypeList(EVT VT) {
10596   if (VT.isExtended()) {
10597     sys::SmartScopedLock<true> Lock(*VTMutex);
10598     return &(*EVTs->insert(VT).first);
10599   }
10600   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10601   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10602 }
10603 
10604 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10605 /// indicated value.  This method ignores uses of other values defined by this
10606 /// operation.
10607 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10608   assert(Value < getNumValues() && "Bad value!");
10609 
10610   // TODO: Only iterate over uses of a given value of the node
10611   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10612     if (UI.getUse().getResNo() == Value) {
10613       if (NUses == 0)
10614         return false;
10615       --NUses;
10616     }
10617   }
10618 
10619   // Found exactly the right number of uses?
10620   return NUses == 0;
10621 }
10622 
10623 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10624 /// value. This method ignores uses of other values defined by this operation.
10625 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10626   assert(Value < getNumValues() && "Bad value!");
10627 
10628   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10629     if (UI.getUse().getResNo() == Value)
10630       return true;
10631 
10632   return false;
10633 }
10634 
10635 /// isOnlyUserOf - Return true if this node is the only use of N.
10636 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10637   bool Seen = false;
10638   for (const SDNode *User : N->uses()) {
10639     if (User == this)
10640       Seen = true;
10641     else
10642       return false;
10643   }
10644 
10645   return Seen;
10646 }
10647 
10648 /// Return true if the only users of N are contained in Nodes.
10649 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10650   bool Seen = false;
10651   for (const SDNode *User : N->uses()) {
10652     if (llvm::is_contained(Nodes, User))
10653       Seen = true;
10654     else
10655       return false;
10656   }
10657 
10658   return Seen;
10659 }
10660 
10661 /// isOperand - Return true if this node is an operand of N.
10662 bool SDValue::isOperandOf(const SDNode *N) const {
10663   return is_contained(N->op_values(), *this);
10664 }
10665 
10666 bool SDNode::isOperandOf(const SDNode *N) const {
10667   return any_of(N->op_values(),
10668                 [this](SDValue Op) { return this == Op.getNode(); });
10669 }
10670 
10671 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10672 /// be a chain) reaches the specified operand without crossing any
10673 /// side-effecting instructions on any chain path.  In practice, this looks
10674 /// through token factors and non-volatile loads.  In order to remain efficient,
10675 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10676 ///
10677 /// Note that we only need to examine chains when we're searching for
10678 /// side-effects; SelectionDAG requires that all side-effects are represented
10679 /// by chains, even if another operand would force a specific ordering. This
10680 /// constraint is necessary to allow transformations like splitting loads.
10681 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10682                                              unsigned Depth) const {
10683   if (*this == Dest) return true;
10684 
10685   // Don't search too deeply, we just want to be able to see through
10686   // TokenFactor's etc.
10687   if (Depth == 0) return false;
10688 
10689   // If this is a token factor, all inputs to the TF happen in parallel.
10690   if (getOpcode() == ISD::TokenFactor) {
10691     // First, try a shallow search.
10692     if (is_contained((*this)->ops(), Dest)) {
10693       // We found the chain we want as an operand of this TokenFactor.
10694       // Essentially, we reach the chain without side-effects if we could
10695       // serialize the TokenFactor into a simple chain of operations with
10696       // Dest as the last operation. This is automatically true if the
10697       // chain has one use: there are no other ordering constraints.
10698       // If the chain has more than one use, we give up: some other
10699       // use of Dest might force a side-effect between Dest and the current
10700       // node.
10701       if (Dest.hasOneUse())
10702         return true;
10703     }
10704     // Next, try a deep search: check whether every operand of the TokenFactor
10705     // reaches Dest.
10706     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10707       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10708     });
10709   }
10710 
10711   // Loads don't have side effects, look through them.
10712   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10713     if (Ld->isUnordered())
10714       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10715   }
10716   return false;
10717 }
10718 
10719 bool SDNode::hasPredecessor(const SDNode *N) const {
10720   SmallPtrSet<const SDNode *, 32> Visited;
10721   SmallVector<const SDNode *, 16> Worklist;
10722   Worklist.push_back(this);
10723   return hasPredecessorHelper(N, Visited, Worklist);
10724 }
10725 
10726 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10727   this->Flags.intersectWith(Flags);
10728 }
10729 
10730 SDValue
10731 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10732                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10733                                   bool AllowPartials) {
10734   // The pattern must end in an extract from index 0.
10735   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10736       !isNullConstant(Extract->getOperand(1)))
10737     return SDValue();
10738 
10739   // Match against one of the candidate binary ops.
10740   SDValue Op = Extract->getOperand(0);
10741   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10742         return Op.getOpcode() == unsigned(BinOp);
10743       }))
10744     return SDValue();
10745 
10746   // Floating-point reductions may require relaxed constraints on the final step
10747   // of the reduction because they may reorder intermediate operations.
10748   unsigned CandidateBinOp = Op.getOpcode();
10749   if (Op.getValueType().isFloatingPoint()) {
10750     SDNodeFlags Flags = Op->getFlags();
10751     switch (CandidateBinOp) {
10752     case ISD::FADD:
10753       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10754         return SDValue();
10755       break;
10756     default:
10757       llvm_unreachable("Unhandled FP opcode for binop reduction");
10758     }
10759   }
10760 
10761   // Matching failed - attempt to see if we did enough stages that a partial
10762   // reduction from a subvector is possible.
10763   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10764     if (!AllowPartials || !Op)
10765       return SDValue();
10766     EVT OpVT = Op.getValueType();
10767     EVT OpSVT = OpVT.getScalarType();
10768     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10769     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10770       return SDValue();
10771     BinOp = (ISD::NodeType)CandidateBinOp;
10772     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10773                    getVectorIdxConstant(0, SDLoc(Op)));
10774   };
10775 
10776   // At each stage, we're looking for something that looks like:
10777   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10778   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10779   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10780   // %a = binop <8 x i32> %op, %s
10781   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10782   // we expect something like:
10783   // <4,5,6,7,u,u,u,u>
10784   // <2,3,u,u,u,u,u,u>
10785   // <1,u,u,u,u,u,u,u>
10786   // While a partial reduction match would be:
10787   // <2,3,u,u,u,u,u,u>
10788   // <1,u,u,u,u,u,u,u>
10789   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10790   SDValue PrevOp;
10791   for (unsigned i = 0; i < Stages; ++i) {
10792     unsigned MaskEnd = (1 << i);
10793 
10794     if (Op.getOpcode() != CandidateBinOp)
10795       return PartialReduction(PrevOp, MaskEnd);
10796 
10797     SDValue Op0 = Op.getOperand(0);
10798     SDValue Op1 = Op.getOperand(1);
10799 
10800     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10801     if (Shuffle) {
10802       Op = Op1;
10803     } else {
10804       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10805       Op = Op0;
10806     }
10807 
10808     // The first operand of the shuffle should be the same as the other operand
10809     // of the binop.
10810     if (!Shuffle || Shuffle->getOperand(0) != Op)
10811       return PartialReduction(PrevOp, MaskEnd);
10812 
10813     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10814     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10815       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10816         return PartialReduction(PrevOp, MaskEnd);
10817 
10818     PrevOp = Op;
10819   }
10820 
10821   // Handle subvector reductions, which tend to appear after the shuffle
10822   // reduction stages.
10823   while (Op.getOpcode() == CandidateBinOp) {
10824     unsigned NumElts = Op.getValueType().getVectorNumElements();
10825     SDValue Op0 = Op.getOperand(0);
10826     SDValue Op1 = Op.getOperand(1);
10827     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10828         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10829         Op0.getOperand(0) != Op1.getOperand(0))
10830       break;
10831     SDValue Src = Op0.getOperand(0);
10832     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10833     if (NumSrcElts != (2 * NumElts))
10834       break;
10835     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10836           Op1.getConstantOperandAPInt(1) == NumElts) &&
10837         !(Op1.getConstantOperandAPInt(1) == 0 &&
10838           Op0.getConstantOperandAPInt(1) == NumElts))
10839       break;
10840     Op = Src;
10841   }
10842 
10843   BinOp = (ISD::NodeType)CandidateBinOp;
10844   return Op;
10845 }
10846 
10847 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10848   assert(N->getNumValues() == 1 &&
10849          "Can't unroll a vector with multiple results!");
10850 
10851   EVT VT = N->getValueType(0);
10852   unsigned NE = VT.getVectorNumElements();
10853   EVT EltVT = VT.getVectorElementType();
10854   SDLoc dl(N);
10855 
10856   SmallVector<SDValue, 8> Scalars;
10857   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10858 
10859   // If ResNE is 0, fully unroll the vector op.
10860   if (ResNE == 0)
10861     ResNE = NE;
10862   else if (NE > ResNE)
10863     NE = ResNE;
10864 
10865   unsigned i;
10866   for (i= 0; i != NE; ++i) {
10867     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10868       SDValue Operand = N->getOperand(j);
10869       EVT OperandVT = Operand.getValueType();
10870       if (OperandVT.isVector()) {
10871         // A vector operand; extract a single element.
10872         EVT OperandEltVT = OperandVT.getVectorElementType();
10873         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10874                               Operand, getVectorIdxConstant(i, dl));
10875       } else {
10876         // A scalar operand; just use it as is.
10877         Operands[j] = Operand;
10878       }
10879     }
10880 
10881     switch (N->getOpcode()) {
10882     default: {
10883       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10884                                 N->getFlags()));
10885       break;
10886     }
10887     case ISD::VSELECT:
10888       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10889       break;
10890     case ISD::SHL:
10891     case ISD::SRA:
10892     case ISD::SRL:
10893     case ISD::ROTL:
10894     case ISD::ROTR:
10895       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10896                                getShiftAmountOperand(Operands[0].getValueType(),
10897                                                      Operands[1])));
10898       break;
10899     case ISD::SIGN_EXTEND_INREG: {
10900       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10901       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10902                                 Operands[0],
10903                                 getValueType(ExtVT)));
10904     }
10905     }
10906   }
10907 
10908   for (; i < ResNE; ++i)
10909     Scalars.push_back(getUNDEF(EltVT));
10910 
10911   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10912   return getBuildVector(VecVT, dl, Scalars);
10913 }
10914 
10915 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10916     SDNode *N, unsigned ResNE) {
10917   unsigned Opcode = N->getOpcode();
10918   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10919           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10920           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10921          "Expected an overflow opcode");
10922 
10923   EVT ResVT = N->getValueType(0);
10924   EVT OvVT = N->getValueType(1);
10925   EVT ResEltVT = ResVT.getVectorElementType();
10926   EVT OvEltVT = OvVT.getVectorElementType();
10927   SDLoc dl(N);
10928 
10929   // If ResNE is 0, fully unroll the vector op.
10930   unsigned NE = ResVT.getVectorNumElements();
10931   if (ResNE == 0)
10932     ResNE = NE;
10933   else if (NE > ResNE)
10934     NE = ResNE;
10935 
10936   SmallVector<SDValue, 8> LHSScalars;
10937   SmallVector<SDValue, 8> RHSScalars;
10938   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10939   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10940 
10941   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10942   SDVTList VTs = getVTList(ResEltVT, SVT);
10943   SmallVector<SDValue, 8> ResScalars;
10944   SmallVector<SDValue, 8> OvScalars;
10945   for (unsigned i = 0; i < NE; ++i) {
10946     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10947     SDValue Ov =
10948         getSelect(dl, OvEltVT, Res.getValue(1),
10949                   getBoolConstant(true, dl, OvEltVT, ResVT),
10950                   getConstant(0, dl, OvEltVT));
10951 
10952     ResScalars.push_back(Res);
10953     OvScalars.push_back(Ov);
10954   }
10955 
10956   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10957   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10958 
10959   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10960   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10961   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10962                         getBuildVector(NewOvVT, dl, OvScalars));
10963 }
10964 
10965 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10966                                                   LoadSDNode *Base,
10967                                                   unsigned Bytes,
10968                                                   int Dist) const {
10969   if (LD->isVolatile() || Base->isVolatile())
10970     return false;
10971   // TODO: probably too restrictive for atomics, revisit
10972   if (!LD->isSimple())
10973     return false;
10974   if (LD->isIndexed() || Base->isIndexed())
10975     return false;
10976   if (LD->getChain() != Base->getChain())
10977     return false;
10978   EVT VT = LD->getValueType(0);
10979   if (VT.getSizeInBits() / 8 != Bytes)
10980     return false;
10981 
10982   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10983   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10984 
10985   int64_t Offset = 0;
10986   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10987     return (Dist * Bytes == Offset);
10988   return false;
10989 }
10990 
10991 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10992 /// if it cannot be inferred.
10993 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10994   // If this is a GlobalAddress + cst, return the alignment.
10995   const GlobalValue *GV = nullptr;
10996   int64_t GVOffset = 0;
10997   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10998     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10999     KnownBits Known(PtrWidth);
11000     llvm::computeKnownBits(GV, Known, getDataLayout());
11001     unsigned AlignBits = Known.countMinTrailingZeros();
11002     if (AlignBits)
11003       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11004   }
11005 
11006   // If this is a direct reference to a stack slot, use information about the
11007   // stack slot's alignment.
11008   int FrameIdx = INT_MIN;
11009   int64_t FrameOffset = 0;
11010   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11011     FrameIdx = FI->getIndex();
11012   } else if (isBaseWithConstantOffset(Ptr) &&
11013              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11014     // Handle FI+Cst
11015     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11016     FrameOffset = Ptr.getConstantOperandVal(1);
11017   }
11018 
11019   if (FrameIdx != INT_MIN) {
11020     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11021     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11022   }
11023 
11024   return None;
11025 }
11026 
11027 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11028 /// which is split (or expanded) into two not necessarily identical pieces.
11029 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11030   // Currently all types are split in half.
11031   EVT LoVT, HiVT;
11032   if (!VT.isVector())
11033     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11034   else
11035     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11036 
11037   return std::make_pair(LoVT, HiVT);
11038 }
11039 
11040 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11041 /// type, dependent on an enveloping VT that has been split into two identical
11042 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11043 std::pair<EVT, EVT>
11044 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11045                                        bool *HiIsEmpty) const {
11046   EVT EltTp = VT.getVectorElementType();
11047   // Examples:
11048   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11049   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11050   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11051   //   etc.
11052   ElementCount VTNumElts = VT.getVectorElementCount();
11053   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11054   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11055          "Mixing fixed width and scalable vectors when enveloping a type");
11056   EVT LoVT, HiVT;
11057   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11058     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11059     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11060     *HiIsEmpty = false;
11061   } else {
11062     // Flag that hi type has zero storage size, but return split envelop type
11063     // (this would be easier if vector types with zero elements were allowed).
11064     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11065     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11066     *HiIsEmpty = true;
11067   }
11068   return std::make_pair(LoVT, HiVT);
11069 }
11070 
11071 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11072 /// low/high part.
11073 std::pair<SDValue, SDValue>
11074 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11075                           const EVT &HiVT) {
11076   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11077          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11078          "Splitting vector with an invalid mixture of fixed and scalable "
11079          "vector types");
11080   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11081              N.getValueType().getVectorMinNumElements() &&
11082          "More vector elements requested than available!");
11083   SDValue Lo, Hi;
11084   Lo =
11085       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11086   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11087   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11088   // IDX with the runtime scaling factor of the result vector type. For
11089   // fixed-width result vectors, that runtime scaling factor is 1.
11090   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11091                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11092   return std::make_pair(Lo, Hi);
11093 }
11094 
11095 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11096                                                    const SDLoc &DL) {
11097   // Split the vector length parameter.
11098   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11099   EVT VT = N.getValueType();
11100   assert(VecVT.getVectorElementCount().isKnownEven() &&
11101          "Expecting the mask to be an evenly-sized vector");
11102   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11103   SDValue HalfNumElts =
11104       VecVT.isFixedLengthVector()
11105           ? getConstant(HalfMinNumElts, DL, VT)
11106           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11107   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11108   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11109   return std::make_pair(Lo, Hi);
11110 }
11111 
11112 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11113 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11114   EVT VT = N.getValueType();
11115   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11116                                 NextPowerOf2(VT.getVectorNumElements()));
11117   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11118                  getVectorIdxConstant(0, DL));
11119 }
11120 
11121 void SelectionDAG::ExtractVectorElements(SDValue Op,
11122                                          SmallVectorImpl<SDValue> &Args,
11123                                          unsigned Start, unsigned Count,
11124                                          EVT EltVT) {
11125   EVT VT = Op.getValueType();
11126   if (Count == 0)
11127     Count = VT.getVectorNumElements();
11128   if (EltVT == EVT())
11129     EltVT = VT.getVectorElementType();
11130   SDLoc SL(Op);
11131   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11132     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11133                            getVectorIdxConstant(i, SL)));
11134   }
11135 }
11136 
11137 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11138 unsigned GlobalAddressSDNode::getAddressSpace() const {
11139   return getGlobal()->getType()->getAddressSpace();
11140 }
11141 
11142 Type *ConstantPoolSDNode::getType() const {
11143   if (isMachineConstantPoolEntry())
11144     return Val.MachineCPVal->getType();
11145   return Val.ConstVal->getType();
11146 }
11147 
11148 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11149                                         unsigned &SplatBitSize,
11150                                         bool &HasAnyUndefs,
11151                                         unsigned MinSplatBits,
11152                                         bool IsBigEndian) const {
11153   EVT VT = getValueType(0);
11154   assert(VT.isVector() && "Expected a vector type");
11155   unsigned VecWidth = VT.getSizeInBits();
11156   if (MinSplatBits > VecWidth)
11157     return false;
11158 
11159   // FIXME: The widths are based on this node's type, but build vectors can
11160   // truncate their operands.
11161   SplatValue = APInt(VecWidth, 0);
11162   SplatUndef = APInt(VecWidth, 0);
11163 
11164   // Get the bits. Bits with undefined values (when the corresponding element
11165   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11166   // in SplatValue. If any of the values are not constant, give up and return
11167   // false.
11168   unsigned int NumOps = getNumOperands();
11169   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11170   unsigned EltWidth = VT.getScalarSizeInBits();
11171 
11172   for (unsigned j = 0; j < NumOps; ++j) {
11173     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11174     SDValue OpVal = getOperand(i);
11175     unsigned BitPos = j * EltWidth;
11176 
11177     if (OpVal.isUndef())
11178       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11179     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11180       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11181     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11182       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11183     else
11184       return false;
11185   }
11186 
11187   // The build_vector is all constants or undefs. Find the smallest element
11188   // size that splats the vector.
11189   HasAnyUndefs = (SplatUndef != 0);
11190 
11191   // FIXME: This does not work for vectors with elements less than 8 bits.
11192   while (VecWidth > 8) {
11193     unsigned HalfSize = VecWidth / 2;
11194     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11195     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11196     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11197     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11198 
11199     // If the two halves do not match (ignoring undef bits), stop here.
11200     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11201         MinSplatBits > HalfSize)
11202       break;
11203 
11204     SplatValue = HighValue | LowValue;
11205     SplatUndef = HighUndef & LowUndef;
11206 
11207     VecWidth = HalfSize;
11208   }
11209 
11210   SplatBitSize = VecWidth;
11211   return true;
11212 }
11213 
11214 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11215                                          BitVector *UndefElements) const {
11216   unsigned NumOps = getNumOperands();
11217   if (UndefElements) {
11218     UndefElements->clear();
11219     UndefElements->resize(NumOps);
11220   }
11221   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11222   if (!DemandedElts)
11223     return SDValue();
11224   SDValue Splatted;
11225   for (unsigned i = 0; i != NumOps; ++i) {
11226     if (!DemandedElts[i])
11227       continue;
11228     SDValue Op = getOperand(i);
11229     if (Op.isUndef()) {
11230       if (UndefElements)
11231         (*UndefElements)[i] = true;
11232     } else if (!Splatted) {
11233       Splatted = Op;
11234     } else if (Splatted != Op) {
11235       return SDValue();
11236     }
11237   }
11238 
11239   if (!Splatted) {
11240     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11241     assert(getOperand(FirstDemandedIdx).isUndef() &&
11242            "Can only have a splat without a constant for all undefs.");
11243     return getOperand(FirstDemandedIdx);
11244   }
11245 
11246   return Splatted;
11247 }
11248 
11249 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11250   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11251   return getSplatValue(DemandedElts, UndefElements);
11252 }
11253 
11254 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11255                                             SmallVectorImpl<SDValue> &Sequence,
11256                                             BitVector *UndefElements) const {
11257   unsigned NumOps = getNumOperands();
11258   Sequence.clear();
11259   if (UndefElements) {
11260     UndefElements->clear();
11261     UndefElements->resize(NumOps);
11262   }
11263   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11264   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11265     return false;
11266 
11267   // Set the undefs even if we don't find a sequence (like getSplatValue).
11268   if (UndefElements)
11269     for (unsigned I = 0; I != NumOps; ++I)
11270       if (DemandedElts[I] && getOperand(I).isUndef())
11271         (*UndefElements)[I] = true;
11272 
11273   // Iteratively widen the sequence length looking for repetitions.
11274   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11275     Sequence.append(SeqLen, SDValue());
11276     for (unsigned I = 0; I != NumOps; ++I) {
11277       if (!DemandedElts[I])
11278         continue;
11279       SDValue &SeqOp = Sequence[I % SeqLen];
11280       SDValue Op = getOperand(I);
11281       if (Op.isUndef()) {
11282         if (!SeqOp)
11283           SeqOp = Op;
11284         continue;
11285       }
11286       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11287         Sequence.clear();
11288         break;
11289       }
11290       SeqOp = Op;
11291     }
11292     if (!Sequence.empty())
11293       return true;
11294   }
11295 
11296   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11297   return false;
11298 }
11299 
11300 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11301                                             BitVector *UndefElements) const {
11302   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11303   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11304 }
11305 
11306 ConstantSDNode *
11307 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11308                                         BitVector *UndefElements) const {
11309   return dyn_cast_or_null<ConstantSDNode>(
11310       getSplatValue(DemandedElts, UndefElements));
11311 }
11312 
11313 ConstantSDNode *
11314 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11315   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11316 }
11317 
11318 ConstantFPSDNode *
11319 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11320                                           BitVector *UndefElements) const {
11321   return dyn_cast_or_null<ConstantFPSDNode>(
11322       getSplatValue(DemandedElts, UndefElements));
11323 }
11324 
11325 ConstantFPSDNode *
11326 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11327   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11328 }
11329 
11330 int32_t
11331 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11332                                                    uint32_t BitWidth) const {
11333   if (ConstantFPSDNode *CN =
11334           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11335     bool IsExact;
11336     APSInt IntVal(BitWidth);
11337     const APFloat &APF = CN->getValueAPF();
11338     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11339             APFloat::opOK ||
11340         !IsExact)
11341       return -1;
11342 
11343     return IntVal.exactLogBase2();
11344   }
11345   return -1;
11346 }
11347 
11348 bool BuildVectorSDNode::getConstantRawBits(
11349     bool IsLittleEndian, unsigned DstEltSizeInBits,
11350     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11351   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11352   if (!isConstant())
11353     return false;
11354 
11355   unsigned NumSrcOps = getNumOperands();
11356   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11357   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11358          "Invalid bitcast scale");
11359 
11360   // Extract raw src bits.
11361   SmallVector<APInt> SrcBitElements(NumSrcOps,
11362                                     APInt::getNullValue(SrcEltSizeInBits));
11363   BitVector SrcUndeElements(NumSrcOps, false);
11364 
11365   for (unsigned I = 0; I != NumSrcOps; ++I) {
11366     SDValue Op = getOperand(I);
11367     if (Op.isUndef()) {
11368       SrcUndeElements.set(I);
11369       continue;
11370     }
11371     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11372     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11373     assert((CInt || CFP) && "Unknown constant");
11374     SrcBitElements[I] =
11375         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
11376              : CFP->getValueAPF().bitcastToAPInt();
11377   }
11378 
11379   // Recast to dst width.
11380   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11381                 SrcBitElements, UndefElements, SrcUndeElements);
11382   return true;
11383 }
11384 
11385 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11386                                       unsigned DstEltSizeInBits,
11387                                       SmallVectorImpl<APInt> &DstBitElements,
11388                                       ArrayRef<APInt> SrcBitElements,
11389                                       BitVector &DstUndefElements,
11390                                       const BitVector &SrcUndefElements) {
11391   unsigned NumSrcOps = SrcBitElements.size();
11392   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11393   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11394          "Invalid bitcast scale");
11395   assert(NumSrcOps == SrcUndefElements.size() &&
11396          "Vector size mismatch");
11397 
11398   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11399   DstUndefElements.clear();
11400   DstUndefElements.resize(NumDstOps, false);
11401   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11402 
11403   // Concatenate src elements constant bits together into dst element.
11404   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11405     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11406     for (unsigned I = 0; I != NumDstOps; ++I) {
11407       DstUndefElements.set(I);
11408       APInt &DstBits = DstBitElements[I];
11409       for (unsigned J = 0; J != Scale; ++J) {
11410         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11411         if (SrcUndefElements[Idx])
11412           continue;
11413         DstUndefElements.reset(I);
11414         const APInt &SrcBits = SrcBitElements[Idx];
11415         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11416                "Illegal constant bitwidths");
11417         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11418       }
11419     }
11420     return;
11421   }
11422 
11423   // Split src element constant bits into dst elements.
11424   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11425   for (unsigned I = 0; I != NumSrcOps; ++I) {
11426     if (SrcUndefElements[I]) {
11427       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11428       continue;
11429     }
11430     const APInt &SrcBits = SrcBitElements[I];
11431     for (unsigned J = 0; J != Scale; ++J) {
11432       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11433       APInt &DstBits = DstBitElements[Idx];
11434       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11435     }
11436   }
11437 }
11438 
11439 bool BuildVectorSDNode::isConstant() const {
11440   for (const SDValue &Op : op_values()) {
11441     unsigned Opc = Op.getOpcode();
11442     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11443       return false;
11444   }
11445   return true;
11446 }
11447 
11448 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11449   // Find the first non-undef value in the shuffle mask.
11450   unsigned i, e;
11451   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11452     /* search */;
11453 
11454   // If all elements are undefined, this shuffle can be considered a splat
11455   // (although it should eventually get simplified away completely).
11456   if (i == e)
11457     return true;
11458 
11459   // Make sure all remaining elements are either undef or the same as the first
11460   // non-undef value.
11461   for (int Idx = Mask[i]; i != e; ++i)
11462     if (Mask[i] >= 0 && Mask[i] != Idx)
11463       return false;
11464   return true;
11465 }
11466 
11467 // Returns the SDNode if it is a constant integer BuildVector
11468 // or constant integer.
11469 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11470   if (isa<ConstantSDNode>(N))
11471     return N.getNode();
11472   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11473     return N.getNode();
11474   // Treat a GlobalAddress supporting constant offset folding as a
11475   // constant integer.
11476   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11477     if (GA->getOpcode() == ISD::GlobalAddress &&
11478         TLI->isOffsetFoldingLegal(GA))
11479       return GA;
11480   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11481       isa<ConstantSDNode>(N.getOperand(0)))
11482     return N.getNode();
11483   return nullptr;
11484 }
11485 
11486 // Returns the SDNode if it is a constant float BuildVector
11487 // or constant float.
11488 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11489   if (isa<ConstantFPSDNode>(N))
11490     return N.getNode();
11491 
11492   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11493     return N.getNode();
11494 
11495   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11496       isa<ConstantFPSDNode>(N.getOperand(0)))
11497     return N.getNode();
11498 
11499   return nullptr;
11500 }
11501 
11502 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11503   assert(!Node->OperandList && "Node already has operands");
11504   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11505          "too many operands to fit into SDNode");
11506   SDUse *Ops = OperandRecycler.allocate(
11507       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11508 
11509   bool IsDivergent = false;
11510   for (unsigned I = 0; I != Vals.size(); ++I) {
11511     Ops[I].setUser(Node);
11512     Ops[I].setInitial(Vals[I]);
11513     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11514       IsDivergent |= Ops[I].getNode()->isDivergent();
11515   }
11516   Node->NumOperands = Vals.size();
11517   Node->OperandList = Ops;
11518   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11519     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11520     Node->SDNodeBits.IsDivergent = IsDivergent;
11521   }
11522   checkForCycles(Node);
11523 }
11524 
11525 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11526                                      SmallVectorImpl<SDValue> &Vals) {
11527   size_t Limit = SDNode::getMaxNumOperands();
11528   while (Vals.size() > Limit) {
11529     unsigned SliceIdx = Vals.size() - Limit;
11530     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11531     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11532     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11533     Vals.emplace_back(NewTF);
11534   }
11535   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11536 }
11537 
11538 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11539                                         EVT VT, SDNodeFlags Flags) {
11540   switch (Opcode) {
11541   default:
11542     return SDValue();
11543   case ISD::ADD:
11544   case ISD::OR:
11545   case ISD::XOR:
11546   case ISD::UMAX:
11547     return getConstant(0, DL, VT);
11548   case ISD::MUL:
11549     return getConstant(1, DL, VT);
11550   case ISD::AND:
11551   case ISD::UMIN:
11552     return getAllOnesConstant(DL, VT);
11553   case ISD::SMAX:
11554     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11555   case ISD::SMIN:
11556     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11557   case ISD::FADD:
11558     return getConstantFP(-0.0, DL, VT);
11559   case ISD::FMUL:
11560     return getConstantFP(1.0, DL, VT);
11561   case ISD::FMINNUM:
11562   case ISD::FMAXNUM: {
11563     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11564     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11565     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11566                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11567                         APFloat::getLargest(Semantics);
11568     if (Opcode == ISD::FMAXNUM)
11569       NeutralAF.changeSign();
11570 
11571     return getConstantFP(NeutralAF, DL, VT);
11572   }
11573   }
11574 }
11575 
11576 #ifndef NDEBUG
11577 static void checkForCyclesHelper(const SDNode *N,
11578                                  SmallPtrSetImpl<const SDNode*> &Visited,
11579                                  SmallPtrSetImpl<const SDNode*> &Checked,
11580                                  const llvm::SelectionDAG *DAG) {
11581   // If this node has already been checked, don't check it again.
11582   if (Checked.count(N))
11583     return;
11584 
11585   // If a node has already been visited on this depth-first walk, reject it as
11586   // a cycle.
11587   if (!Visited.insert(N).second) {
11588     errs() << "Detected cycle in SelectionDAG\n";
11589     dbgs() << "Offending node:\n";
11590     N->dumprFull(DAG); dbgs() << "\n";
11591     abort();
11592   }
11593 
11594   for (const SDValue &Op : N->op_values())
11595     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11596 
11597   Checked.insert(N);
11598   Visited.erase(N);
11599 }
11600 #endif
11601 
11602 void llvm::checkForCycles(const llvm::SDNode *N,
11603                           const llvm::SelectionDAG *DAG,
11604                           bool force) {
11605 #ifndef NDEBUG
11606   bool check = force;
11607 #ifdef EXPENSIVE_CHECKS
11608   check = true;
11609 #endif  // EXPENSIVE_CHECKS
11610   if (check) {
11611     assert(N && "Checking nonexistent SDNode");
11612     SmallPtrSet<const SDNode*, 32> visited;
11613     SmallPtrSet<const SDNode*, 32> checked;
11614     checkForCyclesHelper(N, visited, checked, DAG);
11615   }
11616 #endif  // !NDEBUG
11617 }
11618 
11619 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11620   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11621 }
11622