1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlign().value());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 Align SelectionDAG::getEVTAlign(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlign(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   EVT OpVT = Op.getValueType();
1171   assert(VT.isInteger() && OpVT.isInteger() &&
1172          "Cannot getZeroExtendInReg FP types");
1173   assert(VT.isVector() == OpVT.isVector() &&
1174          "getZeroExtendInReg type should be vector iff the operand "
1175          "type is vector!");
1176   assert((!VT.isVector() ||
1177           VT.getVectorNumElements() == OpVT.getVectorNumElements()) &&
1178          "Vector element counts must match in getZeroExtendInReg");
1179   assert(VT.bitsLE(OpVT) && "Not extending!");
1180   if (OpVT == VT)
1181     return Op;
1182   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1183                                    VT.getScalarSizeInBits());
1184   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZExtOrTrunc(Op, DL, VT);
1191 }
1192 
1193 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1194   // Only unsigned pointer semantics are supported right now. In the future this
1195   // might delegate to TLI to check pointer signedness.
1196   return getZeroExtendInReg(Op, DL, VT);
1197 }
1198 
1199 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1200 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1201   EVT EltVT = VT.getScalarType();
1202   SDValue NegOne =
1203     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1204   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1205 }
1206 
1207 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1208   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1209   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1210 }
1211 
1212 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1213                                       EVT OpVT) {
1214   if (!V)
1215     return getConstant(0, DL, VT);
1216 
1217   switch (TLI->getBooleanContents(OpVT)) {
1218   case TargetLowering::ZeroOrOneBooleanContent:
1219   case TargetLowering::UndefinedBooleanContent:
1220     return getConstant(1, DL, VT);
1221   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1222     return getAllOnesConstant(DL, VT);
1223   }
1224   llvm_unreachable("Unexpected boolean content enum!");
1225 }
1226 
1227 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1228                                   bool isT, bool isO) {
1229   EVT EltVT = VT.getScalarType();
1230   assert((EltVT.getSizeInBits() >= 64 ||
1231          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1232          "getConstant with a uint64_t value that doesn't fit in the type!");
1233   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1234 }
1235 
1236 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1237                                   bool isT, bool isO) {
1238   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1239 }
1240 
1241 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1242                                   EVT VT, bool isT, bool isO) {
1243   assert(VT.isInteger() && "Cannot create FP integer constant!");
1244 
1245   EVT EltVT = VT.getScalarType();
1246   const ConstantInt *Elt = &Val;
1247 
1248   // In some cases the vector type is legal but the element type is illegal and
1249   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1250   // inserted value (the type does not need to match the vector element type).
1251   // Any extra bits introduced will be truncated away.
1252   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1253       TargetLowering::TypePromoteInteger) {
1254    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1255    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1256    Elt = ConstantInt::get(*getContext(), NewVal);
1257   }
1258   // In other cases the element type is illegal and needs to be expanded, for
1259   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1260   // the value into n parts and use a vector type with n-times the elements.
1261   // Then bitcast to the type requested.
1262   // Legalizing constants too early makes the DAGCombiner's job harder so we
1263   // only legalize if the DAG tells us we must produce legal types.
1264   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1265            TLI->getTypeAction(*getContext(), EltVT) ==
1266            TargetLowering::TypeExpandInteger) {
1267     const APInt &NewVal = Elt->getValue();
1268     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1269     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1270     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1271     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1272 
1273     // Check the temporary vector is the correct size. If this fails then
1274     // getTypeToTransformTo() probably returned a type whose size (in bits)
1275     // isn't a power-of-2 factor of the requested type size.
1276     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1277 
1278     SmallVector<SDValue, 2> EltParts;
1279     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1280       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1281                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1282                                      ViaEltVT, isT, isO));
1283     }
1284 
1285     // EltParts is currently in little endian order. If we actually want
1286     // big-endian order then reverse it now.
1287     if (getDataLayout().isBigEndian())
1288       std::reverse(EltParts.begin(), EltParts.end());
1289 
1290     // The elements must be reversed when the element order is different
1291     // to the endianness of the elements (because the BITCAST is itself a
1292     // vector shuffle in this situation). However, we do not need any code to
1293     // perform this reversal because getConstant() is producing a vector
1294     // splat.
1295     // This situation occurs in MIPS MSA.
1296 
1297     SmallVector<SDValue, 8> Ops;
1298     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1299       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1300 
1301     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1302     return V;
1303   }
1304 
1305   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1306          "APInt size does not match type size!");
1307   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1308   FoldingSetNodeID ID;
1309   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1310   ID.AddPointer(Elt);
1311   ID.AddBoolean(isO);
1312   void *IP = nullptr;
1313   SDNode *N = nullptr;
1314   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1315     if (!VT.isVector())
1316       return SDValue(N, 0);
1317 
1318   if (!N) {
1319     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1320     CSEMap.InsertNode(N, IP);
1321     InsertNode(N);
1322     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1323   }
1324 
1325   SDValue Result(N, 0);
1326   if (VT.isScalableVector())
1327     Result = getSplatVector(VT, DL, Result);
1328   else if (VT.isVector())
1329     Result = getSplatBuildVector(VT, DL, Result);
1330 
1331   return Result;
1332 }
1333 
1334 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1335                                         bool isTarget) {
1336   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1337 }
1338 
1339 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1340                                              const SDLoc &DL, bool LegalTypes) {
1341   assert(VT.isInteger() && "Shift amount is not an integer type!");
1342   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1343   return getConstant(Val, DL, ShiftVT);
1344 }
1345 
1346 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1347                                            bool isTarget) {
1348   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1349 }
1350 
1351 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1352                                     bool isTarget) {
1353   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1354 }
1355 
1356 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1357                                     EVT VT, bool isTarget) {
1358   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1359 
1360   EVT EltVT = VT.getScalarType();
1361 
1362   // Do the map lookup using the actual bit pattern for the floating point
1363   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1364   // we don't have issues with SNANs.
1365   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1366   FoldingSetNodeID ID;
1367   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1368   ID.AddPointer(&V);
1369   void *IP = nullptr;
1370   SDNode *N = nullptr;
1371   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1372     if (!VT.isVector())
1373       return SDValue(N, 0);
1374 
1375   if (!N) {
1376     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1377     CSEMap.InsertNode(N, IP);
1378     InsertNode(N);
1379   }
1380 
1381   SDValue Result(N, 0);
1382   if (VT.isVector())
1383     Result = getSplatBuildVector(VT, DL, Result);
1384   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1385   return Result;
1386 }
1387 
1388 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1389                                     bool isTarget) {
1390   EVT EltVT = VT.getScalarType();
1391   if (EltVT == MVT::f32)
1392     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1393   else if (EltVT == MVT::f64)
1394     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1395   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1396            EltVT == MVT::f16) {
1397     bool Ignored;
1398     APFloat APF = APFloat(Val);
1399     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1400                 &Ignored);
1401     return getConstantFP(APF, DL, VT, isTarget);
1402   } else
1403     llvm_unreachable("Unsupported type in getConstantFP");
1404 }
1405 
1406 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1407                                        EVT VT, int64_t Offset, bool isTargetGA,
1408                                        unsigned TargetFlags) {
1409   assert((TargetFlags == 0 || isTargetGA) &&
1410          "Cannot set target flags on target-independent globals");
1411 
1412   // Truncate (with sign-extension) the offset value to the pointer size.
1413   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1414   if (BitWidth < 64)
1415     Offset = SignExtend64(Offset, BitWidth);
1416 
1417   unsigned Opc;
1418   if (GV->isThreadLocal())
1419     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1420   else
1421     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1422 
1423   FoldingSetNodeID ID;
1424   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1425   ID.AddPointer(GV);
1426   ID.AddInteger(Offset);
1427   ID.AddInteger(TargetFlags);
1428   void *IP = nullptr;
1429   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1430     return SDValue(E, 0);
1431 
1432   auto *N = newSDNode<GlobalAddressSDNode>(
1433       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1434   CSEMap.InsertNode(N, IP);
1435     InsertNode(N);
1436   return SDValue(N, 0);
1437 }
1438 
1439 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1440   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1441   FoldingSetNodeID ID;
1442   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1443   ID.AddInteger(FI);
1444   void *IP = nullptr;
1445   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1446     return SDValue(E, 0);
1447 
1448   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1449   CSEMap.InsertNode(N, IP);
1450   InsertNode(N);
1451   return SDValue(N, 0);
1452 }
1453 
1454 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1455                                    unsigned TargetFlags) {
1456   assert((TargetFlags == 0 || isTarget) &&
1457          "Cannot set target flags on target-independent jump tables");
1458   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1459   FoldingSetNodeID ID;
1460   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1461   ID.AddInteger(JTI);
1462   ID.AddInteger(TargetFlags);
1463   void *IP = nullptr;
1464   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1465     return SDValue(E, 0);
1466 
1467   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1468   CSEMap.InsertNode(N, IP);
1469   InsertNode(N);
1470   return SDValue(N, 0);
1471 }
1472 
1473 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1474                                       MaybeAlign Alignment, int Offset,
1475                                       bool isTarget, unsigned TargetFlags) {
1476   assert((TargetFlags == 0 || isTarget) &&
1477          "Cannot set target flags on target-independent globals");
1478   if (!Alignment)
1479     Alignment = shouldOptForSize()
1480                     ? getDataLayout().getABITypeAlign(C->getType())
1481                     : getDataLayout().getPrefTypeAlign(C->getType());
1482   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1483   FoldingSetNodeID ID;
1484   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1485   ID.AddInteger(Alignment->value());
1486   ID.AddInteger(Offset);
1487   ID.AddPointer(C);
1488   ID.AddInteger(TargetFlags);
1489   void *IP = nullptr;
1490   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1491     return SDValue(E, 0);
1492 
1493   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1494                                           TargetFlags);
1495   CSEMap.InsertNode(N, IP);
1496   InsertNode(N);
1497   SDValue V = SDValue(N, 0);
1498   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1499   return V;
1500 }
1501 
1502 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1503                                       MaybeAlign Alignment, int Offset,
1504                                       bool isTarget, unsigned TargetFlags) {
1505   assert((TargetFlags == 0 || isTarget) &&
1506          "Cannot set target flags on target-independent globals");
1507   if (!Alignment)
1508     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1509   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1512   ID.AddInteger(Alignment->value());
1513   ID.AddInteger(Offset);
1514   C->addSelectionDAGCSEId(ID);
1515   ID.AddInteger(TargetFlags);
1516   void *IP = nullptr;
1517   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1518     return SDValue(E, 0);
1519 
1520   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1521                                           TargetFlags);
1522   CSEMap.InsertNode(N, IP);
1523   InsertNode(N);
1524   return SDValue(N, 0);
1525 }
1526 
1527 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1528                                      unsigned TargetFlags) {
1529   FoldingSetNodeID ID;
1530   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1531   ID.AddInteger(Index);
1532   ID.AddInteger(Offset);
1533   ID.AddInteger(TargetFlags);
1534   void *IP = nullptr;
1535   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1536     return SDValue(E, 0);
1537 
1538   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1539   CSEMap.InsertNode(N, IP);
1540   InsertNode(N);
1541   return SDValue(N, 0);
1542 }
1543 
1544 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1545   FoldingSetNodeID ID;
1546   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1547   ID.AddPointer(MBB);
1548   void *IP = nullptr;
1549   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1550     return SDValue(E, 0);
1551 
1552   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1553   CSEMap.InsertNode(N, IP);
1554   InsertNode(N);
1555   return SDValue(N, 0);
1556 }
1557 
1558 SDValue SelectionDAG::getValueType(EVT VT) {
1559   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1560       ValueTypeNodes.size())
1561     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1562 
1563   SDNode *&N = VT.isExtended() ?
1564     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1565 
1566   if (N) return SDValue(N, 0);
1567   N = newSDNode<VTSDNode>(VT);
1568   InsertNode(N);
1569   return SDValue(N, 0);
1570 }
1571 
1572 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1573   SDNode *&N = ExternalSymbols[Sym];
1574   if (N) return SDValue(N, 0);
1575   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1576   InsertNode(N);
1577   return SDValue(N, 0);
1578 }
1579 
1580 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1581   SDNode *&N = MCSymbols[Sym];
1582   if (N)
1583     return SDValue(N, 0);
1584   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1585   InsertNode(N);
1586   return SDValue(N, 0);
1587 }
1588 
1589 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1590                                               unsigned TargetFlags) {
1591   SDNode *&N =
1592       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1593   if (N) return SDValue(N, 0);
1594   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1595   InsertNode(N);
1596   return SDValue(N, 0);
1597 }
1598 
1599 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1600   if ((unsigned)Cond >= CondCodeNodes.size())
1601     CondCodeNodes.resize(Cond+1);
1602 
1603   if (!CondCodeNodes[Cond]) {
1604     auto *N = newSDNode<CondCodeSDNode>(Cond);
1605     CondCodeNodes[Cond] = N;
1606     InsertNode(N);
1607   }
1608 
1609   return SDValue(CondCodeNodes[Cond], 0);
1610 }
1611 
1612 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1613 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1614 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1615   std::swap(N1, N2);
1616   ShuffleVectorSDNode::commuteMask(M);
1617 }
1618 
1619 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1620                                        SDValue N2, ArrayRef<int> Mask) {
1621   assert(VT.getVectorNumElements() == Mask.size() &&
1622            "Must have the same number of vector elements as mask elements!");
1623   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1624          "Invalid VECTOR_SHUFFLE");
1625 
1626   // Canonicalize shuffle undef, undef -> undef
1627   if (N1.isUndef() && N2.isUndef())
1628     return getUNDEF(VT);
1629 
1630   // Validate that all indices in Mask are within the range of the elements
1631   // input to the shuffle.
1632   int NElts = Mask.size();
1633   assert(llvm::all_of(Mask,
1634                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1635          "Index out of range");
1636 
1637   // Copy the mask so we can do any needed cleanup.
1638   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1639 
1640   // Canonicalize shuffle v, v -> v, undef
1641   if (N1 == N2) {
1642     N2 = getUNDEF(VT);
1643     for (int i = 0; i != NElts; ++i)
1644       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1645   }
1646 
1647   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1648   if (N1.isUndef())
1649     commuteShuffle(N1, N2, MaskVec);
1650 
1651   if (TLI->hasVectorBlend()) {
1652     // If shuffling a splat, try to blend the splat instead. We do this here so
1653     // that even when this arises during lowering we don't have to re-handle it.
1654     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1655       BitVector UndefElements;
1656       SDValue Splat = BV->getSplatValue(&UndefElements);
1657       if (!Splat)
1658         return;
1659 
1660       for (int i = 0; i < NElts; ++i) {
1661         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1662           continue;
1663 
1664         // If this input comes from undef, mark it as such.
1665         if (UndefElements[MaskVec[i] - Offset]) {
1666           MaskVec[i] = -1;
1667           continue;
1668         }
1669 
1670         // If we can blend a non-undef lane, use that instead.
1671         if (!UndefElements[i])
1672           MaskVec[i] = i + Offset;
1673       }
1674     };
1675     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1676       BlendSplat(N1BV, 0);
1677     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1678       BlendSplat(N2BV, NElts);
1679   }
1680 
1681   // Canonicalize all index into lhs, -> shuffle lhs, undef
1682   // Canonicalize all index into rhs, -> shuffle rhs, undef
1683   bool AllLHS = true, AllRHS = true;
1684   bool N2Undef = N2.isUndef();
1685   for (int i = 0; i != NElts; ++i) {
1686     if (MaskVec[i] >= NElts) {
1687       if (N2Undef)
1688         MaskVec[i] = -1;
1689       else
1690         AllLHS = false;
1691     } else if (MaskVec[i] >= 0) {
1692       AllRHS = false;
1693     }
1694   }
1695   if (AllLHS && AllRHS)
1696     return getUNDEF(VT);
1697   if (AllLHS && !N2Undef)
1698     N2 = getUNDEF(VT);
1699   if (AllRHS) {
1700     N1 = getUNDEF(VT);
1701     commuteShuffle(N1, N2, MaskVec);
1702   }
1703   // Reset our undef status after accounting for the mask.
1704   N2Undef = N2.isUndef();
1705   // Re-check whether both sides ended up undef.
1706   if (N1.isUndef() && N2Undef)
1707     return getUNDEF(VT);
1708 
1709   // If Identity shuffle return that node.
1710   bool Identity = true, AllSame = true;
1711   for (int i = 0; i != NElts; ++i) {
1712     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1713     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1714   }
1715   if (Identity && NElts)
1716     return N1;
1717 
1718   // Shuffling a constant splat doesn't change the result.
1719   if (N2Undef) {
1720     SDValue V = N1;
1721 
1722     // Look through any bitcasts. We check that these don't change the number
1723     // (and size) of elements and just changes their types.
1724     while (V.getOpcode() == ISD::BITCAST)
1725       V = V->getOperand(0);
1726 
1727     // A splat should always show up as a build vector node.
1728     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1729       BitVector UndefElements;
1730       SDValue Splat = BV->getSplatValue(&UndefElements);
1731       // If this is a splat of an undef, shuffling it is also undef.
1732       if (Splat && Splat.isUndef())
1733         return getUNDEF(VT);
1734 
1735       bool SameNumElts =
1736           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1737 
1738       // We only have a splat which can skip shuffles if there is a splatted
1739       // value and no undef lanes rearranged by the shuffle.
1740       if (Splat && UndefElements.none()) {
1741         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1742         // number of elements match or the value splatted is a zero constant.
1743         if (SameNumElts)
1744           return N1;
1745         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1746           if (C->isNullValue())
1747             return N1;
1748       }
1749 
1750       // If the shuffle itself creates a splat, build the vector directly.
1751       if (AllSame && SameNumElts) {
1752         EVT BuildVT = BV->getValueType(0);
1753         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1754         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1755 
1756         // We may have jumped through bitcasts, so the type of the
1757         // BUILD_VECTOR may not match the type of the shuffle.
1758         if (BuildVT != VT)
1759           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1760         return NewBV;
1761       }
1762     }
1763   }
1764 
1765   FoldingSetNodeID ID;
1766   SDValue Ops[2] = { N1, N2 };
1767   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1768   for (int i = 0; i != NElts; ++i)
1769     ID.AddInteger(MaskVec[i]);
1770 
1771   void* IP = nullptr;
1772   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1773     return SDValue(E, 0);
1774 
1775   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1776   // SDNode doesn't have access to it.  This memory will be "leaked" when
1777   // the node is deallocated, but recovered when the NodeAllocator is released.
1778   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1779   llvm::copy(MaskVec, MaskAlloc);
1780 
1781   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1782                                            dl.getDebugLoc(), MaskAlloc);
1783   createOperands(N, Ops);
1784 
1785   CSEMap.InsertNode(N, IP);
1786   InsertNode(N);
1787   SDValue V = SDValue(N, 0);
1788   NewSDValueDbgMsg(V, "Creating new node: ", this);
1789   return V;
1790 }
1791 
1792 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1793   EVT VT = SV.getValueType(0);
1794   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1795   ShuffleVectorSDNode::commuteMask(MaskVec);
1796 
1797   SDValue Op0 = SV.getOperand(0);
1798   SDValue Op1 = SV.getOperand(1);
1799   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1800 }
1801 
1802 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1803   FoldingSetNodeID ID;
1804   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1805   ID.AddInteger(RegNo);
1806   void *IP = nullptr;
1807   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1808     return SDValue(E, 0);
1809 
1810   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1811   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1812   CSEMap.InsertNode(N, IP);
1813   InsertNode(N);
1814   return SDValue(N, 0);
1815 }
1816 
1817 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1818   FoldingSetNodeID ID;
1819   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1820   ID.AddPointer(RegMask);
1821   void *IP = nullptr;
1822   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1823     return SDValue(E, 0);
1824 
1825   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1826   CSEMap.InsertNode(N, IP);
1827   InsertNode(N);
1828   return SDValue(N, 0);
1829 }
1830 
1831 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1832                                  MCSymbol *Label) {
1833   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1834 }
1835 
1836 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1837                                    SDValue Root, MCSymbol *Label) {
1838   FoldingSetNodeID ID;
1839   SDValue Ops[] = { Root };
1840   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1841   ID.AddPointer(Label);
1842   void *IP = nullptr;
1843   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1844     return SDValue(E, 0);
1845 
1846   auto *N =
1847       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1848   createOperands(N, Ops);
1849 
1850   CSEMap.InsertNode(N, IP);
1851   InsertNode(N);
1852   return SDValue(N, 0);
1853 }
1854 
1855 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1856                                       int64_t Offset, bool isTarget,
1857                                       unsigned TargetFlags) {
1858   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1859 
1860   FoldingSetNodeID ID;
1861   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1862   ID.AddPointer(BA);
1863   ID.AddInteger(Offset);
1864   ID.AddInteger(TargetFlags);
1865   void *IP = nullptr;
1866   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1867     return SDValue(E, 0);
1868 
1869   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1870   CSEMap.InsertNode(N, IP);
1871   InsertNode(N);
1872   return SDValue(N, 0);
1873 }
1874 
1875 SDValue SelectionDAG::getSrcValue(const Value *V) {
1876   assert((!V || V->getType()->isPointerTy()) &&
1877          "SrcValue is not a pointer?");
1878 
1879   FoldingSetNodeID ID;
1880   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1881   ID.AddPointer(V);
1882 
1883   void *IP = nullptr;
1884   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1885     return SDValue(E, 0);
1886 
1887   auto *N = newSDNode<SrcValueSDNode>(V);
1888   CSEMap.InsertNode(N, IP);
1889   InsertNode(N);
1890   return SDValue(N, 0);
1891 }
1892 
1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1894   FoldingSetNodeID ID;
1895   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1896   ID.AddPointer(MD);
1897 
1898   void *IP = nullptr;
1899   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1900     return SDValue(E, 0);
1901 
1902   auto *N = newSDNode<MDNodeSDNode>(MD);
1903   CSEMap.InsertNode(N, IP);
1904   InsertNode(N);
1905   return SDValue(N, 0);
1906 }
1907 
1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1909   if (VT == V.getValueType())
1910     return V;
1911 
1912   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1913 }
1914 
1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1916                                        unsigned SrcAS, unsigned DestAS) {
1917   SDValue Ops[] = {Ptr};
1918   FoldingSetNodeID ID;
1919   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1920   ID.AddInteger(SrcAS);
1921   ID.AddInteger(DestAS);
1922 
1923   void *IP = nullptr;
1924   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1925     return SDValue(E, 0);
1926 
1927   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1928                                            VT, SrcAS, DestAS);
1929   createOperands(N, Ops);
1930 
1931   CSEMap.InsertNode(N, IP);
1932   InsertNode(N);
1933   return SDValue(N, 0);
1934 }
1935 
1936 SDValue SelectionDAG::getFreeze(SDValue V) {
1937   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1938 }
1939 
1940 /// getShiftAmountOperand - Return the specified value casted to
1941 /// the target's desired shift amount type.
1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1943   EVT OpTy = Op.getValueType();
1944   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1945   if (OpTy == ShTy || OpTy.isVector()) return Op;
1946 
1947   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1948 }
1949 
1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1951   SDLoc dl(Node);
1952   const TargetLowering &TLI = getTargetLoweringInfo();
1953   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1954   EVT VT = Node->getValueType(0);
1955   SDValue Tmp1 = Node->getOperand(0);
1956   SDValue Tmp2 = Node->getOperand(1);
1957   const MaybeAlign MA(Node->getConstantOperandVal(3));
1958 
1959   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1960                                Tmp2, MachinePointerInfo(V));
1961   SDValue VAList = VAListLoad;
1962 
1963   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1964     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1965                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1966 
1967     VAList =
1968         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1969                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1970   }
1971 
1972   // Increment the pointer, VAList, to the next vaarg
1973   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1974                  getConstant(getDataLayout().getTypeAllocSize(
1975                                                VT.getTypeForEVT(*getContext())),
1976                              dl, VAList.getValueType()));
1977   // Store the incremented VAList to the legalized pointer
1978   Tmp1 =
1979       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1980   // Load the actual argument out of the pointer VAList
1981   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1982 }
1983 
1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1985   SDLoc dl(Node);
1986   const TargetLowering &TLI = getTargetLoweringInfo();
1987   // This defaults to loading a pointer from the input and storing it to the
1988   // output, returning the chain.
1989   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1990   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1991   SDValue Tmp1 =
1992       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1993               Node->getOperand(2), MachinePointerInfo(VS));
1994   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1995                   MachinePointerInfo(VD));
1996 }
1997 
1998 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
1999   MachineFrameInfo &MFI = MF->getFrameInfo();
2000   int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false);
2001   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2002 }
2003 
2004 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2005   Type *Ty = VT.getTypeForEVT(*getContext());
2006   Align StackAlign =
2007       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2008   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2009 }
2010 
2011 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2012   TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2013   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2014   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2015   const DataLayout &DL = getDataLayout();
2016   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2017   return CreateStackTemporary(Bytes, Align);
2018 }
2019 
2020 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2021                                 ISD::CondCode Cond, const SDLoc &dl) {
2022   EVT OpVT = N1.getValueType();
2023 
2024   // These setcc operations always fold.
2025   switch (Cond) {
2026   default: break;
2027   case ISD::SETFALSE:
2028   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2029   case ISD::SETTRUE:
2030   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2031 
2032   case ISD::SETOEQ:
2033   case ISD::SETOGT:
2034   case ISD::SETOGE:
2035   case ISD::SETOLT:
2036   case ISD::SETOLE:
2037   case ISD::SETONE:
2038   case ISD::SETO:
2039   case ISD::SETUO:
2040   case ISD::SETUEQ:
2041   case ISD::SETUNE:
2042     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2043     break;
2044   }
2045 
2046   if (OpVT.isInteger()) {
2047     // For EQ and NE, we can always pick a value for the undef to make the
2048     // predicate pass or fail, so we can return undef.
2049     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2050     // icmp eq/ne X, undef -> undef.
2051     if ((N1.isUndef() || N2.isUndef()) &&
2052         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2053       return getUNDEF(VT);
2054 
2055     // If both operands are undef, we can return undef for int comparison.
2056     // icmp undef, undef -> undef.
2057     if (N1.isUndef() && N2.isUndef())
2058       return getUNDEF(VT);
2059 
2060     // icmp X, X -> true/false
2061     // icmp X, undef -> true/false because undef could be X.
2062     if (N1 == N2)
2063       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2064   }
2065 
2066   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2067     const APInt &C2 = N2C->getAPIntValue();
2068     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2069       const APInt &C1 = N1C->getAPIntValue();
2070 
2071       switch (Cond) {
2072       default: llvm_unreachable("Unknown integer setcc!");
2073       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2074       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2075       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2076       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2077       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2078       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2079       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2080       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2081       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2082       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2083       }
2084     }
2085   }
2086 
2087   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2088   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2089 
2090   if (N1CFP && N2CFP) {
2091     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2092     switch (Cond) {
2093     default: break;
2094     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2095                         return getUNDEF(VT);
2096                       LLVM_FALLTHROUGH;
2097     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2098                                              OpVT);
2099     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2100                         return getUNDEF(VT);
2101                       LLVM_FALLTHROUGH;
2102     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2103                                              R==APFloat::cmpLessThan, dl, VT,
2104                                              OpVT);
2105     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2106                         return getUNDEF(VT);
2107                       LLVM_FALLTHROUGH;
2108     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2109                                              OpVT);
2110     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2111                         return getUNDEF(VT);
2112                       LLVM_FALLTHROUGH;
2113     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2114                                              VT, OpVT);
2115     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2116                         return getUNDEF(VT);
2117                       LLVM_FALLTHROUGH;
2118     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2119                                              R==APFloat::cmpEqual, dl, VT,
2120                                              OpVT);
2121     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2122                         return getUNDEF(VT);
2123                       LLVM_FALLTHROUGH;
2124     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2125                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2126     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2127                                              OpVT);
2128     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2131                                              R==APFloat::cmpEqual, dl, VT,
2132                                              OpVT);
2133     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2134                                              OpVT);
2135     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2136                                              R==APFloat::cmpLessThan, dl, VT,
2137                                              OpVT);
2138     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2139                                              R==APFloat::cmpUnordered, dl, VT,
2140                                              OpVT);
2141     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2142                                              VT, OpVT);
2143     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2144                                              OpVT);
2145     }
2146   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2147     // Ensure that the constant occurs on the RHS.
2148     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2149     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2150       return SDValue();
2151     return getSetCC(dl, VT, N2, N1, SwappedCond);
2152   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2153              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2154     // If an operand is known to be a nan (or undef that could be a nan), we can
2155     // fold it.
2156     // Choosing NaN for the undef will always make unordered comparison succeed
2157     // and ordered comparison fails.
2158     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2159     switch (ISD::getUnorderedFlavor(Cond)) {
2160     default:
2161       llvm_unreachable("Unknown flavor!");
2162     case 0: // Known false.
2163       return getBoolConstant(false, dl, VT, OpVT);
2164     case 1: // Known true.
2165       return getBoolConstant(true, dl, VT, OpVT);
2166     case 2: // Undefined.
2167       return getUNDEF(VT);
2168     }
2169   }
2170 
2171   // Could not fold it.
2172   return SDValue();
2173 }
2174 
2175 /// See if the specified operand can be simplified with the knowledge that only
2176 /// the bits specified by DemandedBits are used.
2177 /// TODO: really we should be making this into the DAG equivalent of
2178 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2179 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2180   EVT VT = V.getValueType();
2181   APInt DemandedElts = VT.isVector()
2182                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2183                            : APInt(1, 1);
2184   return GetDemandedBits(V, DemandedBits, DemandedElts);
2185 }
2186 
2187 /// See if the specified operand can be simplified with the knowledge that only
2188 /// the bits specified by DemandedBits are used in the elements specified by
2189 /// DemandedElts.
2190 /// TODO: really we should be making this into the DAG equivalent of
2191 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2192 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2193                                       const APInt &DemandedElts) {
2194   switch (V.getOpcode()) {
2195   default:
2196     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2197                                                 *this, 0);
2198     break;
2199   case ISD::Constant: {
2200     auto *CV = cast<ConstantSDNode>(V.getNode());
2201     assert(CV && "Const value should be ConstSDNode.");
2202     const APInt &CVal = CV->getAPIntValue();
2203     APInt NewVal = CVal & DemandedBits;
2204     if (NewVal != CVal)
2205       return getConstant(NewVal, SDLoc(V), V.getValueType());
2206     break;
2207   }
2208   case ISD::SRL:
2209     // Only look at single-use SRLs.
2210     if (!V.getNode()->hasOneUse())
2211       break;
2212     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2213       // See if we can recursively simplify the LHS.
2214       unsigned Amt = RHSC->getZExtValue();
2215 
2216       // Watch out for shift count overflow though.
2217       if (Amt >= DemandedBits.getBitWidth())
2218         break;
2219       APInt SrcDemandedBits = DemandedBits << Amt;
2220       if (SDValue SimplifyLHS =
2221               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2222         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2223                        V.getOperand(1));
2224     }
2225     break;
2226   case ISD::AND: {
2227     // X & -1 -> X (ignoring bits which aren't demanded).
2228     // Also handle the case where masked out bits in X are known to be zero.
2229     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2230       const APInt &AndVal = RHSC->getAPIntValue();
2231       if (DemandedBits.isSubsetOf(AndVal) ||
2232           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2233                                   AndVal))
2234         return V.getOperand(0);
2235     }
2236     break;
2237   }
2238   }
2239   return SDValue();
2240 }
2241 
2242 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2243 /// use this predicate to simplify operations downstream.
2244 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2245   unsigned BitWidth = Op.getScalarValueSizeInBits();
2246   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2247 }
2248 
2249 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2250 /// this predicate to simplify operations downstream.  Mask is known to be zero
2251 /// for bits that V cannot have.
2252 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2253                                      unsigned Depth) const {
2254   EVT VT = V.getValueType();
2255   APInt DemandedElts = VT.isVector()
2256                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2257                            : APInt(1, 1);
2258   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2259 }
2260 
2261 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2262 /// DemandedElts.  We use this predicate to simplify operations downstream.
2263 /// Mask is known to be zero for bits that V cannot have.
2264 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2265                                      const APInt &DemandedElts,
2266                                      unsigned Depth) const {
2267   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2268 }
2269 
2270 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2271 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2272                                         unsigned Depth) const {
2273   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2274 }
2275 
2276 /// isSplatValue - Return true if the vector V has the same value
2277 /// across all DemandedElts. For scalable vectors it does not make
2278 /// sense to specify which elements are demanded or undefined, therefore
2279 /// they are simply ignored.
2280 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2281                                 APInt &UndefElts) {
2282   EVT VT = V.getValueType();
2283   assert(VT.isVector() && "Vector type expected");
2284 
2285   if (!VT.isScalableVector() && !DemandedElts)
2286     return false; // No demanded elts, better to assume we don't know anything.
2287 
2288   // Deal with some common cases here that work for both fixed and scalable
2289   // vector types.
2290   switch (V.getOpcode()) {
2291   case ISD::SPLAT_VECTOR:
2292     return true;
2293   case ISD::ADD:
2294   case ISD::SUB:
2295   case ISD::AND: {
2296     APInt UndefLHS, UndefRHS;
2297     SDValue LHS = V.getOperand(0);
2298     SDValue RHS = V.getOperand(1);
2299     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2300         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2301       UndefElts = UndefLHS | UndefRHS;
2302       return true;
2303     }
2304     break;
2305   }
2306   }
2307 
2308   // We don't support other cases than those above for scalable vectors at
2309   // the moment.
2310   if (VT.isScalableVector())
2311     return false;
2312 
2313   unsigned NumElts = VT.getVectorNumElements();
2314   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2315   UndefElts = APInt::getNullValue(NumElts);
2316 
2317   switch (V.getOpcode()) {
2318   case ISD::BUILD_VECTOR: {
2319     SDValue Scl;
2320     for (unsigned i = 0; i != NumElts; ++i) {
2321       SDValue Op = V.getOperand(i);
2322       if (Op.isUndef()) {
2323         UndefElts.setBit(i);
2324         continue;
2325       }
2326       if (!DemandedElts[i])
2327         continue;
2328       if (Scl && Scl != Op)
2329         return false;
2330       Scl = Op;
2331     }
2332     return true;
2333   }
2334   case ISD::VECTOR_SHUFFLE: {
2335     // Check if this is a shuffle node doing a splat.
2336     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2337     int SplatIndex = -1;
2338     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2339     for (int i = 0; i != (int)NumElts; ++i) {
2340       int M = Mask[i];
2341       if (M < 0) {
2342         UndefElts.setBit(i);
2343         continue;
2344       }
2345       if (!DemandedElts[i])
2346         continue;
2347       if (0 <= SplatIndex && SplatIndex != M)
2348         return false;
2349       SplatIndex = M;
2350     }
2351     return true;
2352   }
2353   case ISD::EXTRACT_SUBVECTOR: {
2354     // Offset the demanded elts by the subvector index.
2355     SDValue Src = V.getOperand(0);
2356     uint64_t Idx = V.getConstantOperandVal(1);
2357     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2358     APInt UndefSrcElts;
2359     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2360     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2361       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2362       return true;
2363     }
2364     break;
2365   }
2366   }
2367 
2368   return false;
2369 }
2370 
2371 /// Helper wrapper to main isSplatValue function.
2372 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2373   EVT VT = V.getValueType();
2374   assert(VT.isVector() && "Vector type expected");
2375 
2376   APInt UndefElts;
2377   APInt DemandedElts;
2378 
2379   // For now we don't support this with scalable vectors.
2380   if (!VT.isScalableVector())
2381     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2382   return isSplatValue(V, DemandedElts, UndefElts) &&
2383          (AllowUndefs || !UndefElts);
2384 }
2385 
2386 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2387   V = peekThroughExtractSubvectors(V);
2388 
2389   EVT VT = V.getValueType();
2390   unsigned Opcode = V.getOpcode();
2391   switch (Opcode) {
2392   default: {
2393     APInt UndefElts;
2394     APInt DemandedElts;
2395 
2396     if (!VT.isScalableVector())
2397       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2398 
2399     if (isSplatValue(V, DemandedElts, UndefElts)) {
2400       if (VT.isScalableVector()) {
2401         // DemandedElts and UndefElts are ignored for scalable vectors, since
2402         // the only supported cases are SPLAT_VECTOR nodes.
2403         SplatIdx = 0;
2404       } else {
2405         // Handle case where all demanded elements are UNDEF.
2406         if (DemandedElts.isSubsetOf(UndefElts)) {
2407           SplatIdx = 0;
2408           return getUNDEF(VT);
2409         }
2410         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2411       }
2412       return V;
2413     }
2414     break;
2415   }
2416   case ISD::SPLAT_VECTOR:
2417     SplatIdx = 0;
2418     return V;
2419   case ISD::VECTOR_SHUFFLE: {
2420     if (VT.isScalableVector())
2421       return SDValue();
2422 
2423     // Check if this is a shuffle node doing a splat.
2424     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2425     // getTargetVShiftNode currently struggles without the splat source.
2426     auto *SVN = cast<ShuffleVectorSDNode>(V);
2427     if (!SVN->isSplat())
2428       break;
2429     int Idx = SVN->getSplatIndex();
2430     int NumElts = V.getValueType().getVectorNumElements();
2431     SplatIdx = Idx % NumElts;
2432     return V.getOperand(Idx / NumElts);
2433   }
2434   }
2435 
2436   return SDValue();
2437 }
2438 
2439 SDValue SelectionDAG::getSplatValue(SDValue V) {
2440   int SplatIdx;
2441   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2442     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2443                    SrcVector.getValueType().getScalarType(), SrcVector,
2444                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2445   return SDValue();
2446 }
2447 
2448 const APInt *
2449 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2450                                           const APInt &DemandedElts) const {
2451   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2452           V.getOpcode() == ISD::SRA) &&
2453          "Unknown shift node");
2454   unsigned BitWidth = V.getScalarValueSizeInBits();
2455   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2456     // Shifting more than the bitwidth is not valid.
2457     const APInt &ShAmt = SA->getAPIntValue();
2458     if (ShAmt.ult(BitWidth))
2459       return &ShAmt;
2460   }
2461   return nullptr;
2462 }
2463 
2464 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2465     SDValue V, const APInt &DemandedElts) const {
2466   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2467           V.getOpcode() == ISD::SRA) &&
2468          "Unknown shift node");
2469   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2470     return ValidAmt;
2471   unsigned BitWidth = V.getScalarValueSizeInBits();
2472   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2473   if (!BV)
2474     return nullptr;
2475   const APInt *MinShAmt = nullptr;
2476   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2477     if (!DemandedElts[i])
2478       continue;
2479     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2480     if (!SA)
2481       return nullptr;
2482     // Shifting more than the bitwidth is not valid.
2483     const APInt &ShAmt = SA->getAPIntValue();
2484     if (ShAmt.uge(BitWidth))
2485       return nullptr;
2486     if (MinShAmt && MinShAmt->ule(ShAmt))
2487       continue;
2488     MinShAmt = &ShAmt;
2489   }
2490   return MinShAmt;
2491 }
2492 
2493 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2494     SDValue V, const APInt &DemandedElts) const {
2495   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2496           V.getOpcode() == ISD::SRA) &&
2497          "Unknown shift node");
2498   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2499     return ValidAmt;
2500   unsigned BitWidth = V.getScalarValueSizeInBits();
2501   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2502   if (!BV)
2503     return nullptr;
2504   const APInt *MaxShAmt = nullptr;
2505   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2506     if (!DemandedElts[i])
2507       continue;
2508     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2509     if (!SA)
2510       return nullptr;
2511     // Shifting more than the bitwidth is not valid.
2512     const APInt &ShAmt = SA->getAPIntValue();
2513     if (ShAmt.uge(BitWidth))
2514       return nullptr;
2515     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2516       continue;
2517     MaxShAmt = &ShAmt;
2518   }
2519   return MaxShAmt;
2520 }
2521 
2522 /// Determine which bits of Op are known to be either zero or one and return
2523 /// them in Known. For vectors, the known bits are those that are shared by
2524 /// every vector element.
2525 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2526   EVT VT = Op.getValueType();
2527   APInt DemandedElts = VT.isVector()
2528                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2529                            : APInt(1, 1);
2530   return computeKnownBits(Op, DemandedElts, Depth);
2531 }
2532 
2533 /// Determine which bits of Op are known to be either zero or one and return
2534 /// them in Known. The DemandedElts argument allows us to only collect the known
2535 /// bits that are shared by the requested vector elements.
2536 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2537                                          unsigned Depth) const {
2538   unsigned BitWidth = Op.getScalarValueSizeInBits();
2539 
2540   KnownBits Known(BitWidth);   // Don't know anything.
2541 
2542   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2543     // We know all of the bits for a constant!
2544     Known.One = C->getAPIntValue();
2545     Known.Zero = ~Known.One;
2546     return Known;
2547   }
2548   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2549     // We know all of the bits for a constant fp!
2550     Known.One = C->getValueAPF().bitcastToAPInt();
2551     Known.Zero = ~Known.One;
2552     return Known;
2553   }
2554 
2555   if (Depth >= MaxRecursionDepth)
2556     return Known;  // Limit search depth.
2557 
2558   KnownBits Known2;
2559   unsigned NumElts = DemandedElts.getBitWidth();
2560   assert((!Op.getValueType().isVector() ||
2561           NumElts == Op.getValueType().getVectorNumElements()) &&
2562          "Unexpected vector size");
2563 
2564   if (!DemandedElts)
2565     return Known;  // No demanded elts, better to assume we don't know anything.
2566 
2567   unsigned Opcode = Op.getOpcode();
2568   switch (Opcode) {
2569   case ISD::BUILD_VECTOR:
2570     // Collect the known bits that are shared by every demanded vector element.
2571     Known.Zero.setAllBits(); Known.One.setAllBits();
2572     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2573       if (!DemandedElts[i])
2574         continue;
2575 
2576       SDValue SrcOp = Op.getOperand(i);
2577       Known2 = computeKnownBits(SrcOp, Depth + 1);
2578 
2579       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2580       if (SrcOp.getValueSizeInBits() != BitWidth) {
2581         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2582                "Expected BUILD_VECTOR implicit truncation");
2583         Known2 = Known2.trunc(BitWidth);
2584       }
2585 
2586       // Known bits are the values that are shared by every demanded element.
2587       Known.One &= Known2.One;
2588       Known.Zero &= Known2.Zero;
2589 
2590       // If we don't know any bits, early out.
2591       if (Known.isUnknown())
2592         break;
2593     }
2594     break;
2595   case ISD::VECTOR_SHUFFLE: {
2596     // Collect the known bits that are shared by every vector element referenced
2597     // by the shuffle.
2598     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2599     Known.Zero.setAllBits(); Known.One.setAllBits();
2600     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2601     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2602     for (unsigned i = 0; i != NumElts; ++i) {
2603       if (!DemandedElts[i])
2604         continue;
2605 
2606       int M = SVN->getMaskElt(i);
2607       if (M < 0) {
2608         // For UNDEF elements, we don't know anything about the common state of
2609         // the shuffle result.
2610         Known.resetAll();
2611         DemandedLHS.clearAllBits();
2612         DemandedRHS.clearAllBits();
2613         break;
2614       }
2615 
2616       if ((unsigned)M < NumElts)
2617         DemandedLHS.setBit((unsigned)M % NumElts);
2618       else
2619         DemandedRHS.setBit((unsigned)M % NumElts);
2620     }
2621     // Known bits are the values that are shared by every demanded element.
2622     if (!!DemandedLHS) {
2623       SDValue LHS = Op.getOperand(0);
2624       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2625       Known.One &= Known2.One;
2626       Known.Zero &= Known2.Zero;
2627     }
2628     // If we don't know any bits, early out.
2629     if (Known.isUnknown())
2630       break;
2631     if (!!DemandedRHS) {
2632       SDValue RHS = Op.getOperand(1);
2633       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2634       Known.One &= Known2.One;
2635       Known.Zero &= Known2.Zero;
2636     }
2637     break;
2638   }
2639   case ISD::CONCAT_VECTORS: {
2640     // Split DemandedElts and test each of the demanded subvectors.
2641     Known.Zero.setAllBits(); Known.One.setAllBits();
2642     EVT SubVectorVT = Op.getOperand(0).getValueType();
2643     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2644     unsigned NumSubVectors = Op.getNumOperands();
2645     for (unsigned i = 0; i != NumSubVectors; ++i) {
2646       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2647       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2648       if (!!DemandedSub) {
2649         SDValue Sub = Op.getOperand(i);
2650         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2651         Known.One &= Known2.One;
2652         Known.Zero &= Known2.Zero;
2653       }
2654       // If we don't know any bits, early out.
2655       if (Known.isUnknown())
2656         break;
2657     }
2658     break;
2659   }
2660   case ISD::INSERT_SUBVECTOR: {
2661     // Demand any elements from the subvector and the remainder from the src its
2662     // inserted into.
2663     SDValue Src = Op.getOperand(0);
2664     SDValue Sub = Op.getOperand(1);
2665     uint64_t Idx = Op.getConstantOperandVal(2);
2666     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2667     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2668     APInt DemandedSrcElts = DemandedElts;
2669     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2670 
2671     Known.One.setAllBits();
2672     Known.Zero.setAllBits();
2673     if (!!DemandedSubElts) {
2674       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2675       if (Known.isUnknown())
2676         break; // early-out.
2677     }
2678     if (!!DemandedSrcElts) {
2679       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2680       Known.One &= Known2.One;
2681       Known.Zero &= Known2.Zero;
2682     }
2683     break;
2684   }
2685   case ISD::EXTRACT_SUBVECTOR: {
2686     // Offset the demanded elts by the subvector index.
2687     SDValue Src = Op.getOperand(0);
2688     uint64_t Idx = Op.getConstantOperandVal(1);
2689     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2690     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2691     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2692     break;
2693   }
2694   case ISD::SCALAR_TO_VECTOR: {
2695     // We know about scalar_to_vector as much as we know about it source,
2696     // which becomes the first element of otherwise unknown vector.
2697     if (DemandedElts != 1)
2698       break;
2699 
2700     SDValue N0 = Op.getOperand(0);
2701     Known = computeKnownBits(N0, Depth + 1);
2702     if (N0.getValueSizeInBits() != BitWidth)
2703       Known = Known.trunc(BitWidth);
2704 
2705     break;
2706   }
2707   case ISD::BITCAST: {
2708     SDValue N0 = Op.getOperand(0);
2709     EVT SubVT = N0.getValueType();
2710     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2711 
2712     // Ignore bitcasts from unsupported types.
2713     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2714       break;
2715 
2716     // Fast handling of 'identity' bitcasts.
2717     if (BitWidth == SubBitWidth) {
2718       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2719       break;
2720     }
2721 
2722     bool IsLE = getDataLayout().isLittleEndian();
2723 
2724     // Bitcast 'small element' vector to 'large element' scalar/vector.
2725     if ((BitWidth % SubBitWidth) == 0) {
2726       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2727 
2728       // Collect known bits for the (larger) output by collecting the known
2729       // bits from each set of sub elements and shift these into place.
2730       // We need to separately call computeKnownBits for each set of
2731       // sub elements as the knownbits for each is likely to be different.
2732       unsigned SubScale = BitWidth / SubBitWidth;
2733       APInt SubDemandedElts(NumElts * SubScale, 0);
2734       for (unsigned i = 0; i != NumElts; ++i)
2735         if (DemandedElts[i])
2736           SubDemandedElts.setBit(i * SubScale);
2737 
2738       for (unsigned i = 0; i != SubScale; ++i) {
2739         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2740                          Depth + 1);
2741         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2742         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2743         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2744       }
2745     }
2746 
2747     // Bitcast 'large element' scalar/vector to 'small element' vector.
2748     if ((SubBitWidth % BitWidth) == 0) {
2749       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2750 
2751       // Collect known bits for the (smaller) output by collecting the known
2752       // bits from the overlapping larger input elements and extracting the
2753       // sub sections we actually care about.
2754       unsigned SubScale = SubBitWidth / BitWidth;
2755       APInt SubDemandedElts(NumElts / SubScale, 0);
2756       for (unsigned i = 0; i != NumElts; ++i)
2757         if (DemandedElts[i])
2758           SubDemandedElts.setBit(i / SubScale);
2759 
2760       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2761 
2762       Known.Zero.setAllBits(); Known.One.setAllBits();
2763       for (unsigned i = 0; i != NumElts; ++i)
2764         if (DemandedElts[i]) {
2765           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2766           unsigned Offset = (Shifts % SubScale) * BitWidth;
2767           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2768           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2769           // If we don't know any bits, early out.
2770           if (Known.isUnknown())
2771             break;
2772         }
2773     }
2774     break;
2775   }
2776   case ISD::AND:
2777     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2778     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2779 
2780     Known &= Known2;
2781     break;
2782   case ISD::OR:
2783     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2784     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2785 
2786     Known |= Known2;
2787     break;
2788   case ISD::XOR:
2789     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2790     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2791 
2792     Known ^= Known2;
2793     break;
2794   case ISD::MUL: {
2795     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2796     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2797 
2798     // If low bits are zero in either operand, output low known-0 bits.
2799     // Also compute a conservative estimate for high known-0 bits.
2800     // More trickiness is possible, but this is sufficient for the
2801     // interesting case of alignment computation.
2802     unsigned TrailZ = Known.countMinTrailingZeros() +
2803                       Known2.countMinTrailingZeros();
2804     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2805                                Known2.countMinLeadingZeros(),
2806                                BitWidth) - BitWidth;
2807 
2808     Known.resetAll();
2809     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2810     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2811     break;
2812   }
2813   case ISD::UDIV: {
2814     // For the purposes of computing leading zeros we can conservatively
2815     // treat a udiv as a logical right shift by the power of 2 known to
2816     // be less than the denominator.
2817     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2818     unsigned LeadZ = Known2.countMinLeadingZeros();
2819 
2820     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2821     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2822     if (RHSMaxLeadingZeros != BitWidth)
2823       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2824 
2825     Known.Zero.setHighBits(LeadZ);
2826     break;
2827   }
2828   case ISD::SELECT:
2829   case ISD::VSELECT:
2830     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2831     // If we don't know any bits, early out.
2832     if (Known.isUnknown())
2833       break;
2834     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2835 
2836     // Only known if known in both the LHS and RHS.
2837     Known.One &= Known2.One;
2838     Known.Zero &= Known2.Zero;
2839     break;
2840   case ISD::SELECT_CC:
2841     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2842     // If we don't know any bits, early out.
2843     if (Known.isUnknown())
2844       break;
2845     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2846 
2847     // Only known if known in both the LHS and RHS.
2848     Known.One &= Known2.One;
2849     Known.Zero &= Known2.Zero;
2850     break;
2851   case ISD::SMULO:
2852   case ISD::UMULO:
2853   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2854     if (Op.getResNo() != 1)
2855       break;
2856     // The boolean result conforms to getBooleanContents.
2857     // If we know the result of a setcc has the top bits zero, use this info.
2858     // We know that we have an integer-based boolean since these operations
2859     // are only available for integer.
2860     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2861             TargetLowering::ZeroOrOneBooleanContent &&
2862         BitWidth > 1)
2863       Known.Zero.setBitsFrom(1);
2864     break;
2865   case ISD::SETCC:
2866   case ISD::STRICT_FSETCC:
2867   case ISD::STRICT_FSETCCS: {
2868     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2869     // If we know the result of a setcc has the top bits zero, use this info.
2870     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2871             TargetLowering::ZeroOrOneBooleanContent &&
2872         BitWidth > 1)
2873       Known.Zero.setBitsFrom(1);
2874     break;
2875   }
2876   case ISD::SHL:
2877     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2878 
2879     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2880       unsigned Shift = ShAmt->getZExtValue();
2881       Known.Zero <<= Shift;
2882       Known.One <<= Shift;
2883       // Low bits are known zero.
2884       Known.Zero.setLowBits(Shift);
2885       break;
2886     }
2887 
2888     // No matter the shift amount, the trailing zeros will stay zero.
2889     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2890     Known.One.clearAllBits();
2891 
2892     // Minimum shift low bits are known zero.
2893     if (const APInt *ShMinAmt =
2894             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2895       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2896     break;
2897   case ISD::SRL:
2898     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2899 
2900     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2901       unsigned Shift = ShAmt->getZExtValue();
2902       Known.Zero.lshrInPlace(Shift);
2903       Known.One.lshrInPlace(Shift);
2904       // High bits are known zero.
2905       Known.Zero.setHighBits(Shift);
2906       break;
2907     }
2908 
2909     // No matter the shift amount, the leading zeros will stay zero.
2910     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2911     Known.One.clearAllBits();
2912 
2913     // Minimum shift high bits are known zero.
2914     if (const APInt *ShMinAmt =
2915             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2916       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2917     break;
2918   case ISD::SRA:
2919     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2920       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2921       unsigned Shift = ShAmt->getZExtValue();
2922       // Sign extend known zero/one bit (else is unknown).
2923       Known.Zero.ashrInPlace(Shift);
2924       Known.One.ashrInPlace(Shift);
2925     }
2926     break;
2927   case ISD::FSHL:
2928   case ISD::FSHR:
2929     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2930       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2931 
2932       // For fshl, 0-shift returns the 1st arg.
2933       // For fshr, 0-shift returns the 2nd arg.
2934       if (Amt == 0) {
2935         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2936                                  DemandedElts, Depth + 1);
2937         break;
2938       }
2939 
2940       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2941       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2942       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2943       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2944       if (Opcode == ISD::FSHL) {
2945         Known.One <<= Amt;
2946         Known.Zero <<= Amt;
2947         Known2.One.lshrInPlace(BitWidth - Amt);
2948         Known2.Zero.lshrInPlace(BitWidth - Amt);
2949       } else {
2950         Known.One <<= BitWidth - Amt;
2951         Known.Zero <<= BitWidth - Amt;
2952         Known2.One.lshrInPlace(Amt);
2953         Known2.Zero.lshrInPlace(Amt);
2954       }
2955       Known.One |= Known2.One;
2956       Known.Zero |= Known2.Zero;
2957     }
2958     break;
2959   case ISD::SIGN_EXTEND_INREG: {
2960     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2961     unsigned EBits = EVT.getScalarSizeInBits();
2962 
2963     // Sign extension.  Compute the demanded bits in the result that are not
2964     // present in the input.
2965     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2966 
2967     APInt InSignMask = APInt::getSignMask(EBits);
2968     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2969 
2970     // If the sign extended bits are demanded, we know that the sign
2971     // bit is demanded.
2972     InSignMask = InSignMask.zext(BitWidth);
2973     if (NewBits.getBoolValue())
2974       InputDemandedBits |= InSignMask;
2975 
2976     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2977     Known.One &= InputDemandedBits;
2978     Known.Zero &= InputDemandedBits;
2979 
2980     // If the sign bit of the input is known set or clear, then we know the
2981     // top bits of the result.
2982     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2983       Known.Zero |= NewBits;
2984       Known.One  &= ~NewBits;
2985     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2986       Known.One  |= NewBits;
2987       Known.Zero &= ~NewBits;
2988     } else {                              // Input sign bit unknown
2989       Known.Zero &= ~NewBits;
2990       Known.One  &= ~NewBits;
2991     }
2992     break;
2993   }
2994   case ISD::CTTZ:
2995   case ISD::CTTZ_ZERO_UNDEF: {
2996     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2997     // If we have a known 1, its position is our upper bound.
2998     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2999     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3000     Known.Zero.setBitsFrom(LowBits);
3001     break;
3002   }
3003   case ISD::CTLZ:
3004   case ISD::CTLZ_ZERO_UNDEF: {
3005     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3006     // If we have a known 1, its position is our upper bound.
3007     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3008     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3009     Known.Zero.setBitsFrom(LowBits);
3010     break;
3011   }
3012   case ISD::CTPOP: {
3013     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3014     // If we know some of the bits are zero, they can't be one.
3015     unsigned PossibleOnes = Known2.countMaxPopulation();
3016     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3017     break;
3018   }
3019   case ISD::LOAD: {
3020     LoadSDNode *LD = cast<LoadSDNode>(Op);
3021     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3022     if (ISD::isNON_EXTLoad(LD) && Cst) {
3023       // Determine any common known bits from the loaded constant pool value.
3024       Type *CstTy = Cst->getType();
3025       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3026         // If its a vector splat, then we can (quickly) reuse the scalar path.
3027         // NOTE: We assume all elements match and none are UNDEF.
3028         if (CstTy->isVectorTy()) {
3029           if (const Constant *Splat = Cst->getSplatValue()) {
3030             Cst = Splat;
3031             CstTy = Cst->getType();
3032           }
3033         }
3034         // TODO - do we need to handle different bitwidths?
3035         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3036           // Iterate across all vector elements finding common known bits.
3037           Known.One.setAllBits();
3038           Known.Zero.setAllBits();
3039           for (unsigned i = 0; i != NumElts; ++i) {
3040             if (!DemandedElts[i])
3041               continue;
3042             if (Constant *Elt = Cst->getAggregateElement(i)) {
3043               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3044                 const APInt &Value = CInt->getValue();
3045                 Known.One &= Value;
3046                 Known.Zero &= ~Value;
3047                 continue;
3048               }
3049               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3050                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3051                 Known.One &= Value;
3052                 Known.Zero &= ~Value;
3053                 continue;
3054               }
3055             }
3056             Known.One.clearAllBits();
3057             Known.Zero.clearAllBits();
3058             break;
3059           }
3060         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3061           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3062             const APInt &Value = CInt->getValue();
3063             Known.One = Value;
3064             Known.Zero = ~Value;
3065           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3066             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3067             Known.One = Value;
3068             Known.Zero = ~Value;
3069           }
3070         }
3071       }
3072     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3073       // If this is a ZEXTLoad and we are looking at the loaded value.
3074       EVT VT = LD->getMemoryVT();
3075       unsigned MemBits = VT.getScalarSizeInBits();
3076       Known.Zero.setBitsFrom(MemBits);
3077     } else if (const MDNode *Ranges = LD->getRanges()) {
3078       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3079         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3080     }
3081     break;
3082   }
3083   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3084     EVT InVT = Op.getOperand(0).getValueType();
3085     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3086     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3087     Known = Known.zext(BitWidth);
3088     break;
3089   }
3090   case ISD::ZERO_EXTEND: {
3091     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3092     Known = Known.zext(BitWidth);
3093     break;
3094   }
3095   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3096     EVT InVT = Op.getOperand(0).getValueType();
3097     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3098     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3099     // If the sign bit is known to be zero or one, then sext will extend
3100     // it to the top bits, else it will just zext.
3101     Known = Known.sext(BitWidth);
3102     break;
3103   }
3104   case ISD::SIGN_EXTEND: {
3105     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3106     // If the sign bit is known to be zero or one, then sext will extend
3107     // it to the top bits, else it will just zext.
3108     Known = Known.sext(BitWidth);
3109     break;
3110   }
3111   case ISD::ANY_EXTEND_VECTOR_INREG: {
3112     EVT InVT = Op.getOperand(0).getValueType();
3113     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3114     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3115     Known = Known.anyext(BitWidth);
3116     break;
3117   }
3118   case ISD::ANY_EXTEND: {
3119     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3120     Known = Known.anyext(BitWidth);
3121     break;
3122   }
3123   case ISD::TRUNCATE: {
3124     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3125     Known = Known.trunc(BitWidth);
3126     break;
3127   }
3128   case ISD::AssertZext: {
3129     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3130     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3131     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3132     Known.Zero |= (~InMask);
3133     Known.One  &= (~Known.Zero);
3134     break;
3135   }
3136   case ISD::FGETSIGN:
3137     // All bits are zero except the low bit.
3138     Known.Zero.setBitsFrom(1);
3139     break;
3140   case ISD::USUBO:
3141   case ISD::SSUBO:
3142     if (Op.getResNo() == 1) {
3143       // If we know the result of a setcc has the top bits zero, use this info.
3144       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3145               TargetLowering::ZeroOrOneBooleanContent &&
3146           BitWidth > 1)
3147         Known.Zero.setBitsFrom(1);
3148       break;
3149     }
3150     LLVM_FALLTHROUGH;
3151   case ISD::SUB:
3152   case ISD::SUBC: {
3153     assert(Op.getResNo() == 0 &&
3154            "We only compute knownbits for the difference here.");
3155 
3156     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3158     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3159                                         Known, Known2);
3160     break;
3161   }
3162   case ISD::UADDO:
3163   case ISD::SADDO:
3164   case ISD::ADDCARRY:
3165     if (Op.getResNo() == 1) {
3166       // If we know the result of a setcc has the top bits zero, use this info.
3167       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3168               TargetLowering::ZeroOrOneBooleanContent &&
3169           BitWidth > 1)
3170         Known.Zero.setBitsFrom(1);
3171       break;
3172     }
3173     LLVM_FALLTHROUGH;
3174   case ISD::ADD:
3175   case ISD::ADDC:
3176   case ISD::ADDE: {
3177     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3178 
3179     // With ADDE and ADDCARRY, a carry bit may be added in.
3180     KnownBits Carry(1);
3181     if (Opcode == ISD::ADDE)
3182       // Can't track carry from glue, set carry to unknown.
3183       Carry.resetAll();
3184     else if (Opcode == ISD::ADDCARRY)
3185       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3186       // the trouble (how often will we find a known carry bit). And I haven't
3187       // tested this very much yet, but something like this might work:
3188       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3189       //   Carry = Carry.zextOrTrunc(1, false);
3190       Carry.resetAll();
3191     else
3192       Carry.setAllZero();
3193 
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3196     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3197     break;
3198   }
3199   case ISD::SREM:
3200     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3201       const APInt &RA = Rem->getAPIntValue().abs();
3202       if (RA.isPowerOf2()) {
3203         APInt LowBits = RA - 1;
3204         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3205 
3206         // The low bits of the first operand are unchanged by the srem.
3207         Known.Zero = Known2.Zero & LowBits;
3208         Known.One = Known2.One & LowBits;
3209 
3210         // If the first operand is non-negative or has all low bits zero, then
3211         // the upper bits are all zero.
3212         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3213           Known.Zero |= ~LowBits;
3214 
3215         // If the first operand is negative and not all low bits are zero, then
3216         // the upper bits are all one.
3217         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3218           Known.One |= ~LowBits;
3219         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3220       }
3221     }
3222     break;
3223   case ISD::UREM: {
3224     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3225       const APInt &RA = Rem->getAPIntValue();
3226       if (RA.isPowerOf2()) {
3227         APInt LowBits = (RA - 1);
3228         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3229 
3230         // The upper bits are all zero, the lower ones are unchanged.
3231         Known.Zero = Known2.Zero | ~LowBits;
3232         Known.One = Known2.One & LowBits;
3233         break;
3234       }
3235     }
3236 
3237     // Since the result is less than or equal to either operand, any leading
3238     // zero bits in either operand must also exist in the result.
3239     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3240     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3241 
3242     uint32_t Leaders =
3243         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3244     Known.resetAll();
3245     Known.Zero.setHighBits(Leaders);
3246     break;
3247   }
3248   case ISD::EXTRACT_ELEMENT: {
3249     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3250     const unsigned Index = Op.getConstantOperandVal(1);
3251     const unsigned EltBitWidth = Op.getValueSizeInBits();
3252 
3253     // Remove low part of known bits mask
3254     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3255     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3256 
3257     // Remove high part of known bit mask
3258     Known = Known.trunc(EltBitWidth);
3259     break;
3260   }
3261   case ISD::EXTRACT_VECTOR_ELT: {
3262     SDValue InVec = Op.getOperand(0);
3263     SDValue EltNo = Op.getOperand(1);
3264     EVT VecVT = InVec.getValueType();
3265     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3266     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3267 
3268     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3269     // anything about the extended bits.
3270     if (BitWidth > EltBitWidth)
3271       Known = Known.trunc(EltBitWidth);
3272 
3273     // If we know the element index, just demand that vector element, else for
3274     // an unknown element index, ignore DemandedElts and demand them all.
3275     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3276     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3277     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3278       DemandedSrcElts =
3279           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3280 
3281     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3282     if (BitWidth > EltBitWidth)
3283       Known = Known.anyext(BitWidth);
3284     break;
3285   }
3286   case ISD::INSERT_VECTOR_ELT: {
3287     // If we know the element index, split the demand between the
3288     // source vector and the inserted element, otherwise assume we need
3289     // the original demanded vector elements and the value.
3290     SDValue InVec = Op.getOperand(0);
3291     SDValue InVal = Op.getOperand(1);
3292     SDValue EltNo = Op.getOperand(2);
3293     bool DemandedVal = true;
3294     APInt DemandedVecElts = DemandedElts;
3295     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3296     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3297       unsigned EltIdx = CEltNo->getZExtValue();
3298       DemandedVal = !!DemandedElts[EltIdx];
3299       DemandedVecElts.clearBit(EltIdx);
3300     }
3301     Known.One.setAllBits();
3302     Known.Zero.setAllBits();
3303     if (DemandedVal) {
3304       Known2 = computeKnownBits(InVal, Depth + 1);
3305       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3306       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3307     }
3308     if (!!DemandedVecElts) {
3309       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3310       Known.One &= Known2.One;
3311       Known.Zero &= Known2.Zero;
3312     }
3313     break;
3314   }
3315   case ISD::BITREVERSE: {
3316     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3317     Known.Zero = Known2.Zero.reverseBits();
3318     Known.One = Known2.One.reverseBits();
3319     break;
3320   }
3321   case ISD::BSWAP: {
3322     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3323     Known.Zero = Known2.Zero.byteSwap();
3324     Known.One = Known2.One.byteSwap();
3325     break;
3326   }
3327   case ISD::ABS: {
3328     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3329 
3330     // If the source's MSB is zero then we know the rest of the bits already.
3331     if (Known2.isNonNegative()) {
3332       Known.Zero = Known2.Zero;
3333       Known.One = Known2.One;
3334       break;
3335     }
3336 
3337     // We only know that the absolute values's MSB will be zero iff there is
3338     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3339     Known2.One.clearSignBit();
3340     if (Known2.One.getBoolValue()) {
3341       Known.Zero = APInt::getSignMask(BitWidth);
3342       break;
3343     }
3344     break;
3345   }
3346   case ISD::UMIN: {
3347     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3348     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3349 
3350     // UMIN - we know that the result will have the maximum of the
3351     // known zero leading bits of the inputs.
3352     unsigned LeadZero = Known.countMinLeadingZeros();
3353     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3354 
3355     Known.Zero &= Known2.Zero;
3356     Known.One &= Known2.One;
3357     Known.Zero.setHighBits(LeadZero);
3358     break;
3359   }
3360   case ISD::UMAX: {
3361     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3362     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3363 
3364     // UMAX - we know that the result will have the maximum of the
3365     // known one leading bits of the inputs.
3366     unsigned LeadOne = Known.countMinLeadingOnes();
3367     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3368 
3369     Known.Zero &= Known2.Zero;
3370     Known.One &= Known2.One;
3371     Known.One.setHighBits(LeadOne);
3372     break;
3373   }
3374   case ISD::SMIN:
3375   case ISD::SMAX: {
3376     // If we have a clamp pattern, we know that the number of sign bits will be
3377     // the minimum of the clamp min/max range.
3378     bool IsMax = (Opcode == ISD::SMAX);
3379     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3380     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3381       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3382         CstHigh =
3383             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3384     if (CstLow && CstHigh) {
3385       if (!IsMax)
3386         std::swap(CstLow, CstHigh);
3387 
3388       const APInt &ValueLow = CstLow->getAPIntValue();
3389       const APInt &ValueHigh = CstHigh->getAPIntValue();
3390       if (ValueLow.sle(ValueHigh)) {
3391         unsigned LowSignBits = ValueLow.getNumSignBits();
3392         unsigned HighSignBits = ValueHigh.getNumSignBits();
3393         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3394         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3395           Known.One.setHighBits(MinSignBits);
3396           break;
3397         }
3398         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3399           Known.Zero.setHighBits(MinSignBits);
3400           break;
3401         }
3402       }
3403     }
3404 
3405     // Fallback - just get the shared known bits of the operands.
3406     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3407     if (Known.isUnknown()) break; // Early-out
3408     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3409     Known.Zero &= Known2.Zero;
3410     Known.One &= Known2.One;
3411     break;
3412   }
3413   case ISD::FrameIndex:
3414   case ISD::TargetFrameIndex:
3415     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3416     break;
3417 
3418   default:
3419     if (Opcode < ISD::BUILTIN_OP_END)
3420       break;
3421     LLVM_FALLTHROUGH;
3422   case ISD::INTRINSIC_WO_CHAIN:
3423   case ISD::INTRINSIC_W_CHAIN:
3424   case ISD::INTRINSIC_VOID:
3425     // Allow the target to implement this method for its nodes.
3426     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3427     break;
3428   }
3429 
3430   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3431   return Known;
3432 }
3433 
3434 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3435                                                              SDValue N1) const {
3436   // X + 0 never overflow
3437   if (isNullConstant(N1))
3438     return OFK_Never;
3439 
3440   KnownBits N1Known = computeKnownBits(N1);
3441   if (N1Known.Zero.getBoolValue()) {
3442     KnownBits N0Known = computeKnownBits(N0);
3443 
3444     bool overflow;
3445     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3446     if (!overflow)
3447       return OFK_Never;
3448   }
3449 
3450   // mulhi + 1 never overflow
3451   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3452       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3453     return OFK_Never;
3454 
3455   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3456     KnownBits N0Known = computeKnownBits(N0);
3457 
3458     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3459       return OFK_Never;
3460   }
3461 
3462   return OFK_Sometime;
3463 }
3464 
3465 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3466   EVT OpVT = Val.getValueType();
3467   unsigned BitWidth = OpVT.getScalarSizeInBits();
3468 
3469   // Is the constant a known power of 2?
3470   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3471     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3472 
3473   // A left-shift of a constant one will have exactly one bit set because
3474   // shifting the bit off the end is undefined.
3475   if (Val.getOpcode() == ISD::SHL) {
3476     auto *C = isConstOrConstSplat(Val.getOperand(0));
3477     if (C && C->getAPIntValue() == 1)
3478       return true;
3479   }
3480 
3481   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3482   // one bit set.
3483   if (Val.getOpcode() == ISD::SRL) {
3484     auto *C = isConstOrConstSplat(Val.getOperand(0));
3485     if (C && C->getAPIntValue().isSignMask())
3486       return true;
3487   }
3488 
3489   // Are all operands of a build vector constant powers of two?
3490   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3491     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3492           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3493             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3494           return false;
3495         }))
3496       return true;
3497 
3498   // More could be done here, though the above checks are enough
3499   // to handle some common cases.
3500 
3501   // Fall back to computeKnownBits to catch other known cases.
3502   KnownBits Known = computeKnownBits(Val);
3503   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3504 }
3505 
3506 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3507   EVT VT = Op.getValueType();
3508   APInt DemandedElts = VT.isVector()
3509                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3510                            : APInt(1, 1);
3511   return ComputeNumSignBits(Op, DemandedElts, Depth);
3512 }
3513 
3514 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3515                                           unsigned Depth) const {
3516   EVT VT = Op.getValueType();
3517   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3518   unsigned VTBits = VT.getScalarSizeInBits();
3519   unsigned NumElts = DemandedElts.getBitWidth();
3520   unsigned Tmp, Tmp2;
3521   unsigned FirstAnswer = 1;
3522 
3523   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3524     const APInt &Val = C->getAPIntValue();
3525     return Val.getNumSignBits();
3526   }
3527 
3528   if (Depth >= MaxRecursionDepth)
3529     return 1;  // Limit search depth.
3530 
3531   if (!DemandedElts)
3532     return 1;  // No demanded elts, better to assume we don't know anything.
3533 
3534   unsigned Opcode = Op.getOpcode();
3535   switch (Opcode) {
3536   default: break;
3537   case ISD::AssertSext:
3538     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3539     return VTBits-Tmp+1;
3540   case ISD::AssertZext:
3541     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3542     return VTBits-Tmp;
3543 
3544   case ISD::BUILD_VECTOR:
3545     Tmp = VTBits;
3546     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3547       if (!DemandedElts[i])
3548         continue;
3549 
3550       SDValue SrcOp = Op.getOperand(i);
3551       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3552 
3553       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3554       if (SrcOp.getValueSizeInBits() != VTBits) {
3555         assert(SrcOp.getValueSizeInBits() > VTBits &&
3556                "Expected BUILD_VECTOR implicit truncation");
3557         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3558         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3559       }
3560       Tmp = std::min(Tmp, Tmp2);
3561     }
3562     return Tmp;
3563 
3564   case ISD::VECTOR_SHUFFLE: {
3565     // Collect the minimum number of sign bits that are shared by every vector
3566     // element referenced by the shuffle.
3567     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3568     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3569     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3570     for (unsigned i = 0; i != NumElts; ++i) {
3571       int M = SVN->getMaskElt(i);
3572       if (!DemandedElts[i])
3573         continue;
3574       // For UNDEF elements, we don't know anything about the common state of
3575       // the shuffle result.
3576       if (M < 0)
3577         return 1;
3578       if ((unsigned)M < NumElts)
3579         DemandedLHS.setBit((unsigned)M % NumElts);
3580       else
3581         DemandedRHS.setBit((unsigned)M % NumElts);
3582     }
3583     Tmp = std::numeric_limits<unsigned>::max();
3584     if (!!DemandedLHS)
3585       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3586     if (!!DemandedRHS) {
3587       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3588       Tmp = std::min(Tmp, Tmp2);
3589     }
3590     // If we don't know anything, early out and try computeKnownBits fall-back.
3591     if (Tmp == 1)
3592       break;
3593     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3594     return Tmp;
3595   }
3596 
3597   case ISD::BITCAST: {
3598     SDValue N0 = Op.getOperand(0);
3599     EVT SrcVT = N0.getValueType();
3600     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3601 
3602     // Ignore bitcasts from unsupported types..
3603     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3604       break;
3605 
3606     // Fast handling of 'identity' bitcasts.
3607     if (VTBits == SrcBits)
3608       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3609 
3610     bool IsLE = getDataLayout().isLittleEndian();
3611 
3612     // Bitcast 'large element' scalar/vector to 'small element' vector.
3613     if ((SrcBits % VTBits) == 0) {
3614       assert(VT.isVector() && "Expected bitcast to vector");
3615 
3616       unsigned Scale = SrcBits / VTBits;
3617       APInt SrcDemandedElts(NumElts / Scale, 0);
3618       for (unsigned i = 0; i != NumElts; ++i)
3619         if (DemandedElts[i])
3620           SrcDemandedElts.setBit(i / Scale);
3621 
3622       // Fast case - sign splat can be simply split across the small elements.
3623       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3624       if (Tmp == SrcBits)
3625         return VTBits;
3626 
3627       // Slow case - determine how far the sign extends into each sub-element.
3628       Tmp2 = VTBits;
3629       for (unsigned i = 0; i != NumElts; ++i)
3630         if (DemandedElts[i]) {
3631           unsigned SubOffset = i % Scale;
3632           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3633           SubOffset = SubOffset * VTBits;
3634           if (Tmp <= SubOffset)
3635             return 1;
3636           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3637         }
3638       return Tmp2;
3639     }
3640     break;
3641   }
3642 
3643   case ISD::SIGN_EXTEND:
3644     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3645     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3646   case ISD::SIGN_EXTEND_INREG:
3647     // Max of the input and what this extends.
3648     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3649     Tmp = VTBits-Tmp+1;
3650     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3651     return std::max(Tmp, Tmp2);
3652   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3653     SDValue Src = Op.getOperand(0);
3654     EVT SrcVT = Src.getValueType();
3655     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3656     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3657     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3658   }
3659   case ISD::SRA:
3660     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3661     // SRA X, C -> adds C sign bits.
3662     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3663       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3664     else if (const APInt *ShAmt =
3665                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3666       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3667     return Tmp;
3668   case ISD::SHL:
3669     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3670       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3671       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3672       if (ShAmt->ult(Tmp))
3673         return Tmp - ShAmt->getZExtValue();
3674     } else if (const APInt *ShAmt =
3675                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3676       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3677       if (ShAmt->ult(Tmp))
3678         return Tmp - ShAmt->getZExtValue();
3679     }
3680     break;
3681   case ISD::AND:
3682   case ISD::OR:
3683   case ISD::XOR:    // NOT is handled here.
3684     // Logical binary ops preserve the number of sign bits at the worst.
3685     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3686     if (Tmp != 1) {
3687       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3688       FirstAnswer = std::min(Tmp, Tmp2);
3689       // We computed what we know about the sign bits as our first
3690       // answer. Now proceed to the generic code that uses
3691       // computeKnownBits, and pick whichever answer is better.
3692     }
3693     break;
3694 
3695   case ISD::SELECT:
3696   case ISD::VSELECT:
3697     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3698     if (Tmp == 1) return 1;  // Early out.
3699     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3700     return std::min(Tmp, Tmp2);
3701   case ISD::SELECT_CC:
3702     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3703     if (Tmp == 1) return 1;  // Early out.
3704     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3705     return std::min(Tmp, Tmp2);
3706 
3707   case ISD::SMIN:
3708   case ISD::SMAX: {
3709     // If we have a clamp pattern, we know that the number of sign bits will be
3710     // the minimum of the clamp min/max range.
3711     bool IsMax = (Opcode == ISD::SMAX);
3712     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3713     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3714       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3715         CstHigh =
3716             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3717     if (CstLow && CstHigh) {
3718       if (!IsMax)
3719         std::swap(CstLow, CstHigh);
3720       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3721         Tmp = CstLow->getAPIntValue().getNumSignBits();
3722         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3723         return std::min(Tmp, Tmp2);
3724       }
3725     }
3726 
3727     // Fallback - just get the minimum number of sign bits of the operands.
3728     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3729     if (Tmp == 1)
3730       return 1;  // Early out.
3731     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3732     return std::min(Tmp, Tmp2);
3733   }
3734   case ISD::UMIN:
3735   case ISD::UMAX:
3736     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3737     if (Tmp == 1)
3738       return 1;  // Early out.
3739     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3740     return std::min(Tmp, Tmp2);
3741   case ISD::SADDO:
3742   case ISD::UADDO:
3743   case ISD::SSUBO:
3744   case ISD::USUBO:
3745   case ISD::SMULO:
3746   case ISD::UMULO:
3747     if (Op.getResNo() != 1)
3748       break;
3749     // The boolean result conforms to getBooleanContents.  Fall through.
3750     // If setcc returns 0/-1, all bits are sign bits.
3751     // We know that we have an integer-based boolean since these operations
3752     // are only available for integer.
3753     if (TLI->getBooleanContents(VT.isVector(), false) ==
3754         TargetLowering::ZeroOrNegativeOneBooleanContent)
3755       return VTBits;
3756     break;
3757   case ISD::SETCC:
3758   case ISD::STRICT_FSETCC:
3759   case ISD::STRICT_FSETCCS: {
3760     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3761     // If setcc returns 0/-1, all bits are sign bits.
3762     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3763         TargetLowering::ZeroOrNegativeOneBooleanContent)
3764       return VTBits;
3765     break;
3766   }
3767   case ISD::ROTL:
3768   case ISD::ROTR:
3769     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3770 
3771     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3772     if (Tmp == VTBits)
3773       return VTBits;
3774 
3775     if (ConstantSDNode *C =
3776             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3777       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3778 
3779       // Handle rotate right by N like a rotate left by 32-N.
3780       if (Opcode == ISD::ROTR)
3781         RotAmt = (VTBits - RotAmt) % VTBits;
3782 
3783       // If we aren't rotating out all of the known-in sign bits, return the
3784       // number that are left.  This handles rotl(sext(x), 1) for example.
3785       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3786     }
3787     break;
3788   case ISD::ADD:
3789   case ISD::ADDC:
3790     // Add can have at most one carry bit.  Thus we know that the output
3791     // is, at worst, one more bit than the inputs.
3792     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3793     if (Tmp == 1) return 1; // Early out.
3794 
3795     // Special case decrementing a value (ADD X, -1):
3796     if (ConstantSDNode *CRHS =
3797             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3798       if (CRHS->isAllOnesValue()) {
3799         KnownBits Known =
3800             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3801 
3802         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3803         // sign bits set.
3804         if ((Known.Zero | 1).isAllOnesValue())
3805           return VTBits;
3806 
3807         // If we are subtracting one from a positive number, there is no carry
3808         // out of the result.
3809         if (Known.isNonNegative())
3810           return Tmp;
3811       }
3812 
3813     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3814     if (Tmp2 == 1) return 1; // Early out.
3815     return std::min(Tmp, Tmp2) - 1;
3816   case ISD::SUB:
3817     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3818     if (Tmp2 == 1) return 1; // Early out.
3819 
3820     // Handle NEG.
3821     if (ConstantSDNode *CLHS =
3822             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3823       if (CLHS->isNullValue()) {
3824         KnownBits Known =
3825             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3826         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3827         // sign bits set.
3828         if ((Known.Zero | 1).isAllOnesValue())
3829           return VTBits;
3830 
3831         // If the input is known to be positive (the sign bit is known clear),
3832         // the output of the NEG has the same number of sign bits as the input.
3833         if (Known.isNonNegative())
3834           return Tmp2;
3835 
3836         // Otherwise, we treat this like a SUB.
3837       }
3838 
3839     // Sub can have at most one carry bit.  Thus we know that the output
3840     // is, at worst, one more bit than the inputs.
3841     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3842     if (Tmp == 1) return 1; // Early out.
3843     return std::min(Tmp, Tmp2) - 1;
3844   case ISD::MUL: {
3845     // The output of the Mul can be at most twice the valid bits in the inputs.
3846     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3847     if (SignBitsOp0 == 1)
3848       break;
3849     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3850     if (SignBitsOp1 == 1)
3851       break;
3852     unsigned OutValidBits =
3853         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3854     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3855   }
3856   case ISD::TRUNCATE: {
3857     // Check if the sign bits of source go down as far as the truncated value.
3858     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3859     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3860     if (NumSrcSignBits > (NumSrcBits - VTBits))
3861       return NumSrcSignBits - (NumSrcBits - VTBits);
3862     break;
3863   }
3864   case ISD::EXTRACT_ELEMENT: {
3865     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3866     const int BitWidth = Op.getValueSizeInBits();
3867     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3868 
3869     // Get reverse index (starting from 1), Op1 value indexes elements from
3870     // little end. Sign starts at big end.
3871     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3872 
3873     // If the sign portion ends in our element the subtraction gives correct
3874     // result. Otherwise it gives either negative or > bitwidth result
3875     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3876   }
3877   case ISD::INSERT_VECTOR_ELT: {
3878     // If we know the element index, split the demand between the
3879     // source vector and the inserted element, otherwise assume we need
3880     // the original demanded vector elements and the value.
3881     SDValue InVec = Op.getOperand(0);
3882     SDValue InVal = Op.getOperand(1);
3883     SDValue EltNo = Op.getOperand(2);
3884     bool DemandedVal = true;
3885     APInt DemandedVecElts = DemandedElts;
3886     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3887     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3888       unsigned EltIdx = CEltNo->getZExtValue();
3889       DemandedVal = !!DemandedElts[EltIdx];
3890       DemandedVecElts.clearBit(EltIdx);
3891     }
3892     Tmp = std::numeric_limits<unsigned>::max();
3893     if (DemandedVal) {
3894       // TODO - handle implicit truncation of inserted elements.
3895       if (InVal.getScalarValueSizeInBits() != VTBits)
3896         break;
3897       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3898       Tmp = std::min(Tmp, Tmp2);
3899     }
3900     if (!!DemandedVecElts) {
3901       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3902       Tmp = std::min(Tmp, Tmp2);
3903     }
3904     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3905     return Tmp;
3906   }
3907   case ISD::EXTRACT_VECTOR_ELT: {
3908     SDValue InVec = Op.getOperand(0);
3909     SDValue EltNo = Op.getOperand(1);
3910     EVT VecVT = InVec.getValueType();
3911     const unsigned BitWidth = Op.getValueSizeInBits();
3912     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3913     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3914 
3915     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3916     // anything about sign bits. But if the sizes match we can derive knowledge
3917     // about sign bits from the vector operand.
3918     if (BitWidth != EltBitWidth)
3919       break;
3920 
3921     // If we know the element index, just demand that vector element, else for
3922     // an unknown element index, ignore DemandedElts and demand them all.
3923     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3924     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3925     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3926       DemandedSrcElts =
3927           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3928 
3929     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3930   }
3931   case ISD::EXTRACT_SUBVECTOR: {
3932     // Offset the demanded elts by the subvector index.
3933     SDValue Src = Op.getOperand(0);
3934     uint64_t Idx = Op.getConstantOperandVal(1);
3935     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3936     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3937     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3938   }
3939   case ISD::CONCAT_VECTORS: {
3940     // Determine the minimum number of sign bits across all demanded
3941     // elts of the input vectors. Early out if the result is already 1.
3942     Tmp = std::numeric_limits<unsigned>::max();
3943     EVT SubVectorVT = Op.getOperand(0).getValueType();
3944     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3945     unsigned NumSubVectors = Op.getNumOperands();
3946     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3947       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3948       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3949       if (!DemandedSub)
3950         continue;
3951       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3952       Tmp = std::min(Tmp, Tmp2);
3953     }
3954     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3955     return Tmp;
3956   }
3957   case ISD::INSERT_SUBVECTOR: {
3958     // Demand any elements from the subvector and the remainder from the src its
3959     // inserted into.
3960     SDValue Src = Op.getOperand(0);
3961     SDValue Sub = Op.getOperand(1);
3962     uint64_t Idx = Op.getConstantOperandVal(2);
3963     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3964     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3965     APInt DemandedSrcElts = DemandedElts;
3966     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3967 
3968     Tmp = std::numeric_limits<unsigned>::max();
3969     if (!!DemandedSubElts) {
3970       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3971       if (Tmp == 1)
3972         return 1; // early-out
3973     }
3974     if (!!DemandedSrcElts) {
3975       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3976       Tmp = std::min(Tmp, Tmp2);
3977     }
3978     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3979     return Tmp;
3980   }
3981   }
3982 
3983   // If we are looking at the loaded value of the SDNode.
3984   if (Op.getResNo() == 0) {
3985     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3986     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3987       unsigned ExtType = LD->getExtensionType();
3988       switch (ExtType) {
3989       default: break;
3990       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3991         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3992         return VTBits - Tmp + 1;
3993       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3994         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3995         return VTBits - Tmp;
3996       case ISD::NON_EXTLOAD:
3997         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3998           // We only need to handle vectors - computeKnownBits should handle
3999           // scalar cases.
4000           Type *CstTy = Cst->getType();
4001           if (CstTy->isVectorTy() &&
4002               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4003             Tmp = VTBits;
4004             for (unsigned i = 0; i != NumElts; ++i) {
4005               if (!DemandedElts[i])
4006                 continue;
4007               if (Constant *Elt = Cst->getAggregateElement(i)) {
4008                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4009                   const APInt &Value = CInt->getValue();
4010                   Tmp = std::min(Tmp, Value.getNumSignBits());
4011                   continue;
4012                 }
4013                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4014                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4015                   Tmp = std::min(Tmp, Value.getNumSignBits());
4016                   continue;
4017                 }
4018               }
4019               // Unknown type. Conservatively assume no bits match sign bit.
4020               return 1;
4021             }
4022             return Tmp;
4023           }
4024         }
4025         break;
4026       }
4027     }
4028   }
4029 
4030   // Allow the target to implement this method for its nodes.
4031   if (Opcode >= ISD::BUILTIN_OP_END ||
4032       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4033       Opcode == ISD::INTRINSIC_W_CHAIN ||
4034       Opcode == ISD::INTRINSIC_VOID) {
4035     unsigned NumBits =
4036         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4037     if (NumBits > 1)
4038       FirstAnswer = std::max(FirstAnswer, NumBits);
4039   }
4040 
4041   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4042   // use this information.
4043   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4044 
4045   APInt Mask;
4046   if (Known.isNonNegative()) {        // sign bit is 0
4047     Mask = Known.Zero;
4048   } else if (Known.isNegative()) {  // sign bit is 1;
4049     Mask = Known.One;
4050   } else {
4051     // Nothing known.
4052     return FirstAnswer;
4053   }
4054 
4055   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4056   // the number of identical bits in the top of the input value.
4057   Mask <<= Mask.getBitWidth()-VTBits;
4058   return std::max(FirstAnswer, Mask.countLeadingOnes());
4059 }
4060 
4061 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4062   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4063       !isa<ConstantSDNode>(Op.getOperand(1)))
4064     return false;
4065 
4066   if (Op.getOpcode() == ISD::OR &&
4067       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4068     return false;
4069 
4070   return true;
4071 }
4072 
4073 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4074   // If we're told that NaNs won't happen, assume they won't.
4075   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4076     return true;
4077 
4078   if (Depth >= MaxRecursionDepth)
4079     return false; // Limit search depth.
4080 
4081   // TODO: Handle vectors.
4082   // If the value is a constant, we can obviously see if it is a NaN or not.
4083   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4084     return !C->getValueAPF().isNaN() ||
4085            (SNaN && !C->getValueAPF().isSignaling());
4086   }
4087 
4088   unsigned Opcode = Op.getOpcode();
4089   switch (Opcode) {
4090   case ISD::FADD:
4091   case ISD::FSUB:
4092   case ISD::FMUL:
4093   case ISD::FDIV:
4094   case ISD::FREM:
4095   case ISD::FSIN:
4096   case ISD::FCOS: {
4097     if (SNaN)
4098       return true;
4099     // TODO: Need isKnownNeverInfinity
4100     return false;
4101   }
4102   case ISD::FCANONICALIZE:
4103   case ISD::FEXP:
4104   case ISD::FEXP2:
4105   case ISD::FTRUNC:
4106   case ISD::FFLOOR:
4107   case ISD::FCEIL:
4108   case ISD::FROUND:
4109   case ISD::FRINT:
4110   case ISD::FNEARBYINT: {
4111     if (SNaN)
4112       return true;
4113     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4114   }
4115   case ISD::FABS:
4116   case ISD::FNEG:
4117   case ISD::FCOPYSIGN: {
4118     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4119   }
4120   case ISD::SELECT:
4121     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4122            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4123   case ISD::FP_EXTEND:
4124   case ISD::FP_ROUND: {
4125     if (SNaN)
4126       return true;
4127     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4128   }
4129   case ISD::SINT_TO_FP:
4130   case ISD::UINT_TO_FP:
4131     return true;
4132   case ISD::FMA:
4133   case ISD::FMAD: {
4134     if (SNaN)
4135       return true;
4136     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4137            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4138            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4139   }
4140   case ISD::FSQRT: // Need is known positive
4141   case ISD::FLOG:
4142   case ISD::FLOG2:
4143   case ISD::FLOG10:
4144   case ISD::FPOWI:
4145   case ISD::FPOW: {
4146     if (SNaN)
4147       return true;
4148     // TODO: Refine on operand
4149     return false;
4150   }
4151   case ISD::FMINNUM:
4152   case ISD::FMAXNUM: {
4153     // Only one needs to be known not-nan, since it will be returned if the
4154     // other ends up being one.
4155     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4156            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4157   }
4158   case ISD::FMINNUM_IEEE:
4159   case ISD::FMAXNUM_IEEE: {
4160     if (SNaN)
4161       return true;
4162     // This can return a NaN if either operand is an sNaN, or if both operands
4163     // are NaN.
4164     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4165             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4166            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4167             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4168   }
4169   case ISD::FMINIMUM:
4170   case ISD::FMAXIMUM: {
4171     // TODO: Does this quiet or return the origina NaN as-is?
4172     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4173            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4174   }
4175   case ISD::EXTRACT_VECTOR_ELT: {
4176     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4177   }
4178   default:
4179     if (Opcode >= ISD::BUILTIN_OP_END ||
4180         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4181         Opcode == ISD::INTRINSIC_W_CHAIN ||
4182         Opcode == ISD::INTRINSIC_VOID) {
4183       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4184     }
4185 
4186     return false;
4187   }
4188 }
4189 
4190 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4191   assert(Op.getValueType().isFloatingPoint() &&
4192          "Floating point type expected");
4193 
4194   // If the value is a constant, we can obviously see if it is a zero or not.
4195   // TODO: Add BuildVector support.
4196   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4197     return !C->isZero();
4198   return false;
4199 }
4200 
4201 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4202   assert(!Op.getValueType().isFloatingPoint() &&
4203          "Floating point types unsupported - use isKnownNeverZeroFloat");
4204 
4205   // If the value is a constant, we can obviously see if it is a zero or not.
4206   if (ISD::matchUnaryPredicate(
4207           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4208     return true;
4209 
4210   // TODO: Recognize more cases here.
4211   switch (Op.getOpcode()) {
4212   default: break;
4213   case ISD::OR:
4214     if (isKnownNeverZero(Op.getOperand(1)) ||
4215         isKnownNeverZero(Op.getOperand(0)))
4216       return true;
4217     break;
4218   }
4219 
4220   return false;
4221 }
4222 
4223 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4224   // Check the obvious case.
4225   if (A == B) return true;
4226 
4227   // For for negative and positive zero.
4228   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4229     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4230       if (CA->isZero() && CB->isZero()) return true;
4231 
4232   // Otherwise they may not be equal.
4233   return false;
4234 }
4235 
4236 // FIXME: unify with llvm::haveNoCommonBitsSet.
4237 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4238 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4239   assert(A.getValueType() == B.getValueType() &&
4240          "Values must have the same type");
4241   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4242 }
4243 
4244 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4245                                 ArrayRef<SDValue> Ops,
4246                                 SelectionDAG &DAG) {
4247   int NumOps = Ops.size();
4248   assert(NumOps != 0 && "Can't build an empty vector!");
4249   assert(!VT.isScalableVector() &&
4250          "BUILD_VECTOR cannot be used with scalable types");
4251   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4252          "Incorrect element count in BUILD_VECTOR!");
4253 
4254   // BUILD_VECTOR of UNDEFs is UNDEF.
4255   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4256     return DAG.getUNDEF(VT);
4257 
4258   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4259   SDValue IdentitySrc;
4260   bool IsIdentity = true;
4261   for (int i = 0; i != NumOps; ++i) {
4262     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4263         Ops[i].getOperand(0).getValueType() != VT ||
4264         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4265         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4266         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4267       IsIdentity = false;
4268       break;
4269     }
4270     IdentitySrc = Ops[i].getOperand(0);
4271   }
4272   if (IsIdentity)
4273     return IdentitySrc;
4274 
4275   return SDValue();
4276 }
4277 
4278 /// Try to simplify vector concatenation to an input value, undef, or build
4279 /// vector.
4280 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4281                                   ArrayRef<SDValue> Ops,
4282                                   SelectionDAG &DAG) {
4283   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4284   assert(llvm::all_of(Ops,
4285                       [Ops](SDValue Op) {
4286                         return Ops[0].getValueType() == Op.getValueType();
4287                       }) &&
4288          "Concatenation of vectors with inconsistent value types!");
4289   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4290              VT.getVectorNumElements() &&
4291          "Incorrect element count in vector concatenation!");
4292 
4293   if (Ops.size() == 1)
4294     return Ops[0];
4295 
4296   // Concat of UNDEFs is UNDEF.
4297   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4298     return DAG.getUNDEF(VT);
4299 
4300   // Scan the operands and look for extract operations from a single source
4301   // that correspond to insertion at the same location via this concatenation:
4302   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4303   SDValue IdentitySrc;
4304   bool IsIdentity = true;
4305   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4306     SDValue Op = Ops[i];
4307     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4308     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4309         Op.getOperand(0).getValueType() != VT ||
4310         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4311         Op.getConstantOperandVal(1) != IdentityIndex) {
4312       IsIdentity = false;
4313       break;
4314     }
4315     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4316            "Unexpected identity source vector for concat of extracts");
4317     IdentitySrc = Op.getOperand(0);
4318   }
4319   if (IsIdentity) {
4320     assert(IdentitySrc && "Failed to set source vector of extracts");
4321     return IdentitySrc;
4322   }
4323 
4324   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4325   // simplified to one big BUILD_VECTOR.
4326   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4327   EVT SVT = VT.getScalarType();
4328   SmallVector<SDValue, 16> Elts;
4329   for (SDValue Op : Ops) {
4330     EVT OpVT = Op.getValueType();
4331     if (Op.isUndef())
4332       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4333     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4334       Elts.append(Op->op_begin(), Op->op_end());
4335     else
4336       return SDValue();
4337   }
4338 
4339   // BUILD_VECTOR requires all inputs to be of the same type, find the
4340   // maximum type and extend them all.
4341   for (SDValue Op : Elts)
4342     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4343 
4344   if (SVT.bitsGT(VT.getScalarType()))
4345     for (SDValue &Op : Elts)
4346       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4347                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4348                : DAG.getSExtOrTrunc(Op, DL, SVT);
4349 
4350   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4351   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4352   return V;
4353 }
4354 
4355 /// Gets or creates the specified node.
4356 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4357   FoldingSetNodeID ID;
4358   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4359   void *IP = nullptr;
4360   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4361     return SDValue(E, 0);
4362 
4363   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4364                               getVTList(VT));
4365   CSEMap.InsertNode(N, IP);
4366 
4367   InsertNode(N);
4368   SDValue V = SDValue(N, 0);
4369   NewSDValueDbgMsg(V, "Creating new node: ", this);
4370   return V;
4371 }
4372 
4373 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4374                               SDValue Operand, const SDNodeFlags Flags) {
4375   // Constant fold unary operations with an integer constant operand. Even
4376   // opaque constant will be folded, because the folding of unary operations
4377   // doesn't create new constants with different values. Nevertheless, the
4378   // opaque flag is preserved during folding to prevent future folding with
4379   // other constants.
4380   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4381     const APInt &Val = C->getAPIntValue();
4382     switch (Opcode) {
4383     default: break;
4384     case ISD::SIGN_EXTEND:
4385       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4386                          C->isTargetOpcode(), C->isOpaque());
4387     case ISD::TRUNCATE:
4388       if (C->isOpaque())
4389         break;
4390       LLVM_FALLTHROUGH;
4391     case ISD::ANY_EXTEND:
4392     case ISD::ZERO_EXTEND:
4393       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4394                          C->isTargetOpcode(), C->isOpaque());
4395     case ISD::UINT_TO_FP:
4396     case ISD::SINT_TO_FP: {
4397       APFloat apf(EVTToAPFloatSemantics(VT),
4398                   APInt::getNullValue(VT.getSizeInBits()));
4399       (void)apf.convertFromAPInt(Val,
4400                                  Opcode==ISD::SINT_TO_FP,
4401                                  APFloat::rmNearestTiesToEven);
4402       return getConstantFP(apf, DL, VT);
4403     }
4404     case ISD::BITCAST:
4405       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4406         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4407       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4408         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4409       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4410         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4411       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4412         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4413       break;
4414     case ISD::ABS:
4415       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4416                          C->isOpaque());
4417     case ISD::BITREVERSE:
4418       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4419                          C->isOpaque());
4420     case ISD::BSWAP:
4421       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4422                          C->isOpaque());
4423     case ISD::CTPOP:
4424       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4425                          C->isOpaque());
4426     case ISD::CTLZ:
4427     case ISD::CTLZ_ZERO_UNDEF:
4428       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4429                          C->isOpaque());
4430     case ISD::CTTZ:
4431     case ISD::CTTZ_ZERO_UNDEF:
4432       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4433                          C->isOpaque());
4434     case ISD::FP16_TO_FP: {
4435       bool Ignored;
4436       APFloat FPV(APFloat::IEEEhalf(),
4437                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4438 
4439       // This can return overflow, underflow, or inexact; we don't care.
4440       // FIXME need to be more flexible about rounding mode.
4441       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4442                         APFloat::rmNearestTiesToEven, &Ignored);
4443       return getConstantFP(FPV, DL, VT);
4444     }
4445     }
4446   }
4447 
4448   // Constant fold unary operations with a floating point constant operand.
4449   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4450     APFloat V = C->getValueAPF();    // make copy
4451     switch (Opcode) {
4452     case ISD::FNEG:
4453       V.changeSign();
4454       return getConstantFP(V, DL, VT);
4455     case ISD::FABS:
4456       V.clearSign();
4457       return getConstantFP(V, DL, VT);
4458     case ISD::FCEIL: {
4459       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4460       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4461         return getConstantFP(V, DL, VT);
4462       break;
4463     }
4464     case ISD::FTRUNC: {
4465       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4466       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4467         return getConstantFP(V, DL, VT);
4468       break;
4469     }
4470     case ISD::FFLOOR: {
4471       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4472       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4473         return getConstantFP(V, DL, VT);
4474       break;
4475     }
4476     case ISD::FP_EXTEND: {
4477       bool ignored;
4478       // This can return overflow, underflow, or inexact; we don't care.
4479       // FIXME need to be more flexible about rounding mode.
4480       (void)V.convert(EVTToAPFloatSemantics(VT),
4481                       APFloat::rmNearestTiesToEven, &ignored);
4482       return getConstantFP(V, DL, VT);
4483     }
4484     case ISD::FP_TO_SINT:
4485     case ISD::FP_TO_UINT: {
4486       bool ignored;
4487       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4488       // FIXME need to be more flexible about rounding mode.
4489       APFloat::opStatus s =
4490           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4491       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4492         break;
4493       return getConstant(IntVal, DL, VT);
4494     }
4495     case ISD::BITCAST:
4496       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4497         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4498       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4499         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4500       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4501         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4502       break;
4503     case ISD::FP_TO_FP16: {
4504       bool Ignored;
4505       // This can return overflow, underflow, or inexact; we don't care.
4506       // FIXME need to be more flexible about rounding mode.
4507       (void)V.convert(APFloat::IEEEhalf(),
4508                       APFloat::rmNearestTiesToEven, &Ignored);
4509       return getConstant(V.bitcastToAPInt(), DL, VT);
4510     }
4511     }
4512   }
4513 
4514   // Constant fold unary operations with a vector integer or float operand.
4515   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4516     if (BV->isConstant()) {
4517       switch (Opcode) {
4518       default:
4519         // FIXME: Entirely reasonable to perform folding of other unary
4520         // operations here as the need arises.
4521         break;
4522       case ISD::FNEG:
4523       case ISD::FABS:
4524       case ISD::FCEIL:
4525       case ISD::FTRUNC:
4526       case ISD::FFLOOR:
4527       case ISD::FP_EXTEND:
4528       case ISD::FP_TO_SINT:
4529       case ISD::FP_TO_UINT:
4530       case ISD::TRUNCATE:
4531       case ISD::ANY_EXTEND:
4532       case ISD::ZERO_EXTEND:
4533       case ISD::SIGN_EXTEND:
4534       case ISD::UINT_TO_FP:
4535       case ISD::SINT_TO_FP:
4536       case ISD::ABS:
4537       case ISD::BITREVERSE:
4538       case ISD::BSWAP:
4539       case ISD::CTLZ:
4540       case ISD::CTLZ_ZERO_UNDEF:
4541       case ISD::CTTZ:
4542       case ISD::CTTZ_ZERO_UNDEF:
4543       case ISD::CTPOP: {
4544         SDValue Ops = { Operand };
4545         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4546           return Fold;
4547       }
4548       }
4549     }
4550   }
4551 
4552   unsigned OpOpcode = Operand.getNode()->getOpcode();
4553   switch (Opcode) {
4554   case ISD::FREEZE:
4555     assert(VT == Operand.getValueType() && "Unexpected VT!");
4556     break;
4557   case ISD::TokenFactor:
4558   case ISD::MERGE_VALUES:
4559   case ISD::CONCAT_VECTORS:
4560     return Operand;         // Factor, merge or concat of one node?  No need.
4561   case ISD::BUILD_VECTOR: {
4562     // Attempt to simplify BUILD_VECTOR.
4563     SDValue Ops[] = {Operand};
4564     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4565       return V;
4566     break;
4567   }
4568   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4569   case ISD::FP_EXTEND:
4570     assert(VT.isFloatingPoint() &&
4571            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4572     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4573     assert((!VT.isVector() ||
4574             VT.getVectorNumElements() ==
4575             Operand.getValueType().getVectorNumElements()) &&
4576            "Vector element count mismatch!");
4577     assert(Operand.getValueType().bitsLT(VT) &&
4578            "Invalid fpext node, dst < src!");
4579     if (Operand.isUndef())
4580       return getUNDEF(VT);
4581     break;
4582   case ISD::FP_TO_SINT:
4583   case ISD::FP_TO_UINT:
4584     if (Operand.isUndef())
4585       return getUNDEF(VT);
4586     break;
4587   case ISD::SINT_TO_FP:
4588   case ISD::UINT_TO_FP:
4589     // [us]itofp(undef) = 0, because the result value is bounded.
4590     if (Operand.isUndef())
4591       return getConstantFP(0.0, DL, VT);
4592     break;
4593   case ISD::SIGN_EXTEND:
4594     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4595            "Invalid SIGN_EXTEND!");
4596     assert(VT.isVector() == Operand.getValueType().isVector() &&
4597            "SIGN_EXTEND result type type should be vector iff the operand "
4598            "type is vector!");
4599     if (Operand.getValueType() == VT) return Operand;   // noop extension
4600     assert((!VT.isVector() ||
4601             VT.getVectorElementCount() ==
4602                 Operand.getValueType().getVectorElementCount()) &&
4603            "Vector element count mismatch!");
4604     assert(Operand.getValueType().bitsLT(VT) &&
4605            "Invalid sext node, dst < src!");
4606     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4607       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4608     else if (OpOpcode == ISD::UNDEF)
4609       // sext(undef) = 0, because the top bits will all be the same.
4610       return getConstant(0, DL, VT);
4611     break;
4612   case ISD::ZERO_EXTEND:
4613     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4614            "Invalid ZERO_EXTEND!");
4615     assert(VT.isVector() == Operand.getValueType().isVector() &&
4616            "ZERO_EXTEND result type type should be vector iff the operand "
4617            "type is vector!");
4618     if (Operand.getValueType() == VT) return Operand;   // noop extension
4619     assert((!VT.isVector() ||
4620             VT.getVectorElementCount() ==
4621                 Operand.getValueType().getVectorElementCount()) &&
4622            "Vector element count mismatch!");
4623     assert(Operand.getValueType().bitsLT(VT) &&
4624            "Invalid zext node, dst < src!");
4625     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4626       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4627     else if (OpOpcode == ISD::UNDEF)
4628       // zext(undef) = 0, because the top bits will be zero.
4629       return getConstant(0, DL, VT);
4630     break;
4631   case ISD::ANY_EXTEND:
4632     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4633            "Invalid ANY_EXTEND!");
4634     assert(VT.isVector() == Operand.getValueType().isVector() &&
4635            "ANY_EXTEND result type type should be vector iff the operand "
4636            "type is vector!");
4637     if (Operand.getValueType() == VT) return Operand;   // noop extension
4638     assert((!VT.isVector() ||
4639             VT.getVectorElementCount() ==
4640                 Operand.getValueType().getVectorElementCount()) &&
4641            "Vector element count mismatch!");
4642     assert(Operand.getValueType().bitsLT(VT) &&
4643            "Invalid anyext node, dst < src!");
4644 
4645     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4646         OpOpcode == ISD::ANY_EXTEND)
4647       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4648       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4649     else if (OpOpcode == ISD::UNDEF)
4650       return getUNDEF(VT);
4651 
4652     // (ext (trunc x)) -> x
4653     if (OpOpcode == ISD::TRUNCATE) {
4654       SDValue OpOp = Operand.getOperand(0);
4655       if (OpOp.getValueType() == VT) {
4656         transferDbgValues(Operand, OpOp);
4657         return OpOp;
4658       }
4659     }
4660     break;
4661   case ISD::TRUNCATE:
4662     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4663            "Invalid TRUNCATE!");
4664     assert(VT.isVector() == Operand.getValueType().isVector() &&
4665            "TRUNCATE result type type should be vector iff the operand "
4666            "type is vector!");
4667     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4668     assert((!VT.isVector() ||
4669             VT.getVectorElementCount() ==
4670                 Operand.getValueType().getVectorElementCount()) &&
4671            "Vector element count mismatch!");
4672     assert(Operand.getValueType().bitsGT(VT) &&
4673            "Invalid truncate node, src < dst!");
4674     if (OpOpcode == ISD::TRUNCATE)
4675       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4676     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4677         OpOpcode == ISD::ANY_EXTEND) {
4678       // If the source is smaller than the dest, we still need an extend.
4679       if (Operand.getOperand(0).getValueType().getScalarType()
4680             .bitsLT(VT.getScalarType()))
4681         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4682       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4683         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4684       return Operand.getOperand(0);
4685     }
4686     if (OpOpcode == ISD::UNDEF)
4687       return getUNDEF(VT);
4688     break;
4689   case ISD::ANY_EXTEND_VECTOR_INREG:
4690   case ISD::ZERO_EXTEND_VECTOR_INREG:
4691   case ISD::SIGN_EXTEND_VECTOR_INREG:
4692     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4693     assert(Operand.getValueType().bitsLE(VT) &&
4694            "The input must be the same size or smaller than the result.");
4695     assert(VT.getVectorNumElements() <
4696              Operand.getValueType().getVectorNumElements() &&
4697            "The destination vector type must have fewer lanes than the input.");
4698     break;
4699   case ISD::ABS:
4700     assert(VT.isInteger() && VT == Operand.getValueType() &&
4701            "Invalid ABS!");
4702     if (OpOpcode == ISD::UNDEF)
4703       return getUNDEF(VT);
4704     break;
4705   case ISD::BSWAP:
4706     assert(VT.isInteger() && VT == Operand.getValueType() &&
4707            "Invalid BSWAP!");
4708     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4709            "BSWAP types must be a multiple of 16 bits!");
4710     if (OpOpcode == ISD::UNDEF)
4711       return getUNDEF(VT);
4712     break;
4713   case ISD::BITREVERSE:
4714     assert(VT.isInteger() && VT == Operand.getValueType() &&
4715            "Invalid BITREVERSE!");
4716     if (OpOpcode == ISD::UNDEF)
4717       return getUNDEF(VT);
4718     break;
4719   case ISD::BITCAST:
4720     // Basic sanity checking.
4721     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4722            "Cannot BITCAST between types of different sizes!");
4723     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4724     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4725       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4726     if (OpOpcode == ISD::UNDEF)
4727       return getUNDEF(VT);
4728     break;
4729   case ISD::SCALAR_TO_VECTOR:
4730     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4731            (VT.getVectorElementType() == Operand.getValueType() ||
4732             (VT.getVectorElementType().isInteger() &&
4733              Operand.getValueType().isInteger() &&
4734              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4735            "Illegal SCALAR_TO_VECTOR node!");
4736     if (OpOpcode == ISD::UNDEF)
4737       return getUNDEF(VT);
4738     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4739     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4740         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4741         Operand.getConstantOperandVal(1) == 0 &&
4742         Operand.getOperand(0).getValueType() == VT)
4743       return Operand.getOperand(0);
4744     break;
4745   case ISD::FNEG:
4746     // Negation of an unknown bag of bits is still completely undefined.
4747     if (OpOpcode == ISD::UNDEF)
4748       return getUNDEF(VT);
4749 
4750     if (OpOpcode == ISD::FNEG)  // --X -> X
4751       return Operand.getOperand(0);
4752     break;
4753   case ISD::FABS:
4754     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4755       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4756     break;
4757   }
4758 
4759   SDNode *N;
4760   SDVTList VTs = getVTList(VT);
4761   SDValue Ops[] = {Operand};
4762   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4763     FoldingSetNodeID ID;
4764     AddNodeIDNode(ID, Opcode, VTs, Ops);
4765     void *IP = nullptr;
4766     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4767       E->intersectFlagsWith(Flags);
4768       return SDValue(E, 0);
4769     }
4770 
4771     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4772     N->setFlags(Flags);
4773     createOperands(N, Ops);
4774     CSEMap.InsertNode(N, IP);
4775   } else {
4776     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4777     createOperands(N, Ops);
4778   }
4779 
4780   InsertNode(N);
4781   SDValue V = SDValue(N, 0);
4782   NewSDValueDbgMsg(V, "Creating new node: ", this);
4783   return V;
4784 }
4785 
4786 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4787                                        const APInt &C2) {
4788   switch (Opcode) {
4789   case ISD::ADD:  return C1 + C2;
4790   case ISD::SUB:  return C1 - C2;
4791   case ISD::MUL:  return C1 * C2;
4792   case ISD::AND:  return C1 & C2;
4793   case ISD::OR:   return C1 | C2;
4794   case ISD::XOR:  return C1 ^ C2;
4795   case ISD::SHL:  return C1 << C2;
4796   case ISD::SRL:  return C1.lshr(C2);
4797   case ISD::SRA:  return C1.ashr(C2);
4798   case ISD::ROTL: return C1.rotl(C2);
4799   case ISD::ROTR: return C1.rotr(C2);
4800   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4801   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4802   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4803   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4804   case ISD::SADDSAT: return C1.sadd_sat(C2);
4805   case ISD::UADDSAT: return C1.uadd_sat(C2);
4806   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4807   case ISD::USUBSAT: return C1.usub_sat(C2);
4808   case ISD::UDIV:
4809     if (!C2.getBoolValue())
4810       break;
4811     return C1.udiv(C2);
4812   case ISD::UREM:
4813     if (!C2.getBoolValue())
4814       break;
4815     return C1.urem(C2);
4816   case ISD::SDIV:
4817     if (!C2.getBoolValue())
4818       break;
4819     return C1.sdiv(C2);
4820   case ISD::SREM:
4821     if (!C2.getBoolValue())
4822       break;
4823     return C1.srem(C2);
4824   }
4825   return llvm::None;
4826 }
4827 
4828 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4829                                        const GlobalAddressSDNode *GA,
4830                                        const SDNode *N2) {
4831   if (GA->getOpcode() != ISD::GlobalAddress)
4832     return SDValue();
4833   if (!TLI->isOffsetFoldingLegal(GA))
4834     return SDValue();
4835   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4836   if (!C2)
4837     return SDValue();
4838   int64_t Offset = C2->getSExtValue();
4839   switch (Opcode) {
4840   case ISD::ADD: break;
4841   case ISD::SUB: Offset = -uint64_t(Offset); break;
4842   default: return SDValue();
4843   }
4844   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4845                           GA->getOffset() + uint64_t(Offset));
4846 }
4847 
4848 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4849   switch (Opcode) {
4850   case ISD::SDIV:
4851   case ISD::UDIV:
4852   case ISD::SREM:
4853   case ISD::UREM: {
4854     // If a divisor is zero/undef or any element of a divisor vector is
4855     // zero/undef, the whole op is undef.
4856     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4857     SDValue Divisor = Ops[1];
4858     if (Divisor.isUndef() || isNullConstant(Divisor))
4859       return true;
4860 
4861     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4862            llvm::any_of(Divisor->op_values(),
4863                         [](SDValue V) { return V.isUndef() ||
4864                                         isNullConstant(V); });
4865     // TODO: Handle signed overflow.
4866   }
4867   // TODO: Handle oversized shifts.
4868   default:
4869     return false;
4870   }
4871 }
4872 
4873 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4874                                              EVT VT, ArrayRef<SDValue> Ops) {
4875   // If the opcode is a target-specific ISD node, there's nothing we can
4876   // do here and the operand rules may not line up with the below, so
4877   // bail early.
4878   if (Opcode >= ISD::BUILTIN_OP_END)
4879     return SDValue();
4880 
4881   // For now, the array Ops should only contain two values.
4882   // This enforcement will be removed once this function is merged with
4883   // FoldConstantVectorArithmetic
4884   if (Ops.size() != 2)
4885     return SDValue();
4886 
4887   if (isUndef(Opcode, Ops))
4888     return getUNDEF(VT);
4889 
4890   SDNode *N1 = Ops[0].getNode();
4891   SDNode *N2 = Ops[1].getNode();
4892 
4893   // Handle the case of two scalars.
4894   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4895     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4896       if (C1->isOpaque() || C2->isOpaque())
4897         return SDValue();
4898 
4899       Optional<APInt> FoldAttempt =
4900           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4901       if (!FoldAttempt)
4902         return SDValue();
4903 
4904       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4905       assert((!Folded || !VT.isVector()) &&
4906              "Can't fold vectors ops with scalar operands");
4907       return Folded;
4908     }
4909   }
4910 
4911   // fold (add Sym, c) -> Sym+c
4912   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4913     return FoldSymbolOffset(Opcode, VT, GA, N2);
4914   if (TLI->isCommutativeBinOp(Opcode))
4915     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4916       return FoldSymbolOffset(Opcode, VT, GA, N1);
4917 
4918   // For vectors, extract each constant element and fold them individually.
4919   // Either input may be an undef value.
4920   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4921   if (!BV1 && !N1->isUndef())
4922     return SDValue();
4923   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4924   if (!BV2 && !N2->isUndef())
4925     return SDValue();
4926   // If both operands are undef, that's handled the same way as scalars.
4927   if (!BV1 && !BV2)
4928     return SDValue();
4929 
4930   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4931          "Vector binop with different number of elements in operands?");
4932 
4933   EVT SVT = VT.getScalarType();
4934   EVT LegalSVT = SVT;
4935   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4936     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4937     if (LegalSVT.bitsLT(SVT))
4938       return SDValue();
4939   }
4940   SmallVector<SDValue, 4> Outputs;
4941   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4942   for (unsigned I = 0; I != NumOps; ++I) {
4943     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4944     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4945     if (SVT.isInteger()) {
4946       if (V1->getValueType(0).bitsGT(SVT))
4947         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4948       if (V2->getValueType(0).bitsGT(SVT))
4949         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4950     }
4951 
4952     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4953       return SDValue();
4954 
4955     // Fold one vector element.
4956     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4957     if (LegalSVT != SVT)
4958       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4959 
4960     // Scalar folding only succeeded if the result is a constant or UNDEF.
4961     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4962         ScalarResult.getOpcode() != ISD::ConstantFP)
4963       return SDValue();
4964     Outputs.push_back(ScalarResult);
4965   }
4966 
4967   assert(VT.getVectorNumElements() == Outputs.size() &&
4968          "Vector size mismatch!");
4969 
4970   // We may have a vector type but a scalar result. Create a splat.
4971   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4972 
4973   // Build a big vector out of the scalar elements we generated.
4974   return getBuildVector(VT, SDLoc(), Outputs);
4975 }
4976 
4977 // TODO: Merge with FoldConstantArithmetic
4978 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4979                                                    const SDLoc &DL, EVT VT,
4980                                                    ArrayRef<SDValue> Ops,
4981                                                    const SDNodeFlags Flags) {
4982   // If the opcode is a target-specific ISD node, there's nothing we can
4983   // do here and the operand rules may not line up with the below, so
4984   // bail early.
4985   if (Opcode >= ISD::BUILTIN_OP_END)
4986     return SDValue();
4987 
4988   if (isUndef(Opcode, Ops))
4989     return getUNDEF(VT);
4990 
4991   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4992   if (!VT.isVector())
4993     return SDValue();
4994 
4995   unsigned NumElts = VT.getVectorNumElements();
4996 
4997   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4998     return !Op.getValueType().isVector() ||
4999            Op.getValueType().getVectorNumElements() == NumElts;
5000   };
5001 
5002   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5003     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5004     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5005            (BV && BV->isConstant());
5006   };
5007 
5008   // All operands must be vector types with the same number of elements as
5009   // the result type and must be either UNDEF or a build vector of constant
5010   // or UNDEF scalars.
5011   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5012       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5013     return SDValue();
5014 
5015   // If we are comparing vectors, then the result needs to be a i1 boolean
5016   // that is then sign-extended back to the legal result type.
5017   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5018 
5019   // Find legal integer scalar type for constant promotion and
5020   // ensure that its scalar size is at least as large as source.
5021   EVT LegalSVT = VT.getScalarType();
5022   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5023     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5024     if (LegalSVT.bitsLT(VT.getScalarType()))
5025       return SDValue();
5026   }
5027 
5028   // Constant fold each scalar lane separately.
5029   SmallVector<SDValue, 4> ScalarResults;
5030   for (unsigned i = 0; i != NumElts; i++) {
5031     SmallVector<SDValue, 4> ScalarOps;
5032     for (SDValue Op : Ops) {
5033       EVT InSVT = Op.getValueType().getScalarType();
5034       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5035       if (!InBV) {
5036         // We've checked that this is UNDEF or a constant of some kind.
5037         if (Op.isUndef())
5038           ScalarOps.push_back(getUNDEF(InSVT));
5039         else
5040           ScalarOps.push_back(Op);
5041         continue;
5042       }
5043 
5044       SDValue ScalarOp = InBV->getOperand(i);
5045       EVT ScalarVT = ScalarOp.getValueType();
5046 
5047       // Build vector (integer) scalar operands may need implicit
5048       // truncation - do this before constant folding.
5049       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5050         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5051 
5052       ScalarOps.push_back(ScalarOp);
5053     }
5054 
5055     // Constant fold the scalar operands.
5056     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5057 
5058     // Legalize the (integer) scalar constant if necessary.
5059     if (LegalSVT != SVT)
5060       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5061 
5062     // Scalar folding only succeeded if the result is a constant or UNDEF.
5063     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5064         ScalarResult.getOpcode() != ISD::ConstantFP)
5065       return SDValue();
5066     ScalarResults.push_back(ScalarResult);
5067   }
5068 
5069   SDValue V = getBuildVector(VT, DL, ScalarResults);
5070   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5071   return V;
5072 }
5073 
5074 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5075                                          EVT VT, SDValue N1, SDValue N2) {
5076   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5077   //       should. That will require dealing with a potentially non-default
5078   //       rounding mode, checking the "opStatus" return value from the APFloat
5079   //       math calculations, and possibly other variations.
5080   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5081   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5082   if (N1CFP && N2CFP) {
5083     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5084     switch (Opcode) {
5085     case ISD::FADD:
5086       C1.add(C2, APFloat::rmNearestTiesToEven);
5087       return getConstantFP(C1, DL, VT);
5088     case ISD::FSUB:
5089       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5090       return getConstantFP(C1, DL, VT);
5091     case ISD::FMUL:
5092       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5093       return getConstantFP(C1, DL, VT);
5094     case ISD::FDIV:
5095       C1.divide(C2, APFloat::rmNearestTiesToEven);
5096       return getConstantFP(C1, DL, VT);
5097     case ISD::FREM:
5098       C1.mod(C2);
5099       return getConstantFP(C1, DL, VT);
5100     case ISD::FCOPYSIGN:
5101       C1.copySign(C2);
5102       return getConstantFP(C1, DL, VT);
5103     default: break;
5104     }
5105   }
5106   if (N1CFP && Opcode == ISD::FP_ROUND) {
5107     APFloat C1 = N1CFP->getValueAPF();    // make copy
5108     bool Unused;
5109     // This can return overflow, underflow, or inexact; we don't care.
5110     // FIXME need to be more flexible about rounding mode.
5111     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5112                       &Unused);
5113     return getConstantFP(C1, DL, VT);
5114   }
5115 
5116   switch (Opcode) {
5117   case ISD::FSUB:
5118     // -0.0 - undef --> undef (consistent with "fneg undef")
5119     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5120       return getUNDEF(VT);
5121     LLVM_FALLTHROUGH;
5122 
5123   case ISD::FADD:
5124   case ISD::FMUL:
5125   case ISD::FDIV:
5126   case ISD::FREM:
5127     // If both operands are undef, the result is undef. If 1 operand is undef,
5128     // the result is NaN. This should match the behavior of the IR optimizer.
5129     if (N1.isUndef() && N2.isUndef())
5130       return getUNDEF(VT);
5131     if (N1.isUndef() || N2.isUndef())
5132       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5133   }
5134   return SDValue();
5135 }
5136 
5137 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5138                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5139   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5140   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5141   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5142   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5143 
5144   // Canonicalize constant to RHS if commutative.
5145   if (TLI->isCommutativeBinOp(Opcode)) {
5146     if (N1C && !N2C) {
5147       std::swap(N1C, N2C);
5148       std::swap(N1, N2);
5149     } else if (N1CFP && !N2CFP) {
5150       std::swap(N1CFP, N2CFP);
5151       std::swap(N1, N2);
5152     }
5153   }
5154 
5155   switch (Opcode) {
5156   default: break;
5157   case ISD::TokenFactor:
5158     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5159            N2.getValueType() == MVT::Other && "Invalid token factor!");
5160     // Fold trivial token factors.
5161     if (N1.getOpcode() == ISD::EntryToken) return N2;
5162     if (N2.getOpcode() == ISD::EntryToken) return N1;
5163     if (N1 == N2) return N1;
5164     break;
5165   case ISD::BUILD_VECTOR: {
5166     // Attempt to simplify BUILD_VECTOR.
5167     SDValue Ops[] = {N1, N2};
5168     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5169       return V;
5170     break;
5171   }
5172   case ISD::CONCAT_VECTORS: {
5173     SDValue Ops[] = {N1, N2};
5174     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5175       return V;
5176     break;
5177   }
5178   case ISD::AND:
5179     assert(VT.isInteger() && "This operator does not apply to FP types!");
5180     assert(N1.getValueType() == N2.getValueType() &&
5181            N1.getValueType() == VT && "Binary operator types must match!");
5182     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5183     // worth handling here.
5184     if (N2C && N2C->isNullValue())
5185       return N2;
5186     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5187       return N1;
5188     break;
5189   case ISD::OR:
5190   case ISD::XOR:
5191   case ISD::ADD:
5192   case ISD::SUB:
5193     assert(VT.isInteger() && "This operator does not apply to FP types!");
5194     assert(N1.getValueType() == N2.getValueType() &&
5195            N1.getValueType() == VT && "Binary operator types must match!");
5196     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5197     // it's worth handling here.
5198     if (N2C && N2C->isNullValue())
5199       return N1;
5200     break;
5201   case ISD::MUL:
5202     assert(VT.isInteger() && "This operator does not apply to FP types!");
5203     assert(N1.getValueType() == N2.getValueType() &&
5204            N1.getValueType() == VT && "Binary operator types must match!");
5205     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5206       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5207       APInt N2CImm = N2C->getAPIntValue();
5208       return getVScale(DL, VT, MulImm * N2CImm);
5209     }
5210     break;
5211   case ISD::UDIV:
5212   case ISD::UREM:
5213   case ISD::MULHU:
5214   case ISD::MULHS:
5215   case ISD::SDIV:
5216   case ISD::SREM:
5217   case ISD::SMIN:
5218   case ISD::SMAX:
5219   case ISD::UMIN:
5220   case ISD::UMAX:
5221   case ISD::SADDSAT:
5222   case ISD::SSUBSAT:
5223   case ISD::UADDSAT:
5224   case ISD::USUBSAT:
5225     assert(VT.isInteger() && "This operator does not apply to FP types!");
5226     assert(N1.getValueType() == N2.getValueType() &&
5227            N1.getValueType() == VT && "Binary operator types must match!");
5228     break;
5229   case ISD::FADD:
5230   case ISD::FSUB:
5231   case ISD::FMUL:
5232   case ISD::FDIV:
5233   case ISD::FREM:
5234     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5235     assert(N1.getValueType() == N2.getValueType() &&
5236            N1.getValueType() == VT && "Binary operator types must match!");
5237     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5238       return V;
5239     break;
5240   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5241     assert(N1.getValueType() == VT &&
5242            N1.getValueType().isFloatingPoint() &&
5243            N2.getValueType().isFloatingPoint() &&
5244            "Invalid FCOPYSIGN!");
5245     break;
5246   case ISD::SHL:
5247     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5248       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5249       APInt ShiftImm = N2C->getAPIntValue();
5250       return getVScale(DL, VT, MulImm << ShiftImm);
5251     }
5252     LLVM_FALLTHROUGH;
5253   case ISD::SRA:
5254   case ISD::SRL:
5255     if (SDValue V = simplifyShift(N1, N2))
5256       return V;
5257     LLVM_FALLTHROUGH;
5258   case ISD::ROTL:
5259   case ISD::ROTR:
5260     assert(VT == N1.getValueType() &&
5261            "Shift operators return type must be the same as their first arg");
5262     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5263            "Shifts only work on integers");
5264     assert((!VT.isVector() || VT == N2.getValueType()) &&
5265            "Vector shift amounts must be in the same as their first arg");
5266     // Verify that the shift amount VT is big enough to hold valid shift
5267     // amounts.  This catches things like trying to shift an i1024 value by an
5268     // i8, which is easy to fall into in generic code that uses
5269     // TLI.getShiftAmount().
5270     assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5271                Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5272            "Invalid use of small shift amount with oversized value!");
5273 
5274     // Always fold shifts of i1 values so the code generator doesn't need to
5275     // handle them.  Since we know the size of the shift has to be less than the
5276     // size of the value, the shift/rotate count is guaranteed to be zero.
5277     if (VT == MVT::i1)
5278       return N1;
5279     if (N2C && N2C->isNullValue())
5280       return N1;
5281     break;
5282   case ISD::FP_ROUND:
5283     assert(VT.isFloatingPoint() &&
5284            N1.getValueType().isFloatingPoint() &&
5285            VT.bitsLE(N1.getValueType()) &&
5286            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5287            "Invalid FP_ROUND!");
5288     if (N1.getValueType() == VT) return N1;  // noop conversion.
5289     break;
5290   case ISD::AssertSext:
5291   case ISD::AssertZext: {
5292     EVT EVT = cast<VTSDNode>(N2)->getVT();
5293     assert(VT == N1.getValueType() && "Not an inreg extend!");
5294     assert(VT.isInteger() && EVT.isInteger() &&
5295            "Cannot *_EXTEND_INREG FP types");
5296     assert(!EVT.isVector() &&
5297            "AssertSExt/AssertZExt type should be the vector element type "
5298            "rather than the vector type!");
5299     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5300     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5301     break;
5302   }
5303   case ISD::SIGN_EXTEND_INREG: {
5304     EVT EVT = cast<VTSDNode>(N2)->getVT();
5305     assert(VT == N1.getValueType() && "Not an inreg extend!");
5306     assert(VT.isInteger() && EVT.isInteger() &&
5307            "Cannot *_EXTEND_INREG FP types");
5308     assert(EVT.isVector() == VT.isVector() &&
5309            "SIGN_EXTEND_INREG type should be vector iff the operand "
5310            "type is vector!");
5311     assert((!EVT.isVector() ||
5312             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5313            "Vector element counts must match in SIGN_EXTEND_INREG");
5314     assert(EVT.bitsLE(VT) && "Not extending!");
5315     if (EVT == VT) return N1;  // Not actually extending
5316 
5317     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5318       unsigned FromBits = EVT.getScalarSizeInBits();
5319       Val <<= Val.getBitWidth() - FromBits;
5320       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5321       return getConstant(Val, DL, ConstantVT);
5322     };
5323 
5324     if (N1C) {
5325       const APInt &Val = N1C->getAPIntValue();
5326       return SignExtendInReg(Val, VT);
5327     }
5328     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5329       SmallVector<SDValue, 8> Ops;
5330       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5331       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5332         SDValue Op = N1.getOperand(i);
5333         if (Op.isUndef()) {
5334           Ops.push_back(getUNDEF(OpVT));
5335           continue;
5336         }
5337         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5338         APInt Val = C->getAPIntValue();
5339         Ops.push_back(SignExtendInReg(Val, OpVT));
5340       }
5341       return getBuildVector(VT, DL, Ops);
5342     }
5343     break;
5344   }
5345   case ISD::EXTRACT_VECTOR_ELT:
5346     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5347            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5348              element type of the vector.");
5349 
5350     // Extract from an undefined value or using an undefined index is undefined.
5351     if (N1.isUndef() || N2.isUndef())
5352       return getUNDEF(VT);
5353 
5354     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5355     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5356       return getUNDEF(VT);
5357 
5358     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5359     // expanding copies of large vectors from registers.
5360     if (N2C &&
5361         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5362         N1.getNumOperands() > 0) {
5363       unsigned Factor =
5364         N1.getOperand(0).getValueType().getVectorNumElements();
5365       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5366                      N1.getOperand(N2C->getZExtValue() / Factor),
5367                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5368     }
5369 
5370     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5371     // expanding large vector constants.
5372     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5373       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5374 
5375       if (VT != Elt.getValueType())
5376         // If the vector element type is not legal, the BUILD_VECTOR operands
5377         // are promoted and implicitly truncated, and the result implicitly
5378         // extended. Make that explicit here.
5379         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5380 
5381       return Elt;
5382     }
5383 
5384     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5385     // operations are lowered to scalars.
5386     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5387       // If the indices are the same, return the inserted element else
5388       // if the indices are known different, extract the element from
5389       // the original vector.
5390       SDValue N1Op2 = N1.getOperand(2);
5391       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5392 
5393       if (N1Op2C && N2C) {
5394         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5395           if (VT == N1.getOperand(1).getValueType())
5396             return N1.getOperand(1);
5397           else
5398             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5399         }
5400 
5401         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5402       }
5403     }
5404 
5405     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5406     // when vector types are scalarized and v1iX is legal.
5407     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5408     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5409         N1.getValueType().getVectorNumElements() == 1) {
5410       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5411                      N1.getOperand(1));
5412     }
5413     break;
5414   case ISD::EXTRACT_ELEMENT:
5415     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5416     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5417            (N1.getValueType().isInteger() == VT.isInteger()) &&
5418            N1.getValueType() != VT &&
5419            "Wrong types for EXTRACT_ELEMENT!");
5420 
5421     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5422     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5423     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5424     if (N1.getOpcode() == ISD::BUILD_PAIR)
5425       return N1.getOperand(N2C->getZExtValue());
5426 
5427     // EXTRACT_ELEMENT of a constant int is also very common.
5428     if (N1C) {
5429       unsigned ElementSize = VT.getSizeInBits();
5430       unsigned Shift = ElementSize * N2C->getZExtValue();
5431       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5432       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5433     }
5434     break;
5435   case ISD::EXTRACT_SUBVECTOR:
5436     assert(VT.isVector() && N1.getValueType().isVector() &&
5437            "Extract subvector VTs must be a vectors!");
5438     assert(VT.getVectorElementType() ==
5439                N1.getValueType().getVectorElementType() &&
5440            "Extract subvector VTs must have the same element type!");
5441     assert(VT.getVectorNumElements() <=
5442                N1.getValueType().getVectorNumElements() &&
5443            "Extract subvector must be from larger vector to smaller vector!");
5444     assert(N2C && "Extract subvector index must be a constant");
5445     assert(VT.getVectorNumElements() + N2C->getZExtValue() <=
5446                N1.getValueType().getVectorNumElements() &&
5447            "Extract subvector overflow!");
5448 
5449     // Trivial extraction.
5450     if (VT == N1.getValueType())
5451       return N1;
5452 
5453     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5454     if (N1.isUndef())
5455       return getUNDEF(VT);
5456 
5457     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5458     // the concat have the same type as the extract.
5459     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5460         N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5461       unsigned Factor = VT.getVectorNumElements();
5462       return N1.getOperand(N2C->getZExtValue() / Factor);
5463     }
5464 
5465     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5466     // during shuffle legalization.
5467     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5468         VT == N1.getOperand(1).getValueType())
5469       return N1.getOperand(1);
5470     break;
5471   }
5472 
5473   // Perform trivial constant folding.
5474   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5475     return SV;
5476 
5477   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5478     return V;
5479 
5480   // Canonicalize an UNDEF to the RHS, even over a constant.
5481   if (N1.isUndef()) {
5482     if (TLI->isCommutativeBinOp(Opcode)) {
5483       std::swap(N1, N2);
5484     } else {
5485       switch (Opcode) {
5486       case ISD::SIGN_EXTEND_INREG:
5487       case ISD::SUB:
5488         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5489       case ISD::UDIV:
5490       case ISD::SDIV:
5491       case ISD::UREM:
5492       case ISD::SREM:
5493       case ISD::SSUBSAT:
5494       case ISD::USUBSAT:
5495         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5496       }
5497     }
5498   }
5499 
5500   // Fold a bunch of operators when the RHS is undef.
5501   if (N2.isUndef()) {
5502     switch (Opcode) {
5503     case ISD::XOR:
5504       if (N1.isUndef())
5505         // Handle undef ^ undef -> 0 special case. This is a common
5506         // idiom (misuse).
5507         return getConstant(0, DL, VT);
5508       LLVM_FALLTHROUGH;
5509     case ISD::ADD:
5510     case ISD::SUB:
5511     case ISD::UDIV:
5512     case ISD::SDIV:
5513     case ISD::UREM:
5514     case ISD::SREM:
5515       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5516     case ISD::MUL:
5517     case ISD::AND:
5518     case ISD::SSUBSAT:
5519     case ISD::USUBSAT:
5520       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5521     case ISD::OR:
5522     case ISD::SADDSAT:
5523     case ISD::UADDSAT:
5524       return getAllOnesConstant(DL, VT);
5525     }
5526   }
5527 
5528   // Memoize this node if possible.
5529   SDNode *N;
5530   SDVTList VTs = getVTList(VT);
5531   SDValue Ops[] = {N1, N2};
5532   if (VT != MVT::Glue) {
5533     FoldingSetNodeID ID;
5534     AddNodeIDNode(ID, Opcode, VTs, Ops);
5535     void *IP = nullptr;
5536     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5537       E->intersectFlagsWith(Flags);
5538       return SDValue(E, 0);
5539     }
5540 
5541     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5542     N->setFlags(Flags);
5543     createOperands(N, Ops);
5544     CSEMap.InsertNode(N, IP);
5545   } else {
5546     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5547     createOperands(N, Ops);
5548   }
5549 
5550   InsertNode(N);
5551   SDValue V = SDValue(N, 0);
5552   NewSDValueDbgMsg(V, "Creating new node: ", this);
5553   return V;
5554 }
5555 
5556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5557                               SDValue N1, SDValue N2, SDValue N3,
5558                               const SDNodeFlags Flags) {
5559   // Perform various simplifications.
5560   switch (Opcode) {
5561   case ISD::FMA: {
5562     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5563     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5564            N3.getValueType() == VT && "FMA types must match!");
5565     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5566     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5567     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5568     if (N1CFP && N2CFP && N3CFP) {
5569       APFloat  V1 = N1CFP->getValueAPF();
5570       const APFloat &V2 = N2CFP->getValueAPF();
5571       const APFloat &V3 = N3CFP->getValueAPF();
5572       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5573       return getConstantFP(V1, DL, VT);
5574     }
5575     break;
5576   }
5577   case ISD::BUILD_VECTOR: {
5578     // Attempt to simplify BUILD_VECTOR.
5579     SDValue Ops[] = {N1, N2, N3};
5580     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5581       return V;
5582     break;
5583   }
5584   case ISD::CONCAT_VECTORS: {
5585     SDValue Ops[] = {N1, N2, N3};
5586     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5587       return V;
5588     break;
5589   }
5590   case ISD::SETCC: {
5591     assert(VT.isInteger() && "SETCC result type must be an integer!");
5592     assert(N1.getValueType() == N2.getValueType() &&
5593            "SETCC operands must have the same type!");
5594     assert(VT.isVector() == N1.getValueType().isVector() &&
5595            "SETCC type should be vector iff the operand type is vector!");
5596     assert((!VT.isVector() || VT.getVectorElementCount() ==
5597                                   N1.getValueType().getVectorElementCount()) &&
5598            "SETCC vector element counts must match!");
5599     // Use FoldSetCC to simplify SETCC's.
5600     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5601       return V;
5602     // Vector constant folding.
5603     SDValue Ops[] = {N1, N2, N3};
5604     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5605       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5606       return V;
5607     }
5608     break;
5609   }
5610   case ISD::SELECT:
5611   case ISD::VSELECT:
5612     if (SDValue V = simplifySelect(N1, N2, N3))
5613       return V;
5614     break;
5615   case ISD::VECTOR_SHUFFLE:
5616     llvm_unreachable("should use getVectorShuffle constructor!");
5617   case ISD::INSERT_VECTOR_ELT: {
5618     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5619     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5620     // for scalable vectors where we will generate appropriate code to
5621     // deal with out-of-bounds cases correctly.
5622     if (N3C && N1.getValueType().isFixedLengthVector() &&
5623         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5624       return getUNDEF(VT);
5625 
5626     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5627     if (N3.isUndef())
5628       return getUNDEF(VT);
5629 
5630     // If the inserted element is an UNDEF, just use the input vector.
5631     if (N2.isUndef())
5632       return N1;
5633 
5634     break;
5635   }
5636   case ISD::INSERT_SUBVECTOR: {
5637     // Inserting undef into undef is still undef.
5638     if (N1.isUndef() && N2.isUndef())
5639       return getUNDEF(VT);
5640     assert(VT.isVector() && N1.getValueType().isVector() &&
5641            N2.getValueType().isVector() &&
5642            "Insert subvector VTs must be a vectors");
5643     assert(VT == N1.getValueType() &&
5644            "Dest and insert subvector source types must match!");
5645     assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5646            "Insert subvector must be from smaller vector to larger vector!");
5647     assert(isa<ConstantSDNode>(N3) &&
5648            "Insert subvector index must be constant");
5649     assert(N2.getValueType().getVectorNumElements() +
5650                    cast<ConstantSDNode>(N3)->getZExtValue() <=
5651                VT.getVectorNumElements() &&
5652            "Insert subvector overflow!");
5653 
5654     // Trivial insertion.
5655     if (VT == N2.getValueType())
5656       return N2;
5657 
5658     // If this is an insert of an extracted vector into an undef vector, we
5659     // can just use the input to the extract.
5660     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5661         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5662       return N2.getOperand(0);
5663     break;
5664   }
5665   case ISD::BITCAST:
5666     // Fold bit_convert nodes from a type to themselves.
5667     if (N1.getValueType() == VT)
5668       return N1;
5669     break;
5670   }
5671 
5672   // Memoize node if it doesn't produce a flag.
5673   SDNode *N;
5674   SDVTList VTs = getVTList(VT);
5675   SDValue Ops[] = {N1, N2, N3};
5676   if (VT != MVT::Glue) {
5677     FoldingSetNodeID ID;
5678     AddNodeIDNode(ID, Opcode, VTs, Ops);
5679     void *IP = nullptr;
5680     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5681       E->intersectFlagsWith(Flags);
5682       return SDValue(E, 0);
5683     }
5684 
5685     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5686     N->setFlags(Flags);
5687     createOperands(N, Ops);
5688     CSEMap.InsertNode(N, IP);
5689   } else {
5690     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5691     createOperands(N, Ops);
5692   }
5693 
5694   InsertNode(N);
5695   SDValue V = SDValue(N, 0);
5696   NewSDValueDbgMsg(V, "Creating new node: ", this);
5697   return V;
5698 }
5699 
5700 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5701                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5702   SDValue Ops[] = { N1, N2, N3, N4 };
5703   return getNode(Opcode, DL, VT, Ops);
5704 }
5705 
5706 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5707                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5708                               SDValue N5) {
5709   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5710   return getNode(Opcode, DL, VT, Ops);
5711 }
5712 
5713 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5714 /// the incoming stack arguments to be loaded from the stack.
5715 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5716   SmallVector<SDValue, 8> ArgChains;
5717 
5718   // Include the original chain at the beginning of the list. When this is
5719   // used by target LowerCall hooks, this helps legalize find the
5720   // CALLSEQ_BEGIN node.
5721   ArgChains.push_back(Chain);
5722 
5723   // Add a chain value for each stack argument.
5724   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5725        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5726     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5727       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5728         if (FI->getIndex() < 0)
5729           ArgChains.push_back(SDValue(L, 1));
5730 
5731   // Build a tokenfactor for all the chains.
5732   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5733 }
5734 
5735 /// getMemsetValue - Vectorized representation of the memset value
5736 /// operand.
5737 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5738                               const SDLoc &dl) {
5739   assert(!Value.isUndef());
5740 
5741   unsigned NumBits = VT.getScalarSizeInBits();
5742   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5743     assert(C->getAPIntValue().getBitWidth() == 8);
5744     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5745     if (VT.isInteger()) {
5746       bool IsOpaque = VT.getSizeInBits() > 64 ||
5747           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5748       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5749     }
5750     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5751                              VT);
5752   }
5753 
5754   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5755   EVT IntVT = VT.getScalarType();
5756   if (!IntVT.isInteger())
5757     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5758 
5759   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5760   if (NumBits > 8) {
5761     // Use a multiplication with 0x010101... to extend the input to the
5762     // required length.
5763     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5764     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5765                         DAG.getConstant(Magic, dl, IntVT));
5766   }
5767 
5768   if (VT != Value.getValueType() && !VT.isInteger())
5769     Value = DAG.getBitcast(VT.getScalarType(), Value);
5770   if (VT != Value.getValueType())
5771     Value = DAG.getSplatBuildVector(VT, dl, Value);
5772 
5773   return Value;
5774 }
5775 
5776 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5777 /// used when a memcpy is turned into a memset when the source is a constant
5778 /// string ptr.
5779 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5780                                   const TargetLowering &TLI,
5781                                   const ConstantDataArraySlice &Slice) {
5782   // Handle vector with all elements zero.
5783   if (Slice.Array == nullptr) {
5784     if (VT.isInteger())
5785       return DAG.getConstant(0, dl, VT);
5786     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5787       return DAG.getConstantFP(0.0, dl, VT);
5788     else if (VT.isVector()) {
5789       unsigned NumElts = VT.getVectorNumElements();
5790       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5791       return DAG.getNode(ISD::BITCAST, dl, VT,
5792                          DAG.getConstant(0, dl,
5793                                          EVT::getVectorVT(*DAG.getContext(),
5794                                                           EltVT, NumElts)));
5795     } else
5796       llvm_unreachable("Expected type!");
5797   }
5798 
5799   assert(!VT.isVector() && "Can't handle vector type here!");
5800   unsigned NumVTBits = VT.getSizeInBits();
5801   unsigned NumVTBytes = NumVTBits / 8;
5802   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5803 
5804   APInt Val(NumVTBits, 0);
5805   if (DAG.getDataLayout().isLittleEndian()) {
5806     for (unsigned i = 0; i != NumBytes; ++i)
5807       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5808   } else {
5809     for (unsigned i = 0; i != NumBytes; ++i)
5810       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5811   }
5812 
5813   // If the "cost" of materializing the integer immediate is less than the cost
5814   // of a load, then it is cost effective to turn the load into the immediate.
5815   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5816   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5817     return DAG.getConstant(Val, dl, VT);
5818   return SDValue(nullptr, 0);
5819 }
5820 
5821 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5822                                            const SDLoc &DL,
5823                                            const SDNodeFlags Flags) {
5824   EVT VT = Base.getValueType();
5825   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5826 }
5827 
5828 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5829                                            const SDLoc &DL,
5830                                            const SDNodeFlags Flags) {
5831   assert(Offset.getValueType().isInteger());
5832   EVT BasePtrVT = Ptr.getValueType();
5833   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5834 }
5835 
5836 /// Returns true if memcpy source is constant data.
5837 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5838   uint64_t SrcDelta = 0;
5839   GlobalAddressSDNode *G = nullptr;
5840   if (Src.getOpcode() == ISD::GlobalAddress)
5841     G = cast<GlobalAddressSDNode>(Src);
5842   else if (Src.getOpcode() == ISD::ADD &&
5843            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5844            Src.getOperand(1).getOpcode() == ISD::Constant) {
5845     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5846     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5847   }
5848   if (!G)
5849     return false;
5850 
5851   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5852                                   SrcDelta + G->getOffset());
5853 }
5854 
5855 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5856                                       SelectionDAG &DAG) {
5857   // On Darwin, -Os means optimize for size without hurting performance, so
5858   // only really optimize for size when -Oz (MinSize) is used.
5859   if (MF.getTarget().getTargetTriple().isOSDarwin())
5860     return MF.getFunction().hasMinSize();
5861   return DAG.shouldOptForSize();
5862 }
5863 
5864 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5865                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5866                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5867                           SmallVector<SDValue, 16> &OutStoreChains) {
5868   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5869   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5870   SmallVector<SDValue, 16> GluedLoadChains;
5871   for (unsigned i = From; i < To; ++i) {
5872     OutChains.push_back(OutLoadChains[i]);
5873     GluedLoadChains.push_back(OutLoadChains[i]);
5874   }
5875 
5876   // Chain for all loads.
5877   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5878                                   GluedLoadChains);
5879 
5880   for (unsigned i = From; i < To; ++i) {
5881     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5882     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5883                                   ST->getBasePtr(), ST->getMemoryVT(),
5884                                   ST->getMemOperand());
5885     OutChains.push_back(NewStore);
5886   }
5887 }
5888 
5889 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5890                                        SDValue Chain, SDValue Dst, SDValue Src,
5891                                        uint64_t Size, Align Alignment,
5892                                        bool isVol, bool AlwaysInline,
5893                                        MachinePointerInfo DstPtrInfo,
5894                                        MachinePointerInfo SrcPtrInfo) {
5895   // Turn a memcpy of undef to nop.
5896   // FIXME: We need to honor volatile even is Src is undef.
5897   if (Src.isUndef())
5898     return Chain;
5899 
5900   // Expand memcpy to a series of load and store ops if the size operand falls
5901   // below a certain threshold.
5902   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5903   // rather than maybe a humongous number of loads and stores.
5904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5905   const DataLayout &DL = DAG.getDataLayout();
5906   LLVMContext &C = *DAG.getContext();
5907   std::vector<EVT> MemOps;
5908   bool DstAlignCanChange = false;
5909   MachineFunction &MF = DAG.getMachineFunction();
5910   MachineFrameInfo &MFI = MF.getFrameInfo();
5911   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5912   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5913   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5914     DstAlignCanChange = true;
5915   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
5916   if (!SrcAlign || Alignment > *SrcAlign)
5917     SrcAlign = Alignment;
5918   assert(SrcAlign && "SrcAlign must be set");
5919   ConstantDataArraySlice Slice;
5920   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5921   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5922   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5923   const MemOp Op = isZeroConstant
5924                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
5925                                     /*IsZeroMemset*/ true, isVol)
5926                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
5927                                      *SrcAlign, isVol, CopyFromConstant);
5928   if (!TLI.findOptimalMemOpLowering(
5929           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
5930           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5931     return SDValue();
5932 
5933   if (DstAlignCanChange) {
5934     Type *Ty = MemOps[0].getTypeForEVT(C);
5935     Align NewAlign = DL.getABITypeAlign(Ty);
5936 
5937     // Don't promote to an alignment that would require dynamic stack
5938     // realignment.
5939     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5940     if (!TRI->needsStackRealignment(MF))
5941       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
5942         NewAlign = NewAlign / 2;
5943 
5944     if (NewAlign > Alignment) {
5945       // Give the stack frame object a larger alignment if needed.
5946       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
5947         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5948       Alignment = NewAlign;
5949     }
5950   }
5951 
5952   MachineMemOperand::Flags MMOFlags =
5953       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5954   SmallVector<SDValue, 16> OutLoadChains;
5955   SmallVector<SDValue, 16> OutStoreChains;
5956   SmallVector<SDValue, 32> OutChains;
5957   unsigned NumMemOps = MemOps.size();
5958   uint64_t SrcOff = 0, DstOff = 0;
5959   for (unsigned i = 0; i != NumMemOps; ++i) {
5960     EVT VT = MemOps[i];
5961     unsigned VTSize = VT.getSizeInBits() / 8;
5962     SDValue Value, Store;
5963 
5964     if (VTSize > Size) {
5965       // Issuing an unaligned load / store pair  that overlaps with the previous
5966       // pair. Adjust the offset accordingly.
5967       assert(i == NumMemOps-1 && i != 0);
5968       SrcOff -= VTSize - Size;
5969       DstOff -= VTSize - Size;
5970     }
5971 
5972     if (CopyFromConstant &&
5973         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5974       // It's unlikely a store of a vector immediate can be done in a single
5975       // instruction. It would require a load from a constantpool first.
5976       // We only handle zero vectors here.
5977       // FIXME: Handle other cases where store of vector immediate is done in
5978       // a single instruction.
5979       ConstantDataArraySlice SubSlice;
5980       if (SrcOff < Slice.Length) {
5981         SubSlice = Slice;
5982         SubSlice.move(SrcOff);
5983       } else {
5984         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5985         SubSlice.Array = nullptr;
5986         SubSlice.Offset = 0;
5987         SubSlice.Length = VTSize;
5988       }
5989       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5990       if (Value.getNode()) {
5991         Store = DAG.getStore(
5992             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5993             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
5994         OutChains.push_back(Store);
5995       }
5996     }
5997 
5998     if (!Store.getNode()) {
5999       // The type might not be legal for the target.  This should only happen
6000       // if the type is smaller than a legal type, as on PPC, so the right
6001       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6002       // to Load/Store if NVT==VT.
6003       // FIXME does the case above also need this?
6004       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6005       assert(NVT.bitsGE(VT));
6006 
6007       bool isDereferenceable =
6008         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6009       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6010       if (isDereferenceable)
6011         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6012 
6013       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6014                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6015                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6016                              commonAlignment(*SrcAlign, SrcOff).value(),
6017                              SrcMMOFlags);
6018       OutLoadChains.push_back(Value.getValue(1));
6019 
6020       Store = DAG.getTruncStore(
6021           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6022           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6023       OutStoreChains.push_back(Store);
6024     }
6025     SrcOff += VTSize;
6026     DstOff += VTSize;
6027     Size -= VTSize;
6028   }
6029 
6030   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6031                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6032   unsigned NumLdStInMemcpy = OutStoreChains.size();
6033 
6034   if (NumLdStInMemcpy) {
6035     // It may be that memcpy might be converted to memset if it's memcpy
6036     // of constants. In such a case, we won't have loads and stores, but
6037     // just stores. In the absence of loads, there is nothing to gang up.
6038     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6039       // If target does not care, just leave as it.
6040       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6041         OutChains.push_back(OutLoadChains[i]);
6042         OutChains.push_back(OutStoreChains[i]);
6043       }
6044     } else {
6045       // Ld/St less than/equal limit set by target.
6046       if (NumLdStInMemcpy <= GluedLdStLimit) {
6047           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6048                                         NumLdStInMemcpy, OutLoadChains,
6049                                         OutStoreChains);
6050       } else {
6051         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6052         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6053         unsigned GlueIter = 0;
6054 
6055         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6056           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6057           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6058 
6059           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6060                                        OutLoadChains, OutStoreChains);
6061           GlueIter += GluedLdStLimit;
6062         }
6063 
6064         // Residual ld/st.
6065         if (RemainingLdStInMemcpy) {
6066           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6067                                         RemainingLdStInMemcpy, OutLoadChains,
6068                                         OutStoreChains);
6069         }
6070       }
6071     }
6072   }
6073   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6074 }
6075 
6076 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6077                                         SDValue Chain, SDValue Dst, SDValue Src,
6078                                         uint64_t Size, Align Alignment,
6079                                         bool isVol, bool AlwaysInline,
6080                                         MachinePointerInfo DstPtrInfo,
6081                                         MachinePointerInfo SrcPtrInfo) {
6082   // Turn a memmove of undef to nop.
6083   // FIXME: We need to honor volatile even is Src is undef.
6084   if (Src.isUndef())
6085     return Chain;
6086 
6087   // Expand memmove to a series of load and store ops if the size operand falls
6088   // below a certain threshold.
6089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6090   const DataLayout &DL = DAG.getDataLayout();
6091   LLVMContext &C = *DAG.getContext();
6092   std::vector<EVT> MemOps;
6093   bool DstAlignCanChange = false;
6094   MachineFunction &MF = DAG.getMachineFunction();
6095   MachineFrameInfo &MFI = MF.getFrameInfo();
6096   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6097   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6098   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6099     DstAlignCanChange = true;
6100   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6101   if (!SrcAlign || Alignment > *SrcAlign)
6102     SrcAlign = Alignment;
6103   assert(SrcAlign && "SrcAlign must be set");
6104   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6105   if (!TLI.findOptimalMemOpLowering(
6106           MemOps, Limit,
6107           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6108                       /*IsVolatile*/ true),
6109           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6110           MF.getFunction().getAttributes()))
6111     return SDValue();
6112 
6113   if (DstAlignCanChange) {
6114     Type *Ty = MemOps[0].getTypeForEVT(C);
6115     Align NewAlign = DL.getABITypeAlign(Ty);
6116     if (NewAlign > Alignment) {
6117       // Give the stack frame object a larger alignment if needed.
6118       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6119         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6120       Alignment = NewAlign;
6121     }
6122   }
6123 
6124   MachineMemOperand::Flags MMOFlags =
6125       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6126   uint64_t SrcOff = 0, DstOff = 0;
6127   SmallVector<SDValue, 8> LoadValues;
6128   SmallVector<SDValue, 8> LoadChains;
6129   SmallVector<SDValue, 8> OutChains;
6130   unsigned NumMemOps = MemOps.size();
6131   for (unsigned i = 0; i < NumMemOps; i++) {
6132     EVT VT = MemOps[i];
6133     unsigned VTSize = VT.getSizeInBits() / 8;
6134     SDValue Value;
6135 
6136     bool isDereferenceable =
6137       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6138     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6139     if (isDereferenceable)
6140       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6141 
6142     Value = DAG.getLoad(
6143         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6144         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6145     LoadValues.push_back(Value);
6146     LoadChains.push_back(Value.getValue(1));
6147     SrcOff += VTSize;
6148   }
6149   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6150   OutChains.clear();
6151   for (unsigned i = 0; i < NumMemOps; i++) {
6152     EVT VT = MemOps[i];
6153     unsigned VTSize = VT.getSizeInBits() / 8;
6154     SDValue Store;
6155 
6156     Store = DAG.getStore(
6157         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6158         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6159     OutChains.push_back(Store);
6160     DstOff += VTSize;
6161   }
6162 
6163   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6164 }
6165 
6166 /// Lower the call to 'memset' intrinsic function into a series of store
6167 /// operations.
6168 ///
6169 /// \param DAG Selection DAG where lowered code is placed.
6170 /// \param dl Link to corresponding IR location.
6171 /// \param Chain Control flow dependency.
6172 /// \param Dst Pointer to destination memory location.
6173 /// \param Src Value of byte to write into the memory.
6174 /// \param Size Number of bytes to write.
6175 /// \param Alignment Alignment of the destination in bytes.
6176 /// \param isVol True if destination is volatile.
6177 /// \param DstPtrInfo IR information on the memory pointer.
6178 /// \returns New head in the control flow, if lowering was successful, empty
6179 /// SDValue otherwise.
6180 ///
6181 /// The function tries to replace 'llvm.memset' intrinsic with several store
6182 /// operations and value calculation code. This is usually profitable for small
6183 /// memory size.
6184 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6185                                SDValue Chain, SDValue Dst, SDValue Src,
6186                                uint64_t Size, Align Alignment, bool isVol,
6187                                MachinePointerInfo DstPtrInfo) {
6188   // Turn a memset of undef to nop.
6189   // FIXME: We need to honor volatile even is Src is undef.
6190   if (Src.isUndef())
6191     return Chain;
6192 
6193   // Expand memset to a series of load/store ops if the size operand
6194   // falls below a certain threshold.
6195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6196   std::vector<EVT> MemOps;
6197   bool DstAlignCanChange = false;
6198   MachineFunction &MF = DAG.getMachineFunction();
6199   MachineFrameInfo &MFI = MF.getFrameInfo();
6200   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6201   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6202   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6203     DstAlignCanChange = true;
6204   bool IsZeroVal =
6205     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6206   if (!TLI.findOptimalMemOpLowering(
6207           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6208           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6209           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6210     return SDValue();
6211 
6212   if (DstAlignCanChange) {
6213     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6214     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6215     if (NewAlign > Alignment) {
6216       // Give the stack frame object a larger alignment if needed.
6217       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6218         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6219       Alignment = NewAlign;
6220     }
6221   }
6222 
6223   SmallVector<SDValue, 8> OutChains;
6224   uint64_t DstOff = 0;
6225   unsigned NumMemOps = MemOps.size();
6226 
6227   // Find the largest store and generate the bit pattern for it.
6228   EVT LargestVT = MemOps[0];
6229   for (unsigned i = 1; i < NumMemOps; i++)
6230     if (MemOps[i].bitsGT(LargestVT))
6231       LargestVT = MemOps[i];
6232   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6233 
6234   for (unsigned i = 0; i < NumMemOps; i++) {
6235     EVT VT = MemOps[i];
6236     unsigned VTSize = VT.getSizeInBits() / 8;
6237     if (VTSize > Size) {
6238       // Issuing an unaligned load / store pair  that overlaps with the previous
6239       // pair. Adjust the offset accordingly.
6240       assert(i == NumMemOps-1 && i != 0);
6241       DstOff -= VTSize - Size;
6242     }
6243 
6244     // If this store is smaller than the largest store see whether we can get
6245     // the smaller value for free with a truncate.
6246     SDValue Value = MemSetValue;
6247     if (VT.bitsLT(LargestVT)) {
6248       if (!LargestVT.isVector() && !VT.isVector() &&
6249           TLI.isTruncateFree(LargestVT, VT))
6250         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6251       else
6252         Value = getMemsetValue(Src, VT, DAG, dl);
6253     }
6254     assert(Value.getValueType() == VT && "Value with wrong type.");
6255     SDValue Store = DAG.getStore(
6256         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6257         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6258         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6259     OutChains.push_back(Store);
6260     DstOff += VT.getSizeInBits() / 8;
6261     Size -= VTSize;
6262   }
6263 
6264   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6265 }
6266 
6267 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6268                                             unsigned AS) {
6269   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6270   // pointer operands can be losslessly bitcasted to pointers of address space 0
6271   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6272     report_fatal_error("cannot lower memory intrinsic in address space " +
6273                        Twine(AS));
6274   }
6275 }
6276 
6277 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6278                                 SDValue Src, SDValue Size, Align Alignment,
6279                                 bool isVol, bool AlwaysInline, bool isTailCall,
6280                                 MachinePointerInfo DstPtrInfo,
6281                                 MachinePointerInfo SrcPtrInfo) {
6282   // Check to see if we should lower the memcpy to loads and stores first.
6283   // For cases within the target-specified limits, this is the best choice.
6284   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6285   if (ConstantSize) {
6286     // Memcpy with size zero? Just return the original chain.
6287     if (ConstantSize->isNullValue())
6288       return Chain;
6289 
6290     SDValue Result = getMemcpyLoadsAndStores(
6291         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6292         isVol, false, DstPtrInfo, SrcPtrInfo);
6293     if (Result.getNode())
6294       return Result;
6295   }
6296 
6297   // Then check to see if we should lower the memcpy with target-specific
6298   // code. If the target chooses to do this, this is the next best.
6299   if (TSI) {
6300     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6301         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6302         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6303     if (Result.getNode())
6304       return Result;
6305   }
6306 
6307   // If we really need inline code and the target declined to provide it,
6308   // use a (potentially long) sequence of loads and stores.
6309   if (AlwaysInline) {
6310     assert(ConstantSize && "AlwaysInline requires a constant size!");
6311     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6312                                    ConstantSize->getZExtValue(), Alignment,
6313                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6314   }
6315 
6316   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6317   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6318 
6319   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6320   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6321   // respect volatile, so they may do things like read or write memory
6322   // beyond the given memory regions. But fixing this isn't easy, and most
6323   // people don't care.
6324 
6325   // Emit a library call.
6326   TargetLowering::ArgListTy Args;
6327   TargetLowering::ArgListEntry Entry;
6328   Entry.Ty = Type::getInt8PtrTy(*getContext());
6329   Entry.Node = Dst; Args.push_back(Entry);
6330   Entry.Node = Src; Args.push_back(Entry);
6331 
6332   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6333   Entry.Node = Size; Args.push_back(Entry);
6334   // FIXME: pass in SDLoc
6335   TargetLowering::CallLoweringInfo CLI(*this);
6336   CLI.setDebugLoc(dl)
6337       .setChain(Chain)
6338       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6339                     Dst.getValueType().getTypeForEVT(*getContext()),
6340                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6341                                       TLI->getPointerTy(getDataLayout())),
6342                     std::move(Args))
6343       .setDiscardResult()
6344       .setTailCall(isTailCall);
6345 
6346   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6347   return CallResult.second;
6348 }
6349 
6350 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6351                                       SDValue Dst, unsigned DstAlign,
6352                                       SDValue Src, unsigned SrcAlign,
6353                                       SDValue Size, Type *SizeTy,
6354                                       unsigned ElemSz, bool isTailCall,
6355                                       MachinePointerInfo DstPtrInfo,
6356                                       MachinePointerInfo SrcPtrInfo) {
6357   // Emit a library call.
6358   TargetLowering::ArgListTy Args;
6359   TargetLowering::ArgListEntry Entry;
6360   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6361   Entry.Node = Dst;
6362   Args.push_back(Entry);
6363 
6364   Entry.Node = Src;
6365   Args.push_back(Entry);
6366 
6367   Entry.Ty = SizeTy;
6368   Entry.Node = Size;
6369   Args.push_back(Entry);
6370 
6371   RTLIB::Libcall LibraryCall =
6372       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6373   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6374     report_fatal_error("Unsupported element size");
6375 
6376   TargetLowering::CallLoweringInfo CLI(*this);
6377   CLI.setDebugLoc(dl)
6378       .setChain(Chain)
6379       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6380                     Type::getVoidTy(*getContext()),
6381                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6382                                       TLI->getPointerTy(getDataLayout())),
6383                     std::move(Args))
6384       .setDiscardResult()
6385       .setTailCall(isTailCall);
6386 
6387   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6388   return CallResult.second;
6389 }
6390 
6391 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6392                                  SDValue Src, SDValue Size, Align Alignment,
6393                                  bool isVol, bool isTailCall,
6394                                  MachinePointerInfo DstPtrInfo,
6395                                  MachinePointerInfo SrcPtrInfo) {
6396   // Check to see if we should lower the memmove to loads and stores first.
6397   // For cases within the target-specified limits, this is the best choice.
6398   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6399   if (ConstantSize) {
6400     // Memmove with size zero? Just return the original chain.
6401     if (ConstantSize->isNullValue())
6402       return Chain;
6403 
6404     SDValue Result = getMemmoveLoadsAndStores(
6405         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6406         isVol, false, DstPtrInfo, SrcPtrInfo);
6407     if (Result.getNode())
6408       return Result;
6409   }
6410 
6411   // Then check to see if we should lower the memmove with target-specific
6412   // code. If the target chooses to do this, this is the next best.
6413   if (TSI) {
6414     SDValue Result = TSI->EmitTargetCodeForMemmove(
6415         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6416         SrcPtrInfo);
6417     if (Result.getNode())
6418       return Result;
6419   }
6420 
6421   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6422   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6423 
6424   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6425   // not be safe.  See memcpy above for more details.
6426 
6427   // Emit a library call.
6428   TargetLowering::ArgListTy Args;
6429   TargetLowering::ArgListEntry Entry;
6430   Entry.Ty = Type::getInt8PtrTy(*getContext());
6431   Entry.Node = Dst; Args.push_back(Entry);
6432   Entry.Node = Src; Args.push_back(Entry);
6433 
6434   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6435   Entry.Node = Size; Args.push_back(Entry);
6436   // FIXME:  pass in SDLoc
6437   TargetLowering::CallLoweringInfo CLI(*this);
6438   CLI.setDebugLoc(dl)
6439       .setChain(Chain)
6440       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6441                     Dst.getValueType().getTypeForEVT(*getContext()),
6442                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6443                                       TLI->getPointerTy(getDataLayout())),
6444                     std::move(Args))
6445       .setDiscardResult()
6446       .setTailCall(isTailCall);
6447 
6448   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6449   return CallResult.second;
6450 }
6451 
6452 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6453                                        SDValue Dst, unsigned DstAlign,
6454                                        SDValue Src, unsigned SrcAlign,
6455                                        SDValue Size, Type *SizeTy,
6456                                        unsigned ElemSz, bool isTailCall,
6457                                        MachinePointerInfo DstPtrInfo,
6458                                        MachinePointerInfo SrcPtrInfo) {
6459   // Emit a library call.
6460   TargetLowering::ArgListTy Args;
6461   TargetLowering::ArgListEntry Entry;
6462   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6463   Entry.Node = Dst;
6464   Args.push_back(Entry);
6465 
6466   Entry.Node = Src;
6467   Args.push_back(Entry);
6468 
6469   Entry.Ty = SizeTy;
6470   Entry.Node = Size;
6471   Args.push_back(Entry);
6472 
6473   RTLIB::Libcall LibraryCall =
6474       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6475   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6476     report_fatal_error("Unsupported element size");
6477 
6478   TargetLowering::CallLoweringInfo CLI(*this);
6479   CLI.setDebugLoc(dl)
6480       .setChain(Chain)
6481       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6482                     Type::getVoidTy(*getContext()),
6483                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6484                                       TLI->getPointerTy(getDataLayout())),
6485                     std::move(Args))
6486       .setDiscardResult()
6487       .setTailCall(isTailCall);
6488 
6489   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6490   return CallResult.second;
6491 }
6492 
6493 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6494                                 SDValue Src, SDValue Size, Align Alignment,
6495                                 bool isVol, bool isTailCall,
6496                                 MachinePointerInfo DstPtrInfo) {
6497   // Check to see if we should lower the memset to stores first.
6498   // For cases within the target-specified limits, this is the best choice.
6499   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6500   if (ConstantSize) {
6501     // Memset with size zero? Just return the original chain.
6502     if (ConstantSize->isNullValue())
6503       return Chain;
6504 
6505     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6506                                      ConstantSize->getZExtValue(), Alignment,
6507                                      isVol, DstPtrInfo);
6508 
6509     if (Result.getNode())
6510       return Result;
6511   }
6512 
6513   // Then check to see if we should lower the memset with target-specific
6514   // code. If the target chooses to do this, this is the next best.
6515   if (TSI) {
6516     SDValue Result = TSI->EmitTargetCodeForMemset(
6517         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6518     if (Result.getNode())
6519       return Result;
6520   }
6521 
6522   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6523 
6524   // Emit a library call.
6525   TargetLowering::ArgListTy Args;
6526   TargetLowering::ArgListEntry Entry;
6527   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6528   Args.push_back(Entry);
6529   Entry.Node = Src;
6530   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6531   Args.push_back(Entry);
6532   Entry.Node = Size;
6533   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6534   Args.push_back(Entry);
6535 
6536   // FIXME: pass in SDLoc
6537   TargetLowering::CallLoweringInfo CLI(*this);
6538   CLI.setDebugLoc(dl)
6539       .setChain(Chain)
6540       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6541                     Dst.getValueType().getTypeForEVT(*getContext()),
6542                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6543                                       TLI->getPointerTy(getDataLayout())),
6544                     std::move(Args))
6545       .setDiscardResult()
6546       .setTailCall(isTailCall);
6547 
6548   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6549   return CallResult.second;
6550 }
6551 
6552 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6553                                       SDValue Dst, unsigned DstAlign,
6554                                       SDValue Value, SDValue Size, Type *SizeTy,
6555                                       unsigned ElemSz, bool isTailCall,
6556                                       MachinePointerInfo DstPtrInfo) {
6557   // Emit a library call.
6558   TargetLowering::ArgListTy Args;
6559   TargetLowering::ArgListEntry Entry;
6560   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6561   Entry.Node = Dst;
6562   Args.push_back(Entry);
6563 
6564   Entry.Ty = Type::getInt8Ty(*getContext());
6565   Entry.Node = Value;
6566   Args.push_back(Entry);
6567 
6568   Entry.Ty = SizeTy;
6569   Entry.Node = Size;
6570   Args.push_back(Entry);
6571 
6572   RTLIB::Libcall LibraryCall =
6573       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6574   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6575     report_fatal_error("Unsupported element size");
6576 
6577   TargetLowering::CallLoweringInfo CLI(*this);
6578   CLI.setDebugLoc(dl)
6579       .setChain(Chain)
6580       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6581                     Type::getVoidTy(*getContext()),
6582                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6583                                       TLI->getPointerTy(getDataLayout())),
6584                     std::move(Args))
6585       .setDiscardResult()
6586       .setTailCall(isTailCall);
6587 
6588   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6589   return CallResult.second;
6590 }
6591 
6592 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6593                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6594                                 MachineMemOperand *MMO) {
6595   FoldingSetNodeID ID;
6596   ID.AddInteger(MemVT.getRawBits());
6597   AddNodeIDNode(ID, Opcode, VTList, Ops);
6598   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6599   void* IP = nullptr;
6600   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6601     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6602     return SDValue(E, 0);
6603   }
6604 
6605   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6606                                     VTList, MemVT, MMO);
6607   createOperands(N, Ops);
6608 
6609   CSEMap.InsertNode(N, IP);
6610   InsertNode(N);
6611   return SDValue(N, 0);
6612 }
6613 
6614 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6615                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6616                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6617                                        MachineMemOperand *MMO) {
6618   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6619          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6620   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6621 
6622   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6623   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6624 }
6625 
6626 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6627                                 SDValue Chain, SDValue Ptr, SDValue Val,
6628                                 MachineMemOperand *MMO) {
6629   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6630           Opcode == ISD::ATOMIC_LOAD_SUB ||
6631           Opcode == ISD::ATOMIC_LOAD_AND ||
6632           Opcode == ISD::ATOMIC_LOAD_CLR ||
6633           Opcode == ISD::ATOMIC_LOAD_OR ||
6634           Opcode == ISD::ATOMIC_LOAD_XOR ||
6635           Opcode == ISD::ATOMIC_LOAD_NAND ||
6636           Opcode == ISD::ATOMIC_LOAD_MIN ||
6637           Opcode == ISD::ATOMIC_LOAD_MAX ||
6638           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6639           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6640           Opcode == ISD::ATOMIC_LOAD_FADD ||
6641           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6642           Opcode == ISD::ATOMIC_SWAP ||
6643           Opcode == ISD::ATOMIC_STORE) &&
6644          "Invalid Atomic Op");
6645 
6646   EVT VT = Val.getValueType();
6647 
6648   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6649                                                getVTList(VT, MVT::Other);
6650   SDValue Ops[] = {Chain, Ptr, Val};
6651   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6652 }
6653 
6654 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6655                                 EVT VT, SDValue Chain, SDValue Ptr,
6656                                 MachineMemOperand *MMO) {
6657   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6658 
6659   SDVTList VTs = getVTList(VT, MVT::Other);
6660   SDValue Ops[] = {Chain, Ptr};
6661   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6662 }
6663 
6664 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6665 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6666   if (Ops.size() == 1)
6667     return Ops[0];
6668 
6669   SmallVector<EVT, 4> VTs;
6670   VTs.reserve(Ops.size());
6671   for (unsigned i = 0; i < Ops.size(); ++i)
6672     VTs.push_back(Ops[i].getValueType());
6673   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6674 }
6675 
6676 SDValue SelectionDAG::getMemIntrinsicNode(
6677     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6678     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6679     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6680   if (!Size && MemVT.isScalableVector())
6681     Size = MemoryLocation::UnknownSize;
6682   else if (!Size)
6683     Size = MemVT.getStoreSize();
6684 
6685   MachineFunction &MF = getMachineFunction();
6686   MachineMemOperand *MMO =
6687       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6688 
6689   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6690 }
6691 
6692 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6693                                           SDVTList VTList,
6694                                           ArrayRef<SDValue> Ops, EVT MemVT,
6695                                           MachineMemOperand *MMO) {
6696   assert((Opcode == ISD::INTRINSIC_VOID ||
6697           Opcode == ISD::INTRINSIC_W_CHAIN ||
6698           Opcode == ISD::PREFETCH ||
6699           ((int)Opcode <= std::numeric_limits<int>::max() &&
6700            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6701          "Opcode is not a memory-accessing opcode!");
6702 
6703   // Memoize the node unless it returns a flag.
6704   MemIntrinsicSDNode *N;
6705   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6706     FoldingSetNodeID ID;
6707     AddNodeIDNode(ID, Opcode, VTList, Ops);
6708     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6709         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6710     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6711     void *IP = nullptr;
6712     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6713       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6714       return SDValue(E, 0);
6715     }
6716 
6717     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6718                                       VTList, MemVT, MMO);
6719     createOperands(N, Ops);
6720 
6721   CSEMap.InsertNode(N, IP);
6722   } else {
6723     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6724                                       VTList, MemVT, MMO);
6725     createOperands(N, Ops);
6726   }
6727   InsertNode(N);
6728   SDValue V(N, 0);
6729   NewSDValueDbgMsg(V, "Creating new node: ", this);
6730   return V;
6731 }
6732 
6733 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6734                                       SDValue Chain, int FrameIndex,
6735                                       int64_t Size, int64_t Offset) {
6736   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6737   const auto VTs = getVTList(MVT::Other);
6738   SDValue Ops[2] = {
6739       Chain,
6740       getFrameIndex(FrameIndex,
6741                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6742                     true)};
6743 
6744   FoldingSetNodeID ID;
6745   AddNodeIDNode(ID, Opcode, VTs, Ops);
6746   ID.AddInteger(FrameIndex);
6747   ID.AddInteger(Size);
6748   ID.AddInteger(Offset);
6749   void *IP = nullptr;
6750   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6751     return SDValue(E, 0);
6752 
6753   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6754       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6755   createOperands(N, Ops);
6756   CSEMap.InsertNode(N, IP);
6757   InsertNode(N);
6758   SDValue V(N, 0);
6759   NewSDValueDbgMsg(V, "Creating new node: ", this);
6760   return V;
6761 }
6762 
6763 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6764 /// MachinePointerInfo record from it.  This is particularly useful because the
6765 /// code generator has many cases where it doesn't bother passing in a
6766 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6767 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6768                                            SelectionDAG &DAG, SDValue Ptr,
6769                                            int64_t Offset = 0) {
6770   // If this is FI+Offset, we can model it.
6771   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6772     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6773                                              FI->getIndex(), Offset);
6774 
6775   // If this is (FI+Offset1)+Offset2, we can model it.
6776   if (Ptr.getOpcode() != ISD::ADD ||
6777       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6778       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6779     return Info;
6780 
6781   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6782   return MachinePointerInfo::getFixedStack(
6783       DAG.getMachineFunction(), FI,
6784       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6785 }
6786 
6787 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6788 /// MachinePointerInfo record from it.  This is particularly useful because the
6789 /// code generator has many cases where it doesn't bother passing in a
6790 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6791 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6792                                            SelectionDAG &DAG, SDValue Ptr,
6793                                            SDValue OffsetOp) {
6794   // If the 'Offset' value isn't a constant, we can't handle this.
6795   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6796     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6797   if (OffsetOp.isUndef())
6798     return InferPointerInfo(Info, DAG, Ptr);
6799   return Info;
6800 }
6801 
6802 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6803                               EVT VT, const SDLoc &dl, SDValue Chain,
6804                               SDValue Ptr, SDValue Offset,
6805                               MachinePointerInfo PtrInfo, EVT MemVT,
6806                               Align Alignment,
6807                               MachineMemOperand::Flags MMOFlags,
6808                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6809   assert(Chain.getValueType() == MVT::Other &&
6810         "Invalid chain type");
6811 
6812   MMOFlags |= MachineMemOperand::MOLoad;
6813   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6814   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6815   // clients.
6816   if (PtrInfo.V.isNull())
6817     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6818 
6819   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6820   MachineFunction &MF = getMachineFunction();
6821   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6822                                                    Alignment, AAInfo, Ranges);
6823   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6824 }
6825 
6826 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6827                               EVT VT, const SDLoc &dl, SDValue Chain,
6828                               SDValue Ptr, SDValue Offset, EVT MemVT,
6829                               MachineMemOperand *MMO) {
6830   if (VT == MemVT) {
6831     ExtType = ISD::NON_EXTLOAD;
6832   } else if (ExtType == ISD::NON_EXTLOAD) {
6833     assert(VT == MemVT && "Non-extending load from different memory type!");
6834   } else {
6835     // Extending load.
6836     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6837            "Should only be an extending load, not truncating!");
6838     assert(VT.isInteger() == MemVT.isInteger() &&
6839            "Cannot convert from FP to Int or Int -> FP!");
6840     assert(VT.isVector() == MemVT.isVector() &&
6841            "Cannot use an ext load to convert to or from a vector!");
6842     assert((!VT.isVector() ||
6843             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6844            "Cannot use an ext load to change the number of vector elements!");
6845   }
6846 
6847   bool Indexed = AM != ISD::UNINDEXED;
6848   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6849 
6850   SDVTList VTs = Indexed ?
6851     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6852   SDValue Ops[] = { Chain, Ptr, Offset };
6853   FoldingSetNodeID ID;
6854   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6855   ID.AddInteger(MemVT.getRawBits());
6856   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6857       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6858   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6859   void *IP = nullptr;
6860   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6861     cast<LoadSDNode>(E)->refineAlignment(MMO);
6862     return SDValue(E, 0);
6863   }
6864   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6865                                   ExtType, MemVT, MMO);
6866   createOperands(N, Ops);
6867 
6868   CSEMap.InsertNode(N, IP);
6869   InsertNode(N);
6870   SDValue V(N, 0);
6871   NewSDValueDbgMsg(V, "Creating new node: ", this);
6872   return V;
6873 }
6874 
6875 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6876                               SDValue Ptr, MachinePointerInfo PtrInfo,
6877                               MaybeAlign Alignment,
6878                               MachineMemOperand::Flags MMOFlags,
6879                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6880   SDValue Undef = getUNDEF(Ptr.getValueType());
6881   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6882                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6883 }
6884 
6885 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6886                               SDValue Ptr, MachineMemOperand *MMO) {
6887   SDValue Undef = getUNDEF(Ptr.getValueType());
6888   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6889                  VT, MMO);
6890 }
6891 
6892 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6893                                  EVT VT, SDValue Chain, SDValue Ptr,
6894                                  MachinePointerInfo PtrInfo, EVT MemVT,
6895                                  MaybeAlign Alignment,
6896                                  MachineMemOperand::Flags MMOFlags,
6897                                  const AAMDNodes &AAInfo) {
6898   SDValue Undef = getUNDEF(Ptr.getValueType());
6899   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6900                  MemVT, Alignment, MMOFlags, AAInfo);
6901 }
6902 
6903 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6904                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6905                                  MachineMemOperand *MMO) {
6906   SDValue Undef = getUNDEF(Ptr.getValueType());
6907   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6908                  MemVT, MMO);
6909 }
6910 
6911 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6912                                      SDValue Base, SDValue Offset,
6913                                      ISD::MemIndexedMode AM) {
6914   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6915   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6916   // Don't propagate the invariant or dereferenceable flags.
6917   auto MMOFlags =
6918       LD->getMemOperand()->getFlags() &
6919       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6920   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6921                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6922                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6923                  LD->getAAInfo());
6924 }
6925 
6926 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6927                                SDValue Ptr, MachinePointerInfo PtrInfo,
6928                                Align Alignment,
6929                                MachineMemOperand::Flags MMOFlags,
6930                                const AAMDNodes &AAInfo) {
6931   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6932 
6933   MMOFlags |= MachineMemOperand::MOStore;
6934   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6935 
6936   if (PtrInfo.V.isNull())
6937     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6938 
6939   MachineFunction &MF = getMachineFunction();
6940   uint64_t Size =
6941       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6942   MachineMemOperand *MMO =
6943       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6944   return getStore(Chain, dl, Val, Ptr, MMO);
6945 }
6946 
6947 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6948                                SDValue Ptr, MachineMemOperand *MMO) {
6949   assert(Chain.getValueType() == MVT::Other &&
6950         "Invalid chain type");
6951   EVT VT = Val.getValueType();
6952   SDVTList VTs = getVTList(MVT::Other);
6953   SDValue Undef = getUNDEF(Ptr.getValueType());
6954   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6955   FoldingSetNodeID ID;
6956   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6957   ID.AddInteger(VT.getRawBits());
6958   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6959       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6960   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6961   void *IP = nullptr;
6962   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6963     cast<StoreSDNode>(E)->refineAlignment(MMO);
6964     return SDValue(E, 0);
6965   }
6966   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6967                                    ISD::UNINDEXED, false, VT, MMO);
6968   createOperands(N, Ops);
6969 
6970   CSEMap.InsertNode(N, IP);
6971   InsertNode(N);
6972   SDValue V(N, 0);
6973   NewSDValueDbgMsg(V, "Creating new node: ", this);
6974   return V;
6975 }
6976 
6977 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6978                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6979                                     EVT SVT, Align Alignment,
6980                                     MachineMemOperand::Flags MMOFlags,
6981                                     const AAMDNodes &AAInfo) {
6982   assert(Chain.getValueType() == MVT::Other &&
6983         "Invalid chain type");
6984 
6985   MMOFlags |= MachineMemOperand::MOStore;
6986   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6987 
6988   if (PtrInfo.V.isNull())
6989     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6990 
6991   MachineFunction &MF = getMachineFunction();
6992   MachineMemOperand *MMO = MF.getMachineMemOperand(
6993       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6994   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6995 }
6996 
6997 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6998                                     SDValue Ptr, EVT SVT,
6999                                     MachineMemOperand *MMO) {
7000   EVT VT = Val.getValueType();
7001 
7002   assert(Chain.getValueType() == MVT::Other &&
7003         "Invalid chain type");
7004   if (VT == SVT)
7005     return getStore(Chain, dl, Val, Ptr, MMO);
7006 
7007   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7008          "Should only be a truncating store, not extending!");
7009   assert(VT.isInteger() == SVT.isInteger() &&
7010          "Can't do FP-INT conversion!");
7011   assert(VT.isVector() == SVT.isVector() &&
7012          "Cannot use trunc store to convert to or from a vector!");
7013   assert((!VT.isVector() ||
7014           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7015          "Cannot use trunc store to change the number of vector elements!");
7016 
7017   SDVTList VTs = getVTList(MVT::Other);
7018   SDValue Undef = getUNDEF(Ptr.getValueType());
7019   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7020   FoldingSetNodeID ID;
7021   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7022   ID.AddInteger(SVT.getRawBits());
7023   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7024       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7025   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7026   void *IP = nullptr;
7027   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7028     cast<StoreSDNode>(E)->refineAlignment(MMO);
7029     return SDValue(E, 0);
7030   }
7031   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7032                                    ISD::UNINDEXED, true, SVT, MMO);
7033   createOperands(N, Ops);
7034 
7035   CSEMap.InsertNode(N, IP);
7036   InsertNode(N);
7037   SDValue V(N, 0);
7038   NewSDValueDbgMsg(V, "Creating new node: ", this);
7039   return V;
7040 }
7041 
7042 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7043                                       SDValue Base, SDValue Offset,
7044                                       ISD::MemIndexedMode AM) {
7045   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7046   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7047   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7048   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7049   FoldingSetNodeID ID;
7050   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7051   ID.AddInteger(ST->getMemoryVT().getRawBits());
7052   ID.AddInteger(ST->getRawSubclassData());
7053   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7054   void *IP = nullptr;
7055   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7056     return SDValue(E, 0);
7057 
7058   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7059                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7060                                    ST->getMemOperand());
7061   createOperands(N, Ops);
7062 
7063   CSEMap.InsertNode(N, IP);
7064   InsertNode(N);
7065   SDValue V(N, 0);
7066   NewSDValueDbgMsg(V, "Creating new node: ", this);
7067   return V;
7068 }
7069 
7070 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7071                                     SDValue Base, SDValue Offset, SDValue Mask,
7072                                     SDValue PassThru, EVT MemVT,
7073                                     MachineMemOperand *MMO,
7074                                     ISD::MemIndexedMode AM,
7075                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7076   bool Indexed = AM != ISD::UNINDEXED;
7077   assert((Indexed || Offset.isUndef()) &&
7078          "Unindexed masked load with an offset!");
7079   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7080                          : getVTList(VT, MVT::Other);
7081   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7082   FoldingSetNodeID ID;
7083   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7084   ID.AddInteger(MemVT.getRawBits());
7085   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7086       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7087   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7088   void *IP = nullptr;
7089   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7090     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7091     return SDValue(E, 0);
7092   }
7093   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7094                                         AM, ExtTy, isExpanding, MemVT, MMO);
7095   createOperands(N, Ops);
7096 
7097   CSEMap.InsertNode(N, IP);
7098   InsertNode(N);
7099   SDValue V(N, 0);
7100   NewSDValueDbgMsg(V, "Creating new node: ", this);
7101   return V;
7102 }
7103 
7104 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7105                                            SDValue Base, SDValue Offset,
7106                                            ISD::MemIndexedMode AM) {
7107   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7108   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7109   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7110                        Offset, LD->getMask(), LD->getPassThru(),
7111                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7112                        LD->getExtensionType(), LD->isExpandingLoad());
7113 }
7114 
7115 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7116                                      SDValue Val, SDValue Base, SDValue Offset,
7117                                      SDValue Mask, EVT MemVT,
7118                                      MachineMemOperand *MMO,
7119                                      ISD::MemIndexedMode AM, bool IsTruncating,
7120                                      bool IsCompressing) {
7121   assert(Chain.getValueType() == MVT::Other &&
7122         "Invalid chain type");
7123   bool Indexed = AM != ISD::UNINDEXED;
7124   assert((Indexed || Offset.isUndef()) &&
7125          "Unindexed masked store with an offset!");
7126   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7127                          : getVTList(MVT::Other);
7128   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7129   FoldingSetNodeID ID;
7130   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7131   ID.AddInteger(MemVT.getRawBits());
7132   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7133       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7134   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7135   void *IP = nullptr;
7136   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7137     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7138     return SDValue(E, 0);
7139   }
7140   auto *N =
7141       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7142                                    IsTruncating, IsCompressing, MemVT, MMO);
7143   createOperands(N, Ops);
7144 
7145   CSEMap.InsertNode(N, IP);
7146   InsertNode(N);
7147   SDValue V(N, 0);
7148   NewSDValueDbgMsg(V, "Creating new node: ", this);
7149   return V;
7150 }
7151 
7152 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7153                                             SDValue Base, SDValue Offset,
7154                                             ISD::MemIndexedMode AM) {
7155   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7156   assert(ST->getOffset().isUndef() &&
7157          "Masked store is already a indexed store!");
7158   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7159                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7160                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7161 }
7162 
7163 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7164                                       ArrayRef<SDValue> Ops,
7165                                       MachineMemOperand *MMO,
7166                                       ISD::MemIndexType IndexType) {
7167   assert(Ops.size() == 6 && "Incompatible number of operands");
7168 
7169   FoldingSetNodeID ID;
7170   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7171   ID.AddInteger(VT.getRawBits());
7172   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7173       dl.getIROrder(), VTs, VT, MMO, IndexType));
7174   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7175   void *IP = nullptr;
7176   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7177     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7178     return SDValue(E, 0);
7179   }
7180 
7181   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7182                                           VTs, VT, MMO, IndexType);
7183   createOperands(N, Ops);
7184 
7185   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7186          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7187   assert(N->getMask().getValueType().getVectorNumElements() ==
7188              N->getValueType(0).getVectorNumElements() &&
7189          "Vector width mismatch between mask and data");
7190   assert(N->getIndex().getValueType().getVectorNumElements() >=
7191              N->getValueType(0).getVectorNumElements() &&
7192          "Vector width mismatch between index and data");
7193   assert(isa<ConstantSDNode>(N->getScale()) &&
7194          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7195          "Scale should be a constant power of 2");
7196 
7197   CSEMap.InsertNode(N, IP);
7198   InsertNode(N);
7199   SDValue V(N, 0);
7200   NewSDValueDbgMsg(V, "Creating new node: ", this);
7201   return V;
7202 }
7203 
7204 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7205                                        ArrayRef<SDValue> Ops,
7206                                        MachineMemOperand *MMO,
7207                                        ISD::MemIndexType IndexType) {
7208   assert(Ops.size() == 6 && "Incompatible number of operands");
7209 
7210   FoldingSetNodeID ID;
7211   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7212   ID.AddInteger(VT.getRawBits());
7213   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7214       dl.getIROrder(), VTs, VT, MMO, IndexType));
7215   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7216   void *IP = nullptr;
7217   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7218     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7219     return SDValue(E, 0);
7220   }
7221   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7222                                            VTs, VT, MMO, IndexType);
7223   createOperands(N, Ops);
7224 
7225   assert(N->getMask().getValueType().getVectorNumElements() ==
7226              N->getValue().getValueType().getVectorNumElements() &&
7227          "Vector width mismatch between mask and data");
7228   assert(N->getIndex().getValueType().getVectorNumElements() >=
7229              N->getValue().getValueType().getVectorNumElements() &&
7230          "Vector width mismatch between index and data");
7231   assert(isa<ConstantSDNode>(N->getScale()) &&
7232          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7233          "Scale should be a constant power of 2");
7234 
7235   CSEMap.InsertNode(N, IP);
7236   InsertNode(N);
7237   SDValue V(N, 0);
7238   NewSDValueDbgMsg(V, "Creating new node: ", this);
7239   return V;
7240 }
7241 
7242 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7243   // select undef, T, F --> T (if T is a constant), otherwise F
7244   // select, ?, undef, F --> F
7245   // select, ?, T, undef --> T
7246   if (Cond.isUndef())
7247     return isConstantValueOfAnyType(T) ? T : F;
7248   if (T.isUndef())
7249     return F;
7250   if (F.isUndef())
7251     return T;
7252 
7253   // select true, T, F --> T
7254   // select false, T, F --> F
7255   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7256     return CondC->isNullValue() ? F : T;
7257 
7258   // TODO: This should simplify VSELECT with constant condition using something
7259   // like this (but check boolean contents to be complete?):
7260   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7261   //    return T;
7262   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7263   //    return F;
7264 
7265   // select ?, T, T --> T
7266   if (T == F)
7267     return T;
7268 
7269   return SDValue();
7270 }
7271 
7272 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7273   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7274   if (X.isUndef())
7275     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7276   // shift X, undef --> undef (because it may shift by the bitwidth)
7277   if (Y.isUndef())
7278     return getUNDEF(X.getValueType());
7279 
7280   // shift 0, Y --> 0
7281   // shift X, 0 --> X
7282   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7283     return X;
7284 
7285   // shift X, C >= bitwidth(X) --> undef
7286   // All vector elements must be too big (or undef) to avoid partial undefs.
7287   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7288     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7289   };
7290   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7291     return getUNDEF(X.getValueType());
7292 
7293   return SDValue();
7294 }
7295 
7296 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7297                                       SDNodeFlags Flags) {
7298   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7299   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7300   // operation is poison. That result can be relaxed to undef.
7301   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7302   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7303   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7304                 (YC && YC->getValueAPF().isNaN());
7305   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7306                 (YC && YC->getValueAPF().isInfinity());
7307 
7308   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7309     return getUNDEF(X.getValueType());
7310 
7311   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7312     return getUNDEF(X.getValueType());
7313 
7314   if (!YC)
7315     return SDValue();
7316 
7317   // X + -0.0 --> X
7318   if (Opcode == ISD::FADD)
7319     if (YC->getValueAPF().isNegZero())
7320       return X;
7321 
7322   // X - +0.0 --> X
7323   if (Opcode == ISD::FSUB)
7324     if (YC->getValueAPF().isPosZero())
7325       return X;
7326 
7327   // X * 1.0 --> X
7328   // X / 1.0 --> X
7329   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7330     if (YC->getValueAPF().isExactlyValue(1.0))
7331       return X;
7332 
7333   return SDValue();
7334 }
7335 
7336 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7337                                SDValue Ptr, SDValue SV, unsigned Align) {
7338   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7339   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7340 }
7341 
7342 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7343                               ArrayRef<SDUse> Ops) {
7344   switch (Ops.size()) {
7345   case 0: return getNode(Opcode, DL, VT);
7346   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7347   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7348   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7349   default: break;
7350   }
7351 
7352   // Copy from an SDUse array into an SDValue array for use with
7353   // the regular getNode logic.
7354   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7355   return getNode(Opcode, DL, VT, NewOps);
7356 }
7357 
7358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7359                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7360   unsigned NumOps = Ops.size();
7361   switch (NumOps) {
7362   case 0: return getNode(Opcode, DL, VT);
7363   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7364   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7365   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7366   default: break;
7367   }
7368 
7369   switch (Opcode) {
7370   default: break;
7371   case ISD::BUILD_VECTOR:
7372     // Attempt to simplify BUILD_VECTOR.
7373     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7374       return V;
7375     break;
7376   case ISD::CONCAT_VECTORS:
7377     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7378       return V;
7379     break;
7380   case ISD::SELECT_CC:
7381     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7382     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7383            "LHS and RHS of condition must have same type!");
7384     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7385            "True and False arms of SelectCC must have same type!");
7386     assert(Ops[2].getValueType() == VT &&
7387            "select_cc node must be of same type as true and false value!");
7388     break;
7389   case ISD::BR_CC:
7390     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7391     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7392            "LHS/RHS of comparison should match types!");
7393     break;
7394   }
7395 
7396   // Memoize nodes.
7397   SDNode *N;
7398   SDVTList VTs = getVTList(VT);
7399 
7400   if (VT != MVT::Glue) {
7401     FoldingSetNodeID ID;
7402     AddNodeIDNode(ID, Opcode, VTs, Ops);
7403     void *IP = nullptr;
7404 
7405     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7406       return SDValue(E, 0);
7407 
7408     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7409     createOperands(N, Ops);
7410 
7411     CSEMap.InsertNode(N, IP);
7412   } else {
7413     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7414     createOperands(N, Ops);
7415   }
7416 
7417   InsertNode(N);
7418   SDValue V(N, 0);
7419   NewSDValueDbgMsg(V, "Creating new node: ", this);
7420   return V;
7421 }
7422 
7423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7424                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7425   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7426 }
7427 
7428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7429                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7430   if (VTList.NumVTs == 1)
7431     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7432 
7433   switch (Opcode) {
7434   case ISD::STRICT_FP_EXTEND:
7435     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7436            "Invalid STRICT_FP_EXTEND!");
7437     assert(VTList.VTs[0].isFloatingPoint() &&
7438            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7439     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7440            "STRICT_FP_EXTEND result type should be vector iff the operand "
7441            "type is vector!");
7442     assert((!VTList.VTs[0].isVector() ||
7443             VTList.VTs[0].getVectorNumElements() ==
7444             Ops[1].getValueType().getVectorNumElements()) &&
7445            "Vector element count mismatch!");
7446     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7447            "Invalid fpext node, dst <= src!");
7448     break;
7449   case ISD::STRICT_FP_ROUND:
7450     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7451     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7452            "STRICT_FP_ROUND result type should be vector iff the operand "
7453            "type is vector!");
7454     assert((!VTList.VTs[0].isVector() ||
7455             VTList.VTs[0].getVectorNumElements() ==
7456             Ops[1].getValueType().getVectorNumElements()) &&
7457            "Vector element count mismatch!");
7458     assert(VTList.VTs[0].isFloatingPoint() &&
7459            Ops[1].getValueType().isFloatingPoint() &&
7460            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7461            isa<ConstantSDNode>(Ops[2]) &&
7462            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7463             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7464            "Invalid STRICT_FP_ROUND!");
7465     break;
7466 #if 0
7467   // FIXME: figure out how to safely handle things like
7468   // int foo(int x) { return 1 << (x & 255); }
7469   // int bar() { return foo(256); }
7470   case ISD::SRA_PARTS:
7471   case ISD::SRL_PARTS:
7472   case ISD::SHL_PARTS:
7473     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7474         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7475       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7476     else if (N3.getOpcode() == ISD::AND)
7477       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7478         // If the and is only masking out bits that cannot effect the shift,
7479         // eliminate the and.
7480         unsigned NumBits = VT.getScalarSizeInBits()*2;
7481         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7482           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7483       }
7484     break;
7485 #endif
7486   }
7487 
7488   // Memoize the node unless it returns a flag.
7489   SDNode *N;
7490   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7491     FoldingSetNodeID ID;
7492     AddNodeIDNode(ID, Opcode, VTList, Ops);
7493     void *IP = nullptr;
7494     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7495       return SDValue(E, 0);
7496 
7497     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7498     N->setFlags(Flags);
7499     createOperands(N, Ops);
7500     CSEMap.InsertNode(N, IP);
7501   } else {
7502     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7503     createOperands(N, Ops);
7504   }
7505   InsertNode(N);
7506   SDValue V(N, 0);
7507   NewSDValueDbgMsg(V, "Creating new node: ", this);
7508   return V;
7509 }
7510 
7511 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7512                               SDVTList VTList) {
7513   return getNode(Opcode, DL, VTList, None);
7514 }
7515 
7516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7517                               SDValue N1) {
7518   SDValue Ops[] = { N1 };
7519   return getNode(Opcode, DL, VTList, Ops);
7520 }
7521 
7522 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7523                               SDValue N1, SDValue N2) {
7524   SDValue Ops[] = { N1, N2 };
7525   return getNode(Opcode, DL, VTList, Ops);
7526 }
7527 
7528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7529                               SDValue N1, SDValue N2, SDValue N3) {
7530   SDValue Ops[] = { N1, N2, N3 };
7531   return getNode(Opcode, DL, VTList, Ops);
7532 }
7533 
7534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7535                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7536   SDValue Ops[] = { N1, N2, N3, N4 };
7537   return getNode(Opcode, DL, VTList, Ops);
7538 }
7539 
7540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7541                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7542                               SDValue N5) {
7543   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7544   return getNode(Opcode, DL, VTList, Ops);
7545 }
7546 
7547 SDVTList SelectionDAG::getVTList(EVT VT) {
7548   return makeVTList(SDNode::getValueTypeList(VT), 1);
7549 }
7550 
7551 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7552   FoldingSetNodeID ID;
7553   ID.AddInteger(2U);
7554   ID.AddInteger(VT1.getRawBits());
7555   ID.AddInteger(VT2.getRawBits());
7556 
7557   void *IP = nullptr;
7558   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7559   if (!Result) {
7560     EVT *Array = Allocator.Allocate<EVT>(2);
7561     Array[0] = VT1;
7562     Array[1] = VT2;
7563     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7564     VTListMap.InsertNode(Result, IP);
7565   }
7566   return Result->getSDVTList();
7567 }
7568 
7569 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7570   FoldingSetNodeID ID;
7571   ID.AddInteger(3U);
7572   ID.AddInteger(VT1.getRawBits());
7573   ID.AddInteger(VT2.getRawBits());
7574   ID.AddInteger(VT3.getRawBits());
7575 
7576   void *IP = nullptr;
7577   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7578   if (!Result) {
7579     EVT *Array = Allocator.Allocate<EVT>(3);
7580     Array[0] = VT1;
7581     Array[1] = VT2;
7582     Array[2] = VT3;
7583     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7584     VTListMap.InsertNode(Result, IP);
7585   }
7586   return Result->getSDVTList();
7587 }
7588 
7589 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7590   FoldingSetNodeID ID;
7591   ID.AddInteger(4U);
7592   ID.AddInteger(VT1.getRawBits());
7593   ID.AddInteger(VT2.getRawBits());
7594   ID.AddInteger(VT3.getRawBits());
7595   ID.AddInteger(VT4.getRawBits());
7596 
7597   void *IP = nullptr;
7598   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7599   if (!Result) {
7600     EVT *Array = Allocator.Allocate<EVT>(4);
7601     Array[0] = VT1;
7602     Array[1] = VT2;
7603     Array[2] = VT3;
7604     Array[3] = VT4;
7605     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7606     VTListMap.InsertNode(Result, IP);
7607   }
7608   return Result->getSDVTList();
7609 }
7610 
7611 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7612   unsigned NumVTs = VTs.size();
7613   FoldingSetNodeID ID;
7614   ID.AddInteger(NumVTs);
7615   for (unsigned index = 0; index < NumVTs; index++) {
7616     ID.AddInteger(VTs[index].getRawBits());
7617   }
7618 
7619   void *IP = nullptr;
7620   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7621   if (!Result) {
7622     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7623     llvm::copy(VTs, Array);
7624     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7625     VTListMap.InsertNode(Result, IP);
7626   }
7627   return Result->getSDVTList();
7628 }
7629 
7630 
7631 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7632 /// specified operands.  If the resultant node already exists in the DAG,
7633 /// this does not modify the specified node, instead it returns the node that
7634 /// already exists.  If the resultant node does not exist in the DAG, the
7635 /// input node is returned.  As a degenerate case, if you specify the same
7636 /// input operands as the node already has, the input node is returned.
7637 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7638   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7639 
7640   // Check to see if there is no change.
7641   if (Op == N->getOperand(0)) return N;
7642 
7643   // See if the modified node already exists.
7644   void *InsertPos = nullptr;
7645   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7646     return Existing;
7647 
7648   // Nope it doesn't.  Remove the node from its current place in the maps.
7649   if (InsertPos)
7650     if (!RemoveNodeFromCSEMaps(N))
7651       InsertPos = nullptr;
7652 
7653   // Now we update the operands.
7654   N->OperandList[0].set(Op);
7655 
7656   updateDivergence(N);
7657   // If this gets put into a CSE map, add it.
7658   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7659   return N;
7660 }
7661 
7662 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7663   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7664 
7665   // Check to see if there is no change.
7666   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7667     return N;   // No operands changed, just return the input node.
7668 
7669   // See if the modified node already exists.
7670   void *InsertPos = nullptr;
7671   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7672     return Existing;
7673 
7674   // Nope it doesn't.  Remove the node from its current place in the maps.
7675   if (InsertPos)
7676     if (!RemoveNodeFromCSEMaps(N))
7677       InsertPos = nullptr;
7678 
7679   // Now we update the operands.
7680   if (N->OperandList[0] != Op1)
7681     N->OperandList[0].set(Op1);
7682   if (N->OperandList[1] != Op2)
7683     N->OperandList[1].set(Op2);
7684 
7685   updateDivergence(N);
7686   // If this gets put into a CSE map, add it.
7687   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7688   return N;
7689 }
7690 
7691 SDNode *SelectionDAG::
7692 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7693   SDValue Ops[] = { Op1, Op2, Op3 };
7694   return UpdateNodeOperands(N, Ops);
7695 }
7696 
7697 SDNode *SelectionDAG::
7698 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7699                    SDValue Op3, SDValue Op4) {
7700   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7701   return UpdateNodeOperands(N, Ops);
7702 }
7703 
7704 SDNode *SelectionDAG::
7705 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7706                    SDValue Op3, SDValue Op4, SDValue Op5) {
7707   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7708   return UpdateNodeOperands(N, Ops);
7709 }
7710 
7711 SDNode *SelectionDAG::
7712 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7713   unsigned NumOps = Ops.size();
7714   assert(N->getNumOperands() == NumOps &&
7715          "Update with wrong number of operands");
7716 
7717   // If no operands changed just return the input node.
7718   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7719     return N;
7720 
7721   // See if the modified node already exists.
7722   void *InsertPos = nullptr;
7723   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7724     return Existing;
7725 
7726   // Nope it doesn't.  Remove the node from its current place in the maps.
7727   if (InsertPos)
7728     if (!RemoveNodeFromCSEMaps(N))
7729       InsertPos = nullptr;
7730 
7731   // Now we update the operands.
7732   for (unsigned i = 0; i != NumOps; ++i)
7733     if (N->OperandList[i] != Ops[i])
7734       N->OperandList[i].set(Ops[i]);
7735 
7736   updateDivergence(N);
7737   // If this gets put into a CSE map, add it.
7738   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7739   return N;
7740 }
7741 
7742 /// DropOperands - Release the operands and set this node to have
7743 /// zero operands.
7744 void SDNode::DropOperands() {
7745   // Unlike the code in MorphNodeTo that does this, we don't need to
7746   // watch for dead nodes here.
7747   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7748     SDUse &Use = *I++;
7749     Use.set(SDValue());
7750   }
7751 }
7752 
7753 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7754                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7755   if (NewMemRefs.empty()) {
7756     N->clearMemRefs();
7757     return;
7758   }
7759 
7760   // Check if we can avoid allocating by storing a single reference directly.
7761   if (NewMemRefs.size() == 1) {
7762     N->MemRefs = NewMemRefs[0];
7763     N->NumMemRefs = 1;
7764     return;
7765   }
7766 
7767   MachineMemOperand **MemRefsBuffer =
7768       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7769   llvm::copy(NewMemRefs, MemRefsBuffer);
7770   N->MemRefs = MemRefsBuffer;
7771   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7772 }
7773 
7774 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7775 /// machine opcode.
7776 ///
7777 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7778                                    EVT VT) {
7779   SDVTList VTs = getVTList(VT);
7780   return SelectNodeTo(N, MachineOpc, VTs, None);
7781 }
7782 
7783 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7784                                    EVT VT, SDValue Op1) {
7785   SDVTList VTs = getVTList(VT);
7786   SDValue Ops[] = { Op1 };
7787   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7788 }
7789 
7790 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7791                                    EVT VT, SDValue Op1,
7792                                    SDValue Op2) {
7793   SDVTList VTs = getVTList(VT);
7794   SDValue Ops[] = { Op1, Op2 };
7795   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7796 }
7797 
7798 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7799                                    EVT VT, SDValue Op1,
7800                                    SDValue Op2, SDValue Op3) {
7801   SDVTList VTs = getVTList(VT);
7802   SDValue Ops[] = { Op1, Op2, Op3 };
7803   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7804 }
7805 
7806 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7807                                    EVT VT, ArrayRef<SDValue> Ops) {
7808   SDVTList VTs = getVTList(VT);
7809   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7810 }
7811 
7812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7813                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7814   SDVTList VTs = getVTList(VT1, VT2);
7815   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7816 }
7817 
7818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7819                                    EVT VT1, EVT VT2) {
7820   SDVTList VTs = getVTList(VT1, VT2);
7821   return SelectNodeTo(N, MachineOpc, VTs, None);
7822 }
7823 
7824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7825                                    EVT VT1, EVT VT2, EVT VT3,
7826                                    ArrayRef<SDValue> Ops) {
7827   SDVTList VTs = getVTList(VT1, VT2, VT3);
7828   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7829 }
7830 
7831 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7832                                    EVT VT1, EVT VT2,
7833                                    SDValue Op1, SDValue Op2) {
7834   SDVTList VTs = getVTList(VT1, VT2);
7835   SDValue Ops[] = { Op1, Op2 };
7836   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7837 }
7838 
7839 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7840                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7841   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7842   // Reset the NodeID to -1.
7843   New->setNodeId(-1);
7844   if (New != N) {
7845     ReplaceAllUsesWith(N, New);
7846     RemoveDeadNode(N);
7847   }
7848   return New;
7849 }
7850 
7851 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7852 /// the line number information on the merged node since it is not possible to
7853 /// preserve the information that operation is associated with multiple lines.
7854 /// This will make the debugger working better at -O0, were there is a higher
7855 /// probability having other instructions associated with that line.
7856 ///
7857 /// For IROrder, we keep the smaller of the two
7858 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7859   DebugLoc NLoc = N->getDebugLoc();
7860   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7861     N->setDebugLoc(DebugLoc());
7862   }
7863   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7864   N->setIROrder(Order);
7865   return N;
7866 }
7867 
7868 /// MorphNodeTo - This *mutates* the specified node to have the specified
7869 /// return type, opcode, and operands.
7870 ///
7871 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7872 /// node of the specified opcode and operands, it returns that node instead of
7873 /// the current one.  Note that the SDLoc need not be the same.
7874 ///
7875 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7876 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7877 /// node, and because it doesn't require CSE recalculation for any of
7878 /// the node's users.
7879 ///
7880 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7881 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7882 /// the legalizer which maintain worklists that would need to be updated when
7883 /// deleting things.
7884 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7885                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7886   // If an identical node already exists, use it.
7887   void *IP = nullptr;
7888   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7889     FoldingSetNodeID ID;
7890     AddNodeIDNode(ID, Opc, VTs, Ops);
7891     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7892       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7893   }
7894 
7895   if (!RemoveNodeFromCSEMaps(N))
7896     IP = nullptr;
7897 
7898   // Start the morphing.
7899   N->NodeType = Opc;
7900   N->ValueList = VTs.VTs;
7901   N->NumValues = VTs.NumVTs;
7902 
7903   // Clear the operands list, updating used nodes to remove this from their
7904   // use list.  Keep track of any operands that become dead as a result.
7905   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7906   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7907     SDUse &Use = *I++;
7908     SDNode *Used = Use.getNode();
7909     Use.set(SDValue());
7910     if (Used->use_empty())
7911       DeadNodeSet.insert(Used);
7912   }
7913 
7914   // For MachineNode, initialize the memory references information.
7915   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7916     MN->clearMemRefs();
7917 
7918   // Swap for an appropriately sized array from the recycler.
7919   removeOperands(N);
7920   createOperands(N, Ops);
7921 
7922   // Delete any nodes that are still dead after adding the uses for the
7923   // new operands.
7924   if (!DeadNodeSet.empty()) {
7925     SmallVector<SDNode *, 16> DeadNodes;
7926     for (SDNode *N : DeadNodeSet)
7927       if (N->use_empty())
7928         DeadNodes.push_back(N);
7929     RemoveDeadNodes(DeadNodes);
7930   }
7931 
7932   if (IP)
7933     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7934   return N;
7935 }
7936 
7937 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7938   unsigned OrigOpc = Node->getOpcode();
7939   unsigned NewOpc;
7940   switch (OrigOpc) {
7941   default:
7942     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7943 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7944   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7945 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7946   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7947 #include "llvm/IR/ConstrainedOps.def"
7948   }
7949 
7950   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7951 
7952   // We're taking this node out of the chain, so we need to re-link things.
7953   SDValue InputChain = Node->getOperand(0);
7954   SDValue OutputChain = SDValue(Node, 1);
7955   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7956 
7957   SmallVector<SDValue, 3> Ops;
7958   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7959     Ops.push_back(Node->getOperand(i));
7960 
7961   SDVTList VTs = getVTList(Node->getValueType(0));
7962   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7963 
7964   // MorphNodeTo can operate in two ways: if an existing node with the
7965   // specified operands exists, it can just return it.  Otherwise, it
7966   // updates the node in place to have the requested operands.
7967   if (Res == Node) {
7968     // If we updated the node in place, reset the node ID.  To the isel,
7969     // this should be just like a newly allocated machine node.
7970     Res->setNodeId(-1);
7971   } else {
7972     ReplaceAllUsesWith(Node, Res);
7973     RemoveDeadNode(Node);
7974   }
7975 
7976   return Res;
7977 }
7978 
7979 /// getMachineNode - These are used for target selectors to create a new node
7980 /// with specified return type(s), MachineInstr opcode, and operands.
7981 ///
7982 /// Note that getMachineNode returns the resultant node.  If there is already a
7983 /// node of the specified opcode and operands, it returns that node instead of
7984 /// the current one.
7985 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7986                                             EVT VT) {
7987   SDVTList VTs = getVTList(VT);
7988   return getMachineNode(Opcode, dl, VTs, None);
7989 }
7990 
7991 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7992                                             EVT VT, SDValue Op1) {
7993   SDVTList VTs = getVTList(VT);
7994   SDValue Ops[] = { Op1 };
7995   return getMachineNode(Opcode, dl, VTs, Ops);
7996 }
7997 
7998 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7999                                             EVT VT, SDValue Op1, SDValue Op2) {
8000   SDVTList VTs = getVTList(VT);
8001   SDValue Ops[] = { Op1, Op2 };
8002   return getMachineNode(Opcode, dl, VTs, Ops);
8003 }
8004 
8005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8006                                             EVT VT, SDValue Op1, SDValue Op2,
8007                                             SDValue Op3) {
8008   SDVTList VTs = getVTList(VT);
8009   SDValue Ops[] = { Op1, Op2, Op3 };
8010   return getMachineNode(Opcode, dl, VTs, Ops);
8011 }
8012 
8013 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8014                                             EVT VT, ArrayRef<SDValue> Ops) {
8015   SDVTList VTs = getVTList(VT);
8016   return getMachineNode(Opcode, dl, VTs, Ops);
8017 }
8018 
8019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8020                                             EVT VT1, EVT VT2, SDValue Op1,
8021                                             SDValue Op2) {
8022   SDVTList VTs = getVTList(VT1, VT2);
8023   SDValue Ops[] = { Op1, Op2 };
8024   return getMachineNode(Opcode, dl, VTs, Ops);
8025 }
8026 
8027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8028                                             EVT VT1, EVT VT2, SDValue Op1,
8029                                             SDValue Op2, SDValue Op3) {
8030   SDVTList VTs = getVTList(VT1, VT2);
8031   SDValue Ops[] = { Op1, Op2, Op3 };
8032   return getMachineNode(Opcode, dl, VTs, Ops);
8033 }
8034 
8035 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8036                                             EVT VT1, EVT VT2,
8037                                             ArrayRef<SDValue> Ops) {
8038   SDVTList VTs = getVTList(VT1, VT2);
8039   return getMachineNode(Opcode, dl, VTs, Ops);
8040 }
8041 
8042 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8043                                             EVT VT1, EVT VT2, EVT VT3,
8044                                             SDValue Op1, SDValue Op2) {
8045   SDVTList VTs = getVTList(VT1, VT2, VT3);
8046   SDValue Ops[] = { Op1, Op2 };
8047   return getMachineNode(Opcode, dl, VTs, Ops);
8048 }
8049 
8050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8051                                             EVT VT1, EVT VT2, EVT VT3,
8052                                             SDValue Op1, SDValue Op2,
8053                                             SDValue Op3) {
8054   SDVTList VTs = getVTList(VT1, VT2, VT3);
8055   SDValue Ops[] = { Op1, Op2, Op3 };
8056   return getMachineNode(Opcode, dl, VTs, Ops);
8057 }
8058 
8059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8060                                             EVT VT1, EVT VT2, EVT VT3,
8061                                             ArrayRef<SDValue> Ops) {
8062   SDVTList VTs = getVTList(VT1, VT2, VT3);
8063   return getMachineNode(Opcode, dl, VTs, Ops);
8064 }
8065 
8066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8067                                             ArrayRef<EVT> ResultTys,
8068                                             ArrayRef<SDValue> Ops) {
8069   SDVTList VTs = getVTList(ResultTys);
8070   return getMachineNode(Opcode, dl, VTs, Ops);
8071 }
8072 
8073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8074                                             SDVTList VTs,
8075                                             ArrayRef<SDValue> Ops) {
8076   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8077   MachineSDNode *N;
8078   void *IP = nullptr;
8079 
8080   if (DoCSE) {
8081     FoldingSetNodeID ID;
8082     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8083     IP = nullptr;
8084     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8085       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8086     }
8087   }
8088 
8089   // Allocate a new MachineSDNode.
8090   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8091   createOperands(N, Ops);
8092 
8093   if (DoCSE)
8094     CSEMap.InsertNode(N, IP);
8095 
8096   InsertNode(N);
8097   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8098   return N;
8099 }
8100 
8101 /// getTargetExtractSubreg - A convenience function for creating
8102 /// TargetOpcode::EXTRACT_SUBREG nodes.
8103 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8104                                              SDValue Operand) {
8105   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8106   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8107                                   VT, Operand, SRIdxVal);
8108   return SDValue(Subreg, 0);
8109 }
8110 
8111 /// getTargetInsertSubreg - A convenience function for creating
8112 /// TargetOpcode::INSERT_SUBREG nodes.
8113 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8114                                             SDValue Operand, SDValue Subreg) {
8115   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8116   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8117                                   VT, Operand, Subreg, SRIdxVal);
8118   return SDValue(Result, 0);
8119 }
8120 
8121 /// getNodeIfExists - Get the specified node if it's already available, or
8122 /// else return NULL.
8123 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8124                                       ArrayRef<SDValue> Ops,
8125                                       const SDNodeFlags Flags) {
8126   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8127     FoldingSetNodeID ID;
8128     AddNodeIDNode(ID, Opcode, VTList, Ops);
8129     void *IP = nullptr;
8130     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8131       E->intersectFlagsWith(Flags);
8132       return E;
8133     }
8134   }
8135   return nullptr;
8136 }
8137 
8138 /// getDbgValue - Creates a SDDbgValue node.
8139 ///
8140 /// SDNode
8141 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8142                                       SDNode *N, unsigned R, bool IsIndirect,
8143                                       const DebugLoc &DL, unsigned O) {
8144   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8145          "Expected inlined-at fields to agree");
8146   return new (DbgInfo->getAlloc())
8147       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8148 }
8149 
8150 /// Constant
8151 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8152                                               DIExpression *Expr,
8153                                               const Value *C,
8154                                               const DebugLoc &DL, unsigned O) {
8155   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8156          "Expected inlined-at fields to agree");
8157   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8158 }
8159 
8160 /// FrameIndex
8161 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8162                                                 DIExpression *Expr, unsigned FI,
8163                                                 bool IsIndirect,
8164                                                 const DebugLoc &DL,
8165                                                 unsigned O) {
8166   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8167          "Expected inlined-at fields to agree");
8168   return new (DbgInfo->getAlloc())
8169       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8170 }
8171 
8172 /// VReg
8173 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8174                                           DIExpression *Expr,
8175                                           unsigned VReg, bool IsIndirect,
8176                                           const DebugLoc &DL, unsigned O) {
8177   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8178          "Expected inlined-at fields to agree");
8179   return new (DbgInfo->getAlloc())
8180       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8181 }
8182 
8183 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8184                                      unsigned OffsetInBits, unsigned SizeInBits,
8185                                      bool InvalidateDbg) {
8186   SDNode *FromNode = From.getNode();
8187   SDNode *ToNode = To.getNode();
8188   assert(FromNode && ToNode && "Can't modify dbg values");
8189 
8190   // PR35338
8191   // TODO: assert(From != To && "Redundant dbg value transfer");
8192   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8193   if (From == To || FromNode == ToNode)
8194     return;
8195 
8196   if (!FromNode->getHasDebugValue())
8197     return;
8198 
8199   SmallVector<SDDbgValue *, 2> ClonedDVs;
8200   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8201     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8202       continue;
8203 
8204     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8205 
8206     // Just transfer the dbg value attached to From.
8207     if (Dbg->getResNo() != From.getResNo())
8208       continue;
8209 
8210     DIVariable *Var = Dbg->getVariable();
8211     auto *Expr = Dbg->getExpression();
8212     // If a fragment is requested, update the expression.
8213     if (SizeInBits) {
8214       // When splitting a larger (e.g., sign-extended) value whose
8215       // lower bits are described with an SDDbgValue, do not attempt
8216       // to transfer the SDDbgValue to the upper bits.
8217       if (auto FI = Expr->getFragmentInfo())
8218         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8219           continue;
8220       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8221                                                              SizeInBits);
8222       if (!Fragment)
8223         continue;
8224       Expr = *Fragment;
8225     }
8226     // Clone the SDDbgValue and move it to To.
8227     SDDbgValue *Clone = getDbgValue(
8228         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8229         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8230     ClonedDVs.push_back(Clone);
8231 
8232     if (InvalidateDbg) {
8233       // Invalidate value and indicate the SDDbgValue should not be emitted.
8234       Dbg->setIsInvalidated();
8235       Dbg->setIsEmitted();
8236     }
8237   }
8238 
8239   for (SDDbgValue *Dbg : ClonedDVs)
8240     AddDbgValue(Dbg, ToNode, false);
8241 }
8242 
8243 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8244   if (!N.getHasDebugValue())
8245     return;
8246 
8247   SmallVector<SDDbgValue *, 2> ClonedDVs;
8248   for (auto DV : GetDbgValues(&N)) {
8249     if (DV->isInvalidated())
8250       continue;
8251     switch (N.getOpcode()) {
8252     default:
8253       break;
8254     case ISD::ADD:
8255       SDValue N0 = N.getOperand(0);
8256       SDValue N1 = N.getOperand(1);
8257       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8258           isConstantIntBuildVectorOrConstantInt(N1)) {
8259         uint64_t Offset = N.getConstantOperandVal(1);
8260         // Rewrite an ADD constant node into a DIExpression. Since we are
8261         // performing arithmetic to compute the variable's *value* in the
8262         // DIExpression, we need to mark the expression with a
8263         // DW_OP_stack_value.
8264         auto *DIExpr = DV->getExpression();
8265         DIExpr =
8266             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8267         SDDbgValue *Clone =
8268             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8269                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8270         ClonedDVs.push_back(Clone);
8271         DV->setIsInvalidated();
8272         DV->setIsEmitted();
8273         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8274                    N0.getNode()->dumprFull(this);
8275                    dbgs() << " into " << *DIExpr << '\n');
8276       }
8277     }
8278   }
8279 
8280   for (SDDbgValue *Dbg : ClonedDVs)
8281     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8282 }
8283 
8284 /// Creates a SDDbgLabel node.
8285 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8286                                       const DebugLoc &DL, unsigned O) {
8287   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8288          "Expected inlined-at fields to agree");
8289   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8290 }
8291 
8292 namespace {
8293 
8294 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8295 /// pointed to by a use iterator is deleted, increment the use iterator
8296 /// so that it doesn't dangle.
8297 ///
8298 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8299   SDNode::use_iterator &UI;
8300   SDNode::use_iterator &UE;
8301 
8302   void NodeDeleted(SDNode *N, SDNode *E) override {
8303     // Increment the iterator as needed.
8304     while (UI != UE && N == *UI)
8305       ++UI;
8306   }
8307 
8308 public:
8309   RAUWUpdateListener(SelectionDAG &d,
8310                      SDNode::use_iterator &ui,
8311                      SDNode::use_iterator &ue)
8312     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8313 };
8314 
8315 } // end anonymous namespace
8316 
8317 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8318 /// This can cause recursive merging of nodes in the DAG.
8319 ///
8320 /// This version assumes From has a single result value.
8321 ///
8322 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8323   SDNode *From = FromN.getNode();
8324   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8325          "Cannot replace with this method!");
8326   assert(From != To.getNode() && "Cannot replace uses of with self");
8327 
8328   // Preserve Debug Values
8329   transferDbgValues(FromN, To);
8330 
8331   // Iterate over all the existing uses of From. New uses will be added
8332   // to the beginning of the use list, which we avoid visiting.
8333   // This specifically avoids visiting uses of From that arise while the
8334   // replacement is happening, because any such uses would be the result
8335   // of CSE: If an existing node looks like From after one of its operands
8336   // is replaced by To, we don't want to replace of all its users with To
8337   // too. See PR3018 for more info.
8338   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8339   RAUWUpdateListener Listener(*this, UI, UE);
8340   while (UI != UE) {
8341     SDNode *User = *UI;
8342 
8343     // This node is about to morph, remove its old self from the CSE maps.
8344     RemoveNodeFromCSEMaps(User);
8345 
8346     // A user can appear in a use list multiple times, and when this
8347     // happens the uses are usually next to each other in the list.
8348     // To help reduce the number of CSE recomputations, process all
8349     // the uses of this user that we can find this way.
8350     do {
8351       SDUse &Use = UI.getUse();
8352       ++UI;
8353       Use.set(To);
8354       if (To->isDivergent() != From->isDivergent())
8355         updateDivergence(User);
8356     } while (UI != UE && *UI == User);
8357     // Now that we have modified User, add it back to the CSE maps.  If it
8358     // already exists there, recursively merge the results together.
8359     AddModifiedNodeToCSEMaps(User);
8360   }
8361 
8362   // If we just RAUW'd the root, take note.
8363   if (FromN == getRoot())
8364     setRoot(To);
8365 }
8366 
8367 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8368 /// This can cause recursive merging of nodes in the DAG.
8369 ///
8370 /// This version assumes that for each value of From, there is a
8371 /// corresponding value in To in the same position with the same type.
8372 ///
8373 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8374 #ifndef NDEBUG
8375   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8376     assert((!From->hasAnyUseOfValue(i) ||
8377             From->getValueType(i) == To->getValueType(i)) &&
8378            "Cannot use this version of ReplaceAllUsesWith!");
8379 #endif
8380 
8381   // Handle the trivial case.
8382   if (From == To)
8383     return;
8384 
8385   // Preserve Debug Info. Only do this if there's a use.
8386   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8387     if (From->hasAnyUseOfValue(i)) {
8388       assert((i < To->getNumValues()) && "Invalid To location");
8389       transferDbgValues(SDValue(From, i), SDValue(To, i));
8390     }
8391 
8392   // Iterate over just the existing users of From. See the comments in
8393   // the ReplaceAllUsesWith above.
8394   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8395   RAUWUpdateListener Listener(*this, UI, UE);
8396   while (UI != UE) {
8397     SDNode *User = *UI;
8398 
8399     // This node is about to morph, remove its old self from the CSE maps.
8400     RemoveNodeFromCSEMaps(User);
8401 
8402     // A user can appear in a use list multiple times, and when this
8403     // happens the uses are usually next to each other in the list.
8404     // To help reduce the number of CSE recomputations, process all
8405     // the uses of this user that we can find this way.
8406     do {
8407       SDUse &Use = UI.getUse();
8408       ++UI;
8409       Use.setNode(To);
8410       if (To->isDivergent() != From->isDivergent())
8411         updateDivergence(User);
8412     } while (UI != UE && *UI == User);
8413 
8414     // Now that we have modified User, add it back to the CSE maps.  If it
8415     // already exists there, recursively merge the results together.
8416     AddModifiedNodeToCSEMaps(User);
8417   }
8418 
8419   // If we just RAUW'd the root, take note.
8420   if (From == getRoot().getNode())
8421     setRoot(SDValue(To, getRoot().getResNo()));
8422 }
8423 
8424 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8425 /// This can cause recursive merging of nodes in the DAG.
8426 ///
8427 /// This version can replace From with any result values.  To must match the
8428 /// number and types of values returned by From.
8429 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8430   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8431     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8432 
8433   // Preserve Debug Info.
8434   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8435     transferDbgValues(SDValue(From, i), To[i]);
8436 
8437   // Iterate over just the existing users of From. See the comments in
8438   // the ReplaceAllUsesWith above.
8439   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8440   RAUWUpdateListener Listener(*this, UI, UE);
8441   while (UI != UE) {
8442     SDNode *User = *UI;
8443 
8444     // This node is about to morph, remove its old self from the CSE maps.
8445     RemoveNodeFromCSEMaps(User);
8446 
8447     // A user can appear in a use list multiple times, and when this happens the
8448     // uses are usually next to each other in the list.  To help reduce the
8449     // number of CSE and divergence recomputations, process all the uses of this
8450     // user that we can find this way.
8451     bool To_IsDivergent = false;
8452     do {
8453       SDUse &Use = UI.getUse();
8454       const SDValue &ToOp = To[Use.getResNo()];
8455       ++UI;
8456       Use.set(ToOp);
8457       To_IsDivergent |= ToOp->isDivergent();
8458     } while (UI != UE && *UI == User);
8459 
8460     if (To_IsDivergent != From->isDivergent())
8461       updateDivergence(User);
8462 
8463     // Now that we have modified User, add it back to the CSE maps.  If it
8464     // already exists there, recursively merge the results together.
8465     AddModifiedNodeToCSEMaps(User);
8466   }
8467 
8468   // If we just RAUW'd the root, take note.
8469   if (From == getRoot().getNode())
8470     setRoot(SDValue(To[getRoot().getResNo()]));
8471 }
8472 
8473 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8474 /// uses of other values produced by From.getNode() alone.  The Deleted
8475 /// vector is handled the same way as for ReplaceAllUsesWith.
8476 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8477   // Handle the really simple, really trivial case efficiently.
8478   if (From == To) return;
8479 
8480   // Handle the simple, trivial, case efficiently.
8481   if (From.getNode()->getNumValues() == 1) {
8482     ReplaceAllUsesWith(From, To);
8483     return;
8484   }
8485 
8486   // Preserve Debug Info.
8487   transferDbgValues(From, To);
8488 
8489   // Iterate over just the existing users of From. See the comments in
8490   // the ReplaceAllUsesWith above.
8491   SDNode::use_iterator UI = From.getNode()->use_begin(),
8492                        UE = From.getNode()->use_end();
8493   RAUWUpdateListener Listener(*this, UI, UE);
8494   while (UI != UE) {
8495     SDNode *User = *UI;
8496     bool UserRemovedFromCSEMaps = false;
8497 
8498     // A user can appear in a use list multiple times, and when this
8499     // happens the uses are usually next to each other in the list.
8500     // To help reduce the number of CSE recomputations, process all
8501     // the uses of this user that we can find this way.
8502     do {
8503       SDUse &Use = UI.getUse();
8504 
8505       // Skip uses of different values from the same node.
8506       if (Use.getResNo() != From.getResNo()) {
8507         ++UI;
8508         continue;
8509       }
8510 
8511       // If this node hasn't been modified yet, it's still in the CSE maps,
8512       // so remove its old self from the CSE maps.
8513       if (!UserRemovedFromCSEMaps) {
8514         RemoveNodeFromCSEMaps(User);
8515         UserRemovedFromCSEMaps = true;
8516       }
8517 
8518       ++UI;
8519       Use.set(To);
8520       if (To->isDivergent() != From->isDivergent())
8521         updateDivergence(User);
8522     } while (UI != UE && *UI == User);
8523     // We are iterating over all uses of the From node, so if a use
8524     // doesn't use the specific value, no changes are made.
8525     if (!UserRemovedFromCSEMaps)
8526       continue;
8527 
8528     // Now that we have modified User, add it back to the CSE maps.  If it
8529     // already exists there, recursively merge the results together.
8530     AddModifiedNodeToCSEMaps(User);
8531   }
8532 
8533   // If we just RAUW'd the root, take note.
8534   if (From == getRoot())
8535     setRoot(To);
8536 }
8537 
8538 namespace {
8539 
8540   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8541   /// to record information about a use.
8542   struct UseMemo {
8543     SDNode *User;
8544     unsigned Index;
8545     SDUse *Use;
8546   };
8547 
8548   /// operator< - Sort Memos by User.
8549   bool operator<(const UseMemo &L, const UseMemo &R) {
8550     return (intptr_t)L.User < (intptr_t)R.User;
8551   }
8552 
8553 } // end anonymous namespace
8554 
8555 void SelectionDAG::updateDivergence(SDNode * N)
8556 {
8557   if (TLI->isSDNodeAlwaysUniform(N))
8558     return;
8559   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8560   for (auto &Op : N->ops()) {
8561     if (Op.Val.getValueType() != MVT::Other)
8562       IsDivergent |= Op.getNode()->isDivergent();
8563   }
8564   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8565     N->SDNodeBits.IsDivergent = IsDivergent;
8566     for (auto U : N->uses()) {
8567       updateDivergence(U);
8568     }
8569   }
8570 }
8571 
8572 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8573   DenseMap<SDNode *, unsigned> Degree;
8574   Order.reserve(AllNodes.size());
8575   for (auto &N : allnodes()) {
8576     unsigned NOps = N.getNumOperands();
8577     Degree[&N] = NOps;
8578     if (0 == NOps)
8579       Order.push_back(&N);
8580   }
8581   for (size_t I = 0; I != Order.size(); ++I) {
8582     SDNode *N = Order[I];
8583     for (auto U : N->uses()) {
8584       unsigned &UnsortedOps = Degree[U];
8585       if (0 == --UnsortedOps)
8586         Order.push_back(U);
8587     }
8588   }
8589 }
8590 
8591 #ifndef NDEBUG
8592 void SelectionDAG::VerifyDAGDiverence() {
8593   std::vector<SDNode *> TopoOrder;
8594   CreateTopologicalOrder(TopoOrder);
8595   const TargetLowering &TLI = getTargetLoweringInfo();
8596   DenseMap<const SDNode *, bool> DivergenceMap;
8597   for (auto &N : allnodes()) {
8598     DivergenceMap[&N] = false;
8599   }
8600   for (auto N : TopoOrder) {
8601     bool IsDivergent = DivergenceMap[N];
8602     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8603     for (auto &Op : N->ops()) {
8604       if (Op.Val.getValueType() != MVT::Other)
8605         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8606     }
8607     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8608       DivergenceMap[N] = true;
8609     }
8610   }
8611   for (auto &N : allnodes()) {
8612     (void)N;
8613     assert(DivergenceMap[&N] == N.isDivergent() &&
8614            "Divergence bit inconsistency detected\n");
8615   }
8616 }
8617 #endif
8618 
8619 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8620 /// uses of other values produced by From.getNode() alone.  The same value
8621 /// may appear in both the From and To list.  The Deleted vector is
8622 /// handled the same way as for ReplaceAllUsesWith.
8623 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8624                                               const SDValue *To,
8625                                               unsigned Num){
8626   // Handle the simple, trivial case efficiently.
8627   if (Num == 1)
8628     return ReplaceAllUsesOfValueWith(*From, *To);
8629 
8630   transferDbgValues(*From, *To);
8631 
8632   // Read up all the uses and make records of them. This helps
8633   // processing new uses that are introduced during the
8634   // replacement process.
8635   SmallVector<UseMemo, 4> Uses;
8636   for (unsigned i = 0; i != Num; ++i) {
8637     unsigned FromResNo = From[i].getResNo();
8638     SDNode *FromNode = From[i].getNode();
8639     for (SDNode::use_iterator UI = FromNode->use_begin(),
8640          E = FromNode->use_end(); UI != E; ++UI) {
8641       SDUse &Use = UI.getUse();
8642       if (Use.getResNo() == FromResNo) {
8643         UseMemo Memo = { *UI, i, &Use };
8644         Uses.push_back(Memo);
8645       }
8646     }
8647   }
8648 
8649   // Sort the uses, so that all the uses from a given User are together.
8650   llvm::sort(Uses);
8651 
8652   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8653        UseIndex != UseIndexEnd; ) {
8654     // We know that this user uses some value of From.  If it is the right
8655     // value, update it.
8656     SDNode *User = Uses[UseIndex].User;
8657 
8658     // This node is about to morph, remove its old self from the CSE maps.
8659     RemoveNodeFromCSEMaps(User);
8660 
8661     // The Uses array is sorted, so all the uses for a given User
8662     // are next to each other in the list.
8663     // To help reduce the number of CSE recomputations, process all
8664     // the uses of this user that we can find this way.
8665     do {
8666       unsigned i = Uses[UseIndex].Index;
8667       SDUse &Use = *Uses[UseIndex].Use;
8668       ++UseIndex;
8669 
8670       Use.set(To[i]);
8671     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8672 
8673     // Now that we have modified User, add it back to the CSE maps.  If it
8674     // already exists there, recursively merge the results together.
8675     AddModifiedNodeToCSEMaps(User);
8676   }
8677 }
8678 
8679 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8680 /// based on their topological order. It returns the maximum id and a vector
8681 /// of the SDNodes* in assigned order by reference.
8682 unsigned SelectionDAG::AssignTopologicalOrder() {
8683   unsigned DAGSize = 0;
8684 
8685   // SortedPos tracks the progress of the algorithm. Nodes before it are
8686   // sorted, nodes after it are unsorted. When the algorithm completes
8687   // it is at the end of the list.
8688   allnodes_iterator SortedPos = allnodes_begin();
8689 
8690   // Visit all the nodes. Move nodes with no operands to the front of
8691   // the list immediately. Annotate nodes that do have operands with their
8692   // operand count. Before we do this, the Node Id fields of the nodes
8693   // may contain arbitrary values. After, the Node Id fields for nodes
8694   // before SortedPos will contain the topological sort index, and the
8695   // Node Id fields for nodes At SortedPos and after will contain the
8696   // count of outstanding operands.
8697   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8698     SDNode *N = &*I++;
8699     checkForCycles(N, this);
8700     unsigned Degree = N->getNumOperands();
8701     if (Degree == 0) {
8702       // A node with no uses, add it to the result array immediately.
8703       N->setNodeId(DAGSize++);
8704       allnodes_iterator Q(N);
8705       if (Q != SortedPos)
8706         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8707       assert(SortedPos != AllNodes.end() && "Overran node list");
8708       ++SortedPos;
8709     } else {
8710       // Temporarily use the Node Id as scratch space for the degree count.
8711       N->setNodeId(Degree);
8712     }
8713   }
8714 
8715   // Visit all the nodes. As we iterate, move nodes into sorted order,
8716   // such that by the time the end is reached all nodes will be sorted.
8717   for (SDNode &Node : allnodes()) {
8718     SDNode *N = &Node;
8719     checkForCycles(N, this);
8720     // N is in sorted position, so all its uses have one less operand
8721     // that needs to be sorted.
8722     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8723          UI != UE; ++UI) {
8724       SDNode *P = *UI;
8725       unsigned Degree = P->getNodeId();
8726       assert(Degree != 0 && "Invalid node degree");
8727       --Degree;
8728       if (Degree == 0) {
8729         // All of P's operands are sorted, so P may sorted now.
8730         P->setNodeId(DAGSize++);
8731         if (P->getIterator() != SortedPos)
8732           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8733         assert(SortedPos != AllNodes.end() && "Overran node list");
8734         ++SortedPos;
8735       } else {
8736         // Update P's outstanding operand count.
8737         P->setNodeId(Degree);
8738       }
8739     }
8740     if (Node.getIterator() == SortedPos) {
8741 #ifndef NDEBUG
8742       allnodes_iterator I(N);
8743       SDNode *S = &*++I;
8744       dbgs() << "Overran sorted position:\n";
8745       S->dumprFull(this); dbgs() << "\n";
8746       dbgs() << "Checking if this is due to cycles\n";
8747       checkForCycles(this, true);
8748 #endif
8749       llvm_unreachable(nullptr);
8750     }
8751   }
8752 
8753   assert(SortedPos == AllNodes.end() &&
8754          "Topological sort incomplete!");
8755   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8756          "First node in topological sort is not the entry token!");
8757   assert(AllNodes.front().getNodeId() == 0 &&
8758          "First node in topological sort has non-zero id!");
8759   assert(AllNodes.front().getNumOperands() == 0 &&
8760          "First node in topological sort has operands!");
8761   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8762          "Last node in topologic sort has unexpected id!");
8763   assert(AllNodes.back().use_empty() &&
8764          "Last node in topologic sort has users!");
8765   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8766   return DAGSize;
8767 }
8768 
8769 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8770 /// value is produced by SD.
8771 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8772   if (SD) {
8773     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8774     SD->setHasDebugValue(true);
8775   }
8776   DbgInfo->add(DB, SD, isParameter);
8777 }
8778 
8779 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8780   DbgInfo->add(DB);
8781 }
8782 
8783 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8784                                                    SDValue NewMemOp) {
8785   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8786   // The new memory operation must have the same position as the old load in
8787   // terms of memory dependency. Create a TokenFactor for the old load and new
8788   // memory operation and update uses of the old load's output chain to use that
8789   // TokenFactor.
8790   SDValue OldChain = SDValue(OldLoad, 1);
8791   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8792   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8793     return NewChain;
8794 
8795   SDValue TokenFactor =
8796       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8797   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8798   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8799   return TokenFactor;
8800 }
8801 
8802 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8803                                                      Function **OutFunction) {
8804   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8805 
8806   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8807   auto *Module = MF->getFunction().getParent();
8808   auto *Function = Module->getFunction(Symbol);
8809 
8810   if (OutFunction != nullptr)
8811       *OutFunction = Function;
8812 
8813   if (Function != nullptr) {
8814     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8815     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8816   }
8817 
8818   std::string ErrorStr;
8819   raw_string_ostream ErrorFormatter(ErrorStr);
8820 
8821   ErrorFormatter << "Undefined external symbol ";
8822   ErrorFormatter << '"' << Symbol << '"';
8823   ErrorFormatter.flush();
8824 
8825   report_fatal_error(ErrorStr);
8826 }
8827 
8828 //===----------------------------------------------------------------------===//
8829 //                              SDNode Class
8830 //===----------------------------------------------------------------------===//
8831 
8832 bool llvm::isNullConstant(SDValue V) {
8833   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8834   return Const != nullptr && Const->isNullValue();
8835 }
8836 
8837 bool llvm::isNullFPConstant(SDValue V) {
8838   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8839   return Const != nullptr && Const->isZero() && !Const->isNegative();
8840 }
8841 
8842 bool llvm::isAllOnesConstant(SDValue V) {
8843   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8844   return Const != nullptr && Const->isAllOnesValue();
8845 }
8846 
8847 bool llvm::isOneConstant(SDValue V) {
8848   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8849   return Const != nullptr && Const->isOne();
8850 }
8851 
8852 SDValue llvm::peekThroughBitcasts(SDValue V) {
8853   while (V.getOpcode() == ISD::BITCAST)
8854     V = V.getOperand(0);
8855   return V;
8856 }
8857 
8858 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8859   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8860     V = V.getOperand(0);
8861   return V;
8862 }
8863 
8864 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8865   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8866     V = V.getOperand(0);
8867   return V;
8868 }
8869 
8870 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8871   if (V.getOpcode() != ISD::XOR)
8872     return false;
8873   V = peekThroughBitcasts(V.getOperand(1));
8874   unsigned NumBits = V.getScalarValueSizeInBits();
8875   ConstantSDNode *C =
8876       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8877   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8878 }
8879 
8880 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8881                                           bool AllowTruncation) {
8882   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8883     return CN;
8884 
8885   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8886     BitVector UndefElements;
8887     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8888 
8889     // BuildVectors can truncate their operands. Ignore that case here unless
8890     // AllowTruncation is set.
8891     if (CN && (UndefElements.none() || AllowUndefs)) {
8892       EVT CVT = CN->getValueType(0);
8893       EVT NSVT = N.getValueType().getScalarType();
8894       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8895       if (AllowTruncation || (CVT == NSVT))
8896         return CN;
8897     }
8898   }
8899 
8900   return nullptr;
8901 }
8902 
8903 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8904                                           bool AllowUndefs,
8905                                           bool AllowTruncation) {
8906   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8907     return CN;
8908 
8909   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8910     BitVector UndefElements;
8911     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8912 
8913     // BuildVectors can truncate their operands. Ignore that case here unless
8914     // AllowTruncation is set.
8915     if (CN && (UndefElements.none() || AllowUndefs)) {
8916       EVT CVT = CN->getValueType(0);
8917       EVT NSVT = N.getValueType().getScalarType();
8918       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8919       if (AllowTruncation || (CVT == NSVT))
8920         return CN;
8921     }
8922   }
8923 
8924   return nullptr;
8925 }
8926 
8927 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8928   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8929     return CN;
8930 
8931   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8932     BitVector UndefElements;
8933     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8934     if (CN && (UndefElements.none() || AllowUndefs))
8935       return CN;
8936   }
8937 
8938   return nullptr;
8939 }
8940 
8941 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8942                                               const APInt &DemandedElts,
8943                                               bool AllowUndefs) {
8944   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8945     return CN;
8946 
8947   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8948     BitVector UndefElements;
8949     ConstantFPSDNode *CN =
8950         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8951     if (CN && (UndefElements.none() || AllowUndefs))
8952       return CN;
8953   }
8954 
8955   return nullptr;
8956 }
8957 
8958 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8959   // TODO: may want to use peekThroughBitcast() here.
8960   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8961   return C && C->isNullValue();
8962 }
8963 
8964 bool llvm::isOneOrOneSplat(SDValue N) {
8965   // TODO: may want to use peekThroughBitcast() here.
8966   unsigned BitWidth = N.getScalarValueSizeInBits();
8967   ConstantSDNode *C = isConstOrConstSplat(N);
8968   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8969 }
8970 
8971 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8972   N = peekThroughBitcasts(N);
8973   unsigned BitWidth = N.getScalarValueSizeInBits();
8974   ConstantSDNode *C = isConstOrConstSplat(N);
8975   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8976 }
8977 
8978 HandleSDNode::~HandleSDNode() {
8979   DropOperands();
8980 }
8981 
8982 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8983                                          const DebugLoc &DL,
8984                                          const GlobalValue *GA, EVT VT,
8985                                          int64_t o, unsigned TF)
8986     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8987   TheGlobal = GA;
8988 }
8989 
8990 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8991                                          EVT VT, unsigned SrcAS,
8992                                          unsigned DestAS)
8993     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8994       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8995 
8996 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8997                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8998     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8999   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9000   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9001   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9002   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9003 
9004   // We check here that the size of the memory operand fits within the size of
9005   // the MMO. This is because the MMO might indicate only a possible address
9006   // range instead of specifying the affected memory addresses precisely.
9007   // TODO: Make MachineMemOperands aware of scalable vectors.
9008   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9009          "Size mismatch!");
9010 }
9011 
9012 /// Profile - Gather unique data for the node.
9013 ///
9014 void SDNode::Profile(FoldingSetNodeID &ID) const {
9015   AddNodeIDNode(ID, this);
9016 }
9017 
9018 namespace {
9019 
9020   struct EVTArray {
9021     std::vector<EVT> VTs;
9022 
9023     EVTArray() {
9024       VTs.reserve(MVT::LAST_VALUETYPE);
9025       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9026         VTs.push_back(MVT((MVT::SimpleValueType)i));
9027     }
9028   };
9029 
9030 } // end anonymous namespace
9031 
9032 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9033 static ManagedStatic<EVTArray> SimpleVTArray;
9034 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9035 
9036 /// getValueTypeList - Return a pointer to the specified value type.
9037 ///
9038 const EVT *SDNode::getValueTypeList(EVT VT) {
9039   if (VT.isExtended()) {
9040     sys::SmartScopedLock<true> Lock(*VTMutex);
9041     return &(*EVTs->insert(VT).first);
9042   } else {
9043     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9044            "Value type out of range!");
9045     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9046   }
9047 }
9048 
9049 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9050 /// indicated value.  This method ignores uses of other values defined by this
9051 /// operation.
9052 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9053   assert(Value < getNumValues() && "Bad value!");
9054 
9055   // TODO: Only iterate over uses of a given value of the node
9056   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9057     if (UI.getUse().getResNo() == Value) {
9058       if (NUses == 0)
9059         return false;
9060       --NUses;
9061     }
9062   }
9063 
9064   // Found exactly the right number of uses?
9065   return NUses == 0;
9066 }
9067 
9068 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9069 /// value. This method ignores uses of other values defined by this operation.
9070 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9071   assert(Value < getNumValues() && "Bad value!");
9072 
9073   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9074     if (UI.getUse().getResNo() == Value)
9075       return true;
9076 
9077   return false;
9078 }
9079 
9080 /// isOnlyUserOf - Return true if this node is the only use of N.
9081 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9082   bool Seen = false;
9083   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9084     SDNode *User = *I;
9085     if (User == this)
9086       Seen = true;
9087     else
9088       return false;
9089   }
9090 
9091   return Seen;
9092 }
9093 
9094 /// Return true if the only users of N are contained in Nodes.
9095 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9096   bool Seen = false;
9097   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9098     SDNode *User = *I;
9099     if (llvm::any_of(Nodes,
9100                      [&User](const SDNode *Node) { return User == Node; }))
9101       Seen = true;
9102     else
9103       return false;
9104   }
9105 
9106   return Seen;
9107 }
9108 
9109 /// isOperand - Return true if this node is an operand of N.
9110 bool SDValue::isOperandOf(const SDNode *N) const {
9111   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9112 }
9113 
9114 bool SDNode::isOperandOf(const SDNode *N) const {
9115   return any_of(N->op_values(),
9116                 [this](SDValue Op) { return this == Op.getNode(); });
9117 }
9118 
9119 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9120 /// be a chain) reaches the specified operand without crossing any
9121 /// side-effecting instructions on any chain path.  In practice, this looks
9122 /// through token factors and non-volatile loads.  In order to remain efficient,
9123 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9124 ///
9125 /// Note that we only need to examine chains when we're searching for
9126 /// side-effects; SelectionDAG requires that all side-effects are represented
9127 /// by chains, even if another operand would force a specific ordering. This
9128 /// constraint is necessary to allow transformations like splitting loads.
9129 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9130                                              unsigned Depth) const {
9131   if (*this == Dest) return true;
9132 
9133   // Don't search too deeply, we just want to be able to see through
9134   // TokenFactor's etc.
9135   if (Depth == 0) return false;
9136 
9137   // If this is a token factor, all inputs to the TF happen in parallel.
9138   if (getOpcode() == ISD::TokenFactor) {
9139     // First, try a shallow search.
9140     if (is_contained((*this)->ops(), Dest)) {
9141       // We found the chain we want as an operand of this TokenFactor.
9142       // Essentially, we reach the chain without side-effects if we could
9143       // serialize the TokenFactor into a simple chain of operations with
9144       // Dest as the last operation. This is automatically true if the
9145       // chain has one use: there are no other ordering constraints.
9146       // If the chain has more than one use, we give up: some other
9147       // use of Dest might force a side-effect between Dest and the current
9148       // node.
9149       if (Dest.hasOneUse())
9150         return true;
9151     }
9152     // Next, try a deep search: check whether every operand of the TokenFactor
9153     // reaches Dest.
9154     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9155       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9156     });
9157   }
9158 
9159   // Loads don't have side effects, look through them.
9160   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9161     if (Ld->isUnordered())
9162       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9163   }
9164   return false;
9165 }
9166 
9167 bool SDNode::hasPredecessor(const SDNode *N) const {
9168   SmallPtrSet<const SDNode *, 32> Visited;
9169   SmallVector<const SDNode *, 16> Worklist;
9170   Worklist.push_back(this);
9171   return hasPredecessorHelper(N, Visited, Worklist);
9172 }
9173 
9174 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9175   this->Flags.intersectWith(Flags);
9176 }
9177 
9178 SDValue
9179 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9180                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9181                                   bool AllowPartials) {
9182   // The pattern must end in an extract from index 0.
9183   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9184       !isNullConstant(Extract->getOperand(1)))
9185     return SDValue();
9186 
9187   // Match against one of the candidate binary ops.
9188   SDValue Op = Extract->getOperand(0);
9189   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9190         return Op.getOpcode() == unsigned(BinOp);
9191       }))
9192     return SDValue();
9193 
9194   // Floating-point reductions may require relaxed constraints on the final step
9195   // of the reduction because they may reorder intermediate operations.
9196   unsigned CandidateBinOp = Op.getOpcode();
9197   if (Op.getValueType().isFloatingPoint()) {
9198     SDNodeFlags Flags = Op->getFlags();
9199     switch (CandidateBinOp) {
9200     case ISD::FADD:
9201       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9202         return SDValue();
9203       break;
9204     default:
9205       llvm_unreachable("Unhandled FP opcode for binop reduction");
9206     }
9207   }
9208 
9209   // Matching failed - attempt to see if we did enough stages that a partial
9210   // reduction from a subvector is possible.
9211   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9212     if (!AllowPartials || !Op)
9213       return SDValue();
9214     EVT OpVT = Op.getValueType();
9215     EVT OpSVT = OpVT.getScalarType();
9216     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9217     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9218       return SDValue();
9219     BinOp = (ISD::NodeType)CandidateBinOp;
9220     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9221                    getVectorIdxConstant(0, SDLoc(Op)));
9222   };
9223 
9224   // At each stage, we're looking for something that looks like:
9225   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9226   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9227   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9228   // %a = binop <8 x i32> %op, %s
9229   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9230   // we expect something like:
9231   // <4,5,6,7,u,u,u,u>
9232   // <2,3,u,u,u,u,u,u>
9233   // <1,u,u,u,u,u,u,u>
9234   // While a partial reduction match would be:
9235   // <2,3,u,u,u,u,u,u>
9236   // <1,u,u,u,u,u,u,u>
9237   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9238   SDValue PrevOp;
9239   for (unsigned i = 0; i < Stages; ++i) {
9240     unsigned MaskEnd = (1 << i);
9241 
9242     if (Op.getOpcode() != CandidateBinOp)
9243       return PartialReduction(PrevOp, MaskEnd);
9244 
9245     SDValue Op0 = Op.getOperand(0);
9246     SDValue Op1 = Op.getOperand(1);
9247 
9248     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9249     if (Shuffle) {
9250       Op = Op1;
9251     } else {
9252       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9253       Op = Op0;
9254     }
9255 
9256     // The first operand of the shuffle should be the same as the other operand
9257     // of the binop.
9258     if (!Shuffle || Shuffle->getOperand(0) != Op)
9259       return PartialReduction(PrevOp, MaskEnd);
9260 
9261     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9262     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9263       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9264         return PartialReduction(PrevOp, MaskEnd);
9265 
9266     PrevOp = Op;
9267   }
9268 
9269   BinOp = (ISD::NodeType)CandidateBinOp;
9270   return Op;
9271 }
9272 
9273 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9274   assert(N->getNumValues() == 1 &&
9275          "Can't unroll a vector with multiple results!");
9276 
9277   EVT VT = N->getValueType(0);
9278   unsigned NE = VT.getVectorNumElements();
9279   EVT EltVT = VT.getVectorElementType();
9280   SDLoc dl(N);
9281 
9282   SmallVector<SDValue, 8> Scalars;
9283   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9284 
9285   // If ResNE is 0, fully unroll the vector op.
9286   if (ResNE == 0)
9287     ResNE = NE;
9288   else if (NE > ResNE)
9289     NE = ResNE;
9290 
9291   unsigned i;
9292   for (i= 0; i != NE; ++i) {
9293     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9294       SDValue Operand = N->getOperand(j);
9295       EVT OperandVT = Operand.getValueType();
9296       if (OperandVT.isVector()) {
9297         // A vector operand; extract a single element.
9298         EVT OperandEltVT = OperandVT.getVectorElementType();
9299         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9300                               Operand, getVectorIdxConstant(i, dl));
9301       } else {
9302         // A scalar operand; just use it as is.
9303         Operands[j] = Operand;
9304       }
9305     }
9306 
9307     switch (N->getOpcode()) {
9308     default: {
9309       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9310                                 N->getFlags()));
9311       break;
9312     }
9313     case ISD::VSELECT:
9314       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9315       break;
9316     case ISD::SHL:
9317     case ISD::SRA:
9318     case ISD::SRL:
9319     case ISD::ROTL:
9320     case ISD::ROTR:
9321       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9322                                getShiftAmountOperand(Operands[0].getValueType(),
9323                                                      Operands[1])));
9324       break;
9325     case ISD::SIGN_EXTEND_INREG: {
9326       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9327       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9328                                 Operands[0],
9329                                 getValueType(ExtVT)));
9330     }
9331     }
9332   }
9333 
9334   for (; i < ResNE; ++i)
9335     Scalars.push_back(getUNDEF(EltVT));
9336 
9337   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9338   return getBuildVector(VecVT, dl, Scalars);
9339 }
9340 
9341 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9342     SDNode *N, unsigned ResNE) {
9343   unsigned Opcode = N->getOpcode();
9344   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9345           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9346           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9347          "Expected an overflow opcode");
9348 
9349   EVT ResVT = N->getValueType(0);
9350   EVT OvVT = N->getValueType(1);
9351   EVT ResEltVT = ResVT.getVectorElementType();
9352   EVT OvEltVT = OvVT.getVectorElementType();
9353   SDLoc dl(N);
9354 
9355   // If ResNE is 0, fully unroll the vector op.
9356   unsigned NE = ResVT.getVectorNumElements();
9357   if (ResNE == 0)
9358     ResNE = NE;
9359   else if (NE > ResNE)
9360     NE = ResNE;
9361 
9362   SmallVector<SDValue, 8> LHSScalars;
9363   SmallVector<SDValue, 8> RHSScalars;
9364   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9365   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9366 
9367   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9368   SDVTList VTs = getVTList(ResEltVT, SVT);
9369   SmallVector<SDValue, 8> ResScalars;
9370   SmallVector<SDValue, 8> OvScalars;
9371   for (unsigned i = 0; i < NE; ++i) {
9372     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9373     SDValue Ov =
9374         getSelect(dl, OvEltVT, Res.getValue(1),
9375                   getBoolConstant(true, dl, OvEltVT, ResVT),
9376                   getConstant(0, dl, OvEltVT));
9377 
9378     ResScalars.push_back(Res);
9379     OvScalars.push_back(Ov);
9380   }
9381 
9382   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9383   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9384 
9385   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9386   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9387   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9388                         getBuildVector(NewOvVT, dl, OvScalars));
9389 }
9390 
9391 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9392                                                   LoadSDNode *Base,
9393                                                   unsigned Bytes,
9394                                                   int Dist) const {
9395   if (LD->isVolatile() || Base->isVolatile())
9396     return false;
9397   // TODO: probably too restrictive for atomics, revisit
9398   if (!LD->isSimple())
9399     return false;
9400   if (LD->isIndexed() || Base->isIndexed())
9401     return false;
9402   if (LD->getChain() != Base->getChain())
9403     return false;
9404   EVT VT = LD->getValueType(0);
9405   if (VT.getSizeInBits() / 8 != Bytes)
9406     return false;
9407 
9408   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9409   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9410 
9411   int64_t Offset = 0;
9412   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9413     return (Dist * Bytes == Offset);
9414   return false;
9415 }
9416 
9417 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9418 /// if it cannot be inferred.
9419 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9420   // If this is a GlobalAddress + cst, return the alignment.
9421   const GlobalValue *GV = nullptr;
9422   int64_t GVOffset = 0;
9423   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9424     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9425     KnownBits Known(PtrWidth);
9426     llvm::computeKnownBits(GV, Known, getDataLayout());
9427     unsigned AlignBits = Known.countMinTrailingZeros();
9428     if (AlignBits)
9429       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9430   }
9431 
9432   // If this is a direct reference to a stack slot, use information about the
9433   // stack slot's alignment.
9434   int FrameIdx = INT_MIN;
9435   int64_t FrameOffset = 0;
9436   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9437     FrameIdx = FI->getIndex();
9438   } else if (isBaseWithConstantOffset(Ptr) &&
9439              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9440     // Handle FI+Cst
9441     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9442     FrameOffset = Ptr.getConstantOperandVal(1);
9443   }
9444 
9445   if (FrameIdx != INT_MIN) {
9446     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9447     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9448   }
9449 
9450   return None;
9451 }
9452 
9453 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9454 /// which is split (or expanded) into two not necessarily identical pieces.
9455 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9456   // Currently all types are split in half.
9457   EVT LoVT, HiVT;
9458   if (!VT.isVector())
9459     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9460   else
9461     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9462 
9463   return std::make_pair(LoVT, HiVT);
9464 }
9465 
9466 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9467 /// type, dependent on an enveloping VT that has been split into two identical
9468 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9469 std::pair<EVT, EVT>
9470 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9471                                        bool *HiIsEmpty) const {
9472   EVT EltTp = VT.getVectorElementType();
9473   bool IsScalable = VT.isScalableVector();
9474   // Examples:
9475   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9476   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9477   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9478   //   etc.
9479   unsigned VTNumElts = VT.getVectorNumElements();
9480   unsigned EnvNumElts = EnvVT.getVectorNumElements();
9481   EVT LoVT, HiVT;
9482   if (VTNumElts > EnvNumElts) {
9483     LoVT = EnvVT;
9484     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts,
9485                             IsScalable);
9486     *HiIsEmpty = false;
9487   } else {
9488     // Flag that hi type has zero storage size, but return split envelop type
9489     // (this would be easier if vector types with zero elements were allowed).
9490     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable);
9491     HiVT = EnvVT;
9492     *HiIsEmpty = true;
9493   }
9494   return std::make_pair(LoVT, HiVT);
9495 }
9496 
9497 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9498 /// low/high part.
9499 std::pair<SDValue, SDValue>
9500 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9501                           const EVT &HiVT) {
9502   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9503          N.getValueType().getVectorNumElements() &&
9504          "More vector elements requested than available!");
9505   SDValue Lo, Hi;
9506   Lo =
9507       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9508   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9509                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9510   return std::make_pair(Lo, Hi);
9511 }
9512 
9513 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9514 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9515   EVT VT = N.getValueType();
9516   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9517                                 NextPowerOf2(VT.getVectorNumElements()));
9518   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9519                  getVectorIdxConstant(0, DL));
9520 }
9521 
9522 void SelectionDAG::ExtractVectorElements(SDValue Op,
9523                                          SmallVectorImpl<SDValue> &Args,
9524                                          unsigned Start, unsigned Count,
9525                                          EVT EltVT) {
9526   EVT VT = Op.getValueType();
9527   if (Count == 0)
9528     Count = VT.getVectorNumElements();
9529   if (EltVT == EVT())
9530     EltVT = VT.getVectorElementType();
9531   SDLoc SL(Op);
9532   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9533     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9534                            getVectorIdxConstant(i, SL)));
9535   }
9536 }
9537 
9538 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9539 unsigned GlobalAddressSDNode::getAddressSpace() const {
9540   return getGlobal()->getType()->getAddressSpace();
9541 }
9542 
9543 Type *ConstantPoolSDNode::getType() const {
9544   if (isMachineConstantPoolEntry())
9545     return Val.MachineCPVal->getType();
9546   return Val.ConstVal->getType();
9547 }
9548 
9549 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9550                                         unsigned &SplatBitSize,
9551                                         bool &HasAnyUndefs,
9552                                         unsigned MinSplatBits,
9553                                         bool IsBigEndian) const {
9554   EVT VT = getValueType(0);
9555   assert(VT.isVector() && "Expected a vector type");
9556   unsigned VecWidth = VT.getSizeInBits();
9557   if (MinSplatBits > VecWidth)
9558     return false;
9559 
9560   // FIXME: The widths are based on this node's type, but build vectors can
9561   // truncate their operands.
9562   SplatValue = APInt(VecWidth, 0);
9563   SplatUndef = APInt(VecWidth, 0);
9564 
9565   // Get the bits. Bits with undefined values (when the corresponding element
9566   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9567   // in SplatValue. If any of the values are not constant, give up and return
9568   // false.
9569   unsigned int NumOps = getNumOperands();
9570   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9571   unsigned EltWidth = VT.getScalarSizeInBits();
9572 
9573   for (unsigned j = 0; j < NumOps; ++j) {
9574     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9575     SDValue OpVal = getOperand(i);
9576     unsigned BitPos = j * EltWidth;
9577 
9578     if (OpVal.isUndef())
9579       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9580     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9581       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9582     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9583       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9584     else
9585       return false;
9586   }
9587 
9588   // The build_vector is all constants or undefs. Find the smallest element
9589   // size that splats the vector.
9590   HasAnyUndefs = (SplatUndef != 0);
9591 
9592   // FIXME: This does not work for vectors with elements less than 8 bits.
9593   while (VecWidth > 8) {
9594     unsigned HalfSize = VecWidth / 2;
9595     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9596     APInt LowValue = SplatValue.trunc(HalfSize);
9597     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9598     APInt LowUndef = SplatUndef.trunc(HalfSize);
9599 
9600     // If the two halves do not match (ignoring undef bits), stop here.
9601     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9602         MinSplatBits > HalfSize)
9603       break;
9604 
9605     SplatValue = HighValue | LowValue;
9606     SplatUndef = HighUndef & LowUndef;
9607 
9608     VecWidth = HalfSize;
9609   }
9610 
9611   SplatBitSize = VecWidth;
9612   return true;
9613 }
9614 
9615 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9616                                          BitVector *UndefElements) const {
9617   if (UndefElements) {
9618     UndefElements->clear();
9619     UndefElements->resize(getNumOperands());
9620   }
9621   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9622          "Unexpected vector size");
9623   if (!DemandedElts)
9624     return SDValue();
9625   SDValue Splatted;
9626   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9627     if (!DemandedElts[i])
9628       continue;
9629     SDValue Op = getOperand(i);
9630     if (Op.isUndef()) {
9631       if (UndefElements)
9632         (*UndefElements)[i] = true;
9633     } else if (!Splatted) {
9634       Splatted = Op;
9635     } else if (Splatted != Op) {
9636       return SDValue();
9637     }
9638   }
9639 
9640   if (!Splatted) {
9641     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9642     assert(getOperand(FirstDemandedIdx).isUndef() &&
9643            "Can only have a splat without a constant for all undefs.");
9644     return getOperand(FirstDemandedIdx);
9645   }
9646 
9647   return Splatted;
9648 }
9649 
9650 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9651   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9652   return getSplatValue(DemandedElts, UndefElements);
9653 }
9654 
9655 ConstantSDNode *
9656 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9657                                         BitVector *UndefElements) const {
9658   return dyn_cast_or_null<ConstantSDNode>(
9659       getSplatValue(DemandedElts, UndefElements));
9660 }
9661 
9662 ConstantSDNode *
9663 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9664   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9665 }
9666 
9667 ConstantFPSDNode *
9668 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9669                                           BitVector *UndefElements) const {
9670   return dyn_cast_or_null<ConstantFPSDNode>(
9671       getSplatValue(DemandedElts, UndefElements));
9672 }
9673 
9674 ConstantFPSDNode *
9675 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9676   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9677 }
9678 
9679 int32_t
9680 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9681                                                    uint32_t BitWidth) const {
9682   if (ConstantFPSDNode *CN =
9683           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9684     bool IsExact;
9685     APSInt IntVal(BitWidth);
9686     const APFloat &APF = CN->getValueAPF();
9687     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9688             APFloat::opOK ||
9689         !IsExact)
9690       return -1;
9691 
9692     return IntVal.exactLogBase2();
9693   }
9694   return -1;
9695 }
9696 
9697 bool BuildVectorSDNode::isConstant() const {
9698   for (const SDValue &Op : op_values()) {
9699     unsigned Opc = Op.getOpcode();
9700     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9701       return false;
9702   }
9703   return true;
9704 }
9705 
9706 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9707   // Find the first non-undef value in the shuffle mask.
9708   unsigned i, e;
9709   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9710     /* search */;
9711 
9712   // If all elements are undefined, this shuffle can be considered a splat
9713   // (although it should eventually get simplified away completely).
9714   if (i == e)
9715     return true;
9716 
9717   // Make sure all remaining elements are either undef or the same as the first
9718   // non-undef value.
9719   for (int Idx = Mask[i]; i != e; ++i)
9720     if (Mask[i] >= 0 && Mask[i] != Idx)
9721       return false;
9722   return true;
9723 }
9724 
9725 // Returns the SDNode if it is a constant integer BuildVector
9726 // or constant integer.
9727 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9728   if (isa<ConstantSDNode>(N))
9729     return N.getNode();
9730   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9731     return N.getNode();
9732   // Treat a GlobalAddress supporting constant offset folding as a
9733   // constant integer.
9734   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9735     if (GA->getOpcode() == ISD::GlobalAddress &&
9736         TLI->isOffsetFoldingLegal(GA))
9737       return GA;
9738   return nullptr;
9739 }
9740 
9741 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9742   if (isa<ConstantFPSDNode>(N))
9743     return N.getNode();
9744 
9745   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9746     return N.getNode();
9747 
9748   return nullptr;
9749 }
9750 
9751 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9752   assert(!Node->OperandList && "Node already has operands");
9753   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9754          "too many operands to fit into SDNode");
9755   SDUse *Ops = OperandRecycler.allocate(
9756       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9757 
9758   bool IsDivergent = false;
9759   for (unsigned I = 0; I != Vals.size(); ++I) {
9760     Ops[I].setUser(Node);
9761     Ops[I].setInitial(Vals[I]);
9762     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9763       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9764   }
9765   Node->NumOperands = Vals.size();
9766   Node->OperandList = Ops;
9767   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9768   if (!TLI->isSDNodeAlwaysUniform(Node))
9769     Node->SDNodeBits.IsDivergent = IsDivergent;
9770   checkForCycles(Node);
9771 }
9772 
9773 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9774                                      SmallVectorImpl<SDValue> &Vals) {
9775   size_t Limit = SDNode::getMaxNumOperands();
9776   while (Vals.size() > Limit) {
9777     unsigned SliceIdx = Vals.size() - Limit;
9778     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9779     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9780     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9781     Vals.emplace_back(NewTF);
9782   }
9783   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9784 }
9785 
9786 #ifndef NDEBUG
9787 static void checkForCyclesHelper(const SDNode *N,
9788                                  SmallPtrSetImpl<const SDNode*> &Visited,
9789                                  SmallPtrSetImpl<const SDNode*> &Checked,
9790                                  const llvm::SelectionDAG *DAG) {
9791   // If this node has already been checked, don't check it again.
9792   if (Checked.count(N))
9793     return;
9794 
9795   // If a node has already been visited on this depth-first walk, reject it as
9796   // a cycle.
9797   if (!Visited.insert(N).second) {
9798     errs() << "Detected cycle in SelectionDAG\n";
9799     dbgs() << "Offending node:\n";
9800     N->dumprFull(DAG); dbgs() << "\n";
9801     abort();
9802   }
9803 
9804   for (const SDValue &Op : N->op_values())
9805     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9806 
9807   Checked.insert(N);
9808   Visited.erase(N);
9809 }
9810 #endif
9811 
9812 void llvm::checkForCycles(const llvm::SDNode *N,
9813                           const llvm::SelectionDAG *DAG,
9814                           bool force) {
9815 #ifndef NDEBUG
9816   bool check = force;
9817 #ifdef EXPENSIVE_CHECKS
9818   check = true;
9819 #endif  // EXPENSIVE_CHECKS
9820   if (check) {
9821     assert(N && "Checking nonexistent SDNode");
9822     SmallPtrSet<const SDNode*, 32> visited;
9823     SmallPtrSet<const SDNode*, 32> checked;
9824     checkForCyclesHelper(N, visited, checked, DAG);
9825   }
9826 #endif  // !NDEBUG
9827 }
9828 
9829 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9830   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9831 }
9832