1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlign().value()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 Align SelectionDAG::getEVTAlign(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlign(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 EVT OpVT = Op.getValueType(); 1171 assert(VT.isInteger() && OpVT.isInteger() && 1172 "Cannot getZeroExtendInReg FP types"); 1173 assert(VT.isVector() == OpVT.isVector() && 1174 "getZeroExtendInReg type should be vector iff the operand " 1175 "type is vector!"); 1176 assert((!VT.isVector() || 1177 VT.getVectorNumElements() == OpVT.getVectorNumElements()) && 1178 "Vector element counts must match in getZeroExtendInReg"); 1179 assert(VT.bitsLE(OpVT) && "Not extending!"); 1180 if (OpVT == VT) 1181 return Op; 1182 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1183 VT.getScalarSizeInBits()); 1184 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZExtOrTrunc(Op, DL, VT); 1191 } 1192 1193 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1194 // Only unsigned pointer semantics are supported right now. In the future this 1195 // might delegate to TLI to check pointer signedness. 1196 return getZeroExtendInReg(Op, DL, VT); 1197 } 1198 1199 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1200 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1201 EVT EltVT = VT.getScalarType(); 1202 SDValue NegOne = 1203 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1204 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1205 } 1206 1207 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1208 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1209 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1210 } 1211 1212 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1213 EVT OpVT) { 1214 if (!V) 1215 return getConstant(0, DL, VT); 1216 1217 switch (TLI->getBooleanContents(OpVT)) { 1218 case TargetLowering::ZeroOrOneBooleanContent: 1219 case TargetLowering::UndefinedBooleanContent: 1220 return getConstant(1, DL, VT); 1221 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1222 return getAllOnesConstant(DL, VT); 1223 } 1224 llvm_unreachable("Unexpected boolean content enum!"); 1225 } 1226 1227 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1228 bool isT, bool isO) { 1229 EVT EltVT = VT.getScalarType(); 1230 assert((EltVT.getSizeInBits() >= 64 || 1231 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1232 "getConstant with a uint64_t value that doesn't fit in the type!"); 1233 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1234 } 1235 1236 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1237 bool isT, bool isO) { 1238 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1239 } 1240 1241 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1242 EVT VT, bool isT, bool isO) { 1243 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1244 1245 EVT EltVT = VT.getScalarType(); 1246 const ConstantInt *Elt = &Val; 1247 1248 // In some cases the vector type is legal but the element type is illegal and 1249 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1250 // inserted value (the type does not need to match the vector element type). 1251 // Any extra bits introduced will be truncated away. 1252 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1253 TargetLowering::TypePromoteInteger) { 1254 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1255 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1256 Elt = ConstantInt::get(*getContext(), NewVal); 1257 } 1258 // In other cases the element type is illegal and needs to be expanded, for 1259 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1260 // the value into n parts and use a vector type with n-times the elements. 1261 // Then bitcast to the type requested. 1262 // Legalizing constants too early makes the DAGCombiner's job harder so we 1263 // only legalize if the DAG tells us we must produce legal types. 1264 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1265 TLI->getTypeAction(*getContext(), EltVT) == 1266 TargetLowering::TypeExpandInteger) { 1267 const APInt &NewVal = Elt->getValue(); 1268 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1269 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1270 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1271 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1272 1273 // Check the temporary vector is the correct size. If this fails then 1274 // getTypeToTransformTo() probably returned a type whose size (in bits) 1275 // isn't a power-of-2 factor of the requested type size. 1276 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1277 1278 SmallVector<SDValue, 2> EltParts; 1279 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1280 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1281 .zextOrTrunc(ViaEltSizeInBits), DL, 1282 ViaEltVT, isT, isO)); 1283 } 1284 1285 // EltParts is currently in little endian order. If we actually want 1286 // big-endian order then reverse it now. 1287 if (getDataLayout().isBigEndian()) 1288 std::reverse(EltParts.begin(), EltParts.end()); 1289 1290 // The elements must be reversed when the element order is different 1291 // to the endianness of the elements (because the BITCAST is itself a 1292 // vector shuffle in this situation). However, we do not need any code to 1293 // perform this reversal because getConstant() is producing a vector 1294 // splat. 1295 // This situation occurs in MIPS MSA. 1296 1297 SmallVector<SDValue, 8> Ops; 1298 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1299 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1300 1301 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1302 return V; 1303 } 1304 1305 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1306 "APInt size does not match type size!"); 1307 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1308 FoldingSetNodeID ID; 1309 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1310 ID.AddPointer(Elt); 1311 ID.AddBoolean(isO); 1312 void *IP = nullptr; 1313 SDNode *N = nullptr; 1314 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1315 if (!VT.isVector()) 1316 return SDValue(N, 0); 1317 1318 if (!N) { 1319 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1320 CSEMap.InsertNode(N, IP); 1321 InsertNode(N); 1322 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1323 } 1324 1325 SDValue Result(N, 0); 1326 if (VT.isScalableVector()) 1327 Result = getSplatVector(VT, DL, Result); 1328 else if (VT.isVector()) 1329 Result = getSplatBuildVector(VT, DL, Result); 1330 1331 return Result; 1332 } 1333 1334 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1335 bool isTarget) { 1336 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1337 } 1338 1339 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1340 const SDLoc &DL, bool LegalTypes) { 1341 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1342 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1343 return getConstant(Val, DL, ShiftVT); 1344 } 1345 1346 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1347 bool isTarget) { 1348 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1349 } 1350 1351 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1352 bool isTarget) { 1353 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1354 } 1355 1356 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1357 EVT VT, bool isTarget) { 1358 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1359 1360 EVT EltVT = VT.getScalarType(); 1361 1362 // Do the map lookup using the actual bit pattern for the floating point 1363 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1364 // we don't have issues with SNANs. 1365 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1368 ID.AddPointer(&V); 1369 void *IP = nullptr; 1370 SDNode *N = nullptr; 1371 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1372 if (!VT.isVector()) 1373 return SDValue(N, 0); 1374 1375 if (!N) { 1376 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 } 1380 1381 SDValue Result(N, 0); 1382 if (VT.isVector()) 1383 Result = getSplatBuildVector(VT, DL, Result); 1384 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1385 return Result; 1386 } 1387 1388 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1389 bool isTarget) { 1390 EVT EltVT = VT.getScalarType(); 1391 if (EltVT == MVT::f32) 1392 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1393 else if (EltVT == MVT::f64) 1394 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1395 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1396 EltVT == MVT::f16) { 1397 bool Ignored; 1398 APFloat APF = APFloat(Val); 1399 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1400 &Ignored); 1401 return getConstantFP(APF, DL, VT, isTarget); 1402 } else 1403 llvm_unreachable("Unsupported type in getConstantFP"); 1404 } 1405 1406 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1407 EVT VT, int64_t Offset, bool isTargetGA, 1408 unsigned TargetFlags) { 1409 assert((TargetFlags == 0 || isTargetGA) && 1410 "Cannot set target flags on target-independent globals"); 1411 1412 // Truncate (with sign-extension) the offset value to the pointer size. 1413 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1414 if (BitWidth < 64) 1415 Offset = SignExtend64(Offset, BitWidth); 1416 1417 unsigned Opc; 1418 if (GV->isThreadLocal()) 1419 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1420 else 1421 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1422 1423 FoldingSetNodeID ID; 1424 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1425 ID.AddPointer(GV); 1426 ID.AddInteger(Offset); 1427 ID.AddInteger(TargetFlags); 1428 void *IP = nullptr; 1429 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1430 return SDValue(E, 0); 1431 1432 auto *N = newSDNode<GlobalAddressSDNode>( 1433 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1434 CSEMap.InsertNode(N, IP); 1435 InsertNode(N); 1436 return SDValue(N, 0); 1437 } 1438 1439 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1440 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1441 FoldingSetNodeID ID; 1442 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1443 ID.AddInteger(FI); 1444 void *IP = nullptr; 1445 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1446 return SDValue(E, 0); 1447 1448 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1449 CSEMap.InsertNode(N, IP); 1450 InsertNode(N); 1451 return SDValue(N, 0); 1452 } 1453 1454 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1455 unsigned TargetFlags) { 1456 assert((TargetFlags == 0 || isTarget) && 1457 "Cannot set target flags on target-independent jump tables"); 1458 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1459 FoldingSetNodeID ID; 1460 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1461 ID.AddInteger(JTI); 1462 ID.AddInteger(TargetFlags); 1463 void *IP = nullptr; 1464 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1465 return SDValue(E, 0); 1466 1467 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1468 CSEMap.InsertNode(N, IP); 1469 InsertNode(N); 1470 return SDValue(N, 0); 1471 } 1472 1473 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1474 MaybeAlign Alignment, int Offset, 1475 bool isTarget, unsigned TargetFlags) { 1476 assert((TargetFlags == 0 || isTarget) && 1477 "Cannot set target flags on target-independent globals"); 1478 if (!Alignment) 1479 Alignment = shouldOptForSize() 1480 ? getDataLayout().getABITypeAlign(C->getType()) 1481 : getDataLayout().getPrefTypeAlign(C->getType()); 1482 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1483 FoldingSetNodeID ID; 1484 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1485 ID.AddInteger(Alignment->value()); 1486 ID.AddInteger(Offset); 1487 ID.AddPointer(C); 1488 ID.AddInteger(TargetFlags); 1489 void *IP = nullptr; 1490 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1491 return SDValue(E, 0); 1492 1493 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1494 TargetFlags); 1495 CSEMap.InsertNode(N, IP); 1496 InsertNode(N); 1497 SDValue V = SDValue(N, 0); 1498 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1499 return V; 1500 } 1501 1502 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1503 MaybeAlign Alignment, int Offset, 1504 bool isTarget, unsigned TargetFlags) { 1505 assert((TargetFlags == 0 || isTarget) && 1506 "Cannot set target flags on target-independent globals"); 1507 if (!Alignment) 1508 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1509 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1512 ID.AddInteger(Alignment->value()); 1513 ID.AddInteger(Offset); 1514 C->addSelectionDAGCSEId(ID); 1515 ID.AddInteger(TargetFlags); 1516 void *IP = nullptr; 1517 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1518 return SDValue(E, 0); 1519 1520 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1521 TargetFlags); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 return SDValue(N, 0); 1525 } 1526 1527 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1528 unsigned TargetFlags) { 1529 FoldingSetNodeID ID; 1530 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1531 ID.AddInteger(Index); 1532 ID.AddInteger(Offset); 1533 ID.AddInteger(TargetFlags); 1534 void *IP = nullptr; 1535 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1536 return SDValue(E, 0); 1537 1538 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1539 CSEMap.InsertNode(N, IP); 1540 InsertNode(N); 1541 return SDValue(N, 0); 1542 } 1543 1544 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1545 FoldingSetNodeID ID; 1546 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1547 ID.AddPointer(MBB); 1548 void *IP = nullptr; 1549 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1550 return SDValue(E, 0); 1551 1552 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1553 CSEMap.InsertNode(N, IP); 1554 InsertNode(N); 1555 return SDValue(N, 0); 1556 } 1557 1558 SDValue SelectionDAG::getValueType(EVT VT) { 1559 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1560 ValueTypeNodes.size()) 1561 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1562 1563 SDNode *&N = VT.isExtended() ? 1564 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1565 1566 if (N) return SDValue(N, 0); 1567 N = newSDNode<VTSDNode>(VT); 1568 InsertNode(N); 1569 return SDValue(N, 0); 1570 } 1571 1572 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1573 SDNode *&N = ExternalSymbols[Sym]; 1574 if (N) return SDValue(N, 0); 1575 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1576 InsertNode(N); 1577 return SDValue(N, 0); 1578 } 1579 1580 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1581 SDNode *&N = MCSymbols[Sym]; 1582 if (N) 1583 return SDValue(N, 0); 1584 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1585 InsertNode(N); 1586 return SDValue(N, 0); 1587 } 1588 1589 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1590 unsigned TargetFlags) { 1591 SDNode *&N = 1592 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1593 if (N) return SDValue(N, 0); 1594 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1595 InsertNode(N); 1596 return SDValue(N, 0); 1597 } 1598 1599 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1600 if ((unsigned)Cond >= CondCodeNodes.size()) 1601 CondCodeNodes.resize(Cond+1); 1602 1603 if (!CondCodeNodes[Cond]) { 1604 auto *N = newSDNode<CondCodeSDNode>(Cond); 1605 CondCodeNodes[Cond] = N; 1606 InsertNode(N); 1607 } 1608 1609 return SDValue(CondCodeNodes[Cond], 0); 1610 } 1611 1612 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1613 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1614 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1615 std::swap(N1, N2); 1616 ShuffleVectorSDNode::commuteMask(M); 1617 } 1618 1619 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1620 SDValue N2, ArrayRef<int> Mask) { 1621 assert(VT.getVectorNumElements() == Mask.size() && 1622 "Must have the same number of vector elements as mask elements!"); 1623 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1624 "Invalid VECTOR_SHUFFLE"); 1625 1626 // Canonicalize shuffle undef, undef -> undef 1627 if (N1.isUndef() && N2.isUndef()) 1628 return getUNDEF(VT); 1629 1630 // Validate that all indices in Mask are within the range of the elements 1631 // input to the shuffle. 1632 int NElts = Mask.size(); 1633 assert(llvm::all_of(Mask, 1634 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1635 "Index out of range"); 1636 1637 // Copy the mask so we can do any needed cleanup. 1638 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1639 1640 // Canonicalize shuffle v, v -> v, undef 1641 if (N1 == N2) { 1642 N2 = getUNDEF(VT); 1643 for (int i = 0; i != NElts; ++i) 1644 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1645 } 1646 1647 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1648 if (N1.isUndef()) 1649 commuteShuffle(N1, N2, MaskVec); 1650 1651 if (TLI->hasVectorBlend()) { 1652 // If shuffling a splat, try to blend the splat instead. We do this here so 1653 // that even when this arises during lowering we don't have to re-handle it. 1654 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1655 BitVector UndefElements; 1656 SDValue Splat = BV->getSplatValue(&UndefElements); 1657 if (!Splat) 1658 return; 1659 1660 for (int i = 0; i < NElts; ++i) { 1661 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1662 continue; 1663 1664 // If this input comes from undef, mark it as such. 1665 if (UndefElements[MaskVec[i] - Offset]) { 1666 MaskVec[i] = -1; 1667 continue; 1668 } 1669 1670 // If we can blend a non-undef lane, use that instead. 1671 if (!UndefElements[i]) 1672 MaskVec[i] = i + Offset; 1673 } 1674 }; 1675 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1676 BlendSplat(N1BV, 0); 1677 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1678 BlendSplat(N2BV, NElts); 1679 } 1680 1681 // Canonicalize all index into lhs, -> shuffle lhs, undef 1682 // Canonicalize all index into rhs, -> shuffle rhs, undef 1683 bool AllLHS = true, AllRHS = true; 1684 bool N2Undef = N2.isUndef(); 1685 for (int i = 0; i != NElts; ++i) { 1686 if (MaskVec[i] >= NElts) { 1687 if (N2Undef) 1688 MaskVec[i] = -1; 1689 else 1690 AllLHS = false; 1691 } else if (MaskVec[i] >= 0) { 1692 AllRHS = false; 1693 } 1694 } 1695 if (AllLHS && AllRHS) 1696 return getUNDEF(VT); 1697 if (AllLHS && !N2Undef) 1698 N2 = getUNDEF(VT); 1699 if (AllRHS) { 1700 N1 = getUNDEF(VT); 1701 commuteShuffle(N1, N2, MaskVec); 1702 } 1703 // Reset our undef status after accounting for the mask. 1704 N2Undef = N2.isUndef(); 1705 // Re-check whether both sides ended up undef. 1706 if (N1.isUndef() && N2Undef) 1707 return getUNDEF(VT); 1708 1709 // If Identity shuffle return that node. 1710 bool Identity = true, AllSame = true; 1711 for (int i = 0; i != NElts; ++i) { 1712 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1713 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1714 } 1715 if (Identity && NElts) 1716 return N1; 1717 1718 // Shuffling a constant splat doesn't change the result. 1719 if (N2Undef) { 1720 SDValue V = N1; 1721 1722 // Look through any bitcasts. We check that these don't change the number 1723 // (and size) of elements and just changes their types. 1724 while (V.getOpcode() == ISD::BITCAST) 1725 V = V->getOperand(0); 1726 1727 // A splat should always show up as a build vector node. 1728 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1729 BitVector UndefElements; 1730 SDValue Splat = BV->getSplatValue(&UndefElements); 1731 // If this is a splat of an undef, shuffling it is also undef. 1732 if (Splat && Splat.isUndef()) 1733 return getUNDEF(VT); 1734 1735 bool SameNumElts = 1736 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1737 1738 // We only have a splat which can skip shuffles if there is a splatted 1739 // value and no undef lanes rearranged by the shuffle. 1740 if (Splat && UndefElements.none()) { 1741 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1742 // number of elements match or the value splatted is a zero constant. 1743 if (SameNumElts) 1744 return N1; 1745 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1746 if (C->isNullValue()) 1747 return N1; 1748 } 1749 1750 // If the shuffle itself creates a splat, build the vector directly. 1751 if (AllSame && SameNumElts) { 1752 EVT BuildVT = BV->getValueType(0); 1753 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1754 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1755 1756 // We may have jumped through bitcasts, so the type of the 1757 // BUILD_VECTOR may not match the type of the shuffle. 1758 if (BuildVT != VT) 1759 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1760 return NewBV; 1761 } 1762 } 1763 } 1764 1765 FoldingSetNodeID ID; 1766 SDValue Ops[2] = { N1, N2 }; 1767 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1768 for (int i = 0; i != NElts; ++i) 1769 ID.AddInteger(MaskVec[i]); 1770 1771 void* IP = nullptr; 1772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1773 return SDValue(E, 0); 1774 1775 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1776 // SDNode doesn't have access to it. This memory will be "leaked" when 1777 // the node is deallocated, but recovered when the NodeAllocator is released. 1778 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1779 llvm::copy(MaskVec, MaskAlloc); 1780 1781 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1782 dl.getDebugLoc(), MaskAlloc); 1783 createOperands(N, Ops); 1784 1785 CSEMap.InsertNode(N, IP); 1786 InsertNode(N); 1787 SDValue V = SDValue(N, 0); 1788 NewSDValueDbgMsg(V, "Creating new node: ", this); 1789 return V; 1790 } 1791 1792 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1793 EVT VT = SV.getValueType(0); 1794 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1795 ShuffleVectorSDNode::commuteMask(MaskVec); 1796 1797 SDValue Op0 = SV.getOperand(0); 1798 SDValue Op1 = SV.getOperand(1); 1799 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1800 } 1801 1802 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1803 FoldingSetNodeID ID; 1804 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1805 ID.AddInteger(RegNo); 1806 void *IP = nullptr; 1807 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1808 return SDValue(E, 0); 1809 1810 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1811 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1818 FoldingSetNodeID ID; 1819 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1820 ID.AddPointer(RegMask); 1821 void *IP = nullptr; 1822 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1823 return SDValue(E, 0); 1824 1825 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1826 CSEMap.InsertNode(N, IP); 1827 InsertNode(N); 1828 return SDValue(N, 0); 1829 } 1830 1831 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1832 MCSymbol *Label) { 1833 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1834 } 1835 1836 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1837 SDValue Root, MCSymbol *Label) { 1838 FoldingSetNodeID ID; 1839 SDValue Ops[] = { Root }; 1840 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1841 ID.AddPointer(Label); 1842 void *IP = nullptr; 1843 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1844 return SDValue(E, 0); 1845 1846 auto *N = 1847 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1848 createOperands(N, Ops); 1849 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1856 int64_t Offset, bool isTarget, 1857 unsigned TargetFlags) { 1858 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1859 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1862 ID.AddPointer(BA); 1863 ID.AddInteger(Offset); 1864 ID.AddInteger(TargetFlags); 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1870 CSEMap.InsertNode(N, IP); 1871 InsertNode(N); 1872 return SDValue(N, 0); 1873 } 1874 1875 SDValue SelectionDAG::getSrcValue(const Value *V) { 1876 assert((!V || V->getType()->isPointerTy()) && 1877 "SrcValue is not a pointer?"); 1878 1879 FoldingSetNodeID ID; 1880 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1881 ID.AddPointer(V); 1882 1883 void *IP = nullptr; 1884 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1885 return SDValue(E, 0); 1886 1887 auto *N = newSDNode<SrcValueSDNode>(V); 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1894 FoldingSetNodeID ID; 1895 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1896 ID.AddPointer(MD); 1897 1898 void *IP = nullptr; 1899 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1900 return SDValue(E, 0); 1901 1902 auto *N = newSDNode<MDNodeSDNode>(MD); 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1909 if (VT == V.getValueType()) 1910 return V; 1911 1912 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1913 } 1914 1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1916 unsigned SrcAS, unsigned DestAS) { 1917 SDValue Ops[] = {Ptr}; 1918 FoldingSetNodeID ID; 1919 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1920 ID.AddInteger(SrcAS); 1921 ID.AddInteger(DestAS); 1922 1923 void *IP = nullptr; 1924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1925 return SDValue(E, 0); 1926 1927 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1928 VT, SrcAS, DestAS); 1929 createOperands(N, Ops); 1930 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getFreeze(SDValue V) { 1937 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1938 } 1939 1940 /// getShiftAmountOperand - Return the specified value casted to 1941 /// the target's desired shift amount type. 1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1943 EVT OpTy = Op.getValueType(); 1944 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1945 if (OpTy == ShTy || OpTy.isVector()) return Op; 1946 1947 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1948 } 1949 1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1951 SDLoc dl(Node); 1952 const TargetLowering &TLI = getTargetLoweringInfo(); 1953 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1954 EVT VT = Node->getValueType(0); 1955 SDValue Tmp1 = Node->getOperand(0); 1956 SDValue Tmp2 = Node->getOperand(1); 1957 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1958 1959 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1960 Tmp2, MachinePointerInfo(V)); 1961 SDValue VAList = VAListLoad; 1962 1963 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1964 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1965 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1966 1967 VAList = 1968 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1969 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1970 } 1971 1972 // Increment the pointer, VAList, to the next vaarg 1973 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1974 getConstant(getDataLayout().getTypeAllocSize( 1975 VT.getTypeForEVT(*getContext())), 1976 dl, VAList.getValueType())); 1977 // Store the incremented VAList to the legalized pointer 1978 Tmp1 = 1979 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1980 // Load the actual argument out of the pointer VAList 1981 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1982 } 1983 1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1985 SDLoc dl(Node); 1986 const TargetLowering &TLI = getTargetLoweringInfo(); 1987 // This defaults to loading a pointer from the input and storing it to the 1988 // output, returning the chain. 1989 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1990 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1991 SDValue Tmp1 = 1992 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1993 Node->getOperand(2), MachinePointerInfo(VS)); 1994 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1995 MachinePointerInfo(VD)); 1996 } 1997 1998 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 1999 MachineFrameInfo &MFI = MF->getFrameInfo(); 2000 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); 2001 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2002 } 2003 2004 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2005 Type *Ty = VT.getTypeForEVT(*getContext()); 2006 Align StackAlign = 2007 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2008 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2009 } 2010 2011 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2012 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2013 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2014 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2015 const DataLayout &DL = getDataLayout(); 2016 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2017 return CreateStackTemporary(Bytes, Align); 2018 } 2019 2020 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2021 ISD::CondCode Cond, const SDLoc &dl) { 2022 EVT OpVT = N1.getValueType(); 2023 2024 // These setcc operations always fold. 2025 switch (Cond) { 2026 default: break; 2027 case ISD::SETFALSE: 2028 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2029 case ISD::SETTRUE: 2030 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2031 2032 case ISD::SETOEQ: 2033 case ISD::SETOGT: 2034 case ISD::SETOGE: 2035 case ISD::SETOLT: 2036 case ISD::SETOLE: 2037 case ISD::SETONE: 2038 case ISD::SETO: 2039 case ISD::SETUO: 2040 case ISD::SETUEQ: 2041 case ISD::SETUNE: 2042 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2043 break; 2044 } 2045 2046 if (OpVT.isInteger()) { 2047 // For EQ and NE, we can always pick a value for the undef to make the 2048 // predicate pass or fail, so we can return undef. 2049 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2050 // icmp eq/ne X, undef -> undef. 2051 if ((N1.isUndef() || N2.isUndef()) && 2052 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2053 return getUNDEF(VT); 2054 2055 // If both operands are undef, we can return undef for int comparison. 2056 // icmp undef, undef -> undef. 2057 if (N1.isUndef() && N2.isUndef()) 2058 return getUNDEF(VT); 2059 2060 // icmp X, X -> true/false 2061 // icmp X, undef -> true/false because undef could be X. 2062 if (N1 == N2) 2063 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2064 } 2065 2066 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2067 const APInt &C2 = N2C->getAPIntValue(); 2068 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2069 const APInt &C1 = N1C->getAPIntValue(); 2070 2071 switch (Cond) { 2072 default: llvm_unreachable("Unknown integer setcc!"); 2073 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2074 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2075 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2076 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2077 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2078 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2079 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2080 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2081 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2082 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2083 } 2084 } 2085 } 2086 2087 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2088 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2089 2090 if (N1CFP && N2CFP) { 2091 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2092 switch (Cond) { 2093 default: break; 2094 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2095 return getUNDEF(VT); 2096 LLVM_FALLTHROUGH; 2097 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2098 OpVT); 2099 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2100 return getUNDEF(VT); 2101 LLVM_FALLTHROUGH; 2102 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2103 R==APFloat::cmpLessThan, dl, VT, 2104 OpVT); 2105 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2106 return getUNDEF(VT); 2107 LLVM_FALLTHROUGH; 2108 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2109 OpVT); 2110 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2111 return getUNDEF(VT); 2112 LLVM_FALLTHROUGH; 2113 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2114 VT, OpVT); 2115 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2116 return getUNDEF(VT); 2117 LLVM_FALLTHROUGH; 2118 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2119 R==APFloat::cmpEqual, dl, VT, 2120 OpVT); 2121 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2122 return getUNDEF(VT); 2123 LLVM_FALLTHROUGH; 2124 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2125 R==APFloat::cmpEqual, dl, VT, OpVT); 2126 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2127 OpVT); 2128 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2129 OpVT); 2130 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2131 R==APFloat::cmpEqual, dl, VT, 2132 OpVT); 2133 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2134 OpVT); 2135 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2136 R==APFloat::cmpLessThan, dl, VT, 2137 OpVT); 2138 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2139 R==APFloat::cmpUnordered, dl, VT, 2140 OpVT); 2141 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2142 VT, OpVT); 2143 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2144 OpVT); 2145 } 2146 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2147 // Ensure that the constant occurs on the RHS. 2148 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2149 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2150 return SDValue(); 2151 return getSetCC(dl, VT, N2, N1, SwappedCond); 2152 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2153 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2154 // If an operand is known to be a nan (or undef that could be a nan), we can 2155 // fold it. 2156 // Choosing NaN for the undef will always make unordered comparison succeed 2157 // and ordered comparison fails. 2158 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2159 switch (ISD::getUnorderedFlavor(Cond)) { 2160 default: 2161 llvm_unreachable("Unknown flavor!"); 2162 case 0: // Known false. 2163 return getBoolConstant(false, dl, VT, OpVT); 2164 case 1: // Known true. 2165 return getBoolConstant(true, dl, VT, OpVT); 2166 case 2: // Undefined. 2167 return getUNDEF(VT); 2168 } 2169 } 2170 2171 // Could not fold it. 2172 return SDValue(); 2173 } 2174 2175 /// See if the specified operand can be simplified with the knowledge that only 2176 /// the bits specified by DemandedBits are used. 2177 /// TODO: really we should be making this into the DAG equivalent of 2178 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2179 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2180 EVT VT = V.getValueType(); 2181 APInt DemandedElts = VT.isVector() 2182 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2183 : APInt(1, 1); 2184 return GetDemandedBits(V, DemandedBits, DemandedElts); 2185 } 2186 2187 /// See if the specified operand can be simplified with the knowledge that only 2188 /// the bits specified by DemandedBits are used in the elements specified by 2189 /// DemandedElts. 2190 /// TODO: really we should be making this into the DAG equivalent of 2191 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2192 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2193 const APInt &DemandedElts) { 2194 switch (V.getOpcode()) { 2195 default: 2196 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2197 *this, 0); 2198 break; 2199 case ISD::Constant: { 2200 auto *CV = cast<ConstantSDNode>(V.getNode()); 2201 assert(CV && "Const value should be ConstSDNode."); 2202 const APInt &CVal = CV->getAPIntValue(); 2203 APInt NewVal = CVal & DemandedBits; 2204 if (NewVal != CVal) 2205 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2206 break; 2207 } 2208 case ISD::SRL: 2209 // Only look at single-use SRLs. 2210 if (!V.getNode()->hasOneUse()) 2211 break; 2212 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2213 // See if we can recursively simplify the LHS. 2214 unsigned Amt = RHSC->getZExtValue(); 2215 2216 // Watch out for shift count overflow though. 2217 if (Amt >= DemandedBits.getBitWidth()) 2218 break; 2219 APInt SrcDemandedBits = DemandedBits << Amt; 2220 if (SDValue SimplifyLHS = 2221 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2222 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2223 V.getOperand(1)); 2224 } 2225 break; 2226 case ISD::AND: { 2227 // X & -1 -> X (ignoring bits which aren't demanded). 2228 // Also handle the case where masked out bits in X are known to be zero. 2229 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2230 const APInt &AndVal = RHSC->getAPIntValue(); 2231 if (DemandedBits.isSubsetOf(AndVal) || 2232 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2233 AndVal)) 2234 return V.getOperand(0); 2235 } 2236 break; 2237 } 2238 } 2239 return SDValue(); 2240 } 2241 2242 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2243 /// use this predicate to simplify operations downstream. 2244 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2245 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2246 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2247 } 2248 2249 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2250 /// this predicate to simplify operations downstream. Mask is known to be zero 2251 /// for bits that V cannot have. 2252 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2253 unsigned Depth) const { 2254 EVT VT = V.getValueType(); 2255 APInt DemandedElts = VT.isVector() 2256 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2257 : APInt(1, 1); 2258 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2259 } 2260 2261 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2262 /// DemandedElts. We use this predicate to simplify operations downstream. 2263 /// Mask is known to be zero for bits that V cannot have. 2264 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2265 const APInt &DemandedElts, 2266 unsigned Depth) const { 2267 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2268 } 2269 2270 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2271 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2272 unsigned Depth) const { 2273 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2274 } 2275 2276 /// isSplatValue - Return true if the vector V has the same value 2277 /// across all DemandedElts. For scalable vectors it does not make 2278 /// sense to specify which elements are demanded or undefined, therefore 2279 /// they are simply ignored. 2280 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2281 APInt &UndefElts) { 2282 EVT VT = V.getValueType(); 2283 assert(VT.isVector() && "Vector type expected"); 2284 2285 if (!VT.isScalableVector() && !DemandedElts) 2286 return false; // No demanded elts, better to assume we don't know anything. 2287 2288 // Deal with some common cases here that work for both fixed and scalable 2289 // vector types. 2290 switch (V.getOpcode()) { 2291 case ISD::SPLAT_VECTOR: 2292 return true; 2293 case ISD::ADD: 2294 case ISD::SUB: 2295 case ISD::AND: { 2296 APInt UndefLHS, UndefRHS; 2297 SDValue LHS = V.getOperand(0); 2298 SDValue RHS = V.getOperand(1); 2299 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2300 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2301 UndefElts = UndefLHS | UndefRHS; 2302 return true; 2303 } 2304 break; 2305 } 2306 } 2307 2308 // We don't support other cases than those above for scalable vectors at 2309 // the moment. 2310 if (VT.isScalableVector()) 2311 return false; 2312 2313 unsigned NumElts = VT.getVectorNumElements(); 2314 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2315 UndefElts = APInt::getNullValue(NumElts); 2316 2317 switch (V.getOpcode()) { 2318 case ISD::BUILD_VECTOR: { 2319 SDValue Scl; 2320 for (unsigned i = 0; i != NumElts; ++i) { 2321 SDValue Op = V.getOperand(i); 2322 if (Op.isUndef()) { 2323 UndefElts.setBit(i); 2324 continue; 2325 } 2326 if (!DemandedElts[i]) 2327 continue; 2328 if (Scl && Scl != Op) 2329 return false; 2330 Scl = Op; 2331 } 2332 return true; 2333 } 2334 case ISD::VECTOR_SHUFFLE: { 2335 // Check if this is a shuffle node doing a splat. 2336 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2337 int SplatIndex = -1; 2338 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2339 for (int i = 0; i != (int)NumElts; ++i) { 2340 int M = Mask[i]; 2341 if (M < 0) { 2342 UndefElts.setBit(i); 2343 continue; 2344 } 2345 if (!DemandedElts[i]) 2346 continue; 2347 if (0 <= SplatIndex && SplatIndex != M) 2348 return false; 2349 SplatIndex = M; 2350 } 2351 return true; 2352 } 2353 case ISD::EXTRACT_SUBVECTOR: { 2354 // Offset the demanded elts by the subvector index. 2355 SDValue Src = V.getOperand(0); 2356 uint64_t Idx = V.getConstantOperandVal(1); 2357 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2358 APInt UndefSrcElts; 2359 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2360 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2361 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2362 return true; 2363 } 2364 break; 2365 } 2366 } 2367 2368 return false; 2369 } 2370 2371 /// Helper wrapper to main isSplatValue function. 2372 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2373 EVT VT = V.getValueType(); 2374 assert(VT.isVector() && "Vector type expected"); 2375 2376 APInt UndefElts; 2377 APInt DemandedElts; 2378 2379 // For now we don't support this with scalable vectors. 2380 if (!VT.isScalableVector()) 2381 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2382 return isSplatValue(V, DemandedElts, UndefElts) && 2383 (AllowUndefs || !UndefElts); 2384 } 2385 2386 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2387 V = peekThroughExtractSubvectors(V); 2388 2389 EVT VT = V.getValueType(); 2390 unsigned Opcode = V.getOpcode(); 2391 switch (Opcode) { 2392 default: { 2393 APInt UndefElts; 2394 APInt DemandedElts; 2395 2396 if (!VT.isScalableVector()) 2397 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2398 2399 if (isSplatValue(V, DemandedElts, UndefElts)) { 2400 if (VT.isScalableVector()) { 2401 // DemandedElts and UndefElts are ignored for scalable vectors, since 2402 // the only supported cases are SPLAT_VECTOR nodes. 2403 SplatIdx = 0; 2404 } else { 2405 // Handle case where all demanded elements are UNDEF. 2406 if (DemandedElts.isSubsetOf(UndefElts)) { 2407 SplatIdx = 0; 2408 return getUNDEF(VT); 2409 } 2410 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2411 } 2412 return V; 2413 } 2414 break; 2415 } 2416 case ISD::SPLAT_VECTOR: 2417 SplatIdx = 0; 2418 return V; 2419 case ISD::VECTOR_SHUFFLE: { 2420 if (VT.isScalableVector()) 2421 return SDValue(); 2422 2423 // Check if this is a shuffle node doing a splat. 2424 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2425 // getTargetVShiftNode currently struggles without the splat source. 2426 auto *SVN = cast<ShuffleVectorSDNode>(V); 2427 if (!SVN->isSplat()) 2428 break; 2429 int Idx = SVN->getSplatIndex(); 2430 int NumElts = V.getValueType().getVectorNumElements(); 2431 SplatIdx = Idx % NumElts; 2432 return V.getOperand(Idx / NumElts); 2433 } 2434 } 2435 2436 return SDValue(); 2437 } 2438 2439 SDValue SelectionDAG::getSplatValue(SDValue V) { 2440 int SplatIdx; 2441 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2442 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2443 SrcVector.getValueType().getScalarType(), SrcVector, 2444 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2445 return SDValue(); 2446 } 2447 2448 const APInt * 2449 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2450 const APInt &DemandedElts) const { 2451 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2452 V.getOpcode() == ISD::SRA) && 2453 "Unknown shift node"); 2454 unsigned BitWidth = V.getScalarValueSizeInBits(); 2455 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2456 // Shifting more than the bitwidth is not valid. 2457 const APInt &ShAmt = SA->getAPIntValue(); 2458 if (ShAmt.ult(BitWidth)) 2459 return &ShAmt; 2460 } 2461 return nullptr; 2462 } 2463 2464 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2465 SDValue V, const APInt &DemandedElts) const { 2466 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2467 V.getOpcode() == ISD::SRA) && 2468 "Unknown shift node"); 2469 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2470 return ValidAmt; 2471 unsigned BitWidth = V.getScalarValueSizeInBits(); 2472 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2473 if (!BV) 2474 return nullptr; 2475 const APInt *MinShAmt = nullptr; 2476 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2477 if (!DemandedElts[i]) 2478 continue; 2479 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2480 if (!SA) 2481 return nullptr; 2482 // Shifting more than the bitwidth is not valid. 2483 const APInt &ShAmt = SA->getAPIntValue(); 2484 if (ShAmt.uge(BitWidth)) 2485 return nullptr; 2486 if (MinShAmt && MinShAmt->ule(ShAmt)) 2487 continue; 2488 MinShAmt = &ShAmt; 2489 } 2490 return MinShAmt; 2491 } 2492 2493 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2494 SDValue V, const APInt &DemandedElts) const { 2495 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2496 V.getOpcode() == ISD::SRA) && 2497 "Unknown shift node"); 2498 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2499 return ValidAmt; 2500 unsigned BitWidth = V.getScalarValueSizeInBits(); 2501 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2502 if (!BV) 2503 return nullptr; 2504 const APInt *MaxShAmt = nullptr; 2505 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2506 if (!DemandedElts[i]) 2507 continue; 2508 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2509 if (!SA) 2510 return nullptr; 2511 // Shifting more than the bitwidth is not valid. 2512 const APInt &ShAmt = SA->getAPIntValue(); 2513 if (ShAmt.uge(BitWidth)) 2514 return nullptr; 2515 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2516 continue; 2517 MaxShAmt = &ShAmt; 2518 } 2519 return MaxShAmt; 2520 } 2521 2522 /// Determine which bits of Op are known to be either zero or one and return 2523 /// them in Known. For vectors, the known bits are those that are shared by 2524 /// every vector element. 2525 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2526 EVT VT = Op.getValueType(); 2527 APInt DemandedElts = VT.isVector() 2528 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2529 : APInt(1, 1); 2530 return computeKnownBits(Op, DemandedElts, Depth); 2531 } 2532 2533 /// Determine which bits of Op are known to be either zero or one and return 2534 /// them in Known. The DemandedElts argument allows us to only collect the known 2535 /// bits that are shared by the requested vector elements. 2536 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2537 unsigned Depth) const { 2538 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2539 2540 KnownBits Known(BitWidth); // Don't know anything. 2541 2542 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2543 // We know all of the bits for a constant! 2544 Known.One = C->getAPIntValue(); 2545 Known.Zero = ~Known.One; 2546 return Known; 2547 } 2548 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2549 // We know all of the bits for a constant fp! 2550 Known.One = C->getValueAPF().bitcastToAPInt(); 2551 Known.Zero = ~Known.One; 2552 return Known; 2553 } 2554 2555 if (Depth >= MaxRecursionDepth) 2556 return Known; // Limit search depth. 2557 2558 KnownBits Known2; 2559 unsigned NumElts = DemandedElts.getBitWidth(); 2560 assert((!Op.getValueType().isVector() || 2561 NumElts == Op.getValueType().getVectorNumElements()) && 2562 "Unexpected vector size"); 2563 2564 if (!DemandedElts) 2565 return Known; // No demanded elts, better to assume we don't know anything. 2566 2567 unsigned Opcode = Op.getOpcode(); 2568 switch (Opcode) { 2569 case ISD::BUILD_VECTOR: 2570 // Collect the known bits that are shared by every demanded vector element. 2571 Known.Zero.setAllBits(); Known.One.setAllBits(); 2572 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2573 if (!DemandedElts[i]) 2574 continue; 2575 2576 SDValue SrcOp = Op.getOperand(i); 2577 Known2 = computeKnownBits(SrcOp, Depth + 1); 2578 2579 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2580 if (SrcOp.getValueSizeInBits() != BitWidth) { 2581 assert(SrcOp.getValueSizeInBits() > BitWidth && 2582 "Expected BUILD_VECTOR implicit truncation"); 2583 Known2 = Known2.trunc(BitWidth); 2584 } 2585 2586 // Known bits are the values that are shared by every demanded element. 2587 Known.One &= Known2.One; 2588 Known.Zero &= Known2.Zero; 2589 2590 // If we don't know any bits, early out. 2591 if (Known.isUnknown()) 2592 break; 2593 } 2594 break; 2595 case ISD::VECTOR_SHUFFLE: { 2596 // Collect the known bits that are shared by every vector element referenced 2597 // by the shuffle. 2598 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2599 Known.Zero.setAllBits(); Known.One.setAllBits(); 2600 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2601 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2602 for (unsigned i = 0; i != NumElts; ++i) { 2603 if (!DemandedElts[i]) 2604 continue; 2605 2606 int M = SVN->getMaskElt(i); 2607 if (M < 0) { 2608 // For UNDEF elements, we don't know anything about the common state of 2609 // the shuffle result. 2610 Known.resetAll(); 2611 DemandedLHS.clearAllBits(); 2612 DemandedRHS.clearAllBits(); 2613 break; 2614 } 2615 2616 if ((unsigned)M < NumElts) 2617 DemandedLHS.setBit((unsigned)M % NumElts); 2618 else 2619 DemandedRHS.setBit((unsigned)M % NumElts); 2620 } 2621 // Known bits are the values that are shared by every demanded element. 2622 if (!!DemandedLHS) { 2623 SDValue LHS = Op.getOperand(0); 2624 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2625 Known.One &= Known2.One; 2626 Known.Zero &= Known2.Zero; 2627 } 2628 // If we don't know any bits, early out. 2629 if (Known.isUnknown()) 2630 break; 2631 if (!!DemandedRHS) { 2632 SDValue RHS = Op.getOperand(1); 2633 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2634 Known.One &= Known2.One; 2635 Known.Zero &= Known2.Zero; 2636 } 2637 break; 2638 } 2639 case ISD::CONCAT_VECTORS: { 2640 // Split DemandedElts and test each of the demanded subvectors. 2641 Known.Zero.setAllBits(); Known.One.setAllBits(); 2642 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2643 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2644 unsigned NumSubVectors = Op.getNumOperands(); 2645 for (unsigned i = 0; i != NumSubVectors; ++i) { 2646 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2647 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2648 if (!!DemandedSub) { 2649 SDValue Sub = Op.getOperand(i); 2650 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2651 Known.One &= Known2.One; 2652 Known.Zero &= Known2.Zero; 2653 } 2654 // If we don't know any bits, early out. 2655 if (Known.isUnknown()) 2656 break; 2657 } 2658 break; 2659 } 2660 case ISD::INSERT_SUBVECTOR: { 2661 // Demand any elements from the subvector and the remainder from the src its 2662 // inserted into. 2663 SDValue Src = Op.getOperand(0); 2664 SDValue Sub = Op.getOperand(1); 2665 uint64_t Idx = Op.getConstantOperandVal(2); 2666 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2667 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2668 APInt DemandedSrcElts = DemandedElts; 2669 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2670 2671 Known.One.setAllBits(); 2672 Known.Zero.setAllBits(); 2673 if (!!DemandedSubElts) { 2674 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2675 if (Known.isUnknown()) 2676 break; // early-out. 2677 } 2678 if (!!DemandedSrcElts) { 2679 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2680 Known.One &= Known2.One; 2681 Known.Zero &= Known2.Zero; 2682 } 2683 break; 2684 } 2685 case ISD::EXTRACT_SUBVECTOR: { 2686 // Offset the demanded elts by the subvector index. 2687 SDValue Src = Op.getOperand(0); 2688 uint64_t Idx = Op.getConstantOperandVal(1); 2689 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2690 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2691 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2692 break; 2693 } 2694 case ISD::SCALAR_TO_VECTOR: { 2695 // We know about scalar_to_vector as much as we know about it source, 2696 // which becomes the first element of otherwise unknown vector. 2697 if (DemandedElts != 1) 2698 break; 2699 2700 SDValue N0 = Op.getOperand(0); 2701 Known = computeKnownBits(N0, Depth + 1); 2702 if (N0.getValueSizeInBits() != BitWidth) 2703 Known = Known.trunc(BitWidth); 2704 2705 break; 2706 } 2707 case ISD::BITCAST: { 2708 SDValue N0 = Op.getOperand(0); 2709 EVT SubVT = N0.getValueType(); 2710 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2711 2712 // Ignore bitcasts from unsupported types. 2713 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2714 break; 2715 2716 // Fast handling of 'identity' bitcasts. 2717 if (BitWidth == SubBitWidth) { 2718 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2719 break; 2720 } 2721 2722 bool IsLE = getDataLayout().isLittleEndian(); 2723 2724 // Bitcast 'small element' vector to 'large element' scalar/vector. 2725 if ((BitWidth % SubBitWidth) == 0) { 2726 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2727 2728 // Collect known bits for the (larger) output by collecting the known 2729 // bits from each set of sub elements and shift these into place. 2730 // We need to separately call computeKnownBits for each set of 2731 // sub elements as the knownbits for each is likely to be different. 2732 unsigned SubScale = BitWidth / SubBitWidth; 2733 APInt SubDemandedElts(NumElts * SubScale, 0); 2734 for (unsigned i = 0; i != NumElts; ++i) 2735 if (DemandedElts[i]) 2736 SubDemandedElts.setBit(i * SubScale); 2737 2738 for (unsigned i = 0; i != SubScale; ++i) { 2739 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2740 Depth + 1); 2741 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2742 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2743 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2744 } 2745 } 2746 2747 // Bitcast 'large element' scalar/vector to 'small element' vector. 2748 if ((SubBitWidth % BitWidth) == 0) { 2749 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2750 2751 // Collect known bits for the (smaller) output by collecting the known 2752 // bits from the overlapping larger input elements and extracting the 2753 // sub sections we actually care about. 2754 unsigned SubScale = SubBitWidth / BitWidth; 2755 APInt SubDemandedElts(NumElts / SubScale, 0); 2756 for (unsigned i = 0; i != NumElts; ++i) 2757 if (DemandedElts[i]) 2758 SubDemandedElts.setBit(i / SubScale); 2759 2760 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2761 2762 Known.Zero.setAllBits(); Known.One.setAllBits(); 2763 for (unsigned i = 0; i != NumElts; ++i) 2764 if (DemandedElts[i]) { 2765 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2766 unsigned Offset = (Shifts % SubScale) * BitWidth; 2767 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2768 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2769 // If we don't know any bits, early out. 2770 if (Known.isUnknown()) 2771 break; 2772 } 2773 } 2774 break; 2775 } 2776 case ISD::AND: 2777 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2778 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2779 2780 Known &= Known2; 2781 break; 2782 case ISD::OR: 2783 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2784 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2785 2786 Known |= Known2; 2787 break; 2788 case ISD::XOR: 2789 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2790 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2791 2792 Known ^= Known2; 2793 break; 2794 case ISD::MUL: { 2795 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2796 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2797 2798 // If low bits are zero in either operand, output low known-0 bits. 2799 // Also compute a conservative estimate for high known-0 bits. 2800 // More trickiness is possible, but this is sufficient for the 2801 // interesting case of alignment computation. 2802 unsigned TrailZ = Known.countMinTrailingZeros() + 2803 Known2.countMinTrailingZeros(); 2804 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2805 Known2.countMinLeadingZeros(), 2806 BitWidth) - BitWidth; 2807 2808 Known.resetAll(); 2809 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2810 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2811 break; 2812 } 2813 case ISD::UDIV: { 2814 // For the purposes of computing leading zeros we can conservatively 2815 // treat a udiv as a logical right shift by the power of 2 known to 2816 // be less than the denominator. 2817 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2818 unsigned LeadZ = Known2.countMinLeadingZeros(); 2819 2820 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2821 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2822 if (RHSMaxLeadingZeros != BitWidth) 2823 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2824 2825 Known.Zero.setHighBits(LeadZ); 2826 break; 2827 } 2828 case ISD::SELECT: 2829 case ISD::VSELECT: 2830 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2831 // If we don't know any bits, early out. 2832 if (Known.isUnknown()) 2833 break; 2834 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2835 2836 // Only known if known in both the LHS and RHS. 2837 Known.One &= Known2.One; 2838 Known.Zero &= Known2.Zero; 2839 break; 2840 case ISD::SELECT_CC: 2841 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2842 // If we don't know any bits, early out. 2843 if (Known.isUnknown()) 2844 break; 2845 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2846 2847 // Only known if known in both the LHS and RHS. 2848 Known.One &= Known2.One; 2849 Known.Zero &= Known2.Zero; 2850 break; 2851 case ISD::SMULO: 2852 case ISD::UMULO: 2853 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2854 if (Op.getResNo() != 1) 2855 break; 2856 // The boolean result conforms to getBooleanContents. 2857 // If we know the result of a setcc has the top bits zero, use this info. 2858 // We know that we have an integer-based boolean since these operations 2859 // are only available for integer. 2860 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2861 TargetLowering::ZeroOrOneBooleanContent && 2862 BitWidth > 1) 2863 Known.Zero.setBitsFrom(1); 2864 break; 2865 case ISD::SETCC: 2866 case ISD::STRICT_FSETCC: 2867 case ISD::STRICT_FSETCCS: { 2868 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2869 // If we know the result of a setcc has the top bits zero, use this info. 2870 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2871 TargetLowering::ZeroOrOneBooleanContent && 2872 BitWidth > 1) 2873 Known.Zero.setBitsFrom(1); 2874 break; 2875 } 2876 case ISD::SHL: 2877 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2878 2879 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2880 unsigned Shift = ShAmt->getZExtValue(); 2881 Known.Zero <<= Shift; 2882 Known.One <<= Shift; 2883 // Low bits are known zero. 2884 Known.Zero.setLowBits(Shift); 2885 break; 2886 } 2887 2888 // No matter the shift amount, the trailing zeros will stay zero. 2889 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2890 Known.One.clearAllBits(); 2891 2892 // Minimum shift low bits are known zero. 2893 if (const APInt *ShMinAmt = 2894 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2895 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2896 break; 2897 case ISD::SRL: 2898 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2899 2900 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2901 unsigned Shift = ShAmt->getZExtValue(); 2902 Known.Zero.lshrInPlace(Shift); 2903 Known.One.lshrInPlace(Shift); 2904 // High bits are known zero. 2905 Known.Zero.setHighBits(Shift); 2906 break; 2907 } 2908 2909 // No matter the shift amount, the leading zeros will stay zero. 2910 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2911 Known.One.clearAllBits(); 2912 2913 // Minimum shift high bits are known zero. 2914 if (const APInt *ShMinAmt = 2915 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2916 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2917 break; 2918 case ISD::SRA: 2919 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2920 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2921 unsigned Shift = ShAmt->getZExtValue(); 2922 // Sign extend known zero/one bit (else is unknown). 2923 Known.Zero.ashrInPlace(Shift); 2924 Known.One.ashrInPlace(Shift); 2925 } 2926 break; 2927 case ISD::FSHL: 2928 case ISD::FSHR: 2929 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2930 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2931 2932 // For fshl, 0-shift returns the 1st arg. 2933 // For fshr, 0-shift returns the 2nd arg. 2934 if (Amt == 0) { 2935 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2936 DemandedElts, Depth + 1); 2937 break; 2938 } 2939 2940 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2941 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2942 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2943 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2944 if (Opcode == ISD::FSHL) { 2945 Known.One <<= Amt; 2946 Known.Zero <<= Amt; 2947 Known2.One.lshrInPlace(BitWidth - Amt); 2948 Known2.Zero.lshrInPlace(BitWidth - Amt); 2949 } else { 2950 Known.One <<= BitWidth - Amt; 2951 Known.Zero <<= BitWidth - Amt; 2952 Known2.One.lshrInPlace(Amt); 2953 Known2.Zero.lshrInPlace(Amt); 2954 } 2955 Known.One |= Known2.One; 2956 Known.Zero |= Known2.Zero; 2957 } 2958 break; 2959 case ISD::SIGN_EXTEND_INREG: { 2960 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2961 unsigned EBits = EVT.getScalarSizeInBits(); 2962 2963 // Sign extension. Compute the demanded bits in the result that are not 2964 // present in the input. 2965 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2966 2967 APInt InSignMask = APInt::getSignMask(EBits); 2968 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2969 2970 // If the sign extended bits are demanded, we know that the sign 2971 // bit is demanded. 2972 InSignMask = InSignMask.zext(BitWidth); 2973 if (NewBits.getBoolValue()) 2974 InputDemandedBits |= InSignMask; 2975 2976 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2977 Known.One &= InputDemandedBits; 2978 Known.Zero &= InputDemandedBits; 2979 2980 // If the sign bit of the input is known set or clear, then we know the 2981 // top bits of the result. 2982 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2983 Known.Zero |= NewBits; 2984 Known.One &= ~NewBits; 2985 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2986 Known.One |= NewBits; 2987 Known.Zero &= ~NewBits; 2988 } else { // Input sign bit unknown 2989 Known.Zero &= ~NewBits; 2990 Known.One &= ~NewBits; 2991 } 2992 break; 2993 } 2994 case ISD::CTTZ: 2995 case ISD::CTTZ_ZERO_UNDEF: { 2996 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2997 // If we have a known 1, its position is our upper bound. 2998 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2999 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3000 Known.Zero.setBitsFrom(LowBits); 3001 break; 3002 } 3003 case ISD::CTLZ: 3004 case ISD::CTLZ_ZERO_UNDEF: { 3005 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3006 // If we have a known 1, its position is our upper bound. 3007 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3008 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3009 Known.Zero.setBitsFrom(LowBits); 3010 break; 3011 } 3012 case ISD::CTPOP: { 3013 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3014 // If we know some of the bits are zero, they can't be one. 3015 unsigned PossibleOnes = Known2.countMaxPopulation(); 3016 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3017 break; 3018 } 3019 case ISD::LOAD: { 3020 LoadSDNode *LD = cast<LoadSDNode>(Op); 3021 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3022 if (ISD::isNON_EXTLoad(LD) && Cst) { 3023 // Determine any common known bits from the loaded constant pool value. 3024 Type *CstTy = Cst->getType(); 3025 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3026 // If its a vector splat, then we can (quickly) reuse the scalar path. 3027 // NOTE: We assume all elements match and none are UNDEF. 3028 if (CstTy->isVectorTy()) { 3029 if (const Constant *Splat = Cst->getSplatValue()) { 3030 Cst = Splat; 3031 CstTy = Cst->getType(); 3032 } 3033 } 3034 // TODO - do we need to handle different bitwidths? 3035 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3036 // Iterate across all vector elements finding common known bits. 3037 Known.One.setAllBits(); 3038 Known.Zero.setAllBits(); 3039 for (unsigned i = 0; i != NumElts; ++i) { 3040 if (!DemandedElts[i]) 3041 continue; 3042 if (Constant *Elt = Cst->getAggregateElement(i)) { 3043 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3044 const APInt &Value = CInt->getValue(); 3045 Known.One &= Value; 3046 Known.Zero &= ~Value; 3047 continue; 3048 } 3049 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3050 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3051 Known.One &= Value; 3052 Known.Zero &= ~Value; 3053 continue; 3054 } 3055 } 3056 Known.One.clearAllBits(); 3057 Known.Zero.clearAllBits(); 3058 break; 3059 } 3060 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3061 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3062 const APInt &Value = CInt->getValue(); 3063 Known.One = Value; 3064 Known.Zero = ~Value; 3065 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3066 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3067 Known.One = Value; 3068 Known.Zero = ~Value; 3069 } 3070 } 3071 } 3072 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3073 // If this is a ZEXTLoad and we are looking at the loaded value. 3074 EVT VT = LD->getMemoryVT(); 3075 unsigned MemBits = VT.getScalarSizeInBits(); 3076 Known.Zero.setBitsFrom(MemBits); 3077 } else if (const MDNode *Ranges = LD->getRanges()) { 3078 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3079 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3080 } 3081 break; 3082 } 3083 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3084 EVT InVT = Op.getOperand(0).getValueType(); 3085 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3086 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3087 Known = Known.zext(BitWidth); 3088 break; 3089 } 3090 case ISD::ZERO_EXTEND: { 3091 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3092 Known = Known.zext(BitWidth); 3093 break; 3094 } 3095 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3096 EVT InVT = Op.getOperand(0).getValueType(); 3097 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3098 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3099 // If the sign bit is known to be zero or one, then sext will extend 3100 // it to the top bits, else it will just zext. 3101 Known = Known.sext(BitWidth); 3102 break; 3103 } 3104 case ISD::SIGN_EXTEND: { 3105 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3106 // If the sign bit is known to be zero or one, then sext will extend 3107 // it to the top bits, else it will just zext. 3108 Known = Known.sext(BitWidth); 3109 break; 3110 } 3111 case ISD::ANY_EXTEND_VECTOR_INREG: { 3112 EVT InVT = Op.getOperand(0).getValueType(); 3113 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3114 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3115 Known = Known.anyext(BitWidth); 3116 break; 3117 } 3118 case ISD::ANY_EXTEND: { 3119 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3120 Known = Known.anyext(BitWidth); 3121 break; 3122 } 3123 case ISD::TRUNCATE: { 3124 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3125 Known = Known.trunc(BitWidth); 3126 break; 3127 } 3128 case ISD::AssertZext: { 3129 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3130 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3131 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3132 Known.Zero |= (~InMask); 3133 Known.One &= (~Known.Zero); 3134 break; 3135 } 3136 case ISD::FGETSIGN: 3137 // All bits are zero except the low bit. 3138 Known.Zero.setBitsFrom(1); 3139 break; 3140 case ISD::USUBO: 3141 case ISD::SSUBO: 3142 if (Op.getResNo() == 1) { 3143 // If we know the result of a setcc has the top bits zero, use this info. 3144 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3145 TargetLowering::ZeroOrOneBooleanContent && 3146 BitWidth > 1) 3147 Known.Zero.setBitsFrom(1); 3148 break; 3149 } 3150 LLVM_FALLTHROUGH; 3151 case ISD::SUB: 3152 case ISD::SUBC: { 3153 assert(Op.getResNo() == 0 && 3154 "We only compute knownbits for the difference here."); 3155 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3158 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3159 Known, Known2); 3160 break; 3161 } 3162 case ISD::UADDO: 3163 case ISD::SADDO: 3164 case ISD::ADDCARRY: 3165 if (Op.getResNo() == 1) { 3166 // If we know the result of a setcc has the top bits zero, use this info. 3167 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3168 TargetLowering::ZeroOrOneBooleanContent && 3169 BitWidth > 1) 3170 Known.Zero.setBitsFrom(1); 3171 break; 3172 } 3173 LLVM_FALLTHROUGH; 3174 case ISD::ADD: 3175 case ISD::ADDC: 3176 case ISD::ADDE: { 3177 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3178 3179 // With ADDE and ADDCARRY, a carry bit may be added in. 3180 KnownBits Carry(1); 3181 if (Opcode == ISD::ADDE) 3182 // Can't track carry from glue, set carry to unknown. 3183 Carry.resetAll(); 3184 else if (Opcode == ISD::ADDCARRY) 3185 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3186 // the trouble (how often will we find a known carry bit). And I haven't 3187 // tested this very much yet, but something like this might work: 3188 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3189 // Carry = Carry.zextOrTrunc(1, false); 3190 Carry.resetAll(); 3191 else 3192 Carry.setAllZero(); 3193 3194 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3196 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3197 break; 3198 } 3199 case ISD::SREM: 3200 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3201 const APInt &RA = Rem->getAPIntValue().abs(); 3202 if (RA.isPowerOf2()) { 3203 APInt LowBits = RA - 1; 3204 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3205 3206 // The low bits of the first operand are unchanged by the srem. 3207 Known.Zero = Known2.Zero & LowBits; 3208 Known.One = Known2.One & LowBits; 3209 3210 // If the first operand is non-negative or has all low bits zero, then 3211 // the upper bits are all zero. 3212 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3213 Known.Zero |= ~LowBits; 3214 3215 // If the first operand is negative and not all low bits are zero, then 3216 // the upper bits are all one. 3217 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3218 Known.One |= ~LowBits; 3219 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3220 } 3221 } 3222 break; 3223 case ISD::UREM: { 3224 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3225 const APInt &RA = Rem->getAPIntValue(); 3226 if (RA.isPowerOf2()) { 3227 APInt LowBits = (RA - 1); 3228 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3229 3230 // The upper bits are all zero, the lower ones are unchanged. 3231 Known.Zero = Known2.Zero | ~LowBits; 3232 Known.One = Known2.One & LowBits; 3233 break; 3234 } 3235 } 3236 3237 // Since the result is less than or equal to either operand, any leading 3238 // zero bits in either operand must also exist in the result. 3239 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3240 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3241 3242 uint32_t Leaders = 3243 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3244 Known.resetAll(); 3245 Known.Zero.setHighBits(Leaders); 3246 break; 3247 } 3248 case ISD::EXTRACT_ELEMENT: { 3249 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3250 const unsigned Index = Op.getConstantOperandVal(1); 3251 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3252 3253 // Remove low part of known bits mask 3254 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3255 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3256 3257 // Remove high part of known bit mask 3258 Known = Known.trunc(EltBitWidth); 3259 break; 3260 } 3261 case ISD::EXTRACT_VECTOR_ELT: { 3262 SDValue InVec = Op.getOperand(0); 3263 SDValue EltNo = Op.getOperand(1); 3264 EVT VecVT = InVec.getValueType(); 3265 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3266 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3267 3268 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3269 // anything about the extended bits. 3270 if (BitWidth > EltBitWidth) 3271 Known = Known.trunc(EltBitWidth); 3272 3273 // If we know the element index, just demand that vector element, else for 3274 // an unknown element index, ignore DemandedElts and demand them all. 3275 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3276 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3277 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3278 DemandedSrcElts = 3279 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3280 3281 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3282 if (BitWidth > EltBitWidth) 3283 Known = Known.anyext(BitWidth); 3284 break; 3285 } 3286 case ISD::INSERT_VECTOR_ELT: { 3287 // If we know the element index, split the demand between the 3288 // source vector and the inserted element, otherwise assume we need 3289 // the original demanded vector elements and the value. 3290 SDValue InVec = Op.getOperand(0); 3291 SDValue InVal = Op.getOperand(1); 3292 SDValue EltNo = Op.getOperand(2); 3293 bool DemandedVal = true; 3294 APInt DemandedVecElts = DemandedElts; 3295 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3296 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3297 unsigned EltIdx = CEltNo->getZExtValue(); 3298 DemandedVal = !!DemandedElts[EltIdx]; 3299 DemandedVecElts.clearBit(EltIdx); 3300 } 3301 Known.One.setAllBits(); 3302 Known.Zero.setAllBits(); 3303 if (DemandedVal) { 3304 Known2 = computeKnownBits(InVal, Depth + 1); 3305 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3306 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3307 } 3308 if (!!DemandedVecElts) { 3309 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3310 Known.One &= Known2.One; 3311 Known.Zero &= Known2.Zero; 3312 } 3313 break; 3314 } 3315 case ISD::BITREVERSE: { 3316 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3317 Known.Zero = Known2.Zero.reverseBits(); 3318 Known.One = Known2.One.reverseBits(); 3319 break; 3320 } 3321 case ISD::BSWAP: { 3322 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 Known.Zero = Known2.Zero.byteSwap(); 3324 Known.One = Known2.One.byteSwap(); 3325 break; 3326 } 3327 case ISD::ABS: { 3328 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3329 3330 // If the source's MSB is zero then we know the rest of the bits already. 3331 if (Known2.isNonNegative()) { 3332 Known.Zero = Known2.Zero; 3333 Known.One = Known2.One; 3334 break; 3335 } 3336 3337 // We only know that the absolute values's MSB will be zero iff there is 3338 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3339 Known2.One.clearSignBit(); 3340 if (Known2.One.getBoolValue()) { 3341 Known.Zero = APInt::getSignMask(BitWidth); 3342 break; 3343 } 3344 break; 3345 } 3346 case ISD::UMIN: { 3347 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3348 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3349 3350 // UMIN - we know that the result will have the maximum of the 3351 // known zero leading bits of the inputs. 3352 unsigned LeadZero = Known.countMinLeadingZeros(); 3353 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3354 3355 Known.Zero &= Known2.Zero; 3356 Known.One &= Known2.One; 3357 Known.Zero.setHighBits(LeadZero); 3358 break; 3359 } 3360 case ISD::UMAX: { 3361 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3363 3364 // UMAX - we know that the result will have the maximum of the 3365 // known one leading bits of the inputs. 3366 unsigned LeadOne = Known.countMinLeadingOnes(); 3367 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3368 3369 Known.Zero &= Known2.Zero; 3370 Known.One &= Known2.One; 3371 Known.One.setHighBits(LeadOne); 3372 break; 3373 } 3374 case ISD::SMIN: 3375 case ISD::SMAX: { 3376 // If we have a clamp pattern, we know that the number of sign bits will be 3377 // the minimum of the clamp min/max range. 3378 bool IsMax = (Opcode == ISD::SMAX); 3379 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3380 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3381 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3382 CstHigh = 3383 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3384 if (CstLow && CstHigh) { 3385 if (!IsMax) 3386 std::swap(CstLow, CstHigh); 3387 3388 const APInt &ValueLow = CstLow->getAPIntValue(); 3389 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3390 if (ValueLow.sle(ValueHigh)) { 3391 unsigned LowSignBits = ValueLow.getNumSignBits(); 3392 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3393 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3394 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3395 Known.One.setHighBits(MinSignBits); 3396 break; 3397 } 3398 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3399 Known.Zero.setHighBits(MinSignBits); 3400 break; 3401 } 3402 } 3403 } 3404 3405 // Fallback - just get the shared known bits of the operands. 3406 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3407 if (Known.isUnknown()) break; // Early-out 3408 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3409 Known.Zero &= Known2.Zero; 3410 Known.One &= Known2.One; 3411 break; 3412 } 3413 case ISD::FrameIndex: 3414 case ISD::TargetFrameIndex: 3415 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3416 break; 3417 3418 default: 3419 if (Opcode < ISD::BUILTIN_OP_END) 3420 break; 3421 LLVM_FALLTHROUGH; 3422 case ISD::INTRINSIC_WO_CHAIN: 3423 case ISD::INTRINSIC_W_CHAIN: 3424 case ISD::INTRINSIC_VOID: 3425 // Allow the target to implement this method for its nodes. 3426 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3427 break; 3428 } 3429 3430 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3431 return Known; 3432 } 3433 3434 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3435 SDValue N1) const { 3436 // X + 0 never overflow 3437 if (isNullConstant(N1)) 3438 return OFK_Never; 3439 3440 KnownBits N1Known = computeKnownBits(N1); 3441 if (N1Known.Zero.getBoolValue()) { 3442 KnownBits N0Known = computeKnownBits(N0); 3443 3444 bool overflow; 3445 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3446 if (!overflow) 3447 return OFK_Never; 3448 } 3449 3450 // mulhi + 1 never overflow 3451 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3452 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3453 return OFK_Never; 3454 3455 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3456 KnownBits N0Known = computeKnownBits(N0); 3457 3458 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3459 return OFK_Never; 3460 } 3461 3462 return OFK_Sometime; 3463 } 3464 3465 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3466 EVT OpVT = Val.getValueType(); 3467 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3468 3469 // Is the constant a known power of 2? 3470 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3471 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3472 3473 // A left-shift of a constant one will have exactly one bit set because 3474 // shifting the bit off the end is undefined. 3475 if (Val.getOpcode() == ISD::SHL) { 3476 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3477 if (C && C->getAPIntValue() == 1) 3478 return true; 3479 } 3480 3481 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3482 // one bit set. 3483 if (Val.getOpcode() == ISD::SRL) { 3484 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3485 if (C && C->getAPIntValue().isSignMask()) 3486 return true; 3487 } 3488 3489 // Are all operands of a build vector constant powers of two? 3490 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3491 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3492 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3493 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3494 return false; 3495 })) 3496 return true; 3497 3498 // More could be done here, though the above checks are enough 3499 // to handle some common cases. 3500 3501 // Fall back to computeKnownBits to catch other known cases. 3502 KnownBits Known = computeKnownBits(Val); 3503 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3504 } 3505 3506 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3507 EVT VT = Op.getValueType(); 3508 APInt DemandedElts = VT.isVector() 3509 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3510 : APInt(1, 1); 3511 return ComputeNumSignBits(Op, DemandedElts, Depth); 3512 } 3513 3514 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3515 unsigned Depth) const { 3516 EVT VT = Op.getValueType(); 3517 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3518 unsigned VTBits = VT.getScalarSizeInBits(); 3519 unsigned NumElts = DemandedElts.getBitWidth(); 3520 unsigned Tmp, Tmp2; 3521 unsigned FirstAnswer = 1; 3522 3523 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3524 const APInt &Val = C->getAPIntValue(); 3525 return Val.getNumSignBits(); 3526 } 3527 3528 if (Depth >= MaxRecursionDepth) 3529 return 1; // Limit search depth. 3530 3531 if (!DemandedElts) 3532 return 1; // No demanded elts, better to assume we don't know anything. 3533 3534 unsigned Opcode = Op.getOpcode(); 3535 switch (Opcode) { 3536 default: break; 3537 case ISD::AssertSext: 3538 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3539 return VTBits-Tmp+1; 3540 case ISD::AssertZext: 3541 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3542 return VTBits-Tmp; 3543 3544 case ISD::BUILD_VECTOR: 3545 Tmp = VTBits; 3546 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3547 if (!DemandedElts[i]) 3548 continue; 3549 3550 SDValue SrcOp = Op.getOperand(i); 3551 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3552 3553 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3554 if (SrcOp.getValueSizeInBits() != VTBits) { 3555 assert(SrcOp.getValueSizeInBits() > VTBits && 3556 "Expected BUILD_VECTOR implicit truncation"); 3557 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3558 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3559 } 3560 Tmp = std::min(Tmp, Tmp2); 3561 } 3562 return Tmp; 3563 3564 case ISD::VECTOR_SHUFFLE: { 3565 // Collect the minimum number of sign bits that are shared by every vector 3566 // element referenced by the shuffle. 3567 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3568 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3569 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3570 for (unsigned i = 0; i != NumElts; ++i) { 3571 int M = SVN->getMaskElt(i); 3572 if (!DemandedElts[i]) 3573 continue; 3574 // For UNDEF elements, we don't know anything about the common state of 3575 // the shuffle result. 3576 if (M < 0) 3577 return 1; 3578 if ((unsigned)M < NumElts) 3579 DemandedLHS.setBit((unsigned)M % NumElts); 3580 else 3581 DemandedRHS.setBit((unsigned)M % NumElts); 3582 } 3583 Tmp = std::numeric_limits<unsigned>::max(); 3584 if (!!DemandedLHS) 3585 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3586 if (!!DemandedRHS) { 3587 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3588 Tmp = std::min(Tmp, Tmp2); 3589 } 3590 // If we don't know anything, early out and try computeKnownBits fall-back. 3591 if (Tmp == 1) 3592 break; 3593 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3594 return Tmp; 3595 } 3596 3597 case ISD::BITCAST: { 3598 SDValue N0 = Op.getOperand(0); 3599 EVT SrcVT = N0.getValueType(); 3600 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3601 3602 // Ignore bitcasts from unsupported types.. 3603 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3604 break; 3605 3606 // Fast handling of 'identity' bitcasts. 3607 if (VTBits == SrcBits) 3608 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3609 3610 bool IsLE = getDataLayout().isLittleEndian(); 3611 3612 // Bitcast 'large element' scalar/vector to 'small element' vector. 3613 if ((SrcBits % VTBits) == 0) { 3614 assert(VT.isVector() && "Expected bitcast to vector"); 3615 3616 unsigned Scale = SrcBits / VTBits; 3617 APInt SrcDemandedElts(NumElts / Scale, 0); 3618 for (unsigned i = 0; i != NumElts; ++i) 3619 if (DemandedElts[i]) 3620 SrcDemandedElts.setBit(i / Scale); 3621 3622 // Fast case - sign splat can be simply split across the small elements. 3623 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3624 if (Tmp == SrcBits) 3625 return VTBits; 3626 3627 // Slow case - determine how far the sign extends into each sub-element. 3628 Tmp2 = VTBits; 3629 for (unsigned i = 0; i != NumElts; ++i) 3630 if (DemandedElts[i]) { 3631 unsigned SubOffset = i % Scale; 3632 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3633 SubOffset = SubOffset * VTBits; 3634 if (Tmp <= SubOffset) 3635 return 1; 3636 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3637 } 3638 return Tmp2; 3639 } 3640 break; 3641 } 3642 3643 case ISD::SIGN_EXTEND: 3644 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3645 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3646 case ISD::SIGN_EXTEND_INREG: 3647 // Max of the input and what this extends. 3648 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3649 Tmp = VTBits-Tmp+1; 3650 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3651 return std::max(Tmp, Tmp2); 3652 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3653 SDValue Src = Op.getOperand(0); 3654 EVT SrcVT = Src.getValueType(); 3655 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3656 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3657 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3658 } 3659 case ISD::SRA: 3660 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 // SRA X, C -> adds C sign bits. 3662 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3663 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3664 else if (const APInt *ShAmt = 3665 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3666 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3667 return Tmp; 3668 case ISD::SHL: 3669 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3670 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3671 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3672 if (ShAmt->ult(Tmp)) 3673 return Tmp - ShAmt->getZExtValue(); 3674 } else if (const APInt *ShAmt = 3675 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3676 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3677 if (ShAmt->ult(Tmp)) 3678 return Tmp - ShAmt->getZExtValue(); 3679 } 3680 break; 3681 case ISD::AND: 3682 case ISD::OR: 3683 case ISD::XOR: // NOT is handled here. 3684 // Logical binary ops preserve the number of sign bits at the worst. 3685 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3686 if (Tmp != 1) { 3687 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3688 FirstAnswer = std::min(Tmp, Tmp2); 3689 // We computed what we know about the sign bits as our first 3690 // answer. Now proceed to the generic code that uses 3691 // computeKnownBits, and pick whichever answer is better. 3692 } 3693 break; 3694 3695 case ISD::SELECT: 3696 case ISD::VSELECT: 3697 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3698 if (Tmp == 1) return 1; // Early out. 3699 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3700 return std::min(Tmp, Tmp2); 3701 case ISD::SELECT_CC: 3702 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3703 if (Tmp == 1) return 1; // Early out. 3704 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3705 return std::min(Tmp, Tmp2); 3706 3707 case ISD::SMIN: 3708 case ISD::SMAX: { 3709 // If we have a clamp pattern, we know that the number of sign bits will be 3710 // the minimum of the clamp min/max range. 3711 bool IsMax = (Opcode == ISD::SMAX); 3712 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3713 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3714 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3715 CstHigh = 3716 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3717 if (CstLow && CstHigh) { 3718 if (!IsMax) 3719 std::swap(CstLow, CstHigh); 3720 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3721 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3722 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3723 return std::min(Tmp, Tmp2); 3724 } 3725 } 3726 3727 // Fallback - just get the minimum number of sign bits of the operands. 3728 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3729 if (Tmp == 1) 3730 return 1; // Early out. 3731 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3732 return std::min(Tmp, Tmp2); 3733 } 3734 case ISD::UMIN: 3735 case ISD::UMAX: 3736 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3737 if (Tmp == 1) 3738 return 1; // Early out. 3739 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3740 return std::min(Tmp, Tmp2); 3741 case ISD::SADDO: 3742 case ISD::UADDO: 3743 case ISD::SSUBO: 3744 case ISD::USUBO: 3745 case ISD::SMULO: 3746 case ISD::UMULO: 3747 if (Op.getResNo() != 1) 3748 break; 3749 // The boolean result conforms to getBooleanContents. Fall through. 3750 // If setcc returns 0/-1, all bits are sign bits. 3751 // We know that we have an integer-based boolean since these operations 3752 // are only available for integer. 3753 if (TLI->getBooleanContents(VT.isVector(), false) == 3754 TargetLowering::ZeroOrNegativeOneBooleanContent) 3755 return VTBits; 3756 break; 3757 case ISD::SETCC: 3758 case ISD::STRICT_FSETCC: 3759 case ISD::STRICT_FSETCCS: { 3760 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3761 // If setcc returns 0/-1, all bits are sign bits. 3762 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3763 TargetLowering::ZeroOrNegativeOneBooleanContent) 3764 return VTBits; 3765 break; 3766 } 3767 case ISD::ROTL: 3768 case ISD::ROTR: 3769 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3770 3771 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3772 if (Tmp == VTBits) 3773 return VTBits; 3774 3775 if (ConstantSDNode *C = 3776 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3777 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3778 3779 // Handle rotate right by N like a rotate left by 32-N. 3780 if (Opcode == ISD::ROTR) 3781 RotAmt = (VTBits - RotAmt) % VTBits; 3782 3783 // If we aren't rotating out all of the known-in sign bits, return the 3784 // number that are left. This handles rotl(sext(x), 1) for example. 3785 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3786 } 3787 break; 3788 case ISD::ADD: 3789 case ISD::ADDC: 3790 // Add can have at most one carry bit. Thus we know that the output 3791 // is, at worst, one more bit than the inputs. 3792 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3793 if (Tmp == 1) return 1; // Early out. 3794 3795 // Special case decrementing a value (ADD X, -1): 3796 if (ConstantSDNode *CRHS = 3797 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3798 if (CRHS->isAllOnesValue()) { 3799 KnownBits Known = 3800 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3801 3802 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3803 // sign bits set. 3804 if ((Known.Zero | 1).isAllOnesValue()) 3805 return VTBits; 3806 3807 // If we are subtracting one from a positive number, there is no carry 3808 // out of the result. 3809 if (Known.isNonNegative()) 3810 return Tmp; 3811 } 3812 3813 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3814 if (Tmp2 == 1) return 1; // Early out. 3815 return std::min(Tmp, Tmp2) - 1; 3816 case ISD::SUB: 3817 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3818 if (Tmp2 == 1) return 1; // Early out. 3819 3820 // Handle NEG. 3821 if (ConstantSDNode *CLHS = 3822 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3823 if (CLHS->isNullValue()) { 3824 KnownBits Known = 3825 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3826 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3827 // sign bits set. 3828 if ((Known.Zero | 1).isAllOnesValue()) 3829 return VTBits; 3830 3831 // If the input is known to be positive (the sign bit is known clear), 3832 // the output of the NEG has the same number of sign bits as the input. 3833 if (Known.isNonNegative()) 3834 return Tmp2; 3835 3836 // Otherwise, we treat this like a SUB. 3837 } 3838 3839 // Sub can have at most one carry bit. Thus we know that the output 3840 // is, at worst, one more bit than the inputs. 3841 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3842 if (Tmp == 1) return 1; // Early out. 3843 return std::min(Tmp, Tmp2) - 1; 3844 case ISD::MUL: { 3845 // The output of the Mul can be at most twice the valid bits in the inputs. 3846 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3847 if (SignBitsOp0 == 1) 3848 break; 3849 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3850 if (SignBitsOp1 == 1) 3851 break; 3852 unsigned OutValidBits = 3853 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3854 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3855 } 3856 case ISD::TRUNCATE: { 3857 // Check if the sign bits of source go down as far as the truncated value. 3858 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3859 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3860 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3861 return NumSrcSignBits - (NumSrcBits - VTBits); 3862 break; 3863 } 3864 case ISD::EXTRACT_ELEMENT: { 3865 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3866 const int BitWidth = Op.getValueSizeInBits(); 3867 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3868 3869 // Get reverse index (starting from 1), Op1 value indexes elements from 3870 // little end. Sign starts at big end. 3871 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3872 3873 // If the sign portion ends in our element the subtraction gives correct 3874 // result. Otherwise it gives either negative or > bitwidth result 3875 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3876 } 3877 case ISD::INSERT_VECTOR_ELT: { 3878 // If we know the element index, split the demand between the 3879 // source vector and the inserted element, otherwise assume we need 3880 // the original demanded vector elements and the value. 3881 SDValue InVec = Op.getOperand(0); 3882 SDValue InVal = Op.getOperand(1); 3883 SDValue EltNo = Op.getOperand(2); 3884 bool DemandedVal = true; 3885 APInt DemandedVecElts = DemandedElts; 3886 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3887 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3888 unsigned EltIdx = CEltNo->getZExtValue(); 3889 DemandedVal = !!DemandedElts[EltIdx]; 3890 DemandedVecElts.clearBit(EltIdx); 3891 } 3892 Tmp = std::numeric_limits<unsigned>::max(); 3893 if (DemandedVal) { 3894 // TODO - handle implicit truncation of inserted elements. 3895 if (InVal.getScalarValueSizeInBits() != VTBits) 3896 break; 3897 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3898 Tmp = std::min(Tmp, Tmp2); 3899 } 3900 if (!!DemandedVecElts) { 3901 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3902 Tmp = std::min(Tmp, Tmp2); 3903 } 3904 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3905 return Tmp; 3906 } 3907 case ISD::EXTRACT_VECTOR_ELT: { 3908 SDValue InVec = Op.getOperand(0); 3909 SDValue EltNo = Op.getOperand(1); 3910 EVT VecVT = InVec.getValueType(); 3911 const unsigned BitWidth = Op.getValueSizeInBits(); 3912 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3913 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3914 3915 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3916 // anything about sign bits. But if the sizes match we can derive knowledge 3917 // about sign bits from the vector operand. 3918 if (BitWidth != EltBitWidth) 3919 break; 3920 3921 // If we know the element index, just demand that vector element, else for 3922 // an unknown element index, ignore DemandedElts and demand them all. 3923 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3924 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3925 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3926 DemandedSrcElts = 3927 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3928 3929 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3930 } 3931 case ISD::EXTRACT_SUBVECTOR: { 3932 // Offset the demanded elts by the subvector index. 3933 SDValue Src = Op.getOperand(0); 3934 uint64_t Idx = Op.getConstantOperandVal(1); 3935 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3936 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3937 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3938 } 3939 case ISD::CONCAT_VECTORS: { 3940 // Determine the minimum number of sign bits across all demanded 3941 // elts of the input vectors. Early out if the result is already 1. 3942 Tmp = std::numeric_limits<unsigned>::max(); 3943 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3944 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3945 unsigned NumSubVectors = Op.getNumOperands(); 3946 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3947 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3948 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3949 if (!DemandedSub) 3950 continue; 3951 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3952 Tmp = std::min(Tmp, Tmp2); 3953 } 3954 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3955 return Tmp; 3956 } 3957 case ISD::INSERT_SUBVECTOR: { 3958 // Demand any elements from the subvector and the remainder from the src its 3959 // inserted into. 3960 SDValue Src = Op.getOperand(0); 3961 SDValue Sub = Op.getOperand(1); 3962 uint64_t Idx = Op.getConstantOperandVal(2); 3963 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3964 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3965 APInt DemandedSrcElts = DemandedElts; 3966 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3967 3968 Tmp = std::numeric_limits<unsigned>::max(); 3969 if (!!DemandedSubElts) { 3970 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3971 if (Tmp == 1) 3972 return 1; // early-out 3973 } 3974 if (!!DemandedSrcElts) { 3975 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3976 Tmp = std::min(Tmp, Tmp2); 3977 } 3978 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3979 return Tmp; 3980 } 3981 } 3982 3983 // If we are looking at the loaded value of the SDNode. 3984 if (Op.getResNo() == 0) { 3985 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3986 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3987 unsigned ExtType = LD->getExtensionType(); 3988 switch (ExtType) { 3989 default: break; 3990 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3991 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3992 return VTBits - Tmp + 1; 3993 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3994 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3995 return VTBits - Tmp; 3996 case ISD::NON_EXTLOAD: 3997 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3998 // We only need to handle vectors - computeKnownBits should handle 3999 // scalar cases. 4000 Type *CstTy = Cst->getType(); 4001 if (CstTy->isVectorTy() && 4002 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4003 Tmp = VTBits; 4004 for (unsigned i = 0; i != NumElts; ++i) { 4005 if (!DemandedElts[i]) 4006 continue; 4007 if (Constant *Elt = Cst->getAggregateElement(i)) { 4008 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4009 const APInt &Value = CInt->getValue(); 4010 Tmp = std::min(Tmp, Value.getNumSignBits()); 4011 continue; 4012 } 4013 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4014 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4015 Tmp = std::min(Tmp, Value.getNumSignBits()); 4016 continue; 4017 } 4018 } 4019 // Unknown type. Conservatively assume no bits match sign bit. 4020 return 1; 4021 } 4022 return Tmp; 4023 } 4024 } 4025 break; 4026 } 4027 } 4028 } 4029 4030 // Allow the target to implement this method for its nodes. 4031 if (Opcode >= ISD::BUILTIN_OP_END || 4032 Opcode == ISD::INTRINSIC_WO_CHAIN || 4033 Opcode == ISD::INTRINSIC_W_CHAIN || 4034 Opcode == ISD::INTRINSIC_VOID) { 4035 unsigned NumBits = 4036 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4037 if (NumBits > 1) 4038 FirstAnswer = std::max(FirstAnswer, NumBits); 4039 } 4040 4041 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4042 // use this information. 4043 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4044 4045 APInt Mask; 4046 if (Known.isNonNegative()) { // sign bit is 0 4047 Mask = Known.Zero; 4048 } else if (Known.isNegative()) { // sign bit is 1; 4049 Mask = Known.One; 4050 } else { 4051 // Nothing known. 4052 return FirstAnswer; 4053 } 4054 4055 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4056 // the number of identical bits in the top of the input value. 4057 Mask <<= Mask.getBitWidth()-VTBits; 4058 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4059 } 4060 4061 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4062 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4063 !isa<ConstantSDNode>(Op.getOperand(1))) 4064 return false; 4065 4066 if (Op.getOpcode() == ISD::OR && 4067 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4068 return false; 4069 4070 return true; 4071 } 4072 4073 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4074 // If we're told that NaNs won't happen, assume they won't. 4075 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4076 return true; 4077 4078 if (Depth >= MaxRecursionDepth) 4079 return false; // Limit search depth. 4080 4081 // TODO: Handle vectors. 4082 // If the value is a constant, we can obviously see if it is a NaN or not. 4083 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4084 return !C->getValueAPF().isNaN() || 4085 (SNaN && !C->getValueAPF().isSignaling()); 4086 } 4087 4088 unsigned Opcode = Op.getOpcode(); 4089 switch (Opcode) { 4090 case ISD::FADD: 4091 case ISD::FSUB: 4092 case ISD::FMUL: 4093 case ISD::FDIV: 4094 case ISD::FREM: 4095 case ISD::FSIN: 4096 case ISD::FCOS: { 4097 if (SNaN) 4098 return true; 4099 // TODO: Need isKnownNeverInfinity 4100 return false; 4101 } 4102 case ISD::FCANONICALIZE: 4103 case ISD::FEXP: 4104 case ISD::FEXP2: 4105 case ISD::FTRUNC: 4106 case ISD::FFLOOR: 4107 case ISD::FCEIL: 4108 case ISD::FROUND: 4109 case ISD::FRINT: 4110 case ISD::FNEARBYINT: { 4111 if (SNaN) 4112 return true; 4113 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4114 } 4115 case ISD::FABS: 4116 case ISD::FNEG: 4117 case ISD::FCOPYSIGN: { 4118 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4119 } 4120 case ISD::SELECT: 4121 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4122 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4123 case ISD::FP_EXTEND: 4124 case ISD::FP_ROUND: { 4125 if (SNaN) 4126 return true; 4127 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4128 } 4129 case ISD::SINT_TO_FP: 4130 case ISD::UINT_TO_FP: 4131 return true; 4132 case ISD::FMA: 4133 case ISD::FMAD: { 4134 if (SNaN) 4135 return true; 4136 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4137 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4138 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4139 } 4140 case ISD::FSQRT: // Need is known positive 4141 case ISD::FLOG: 4142 case ISD::FLOG2: 4143 case ISD::FLOG10: 4144 case ISD::FPOWI: 4145 case ISD::FPOW: { 4146 if (SNaN) 4147 return true; 4148 // TODO: Refine on operand 4149 return false; 4150 } 4151 case ISD::FMINNUM: 4152 case ISD::FMAXNUM: { 4153 // Only one needs to be known not-nan, since it will be returned if the 4154 // other ends up being one. 4155 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4156 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4157 } 4158 case ISD::FMINNUM_IEEE: 4159 case ISD::FMAXNUM_IEEE: { 4160 if (SNaN) 4161 return true; 4162 // This can return a NaN if either operand is an sNaN, or if both operands 4163 // are NaN. 4164 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4165 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4166 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4167 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4168 } 4169 case ISD::FMINIMUM: 4170 case ISD::FMAXIMUM: { 4171 // TODO: Does this quiet or return the origina NaN as-is? 4172 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4173 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4174 } 4175 case ISD::EXTRACT_VECTOR_ELT: { 4176 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4177 } 4178 default: 4179 if (Opcode >= ISD::BUILTIN_OP_END || 4180 Opcode == ISD::INTRINSIC_WO_CHAIN || 4181 Opcode == ISD::INTRINSIC_W_CHAIN || 4182 Opcode == ISD::INTRINSIC_VOID) { 4183 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4184 } 4185 4186 return false; 4187 } 4188 } 4189 4190 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4191 assert(Op.getValueType().isFloatingPoint() && 4192 "Floating point type expected"); 4193 4194 // If the value is a constant, we can obviously see if it is a zero or not. 4195 // TODO: Add BuildVector support. 4196 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4197 return !C->isZero(); 4198 return false; 4199 } 4200 4201 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4202 assert(!Op.getValueType().isFloatingPoint() && 4203 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4204 4205 // If the value is a constant, we can obviously see if it is a zero or not. 4206 if (ISD::matchUnaryPredicate( 4207 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4208 return true; 4209 4210 // TODO: Recognize more cases here. 4211 switch (Op.getOpcode()) { 4212 default: break; 4213 case ISD::OR: 4214 if (isKnownNeverZero(Op.getOperand(1)) || 4215 isKnownNeverZero(Op.getOperand(0))) 4216 return true; 4217 break; 4218 } 4219 4220 return false; 4221 } 4222 4223 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4224 // Check the obvious case. 4225 if (A == B) return true; 4226 4227 // For for negative and positive zero. 4228 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4229 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4230 if (CA->isZero() && CB->isZero()) return true; 4231 4232 // Otherwise they may not be equal. 4233 return false; 4234 } 4235 4236 // FIXME: unify with llvm::haveNoCommonBitsSet. 4237 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4238 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4239 assert(A.getValueType() == B.getValueType() && 4240 "Values must have the same type"); 4241 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4242 } 4243 4244 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4245 ArrayRef<SDValue> Ops, 4246 SelectionDAG &DAG) { 4247 int NumOps = Ops.size(); 4248 assert(NumOps != 0 && "Can't build an empty vector!"); 4249 assert(!VT.isScalableVector() && 4250 "BUILD_VECTOR cannot be used with scalable types"); 4251 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4252 "Incorrect element count in BUILD_VECTOR!"); 4253 4254 // BUILD_VECTOR of UNDEFs is UNDEF. 4255 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4256 return DAG.getUNDEF(VT); 4257 4258 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4259 SDValue IdentitySrc; 4260 bool IsIdentity = true; 4261 for (int i = 0; i != NumOps; ++i) { 4262 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4263 Ops[i].getOperand(0).getValueType() != VT || 4264 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4265 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4266 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4267 IsIdentity = false; 4268 break; 4269 } 4270 IdentitySrc = Ops[i].getOperand(0); 4271 } 4272 if (IsIdentity) 4273 return IdentitySrc; 4274 4275 return SDValue(); 4276 } 4277 4278 /// Try to simplify vector concatenation to an input value, undef, or build 4279 /// vector. 4280 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4281 ArrayRef<SDValue> Ops, 4282 SelectionDAG &DAG) { 4283 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4284 assert(llvm::all_of(Ops, 4285 [Ops](SDValue Op) { 4286 return Ops[0].getValueType() == Op.getValueType(); 4287 }) && 4288 "Concatenation of vectors with inconsistent value types!"); 4289 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4290 VT.getVectorNumElements() && 4291 "Incorrect element count in vector concatenation!"); 4292 4293 if (Ops.size() == 1) 4294 return Ops[0]; 4295 4296 // Concat of UNDEFs is UNDEF. 4297 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4298 return DAG.getUNDEF(VT); 4299 4300 // Scan the operands and look for extract operations from a single source 4301 // that correspond to insertion at the same location via this concatenation: 4302 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4303 SDValue IdentitySrc; 4304 bool IsIdentity = true; 4305 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4306 SDValue Op = Ops[i]; 4307 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4308 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4309 Op.getOperand(0).getValueType() != VT || 4310 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4311 Op.getConstantOperandVal(1) != IdentityIndex) { 4312 IsIdentity = false; 4313 break; 4314 } 4315 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4316 "Unexpected identity source vector for concat of extracts"); 4317 IdentitySrc = Op.getOperand(0); 4318 } 4319 if (IsIdentity) { 4320 assert(IdentitySrc && "Failed to set source vector of extracts"); 4321 return IdentitySrc; 4322 } 4323 4324 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4325 // simplified to one big BUILD_VECTOR. 4326 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4327 EVT SVT = VT.getScalarType(); 4328 SmallVector<SDValue, 16> Elts; 4329 for (SDValue Op : Ops) { 4330 EVT OpVT = Op.getValueType(); 4331 if (Op.isUndef()) 4332 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4333 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4334 Elts.append(Op->op_begin(), Op->op_end()); 4335 else 4336 return SDValue(); 4337 } 4338 4339 // BUILD_VECTOR requires all inputs to be of the same type, find the 4340 // maximum type and extend them all. 4341 for (SDValue Op : Elts) 4342 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4343 4344 if (SVT.bitsGT(VT.getScalarType())) 4345 for (SDValue &Op : Elts) 4346 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4347 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4348 : DAG.getSExtOrTrunc(Op, DL, SVT); 4349 4350 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4351 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4352 return V; 4353 } 4354 4355 /// Gets or creates the specified node. 4356 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4357 FoldingSetNodeID ID; 4358 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4359 void *IP = nullptr; 4360 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4361 return SDValue(E, 0); 4362 4363 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4364 getVTList(VT)); 4365 CSEMap.InsertNode(N, IP); 4366 4367 InsertNode(N); 4368 SDValue V = SDValue(N, 0); 4369 NewSDValueDbgMsg(V, "Creating new node: ", this); 4370 return V; 4371 } 4372 4373 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4374 SDValue Operand, const SDNodeFlags Flags) { 4375 // Constant fold unary operations with an integer constant operand. Even 4376 // opaque constant will be folded, because the folding of unary operations 4377 // doesn't create new constants with different values. Nevertheless, the 4378 // opaque flag is preserved during folding to prevent future folding with 4379 // other constants. 4380 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4381 const APInt &Val = C->getAPIntValue(); 4382 switch (Opcode) { 4383 default: break; 4384 case ISD::SIGN_EXTEND: 4385 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4386 C->isTargetOpcode(), C->isOpaque()); 4387 case ISD::TRUNCATE: 4388 if (C->isOpaque()) 4389 break; 4390 LLVM_FALLTHROUGH; 4391 case ISD::ANY_EXTEND: 4392 case ISD::ZERO_EXTEND: 4393 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4394 C->isTargetOpcode(), C->isOpaque()); 4395 case ISD::UINT_TO_FP: 4396 case ISD::SINT_TO_FP: { 4397 APFloat apf(EVTToAPFloatSemantics(VT), 4398 APInt::getNullValue(VT.getSizeInBits())); 4399 (void)apf.convertFromAPInt(Val, 4400 Opcode==ISD::SINT_TO_FP, 4401 APFloat::rmNearestTiesToEven); 4402 return getConstantFP(apf, DL, VT); 4403 } 4404 case ISD::BITCAST: 4405 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4406 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4407 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4408 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4409 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4410 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4411 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4412 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4413 break; 4414 case ISD::ABS: 4415 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4416 C->isOpaque()); 4417 case ISD::BITREVERSE: 4418 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4419 C->isOpaque()); 4420 case ISD::BSWAP: 4421 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4422 C->isOpaque()); 4423 case ISD::CTPOP: 4424 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4425 C->isOpaque()); 4426 case ISD::CTLZ: 4427 case ISD::CTLZ_ZERO_UNDEF: 4428 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4429 C->isOpaque()); 4430 case ISD::CTTZ: 4431 case ISD::CTTZ_ZERO_UNDEF: 4432 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4433 C->isOpaque()); 4434 case ISD::FP16_TO_FP: { 4435 bool Ignored; 4436 APFloat FPV(APFloat::IEEEhalf(), 4437 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4438 4439 // This can return overflow, underflow, or inexact; we don't care. 4440 // FIXME need to be more flexible about rounding mode. 4441 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4442 APFloat::rmNearestTiesToEven, &Ignored); 4443 return getConstantFP(FPV, DL, VT); 4444 } 4445 } 4446 } 4447 4448 // Constant fold unary operations with a floating point constant operand. 4449 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4450 APFloat V = C->getValueAPF(); // make copy 4451 switch (Opcode) { 4452 case ISD::FNEG: 4453 V.changeSign(); 4454 return getConstantFP(V, DL, VT); 4455 case ISD::FABS: 4456 V.clearSign(); 4457 return getConstantFP(V, DL, VT); 4458 case ISD::FCEIL: { 4459 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4460 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4461 return getConstantFP(V, DL, VT); 4462 break; 4463 } 4464 case ISD::FTRUNC: { 4465 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4466 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4467 return getConstantFP(V, DL, VT); 4468 break; 4469 } 4470 case ISD::FFLOOR: { 4471 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4472 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4473 return getConstantFP(V, DL, VT); 4474 break; 4475 } 4476 case ISD::FP_EXTEND: { 4477 bool ignored; 4478 // This can return overflow, underflow, or inexact; we don't care. 4479 // FIXME need to be more flexible about rounding mode. 4480 (void)V.convert(EVTToAPFloatSemantics(VT), 4481 APFloat::rmNearestTiesToEven, &ignored); 4482 return getConstantFP(V, DL, VT); 4483 } 4484 case ISD::FP_TO_SINT: 4485 case ISD::FP_TO_UINT: { 4486 bool ignored; 4487 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4488 // FIXME need to be more flexible about rounding mode. 4489 APFloat::opStatus s = 4490 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4491 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4492 break; 4493 return getConstant(IntVal, DL, VT); 4494 } 4495 case ISD::BITCAST: 4496 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4497 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4498 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4499 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4500 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4501 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4502 break; 4503 case ISD::FP_TO_FP16: { 4504 bool Ignored; 4505 // This can return overflow, underflow, or inexact; we don't care. 4506 // FIXME need to be more flexible about rounding mode. 4507 (void)V.convert(APFloat::IEEEhalf(), 4508 APFloat::rmNearestTiesToEven, &Ignored); 4509 return getConstant(V.bitcastToAPInt(), DL, VT); 4510 } 4511 } 4512 } 4513 4514 // Constant fold unary operations with a vector integer or float operand. 4515 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4516 if (BV->isConstant()) { 4517 switch (Opcode) { 4518 default: 4519 // FIXME: Entirely reasonable to perform folding of other unary 4520 // operations here as the need arises. 4521 break; 4522 case ISD::FNEG: 4523 case ISD::FABS: 4524 case ISD::FCEIL: 4525 case ISD::FTRUNC: 4526 case ISD::FFLOOR: 4527 case ISD::FP_EXTEND: 4528 case ISD::FP_TO_SINT: 4529 case ISD::FP_TO_UINT: 4530 case ISD::TRUNCATE: 4531 case ISD::ANY_EXTEND: 4532 case ISD::ZERO_EXTEND: 4533 case ISD::SIGN_EXTEND: 4534 case ISD::UINT_TO_FP: 4535 case ISD::SINT_TO_FP: 4536 case ISD::ABS: 4537 case ISD::BITREVERSE: 4538 case ISD::BSWAP: 4539 case ISD::CTLZ: 4540 case ISD::CTLZ_ZERO_UNDEF: 4541 case ISD::CTTZ: 4542 case ISD::CTTZ_ZERO_UNDEF: 4543 case ISD::CTPOP: { 4544 SDValue Ops = { Operand }; 4545 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4546 return Fold; 4547 } 4548 } 4549 } 4550 } 4551 4552 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4553 switch (Opcode) { 4554 case ISD::FREEZE: 4555 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4556 break; 4557 case ISD::TokenFactor: 4558 case ISD::MERGE_VALUES: 4559 case ISD::CONCAT_VECTORS: 4560 return Operand; // Factor, merge or concat of one node? No need. 4561 case ISD::BUILD_VECTOR: { 4562 // Attempt to simplify BUILD_VECTOR. 4563 SDValue Ops[] = {Operand}; 4564 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4565 return V; 4566 break; 4567 } 4568 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4569 case ISD::FP_EXTEND: 4570 assert(VT.isFloatingPoint() && 4571 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4572 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4573 assert((!VT.isVector() || 4574 VT.getVectorNumElements() == 4575 Operand.getValueType().getVectorNumElements()) && 4576 "Vector element count mismatch!"); 4577 assert(Operand.getValueType().bitsLT(VT) && 4578 "Invalid fpext node, dst < src!"); 4579 if (Operand.isUndef()) 4580 return getUNDEF(VT); 4581 break; 4582 case ISD::FP_TO_SINT: 4583 case ISD::FP_TO_UINT: 4584 if (Operand.isUndef()) 4585 return getUNDEF(VT); 4586 break; 4587 case ISD::SINT_TO_FP: 4588 case ISD::UINT_TO_FP: 4589 // [us]itofp(undef) = 0, because the result value is bounded. 4590 if (Operand.isUndef()) 4591 return getConstantFP(0.0, DL, VT); 4592 break; 4593 case ISD::SIGN_EXTEND: 4594 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4595 "Invalid SIGN_EXTEND!"); 4596 assert(VT.isVector() == Operand.getValueType().isVector() && 4597 "SIGN_EXTEND result type type should be vector iff the operand " 4598 "type is vector!"); 4599 if (Operand.getValueType() == VT) return Operand; // noop extension 4600 assert((!VT.isVector() || 4601 VT.getVectorElementCount() == 4602 Operand.getValueType().getVectorElementCount()) && 4603 "Vector element count mismatch!"); 4604 assert(Operand.getValueType().bitsLT(VT) && 4605 "Invalid sext node, dst < src!"); 4606 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4607 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4608 else if (OpOpcode == ISD::UNDEF) 4609 // sext(undef) = 0, because the top bits will all be the same. 4610 return getConstant(0, DL, VT); 4611 break; 4612 case ISD::ZERO_EXTEND: 4613 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4614 "Invalid ZERO_EXTEND!"); 4615 assert(VT.isVector() == Operand.getValueType().isVector() && 4616 "ZERO_EXTEND result type type should be vector iff the operand " 4617 "type is vector!"); 4618 if (Operand.getValueType() == VT) return Operand; // noop extension 4619 assert((!VT.isVector() || 4620 VT.getVectorElementCount() == 4621 Operand.getValueType().getVectorElementCount()) && 4622 "Vector element count mismatch!"); 4623 assert(Operand.getValueType().bitsLT(VT) && 4624 "Invalid zext node, dst < src!"); 4625 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4626 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4627 else if (OpOpcode == ISD::UNDEF) 4628 // zext(undef) = 0, because the top bits will be zero. 4629 return getConstant(0, DL, VT); 4630 break; 4631 case ISD::ANY_EXTEND: 4632 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4633 "Invalid ANY_EXTEND!"); 4634 assert(VT.isVector() == Operand.getValueType().isVector() && 4635 "ANY_EXTEND result type type should be vector iff the operand " 4636 "type is vector!"); 4637 if (Operand.getValueType() == VT) return Operand; // noop extension 4638 assert((!VT.isVector() || 4639 VT.getVectorElementCount() == 4640 Operand.getValueType().getVectorElementCount()) && 4641 "Vector element count mismatch!"); 4642 assert(Operand.getValueType().bitsLT(VT) && 4643 "Invalid anyext node, dst < src!"); 4644 4645 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4646 OpOpcode == ISD::ANY_EXTEND) 4647 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4648 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4649 else if (OpOpcode == ISD::UNDEF) 4650 return getUNDEF(VT); 4651 4652 // (ext (trunc x)) -> x 4653 if (OpOpcode == ISD::TRUNCATE) { 4654 SDValue OpOp = Operand.getOperand(0); 4655 if (OpOp.getValueType() == VT) { 4656 transferDbgValues(Operand, OpOp); 4657 return OpOp; 4658 } 4659 } 4660 break; 4661 case ISD::TRUNCATE: 4662 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4663 "Invalid TRUNCATE!"); 4664 assert(VT.isVector() == Operand.getValueType().isVector() && 4665 "TRUNCATE result type type should be vector iff the operand " 4666 "type is vector!"); 4667 if (Operand.getValueType() == VT) return Operand; // noop truncate 4668 assert((!VT.isVector() || 4669 VT.getVectorElementCount() == 4670 Operand.getValueType().getVectorElementCount()) && 4671 "Vector element count mismatch!"); 4672 assert(Operand.getValueType().bitsGT(VT) && 4673 "Invalid truncate node, src < dst!"); 4674 if (OpOpcode == ISD::TRUNCATE) 4675 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4676 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4677 OpOpcode == ISD::ANY_EXTEND) { 4678 // If the source is smaller than the dest, we still need an extend. 4679 if (Operand.getOperand(0).getValueType().getScalarType() 4680 .bitsLT(VT.getScalarType())) 4681 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4682 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4683 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4684 return Operand.getOperand(0); 4685 } 4686 if (OpOpcode == ISD::UNDEF) 4687 return getUNDEF(VT); 4688 break; 4689 case ISD::ANY_EXTEND_VECTOR_INREG: 4690 case ISD::ZERO_EXTEND_VECTOR_INREG: 4691 case ISD::SIGN_EXTEND_VECTOR_INREG: 4692 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4693 assert(Operand.getValueType().bitsLE(VT) && 4694 "The input must be the same size or smaller than the result."); 4695 assert(VT.getVectorNumElements() < 4696 Operand.getValueType().getVectorNumElements() && 4697 "The destination vector type must have fewer lanes than the input."); 4698 break; 4699 case ISD::ABS: 4700 assert(VT.isInteger() && VT == Operand.getValueType() && 4701 "Invalid ABS!"); 4702 if (OpOpcode == ISD::UNDEF) 4703 return getUNDEF(VT); 4704 break; 4705 case ISD::BSWAP: 4706 assert(VT.isInteger() && VT == Operand.getValueType() && 4707 "Invalid BSWAP!"); 4708 assert((VT.getScalarSizeInBits() % 16 == 0) && 4709 "BSWAP types must be a multiple of 16 bits!"); 4710 if (OpOpcode == ISD::UNDEF) 4711 return getUNDEF(VT); 4712 break; 4713 case ISD::BITREVERSE: 4714 assert(VT.isInteger() && VT == Operand.getValueType() && 4715 "Invalid BITREVERSE!"); 4716 if (OpOpcode == ISD::UNDEF) 4717 return getUNDEF(VT); 4718 break; 4719 case ISD::BITCAST: 4720 // Basic sanity checking. 4721 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4722 "Cannot BITCAST between types of different sizes!"); 4723 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4724 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4725 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4726 if (OpOpcode == ISD::UNDEF) 4727 return getUNDEF(VT); 4728 break; 4729 case ISD::SCALAR_TO_VECTOR: 4730 assert(VT.isVector() && !Operand.getValueType().isVector() && 4731 (VT.getVectorElementType() == Operand.getValueType() || 4732 (VT.getVectorElementType().isInteger() && 4733 Operand.getValueType().isInteger() && 4734 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4735 "Illegal SCALAR_TO_VECTOR node!"); 4736 if (OpOpcode == ISD::UNDEF) 4737 return getUNDEF(VT); 4738 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4739 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4740 isa<ConstantSDNode>(Operand.getOperand(1)) && 4741 Operand.getConstantOperandVal(1) == 0 && 4742 Operand.getOperand(0).getValueType() == VT) 4743 return Operand.getOperand(0); 4744 break; 4745 case ISD::FNEG: 4746 // Negation of an unknown bag of bits is still completely undefined. 4747 if (OpOpcode == ISD::UNDEF) 4748 return getUNDEF(VT); 4749 4750 if (OpOpcode == ISD::FNEG) // --X -> X 4751 return Operand.getOperand(0); 4752 break; 4753 case ISD::FABS: 4754 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4755 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4756 break; 4757 } 4758 4759 SDNode *N; 4760 SDVTList VTs = getVTList(VT); 4761 SDValue Ops[] = {Operand}; 4762 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4763 FoldingSetNodeID ID; 4764 AddNodeIDNode(ID, Opcode, VTs, Ops); 4765 void *IP = nullptr; 4766 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4767 E->intersectFlagsWith(Flags); 4768 return SDValue(E, 0); 4769 } 4770 4771 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4772 N->setFlags(Flags); 4773 createOperands(N, Ops); 4774 CSEMap.InsertNode(N, IP); 4775 } else { 4776 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4777 createOperands(N, Ops); 4778 } 4779 4780 InsertNode(N); 4781 SDValue V = SDValue(N, 0); 4782 NewSDValueDbgMsg(V, "Creating new node: ", this); 4783 return V; 4784 } 4785 4786 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4787 const APInt &C2) { 4788 switch (Opcode) { 4789 case ISD::ADD: return C1 + C2; 4790 case ISD::SUB: return C1 - C2; 4791 case ISD::MUL: return C1 * C2; 4792 case ISD::AND: return C1 & C2; 4793 case ISD::OR: return C1 | C2; 4794 case ISD::XOR: return C1 ^ C2; 4795 case ISD::SHL: return C1 << C2; 4796 case ISD::SRL: return C1.lshr(C2); 4797 case ISD::SRA: return C1.ashr(C2); 4798 case ISD::ROTL: return C1.rotl(C2); 4799 case ISD::ROTR: return C1.rotr(C2); 4800 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4801 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4802 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4803 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4804 case ISD::SADDSAT: return C1.sadd_sat(C2); 4805 case ISD::UADDSAT: return C1.uadd_sat(C2); 4806 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4807 case ISD::USUBSAT: return C1.usub_sat(C2); 4808 case ISD::UDIV: 4809 if (!C2.getBoolValue()) 4810 break; 4811 return C1.udiv(C2); 4812 case ISD::UREM: 4813 if (!C2.getBoolValue()) 4814 break; 4815 return C1.urem(C2); 4816 case ISD::SDIV: 4817 if (!C2.getBoolValue()) 4818 break; 4819 return C1.sdiv(C2); 4820 case ISD::SREM: 4821 if (!C2.getBoolValue()) 4822 break; 4823 return C1.srem(C2); 4824 } 4825 return llvm::None; 4826 } 4827 4828 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4829 const GlobalAddressSDNode *GA, 4830 const SDNode *N2) { 4831 if (GA->getOpcode() != ISD::GlobalAddress) 4832 return SDValue(); 4833 if (!TLI->isOffsetFoldingLegal(GA)) 4834 return SDValue(); 4835 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4836 if (!C2) 4837 return SDValue(); 4838 int64_t Offset = C2->getSExtValue(); 4839 switch (Opcode) { 4840 case ISD::ADD: break; 4841 case ISD::SUB: Offset = -uint64_t(Offset); break; 4842 default: return SDValue(); 4843 } 4844 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4845 GA->getOffset() + uint64_t(Offset)); 4846 } 4847 4848 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4849 switch (Opcode) { 4850 case ISD::SDIV: 4851 case ISD::UDIV: 4852 case ISD::SREM: 4853 case ISD::UREM: { 4854 // If a divisor is zero/undef or any element of a divisor vector is 4855 // zero/undef, the whole op is undef. 4856 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4857 SDValue Divisor = Ops[1]; 4858 if (Divisor.isUndef() || isNullConstant(Divisor)) 4859 return true; 4860 4861 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4862 llvm::any_of(Divisor->op_values(), 4863 [](SDValue V) { return V.isUndef() || 4864 isNullConstant(V); }); 4865 // TODO: Handle signed overflow. 4866 } 4867 // TODO: Handle oversized shifts. 4868 default: 4869 return false; 4870 } 4871 } 4872 4873 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4874 EVT VT, ArrayRef<SDValue> Ops) { 4875 // If the opcode is a target-specific ISD node, there's nothing we can 4876 // do here and the operand rules may not line up with the below, so 4877 // bail early. 4878 if (Opcode >= ISD::BUILTIN_OP_END) 4879 return SDValue(); 4880 4881 // For now, the array Ops should only contain two values. 4882 // This enforcement will be removed once this function is merged with 4883 // FoldConstantVectorArithmetic 4884 if (Ops.size() != 2) 4885 return SDValue(); 4886 4887 if (isUndef(Opcode, Ops)) 4888 return getUNDEF(VT); 4889 4890 SDNode *N1 = Ops[0].getNode(); 4891 SDNode *N2 = Ops[1].getNode(); 4892 4893 // Handle the case of two scalars. 4894 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4895 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4896 if (C1->isOpaque() || C2->isOpaque()) 4897 return SDValue(); 4898 4899 Optional<APInt> FoldAttempt = 4900 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4901 if (!FoldAttempt) 4902 return SDValue(); 4903 4904 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4905 assert((!Folded || !VT.isVector()) && 4906 "Can't fold vectors ops with scalar operands"); 4907 return Folded; 4908 } 4909 } 4910 4911 // fold (add Sym, c) -> Sym+c 4912 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4913 return FoldSymbolOffset(Opcode, VT, GA, N2); 4914 if (TLI->isCommutativeBinOp(Opcode)) 4915 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4916 return FoldSymbolOffset(Opcode, VT, GA, N1); 4917 4918 // For vectors, extract each constant element and fold them individually. 4919 // Either input may be an undef value. 4920 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4921 if (!BV1 && !N1->isUndef()) 4922 return SDValue(); 4923 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4924 if (!BV2 && !N2->isUndef()) 4925 return SDValue(); 4926 // If both operands are undef, that's handled the same way as scalars. 4927 if (!BV1 && !BV2) 4928 return SDValue(); 4929 4930 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4931 "Vector binop with different number of elements in operands?"); 4932 4933 EVT SVT = VT.getScalarType(); 4934 EVT LegalSVT = SVT; 4935 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4936 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4937 if (LegalSVT.bitsLT(SVT)) 4938 return SDValue(); 4939 } 4940 SmallVector<SDValue, 4> Outputs; 4941 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4942 for (unsigned I = 0; I != NumOps; ++I) { 4943 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4944 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4945 if (SVT.isInteger()) { 4946 if (V1->getValueType(0).bitsGT(SVT)) 4947 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4948 if (V2->getValueType(0).bitsGT(SVT)) 4949 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4950 } 4951 4952 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4953 return SDValue(); 4954 4955 // Fold one vector element. 4956 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4957 if (LegalSVT != SVT) 4958 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4959 4960 // Scalar folding only succeeded if the result is a constant or UNDEF. 4961 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4962 ScalarResult.getOpcode() != ISD::ConstantFP) 4963 return SDValue(); 4964 Outputs.push_back(ScalarResult); 4965 } 4966 4967 assert(VT.getVectorNumElements() == Outputs.size() && 4968 "Vector size mismatch!"); 4969 4970 // We may have a vector type but a scalar result. Create a splat. 4971 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4972 4973 // Build a big vector out of the scalar elements we generated. 4974 return getBuildVector(VT, SDLoc(), Outputs); 4975 } 4976 4977 // TODO: Merge with FoldConstantArithmetic 4978 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4979 const SDLoc &DL, EVT VT, 4980 ArrayRef<SDValue> Ops, 4981 const SDNodeFlags Flags) { 4982 // If the opcode is a target-specific ISD node, there's nothing we can 4983 // do here and the operand rules may not line up with the below, so 4984 // bail early. 4985 if (Opcode >= ISD::BUILTIN_OP_END) 4986 return SDValue(); 4987 4988 if (isUndef(Opcode, Ops)) 4989 return getUNDEF(VT); 4990 4991 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4992 if (!VT.isVector()) 4993 return SDValue(); 4994 4995 unsigned NumElts = VT.getVectorNumElements(); 4996 4997 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4998 return !Op.getValueType().isVector() || 4999 Op.getValueType().getVectorNumElements() == NumElts; 5000 }; 5001 5002 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5003 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5004 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5005 (BV && BV->isConstant()); 5006 }; 5007 5008 // All operands must be vector types with the same number of elements as 5009 // the result type and must be either UNDEF or a build vector of constant 5010 // or UNDEF scalars. 5011 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5012 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5013 return SDValue(); 5014 5015 // If we are comparing vectors, then the result needs to be a i1 boolean 5016 // that is then sign-extended back to the legal result type. 5017 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5018 5019 // Find legal integer scalar type for constant promotion and 5020 // ensure that its scalar size is at least as large as source. 5021 EVT LegalSVT = VT.getScalarType(); 5022 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5023 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5024 if (LegalSVT.bitsLT(VT.getScalarType())) 5025 return SDValue(); 5026 } 5027 5028 // Constant fold each scalar lane separately. 5029 SmallVector<SDValue, 4> ScalarResults; 5030 for (unsigned i = 0; i != NumElts; i++) { 5031 SmallVector<SDValue, 4> ScalarOps; 5032 for (SDValue Op : Ops) { 5033 EVT InSVT = Op.getValueType().getScalarType(); 5034 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5035 if (!InBV) { 5036 // We've checked that this is UNDEF or a constant of some kind. 5037 if (Op.isUndef()) 5038 ScalarOps.push_back(getUNDEF(InSVT)); 5039 else 5040 ScalarOps.push_back(Op); 5041 continue; 5042 } 5043 5044 SDValue ScalarOp = InBV->getOperand(i); 5045 EVT ScalarVT = ScalarOp.getValueType(); 5046 5047 // Build vector (integer) scalar operands may need implicit 5048 // truncation - do this before constant folding. 5049 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5050 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5051 5052 ScalarOps.push_back(ScalarOp); 5053 } 5054 5055 // Constant fold the scalar operands. 5056 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5057 5058 // Legalize the (integer) scalar constant if necessary. 5059 if (LegalSVT != SVT) 5060 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5061 5062 // Scalar folding only succeeded if the result is a constant or UNDEF. 5063 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5064 ScalarResult.getOpcode() != ISD::ConstantFP) 5065 return SDValue(); 5066 ScalarResults.push_back(ScalarResult); 5067 } 5068 5069 SDValue V = getBuildVector(VT, DL, ScalarResults); 5070 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5071 return V; 5072 } 5073 5074 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5075 EVT VT, SDValue N1, SDValue N2) { 5076 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5077 // should. That will require dealing with a potentially non-default 5078 // rounding mode, checking the "opStatus" return value from the APFloat 5079 // math calculations, and possibly other variations. 5080 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5081 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5082 if (N1CFP && N2CFP) { 5083 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5084 switch (Opcode) { 5085 case ISD::FADD: 5086 C1.add(C2, APFloat::rmNearestTiesToEven); 5087 return getConstantFP(C1, DL, VT); 5088 case ISD::FSUB: 5089 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5090 return getConstantFP(C1, DL, VT); 5091 case ISD::FMUL: 5092 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5093 return getConstantFP(C1, DL, VT); 5094 case ISD::FDIV: 5095 C1.divide(C2, APFloat::rmNearestTiesToEven); 5096 return getConstantFP(C1, DL, VT); 5097 case ISD::FREM: 5098 C1.mod(C2); 5099 return getConstantFP(C1, DL, VT); 5100 case ISD::FCOPYSIGN: 5101 C1.copySign(C2); 5102 return getConstantFP(C1, DL, VT); 5103 default: break; 5104 } 5105 } 5106 if (N1CFP && Opcode == ISD::FP_ROUND) { 5107 APFloat C1 = N1CFP->getValueAPF(); // make copy 5108 bool Unused; 5109 // This can return overflow, underflow, or inexact; we don't care. 5110 // FIXME need to be more flexible about rounding mode. 5111 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5112 &Unused); 5113 return getConstantFP(C1, DL, VT); 5114 } 5115 5116 switch (Opcode) { 5117 case ISD::FSUB: 5118 // -0.0 - undef --> undef (consistent with "fneg undef") 5119 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5120 return getUNDEF(VT); 5121 LLVM_FALLTHROUGH; 5122 5123 case ISD::FADD: 5124 case ISD::FMUL: 5125 case ISD::FDIV: 5126 case ISD::FREM: 5127 // If both operands are undef, the result is undef. If 1 operand is undef, 5128 // the result is NaN. This should match the behavior of the IR optimizer. 5129 if (N1.isUndef() && N2.isUndef()) 5130 return getUNDEF(VT); 5131 if (N1.isUndef() || N2.isUndef()) 5132 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5133 } 5134 return SDValue(); 5135 } 5136 5137 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5138 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5139 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5140 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5141 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5142 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5143 5144 // Canonicalize constant to RHS if commutative. 5145 if (TLI->isCommutativeBinOp(Opcode)) { 5146 if (N1C && !N2C) { 5147 std::swap(N1C, N2C); 5148 std::swap(N1, N2); 5149 } else if (N1CFP && !N2CFP) { 5150 std::swap(N1CFP, N2CFP); 5151 std::swap(N1, N2); 5152 } 5153 } 5154 5155 switch (Opcode) { 5156 default: break; 5157 case ISD::TokenFactor: 5158 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5159 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5160 // Fold trivial token factors. 5161 if (N1.getOpcode() == ISD::EntryToken) return N2; 5162 if (N2.getOpcode() == ISD::EntryToken) return N1; 5163 if (N1 == N2) return N1; 5164 break; 5165 case ISD::BUILD_VECTOR: { 5166 // Attempt to simplify BUILD_VECTOR. 5167 SDValue Ops[] = {N1, N2}; 5168 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5169 return V; 5170 break; 5171 } 5172 case ISD::CONCAT_VECTORS: { 5173 SDValue Ops[] = {N1, N2}; 5174 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5175 return V; 5176 break; 5177 } 5178 case ISD::AND: 5179 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5180 assert(N1.getValueType() == N2.getValueType() && 5181 N1.getValueType() == VT && "Binary operator types must match!"); 5182 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5183 // worth handling here. 5184 if (N2C && N2C->isNullValue()) 5185 return N2; 5186 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5187 return N1; 5188 break; 5189 case ISD::OR: 5190 case ISD::XOR: 5191 case ISD::ADD: 5192 case ISD::SUB: 5193 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5194 assert(N1.getValueType() == N2.getValueType() && 5195 N1.getValueType() == VT && "Binary operator types must match!"); 5196 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5197 // it's worth handling here. 5198 if (N2C && N2C->isNullValue()) 5199 return N1; 5200 break; 5201 case ISD::MUL: 5202 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5203 assert(N1.getValueType() == N2.getValueType() && 5204 N1.getValueType() == VT && "Binary operator types must match!"); 5205 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5206 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5207 APInt N2CImm = N2C->getAPIntValue(); 5208 return getVScale(DL, VT, MulImm * N2CImm); 5209 } 5210 break; 5211 case ISD::UDIV: 5212 case ISD::UREM: 5213 case ISD::MULHU: 5214 case ISD::MULHS: 5215 case ISD::SDIV: 5216 case ISD::SREM: 5217 case ISD::SMIN: 5218 case ISD::SMAX: 5219 case ISD::UMIN: 5220 case ISD::UMAX: 5221 case ISD::SADDSAT: 5222 case ISD::SSUBSAT: 5223 case ISD::UADDSAT: 5224 case ISD::USUBSAT: 5225 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5226 assert(N1.getValueType() == N2.getValueType() && 5227 N1.getValueType() == VT && "Binary operator types must match!"); 5228 break; 5229 case ISD::FADD: 5230 case ISD::FSUB: 5231 case ISD::FMUL: 5232 case ISD::FDIV: 5233 case ISD::FREM: 5234 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5235 assert(N1.getValueType() == N2.getValueType() && 5236 N1.getValueType() == VT && "Binary operator types must match!"); 5237 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5238 return V; 5239 break; 5240 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5241 assert(N1.getValueType() == VT && 5242 N1.getValueType().isFloatingPoint() && 5243 N2.getValueType().isFloatingPoint() && 5244 "Invalid FCOPYSIGN!"); 5245 break; 5246 case ISD::SHL: 5247 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5248 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5249 APInt ShiftImm = N2C->getAPIntValue(); 5250 return getVScale(DL, VT, MulImm << ShiftImm); 5251 } 5252 LLVM_FALLTHROUGH; 5253 case ISD::SRA: 5254 case ISD::SRL: 5255 if (SDValue V = simplifyShift(N1, N2)) 5256 return V; 5257 LLVM_FALLTHROUGH; 5258 case ISD::ROTL: 5259 case ISD::ROTR: 5260 assert(VT == N1.getValueType() && 5261 "Shift operators return type must be the same as their first arg"); 5262 assert(VT.isInteger() && N2.getValueType().isInteger() && 5263 "Shifts only work on integers"); 5264 assert((!VT.isVector() || VT == N2.getValueType()) && 5265 "Vector shift amounts must be in the same as their first arg"); 5266 // Verify that the shift amount VT is big enough to hold valid shift 5267 // amounts. This catches things like trying to shift an i1024 value by an 5268 // i8, which is easy to fall into in generic code that uses 5269 // TLI.getShiftAmount(). 5270 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5271 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5272 "Invalid use of small shift amount with oversized value!"); 5273 5274 // Always fold shifts of i1 values so the code generator doesn't need to 5275 // handle them. Since we know the size of the shift has to be less than the 5276 // size of the value, the shift/rotate count is guaranteed to be zero. 5277 if (VT == MVT::i1) 5278 return N1; 5279 if (N2C && N2C->isNullValue()) 5280 return N1; 5281 break; 5282 case ISD::FP_ROUND: 5283 assert(VT.isFloatingPoint() && 5284 N1.getValueType().isFloatingPoint() && 5285 VT.bitsLE(N1.getValueType()) && 5286 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5287 "Invalid FP_ROUND!"); 5288 if (N1.getValueType() == VT) return N1; // noop conversion. 5289 break; 5290 case ISD::AssertSext: 5291 case ISD::AssertZext: { 5292 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5293 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5294 assert(VT.isInteger() && EVT.isInteger() && 5295 "Cannot *_EXTEND_INREG FP types"); 5296 assert(!EVT.isVector() && 5297 "AssertSExt/AssertZExt type should be the vector element type " 5298 "rather than the vector type!"); 5299 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5300 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5301 break; 5302 } 5303 case ISD::SIGN_EXTEND_INREG: { 5304 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5305 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5306 assert(VT.isInteger() && EVT.isInteger() && 5307 "Cannot *_EXTEND_INREG FP types"); 5308 assert(EVT.isVector() == VT.isVector() && 5309 "SIGN_EXTEND_INREG type should be vector iff the operand " 5310 "type is vector!"); 5311 assert((!EVT.isVector() || 5312 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5313 "Vector element counts must match in SIGN_EXTEND_INREG"); 5314 assert(EVT.bitsLE(VT) && "Not extending!"); 5315 if (EVT == VT) return N1; // Not actually extending 5316 5317 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5318 unsigned FromBits = EVT.getScalarSizeInBits(); 5319 Val <<= Val.getBitWidth() - FromBits; 5320 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5321 return getConstant(Val, DL, ConstantVT); 5322 }; 5323 5324 if (N1C) { 5325 const APInt &Val = N1C->getAPIntValue(); 5326 return SignExtendInReg(Val, VT); 5327 } 5328 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5329 SmallVector<SDValue, 8> Ops; 5330 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5331 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5332 SDValue Op = N1.getOperand(i); 5333 if (Op.isUndef()) { 5334 Ops.push_back(getUNDEF(OpVT)); 5335 continue; 5336 } 5337 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5338 APInt Val = C->getAPIntValue(); 5339 Ops.push_back(SignExtendInReg(Val, OpVT)); 5340 } 5341 return getBuildVector(VT, DL, Ops); 5342 } 5343 break; 5344 } 5345 case ISD::EXTRACT_VECTOR_ELT: 5346 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5347 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5348 element type of the vector."); 5349 5350 // Extract from an undefined value or using an undefined index is undefined. 5351 if (N1.isUndef() || N2.isUndef()) 5352 return getUNDEF(VT); 5353 5354 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5355 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5356 return getUNDEF(VT); 5357 5358 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5359 // expanding copies of large vectors from registers. 5360 if (N2C && 5361 N1.getOpcode() == ISD::CONCAT_VECTORS && 5362 N1.getNumOperands() > 0) { 5363 unsigned Factor = 5364 N1.getOperand(0).getValueType().getVectorNumElements(); 5365 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5366 N1.getOperand(N2C->getZExtValue() / Factor), 5367 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5368 } 5369 5370 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5371 // expanding large vector constants. 5372 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5373 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5374 5375 if (VT != Elt.getValueType()) 5376 // If the vector element type is not legal, the BUILD_VECTOR operands 5377 // are promoted and implicitly truncated, and the result implicitly 5378 // extended. Make that explicit here. 5379 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5380 5381 return Elt; 5382 } 5383 5384 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5385 // operations are lowered to scalars. 5386 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5387 // If the indices are the same, return the inserted element else 5388 // if the indices are known different, extract the element from 5389 // the original vector. 5390 SDValue N1Op2 = N1.getOperand(2); 5391 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5392 5393 if (N1Op2C && N2C) { 5394 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5395 if (VT == N1.getOperand(1).getValueType()) 5396 return N1.getOperand(1); 5397 else 5398 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5399 } 5400 5401 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5402 } 5403 } 5404 5405 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5406 // when vector types are scalarized and v1iX is legal. 5407 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5408 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5409 N1.getValueType().getVectorNumElements() == 1) { 5410 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5411 N1.getOperand(1)); 5412 } 5413 break; 5414 case ISD::EXTRACT_ELEMENT: 5415 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5416 assert(!N1.getValueType().isVector() && !VT.isVector() && 5417 (N1.getValueType().isInteger() == VT.isInteger()) && 5418 N1.getValueType() != VT && 5419 "Wrong types for EXTRACT_ELEMENT!"); 5420 5421 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5422 // 64-bit integers into 32-bit parts. Instead of building the extract of 5423 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5424 if (N1.getOpcode() == ISD::BUILD_PAIR) 5425 return N1.getOperand(N2C->getZExtValue()); 5426 5427 // EXTRACT_ELEMENT of a constant int is also very common. 5428 if (N1C) { 5429 unsigned ElementSize = VT.getSizeInBits(); 5430 unsigned Shift = ElementSize * N2C->getZExtValue(); 5431 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5432 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5433 } 5434 break; 5435 case ISD::EXTRACT_SUBVECTOR: 5436 assert(VT.isVector() && N1.getValueType().isVector() && 5437 "Extract subvector VTs must be a vectors!"); 5438 assert(VT.getVectorElementType() == 5439 N1.getValueType().getVectorElementType() && 5440 "Extract subvector VTs must have the same element type!"); 5441 assert(VT.getVectorNumElements() <= 5442 N1.getValueType().getVectorNumElements() && 5443 "Extract subvector must be from larger vector to smaller vector!"); 5444 assert(N2C && "Extract subvector index must be a constant"); 5445 assert(VT.getVectorNumElements() + N2C->getZExtValue() <= 5446 N1.getValueType().getVectorNumElements() && 5447 "Extract subvector overflow!"); 5448 5449 // Trivial extraction. 5450 if (VT == N1.getValueType()) 5451 return N1; 5452 5453 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5454 if (N1.isUndef()) 5455 return getUNDEF(VT); 5456 5457 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5458 // the concat have the same type as the extract. 5459 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5460 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5461 unsigned Factor = VT.getVectorNumElements(); 5462 return N1.getOperand(N2C->getZExtValue() / Factor); 5463 } 5464 5465 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5466 // during shuffle legalization. 5467 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5468 VT == N1.getOperand(1).getValueType()) 5469 return N1.getOperand(1); 5470 break; 5471 } 5472 5473 // Perform trivial constant folding. 5474 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5475 return SV; 5476 5477 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5478 return V; 5479 5480 // Canonicalize an UNDEF to the RHS, even over a constant. 5481 if (N1.isUndef()) { 5482 if (TLI->isCommutativeBinOp(Opcode)) { 5483 std::swap(N1, N2); 5484 } else { 5485 switch (Opcode) { 5486 case ISD::SIGN_EXTEND_INREG: 5487 case ISD::SUB: 5488 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5489 case ISD::UDIV: 5490 case ISD::SDIV: 5491 case ISD::UREM: 5492 case ISD::SREM: 5493 case ISD::SSUBSAT: 5494 case ISD::USUBSAT: 5495 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5496 } 5497 } 5498 } 5499 5500 // Fold a bunch of operators when the RHS is undef. 5501 if (N2.isUndef()) { 5502 switch (Opcode) { 5503 case ISD::XOR: 5504 if (N1.isUndef()) 5505 // Handle undef ^ undef -> 0 special case. This is a common 5506 // idiom (misuse). 5507 return getConstant(0, DL, VT); 5508 LLVM_FALLTHROUGH; 5509 case ISD::ADD: 5510 case ISD::SUB: 5511 case ISD::UDIV: 5512 case ISD::SDIV: 5513 case ISD::UREM: 5514 case ISD::SREM: 5515 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5516 case ISD::MUL: 5517 case ISD::AND: 5518 case ISD::SSUBSAT: 5519 case ISD::USUBSAT: 5520 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5521 case ISD::OR: 5522 case ISD::SADDSAT: 5523 case ISD::UADDSAT: 5524 return getAllOnesConstant(DL, VT); 5525 } 5526 } 5527 5528 // Memoize this node if possible. 5529 SDNode *N; 5530 SDVTList VTs = getVTList(VT); 5531 SDValue Ops[] = {N1, N2}; 5532 if (VT != MVT::Glue) { 5533 FoldingSetNodeID ID; 5534 AddNodeIDNode(ID, Opcode, VTs, Ops); 5535 void *IP = nullptr; 5536 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5537 E->intersectFlagsWith(Flags); 5538 return SDValue(E, 0); 5539 } 5540 5541 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5542 N->setFlags(Flags); 5543 createOperands(N, Ops); 5544 CSEMap.InsertNode(N, IP); 5545 } else { 5546 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5547 createOperands(N, Ops); 5548 } 5549 5550 InsertNode(N); 5551 SDValue V = SDValue(N, 0); 5552 NewSDValueDbgMsg(V, "Creating new node: ", this); 5553 return V; 5554 } 5555 5556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5557 SDValue N1, SDValue N2, SDValue N3, 5558 const SDNodeFlags Flags) { 5559 // Perform various simplifications. 5560 switch (Opcode) { 5561 case ISD::FMA: { 5562 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5563 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5564 N3.getValueType() == VT && "FMA types must match!"); 5565 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5566 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5567 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5568 if (N1CFP && N2CFP && N3CFP) { 5569 APFloat V1 = N1CFP->getValueAPF(); 5570 const APFloat &V2 = N2CFP->getValueAPF(); 5571 const APFloat &V3 = N3CFP->getValueAPF(); 5572 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5573 return getConstantFP(V1, DL, VT); 5574 } 5575 break; 5576 } 5577 case ISD::BUILD_VECTOR: { 5578 // Attempt to simplify BUILD_VECTOR. 5579 SDValue Ops[] = {N1, N2, N3}; 5580 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5581 return V; 5582 break; 5583 } 5584 case ISD::CONCAT_VECTORS: { 5585 SDValue Ops[] = {N1, N2, N3}; 5586 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5587 return V; 5588 break; 5589 } 5590 case ISD::SETCC: { 5591 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5592 assert(N1.getValueType() == N2.getValueType() && 5593 "SETCC operands must have the same type!"); 5594 assert(VT.isVector() == N1.getValueType().isVector() && 5595 "SETCC type should be vector iff the operand type is vector!"); 5596 assert((!VT.isVector() || VT.getVectorElementCount() == 5597 N1.getValueType().getVectorElementCount()) && 5598 "SETCC vector element counts must match!"); 5599 // Use FoldSetCC to simplify SETCC's. 5600 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5601 return V; 5602 // Vector constant folding. 5603 SDValue Ops[] = {N1, N2, N3}; 5604 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5605 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5606 return V; 5607 } 5608 break; 5609 } 5610 case ISD::SELECT: 5611 case ISD::VSELECT: 5612 if (SDValue V = simplifySelect(N1, N2, N3)) 5613 return V; 5614 break; 5615 case ISD::VECTOR_SHUFFLE: 5616 llvm_unreachable("should use getVectorShuffle constructor!"); 5617 case ISD::INSERT_VECTOR_ELT: { 5618 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5619 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5620 // for scalable vectors where we will generate appropriate code to 5621 // deal with out-of-bounds cases correctly. 5622 if (N3C && N1.getValueType().isFixedLengthVector() && 5623 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5624 return getUNDEF(VT); 5625 5626 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5627 if (N3.isUndef()) 5628 return getUNDEF(VT); 5629 5630 // If the inserted element is an UNDEF, just use the input vector. 5631 if (N2.isUndef()) 5632 return N1; 5633 5634 break; 5635 } 5636 case ISD::INSERT_SUBVECTOR: { 5637 // Inserting undef into undef is still undef. 5638 if (N1.isUndef() && N2.isUndef()) 5639 return getUNDEF(VT); 5640 assert(VT.isVector() && N1.getValueType().isVector() && 5641 N2.getValueType().isVector() && 5642 "Insert subvector VTs must be a vectors"); 5643 assert(VT == N1.getValueType() && 5644 "Dest and insert subvector source types must match!"); 5645 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5646 "Insert subvector must be from smaller vector to larger vector!"); 5647 assert(isa<ConstantSDNode>(N3) && 5648 "Insert subvector index must be constant"); 5649 assert(N2.getValueType().getVectorNumElements() + 5650 cast<ConstantSDNode>(N3)->getZExtValue() <= 5651 VT.getVectorNumElements() && 5652 "Insert subvector overflow!"); 5653 5654 // Trivial insertion. 5655 if (VT == N2.getValueType()) 5656 return N2; 5657 5658 // If this is an insert of an extracted vector into an undef vector, we 5659 // can just use the input to the extract. 5660 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5661 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5662 return N2.getOperand(0); 5663 break; 5664 } 5665 case ISD::BITCAST: 5666 // Fold bit_convert nodes from a type to themselves. 5667 if (N1.getValueType() == VT) 5668 return N1; 5669 break; 5670 } 5671 5672 // Memoize node if it doesn't produce a flag. 5673 SDNode *N; 5674 SDVTList VTs = getVTList(VT); 5675 SDValue Ops[] = {N1, N2, N3}; 5676 if (VT != MVT::Glue) { 5677 FoldingSetNodeID ID; 5678 AddNodeIDNode(ID, Opcode, VTs, Ops); 5679 void *IP = nullptr; 5680 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5681 E->intersectFlagsWith(Flags); 5682 return SDValue(E, 0); 5683 } 5684 5685 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5686 N->setFlags(Flags); 5687 createOperands(N, Ops); 5688 CSEMap.InsertNode(N, IP); 5689 } else { 5690 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5691 createOperands(N, Ops); 5692 } 5693 5694 InsertNode(N); 5695 SDValue V = SDValue(N, 0); 5696 NewSDValueDbgMsg(V, "Creating new node: ", this); 5697 return V; 5698 } 5699 5700 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5701 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5702 SDValue Ops[] = { N1, N2, N3, N4 }; 5703 return getNode(Opcode, DL, VT, Ops); 5704 } 5705 5706 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5707 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5708 SDValue N5) { 5709 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5710 return getNode(Opcode, DL, VT, Ops); 5711 } 5712 5713 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5714 /// the incoming stack arguments to be loaded from the stack. 5715 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5716 SmallVector<SDValue, 8> ArgChains; 5717 5718 // Include the original chain at the beginning of the list. When this is 5719 // used by target LowerCall hooks, this helps legalize find the 5720 // CALLSEQ_BEGIN node. 5721 ArgChains.push_back(Chain); 5722 5723 // Add a chain value for each stack argument. 5724 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5725 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5726 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5727 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5728 if (FI->getIndex() < 0) 5729 ArgChains.push_back(SDValue(L, 1)); 5730 5731 // Build a tokenfactor for all the chains. 5732 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5733 } 5734 5735 /// getMemsetValue - Vectorized representation of the memset value 5736 /// operand. 5737 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5738 const SDLoc &dl) { 5739 assert(!Value.isUndef()); 5740 5741 unsigned NumBits = VT.getScalarSizeInBits(); 5742 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5743 assert(C->getAPIntValue().getBitWidth() == 8); 5744 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5745 if (VT.isInteger()) { 5746 bool IsOpaque = VT.getSizeInBits() > 64 || 5747 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5748 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5749 } 5750 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5751 VT); 5752 } 5753 5754 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5755 EVT IntVT = VT.getScalarType(); 5756 if (!IntVT.isInteger()) 5757 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5758 5759 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5760 if (NumBits > 8) { 5761 // Use a multiplication with 0x010101... to extend the input to the 5762 // required length. 5763 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5764 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5765 DAG.getConstant(Magic, dl, IntVT)); 5766 } 5767 5768 if (VT != Value.getValueType() && !VT.isInteger()) 5769 Value = DAG.getBitcast(VT.getScalarType(), Value); 5770 if (VT != Value.getValueType()) 5771 Value = DAG.getSplatBuildVector(VT, dl, Value); 5772 5773 return Value; 5774 } 5775 5776 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5777 /// used when a memcpy is turned into a memset when the source is a constant 5778 /// string ptr. 5779 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5780 const TargetLowering &TLI, 5781 const ConstantDataArraySlice &Slice) { 5782 // Handle vector with all elements zero. 5783 if (Slice.Array == nullptr) { 5784 if (VT.isInteger()) 5785 return DAG.getConstant(0, dl, VT); 5786 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5787 return DAG.getConstantFP(0.0, dl, VT); 5788 else if (VT.isVector()) { 5789 unsigned NumElts = VT.getVectorNumElements(); 5790 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5791 return DAG.getNode(ISD::BITCAST, dl, VT, 5792 DAG.getConstant(0, dl, 5793 EVT::getVectorVT(*DAG.getContext(), 5794 EltVT, NumElts))); 5795 } else 5796 llvm_unreachable("Expected type!"); 5797 } 5798 5799 assert(!VT.isVector() && "Can't handle vector type here!"); 5800 unsigned NumVTBits = VT.getSizeInBits(); 5801 unsigned NumVTBytes = NumVTBits / 8; 5802 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5803 5804 APInt Val(NumVTBits, 0); 5805 if (DAG.getDataLayout().isLittleEndian()) { 5806 for (unsigned i = 0; i != NumBytes; ++i) 5807 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5808 } else { 5809 for (unsigned i = 0; i != NumBytes; ++i) 5810 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5811 } 5812 5813 // If the "cost" of materializing the integer immediate is less than the cost 5814 // of a load, then it is cost effective to turn the load into the immediate. 5815 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5816 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5817 return DAG.getConstant(Val, dl, VT); 5818 return SDValue(nullptr, 0); 5819 } 5820 5821 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5822 const SDLoc &DL, 5823 const SDNodeFlags Flags) { 5824 EVT VT = Base.getValueType(); 5825 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5826 } 5827 5828 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5829 const SDLoc &DL, 5830 const SDNodeFlags Flags) { 5831 assert(Offset.getValueType().isInteger()); 5832 EVT BasePtrVT = Ptr.getValueType(); 5833 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5834 } 5835 5836 /// Returns true if memcpy source is constant data. 5837 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5838 uint64_t SrcDelta = 0; 5839 GlobalAddressSDNode *G = nullptr; 5840 if (Src.getOpcode() == ISD::GlobalAddress) 5841 G = cast<GlobalAddressSDNode>(Src); 5842 else if (Src.getOpcode() == ISD::ADD && 5843 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5844 Src.getOperand(1).getOpcode() == ISD::Constant) { 5845 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5846 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5847 } 5848 if (!G) 5849 return false; 5850 5851 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5852 SrcDelta + G->getOffset()); 5853 } 5854 5855 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5856 SelectionDAG &DAG) { 5857 // On Darwin, -Os means optimize for size without hurting performance, so 5858 // only really optimize for size when -Oz (MinSize) is used. 5859 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5860 return MF.getFunction().hasMinSize(); 5861 return DAG.shouldOptForSize(); 5862 } 5863 5864 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5865 SmallVector<SDValue, 32> &OutChains, unsigned From, 5866 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5867 SmallVector<SDValue, 16> &OutStoreChains) { 5868 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5869 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5870 SmallVector<SDValue, 16> GluedLoadChains; 5871 for (unsigned i = From; i < To; ++i) { 5872 OutChains.push_back(OutLoadChains[i]); 5873 GluedLoadChains.push_back(OutLoadChains[i]); 5874 } 5875 5876 // Chain for all loads. 5877 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5878 GluedLoadChains); 5879 5880 for (unsigned i = From; i < To; ++i) { 5881 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5882 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5883 ST->getBasePtr(), ST->getMemoryVT(), 5884 ST->getMemOperand()); 5885 OutChains.push_back(NewStore); 5886 } 5887 } 5888 5889 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5890 SDValue Chain, SDValue Dst, SDValue Src, 5891 uint64_t Size, Align Alignment, 5892 bool isVol, bool AlwaysInline, 5893 MachinePointerInfo DstPtrInfo, 5894 MachinePointerInfo SrcPtrInfo) { 5895 // Turn a memcpy of undef to nop. 5896 // FIXME: We need to honor volatile even is Src is undef. 5897 if (Src.isUndef()) 5898 return Chain; 5899 5900 // Expand memcpy to a series of load and store ops if the size operand falls 5901 // below a certain threshold. 5902 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5903 // rather than maybe a humongous number of loads and stores. 5904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5905 const DataLayout &DL = DAG.getDataLayout(); 5906 LLVMContext &C = *DAG.getContext(); 5907 std::vector<EVT> MemOps; 5908 bool DstAlignCanChange = false; 5909 MachineFunction &MF = DAG.getMachineFunction(); 5910 MachineFrameInfo &MFI = MF.getFrameInfo(); 5911 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5912 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5913 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5914 DstAlignCanChange = true; 5915 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 5916 if (!SrcAlign || Alignment > *SrcAlign) 5917 SrcAlign = Alignment; 5918 assert(SrcAlign && "SrcAlign must be set"); 5919 ConstantDataArraySlice Slice; 5920 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5921 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5922 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5923 const MemOp Op = isZeroConstant 5924 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5925 /*IsZeroMemset*/ true, isVol) 5926 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5927 *SrcAlign, isVol, CopyFromConstant); 5928 if (!TLI.findOptimalMemOpLowering( 5929 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5930 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5931 return SDValue(); 5932 5933 if (DstAlignCanChange) { 5934 Type *Ty = MemOps[0].getTypeForEVT(C); 5935 Align NewAlign = DL.getABITypeAlign(Ty); 5936 5937 // Don't promote to an alignment that would require dynamic stack 5938 // realignment. 5939 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5940 if (!TRI->needsStackRealignment(MF)) 5941 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5942 NewAlign = NewAlign / 2; 5943 5944 if (NewAlign > Alignment) { 5945 // Give the stack frame object a larger alignment if needed. 5946 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5947 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5948 Alignment = NewAlign; 5949 } 5950 } 5951 5952 MachineMemOperand::Flags MMOFlags = 5953 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5954 SmallVector<SDValue, 16> OutLoadChains; 5955 SmallVector<SDValue, 16> OutStoreChains; 5956 SmallVector<SDValue, 32> OutChains; 5957 unsigned NumMemOps = MemOps.size(); 5958 uint64_t SrcOff = 0, DstOff = 0; 5959 for (unsigned i = 0; i != NumMemOps; ++i) { 5960 EVT VT = MemOps[i]; 5961 unsigned VTSize = VT.getSizeInBits() / 8; 5962 SDValue Value, Store; 5963 5964 if (VTSize > Size) { 5965 // Issuing an unaligned load / store pair that overlaps with the previous 5966 // pair. Adjust the offset accordingly. 5967 assert(i == NumMemOps-1 && i != 0); 5968 SrcOff -= VTSize - Size; 5969 DstOff -= VTSize - Size; 5970 } 5971 5972 if (CopyFromConstant && 5973 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5974 // It's unlikely a store of a vector immediate can be done in a single 5975 // instruction. It would require a load from a constantpool first. 5976 // We only handle zero vectors here. 5977 // FIXME: Handle other cases where store of vector immediate is done in 5978 // a single instruction. 5979 ConstantDataArraySlice SubSlice; 5980 if (SrcOff < Slice.Length) { 5981 SubSlice = Slice; 5982 SubSlice.move(SrcOff); 5983 } else { 5984 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5985 SubSlice.Array = nullptr; 5986 SubSlice.Offset = 0; 5987 SubSlice.Length = VTSize; 5988 } 5989 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5990 if (Value.getNode()) { 5991 Store = DAG.getStore( 5992 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5993 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 5994 OutChains.push_back(Store); 5995 } 5996 } 5997 5998 if (!Store.getNode()) { 5999 // The type might not be legal for the target. This should only happen 6000 // if the type is smaller than a legal type, as on PPC, so the right 6001 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6002 // to Load/Store if NVT==VT. 6003 // FIXME does the case above also need this? 6004 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6005 assert(NVT.bitsGE(VT)); 6006 6007 bool isDereferenceable = 6008 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6009 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6010 if (isDereferenceable) 6011 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6012 6013 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6014 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6015 SrcPtrInfo.getWithOffset(SrcOff), VT, 6016 commonAlignment(*SrcAlign, SrcOff).value(), 6017 SrcMMOFlags); 6018 OutLoadChains.push_back(Value.getValue(1)); 6019 6020 Store = DAG.getTruncStore( 6021 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6022 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6023 OutStoreChains.push_back(Store); 6024 } 6025 SrcOff += VTSize; 6026 DstOff += VTSize; 6027 Size -= VTSize; 6028 } 6029 6030 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6031 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6032 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6033 6034 if (NumLdStInMemcpy) { 6035 // It may be that memcpy might be converted to memset if it's memcpy 6036 // of constants. In such a case, we won't have loads and stores, but 6037 // just stores. In the absence of loads, there is nothing to gang up. 6038 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6039 // If target does not care, just leave as it. 6040 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6041 OutChains.push_back(OutLoadChains[i]); 6042 OutChains.push_back(OutStoreChains[i]); 6043 } 6044 } else { 6045 // Ld/St less than/equal limit set by target. 6046 if (NumLdStInMemcpy <= GluedLdStLimit) { 6047 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6048 NumLdStInMemcpy, OutLoadChains, 6049 OutStoreChains); 6050 } else { 6051 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6052 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6053 unsigned GlueIter = 0; 6054 6055 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6056 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6057 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6058 6059 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6060 OutLoadChains, OutStoreChains); 6061 GlueIter += GluedLdStLimit; 6062 } 6063 6064 // Residual ld/st. 6065 if (RemainingLdStInMemcpy) { 6066 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6067 RemainingLdStInMemcpy, OutLoadChains, 6068 OutStoreChains); 6069 } 6070 } 6071 } 6072 } 6073 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6074 } 6075 6076 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6077 SDValue Chain, SDValue Dst, SDValue Src, 6078 uint64_t Size, Align Alignment, 6079 bool isVol, bool AlwaysInline, 6080 MachinePointerInfo DstPtrInfo, 6081 MachinePointerInfo SrcPtrInfo) { 6082 // Turn a memmove of undef to nop. 6083 // FIXME: We need to honor volatile even is Src is undef. 6084 if (Src.isUndef()) 6085 return Chain; 6086 6087 // Expand memmove to a series of load and store ops if the size operand falls 6088 // below a certain threshold. 6089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6090 const DataLayout &DL = DAG.getDataLayout(); 6091 LLVMContext &C = *DAG.getContext(); 6092 std::vector<EVT> MemOps; 6093 bool DstAlignCanChange = false; 6094 MachineFunction &MF = DAG.getMachineFunction(); 6095 MachineFrameInfo &MFI = MF.getFrameInfo(); 6096 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6097 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6098 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6099 DstAlignCanChange = true; 6100 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6101 if (!SrcAlign || Alignment > *SrcAlign) 6102 SrcAlign = Alignment; 6103 assert(SrcAlign && "SrcAlign must be set"); 6104 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6105 if (!TLI.findOptimalMemOpLowering( 6106 MemOps, Limit, 6107 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6108 /*IsVolatile*/ true), 6109 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6110 MF.getFunction().getAttributes())) 6111 return SDValue(); 6112 6113 if (DstAlignCanChange) { 6114 Type *Ty = MemOps[0].getTypeForEVT(C); 6115 Align NewAlign = DL.getABITypeAlign(Ty); 6116 if (NewAlign > Alignment) { 6117 // Give the stack frame object a larger alignment if needed. 6118 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6119 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6120 Alignment = NewAlign; 6121 } 6122 } 6123 6124 MachineMemOperand::Flags MMOFlags = 6125 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6126 uint64_t SrcOff = 0, DstOff = 0; 6127 SmallVector<SDValue, 8> LoadValues; 6128 SmallVector<SDValue, 8> LoadChains; 6129 SmallVector<SDValue, 8> OutChains; 6130 unsigned NumMemOps = MemOps.size(); 6131 for (unsigned i = 0; i < NumMemOps; i++) { 6132 EVT VT = MemOps[i]; 6133 unsigned VTSize = VT.getSizeInBits() / 8; 6134 SDValue Value; 6135 6136 bool isDereferenceable = 6137 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6138 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6139 if (isDereferenceable) 6140 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6141 6142 Value = DAG.getLoad( 6143 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6144 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6145 LoadValues.push_back(Value); 6146 LoadChains.push_back(Value.getValue(1)); 6147 SrcOff += VTSize; 6148 } 6149 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6150 OutChains.clear(); 6151 for (unsigned i = 0; i < NumMemOps; i++) { 6152 EVT VT = MemOps[i]; 6153 unsigned VTSize = VT.getSizeInBits() / 8; 6154 SDValue Store; 6155 6156 Store = DAG.getStore( 6157 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6158 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6159 OutChains.push_back(Store); 6160 DstOff += VTSize; 6161 } 6162 6163 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6164 } 6165 6166 /// Lower the call to 'memset' intrinsic function into a series of store 6167 /// operations. 6168 /// 6169 /// \param DAG Selection DAG where lowered code is placed. 6170 /// \param dl Link to corresponding IR location. 6171 /// \param Chain Control flow dependency. 6172 /// \param Dst Pointer to destination memory location. 6173 /// \param Src Value of byte to write into the memory. 6174 /// \param Size Number of bytes to write. 6175 /// \param Alignment Alignment of the destination in bytes. 6176 /// \param isVol True if destination is volatile. 6177 /// \param DstPtrInfo IR information on the memory pointer. 6178 /// \returns New head in the control flow, if lowering was successful, empty 6179 /// SDValue otherwise. 6180 /// 6181 /// The function tries to replace 'llvm.memset' intrinsic with several store 6182 /// operations and value calculation code. This is usually profitable for small 6183 /// memory size. 6184 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6185 SDValue Chain, SDValue Dst, SDValue Src, 6186 uint64_t Size, Align Alignment, bool isVol, 6187 MachinePointerInfo DstPtrInfo) { 6188 // Turn a memset of undef to nop. 6189 // FIXME: We need to honor volatile even is Src is undef. 6190 if (Src.isUndef()) 6191 return Chain; 6192 6193 // Expand memset to a series of load/store ops if the size operand 6194 // falls below a certain threshold. 6195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6196 std::vector<EVT> MemOps; 6197 bool DstAlignCanChange = false; 6198 MachineFunction &MF = DAG.getMachineFunction(); 6199 MachineFrameInfo &MFI = MF.getFrameInfo(); 6200 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6201 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6202 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6203 DstAlignCanChange = true; 6204 bool IsZeroVal = 6205 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6206 if (!TLI.findOptimalMemOpLowering( 6207 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6208 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6209 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6210 return SDValue(); 6211 6212 if (DstAlignCanChange) { 6213 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6214 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6215 if (NewAlign > Alignment) { 6216 // Give the stack frame object a larger alignment if needed. 6217 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6218 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6219 Alignment = NewAlign; 6220 } 6221 } 6222 6223 SmallVector<SDValue, 8> OutChains; 6224 uint64_t DstOff = 0; 6225 unsigned NumMemOps = MemOps.size(); 6226 6227 // Find the largest store and generate the bit pattern for it. 6228 EVT LargestVT = MemOps[0]; 6229 for (unsigned i = 1; i < NumMemOps; i++) 6230 if (MemOps[i].bitsGT(LargestVT)) 6231 LargestVT = MemOps[i]; 6232 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6233 6234 for (unsigned i = 0; i < NumMemOps; i++) { 6235 EVT VT = MemOps[i]; 6236 unsigned VTSize = VT.getSizeInBits() / 8; 6237 if (VTSize > Size) { 6238 // Issuing an unaligned load / store pair that overlaps with the previous 6239 // pair. Adjust the offset accordingly. 6240 assert(i == NumMemOps-1 && i != 0); 6241 DstOff -= VTSize - Size; 6242 } 6243 6244 // If this store is smaller than the largest store see whether we can get 6245 // the smaller value for free with a truncate. 6246 SDValue Value = MemSetValue; 6247 if (VT.bitsLT(LargestVT)) { 6248 if (!LargestVT.isVector() && !VT.isVector() && 6249 TLI.isTruncateFree(LargestVT, VT)) 6250 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6251 else 6252 Value = getMemsetValue(Src, VT, DAG, dl); 6253 } 6254 assert(Value.getValueType() == VT && "Value with wrong type."); 6255 SDValue Store = DAG.getStore( 6256 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6257 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6258 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6259 OutChains.push_back(Store); 6260 DstOff += VT.getSizeInBits() / 8; 6261 Size -= VTSize; 6262 } 6263 6264 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6265 } 6266 6267 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6268 unsigned AS) { 6269 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6270 // pointer operands can be losslessly bitcasted to pointers of address space 0 6271 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6272 report_fatal_error("cannot lower memory intrinsic in address space " + 6273 Twine(AS)); 6274 } 6275 } 6276 6277 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6278 SDValue Src, SDValue Size, Align Alignment, 6279 bool isVol, bool AlwaysInline, bool isTailCall, 6280 MachinePointerInfo DstPtrInfo, 6281 MachinePointerInfo SrcPtrInfo) { 6282 // Check to see if we should lower the memcpy to loads and stores first. 6283 // For cases within the target-specified limits, this is the best choice. 6284 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6285 if (ConstantSize) { 6286 // Memcpy with size zero? Just return the original chain. 6287 if (ConstantSize->isNullValue()) 6288 return Chain; 6289 6290 SDValue Result = getMemcpyLoadsAndStores( 6291 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6292 isVol, false, DstPtrInfo, SrcPtrInfo); 6293 if (Result.getNode()) 6294 return Result; 6295 } 6296 6297 // Then check to see if we should lower the memcpy with target-specific 6298 // code. If the target chooses to do this, this is the next best. 6299 if (TSI) { 6300 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6301 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6302 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6303 if (Result.getNode()) 6304 return Result; 6305 } 6306 6307 // If we really need inline code and the target declined to provide it, 6308 // use a (potentially long) sequence of loads and stores. 6309 if (AlwaysInline) { 6310 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6311 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6312 ConstantSize->getZExtValue(), Alignment, 6313 isVol, true, DstPtrInfo, SrcPtrInfo); 6314 } 6315 6316 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6317 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6318 6319 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6320 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6321 // respect volatile, so they may do things like read or write memory 6322 // beyond the given memory regions. But fixing this isn't easy, and most 6323 // people don't care. 6324 6325 // Emit a library call. 6326 TargetLowering::ArgListTy Args; 6327 TargetLowering::ArgListEntry Entry; 6328 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6329 Entry.Node = Dst; Args.push_back(Entry); 6330 Entry.Node = Src; Args.push_back(Entry); 6331 6332 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6333 Entry.Node = Size; Args.push_back(Entry); 6334 // FIXME: pass in SDLoc 6335 TargetLowering::CallLoweringInfo CLI(*this); 6336 CLI.setDebugLoc(dl) 6337 .setChain(Chain) 6338 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6339 Dst.getValueType().getTypeForEVT(*getContext()), 6340 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6341 TLI->getPointerTy(getDataLayout())), 6342 std::move(Args)) 6343 .setDiscardResult() 6344 .setTailCall(isTailCall); 6345 6346 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6347 return CallResult.second; 6348 } 6349 6350 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6351 SDValue Dst, unsigned DstAlign, 6352 SDValue Src, unsigned SrcAlign, 6353 SDValue Size, Type *SizeTy, 6354 unsigned ElemSz, bool isTailCall, 6355 MachinePointerInfo DstPtrInfo, 6356 MachinePointerInfo SrcPtrInfo) { 6357 // Emit a library call. 6358 TargetLowering::ArgListTy Args; 6359 TargetLowering::ArgListEntry Entry; 6360 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6361 Entry.Node = Dst; 6362 Args.push_back(Entry); 6363 6364 Entry.Node = Src; 6365 Args.push_back(Entry); 6366 6367 Entry.Ty = SizeTy; 6368 Entry.Node = Size; 6369 Args.push_back(Entry); 6370 6371 RTLIB::Libcall LibraryCall = 6372 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6373 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6374 report_fatal_error("Unsupported element size"); 6375 6376 TargetLowering::CallLoweringInfo CLI(*this); 6377 CLI.setDebugLoc(dl) 6378 .setChain(Chain) 6379 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6380 Type::getVoidTy(*getContext()), 6381 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6382 TLI->getPointerTy(getDataLayout())), 6383 std::move(Args)) 6384 .setDiscardResult() 6385 .setTailCall(isTailCall); 6386 6387 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6388 return CallResult.second; 6389 } 6390 6391 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6392 SDValue Src, SDValue Size, Align Alignment, 6393 bool isVol, bool isTailCall, 6394 MachinePointerInfo DstPtrInfo, 6395 MachinePointerInfo SrcPtrInfo) { 6396 // Check to see if we should lower the memmove to loads and stores first. 6397 // For cases within the target-specified limits, this is the best choice. 6398 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6399 if (ConstantSize) { 6400 // Memmove with size zero? Just return the original chain. 6401 if (ConstantSize->isNullValue()) 6402 return Chain; 6403 6404 SDValue Result = getMemmoveLoadsAndStores( 6405 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6406 isVol, false, DstPtrInfo, SrcPtrInfo); 6407 if (Result.getNode()) 6408 return Result; 6409 } 6410 6411 // Then check to see if we should lower the memmove with target-specific 6412 // code. If the target chooses to do this, this is the next best. 6413 if (TSI) { 6414 SDValue Result = TSI->EmitTargetCodeForMemmove( 6415 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6416 SrcPtrInfo); 6417 if (Result.getNode()) 6418 return Result; 6419 } 6420 6421 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6422 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6423 6424 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6425 // not be safe. See memcpy above for more details. 6426 6427 // Emit a library call. 6428 TargetLowering::ArgListTy Args; 6429 TargetLowering::ArgListEntry Entry; 6430 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6431 Entry.Node = Dst; Args.push_back(Entry); 6432 Entry.Node = Src; Args.push_back(Entry); 6433 6434 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6435 Entry.Node = Size; Args.push_back(Entry); 6436 // FIXME: pass in SDLoc 6437 TargetLowering::CallLoweringInfo CLI(*this); 6438 CLI.setDebugLoc(dl) 6439 .setChain(Chain) 6440 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6441 Dst.getValueType().getTypeForEVT(*getContext()), 6442 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6443 TLI->getPointerTy(getDataLayout())), 6444 std::move(Args)) 6445 .setDiscardResult() 6446 .setTailCall(isTailCall); 6447 6448 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6449 return CallResult.second; 6450 } 6451 6452 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6453 SDValue Dst, unsigned DstAlign, 6454 SDValue Src, unsigned SrcAlign, 6455 SDValue Size, Type *SizeTy, 6456 unsigned ElemSz, bool isTailCall, 6457 MachinePointerInfo DstPtrInfo, 6458 MachinePointerInfo SrcPtrInfo) { 6459 // Emit a library call. 6460 TargetLowering::ArgListTy Args; 6461 TargetLowering::ArgListEntry Entry; 6462 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6463 Entry.Node = Dst; 6464 Args.push_back(Entry); 6465 6466 Entry.Node = Src; 6467 Args.push_back(Entry); 6468 6469 Entry.Ty = SizeTy; 6470 Entry.Node = Size; 6471 Args.push_back(Entry); 6472 6473 RTLIB::Libcall LibraryCall = 6474 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6475 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6476 report_fatal_error("Unsupported element size"); 6477 6478 TargetLowering::CallLoweringInfo CLI(*this); 6479 CLI.setDebugLoc(dl) 6480 .setChain(Chain) 6481 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6482 Type::getVoidTy(*getContext()), 6483 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6484 TLI->getPointerTy(getDataLayout())), 6485 std::move(Args)) 6486 .setDiscardResult() 6487 .setTailCall(isTailCall); 6488 6489 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6490 return CallResult.second; 6491 } 6492 6493 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6494 SDValue Src, SDValue Size, Align Alignment, 6495 bool isVol, bool isTailCall, 6496 MachinePointerInfo DstPtrInfo) { 6497 // Check to see if we should lower the memset to stores first. 6498 // For cases within the target-specified limits, this is the best choice. 6499 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6500 if (ConstantSize) { 6501 // Memset with size zero? Just return the original chain. 6502 if (ConstantSize->isNullValue()) 6503 return Chain; 6504 6505 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6506 ConstantSize->getZExtValue(), Alignment, 6507 isVol, DstPtrInfo); 6508 6509 if (Result.getNode()) 6510 return Result; 6511 } 6512 6513 // Then check to see if we should lower the memset with target-specific 6514 // code. If the target chooses to do this, this is the next best. 6515 if (TSI) { 6516 SDValue Result = TSI->EmitTargetCodeForMemset( 6517 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6518 if (Result.getNode()) 6519 return Result; 6520 } 6521 6522 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6523 6524 // Emit a library call. 6525 TargetLowering::ArgListTy Args; 6526 TargetLowering::ArgListEntry Entry; 6527 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6528 Args.push_back(Entry); 6529 Entry.Node = Src; 6530 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6531 Args.push_back(Entry); 6532 Entry.Node = Size; 6533 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6534 Args.push_back(Entry); 6535 6536 // FIXME: pass in SDLoc 6537 TargetLowering::CallLoweringInfo CLI(*this); 6538 CLI.setDebugLoc(dl) 6539 .setChain(Chain) 6540 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6541 Dst.getValueType().getTypeForEVT(*getContext()), 6542 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6543 TLI->getPointerTy(getDataLayout())), 6544 std::move(Args)) 6545 .setDiscardResult() 6546 .setTailCall(isTailCall); 6547 6548 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6549 return CallResult.second; 6550 } 6551 6552 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6553 SDValue Dst, unsigned DstAlign, 6554 SDValue Value, SDValue Size, Type *SizeTy, 6555 unsigned ElemSz, bool isTailCall, 6556 MachinePointerInfo DstPtrInfo) { 6557 // Emit a library call. 6558 TargetLowering::ArgListTy Args; 6559 TargetLowering::ArgListEntry Entry; 6560 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6561 Entry.Node = Dst; 6562 Args.push_back(Entry); 6563 6564 Entry.Ty = Type::getInt8Ty(*getContext()); 6565 Entry.Node = Value; 6566 Args.push_back(Entry); 6567 6568 Entry.Ty = SizeTy; 6569 Entry.Node = Size; 6570 Args.push_back(Entry); 6571 6572 RTLIB::Libcall LibraryCall = 6573 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6574 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6575 report_fatal_error("Unsupported element size"); 6576 6577 TargetLowering::CallLoweringInfo CLI(*this); 6578 CLI.setDebugLoc(dl) 6579 .setChain(Chain) 6580 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6581 Type::getVoidTy(*getContext()), 6582 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6583 TLI->getPointerTy(getDataLayout())), 6584 std::move(Args)) 6585 .setDiscardResult() 6586 .setTailCall(isTailCall); 6587 6588 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6589 return CallResult.second; 6590 } 6591 6592 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6593 SDVTList VTList, ArrayRef<SDValue> Ops, 6594 MachineMemOperand *MMO) { 6595 FoldingSetNodeID ID; 6596 ID.AddInteger(MemVT.getRawBits()); 6597 AddNodeIDNode(ID, Opcode, VTList, Ops); 6598 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6599 void* IP = nullptr; 6600 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6601 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6602 return SDValue(E, 0); 6603 } 6604 6605 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6606 VTList, MemVT, MMO); 6607 createOperands(N, Ops); 6608 6609 CSEMap.InsertNode(N, IP); 6610 InsertNode(N); 6611 return SDValue(N, 0); 6612 } 6613 6614 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6615 EVT MemVT, SDVTList VTs, SDValue Chain, 6616 SDValue Ptr, SDValue Cmp, SDValue Swp, 6617 MachineMemOperand *MMO) { 6618 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6619 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6620 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6621 6622 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6623 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6624 } 6625 6626 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6627 SDValue Chain, SDValue Ptr, SDValue Val, 6628 MachineMemOperand *MMO) { 6629 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6630 Opcode == ISD::ATOMIC_LOAD_SUB || 6631 Opcode == ISD::ATOMIC_LOAD_AND || 6632 Opcode == ISD::ATOMIC_LOAD_CLR || 6633 Opcode == ISD::ATOMIC_LOAD_OR || 6634 Opcode == ISD::ATOMIC_LOAD_XOR || 6635 Opcode == ISD::ATOMIC_LOAD_NAND || 6636 Opcode == ISD::ATOMIC_LOAD_MIN || 6637 Opcode == ISD::ATOMIC_LOAD_MAX || 6638 Opcode == ISD::ATOMIC_LOAD_UMIN || 6639 Opcode == ISD::ATOMIC_LOAD_UMAX || 6640 Opcode == ISD::ATOMIC_LOAD_FADD || 6641 Opcode == ISD::ATOMIC_LOAD_FSUB || 6642 Opcode == ISD::ATOMIC_SWAP || 6643 Opcode == ISD::ATOMIC_STORE) && 6644 "Invalid Atomic Op"); 6645 6646 EVT VT = Val.getValueType(); 6647 6648 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6649 getVTList(VT, MVT::Other); 6650 SDValue Ops[] = {Chain, Ptr, Val}; 6651 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6652 } 6653 6654 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6655 EVT VT, SDValue Chain, SDValue Ptr, 6656 MachineMemOperand *MMO) { 6657 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6658 6659 SDVTList VTs = getVTList(VT, MVT::Other); 6660 SDValue Ops[] = {Chain, Ptr}; 6661 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6662 } 6663 6664 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6665 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6666 if (Ops.size() == 1) 6667 return Ops[0]; 6668 6669 SmallVector<EVT, 4> VTs; 6670 VTs.reserve(Ops.size()); 6671 for (unsigned i = 0; i < Ops.size(); ++i) 6672 VTs.push_back(Ops[i].getValueType()); 6673 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6674 } 6675 6676 SDValue SelectionDAG::getMemIntrinsicNode( 6677 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6678 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6679 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6680 if (!Size && MemVT.isScalableVector()) 6681 Size = MemoryLocation::UnknownSize; 6682 else if (!Size) 6683 Size = MemVT.getStoreSize(); 6684 6685 MachineFunction &MF = getMachineFunction(); 6686 MachineMemOperand *MMO = 6687 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6688 6689 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6690 } 6691 6692 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6693 SDVTList VTList, 6694 ArrayRef<SDValue> Ops, EVT MemVT, 6695 MachineMemOperand *MMO) { 6696 assert((Opcode == ISD::INTRINSIC_VOID || 6697 Opcode == ISD::INTRINSIC_W_CHAIN || 6698 Opcode == ISD::PREFETCH || 6699 ((int)Opcode <= std::numeric_limits<int>::max() && 6700 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6701 "Opcode is not a memory-accessing opcode!"); 6702 6703 // Memoize the node unless it returns a flag. 6704 MemIntrinsicSDNode *N; 6705 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6706 FoldingSetNodeID ID; 6707 AddNodeIDNode(ID, Opcode, VTList, Ops); 6708 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6709 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6710 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6711 void *IP = nullptr; 6712 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6713 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6714 return SDValue(E, 0); 6715 } 6716 6717 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6718 VTList, MemVT, MMO); 6719 createOperands(N, Ops); 6720 6721 CSEMap.InsertNode(N, IP); 6722 } else { 6723 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6724 VTList, MemVT, MMO); 6725 createOperands(N, Ops); 6726 } 6727 InsertNode(N); 6728 SDValue V(N, 0); 6729 NewSDValueDbgMsg(V, "Creating new node: ", this); 6730 return V; 6731 } 6732 6733 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6734 SDValue Chain, int FrameIndex, 6735 int64_t Size, int64_t Offset) { 6736 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6737 const auto VTs = getVTList(MVT::Other); 6738 SDValue Ops[2] = { 6739 Chain, 6740 getFrameIndex(FrameIndex, 6741 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6742 true)}; 6743 6744 FoldingSetNodeID ID; 6745 AddNodeIDNode(ID, Opcode, VTs, Ops); 6746 ID.AddInteger(FrameIndex); 6747 ID.AddInteger(Size); 6748 ID.AddInteger(Offset); 6749 void *IP = nullptr; 6750 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6751 return SDValue(E, 0); 6752 6753 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6754 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6755 createOperands(N, Ops); 6756 CSEMap.InsertNode(N, IP); 6757 InsertNode(N); 6758 SDValue V(N, 0); 6759 NewSDValueDbgMsg(V, "Creating new node: ", this); 6760 return V; 6761 } 6762 6763 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6764 /// MachinePointerInfo record from it. This is particularly useful because the 6765 /// code generator has many cases where it doesn't bother passing in a 6766 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6767 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6768 SelectionDAG &DAG, SDValue Ptr, 6769 int64_t Offset = 0) { 6770 // If this is FI+Offset, we can model it. 6771 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6772 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6773 FI->getIndex(), Offset); 6774 6775 // If this is (FI+Offset1)+Offset2, we can model it. 6776 if (Ptr.getOpcode() != ISD::ADD || 6777 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6778 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6779 return Info; 6780 6781 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6782 return MachinePointerInfo::getFixedStack( 6783 DAG.getMachineFunction(), FI, 6784 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6785 } 6786 6787 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6788 /// MachinePointerInfo record from it. This is particularly useful because the 6789 /// code generator has many cases where it doesn't bother passing in a 6790 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6791 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6792 SelectionDAG &DAG, SDValue Ptr, 6793 SDValue OffsetOp) { 6794 // If the 'Offset' value isn't a constant, we can't handle this. 6795 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6796 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6797 if (OffsetOp.isUndef()) 6798 return InferPointerInfo(Info, DAG, Ptr); 6799 return Info; 6800 } 6801 6802 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6803 EVT VT, const SDLoc &dl, SDValue Chain, 6804 SDValue Ptr, SDValue Offset, 6805 MachinePointerInfo PtrInfo, EVT MemVT, 6806 Align Alignment, 6807 MachineMemOperand::Flags MMOFlags, 6808 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6809 assert(Chain.getValueType() == MVT::Other && 6810 "Invalid chain type"); 6811 6812 MMOFlags |= MachineMemOperand::MOLoad; 6813 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6814 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6815 // clients. 6816 if (PtrInfo.V.isNull()) 6817 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6818 6819 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6820 MachineFunction &MF = getMachineFunction(); 6821 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6822 Alignment, AAInfo, Ranges); 6823 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6824 } 6825 6826 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6827 EVT VT, const SDLoc &dl, SDValue Chain, 6828 SDValue Ptr, SDValue Offset, EVT MemVT, 6829 MachineMemOperand *MMO) { 6830 if (VT == MemVT) { 6831 ExtType = ISD::NON_EXTLOAD; 6832 } else if (ExtType == ISD::NON_EXTLOAD) { 6833 assert(VT == MemVT && "Non-extending load from different memory type!"); 6834 } else { 6835 // Extending load. 6836 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6837 "Should only be an extending load, not truncating!"); 6838 assert(VT.isInteger() == MemVT.isInteger() && 6839 "Cannot convert from FP to Int or Int -> FP!"); 6840 assert(VT.isVector() == MemVT.isVector() && 6841 "Cannot use an ext load to convert to or from a vector!"); 6842 assert((!VT.isVector() || 6843 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6844 "Cannot use an ext load to change the number of vector elements!"); 6845 } 6846 6847 bool Indexed = AM != ISD::UNINDEXED; 6848 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6849 6850 SDVTList VTs = Indexed ? 6851 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6852 SDValue Ops[] = { Chain, Ptr, Offset }; 6853 FoldingSetNodeID ID; 6854 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6855 ID.AddInteger(MemVT.getRawBits()); 6856 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6857 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6858 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6859 void *IP = nullptr; 6860 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6861 cast<LoadSDNode>(E)->refineAlignment(MMO); 6862 return SDValue(E, 0); 6863 } 6864 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6865 ExtType, MemVT, MMO); 6866 createOperands(N, Ops); 6867 6868 CSEMap.InsertNode(N, IP); 6869 InsertNode(N); 6870 SDValue V(N, 0); 6871 NewSDValueDbgMsg(V, "Creating new node: ", this); 6872 return V; 6873 } 6874 6875 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6876 SDValue Ptr, MachinePointerInfo PtrInfo, 6877 MaybeAlign Alignment, 6878 MachineMemOperand::Flags MMOFlags, 6879 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6880 SDValue Undef = getUNDEF(Ptr.getValueType()); 6881 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6882 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6883 } 6884 6885 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6886 SDValue Ptr, MachineMemOperand *MMO) { 6887 SDValue Undef = getUNDEF(Ptr.getValueType()); 6888 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6889 VT, MMO); 6890 } 6891 6892 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6893 EVT VT, SDValue Chain, SDValue Ptr, 6894 MachinePointerInfo PtrInfo, EVT MemVT, 6895 MaybeAlign Alignment, 6896 MachineMemOperand::Flags MMOFlags, 6897 const AAMDNodes &AAInfo) { 6898 SDValue Undef = getUNDEF(Ptr.getValueType()); 6899 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6900 MemVT, Alignment, MMOFlags, AAInfo); 6901 } 6902 6903 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6904 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6905 MachineMemOperand *MMO) { 6906 SDValue Undef = getUNDEF(Ptr.getValueType()); 6907 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6908 MemVT, MMO); 6909 } 6910 6911 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6912 SDValue Base, SDValue Offset, 6913 ISD::MemIndexedMode AM) { 6914 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6915 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6916 // Don't propagate the invariant or dereferenceable flags. 6917 auto MMOFlags = 6918 LD->getMemOperand()->getFlags() & 6919 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6920 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6921 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6922 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6923 LD->getAAInfo()); 6924 } 6925 6926 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6927 SDValue Ptr, MachinePointerInfo PtrInfo, 6928 Align Alignment, 6929 MachineMemOperand::Flags MMOFlags, 6930 const AAMDNodes &AAInfo) { 6931 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6932 6933 MMOFlags |= MachineMemOperand::MOStore; 6934 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6935 6936 if (PtrInfo.V.isNull()) 6937 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6938 6939 MachineFunction &MF = getMachineFunction(); 6940 uint64_t Size = 6941 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6942 MachineMemOperand *MMO = 6943 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6944 return getStore(Chain, dl, Val, Ptr, MMO); 6945 } 6946 6947 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6948 SDValue Ptr, MachineMemOperand *MMO) { 6949 assert(Chain.getValueType() == MVT::Other && 6950 "Invalid chain type"); 6951 EVT VT = Val.getValueType(); 6952 SDVTList VTs = getVTList(MVT::Other); 6953 SDValue Undef = getUNDEF(Ptr.getValueType()); 6954 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6955 FoldingSetNodeID ID; 6956 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6957 ID.AddInteger(VT.getRawBits()); 6958 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6959 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6960 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6961 void *IP = nullptr; 6962 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6963 cast<StoreSDNode>(E)->refineAlignment(MMO); 6964 return SDValue(E, 0); 6965 } 6966 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6967 ISD::UNINDEXED, false, VT, MMO); 6968 createOperands(N, Ops); 6969 6970 CSEMap.InsertNode(N, IP); 6971 InsertNode(N); 6972 SDValue V(N, 0); 6973 NewSDValueDbgMsg(V, "Creating new node: ", this); 6974 return V; 6975 } 6976 6977 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6978 SDValue Ptr, MachinePointerInfo PtrInfo, 6979 EVT SVT, Align Alignment, 6980 MachineMemOperand::Flags MMOFlags, 6981 const AAMDNodes &AAInfo) { 6982 assert(Chain.getValueType() == MVT::Other && 6983 "Invalid chain type"); 6984 6985 MMOFlags |= MachineMemOperand::MOStore; 6986 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6987 6988 if (PtrInfo.V.isNull()) 6989 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6990 6991 MachineFunction &MF = getMachineFunction(); 6992 MachineMemOperand *MMO = MF.getMachineMemOperand( 6993 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6994 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6995 } 6996 6997 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6998 SDValue Ptr, EVT SVT, 6999 MachineMemOperand *MMO) { 7000 EVT VT = Val.getValueType(); 7001 7002 assert(Chain.getValueType() == MVT::Other && 7003 "Invalid chain type"); 7004 if (VT == SVT) 7005 return getStore(Chain, dl, Val, Ptr, MMO); 7006 7007 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7008 "Should only be a truncating store, not extending!"); 7009 assert(VT.isInteger() == SVT.isInteger() && 7010 "Can't do FP-INT conversion!"); 7011 assert(VT.isVector() == SVT.isVector() && 7012 "Cannot use trunc store to convert to or from a vector!"); 7013 assert((!VT.isVector() || 7014 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7015 "Cannot use trunc store to change the number of vector elements!"); 7016 7017 SDVTList VTs = getVTList(MVT::Other); 7018 SDValue Undef = getUNDEF(Ptr.getValueType()); 7019 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7020 FoldingSetNodeID ID; 7021 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7022 ID.AddInteger(SVT.getRawBits()); 7023 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7024 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7025 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7026 void *IP = nullptr; 7027 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7028 cast<StoreSDNode>(E)->refineAlignment(MMO); 7029 return SDValue(E, 0); 7030 } 7031 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7032 ISD::UNINDEXED, true, SVT, MMO); 7033 createOperands(N, Ops); 7034 7035 CSEMap.InsertNode(N, IP); 7036 InsertNode(N); 7037 SDValue V(N, 0); 7038 NewSDValueDbgMsg(V, "Creating new node: ", this); 7039 return V; 7040 } 7041 7042 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7043 SDValue Base, SDValue Offset, 7044 ISD::MemIndexedMode AM) { 7045 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7046 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7047 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7048 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7049 FoldingSetNodeID ID; 7050 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7051 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7052 ID.AddInteger(ST->getRawSubclassData()); 7053 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7054 void *IP = nullptr; 7055 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7056 return SDValue(E, 0); 7057 7058 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7059 ST->isTruncatingStore(), ST->getMemoryVT(), 7060 ST->getMemOperand()); 7061 createOperands(N, Ops); 7062 7063 CSEMap.InsertNode(N, IP); 7064 InsertNode(N); 7065 SDValue V(N, 0); 7066 NewSDValueDbgMsg(V, "Creating new node: ", this); 7067 return V; 7068 } 7069 7070 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7071 SDValue Base, SDValue Offset, SDValue Mask, 7072 SDValue PassThru, EVT MemVT, 7073 MachineMemOperand *MMO, 7074 ISD::MemIndexedMode AM, 7075 ISD::LoadExtType ExtTy, bool isExpanding) { 7076 bool Indexed = AM != ISD::UNINDEXED; 7077 assert((Indexed || Offset.isUndef()) && 7078 "Unindexed masked load with an offset!"); 7079 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7080 : getVTList(VT, MVT::Other); 7081 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7082 FoldingSetNodeID ID; 7083 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7084 ID.AddInteger(MemVT.getRawBits()); 7085 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7086 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7087 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7088 void *IP = nullptr; 7089 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7090 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7091 return SDValue(E, 0); 7092 } 7093 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7094 AM, ExtTy, isExpanding, MemVT, MMO); 7095 createOperands(N, Ops); 7096 7097 CSEMap.InsertNode(N, IP); 7098 InsertNode(N); 7099 SDValue V(N, 0); 7100 NewSDValueDbgMsg(V, "Creating new node: ", this); 7101 return V; 7102 } 7103 7104 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7105 SDValue Base, SDValue Offset, 7106 ISD::MemIndexedMode AM) { 7107 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7108 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7109 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7110 Offset, LD->getMask(), LD->getPassThru(), 7111 LD->getMemoryVT(), LD->getMemOperand(), AM, 7112 LD->getExtensionType(), LD->isExpandingLoad()); 7113 } 7114 7115 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7116 SDValue Val, SDValue Base, SDValue Offset, 7117 SDValue Mask, EVT MemVT, 7118 MachineMemOperand *MMO, 7119 ISD::MemIndexedMode AM, bool IsTruncating, 7120 bool IsCompressing) { 7121 assert(Chain.getValueType() == MVT::Other && 7122 "Invalid chain type"); 7123 bool Indexed = AM != ISD::UNINDEXED; 7124 assert((Indexed || Offset.isUndef()) && 7125 "Unindexed masked store with an offset!"); 7126 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7127 : getVTList(MVT::Other); 7128 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7129 FoldingSetNodeID ID; 7130 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7131 ID.AddInteger(MemVT.getRawBits()); 7132 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7133 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7134 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7135 void *IP = nullptr; 7136 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7137 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7138 return SDValue(E, 0); 7139 } 7140 auto *N = 7141 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7142 IsTruncating, IsCompressing, MemVT, MMO); 7143 createOperands(N, Ops); 7144 7145 CSEMap.InsertNode(N, IP); 7146 InsertNode(N); 7147 SDValue V(N, 0); 7148 NewSDValueDbgMsg(V, "Creating new node: ", this); 7149 return V; 7150 } 7151 7152 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7153 SDValue Base, SDValue Offset, 7154 ISD::MemIndexedMode AM) { 7155 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7156 assert(ST->getOffset().isUndef() && 7157 "Masked store is already a indexed store!"); 7158 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7159 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7160 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7161 } 7162 7163 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7164 ArrayRef<SDValue> Ops, 7165 MachineMemOperand *MMO, 7166 ISD::MemIndexType IndexType) { 7167 assert(Ops.size() == 6 && "Incompatible number of operands"); 7168 7169 FoldingSetNodeID ID; 7170 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7171 ID.AddInteger(VT.getRawBits()); 7172 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7173 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7174 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7175 void *IP = nullptr; 7176 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7177 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7178 return SDValue(E, 0); 7179 } 7180 7181 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7182 VTs, VT, MMO, IndexType); 7183 createOperands(N, Ops); 7184 7185 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7186 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7187 assert(N->getMask().getValueType().getVectorNumElements() == 7188 N->getValueType(0).getVectorNumElements() && 7189 "Vector width mismatch between mask and data"); 7190 assert(N->getIndex().getValueType().getVectorNumElements() >= 7191 N->getValueType(0).getVectorNumElements() && 7192 "Vector width mismatch between index and data"); 7193 assert(isa<ConstantSDNode>(N->getScale()) && 7194 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7195 "Scale should be a constant power of 2"); 7196 7197 CSEMap.InsertNode(N, IP); 7198 InsertNode(N); 7199 SDValue V(N, 0); 7200 NewSDValueDbgMsg(V, "Creating new node: ", this); 7201 return V; 7202 } 7203 7204 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7205 ArrayRef<SDValue> Ops, 7206 MachineMemOperand *MMO, 7207 ISD::MemIndexType IndexType) { 7208 assert(Ops.size() == 6 && "Incompatible number of operands"); 7209 7210 FoldingSetNodeID ID; 7211 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7212 ID.AddInteger(VT.getRawBits()); 7213 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7214 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7215 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7216 void *IP = nullptr; 7217 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7218 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7219 return SDValue(E, 0); 7220 } 7221 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7222 VTs, VT, MMO, IndexType); 7223 createOperands(N, Ops); 7224 7225 assert(N->getMask().getValueType().getVectorNumElements() == 7226 N->getValue().getValueType().getVectorNumElements() && 7227 "Vector width mismatch between mask and data"); 7228 assert(N->getIndex().getValueType().getVectorNumElements() >= 7229 N->getValue().getValueType().getVectorNumElements() && 7230 "Vector width mismatch between index and data"); 7231 assert(isa<ConstantSDNode>(N->getScale()) && 7232 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7233 "Scale should be a constant power of 2"); 7234 7235 CSEMap.InsertNode(N, IP); 7236 InsertNode(N); 7237 SDValue V(N, 0); 7238 NewSDValueDbgMsg(V, "Creating new node: ", this); 7239 return V; 7240 } 7241 7242 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7243 // select undef, T, F --> T (if T is a constant), otherwise F 7244 // select, ?, undef, F --> F 7245 // select, ?, T, undef --> T 7246 if (Cond.isUndef()) 7247 return isConstantValueOfAnyType(T) ? T : F; 7248 if (T.isUndef()) 7249 return F; 7250 if (F.isUndef()) 7251 return T; 7252 7253 // select true, T, F --> T 7254 // select false, T, F --> F 7255 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7256 return CondC->isNullValue() ? F : T; 7257 7258 // TODO: This should simplify VSELECT with constant condition using something 7259 // like this (but check boolean contents to be complete?): 7260 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7261 // return T; 7262 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7263 // return F; 7264 7265 // select ?, T, T --> T 7266 if (T == F) 7267 return T; 7268 7269 return SDValue(); 7270 } 7271 7272 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7273 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7274 if (X.isUndef()) 7275 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7276 // shift X, undef --> undef (because it may shift by the bitwidth) 7277 if (Y.isUndef()) 7278 return getUNDEF(X.getValueType()); 7279 7280 // shift 0, Y --> 0 7281 // shift X, 0 --> X 7282 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7283 return X; 7284 7285 // shift X, C >= bitwidth(X) --> undef 7286 // All vector elements must be too big (or undef) to avoid partial undefs. 7287 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7288 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7289 }; 7290 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7291 return getUNDEF(X.getValueType()); 7292 7293 return SDValue(); 7294 } 7295 7296 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7297 SDNodeFlags Flags) { 7298 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7299 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7300 // operation is poison. That result can be relaxed to undef. 7301 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7302 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7303 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7304 (YC && YC->getValueAPF().isNaN()); 7305 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7306 (YC && YC->getValueAPF().isInfinity()); 7307 7308 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7309 return getUNDEF(X.getValueType()); 7310 7311 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7312 return getUNDEF(X.getValueType()); 7313 7314 if (!YC) 7315 return SDValue(); 7316 7317 // X + -0.0 --> X 7318 if (Opcode == ISD::FADD) 7319 if (YC->getValueAPF().isNegZero()) 7320 return X; 7321 7322 // X - +0.0 --> X 7323 if (Opcode == ISD::FSUB) 7324 if (YC->getValueAPF().isPosZero()) 7325 return X; 7326 7327 // X * 1.0 --> X 7328 // X / 1.0 --> X 7329 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7330 if (YC->getValueAPF().isExactlyValue(1.0)) 7331 return X; 7332 7333 return SDValue(); 7334 } 7335 7336 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7337 SDValue Ptr, SDValue SV, unsigned Align) { 7338 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7339 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7340 } 7341 7342 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7343 ArrayRef<SDUse> Ops) { 7344 switch (Ops.size()) { 7345 case 0: return getNode(Opcode, DL, VT); 7346 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7347 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7348 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7349 default: break; 7350 } 7351 7352 // Copy from an SDUse array into an SDValue array for use with 7353 // the regular getNode logic. 7354 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7355 return getNode(Opcode, DL, VT, NewOps); 7356 } 7357 7358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7359 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7360 unsigned NumOps = Ops.size(); 7361 switch (NumOps) { 7362 case 0: return getNode(Opcode, DL, VT); 7363 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7364 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7365 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7366 default: break; 7367 } 7368 7369 switch (Opcode) { 7370 default: break; 7371 case ISD::BUILD_VECTOR: 7372 // Attempt to simplify BUILD_VECTOR. 7373 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7374 return V; 7375 break; 7376 case ISD::CONCAT_VECTORS: 7377 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7378 return V; 7379 break; 7380 case ISD::SELECT_CC: 7381 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7382 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7383 "LHS and RHS of condition must have same type!"); 7384 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7385 "True and False arms of SelectCC must have same type!"); 7386 assert(Ops[2].getValueType() == VT && 7387 "select_cc node must be of same type as true and false value!"); 7388 break; 7389 case ISD::BR_CC: 7390 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7391 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7392 "LHS/RHS of comparison should match types!"); 7393 break; 7394 } 7395 7396 // Memoize nodes. 7397 SDNode *N; 7398 SDVTList VTs = getVTList(VT); 7399 7400 if (VT != MVT::Glue) { 7401 FoldingSetNodeID ID; 7402 AddNodeIDNode(ID, Opcode, VTs, Ops); 7403 void *IP = nullptr; 7404 7405 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7406 return SDValue(E, 0); 7407 7408 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7409 createOperands(N, Ops); 7410 7411 CSEMap.InsertNode(N, IP); 7412 } else { 7413 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7414 createOperands(N, Ops); 7415 } 7416 7417 InsertNode(N); 7418 SDValue V(N, 0); 7419 NewSDValueDbgMsg(V, "Creating new node: ", this); 7420 return V; 7421 } 7422 7423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7424 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7425 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7426 } 7427 7428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7429 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7430 if (VTList.NumVTs == 1) 7431 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7432 7433 switch (Opcode) { 7434 case ISD::STRICT_FP_EXTEND: 7435 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7436 "Invalid STRICT_FP_EXTEND!"); 7437 assert(VTList.VTs[0].isFloatingPoint() && 7438 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7439 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7440 "STRICT_FP_EXTEND result type should be vector iff the operand " 7441 "type is vector!"); 7442 assert((!VTList.VTs[0].isVector() || 7443 VTList.VTs[0].getVectorNumElements() == 7444 Ops[1].getValueType().getVectorNumElements()) && 7445 "Vector element count mismatch!"); 7446 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7447 "Invalid fpext node, dst <= src!"); 7448 break; 7449 case ISD::STRICT_FP_ROUND: 7450 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7451 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7452 "STRICT_FP_ROUND result type should be vector iff the operand " 7453 "type is vector!"); 7454 assert((!VTList.VTs[0].isVector() || 7455 VTList.VTs[0].getVectorNumElements() == 7456 Ops[1].getValueType().getVectorNumElements()) && 7457 "Vector element count mismatch!"); 7458 assert(VTList.VTs[0].isFloatingPoint() && 7459 Ops[1].getValueType().isFloatingPoint() && 7460 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7461 isa<ConstantSDNode>(Ops[2]) && 7462 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7463 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7464 "Invalid STRICT_FP_ROUND!"); 7465 break; 7466 #if 0 7467 // FIXME: figure out how to safely handle things like 7468 // int foo(int x) { return 1 << (x & 255); } 7469 // int bar() { return foo(256); } 7470 case ISD::SRA_PARTS: 7471 case ISD::SRL_PARTS: 7472 case ISD::SHL_PARTS: 7473 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7474 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7475 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7476 else if (N3.getOpcode() == ISD::AND) 7477 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7478 // If the and is only masking out bits that cannot effect the shift, 7479 // eliminate the and. 7480 unsigned NumBits = VT.getScalarSizeInBits()*2; 7481 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7482 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7483 } 7484 break; 7485 #endif 7486 } 7487 7488 // Memoize the node unless it returns a flag. 7489 SDNode *N; 7490 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7491 FoldingSetNodeID ID; 7492 AddNodeIDNode(ID, Opcode, VTList, Ops); 7493 void *IP = nullptr; 7494 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7495 return SDValue(E, 0); 7496 7497 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7498 N->setFlags(Flags); 7499 createOperands(N, Ops); 7500 CSEMap.InsertNode(N, IP); 7501 } else { 7502 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7503 createOperands(N, Ops); 7504 } 7505 InsertNode(N); 7506 SDValue V(N, 0); 7507 NewSDValueDbgMsg(V, "Creating new node: ", this); 7508 return V; 7509 } 7510 7511 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7512 SDVTList VTList) { 7513 return getNode(Opcode, DL, VTList, None); 7514 } 7515 7516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7517 SDValue N1) { 7518 SDValue Ops[] = { N1 }; 7519 return getNode(Opcode, DL, VTList, Ops); 7520 } 7521 7522 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7523 SDValue N1, SDValue N2) { 7524 SDValue Ops[] = { N1, N2 }; 7525 return getNode(Opcode, DL, VTList, Ops); 7526 } 7527 7528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7529 SDValue N1, SDValue N2, SDValue N3) { 7530 SDValue Ops[] = { N1, N2, N3 }; 7531 return getNode(Opcode, DL, VTList, Ops); 7532 } 7533 7534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7535 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7536 SDValue Ops[] = { N1, N2, N3, N4 }; 7537 return getNode(Opcode, DL, VTList, Ops); 7538 } 7539 7540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7541 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7542 SDValue N5) { 7543 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7544 return getNode(Opcode, DL, VTList, Ops); 7545 } 7546 7547 SDVTList SelectionDAG::getVTList(EVT VT) { 7548 return makeVTList(SDNode::getValueTypeList(VT), 1); 7549 } 7550 7551 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7552 FoldingSetNodeID ID; 7553 ID.AddInteger(2U); 7554 ID.AddInteger(VT1.getRawBits()); 7555 ID.AddInteger(VT2.getRawBits()); 7556 7557 void *IP = nullptr; 7558 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7559 if (!Result) { 7560 EVT *Array = Allocator.Allocate<EVT>(2); 7561 Array[0] = VT1; 7562 Array[1] = VT2; 7563 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7564 VTListMap.InsertNode(Result, IP); 7565 } 7566 return Result->getSDVTList(); 7567 } 7568 7569 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7570 FoldingSetNodeID ID; 7571 ID.AddInteger(3U); 7572 ID.AddInteger(VT1.getRawBits()); 7573 ID.AddInteger(VT2.getRawBits()); 7574 ID.AddInteger(VT3.getRawBits()); 7575 7576 void *IP = nullptr; 7577 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7578 if (!Result) { 7579 EVT *Array = Allocator.Allocate<EVT>(3); 7580 Array[0] = VT1; 7581 Array[1] = VT2; 7582 Array[2] = VT3; 7583 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7584 VTListMap.InsertNode(Result, IP); 7585 } 7586 return Result->getSDVTList(); 7587 } 7588 7589 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7590 FoldingSetNodeID ID; 7591 ID.AddInteger(4U); 7592 ID.AddInteger(VT1.getRawBits()); 7593 ID.AddInteger(VT2.getRawBits()); 7594 ID.AddInteger(VT3.getRawBits()); 7595 ID.AddInteger(VT4.getRawBits()); 7596 7597 void *IP = nullptr; 7598 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7599 if (!Result) { 7600 EVT *Array = Allocator.Allocate<EVT>(4); 7601 Array[0] = VT1; 7602 Array[1] = VT2; 7603 Array[2] = VT3; 7604 Array[3] = VT4; 7605 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7606 VTListMap.InsertNode(Result, IP); 7607 } 7608 return Result->getSDVTList(); 7609 } 7610 7611 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7612 unsigned NumVTs = VTs.size(); 7613 FoldingSetNodeID ID; 7614 ID.AddInteger(NumVTs); 7615 for (unsigned index = 0; index < NumVTs; index++) { 7616 ID.AddInteger(VTs[index].getRawBits()); 7617 } 7618 7619 void *IP = nullptr; 7620 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7621 if (!Result) { 7622 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7623 llvm::copy(VTs, Array); 7624 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7625 VTListMap.InsertNode(Result, IP); 7626 } 7627 return Result->getSDVTList(); 7628 } 7629 7630 7631 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7632 /// specified operands. If the resultant node already exists in the DAG, 7633 /// this does not modify the specified node, instead it returns the node that 7634 /// already exists. If the resultant node does not exist in the DAG, the 7635 /// input node is returned. As a degenerate case, if you specify the same 7636 /// input operands as the node already has, the input node is returned. 7637 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7638 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7639 7640 // Check to see if there is no change. 7641 if (Op == N->getOperand(0)) return N; 7642 7643 // See if the modified node already exists. 7644 void *InsertPos = nullptr; 7645 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7646 return Existing; 7647 7648 // Nope it doesn't. Remove the node from its current place in the maps. 7649 if (InsertPos) 7650 if (!RemoveNodeFromCSEMaps(N)) 7651 InsertPos = nullptr; 7652 7653 // Now we update the operands. 7654 N->OperandList[0].set(Op); 7655 7656 updateDivergence(N); 7657 // If this gets put into a CSE map, add it. 7658 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7659 return N; 7660 } 7661 7662 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7663 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7664 7665 // Check to see if there is no change. 7666 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7667 return N; // No operands changed, just return the input node. 7668 7669 // See if the modified node already exists. 7670 void *InsertPos = nullptr; 7671 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7672 return Existing; 7673 7674 // Nope it doesn't. Remove the node from its current place in the maps. 7675 if (InsertPos) 7676 if (!RemoveNodeFromCSEMaps(N)) 7677 InsertPos = nullptr; 7678 7679 // Now we update the operands. 7680 if (N->OperandList[0] != Op1) 7681 N->OperandList[0].set(Op1); 7682 if (N->OperandList[1] != Op2) 7683 N->OperandList[1].set(Op2); 7684 7685 updateDivergence(N); 7686 // If this gets put into a CSE map, add it. 7687 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7688 return N; 7689 } 7690 7691 SDNode *SelectionDAG:: 7692 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7693 SDValue Ops[] = { Op1, Op2, Op3 }; 7694 return UpdateNodeOperands(N, Ops); 7695 } 7696 7697 SDNode *SelectionDAG:: 7698 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7699 SDValue Op3, SDValue Op4) { 7700 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7701 return UpdateNodeOperands(N, Ops); 7702 } 7703 7704 SDNode *SelectionDAG:: 7705 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7706 SDValue Op3, SDValue Op4, SDValue Op5) { 7707 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7708 return UpdateNodeOperands(N, Ops); 7709 } 7710 7711 SDNode *SelectionDAG:: 7712 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7713 unsigned NumOps = Ops.size(); 7714 assert(N->getNumOperands() == NumOps && 7715 "Update with wrong number of operands"); 7716 7717 // If no operands changed just return the input node. 7718 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7719 return N; 7720 7721 // See if the modified node already exists. 7722 void *InsertPos = nullptr; 7723 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7724 return Existing; 7725 7726 // Nope it doesn't. Remove the node from its current place in the maps. 7727 if (InsertPos) 7728 if (!RemoveNodeFromCSEMaps(N)) 7729 InsertPos = nullptr; 7730 7731 // Now we update the operands. 7732 for (unsigned i = 0; i != NumOps; ++i) 7733 if (N->OperandList[i] != Ops[i]) 7734 N->OperandList[i].set(Ops[i]); 7735 7736 updateDivergence(N); 7737 // If this gets put into a CSE map, add it. 7738 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7739 return N; 7740 } 7741 7742 /// DropOperands - Release the operands and set this node to have 7743 /// zero operands. 7744 void SDNode::DropOperands() { 7745 // Unlike the code in MorphNodeTo that does this, we don't need to 7746 // watch for dead nodes here. 7747 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7748 SDUse &Use = *I++; 7749 Use.set(SDValue()); 7750 } 7751 } 7752 7753 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7754 ArrayRef<MachineMemOperand *> NewMemRefs) { 7755 if (NewMemRefs.empty()) { 7756 N->clearMemRefs(); 7757 return; 7758 } 7759 7760 // Check if we can avoid allocating by storing a single reference directly. 7761 if (NewMemRefs.size() == 1) { 7762 N->MemRefs = NewMemRefs[0]; 7763 N->NumMemRefs = 1; 7764 return; 7765 } 7766 7767 MachineMemOperand **MemRefsBuffer = 7768 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7769 llvm::copy(NewMemRefs, MemRefsBuffer); 7770 N->MemRefs = MemRefsBuffer; 7771 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7772 } 7773 7774 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7775 /// machine opcode. 7776 /// 7777 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7778 EVT VT) { 7779 SDVTList VTs = getVTList(VT); 7780 return SelectNodeTo(N, MachineOpc, VTs, None); 7781 } 7782 7783 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7784 EVT VT, SDValue Op1) { 7785 SDVTList VTs = getVTList(VT); 7786 SDValue Ops[] = { Op1 }; 7787 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7788 } 7789 7790 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7791 EVT VT, SDValue Op1, 7792 SDValue Op2) { 7793 SDVTList VTs = getVTList(VT); 7794 SDValue Ops[] = { Op1, Op2 }; 7795 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7796 } 7797 7798 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7799 EVT VT, SDValue Op1, 7800 SDValue Op2, SDValue Op3) { 7801 SDVTList VTs = getVTList(VT); 7802 SDValue Ops[] = { Op1, Op2, Op3 }; 7803 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7804 } 7805 7806 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7807 EVT VT, ArrayRef<SDValue> Ops) { 7808 SDVTList VTs = getVTList(VT); 7809 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7810 } 7811 7812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7813 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7814 SDVTList VTs = getVTList(VT1, VT2); 7815 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7816 } 7817 7818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7819 EVT VT1, EVT VT2) { 7820 SDVTList VTs = getVTList(VT1, VT2); 7821 return SelectNodeTo(N, MachineOpc, VTs, None); 7822 } 7823 7824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7825 EVT VT1, EVT VT2, EVT VT3, 7826 ArrayRef<SDValue> Ops) { 7827 SDVTList VTs = getVTList(VT1, VT2, VT3); 7828 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7829 } 7830 7831 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7832 EVT VT1, EVT VT2, 7833 SDValue Op1, SDValue Op2) { 7834 SDVTList VTs = getVTList(VT1, VT2); 7835 SDValue Ops[] = { Op1, Op2 }; 7836 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7837 } 7838 7839 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7840 SDVTList VTs,ArrayRef<SDValue> Ops) { 7841 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7842 // Reset the NodeID to -1. 7843 New->setNodeId(-1); 7844 if (New != N) { 7845 ReplaceAllUsesWith(N, New); 7846 RemoveDeadNode(N); 7847 } 7848 return New; 7849 } 7850 7851 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7852 /// the line number information on the merged node since it is not possible to 7853 /// preserve the information that operation is associated with multiple lines. 7854 /// This will make the debugger working better at -O0, were there is a higher 7855 /// probability having other instructions associated with that line. 7856 /// 7857 /// For IROrder, we keep the smaller of the two 7858 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7859 DebugLoc NLoc = N->getDebugLoc(); 7860 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7861 N->setDebugLoc(DebugLoc()); 7862 } 7863 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7864 N->setIROrder(Order); 7865 return N; 7866 } 7867 7868 /// MorphNodeTo - This *mutates* the specified node to have the specified 7869 /// return type, opcode, and operands. 7870 /// 7871 /// Note that MorphNodeTo returns the resultant node. If there is already a 7872 /// node of the specified opcode and operands, it returns that node instead of 7873 /// the current one. Note that the SDLoc need not be the same. 7874 /// 7875 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7876 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7877 /// node, and because it doesn't require CSE recalculation for any of 7878 /// the node's users. 7879 /// 7880 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7881 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7882 /// the legalizer which maintain worklists that would need to be updated when 7883 /// deleting things. 7884 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7885 SDVTList VTs, ArrayRef<SDValue> Ops) { 7886 // If an identical node already exists, use it. 7887 void *IP = nullptr; 7888 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7889 FoldingSetNodeID ID; 7890 AddNodeIDNode(ID, Opc, VTs, Ops); 7891 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7892 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7893 } 7894 7895 if (!RemoveNodeFromCSEMaps(N)) 7896 IP = nullptr; 7897 7898 // Start the morphing. 7899 N->NodeType = Opc; 7900 N->ValueList = VTs.VTs; 7901 N->NumValues = VTs.NumVTs; 7902 7903 // Clear the operands list, updating used nodes to remove this from their 7904 // use list. Keep track of any operands that become dead as a result. 7905 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7906 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7907 SDUse &Use = *I++; 7908 SDNode *Used = Use.getNode(); 7909 Use.set(SDValue()); 7910 if (Used->use_empty()) 7911 DeadNodeSet.insert(Used); 7912 } 7913 7914 // For MachineNode, initialize the memory references information. 7915 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7916 MN->clearMemRefs(); 7917 7918 // Swap for an appropriately sized array from the recycler. 7919 removeOperands(N); 7920 createOperands(N, Ops); 7921 7922 // Delete any nodes that are still dead after adding the uses for the 7923 // new operands. 7924 if (!DeadNodeSet.empty()) { 7925 SmallVector<SDNode *, 16> DeadNodes; 7926 for (SDNode *N : DeadNodeSet) 7927 if (N->use_empty()) 7928 DeadNodes.push_back(N); 7929 RemoveDeadNodes(DeadNodes); 7930 } 7931 7932 if (IP) 7933 CSEMap.InsertNode(N, IP); // Memoize the new node. 7934 return N; 7935 } 7936 7937 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7938 unsigned OrigOpc = Node->getOpcode(); 7939 unsigned NewOpc; 7940 switch (OrigOpc) { 7941 default: 7942 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7943 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7944 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7945 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7946 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7947 #include "llvm/IR/ConstrainedOps.def" 7948 } 7949 7950 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7951 7952 // We're taking this node out of the chain, so we need to re-link things. 7953 SDValue InputChain = Node->getOperand(0); 7954 SDValue OutputChain = SDValue(Node, 1); 7955 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7956 7957 SmallVector<SDValue, 3> Ops; 7958 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7959 Ops.push_back(Node->getOperand(i)); 7960 7961 SDVTList VTs = getVTList(Node->getValueType(0)); 7962 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7963 7964 // MorphNodeTo can operate in two ways: if an existing node with the 7965 // specified operands exists, it can just return it. Otherwise, it 7966 // updates the node in place to have the requested operands. 7967 if (Res == Node) { 7968 // If we updated the node in place, reset the node ID. To the isel, 7969 // this should be just like a newly allocated machine node. 7970 Res->setNodeId(-1); 7971 } else { 7972 ReplaceAllUsesWith(Node, Res); 7973 RemoveDeadNode(Node); 7974 } 7975 7976 return Res; 7977 } 7978 7979 /// getMachineNode - These are used for target selectors to create a new node 7980 /// with specified return type(s), MachineInstr opcode, and operands. 7981 /// 7982 /// Note that getMachineNode returns the resultant node. If there is already a 7983 /// node of the specified opcode and operands, it returns that node instead of 7984 /// the current one. 7985 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7986 EVT VT) { 7987 SDVTList VTs = getVTList(VT); 7988 return getMachineNode(Opcode, dl, VTs, None); 7989 } 7990 7991 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7992 EVT VT, SDValue Op1) { 7993 SDVTList VTs = getVTList(VT); 7994 SDValue Ops[] = { Op1 }; 7995 return getMachineNode(Opcode, dl, VTs, Ops); 7996 } 7997 7998 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7999 EVT VT, SDValue Op1, SDValue Op2) { 8000 SDVTList VTs = getVTList(VT); 8001 SDValue Ops[] = { Op1, Op2 }; 8002 return getMachineNode(Opcode, dl, VTs, Ops); 8003 } 8004 8005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8006 EVT VT, SDValue Op1, SDValue Op2, 8007 SDValue Op3) { 8008 SDVTList VTs = getVTList(VT); 8009 SDValue Ops[] = { Op1, Op2, Op3 }; 8010 return getMachineNode(Opcode, dl, VTs, Ops); 8011 } 8012 8013 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8014 EVT VT, ArrayRef<SDValue> Ops) { 8015 SDVTList VTs = getVTList(VT); 8016 return getMachineNode(Opcode, dl, VTs, Ops); 8017 } 8018 8019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8020 EVT VT1, EVT VT2, SDValue Op1, 8021 SDValue Op2) { 8022 SDVTList VTs = getVTList(VT1, VT2); 8023 SDValue Ops[] = { Op1, Op2 }; 8024 return getMachineNode(Opcode, dl, VTs, Ops); 8025 } 8026 8027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8028 EVT VT1, EVT VT2, SDValue Op1, 8029 SDValue Op2, SDValue Op3) { 8030 SDVTList VTs = getVTList(VT1, VT2); 8031 SDValue Ops[] = { Op1, Op2, Op3 }; 8032 return getMachineNode(Opcode, dl, VTs, Ops); 8033 } 8034 8035 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8036 EVT VT1, EVT VT2, 8037 ArrayRef<SDValue> Ops) { 8038 SDVTList VTs = getVTList(VT1, VT2); 8039 return getMachineNode(Opcode, dl, VTs, Ops); 8040 } 8041 8042 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8043 EVT VT1, EVT VT2, EVT VT3, 8044 SDValue Op1, SDValue Op2) { 8045 SDVTList VTs = getVTList(VT1, VT2, VT3); 8046 SDValue Ops[] = { Op1, Op2 }; 8047 return getMachineNode(Opcode, dl, VTs, Ops); 8048 } 8049 8050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8051 EVT VT1, EVT VT2, EVT VT3, 8052 SDValue Op1, SDValue Op2, 8053 SDValue Op3) { 8054 SDVTList VTs = getVTList(VT1, VT2, VT3); 8055 SDValue Ops[] = { Op1, Op2, Op3 }; 8056 return getMachineNode(Opcode, dl, VTs, Ops); 8057 } 8058 8059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8060 EVT VT1, EVT VT2, EVT VT3, 8061 ArrayRef<SDValue> Ops) { 8062 SDVTList VTs = getVTList(VT1, VT2, VT3); 8063 return getMachineNode(Opcode, dl, VTs, Ops); 8064 } 8065 8066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8067 ArrayRef<EVT> ResultTys, 8068 ArrayRef<SDValue> Ops) { 8069 SDVTList VTs = getVTList(ResultTys); 8070 return getMachineNode(Opcode, dl, VTs, Ops); 8071 } 8072 8073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8074 SDVTList VTs, 8075 ArrayRef<SDValue> Ops) { 8076 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8077 MachineSDNode *N; 8078 void *IP = nullptr; 8079 8080 if (DoCSE) { 8081 FoldingSetNodeID ID; 8082 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8083 IP = nullptr; 8084 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8085 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8086 } 8087 } 8088 8089 // Allocate a new MachineSDNode. 8090 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8091 createOperands(N, Ops); 8092 8093 if (DoCSE) 8094 CSEMap.InsertNode(N, IP); 8095 8096 InsertNode(N); 8097 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8098 return N; 8099 } 8100 8101 /// getTargetExtractSubreg - A convenience function for creating 8102 /// TargetOpcode::EXTRACT_SUBREG nodes. 8103 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8104 SDValue Operand) { 8105 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8106 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8107 VT, Operand, SRIdxVal); 8108 return SDValue(Subreg, 0); 8109 } 8110 8111 /// getTargetInsertSubreg - A convenience function for creating 8112 /// TargetOpcode::INSERT_SUBREG nodes. 8113 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8114 SDValue Operand, SDValue Subreg) { 8115 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8116 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8117 VT, Operand, Subreg, SRIdxVal); 8118 return SDValue(Result, 0); 8119 } 8120 8121 /// getNodeIfExists - Get the specified node if it's already available, or 8122 /// else return NULL. 8123 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8124 ArrayRef<SDValue> Ops, 8125 const SDNodeFlags Flags) { 8126 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8127 FoldingSetNodeID ID; 8128 AddNodeIDNode(ID, Opcode, VTList, Ops); 8129 void *IP = nullptr; 8130 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8131 E->intersectFlagsWith(Flags); 8132 return E; 8133 } 8134 } 8135 return nullptr; 8136 } 8137 8138 /// getDbgValue - Creates a SDDbgValue node. 8139 /// 8140 /// SDNode 8141 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8142 SDNode *N, unsigned R, bool IsIndirect, 8143 const DebugLoc &DL, unsigned O) { 8144 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8145 "Expected inlined-at fields to agree"); 8146 return new (DbgInfo->getAlloc()) 8147 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8148 } 8149 8150 /// Constant 8151 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8152 DIExpression *Expr, 8153 const Value *C, 8154 const DebugLoc &DL, unsigned O) { 8155 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8156 "Expected inlined-at fields to agree"); 8157 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8158 } 8159 8160 /// FrameIndex 8161 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8162 DIExpression *Expr, unsigned FI, 8163 bool IsIndirect, 8164 const DebugLoc &DL, 8165 unsigned O) { 8166 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8167 "Expected inlined-at fields to agree"); 8168 return new (DbgInfo->getAlloc()) 8169 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8170 } 8171 8172 /// VReg 8173 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8174 DIExpression *Expr, 8175 unsigned VReg, bool IsIndirect, 8176 const DebugLoc &DL, unsigned O) { 8177 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8178 "Expected inlined-at fields to agree"); 8179 return new (DbgInfo->getAlloc()) 8180 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8181 } 8182 8183 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8184 unsigned OffsetInBits, unsigned SizeInBits, 8185 bool InvalidateDbg) { 8186 SDNode *FromNode = From.getNode(); 8187 SDNode *ToNode = To.getNode(); 8188 assert(FromNode && ToNode && "Can't modify dbg values"); 8189 8190 // PR35338 8191 // TODO: assert(From != To && "Redundant dbg value transfer"); 8192 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8193 if (From == To || FromNode == ToNode) 8194 return; 8195 8196 if (!FromNode->getHasDebugValue()) 8197 return; 8198 8199 SmallVector<SDDbgValue *, 2> ClonedDVs; 8200 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8201 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8202 continue; 8203 8204 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8205 8206 // Just transfer the dbg value attached to From. 8207 if (Dbg->getResNo() != From.getResNo()) 8208 continue; 8209 8210 DIVariable *Var = Dbg->getVariable(); 8211 auto *Expr = Dbg->getExpression(); 8212 // If a fragment is requested, update the expression. 8213 if (SizeInBits) { 8214 // When splitting a larger (e.g., sign-extended) value whose 8215 // lower bits are described with an SDDbgValue, do not attempt 8216 // to transfer the SDDbgValue to the upper bits. 8217 if (auto FI = Expr->getFragmentInfo()) 8218 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8219 continue; 8220 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8221 SizeInBits); 8222 if (!Fragment) 8223 continue; 8224 Expr = *Fragment; 8225 } 8226 // Clone the SDDbgValue and move it to To. 8227 SDDbgValue *Clone = getDbgValue( 8228 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8229 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8230 ClonedDVs.push_back(Clone); 8231 8232 if (InvalidateDbg) { 8233 // Invalidate value and indicate the SDDbgValue should not be emitted. 8234 Dbg->setIsInvalidated(); 8235 Dbg->setIsEmitted(); 8236 } 8237 } 8238 8239 for (SDDbgValue *Dbg : ClonedDVs) 8240 AddDbgValue(Dbg, ToNode, false); 8241 } 8242 8243 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8244 if (!N.getHasDebugValue()) 8245 return; 8246 8247 SmallVector<SDDbgValue *, 2> ClonedDVs; 8248 for (auto DV : GetDbgValues(&N)) { 8249 if (DV->isInvalidated()) 8250 continue; 8251 switch (N.getOpcode()) { 8252 default: 8253 break; 8254 case ISD::ADD: 8255 SDValue N0 = N.getOperand(0); 8256 SDValue N1 = N.getOperand(1); 8257 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8258 isConstantIntBuildVectorOrConstantInt(N1)) { 8259 uint64_t Offset = N.getConstantOperandVal(1); 8260 // Rewrite an ADD constant node into a DIExpression. Since we are 8261 // performing arithmetic to compute the variable's *value* in the 8262 // DIExpression, we need to mark the expression with a 8263 // DW_OP_stack_value. 8264 auto *DIExpr = DV->getExpression(); 8265 DIExpr = 8266 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8267 SDDbgValue *Clone = 8268 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8269 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8270 ClonedDVs.push_back(Clone); 8271 DV->setIsInvalidated(); 8272 DV->setIsEmitted(); 8273 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8274 N0.getNode()->dumprFull(this); 8275 dbgs() << " into " << *DIExpr << '\n'); 8276 } 8277 } 8278 } 8279 8280 for (SDDbgValue *Dbg : ClonedDVs) 8281 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8282 } 8283 8284 /// Creates a SDDbgLabel node. 8285 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8286 const DebugLoc &DL, unsigned O) { 8287 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8288 "Expected inlined-at fields to agree"); 8289 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8290 } 8291 8292 namespace { 8293 8294 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8295 /// pointed to by a use iterator is deleted, increment the use iterator 8296 /// so that it doesn't dangle. 8297 /// 8298 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8299 SDNode::use_iterator &UI; 8300 SDNode::use_iterator &UE; 8301 8302 void NodeDeleted(SDNode *N, SDNode *E) override { 8303 // Increment the iterator as needed. 8304 while (UI != UE && N == *UI) 8305 ++UI; 8306 } 8307 8308 public: 8309 RAUWUpdateListener(SelectionDAG &d, 8310 SDNode::use_iterator &ui, 8311 SDNode::use_iterator &ue) 8312 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8313 }; 8314 8315 } // end anonymous namespace 8316 8317 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8318 /// This can cause recursive merging of nodes in the DAG. 8319 /// 8320 /// This version assumes From has a single result value. 8321 /// 8322 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8323 SDNode *From = FromN.getNode(); 8324 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8325 "Cannot replace with this method!"); 8326 assert(From != To.getNode() && "Cannot replace uses of with self"); 8327 8328 // Preserve Debug Values 8329 transferDbgValues(FromN, To); 8330 8331 // Iterate over all the existing uses of From. New uses will be added 8332 // to the beginning of the use list, which we avoid visiting. 8333 // This specifically avoids visiting uses of From that arise while the 8334 // replacement is happening, because any such uses would be the result 8335 // of CSE: If an existing node looks like From after one of its operands 8336 // is replaced by To, we don't want to replace of all its users with To 8337 // too. See PR3018 for more info. 8338 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8339 RAUWUpdateListener Listener(*this, UI, UE); 8340 while (UI != UE) { 8341 SDNode *User = *UI; 8342 8343 // This node is about to morph, remove its old self from the CSE maps. 8344 RemoveNodeFromCSEMaps(User); 8345 8346 // A user can appear in a use list multiple times, and when this 8347 // happens the uses are usually next to each other in the list. 8348 // To help reduce the number of CSE recomputations, process all 8349 // the uses of this user that we can find this way. 8350 do { 8351 SDUse &Use = UI.getUse(); 8352 ++UI; 8353 Use.set(To); 8354 if (To->isDivergent() != From->isDivergent()) 8355 updateDivergence(User); 8356 } while (UI != UE && *UI == User); 8357 // Now that we have modified User, add it back to the CSE maps. If it 8358 // already exists there, recursively merge the results together. 8359 AddModifiedNodeToCSEMaps(User); 8360 } 8361 8362 // If we just RAUW'd the root, take note. 8363 if (FromN == getRoot()) 8364 setRoot(To); 8365 } 8366 8367 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8368 /// This can cause recursive merging of nodes in the DAG. 8369 /// 8370 /// This version assumes that for each value of From, there is a 8371 /// corresponding value in To in the same position with the same type. 8372 /// 8373 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8374 #ifndef NDEBUG 8375 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8376 assert((!From->hasAnyUseOfValue(i) || 8377 From->getValueType(i) == To->getValueType(i)) && 8378 "Cannot use this version of ReplaceAllUsesWith!"); 8379 #endif 8380 8381 // Handle the trivial case. 8382 if (From == To) 8383 return; 8384 8385 // Preserve Debug Info. Only do this if there's a use. 8386 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8387 if (From->hasAnyUseOfValue(i)) { 8388 assert((i < To->getNumValues()) && "Invalid To location"); 8389 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8390 } 8391 8392 // Iterate over just the existing users of From. See the comments in 8393 // the ReplaceAllUsesWith above. 8394 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8395 RAUWUpdateListener Listener(*this, UI, UE); 8396 while (UI != UE) { 8397 SDNode *User = *UI; 8398 8399 // This node is about to morph, remove its old self from the CSE maps. 8400 RemoveNodeFromCSEMaps(User); 8401 8402 // A user can appear in a use list multiple times, and when this 8403 // happens the uses are usually next to each other in the list. 8404 // To help reduce the number of CSE recomputations, process all 8405 // the uses of this user that we can find this way. 8406 do { 8407 SDUse &Use = UI.getUse(); 8408 ++UI; 8409 Use.setNode(To); 8410 if (To->isDivergent() != From->isDivergent()) 8411 updateDivergence(User); 8412 } while (UI != UE && *UI == User); 8413 8414 // Now that we have modified User, add it back to the CSE maps. If it 8415 // already exists there, recursively merge the results together. 8416 AddModifiedNodeToCSEMaps(User); 8417 } 8418 8419 // If we just RAUW'd the root, take note. 8420 if (From == getRoot().getNode()) 8421 setRoot(SDValue(To, getRoot().getResNo())); 8422 } 8423 8424 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8425 /// This can cause recursive merging of nodes in the DAG. 8426 /// 8427 /// This version can replace From with any result values. To must match the 8428 /// number and types of values returned by From. 8429 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8430 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8431 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8432 8433 // Preserve Debug Info. 8434 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8435 transferDbgValues(SDValue(From, i), To[i]); 8436 8437 // Iterate over just the existing users of From. See the comments in 8438 // the ReplaceAllUsesWith above. 8439 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8440 RAUWUpdateListener Listener(*this, UI, UE); 8441 while (UI != UE) { 8442 SDNode *User = *UI; 8443 8444 // This node is about to morph, remove its old self from the CSE maps. 8445 RemoveNodeFromCSEMaps(User); 8446 8447 // A user can appear in a use list multiple times, and when this happens the 8448 // uses are usually next to each other in the list. To help reduce the 8449 // number of CSE and divergence recomputations, process all the uses of this 8450 // user that we can find this way. 8451 bool To_IsDivergent = false; 8452 do { 8453 SDUse &Use = UI.getUse(); 8454 const SDValue &ToOp = To[Use.getResNo()]; 8455 ++UI; 8456 Use.set(ToOp); 8457 To_IsDivergent |= ToOp->isDivergent(); 8458 } while (UI != UE && *UI == User); 8459 8460 if (To_IsDivergent != From->isDivergent()) 8461 updateDivergence(User); 8462 8463 // Now that we have modified User, add it back to the CSE maps. If it 8464 // already exists there, recursively merge the results together. 8465 AddModifiedNodeToCSEMaps(User); 8466 } 8467 8468 // If we just RAUW'd the root, take note. 8469 if (From == getRoot().getNode()) 8470 setRoot(SDValue(To[getRoot().getResNo()])); 8471 } 8472 8473 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8474 /// uses of other values produced by From.getNode() alone. The Deleted 8475 /// vector is handled the same way as for ReplaceAllUsesWith. 8476 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8477 // Handle the really simple, really trivial case efficiently. 8478 if (From == To) return; 8479 8480 // Handle the simple, trivial, case efficiently. 8481 if (From.getNode()->getNumValues() == 1) { 8482 ReplaceAllUsesWith(From, To); 8483 return; 8484 } 8485 8486 // Preserve Debug Info. 8487 transferDbgValues(From, To); 8488 8489 // Iterate over just the existing users of From. See the comments in 8490 // the ReplaceAllUsesWith above. 8491 SDNode::use_iterator UI = From.getNode()->use_begin(), 8492 UE = From.getNode()->use_end(); 8493 RAUWUpdateListener Listener(*this, UI, UE); 8494 while (UI != UE) { 8495 SDNode *User = *UI; 8496 bool UserRemovedFromCSEMaps = false; 8497 8498 // A user can appear in a use list multiple times, and when this 8499 // happens the uses are usually next to each other in the list. 8500 // To help reduce the number of CSE recomputations, process all 8501 // the uses of this user that we can find this way. 8502 do { 8503 SDUse &Use = UI.getUse(); 8504 8505 // Skip uses of different values from the same node. 8506 if (Use.getResNo() != From.getResNo()) { 8507 ++UI; 8508 continue; 8509 } 8510 8511 // If this node hasn't been modified yet, it's still in the CSE maps, 8512 // so remove its old self from the CSE maps. 8513 if (!UserRemovedFromCSEMaps) { 8514 RemoveNodeFromCSEMaps(User); 8515 UserRemovedFromCSEMaps = true; 8516 } 8517 8518 ++UI; 8519 Use.set(To); 8520 if (To->isDivergent() != From->isDivergent()) 8521 updateDivergence(User); 8522 } while (UI != UE && *UI == User); 8523 // We are iterating over all uses of the From node, so if a use 8524 // doesn't use the specific value, no changes are made. 8525 if (!UserRemovedFromCSEMaps) 8526 continue; 8527 8528 // Now that we have modified User, add it back to the CSE maps. If it 8529 // already exists there, recursively merge the results together. 8530 AddModifiedNodeToCSEMaps(User); 8531 } 8532 8533 // If we just RAUW'd the root, take note. 8534 if (From == getRoot()) 8535 setRoot(To); 8536 } 8537 8538 namespace { 8539 8540 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8541 /// to record information about a use. 8542 struct UseMemo { 8543 SDNode *User; 8544 unsigned Index; 8545 SDUse *Use; 8546 }; 8547 8548 /// operator< - Sort Memos by User. 8549 bool operator<(const UseMemo &L, const UseMemo &R) { 8550 return (intptr_t)L.User < (intptr_t)R.User; 8551 } 8552 8553 } // end anonymous namespace 8554 8555 void SelectionDAG::updateDivergence(SDNode * N) 8556 { 8557 if (TLI->isSDNodeAlwaysUniform(N)) 8558 return; 8559 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8560 for (auto &Op : N->ops()) { 8561 if (Op.Val.getValueType() != MVT::Other) 8562 IsDivergent |= Op.getNode()->isDivergent(); 8563 } 8564 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8565 N->SDNodeBits.IsDivergent = IsDivergent; 8566 for (auto U : N->uses()) { 8567 updateDivergence(U); 8568 } 8569 } 8570 } 8571 8572 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8573 DenseMap<SDNode *, unsigned> Degree; 8574 Order.reserve(AllNodes.size()); 8575 for (auto &N : allnodes()) { 8576 unsigned NOps = N.getNumOperands(); 8577 Degree[&N] = NOps; 8578 if (0 == NOps) 8579 Order.push_back(&N); 8580 } 8581 for (size_t I = 0; I != Order.size(); ++I) { 8582 SDNode *N = Order[I]; 8583 for (auto U : N->uses()) { 8584 unsigned &UnsortedOps = Degree[U]; 8585 if (0 == --UnsortedOps) 8586 Order.push_back(U); 8587 } 8588 } 8589 } 8590 8591 #ifndef NDEBUG 8592 void SelectionDAG::VerifyDAGDiverence() { 8593 std::vector<SDNode *> TopoOrder; 8594 CreateTopologicalOrder(TopoOrder); 8595 const TargetLowering &TLI = getTargetLoweringInfo(); 8596 DenseMap<const SDNode *, bool> DivergenceMap; 8597 for (auto &N : allnodes()) { 8598 DivergenceMap[&N] = false; 8599 } 8600 for (auto N : TopoOrder) { 8601 bool IsDivergent = DivergenceMap[N]; 8602 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8603 for (auto &Op : N->ops()) { 8604 if (Op.Val.getValueType() != MVT::Other) 8605 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8606 } 8607 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8608 DivergenceMap[N] = true; 8609 } 8610 } 8611 for (auto &N : allnodes()) { 8612 (void)N; 8613 assert(DivergenceMap[&N] == N.isDivergent() && 8614 "Divergence bit inconsistency detected\n"); 8615 } 8616 } 8617 #endif 8618 8619 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8620 /// uses of other values produced by From.getNode() alone. The same value 8621 /// may appear in both the From and To list. The Deleted vector is 8622 /// handled the same way as for ReplaceAllUsesWith. 8623 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8624 const SDValue *To, 8625 unsigned Num){ 8626 // Handle the simple, trivial case efficiently. 8627 if (Num == 1) 8628 return ReplaceAllUsesOfValueWith(*From, *To); 8629 8630 transferDbgValues(*From, *To); 8631 8632 // Read up all the uses and make records of them. This helps 8633 // processing new uses that are introduced during the 8634 // replacement process. 8635 SmallVector<UseMemo, 4> Uses; 8636 for (unsigned i = 0; i != Num; ++i) { 8637 unsigned FromResNo = From[i].getResNo(); 8638 SDNode *FromNode = From[i].getNode(); 8639 for (SDNode::use_iterator UI = FromNode->use_begin(), 8640 E = FromNode->use_end(); UI != E; ++UI) { 8641 SDUse &Use = UI.getUse(); 8642 if (Use.getResNo() == FromResNo) { 8643 UseMemo Memo = { *UI, i, &Use }; 8644 Uses.push_back(Memo); 8645 } 8646 } 8647 } 8648 8649 // Sort the uses, so that all the uses from a given User are together. 8650 llvm::sort(Uses); 8651 8652 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8653 UseIndex != UseIndexEnd; ) { 8654 // We know that this user uses some value of From. If it is the right 8655 // value, update it. 8656 SDNode *User = Uses[UseIndex].User; 8657 8658 // This node is about to morph, remove its old self from the CSE maps. 8659 RemoveNodeFromCSEMaps(User); 8660 8661 // The Uses array is sorted, so all the uses for a given User 8662 // are next to each other in the list. 8663 // To help reduce the number of CSE recomputations, process all 8664 // the uses of this user that we can find this way. 8665 do { 8666 unsigned i = Uses[UseIndex].Index; 8667 SDUse &Use = *Uses[UseIndex].Use; 8668 ++UseIndex; 8669 8670 Use.set(To[i]); 8671 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8672 8673 // Now that we have modified User, add it back to the CSE maps. If it 8674 // already exists there, recursively merge the results together. 8675 AddModifiedNodeToCSEMaps(User); 8676 } 8677 } 8678 8679 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8680 /// based on their topological order. It returns the maximum id and a vector 8681 /// of the SDNodes* in assigned order by reference. 8682 unsigned SelectionDAG::AssignTopologicalOrder() { 8683 unsigned DAGSize = 0; 8684 8685 // SortedPos tracks the progress of the algorithm. Nodes before it are 8686 // sorted, nodes after it are unsorted. When the algorithm completes 8687 // it is at the end of the list. 8688 allnodes_iterator SortedPos = allnodes_begin(); 8689 8690 // Visit all the nodes. Move nodes with no operands to the front of 8691 // the list immediately. Annotate nodes that do have operands with their 8692 // operand count. Before we do this, the Node Id fields of the nodes 8693 // may contain arbitrary values. After, the Node Id fields for nodes 8694 // before SortedPos will contain the topological sort index, and the 8695 // Node Id fields for nodes At SortedPos and after will contain the 8696 // count of outstanding operands. 8697 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8698 SDNode *N = &*I++; 8699 checkForCycles(N, this); 8700 unsigned Degree = N->getNumOperands(); 8701 if (Degree == 0) { 8702 // A node with no uses, add it to the result array immediately. 8703 N->setNodeId(DAGSize++); 8704 allnodes_iterator Q(N); 8705 if (Q != SortedPos) 8706 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8707 assert(SortedPos != AllNodes.end() && "Overran node list"); 8708 ++SortedPos; 8709 } else { 8710 // Temporarily use the Node Id as scratch space for the degree count. 8711 N->setNodeId(Degree); 8712 } 8713 } 8714 8715 // Visit all the nodes. As we iterate, move nodes into sorted order, 8716 // such that by the time the end is reached all nodes will be sorted. 8717 for (SDNode &Node : allnodes()) { 8718 SDNode *N = &Node; 8719 checkForCycles(N, this); 8720 // N is in sorted position, so all its uses have one less operand 8721 // that needs to be sorted. 8722 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8723 UI != UE; ++UI) { 8724 SDNode *P = *UI; 8725 unsigned Degree = P->getNodeId(); 8726 assert(Degree != 0 && "Invalid node degree"); 8727 --Degree; 8728 if (Degree == 0) { 8729 // All of P's operands are sorted, so P may sorted now. 8730 P->setNodeId(DAGSize++); 8731 if (P->getIterator() != SortedPos) 8732 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8733 assert(SortedPos != AllNodes.end() && "Overran node list"); 8734 ++SortedPos; 8735 } else { 8736 // Update P's outstanding operand count. 8737 P->setNodeId(Degree); 8738 } 8739 } 8740 if (Node.getIterator() == SortedPos) { 8741 #ifndef NDEBUG 8742 allnodes_iterator I(N); 8743 SDNode *S = &*++I; 8744 dbgs() << "Overran sorted position:\n"; 8745 S->dumprFull(this); dbgs() << "\n"; 8746 dbgs() << "Checking if this is due to cycles\n"; 8747 checkForCycles(this, true); 8748 #endif 8749 llvm_unreachable(nullptr); 8750 } 8751 } 8752 8753 assert(SortedPos == AllNodes.end() && 8754 "Topological sort incomplete!"); 8755 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8756 "First node in topological sort is not the entry token!"); 8757 assert(AllNodes.front().getNodeId() == 0 && 8758 "First node in topological sort has non-zero id!"); 8759 assert(AllNodes.front().getNumOperands() == 0 && 8760 "First node in topological sort has operands!"); 8761 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8762 "Last node in topologic sort has unexpected id!"); 8763 assert(AllNodes.back().use_empty() && 8764 "Last node in topologic sort has users!"); 8765 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8766 return DAGSize; 8767 } 8768 8769 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8770 /// value is produced by SD. 8771 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8772 if (SD) { 8773 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8774 SD->setHasDebugValue(true); 8775 } 8776 DbgInfo->add(DB, SD, isParameter); 8777 } 8778 8779 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8780 DbgInfo->add(DB); 8781 } 8782 8783 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8784 SDValue NewMemOp) { 8785 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8786 // The new memory operation must have the same position as the old load in 8787 // terms of memory dependency. Create a TokenFactor for the old load and new 8788 // memory operation and update uses of the old load's output chain to use that 8789 // TokenFactor. 8790 SDValue OldChain = SDValue(OldLoad, 1); 8791 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8792 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8793 return NewChain; 8794 8795 SDValue TokenFactor = 8796 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8797 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8798 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8799 return TokenFactor; 8800 } 8801 8802 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8803 Function **OutFunction) { 8804 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8805 8806 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8807 auto *Module = MF->getFunction().getParent(); 8808 auto *Function = Module->getFunction(Symbol); 8809 8810 if (OutFunction != nullptr) 8811 *OutFunction = Function; 8812 8813 if (Function != nullptr) { 8814 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8815 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8816 } 8817 8818 std::string ErrorStr; 8819 raw_string_ostream ErrorFormatter(ErrorStr); 8820 8821 ErrorFormatter << "Undefined external symbol "; 8822 ErrorFormatter << '"' << Symbol << '"'; 8823 ErrorFormatter.flush(); 8824 8825 report_fatal_error(ErrorStr); 8826 } 8827 8828 //===----------------------------------------------------------------------===// 8829 // SDNode Class 8830 //===----------------------------------------------------------------------===// 8831 8832 bool llvm::isNullConstant(SDValue V) { 8833 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8834 return Const != nullptr && Const->isNullValue(); 8835 } 8836 8837 bool llvm::isNullFPConstant(SDValue V) { 8838 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8839 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8840 } 8841 8842 bool llvm::isAllOnesConstant(SDValue V) { 8843 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8844 return Const != nullptr && Const->isAllOnesValue(); 8845 } 8846 8847 bool llvm::isOneConstant(SDValue V) { 8848 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8849 return Const != nullptr && Const->isOne(); 8850 } 8851 8852 SDValue llvm::peekThroughBitcasts(SDValue V) { 8853 while (V.getOpcode() == ISD::BITCAST) 8854 V = V.getOperand(0); 8855 return V; 8856 } 8857 8858 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8859 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8860 V = V.getOperand(0); 8861 return V; 8862 } 8863 8864 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8865 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8866 V = V.getOperand(0); 8867 return V; 8868 } 8869 8870 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8871 if (V.getOpcode() != ISD::XOR) 8872 return false; 8873 V = peekThroughBitcasts(V.getOperand(1)); 8874 unsigned NumBits = V.getScalarValueSizeInBits(); 8875 ConstantSDNode *C = 8876 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8877 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8878 } 8879 8880 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8881 bool AllowTruncation) { 8882 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8883 return CN; 8884 8885 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8886 BitVector UndefElements; 8887 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8888 8889 // BuildVectors can truncate their operands. Ignore that case here unless 8890 // AllowTruncation is set. 8891 if (CN && (UndefElements.none() || AllowUndefs)) { 8892 EVT CVT = CN->getValueType(0); 8893 EVT NSVT = N.getValueType().getScalarType(); 8894 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8895 if (AllowTruncation || (CVT == NSVT)) 8896 return CN; 8897 } 8898 } 8899 8900 return nullptr; 8901 } 8902 8903 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8904 bool AllowUndefs, 8905 bool AllowTruncation) { 8906 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8907 return CN; 8908 8909 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8910 BitVector UndefElements; 8911 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8912 8913 // BuildVectors can truncate their operands. Ignore that case here unless 8914 // AllowTruncation is set. 8915 if (CN && (UndefElements.none() || AllowUndefs)) { 8916 EVT CVT = CN->getValueType(0); 8917 EVT NSVT = N.getValueType().getScalarType(); 8918 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8919 if (AllowTruncation || (CVT == NSVT)) 8920 return CN; 8921 } 8922 } 8923 8924 return nullptr; 8925 } 8926 8927 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8928 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8929 return CN; 8930 8931 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8932 BitVector UndefElements; 8933 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8934 if (CN && (UndefElements.none() || AllowUndefs)) 8935 return CN; 8936 } 8937 8938 return nullptr; 8939 } 8940 8941 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8942 const APInt &DemandedElts, 8943 bool AllowUndefs) { 8944 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8945 return CN; 8946 8947 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8948 BitVector UndefElements; 8949 ConstantFPSDNode *CN = 8950 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8951 if (CN && (UndefElements.none() || AllowUndefs)) 8952 return CN; 8953 } 8954 8955 return nullptr; 8956 } 8957 8958 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8959 // TODO: may want to use peekThroughBitcast() here. 8960 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8961 return C && C->isNullValue(); 8962 } 8963 8964 bool llvm::isOneOrOneSplat(SDValue N) { 8965 // TODO: may want to use peekThroughBitcast() here. 8966 unsigned BitWidth = N.getScalarValueSizeInBits(); 8967 ConstantSDNode *C = isConstOrConstSplat(N); 8968 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8969 } 8970 8971 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8972 N = peekThroughBitcasts(N); 8973 unsigned BitWidth = N.getScalarValueSizeInBits(); 8974 ConstantSDNode *C = isConstOrConstSplat(N); 8975 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8976 } 8977 8978 HandleSDNode::~HandleSDNode() { 8979 DropOperands(); 8980 } 8981 8982 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8983 const DebugLoc &DL, 8984 const GlobalValue *GA, EVT VT, 8985 int64_t o, unsigned TF) 8986 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8987 TheGlobal = GA; 8988 } 8989 8990 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8991 EVT VT, unsigned SrcAS, 8992 unsigned DestAS) 8993 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8994 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8995 8996 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8997 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8998 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8999 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9000 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9001 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9002 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9003 9004 // We check here that the size of the memory operand fits within the size of 9005 // the MMO. This is because the MMO might indicate only a possible address 9006 // range instead of specifying the affected memory addresses precisely. 9007 // TODO: Make MachineMemOperands aware of scalable vectors. 9008 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9009 "Size mismatch!"); 9010 } 9011 9012 /// Profile - Gather unique data for the node. 9013 /// 9014 void SDNode::Profile(FoldingSetNodeID &ID) const { 9015 AddNodeIDNode(ID, this); 9016 } 9017 9018 namespace { 9019 9020 struct EVTArray { 9021 std::vector<EVT> VTs; 9022 9023 EVTArray() { 9024 VTs.reserve(MVT::LAST_VALUETYPE); 9025 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9026 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9027 } 9028 }; 9029 9030 } // end anonymous namespace 9031 9032 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9033 static ManagedStatic<EVTArray> SimpleVTArray; 9034 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9035 9036 /// getValueTypeList - Return a pointer to the specified value type. 9037 /// 9038 const EVT *SDNode::getValueTypeList(EVT VT) { 9039 if (VT.isExtended()) { 9040 sys::SmartScopedLock<true> Lock(*VTMutex); 9041 return &(*EVTs->insert(VT).first); 9042 } else { 9043 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9044 "Value type out of range!"); 9045 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9046 } 9047 } 9048 9049 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9050 /// indicated value. This method ignores uses of other values defined by this 9051 /// operation. 9052 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9053 assert(Value < getNumValues() && "Bad value!"); 9054 9055 // TODO: Only iterate over uses of a given value of the node 9056 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9057 if (UI.getUse().getResNo() == Value) { 9058 if (NUses == 0) 9059 return false; 9060 --NUses; 9061 } 9062 } 9063 9064 // Found exactly the right number of uses? 9065 return NUses == 0; 9066 } 9067 9068 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9069 /// value. This method ignores uses of other values defined by this operation. 9070 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9071 assert(Value < getNumValues() && "Bad value!"); 9072 9073 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9074 if (UI.getUse().getResNo() == Value) 9075 return true; 9076 9077 return false; 9078 } 9079 9080 /// isOnlyUserOf - Return true if this node is the only use of N. 9081 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9082 bool Seen = false; 9083 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9084 SDNode *User = *I; 9085 if (User == this) 9086 Seen = true; 9087 else 9088 return false; 9089 } 9090 9091 return Seen; 9092 } 9093 9094 /// Return true if the only users of N are contained in Nodes. 9095 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9096 bool Seen = false; 9097 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9098 SDNode *User = *I; 9099 if (llvm::any_of(Nodes, 9100 [&User](const SDNode *Node) { return User == Node; })) 9101 Seen = true; 9102 else 9103 return false; 9104 } 9105 9106 return Seen; 9107 } 9108 9109 /// isOperand - Return true if this node is an operand of N. 9110 bool SDValue::isOperandOf(const SDNode *N) const { 9111 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9112 } 9113 9114 bool SDNode::isOperandOf(const SDNode *N) const { 9115 return any_of(N->op_values(), 9116 [this](SDValue Op) { return this == Op.getNode(); }); 9117 } 9118 9119 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9120 /// be a chain) reaches the specified operand without crossing any 9121 /// side-effecting instructions on any chain path. In practice, this looks 9122 /// through token factors and non-volatile loads. In order to remain efficient, 9123 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9124 /// 9125 /// Note that we only need to examine chains when we're searching for 9126 /// side-effects; SelectionDAG requires that all side-effects are represented 9127 /// by chains, even if another operand would force a specific ordering. This 9128 /// constraint is necessary to allow transformations like splitting loads. 9129 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9130 unsigned Depth) const { 9131 if (*this == Dest) return true; 9132 9133 // Don't search too deeply, we just want to be able to see through 9134 // TokenFactor's etc. 9135 if (Depth == 0) return false; 9136 9137 // If this is a token factor, all inputs to the TF happen in parallel. 9138 if (getOpcode() == ISD::TokenFactor) { 9139 // First, try a shallow search. 9140 if (is_contained((*this)->ops(), Dest)) { 9141 // We found the chain we want as an operand of this TokenFactor. 9142 // Essentially, we reach the chain without side-effects if we could 9143 // serialize the TokenFactor into a simple chain of operations with 9144 // Dest as the last operation. This is automatically true if the 9145 // chain has one use: there are no other ordering constraints. 9146 // If the chain has more than one use, we give up: some other 9147 // use of Dest might force a side-effect between Dest and the current 9148 // node. 9149 if (Dest.hasOneUse()) 9150 return true; 9151 } 9152 // Next, try a deep search: check whether every operand of the TokenFactor 9153 // reaches Dest. 9154 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9155 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9156 }); 9157 } 9158 9159 // Loads don't have side effects, look through them. 9160 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9161 if (Ld->isUnordered()) 9162 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9163 } 9164 return false; 9165 } 9166 9167 bool SDNode::hasPredecessor(const SDNode *N) const { 9168 SmallPtrSet<const SDNode *, 32> Visited; 9169 SmallVector<const SDNode *, 16> Worklist; 9170 Worklist.push_back(this); 9171 return hasPredecessorHelper(N, Visited, Worklist); 9172 } 9173 9174 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9175 this->Flags.intersectWith(Flags); 9176 } 9177 9178 SDValue 9179 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9180 ArrayRef<ISD::NodeType> CandidateBinOps, 9181 bool AllowPartials) { 9182 // The pattern must end in an extract from index 0. 9183 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9184 !isNullConstant(Extract->getOperand(1))) 9185 return SDValue(); 9186 9187 // Match against one of the candidate binary ops. 9188 SDValue Op = Extract->getOperand(0); 9189 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9190 return Op.getOpcode() == unsigned(BinOp); 9191 })) 9192 return SDValue(); 9193 9194 // Floating-point reductions may require relaxed constraints on the final step 9195 // of the reduction because they may reorder intermediate operations. 9196 unsigned CandidateBinOp = Op.getOpcode(); 9197 if (Op.getValueType().isFloatingPoint()) { 9198 SDNodeFlags Flags = Op->getFlags(); 9199 switch (CandidateBinOp) { 9200 case ISD::FADD: 9201 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9202 return SDValue(); 9203 break; 9204 default: 9205 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9206 } 9207 } 9208 9209 // Matching failed - attempt to see if we did enough stages that a partial 9210 // reduction from a subvector is possible. 9211 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9212 if (!AllowPartials || !Op) 9213 return SDValue(); 9214 EVT OpVT = Op.getValueType(); 9215 EVT OpSVT = OpVT.getScalarType(); 9216 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9217 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9218 return SDValue(); 9219 BinOp = (ISD::NodeType)CandidateBinOp; 9220 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9221 getVectorIdxConstant(0, SDLoc(Op))); 9222 }; 9223 9224 // At each stage, we're looking for something that looks like: 9225 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9226 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9227 // i32 undef, i32 undef, i32 undef, i32 undef> 9228 // %a = binop <8 x i32> %op, %s 9229 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9230 // we expect something like: 9231 // <4,5,6,7,u,u,u,u> 9232 // <2,3,u,u,u,u,u,u> 9233 // <1,u,u,u,u,u,u,u> 9234 // While a partial reduction match would be: 9235 // <2,3,u,u,u,u,u,u> 9236 // <1,u,u,u,u,u,u,u> 9237 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9238 SDValue PrevOp; 9239 for (unsigned i = 0; i < Stages; ++i) { 9240 unsigned MaskEnd = (1 << i); 9241 9242 if (Op.getOpcode() != CandidateBinOp) 9243 return PartialReduction(PrevOp, MaskEnd); 9244 9245 SDValue Op0 = Op.getOperand(0); 9246 SDValue Op1 = Op.getOperand(1); 9247 9248 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9249 if (Shuffle) { 9250 Op = Op1; 9251 } else { 9252 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9253 Op = Op0; 9254 } 9255 9256 // The first operand of the shuffle should be the same as the other operand 9257 // of the binop. 9258 if (!Shuffle || Shuffle->getOperand(0) != Op) 9259 return PartialReduction(PrevOp, MaskEnd); 9260 9261 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9262 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9263 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9264 return PartialReduction(PrevOp, MaskEnd); 9265 9266 PrevOp = Op; 9267 } 9268 9269 BinOp = (ISD::NodeType)CandidateBinOp; 9270 return Op; 9271 } 9272 9273 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9274 assert(N->getNumValues() == 1 && 9275 "Can't unroll a vector with multiple results!"); 9276 9277 EVT VT = N->getValueType(0); 9278 unsigned NE = VT.getVectorNumElements(); 9279 EVT EltVT = VT.getVectorElementType(); 9280 SDLoc dl(N); 9281 9282 SmallVector<SDValue, 8> Scalars; 9283 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9284 9285 // If ResNE is 0, fully unroll the vector op. 9286 if (ResNE == 0) 9287 ResNE = NE; 9288 else if (NE > ResNE) 9289 NE = ResNE; 9290 9291 unsigned i; 9292 for (i= 0; i != NE; ++i) { 9293 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9294 SDValue Operand = N->getOperand(j); 9295 EVT OperandVT = Operand.getValueType(); 9296 if (OperandVT.isVector()) { 9297 // A vector operand; extract a single element. 9298 EVT OperandEltVT = OperandVT.getVectorElementType(); 9299 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9300 Operand, getVectorIdxConstant(i, dl)); 9301 } else { 9302 // A scalar operand; just use it as is. 9303 Operands[j] = Operand; 9304 } 9305 } 9306 9307 switch (N->getOpcode()) { 9308 default: { 9309 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9310 N->getFlags())); 9311 break; 9312 } 9313 case ISD::VSELECT: 9314 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9315 break; 9316 case ISD::SHL: 9317 case ISD::SRA: 9318 case ISD::SRL: 9319 case ISD::ROTL: 9320 case ISD::ROTR: 9321 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9322 getShiftAmountOperand(Operands[0].getValueType(), 9323 Operands[1]))); 9324 break; 9325 case ISD::SIGN_EXTEND_INREG: { 9326 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9327 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9328 Operands[0], 9329 getValueType(ExtVT))); 9330 } 9331 } 9332 } 9333 9334 for (; i < ResNE; ++i) 9335 Scalars.push_back(getUNDEF(EltVT)); 9336 9337 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9338 return getBuildVector(VecVT, dl, Scalars); 9339 } 9340 9341 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9342 SDNode *N, unsigned ResNE) { 9343 unsigned Opcode = N->getOpcode(); 9344 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9345 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9346 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9347 "Expected an overflow opcode"); 9348 9349 EVT ResVT = N->getValueType(0); 9350 EVT OvVT = N->getValueType(1); 9351 EVT ResEltVT = ResVT.getVectorElementType(); 9352 EVT OvEltVT = OvVT.getVectorElementType(); 9353 SDLoc dl(N); 9354 9355 // If ResNE is 0, fully unroll the vector op. 9356 unsigned NE = ResVT.getVectorNumElements(); 9357 if (ResNE == 0) 9358 ResNE = NE; 9359 else if (NE > ResNE) 9360 NE = ResNE; 9361 9362 SmallVector<SDValue, 8> LHSScalars; 9363 SmallVector<SDValue, 8> RHSScalars; 9364 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9365 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9366 9367 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9368 SDVTList VTs = getVTList(ResEltVT, SVT); 9369 SmallVector<SDValue, 8> ResScalars; 9370 SmallVector<SDValue, 8> OvScalars; 9371 for (unsigned i = 0; i < NE; ++i) { 9372 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9373 SDValue Ov = 9374 getSelect(dl, OvEltVT, Res.getValue(1), 9375 getBoolConstant(true, dl, OvEltVT, ResVT), 9376 getConstant(0, dl, OvEltVT)); 9377 9378 ResScalars.push_back(Res); 9379 OvScalars.push_back(Ov); 9380 } 9381 9382 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9383 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9384 9385 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9386 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9387 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9388 getBuildVector(NewOvVT, dl, OvScalars)); 9389 } 9390 9391 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9392 LoadSDNode *Base, 9393 unsigned Bytes, 9394 int Dist) const { 9395 if (LD->isVolatile() || Base->isVolatile()) 9396 return false; 9397 // TODO: probably too restrictive for atomics, revisit 9398 if (!LD->isSimple()) 9399 return false; 9400 if (LD->isIndexed() || Base->isIndexed()) 9401 return false; 9402 if (LD->getChain() != Base->getChain()) 9403 return false; 9404 EVT VT = LD->getValueType(0); 9405 if (VT.getSizeInBits() / 8 != Bytes) 9406 return false; 9407 9408 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9409 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9410 9411 int64_t Offset = 0; 9412 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9413 return (Dist * Bytes == Offset); 9414 return false; 9415 } 9416 9417 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9418 /// if it cannot be inferred. 9419 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9420 // If this is a GlobalAddress + cst, return the alignment. 9421 const GlobalValue *GV = nullptr; 9422 int64_t GVOffset = 0; 9423 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9424 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9425 KnownBits Known(PtrWidth); 9426 llvm::computeKnownBits(GV, Known, getDataLayout()); 9427 unsigned AlignBits = Known.countMinTrailingZeros(); 9428 if (AlignBits) 9429 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9430 } 9431 9432 // If this is a direct reference to a stack slot, use information about the 9433 // stack slot's alignment. 9434 int FrameIdx = INT_MIN; 9435 int64_t FrameOffset = 0; 9436 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9437 FrameIdx = FI->getIndex(); 9438 } else if (isBaseWithConstantOffset(Ptr) && 9439 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9440 // Handle FI+Cst 9441 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9442 FrameOffset = Ptr.getConstantOperandVal(1); 9443 } 9444 9445 if (FrameIdx != INT_MIN) { 9446 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9447 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9448 } 9449 9450 return None; 9451 } 9452 9453 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9454 /// which is split (or expanded) into two not necessarily identical pieces. 9455 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9456 // Currently all types are split in half. 9457 EVT LoVT, HiVT; 9458 if (!VT.isVector()) 9459 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9460 else 9461 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9462 9463 return std::make_pair(LoVT, HiVT); 9464 } 9465 9466 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9467 /// type, dependent on an enveloping VT that has been split into two identical 9468 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9469 std::pair<EVT, EVT> 9470 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9471 bool *HiIsEmpty) const { 9472 EVT EltTp = VT.getVectorElementType(); 9473 bool IsScalable = VT.isScalableVector(); 9474 // Examples: 9475 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9476 // custom VL=9 with enveloping VL=8/8 yields 8/1 9477 // custom VL=10 with enveloping VL=8/8 yields 8/2 9478 // etc. 9479 unsigned VTNumElts = VT.getVectorNumElements(); 9480 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9481 EVT LoVT, HiVT; 9482 if (VTNumElts > EnvNumElts) { 9483 LoVT = EnvVT; 9484 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9485 IsScalable); 9486 *HiIsEmpty = false; 9487 } else { 9488 // Flag that hi type has zero storage size, but return split envelop type 9489 // (this would be easier if vector types with zero elements were allowed). 9490 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9491 HiVT = EnvVT; 9492 *HiIsEmpty = true; 9493 } 9494 return std::make_pair(LoVT, HiVT); 9495 } 9496 9497 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9498 /// low/high part. 9499 std::pair<SDValue, SDValue> 9500 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9501 const EVT &HiVT) { 9502 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9503 N.getValueType().getVectorNumElements() && 9504 "More vector elements requested than available!"); 9505 SDValue Lo, Hi; 9506 Lo = 9507 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9508 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9509 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9510 return std::make_pair(Lo, Hi); 9511 } 9512 9513 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9514 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9515 EVT VT = N.getValueType(); 9516 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9517 NextPowerOf2(VT.getVectorNumElements())); 9518 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9519 getVectorIdxConstant(0, DL)); 9520 } 9521 9522 void SelectionDAG::ExtractVectorElements(SDValue Op, 9523 SmallVectorImpl<SDValue> &Args, 9524 unsigned Start, unsigned Count, 9525 EVT EltVT) { 9526 EVT VT = Op.getValueType(); 9527 if (Count == 0) 9528 Count = VT.getVectorNumElements(); 9529 if (EltVT == EVT()) 9530 EltVT = VT.getVectorElementType(); 9531 SDLoc SL(Op); 9532 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9533 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9534 getVectorIdxConstant(i, SL))); 9535 } 9536 } 9537 9538 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9539 unsigned GlobalAddressSDNode::getAddressSpace() const { 9540 return getGlobal()->getType()->getAddressSpace(); 9541 } 9542 9543 Type *ConstantPoolSDNode::getType() const { 9544 if (isMachineConstantPoolEntry()) 9545 return Val.MachineCPVal->getType(); 9546 return Val.ConstVal->getType(); 9547 } 9548 9549 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9550 unsigned &SplatBitSize, 9551 bool &HasAnyUndefs, 9552 unsigned MinSplatBits, 9553 bool IsBigEndian) const { 9554 EVT VT = getValueType(0); 9555 assert(VT.isVector() && "Expected a vector type"); 9556 unsigned VecWidth = VT.getSizeInBits(); 9557 if (MinSplatBits > VecWidth) 9558 return false; 9559 9560 // FIXME: The widths are based on this node's type, but build vectors can 9561 // truncate their operands. 9562 SplatValue = APInt(VecWidth, 0); 9563 SplatUndef = APInt(VecWidth, 0); 9564 9565 // Get the bits. Bits with undefined values (when the corresponding element 9566 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9567 // in SplatValue. If any of the values are not constant, give up and return 9568 // false. 9569 unsigned int NumOps = getNumOperands(); 9570 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9571 unsigned EltWidth = VT.getScalarSizeInBits(); 9572 9573 for (unsigned j = 0; j < NumOps; ++j) { 9574 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9575 SDValue OpVal = getOperand(i); 9576 unsigned BitPos = j * EltWidth; 9577 9578 if (OpVal.isUndef()) 9579 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9580 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9581 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9582 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9583 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9584 else 9585 return false; 9586 } 9587 9588 // The build_vector is all constants or undefs. Find the smallest element 9589 // size that splats the vector. 9590 HasAnyUndefs = (SplatUndef != 0); 9591 9592 // FIXME: This does not work for vectors with elements less than 8 bits. 9593 while (VecWidth > 8) { 9594 unsigned HalfSize = VecWidth / 2; 9595 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9596 APInt LowValue = SplatValue.trunc(HalfSize); 9597 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9598 APInt LowUndef = SplatUndef.trunc(HalfSize); 9599 9600 // If the two halves do not match (ignoring undef bits), stop here. 9601 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9602 MinSplatBits > HalfSize) 9603 break; 9604 9605 SplatValue = HighValue | LowValue; 9606 SplatUndef = HighUndef & LowUndef; 9607 9608 VecWidth = HalfSize; 9609 } 9610 9611 SplatBitSize = VecWidth; 9612 return true; 9613 } 9614 9615 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9616 BitVector *UndefElements) const { 9617 if (UndefElements) { 9618 UndefElements->clear(); 9619 UndefElements->resize(getNumOperands()); 9620 } 9621 assert(getNumOperands() == DemandedElts.getBitWidth() && 9622 "Unexpected vector size"); 9623 if (!DemandedElts) 9624 return SDValue(); 9625 SDValue Splatted; 9626 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9627 if (!DemandedElts[i]) 9628 continue; 9629 SDValue Op = getOperand(i); 9630 if (Op.isUndef()) { 9631 if (UndefElements) 9632 (*UndefElements)[i] = true; 9633 } else if (!Splatted) { 9634 Splatted = Op; 9635 } else if (Splatted != Op) { 9636 return SDValue(); 9637 } 9638 } 9639 9640 if (!Splatted) { 9641 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9642 assert(getOperand(FirstDemandedIdx).isUndef() && 9643 "Can only have a splat without a constant for all undefs."); 9644 return getOperand(FirstDemandedIdx); 9645 } 9646 9647 return Splatted; 9648 } 9649 9650 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9651 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9652 return getSplatValue(DemandedElts, UndefElements); 9653 } 9654 9655 ConstantSDNode * 9656 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9657 BitVector *UndefElements) const { 9658 return dyn_cast_or_null<ConstantSDNode>( 9659 getSplatValue(DemandedElts, UndefElements)); 9660 } 9661 9662 ConstantSDNode * 9663 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9664 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9665 } 9666 9667 ConstantFPSDNode * 9668 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9669 BitVector *UndefElements) const { 9670 return dyn_cast_or_null<ConstantFPSDNode>( 9671 getSplatValue(DemandedElts, UndefElements)); 9672 } 9673 9674 ConstantFPSDNode * 9675 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9676 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9677 } 9678 9679 int32_t 9680 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9681 uint32_t BitWidth) const { 9682 if (ConstantFPSDNode *CN = 9683 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9684 bool IsExact; 9685 APSInt IntVal(BitWidth); 9686 const APFloat &APF = CN->getValueAPF(); 9687 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9688 APFloat::opOK || 9689 !IsExact) 9690 return -1; 9691 9692 return IntVal.exactLogBase2(); 9693 } 9694 return -1; 9695 } 9696 9697 bool BuildVectorSDNode::isConstant() const { 9698 for (const SDValue &Op : op_values()) { 9699 unsigned Opc = Op.getOpcode(); 9700 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9701 return false; 9702 } 9703 return true; 9704 } 9705 9706 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9707 // Find the first non-undef value in the shuffle mask. 9708 unsigned i, e; 9709 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9710 /* search */; 9711 9712 // If all elements are undefined, this shuffle can be considered a splat 9713 // (although it should eventually get simplified away completely). 9714 if (i == e) 9715 return true; 9716 9717 // Make sure all remaining elements are either undef or the same as the first 9718 // non-undef value. 9719 for (int Idx = Mask[i]; i != e; ++i) 9720 if (Mask[i] >= 0 && Mask[i] != Idx) 9721 return false; 9722 return true; 9723 } 9724 9725 // Returns the SDNode if it is a constant integer BuildVector 9726 // or constant integer. 9727 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9728 if (isa<ConstantSDNode>(N)) 9729 return N.getNode(); 9730 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9731 return N.getNode(); 9732 // Treat a GlobalAddress supporting constant offset folding as a 9733 // constant integer. 9734 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9735 if (GA->getOpcode() == ISD::GlobalAddress && 9736 TLI->isOffsetFoldingLegal(GA)) 9737 return GA; 9738 return nullptr; 9739 } 9740 9741 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9742 if (isa<ConstantFPSDNode>(N)) 9743 return N.getNode(); 9744 9745 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9746 return N.getNode(); 9747 9748 return nullptr; 9749 } 9750 9751 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9752 assert(!Node->OperandList && "Node already has operands"); 9753 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9754 "too many operands to fit into SDNode"); 9755 SDUse *Ops = OperandRecycler.allocate( 9756 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9757 9758 bool IsDivergent = false; 9759 for (unsigned I = 0; I != Vals.size(); ++I) { 9760 Ops[I].setUser(Node); 9761 Ops[I].setInitial(Vals[I]); 9762 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9763 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9764 } 9765 Node->NumOperands = Vals.size(); 9766 Node->OperandList = Ops; 9767 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9768 if (!TLI->isSDNodeAlwaysUniform(Node)) 9769 Node->SDNodeBits.IsDivergent = IsDivergent; 9770 checkForCycles(Node); 9771 } 9772 9773 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9774 SmallVectorImpl<SDValue> &Vals) { 9775 size_t Limit = SDNode::getMaxNumOperands(); 9776 while (Vals.size() > Limit) { 9777 unsigned SliceIdx = Vals.size() - Limit; 9778 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9779 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9780 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9781 Vals.emplace_back(NewTF); 9782 } 9783 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9784 } 9785 9786 #ifndef NDEBUG 9787 static void checkForCyclesHelper(const SDNode *N, 9788 SmallPtrSetImpl<const SDNode*> &Visited, 9789 SmallPtrSetImpl<const SDNode*> &Checked, 9790 const llvm::SelectionDAG *DAG) { 9791 // If this node has already been checked, don't check it again. 9792 if (Checked.count(N)) 9793 return; 9794 9795 // If a node has already been visited on this depth-first walk, reject it as 9796 // a cycle. 9797 if (!Visited.insert(N).second) { 9798 errs() << "Detected cycle in SelectionDAG\n"; 9799 dbgs() << "Offending node:\n"; 9800 N->dumprFull(DAG); dbgs() << "\n"; 9801 abort(); 9802 } 9803 9804 for (const SDValue &Op : N->op_values()) 9805 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9806 9807 Checked.insert(N); 9808 Visited.erase(N); 9809 } 9810 #endif 9811 9812 void llvm::checkForCycles(const llvm::SDNode *N, 9813 const llvm::SelectionDAG *DAG, 9814 bool force) { 9815 #ifndef NDEBUG 9816 bool check = force; 9817 #ifdef EXPENSIVE_CHECKS 9818 check = true; 9819 #endif // EXPENSIVE_CHECKS 9820 if (check) { 9821 assert(N && "Checking nonexistent SDNode"); 9822 SmallPtrSet<const SDNode*, 32> visited; 9823 SmallPtrSet<const SDNode*, 32> checked; 9824 checkForCyclesHelper(N, visited, checked, DAG); 9825 } 9826 #endif // !NDEBUG 9827 } 9828 9829 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9830 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9831 } 9832