1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.trunc(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts); 2722 } 2723 return true; 2724 } 2725 break; 2726 } 2727 } 2728 2729 return false; 2730 } 2731 2732 /// Helper wrapper to main isSplatValue function. 2733 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2734 EVT VT = V.getValueType(); 2735 assert(VT.isVector() && "Vector type expected"); 2736 2737 APInt UndefElts; 2738 APInt DemandedElts; 2739 2740 // For now we don't support this with scalable vectors. 2741 if (!VT.isScalableVector()) 2742 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2743 return isSplatValue(V, DemandedElts, UndefElts) && 2744 (AllowUndefs || !UndefElts); 2745 } 2746 2747 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2748 V = peekThroughExtractSubvectors(V); 2749 2750 EVT VT = V.getValueType(); 2751 unsigned Opcode = V.getOpcode(); 2752 switch (Opcode) { 2753 default: { 2754 APInt UndefElts; 2755 APInt DemandedElts; 2756 2757 if (!VT.isScalableVector()) 2758 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2759 2760 if (isSplatValue(V, DemandedElts, UndefElts)) { 2761 if (VT.isScalableVector()) { 2762 // DemandedElts and UndefElts are ignored for scalable vectors, since 2763 // the only supported cases are SPLAT_VECTOR nodes. 2764 SplatIdx = 0; 2765 } else { 2766 // Handle case where all demanded elements are UNDEF. 2767 if (DemandedElts.isSubsetOf(UndefElts)) { 2768 SplatIdx = 0; 2769 return getUNDEF(VT); 2770 } 2771 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2772 } 2773 return V; 2774 } 2775 break; 2776 } 2777 case ISD::SPLAT_VECTOR: 2778 SplatIdx = 0; 2779 return V; 2780 case ISD::VECTOR_SHUFFLE: { 2781 if (VT.isScalableVector()) 2782 return SDValue(); 2783 2784 // Check if this is a shuffle node doing a splat. 2785 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2786 // getTargetVShiftNode currently struggles without the splat source. 2787 auto *SVN = cast<ShuffleVectorSDNode>(V); 2788 if (!SVN->isSplat()) 2789 break; 2790 int Idx = SVN->getSplatIndex(); 2791 int NumElts = V.getValueType().getVectorNumElements(); 2792 SplatIdx = Idx % NumElts; 2793 return V.getOperand(Idx / NumElts); 2794 } 2795 } 2796 2797 return SDValue(); 2798 } 2799 2800 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2801 int SplatIdx; 2802 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2803 EVT SVT = SrcVector.getValueType().getScalarType(); 2804 EVT LegalSVT = SVT; 2805 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2806 if (!SVT.isInteger()) 2807 return SDValue(); 2808 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2809 if (LegalSVT.bitsLT(SVT)) 2810 return SDValue(); 2811 } 2812 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2813 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2814 } 2815 return SDValue(); 2816 } 2817 2818 const APInt * 2819 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2820 const APInt &DemandedElts) const { 2821 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2822 V.getOpcode() == ISD::SRA) && 2823 "Unknown shift node"); 2824 unsigned BitWidth = V.getScalarValueSizeInBits(); 2825 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2826 // Shifting more than the bitwidth is not valid. 2827 const APInt &ShAmt = SA->getAPIntValue(); 2828 if (ShAmt.ult(BitWidth)) 2829 return &ShAmt; 2830 } 2831 return nullptr; 2832 } 2833 2834 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2835 SDValue V, const APInt &DemandedElts) const { 2836 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2837 V.getOpcode() == ISD::SRA) && 2838 "Unknown shift node"); 2839 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2840 return ValidAmt; 2841 unsigned BitWidth = V.getScalarValueSizeInBits(); 2842 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2843 if (!BV) 2844 return nullptr; 2845 const APInt *MinShAmt = nullptr; 2846 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2847 if (!DemandedElts[i]) 2848 continue; 2849 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2850 if (!SA) 2851 return nullptr; 2852 // Shifting more than the bitwidth is not valid. 2853 const APInt &ShAmt = SA->getAPIntValue(); 2854 if (ShAmt.uge(BitWidth)) 2855 return nullptr; 2856 if (MinShAmt && MinShAmt->ule(ShAmt)) 2857 continue; 2858 MinShAmt = &ShAmt; 2859 } 2860 return MinShAmt; 2861 } 2862 2863 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2864 SDValue V, const APInt &DemandedElts) const { 2865 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2866 V.getOpcode() == ISD::SRA) && 2867 "Unknown shift node"); 2868 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2869 return ValidAmt; 2870 unsigned BitWidth = V.getScalarValueSizeInBits(); 2871 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2872 if (!BV) 2873 return nullptr; 2874 const APInt *MaxShAmt = nullptr; 2875 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2876 if (!DemandedElts[i]) 2877 continue; 2878 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2879 if (!SA) 2880 return nullptr; 2881 // Shifting more than the bitwidth is not valid. 2882 const APInt &ShAmt = SA->getAPIntValue(); 2883 if (ShAmt.uge(BitWidth)) 2884 return nullptr; 2885 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2886 continue; 2887 MaxShAmt = &ShAmt; 2888 } 2889 return MaxShAmt; 2890 } 2891 2892 /// Determine which bits of Op are known to be either zero or one and return 2893 /// them in Known. For vectors, the known bits are those that are shared by 2894 /// every vector element. 2895 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2896 EVT VT = Op.getValueType(); 2897 2898 // TOOD: Until we have a plan for how to represent demanded elements for 2899 // scalable vectors, we can just bail out for now. 2900 if (Op.getValueType().isScalableVector()) { 2901 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2902 return KnownBits(BitWidth); 2903 } 2904 2905 APInt DemandedElts = VT.isVector() 2906 ? APInt::getAllOnes(VT.getVectorNumElements()) 2907 : APInt(1, 1); 2908 return computeKnownBits(Op, DemandedElts, Depth); 2909 } 2910 2911 /// Determine which bits of Op are known to be either zero or one and return 2912 /// them in Known. The DemandedElts argument allows us to only collect the known 2913 /// bits that are shared by the requested vector elements. 2914 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2915 unsigned Depth) const { 2916 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2917 2918 KnownBits Known(BitWidth); // Don't know anything. 2919 2920 // TOOD: Until we have a plan for how to represent demanded elements for 2921 // scalable vectors, we can just bail out for now. 2922 if (Op.getValueType().isScalableVector()) 2923 return Known; 2924 2925 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2926 // We know all of the bits for a constant! 2927 return KnownBits::makeConstant(C->getAPIntValue()); 2928 } 2929 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2930 // We know all of the bits for a constant fp! 2931 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2932 } 2933 2934 if (Depth >= MaxRecursionDepth) 2935 return Known; // Limit search depth. 2936 2937 KnownBits Known2; 2938 unsigned NumElts = DemandedElts.getBitWidth(); 2939 assert((!Op.getValueType().isVector() || 2940 NumElts == Op.getValueType().getVectorNumElements()) && 2941 "Unexpected vector size"); 2942 2943 if (!DemandedElts) 2944 return Known; // No demanded elts, better to assume we don't know anything. 2945 2946 unsigned Opcode = Op.getOpcode(); 2947 switch (Opcode) { 2948 case ISD::BUILD_VECTOR: 2949 // Collect the known bits that are shared by every demanded vector element. 2950 Known.Zero.setAllBits(); Known.One.setAllBits(); 2951 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2952 if (!DemandedElts[i]) 2953 continue; 2954 2955 SDValue SrcOp = Op.getOperand(i); 2956 Known2 = computeKnownBits(SrcOp, Depth + 1); 2957 2958 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2959 if (SrcOp.getValueSizeInBits() != BitWidth) { 2960 assert(SrcOp.getValueSizeInBits() > BitWidth && 2961 "Expected BUILD_VECTOR implicit truncation"); 2962 Known2 = Known2.trunc(BitWidth); 2963 } 2964 2965 // Known bits are the values that are shared by every demanded element. 2966 Known = KnownBits::commonBits(Known, Known2); 2967 2968 // If we don't know any bits, early out. 2969 if (Known.isUnknown()) 2970 break; 2971 } 2972 break; 2973 case ISD::VECTOR_SHUFFLE: { 2974 // Collect the known bits that are shared by every vector element referenced 2975 // by the shuffle. 2976 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2977 Known.Zero.setAllBits(); Known.One.setAllBits(); 2978 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2979 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2980 for (unsigned i = 0; i != NumElts; ++i) { 2981 if (!DemandedElts[i]) 2982 continue; 2983 2984 int M = SVN->getMaskElt(i); 2985 if (M < 0) { 2986 // For UNDEF elements, we don't know anything about the common state of 2987 // the shuffle result. 2988 Known.resetAll(); 2989 DemandedLHS.clearAllBits(); 2990 DemandedRHS.clearAllBits(); 2991 break; 2992 } 2993 2994 if ((unsigned)M < NumElts) 2995 DemandedLHS.setBit((unsigned)M % NumElts); 2996 else 2997 DemandedRHS.setBit((unsigned)M % NumElts); 2998 } 2999 // Known bits are the values that are shared by every demanded element. 3000 if (!!DemandedLHS) { 3001 SDValue LHS = Op.getOperand(0); 3002 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3003 Known = KnownBits::commonBits(Known, Known2); 3004 } 3005 // If we don't know any bits, early out. 3006 if (Known.isUnknown()) 3007 break; 3008 if (!!DemandedRHS) { 3009 SDValue RHS = Op.getOperand(1); 3010 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3011 Known = KnownBits::commonBits(Known, Known2); 3012 } 3013 break; 3014 } 3015 case ISD::CONCAT_VECTORS: { 3016 // Split DemandedElts and test each of the demanded subvectors. 3017 Known.Zero.setAllBits(); Known.One.setAllBits(); 3018 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3019 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3020 unsigned NumSubVectors = Op.getNumOperands(); 3021 for (unsigned i = 0; i != NumSubVectors; ++i) { 3022 APInt DemandedSub = 3023 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3024 if (!!DemandedSub) { 3025 SDValue Sub = Op.getOperand(i); 3026 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3027 Known = KnownBits::commonBits(Known, Known2); 3028 } 3029 // If we don't know any bits, early out. 3030 if (Known.isUnknown()) 3031 break; 3032 } 3033 break; 3034 } 3035 case ISD::INSERT_SUBVECTOR: { 3036 // Demand any elements from the subvector and the remainder from the src its 3037 // inserted into. 3038 SDValue Src = Op.getOperand(0); 3039 SDValue Sub = Op.getOperand(1); 3040 uint64_t Idx = Op.getConstantOperandVal(2); 3041 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3042 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3043 APInt DemandedSrcElts = DemandedElts; 3044 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3045 3046 Known.One.setAllBits(); 3047 Known.Zero.setAllBits(); 3048 if (!!DemandedSubElts) { 3049 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3050 if (Known.isUnknown()) 3051 break; // early-out. 3052 } 3053 if (!!DemandedSrcElts) { 3054 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3055 Known = KnownBits::commonBits(Known, Known2); 3056 } 3057 break; 3058 } 3059 case ISD::EXTRACT_SUBVECTOR: { 3060 // Offset the demanded elts by the subvector index. 3061 SDValue Src = Op.getOperand(0); 3062 // Bail until we can represent demanded elements for scalable vectors. 3063 if (Src.getValueType().isScalableVector()) 3064 break; 3065 uint64_t Idx = Op.getConstantOperandVal(1); 3066 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3067 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3068 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3069 break; 3070 } 3071 case ISD::SCALAR_TO_VECTOR: { 3072 // We know about scalar_to_vector as much as we know about it source, 3073 // which becomes the first element of otherwise unknown vector. 3074 if (DemandedElts != 1) 3075 break; 3076 3077 SDValue N0 = Op.getOperand(0); 3078 Known = computeKnownBits(N0, Depth + 1); 3079 if (N0.getValueSizeInBits() != BitWidth) 3080 Known = Known.trunc(BitWidth); 3081 3082 break; 3083 } 3084 case ISD::BITCAST: { 3085 SDValue N0 = Op.getOperand(0); 3086 EVT SubVT = N0.getValueType(); 3087 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3088 3089 // Ignore bitcasts from unsupported types. 3090 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3091 break; 3092 3093 // Fast handling of 'identity' bitcasts. 3094 if (BitWidth == SubBitWidth) { 3095 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3096 break; 3097 } 3098 3099 bool IsLE = getDataLayout().isLittleEndian(); 3100 3101 // Bitcast 'small element' vector to 'large element' scalar/vector. 3102 if ((BitWidth % SubBitWidth) == 0) { 3103 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3104 3105 // Collect known bits for the (larger) output by collecting the known 3106 // bits from each set of sub elements and shift these into place. 3107 // We need to separately call computeKnownBits for each set of 3108 // sub elements as the knownbits for each is likely to be different. 3109 unsigned SubScale = BitWidth / SubBitWidth; 3110 APInt SubDemandedElts(NumElts * SubScale, 0); 3111 for (unsigned i = 0; i != NumElts; ++i) 3112 if (DemandedElts[i]) 3113 SubDemandedElts.setBit(i * SubScale); 3114 3115 for (unsigned i = 0; i != SubScale; ++i) { 3116 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3117 Depth + 1); 3118 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3119 Known.insertBits(Known2, SubBitWidth * Shifts); 3120 } 3121 } 3122 3123 // Bitcast 'large element' scalar/vector to 'small element' vector. 3124 if ((SubBitWidth % BitWidth) == 0) { 3125 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3126 3127 // Collect known bits for the (smaller) output by collecting the known 3128 // bits from the overlapping larger input elements and extracting the 3129 // sub sections we actually care about. 3130 unsigned SubScale = SubBitWidth / BitWidth; 3131 APInt SubDemandedElts = 3132 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3133 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3134 3135 Known.Zero.setAllBits(); Known.One.setAllBits(); 3136 for (unsigned i = 0; i != NumElts; ++i) 3137 if (DemandedElts[i]) { 3138 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3139 unsigned Offset = (Shifts % SubScale) * BitWidth; 3140 Known = KnownBits::commonBits(Known, 3141 Known2.extractBits(BitWidth, Offset)); 3142 // If we don't know any bits, early out. 3143 if (Known.isUnknown()) 3144 break; 3145 } 3146 } 3147 break; 3148 } 3149 case ISD::AND: 3150 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3151 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 3153 Known &= Known2; 3154 break; 3155 case ISD::OR: 3156 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 3159 Known |= Known2; 3160 break; 3161 case ISD::XOR: 3162 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 3165 Known ^= Known2; 3166 break; 3167 case ISD::MUL: { 3168 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3169 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3170 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3171 // TODO: SelfMultiply can be poison, but not undef. 3172 if (SelfMultiply) 3173 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3174 Op.getOperand(0), DemandedElts, false, Depth + 1); 3175 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3176 3177 // If the multiplication is known not to overflow, the product of a number 3178 // with itself is non-negative. Only do this if we didn't already computed 3179 // the opposite value for the sign bit. 3180 if (Op->getFlags().hasNoSignedWrap() && 3181 Op.getOperand(0) == Op.getOperand(1) && 3182 !Known.isNegative()) 3183 Known.makeNonNegative(); 3184 break; 3185 } 3186 case ISD::MULHU: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhu(Known, Known2); 3190 break; 3191 } 3192 case ISD::MULHS: { 3193 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3194 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known = KnownBits::mulhs(Known, Known2); 3196 break; 3197 } 3198 case ISD::UMUL_LOHI: { 3199 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3200 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3201 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3202 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3203 if (Op.getResNo() == 0) 3204 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3205 else 3206 Known = KnownBits::mulhu(Known, Known2); 3207 break; 3208 } 3209 case ISD::SMUL_LOHI: { 3210 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3211 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3212 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3213 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3214 if (Op.getResNo() == 0) 3215 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3216 else 3217 Known = KnownBits::mulhs(Known, Known2); 3218 break; 3219 } 3220 case ISD::UDIV: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = KnownBits::udiv(Known, Known2); 3224 break; 3225 } 3226 case ISD::AVGCEILU: { 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = Known.zext(BitWidth + 1); 3230 Known2 = Known2.zext(BitWidth + 1); 3231 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3232 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3233 Known = Known.extractBits(BitWidth, 1); 3234 break; 3235 } 3236 case ISD::SELECT: 3237 case ISD::VSELECT: 3238 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3239 // If we don't know any bits, early out. 3240 if (Known.isUnknown()) 3241 break; 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3243 3244 // Only known if known in both the LHS and RHS. 3245 Known = KnownBits::commonBits(Known, Known2); 3246 break; 3247 case ISD::SELECT_CC: 3248 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3249 // If we don't know any bits, early out. 3250 if (Known.isUnknown()) 3251 break; 3252 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3253 3254 // Only known if known in both the LHS and RHS. 3255 Known = KnownBits::commonBits(Known, Known2); 3256 break; 3257 case ISD::SMULO: 3258 case ISD::UMULO: 3259 if (Op.getResNo() != 1) 3260 break; 3261 // The boolean result conforms to getBooleanContents. 3262 // If we know the result of a setcc has the top bits zero, use this info. 3263 // We know that we have an integer-based boolean since these operations 3264 // are only available for integer. 3265 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3266 TargetLowering::ZeroOrOneBooleanContent && 3267 BitWidth > 1) 3268 Known.Zero.setBitsFrom(1); 3269 break; 3270 case ISD::SETCC: 3271 case ISD::STRICT_FSETCC: 3272 case ISD::STRICT_FSETCCS: { 3273 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3274 // If we know the result of a setcc has the top bits zero, use this info. 3275 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3276 TargetLowering::ZeroOrOneBooleanContent && 3277 BitWidth > 1) 3278 Known.Zero.setBitsFrom(1); 3279 break; 3280 } 3281 case ISD::SHL: 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 Known = KnownBits::shl(Known, Known2); 3285 3286 // Minimum shift low bits are known zero. 3287 if (const APInt *ShMinAmt = 3288 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3289 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3290 break; 3291 case ISD::SRL: 3292 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3293 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3294 Known = KnownBits::lshr(Known, Known2); 3295 3296 // Minimum shift high bits are known zero. 3297 if (const APInt *ShMinAmt = 3298 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3299 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3300 break; 3301 case ISD::SRA: 3302 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3303 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3304 Known = KnownBits::ashr(Known, Known2); 3305 // TODO: Add minimum shift high known sign bits. 3306 break; 3307 case ISD::FSHL: 3308 case ISD::FSHR: 3309 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3310 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3311 3312 // For fshl, 0-shift returns the 1st arg. 3313 // For fshr, 0-shift returns the 2nd arg. 3314 if (Amt == 0) { 3315 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3316 DemandedElts, Depth + 1); 3317 break; 3318 } 3319 3320 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3321 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3324 if (Opcode == ISD::FSHL) { 3325 Known.One <<= Amt; 3326 Known.Zero <<= Amt; 3327 Known2.One.lshrInPlace(BitWidth - Amt); 3328 Known2.Zero.lshrInPlace(BitWidth - Amt); 3329 } else { 3330 Known.One <<= BitWidth - Amt; 3331 Known.Zero <<= BitWidth - Amt; 3332 Known2.One.lshrInPlace(Amt); 3333 Known2.Zero.lshrInPlace(Amt); 3334 } 3335 Known.One |= Known2.One; 3336 Known.Zero |= Known2.Zero; 3337 } 3338 break; 3339 case ISD::SIGN_EXTEND_INREG: { 3340 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3341 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3342 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3343 break; 3344 } 3345 case ISD::CTTZ: 3346 case ISD::CTTZ_ZERO_UNDEF: { 3347 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3348 // If we have a known 1, its position is our upper bound. 3349 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3350 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3351 Known.Zero.setBitsFrom(LowBits); 3352 break; 3353 } 3354 case ISD::CTLZ: 3355 case ISD::CTLZ_ZERO_UNDEF: { 3356 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 // If we have a known 1, its position is our upper bound. 3358 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3359 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3360 Known.Zero.setBitsFrom(LowBits); 3361 break; 3362 } 3363 case ISD::CTPOP: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 // If we know some of the bits are zero, they can't be one. 3366 unsigned PossibleOnes = Known2.countMaxPopulation(); 3367 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3368 break; 3369 } 3370 case ISD::PARITY: { 3371 // Parity returns 0 everywhere but the LSB. 3372 Known.Zero.setBitsFrom(1); 3373 break; 3374 } 3375 case ISD::LOAD: { 3376 LoadSDNode *LD = cast<LoadSDNode>(Op); 3377 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3378 if (ISD::isNON_EXTLoad(LD) && Cst) { 3379 // Determine any common known bits from the loaded constant pool value. 3380 Type *CstTy = Cst->getType(); 3381 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3382 // If its a vector splat, then we can (quickly) reuse the scalar path. 3383 // NOTE: We assume all elements match and none are UNDEF. 3384 if (CstTy->isVectorTy()) { 3385 if (const Constant *Splat = Cst->getSplatValue()) { 3386 Cst = Splat; 3387 CstTy = Cst->getType(); 3388 } 3389 } 3390 // TODO - do we need to handle different bitwidths? 3391 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3392 // Iterate across all vector elements finding common known bits. 3393 Known.One.setAllBits(); 3394 Known.Zero.setAllBits(); 3395 for (unsigned i = 0; i != NumElts; ++i) { 3396 if (!DemandedElts[i]) 3397 continue; 3398 if (Constant *Elt = Cst->getAggregateElement(i)) { 3399 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3400 const APInt &Value = CInt->getValue(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3406 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3407 Known.One &= Value; 3408 Known.Zero &= ~Value; 3409 continue; 3410 } 3411 } 3412 Known.One.clearAllBits(); 3413 Known.Zero.clearAllBits(); 3414 break; 3415 } 3416 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3417 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3418 Known = KnownBits::makeConstant(CInt->getValue()); 3419 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3420 Known = 3421 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3422 } 3423 } 3424 } 3425 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3426 // If this is a ZEXTLoad and we are looking at the loaded value. 3427 EVT VT = LD->getMemoryVT(); 3428 unsigned MemBits = VT.getScalarSizeInBits(); 3429 Known.Zero.setBitsFrom(MemBits); 3430 } else if (const MDNode *Ranges = LD->getRanges()) { 3431 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3432 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3433 } 3434 break; 3435 } 3436 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3437 EVT InVT = Op.getOperand(0).getValueType(); 3438 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3439 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3440 Known = Known.zext(BitWidth); 3441 break; 3442 } 3443 case ISD::ZERO_EXTEND: { 3444 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3445 Known = Known.zext(BitWidth); 3446 break; 3447 } 3448 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3449 EVT InVT = Op.getOperand(0).getValueType(); 3450 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3451 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3452 // If the sign bit is known to be zero or one, then sext will extend 3453 // it to the top bits, else it will just zext. 3454 Known = Known.sext(BitWidth); 3455 break; 3456 } 3457 case ISD::SIGN_EXTEND: { 3458 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 // If the sign bit is known to be zero or one, then sext will extend 3460 // it to the top bits, else it will just zext. 3461 Known = Known.sext(BitWidth); 3462 break; 3463 } 3464 case ISD::ANY_EXTEND_VECTOR_INREG: { 3465 EVT InVT = Op.getOperand(0).getValueType(); 3466 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3467 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3468 Known = Known.anyext(BitWidth); 3469 break; 3470 } 3471 case ISD::ANY_EXTEND: { 3472 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3473 Known = Known.anyext(BitWidth); 3474 break; 3475 } 3476 case ISD::TRUNCATE: { 3477 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3478 Known = Known.trunc(BitWidth); 3479 break; 3480 } 3481 case ISD::AssertZext: { 3482 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3483 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3484 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3485 Known.Zero |= (~InMask); 3486 Known.One &= (~Known.Zero); 3487 break; 3488 } 3489 case ISD::AssertAlign: { 3490 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3491 assert(LogOfAlign != 0); 3492 3493 // TODO: Should use maximum with source 3494 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3495 // well as clearing one bits. 3496 Known.Zero.setLowBits(LogOfAlign); 3497 Known.One.clearLowBits(LogOfAlign); 3498 break; 3499 } 3500 case ISD::FGETSIGN: 3501 // All bits are zero except the low bit. 3502 Known.Zero.setBitsFrom(1); 3503 break; 3504 case ISD::USUBO: 3505 case ISD::SSUBO: 3506 if (Op.getResNo() == 1) { 3507 // If we know the result of a setcc has the top bits zero, use this info. 3508 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3509 TargetLowering::ZeroOrOneBooleanContent && 3510 BitWidth > 1) 3511 Known.Zero.setBitsFrom(1); 3512 break; 3513 } 3514 LLVM_FALLTHROUGH; 3515 case ISD::SUB: 3516 case ISD::SUBC: { 3517 assert(Op.getResNo() == 0 && 3518 "We only compute knownbits for the difference here."); 3519 3520 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3522 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3523 Known, Known2); 3524 break; 3525 } 3526 case ISD::UADDO: 3527 case ISD::SADDO: 3528 case ISD::ADDCARRY: 3529 if (Op.getResNo() == 1) { 3530 // If we know the result of a setcc has the top bits zero, use this info. 3531 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3532 TargetLowering::ZeroOrOneBooleanContent && 3533 BitWidth > 1) 3534 Known.Zero.setBitsFrom(1); 3535 break; 3536 } 3537 LLVM_FALLTHROUGH; 3538 case ISD::ADD: 3539 case ISD::ADDC: 3540 case ISD::ADDE: { 3541 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3542 3543 // With ADDE and ADDCARRY, a carry bit may be added in. 3544 KnownBits Carry(1); 3545 if (Opcode == ISD::ADDE) 3546 // Can't track carry from glue, set carry to unknown. 3547 Carry.resetAll(); 3548 else if (Opcode == ISD::ADDCARRY) 3549 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3550 // the trouble (how often will we find a known carry bit). And I haven't 3551 // tested this very much yet, but something like this might work: 3552 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3553 // Carry = Carry.zextOrTrunc(1, false); 3554 Carry.resetAll(); 3555 else 3556 Carry.setAllZero(); 3557 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3561 break; 3562 } 3563 case ISD::SREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::srem(Known, Known2); 3567 break; 3568 } 3569 case ISD::UREM: { 3570 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3571 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3572 Known = KnownBits::urem(Known, Known2); 3573 break; 3574 } 3575 case ISD::EXTRACT_ELEMENT: { 3576 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3577 const unsigned Index = Op.getConstantOperandVal(1); 3578 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3579 3580 // Remove low part of known bits mask 3581 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3582 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3583 3584 // Remove high part of known bit mask 3585 Known = Known.trunc(EltBitWidth); 3586 break; 3587 } 3588 case ISD::EXTRACT_VECTOR_ELT: { 3589 SDValue InVec = Op.getOperand(0); 3590 SDValue EltNo = Op.getOperand(1); 3591 EVT VecVT = InVec.getValueType(); 3592 // computeKnownBits not yet implemented for scalable vectors. 3593 if (VecVT.isScalableVector()) 3594 break; 3595 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3596 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3597 3598 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3599 // anything about the extended bits. 3600 if (BitWidth > EltBitWidth) 3601 Known = Known.trunc(EltBitWidth); 3602 3603 // If we know the element index, just demand that vector element, else for 3604 // an unknown element index, ignore DemandedElts and demand them all. 3605 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3606 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3607 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3608 DemandedSrcElts = 3609 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3610 3611 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3612 if (BitWidth > EltBitWidth) 3613 Known = Known.anyext(BitWidth); 3614 break; 3615 } 3616 case ISD::INSERT_VECTOR_ELT: { 3617 // If we know the element index, split the demand between the 3618 // source vector and the inserted element, otherwise assume we need 3619 // the original demanded vector elements and the value. 3620 SDValue InVec = Op.getOperand(0); 3621 SDValue InVal = Op.getOperand(1); 3622 SDValue EltNo = Op.getOperand(2); 3623 bool DemandedVal = true; 3624 APInt DemandedVecElts = DemandedElts; 3625 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3626 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3627 unsigned EltIdx = CEltNo->getZExtValue(); 3628 DemandedVal = !!DemandedElts[EltIdx]; 3629 DemandedVecElts.clearBit(EltIdx); 3630 } 3631 Known.One.setAllBits(); 3632 Known.Zero.setAllBits(); 3633 if (DemandedVal) { 3634 Known2 = computeKnownBits(InVal, Depth + 1); 3635 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3636 } 3637 if (!!DemandedVecElts) { 3638 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3639 Known = KnownBits::commonBits(Known, Known2); 3640 } 3641 break; 3642 } 3643 case ISD::BITREVERSE: { 3644 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3645 Known = Known2.reverseBits(); 3646 break; 3647 } 3648 case ISD::BSWAP: { 3649 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3650 Known = Known2.byteSwap(); 3651 break; 3652 } 3653 case ISD::ABS: { 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known = Known2.abs(); 3656 break; 3657 } 3658 case ISD::USUBSAT: { 3659 // The result of usubsat will never be larger than the LHS. 3660 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3662 break; 3663 } 3664 case ISD::UMIN: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umin(Known, Known2); 3668 break; 3669 } 3670 case ISD::UMAX: { 3671 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3672 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3673 Known = KnownBits::umax(Known, Known2); 3674 break; 3675 } 3676 case ISD::SMIN: 3677 case ISD::SMAX: { 3678 // If we have a clamp pattern, we know that the number of sign bits will be 3679 // the minimum of the clamp min/max range. 3680 bool IsMax = (Opcode == ISD::SMAX); 3681 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3682 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3683 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3684 CstHigh = 3685 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3686 if (CstLow && CstHigh) { 3687 if (!IsMax) 3688 std::swap(CstLow, CstHigh); 3689 3690 const APInt &ValueLow = CstLow->getAPIntValue(); 3691 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3692 if (ValueLow.sle(ValueHigh)) { 3693 unsigned LowSignBits = ValueLow.getNumSignBits(); 3694 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3695 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3696 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3697 Known.One.setHighBits(MinSignBits); 3698 break; 3699 } 3700 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3701 Known.Zero.setHighBits(MinSignBits); 3702 break; 3703 } 3704 } 3705 } 3706 3707 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3708 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3709 if (IsMax) 3710 Known = KnownBits::smax(Known, Known2); 3711 else 3712 Known = KnownBits::smin(Known, Known2); 3713 3714 // For SMAX, if CstLow is non-negative we know the result will be 3715 // non-negative and thus all sign bits are 0. 3716 // TODO: There's an equivalent of this for smin with negative constant for 3717 // known ones. 3718 if (IsMax && CstLow) { 3719 const APInt &ValueLow = CstLow->getAPIntValue(); 3720 if (ValueLow.isNonNegative()) { 3721 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3722 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3723 } 3724 } 3725 3726 break; 3727 } 3728 case ISD::FP_TO_UINT_SAT: { 3729 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3730 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3731 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3732 break; 3733 } 3734 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3735 if (Op.getResNo() == 1) { 3736 // The boolean result conforms to getBooleanContents. 3737 // If we know the result of a setcc has the top bits zero, use this info. 3738 // We know that we have an integer-based boolean since these operations 3739 // are only available for integer. 3740 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3741 TargetLowering::ZeroOrOneBooleanContent && 3742 BitWidth > 1) 3743 Known.Zero.setBitsFrom(1); 3744 break; 3745 } 3746 LLVM_FALLTHROUGH; 3747 case ISD::ATOMIC_CMP_SWAP: 3748 case ISD::ATOMIC_SWAP: 3749 case ISD::ATOMIC_LOAD_ADD: 3750 case ISD::ATOMIC_LOAD_SUB: 3751 case ISD::ATOMIC_LOAD_AND: 3752 case ISD::ATOMIC_LOAD_CLR: 3753 case ISD::ATOMIC_LOAD_OR: 3754 case ISD::ATOMIC_LOAD_XOR: 3755 case ISD::ATOMIC_LOAD_NAND: 3756 case ISD::ATOMIC_LOAD_MIN: 3757 case ISD::ATOMIC_LOAD_MAX: 3758 case ISD::ATOMIC_LOAD_UMIN: 3759 case ISD::ATOMIC_LOAD_UMAX: 3760 case ISD::ATOMIC_LOAD: { 3761 unsigned MemBits = 3762 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3763 // If we are looking at the loaded value. 3764 if (Op.getResNo() == 0) { 3765 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3766 Known.Zero.setBitsFrom(MemBits); 3767 } 3768 break; 3769 } 3770 case ISD::FrameIndex: 3771 case ISD::TargetFrameIndex: 3772 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3773 Known, getMachineFunction()); 3774 break; 3775 3776 default: 3777 if (Opcode < ISD::BUILTIN_OP_END) 3778 break; 3779 LLVM_FALLTHROUGH; 3780 case ISD::INTRINSIC_WO_CHAIN: 3781 case ISD::INTRINSIC_W_CHAIN: 3782 case ISD::INTRINSIC_VOID: 3783 // Allow the target to implement this method for its nodes. 3784 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3785 break; 3786 } 3787 3788 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3789 return Known; 3790 } 3791 3792 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3793 SDValue N1) const { 3794 // X + 0 never overflow 3795 if (isNullConstant(N1)) 3796 return OFK_Never; 3797 3798 KnownBits N1Known = computeKnownBits(N1); 3799 if (N1Known.Zero.getBoolValue()) { 3800 KnownBits N0Known = computeKnownBits(N0); 3801 3802 bool overflow; 3803 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3804 if (!overflow) 3805 return OFK_Never; 3806 } 3807 3808 // mulhi + 1 never overflow 3809 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3810 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3811 return OFK_Never; 3812 3813 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3814 KnownBits N0Known = computeKnownBits(N0); 3815 3816 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3817 return OFK_Never; 3818 } 3819 3820 return OFK_Sometime; 3821 } 3822 3823 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3824 EVT OpVT = Val.getValueType(); 3825 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3826 3827 // Is the constant a known power of 2? 3828 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3829 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3830 3831 // A left-shift of a constant one will have exactly one bit set because 3832 // shifting the bit off the end is undefined. 3833 if (Val.getOpcode() == ISD::SHL) { 3834 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3835 if (C && C->getAPIntValue() == 1) 3836 return true; 3837 } 3838 3839 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3840 // one bit set. 3841 if (Val.getOpcode() == ISD::SRL) { 3842 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3843 if (C && C->getAPIntValue().isSignMask()) 3844 return true; 3845 } 3846 3847 // Are all operands of a build vector constant powers of two? 3848 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3849 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3850 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3851 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3852 return false; 3853 })) 3854 return true; 3855 3856 // Is the operand of a splat vector a constant power of two? 3857 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3858 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3859 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3860 return true; 3861 3862 // More could be done here, though the above checks are enough 3863 // to handle some common cases. 3864 3865 // Fall back to computeKnownBits to catch other known cases. 3866 KnownBits Known = computeKnownBits(Val); 3867 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3868 } 3869 3870 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3871 EVT VT = Op.getValueType(); 3872 3873 // TODO: Assume we don't know anything for now. 3874 if (VT.isScalableVector()) 3875 return 1; 3876 3877 APInt DemandedElts = VT.isVector() 3878 ? APInt::getAllOnes(VT.getVectorNumElements()) 3879 : APInt(1, 1); 3880 return ComputeNumSignBits(Op, DemandedElts, Depth); 3881 } 3882 3883 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3884 unsigned Depth) const { 3885 EVT VT = Op.getValueType(); 3886 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3887 unsigned VTBits = VT.getScalarSizeInBits(); 3888 unsigned NumElts = DemandedElts.getBitWidth(); 3889 unsigned Tmp, Tmp2; 3890 unsigned FirstAnswer = 1; 3891 3892 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3893 const APInt &Val = C->getAPIntValue(); 3894 return Val.getNumSignBits(); 3895 } 3896 3897 if (Depth >= MaxRecursionDepth) 3898 return 1; // Limit search depth. 3899 3900 if (!DemandedElts || VT.isScalableVector()) 3901 return 1; // No demanded elts, better to assume we don't know anything. 3902 3903 unsigned Opcode = Op.getOpcode(); 3904 switch (Opcode) { 3905 default: break; 3906 case ISD::AssertSext: 3907 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3908 return VTBits-Tmp+1; 3909 case ISD::AssertZext: 3910 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3911 return VTBits-Tmp; 3912 3913 case ISD::BUILD_VECTOR: 3914 Tmp = VTBits; 3915 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3916 if (!DemandedElts[i]) 3917 continue; 3918 3919 SDValue SrcOp = Op.getOperand(i); 3920 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3921 3922 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3923 if (SrcOp.getValueSizeInBits() != VTBits) { 3924 assert(SrcOp.getValueSizeInBits() > VTBits && 3925 "Expected BUILD_VECTOR implicit truncation"); 3926 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3927 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3928 } 3929 Tmp = std::min(Tmp, Tmp2); 3930 } 3931 return Tmp; 3932 3933 case ISD::VECTOR_SHUFFLE: { 3934 // Collect the minimum number of sign bits that are shared by every vector 3935 // element referenced by the shuffle. 3936 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3937 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3938 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3939 for (unsigned i = 0; i != NumElts; ++i) { 3940 int M = SVN->getMaskElt(i); 3941 if (!DemandedElts[i]) 3942 continue; 3943 // For UNDEF elements, we don't know anything about the common state of 3944 // the shuffle result. 3945 if (M < 0) 3946 return 1; 3947 if ((unsigned)M < NumElts) 3948 DemandedLHS.setBit((unsigned)M % NumElts); 3949 else 3950 DemandedRHS.setBit((unsigned)M % NumElts); 3951 } 3952 Tmp = std::numeric_limits<unsigned>::max(); 3953 if (!!DemandedLHS) 3954 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3955 if (!!DemandedRHS) { 3956 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3957 Tmp = std::min(Tmp, Tmp2); 3958 } 3959 // If we don't know anything, early out and try computeKnownBits fall-back. 3960 if (Tmp == 1) 3961 break; 3962 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3963 return Tmp; 3964 } 3965 3966 case ISD::BITCAST: { 3967 SDValue N0 = Op.getOperand(0); 3968 EVT SrcVT = N0.getValueType(); 3969 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3970 3971 // Ignore bitcasts from unsupported types.. 3972 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3973 break; 3974 3975 // Fast handling of 'identity' bitcasts. 3976 if (VTBits == SrcBits) 3977 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3978 3979 bool IsLE = getDataLayout().isLittleEndian(); 3980 3981 // Bitcast 'large element' scalar/vector to 'small element' vector. 3982 if ((SrcBits % VTBits) == 0) { 3983 assert(VT.isVector() && "Expected bitcast to vector"); 3984 3985 unsigned Scale = SrcBits / VTBits; 3986 APInt SrcDemandedElts = 3987 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3988 3989 // Fast case - sign splat can be simply split across the small elements. 3990 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3991 if (Tmp == SrcBits) 3992 return VTBits; 3993 3994 // Slow case - determine how far the sign extends into each sub-element. 3995 Tmp2 = VTBits; 3996 for (unsigned i = 0; i != NumElts; ++i) 3997 if (DemandedElts[i]) { 3998 unsigned SubOffset = i % Scale; 3999 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4000 SubOffset = SubOffset * VTBits; 4001 if (Tmp <= SubOffset) 4002 return 1; 4003 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4004 } 4005 return Tmp2; 4006 } 4007 break; 4008 } 4009 4010 case ISD::FP_TO_SINT_SAT: 4011 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4012 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4013 return VTBits - Tmp + 1; 4014 case ISD::SIGN_EXTEND: 4015 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4016 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4017 case ISD::SIGN_EXTEND_INREG: 4018 // Max of the input and what this extends. 4019 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4020 Tmp = VTBits-Tmp+1; 4021 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4022 return std::max(Tmp, Tmp2); 4023 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4024 SDValue Src = Op.getOperand(0); 4025 EVT SrcVT = Src.getValueType(); 4026 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4027 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4028 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4029 } 4030 case ISD::SRA: 4031 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4032 // SRA X, C -> adds C sign bits. 4033 if (const APInt *ShAmt = 4034 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4035 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4036 return Tmp; 4037 case ISD::SHL: 4038 if (const APInt *ShAmt = 4039 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4040 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4041 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4042 if (ShAmt->ult(Tmp)) 4043 return Tmp - ShAmt->getZExtValue(); 4044 } 4045 break; 4046 case ISD::AND: 4047 case ISD::OR: 4048 case ISD::XOR: // NOT is handled here. 4049 // Logical binary ops preserve the number of sign bits at the worst. 4050 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4051 if (Tmp != 1) { 4052 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4053 FirstAnswer = std::min(Tmp, Tmp2); 4054 // We computed what we know about the sign bits as our first 4055 // answer. Now proceed to the generic code that uses 4056 // computeKnownBits, and pick whichever answer is better. 4057 } 4058 break; 4059 4060 case ISD::SELECT: 4061 case ISD::VSELECT: 4062 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4063 if (Tmp == 1) return 1; // Early out. 4064 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4065 return std::min(Tmp, Tmp2); 4066 case ISD::SELECT_CC: 4067 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4068 if (Tmp == 1) return 1; // Early out. 4069 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4070 return std::min(Tmp, Tmp2); 4071 4072 case ISD::SMIN: 4073 case ISD::SMAX: { 4074 // If we have a clamp pattern, we know that the number of sign bits will be 4075 // the minimum of the clamp min/max range. 4076 bool IsMax = (Opcode == ISD::SMAX); 4077 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4078 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4079 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4080 CstHigh = 4081 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4082 if (CstLow && CstHigh) { 4083 if (!IsMax) 4084 std::swap(CstLow, CstHigh); 4085 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4086 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4087 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4088 return std::min(Tmp, Tmp2); 4089 } 4090 } 4091 4092 // Fallback - just get the minimum number of sign bits of the operands. 4093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4094 if (Tmp == 1) 4095 return 1; // Early out. 4096 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4097 return std::min(Tmp, Tmp2); 4098 } 4099 case ISD::UMIN: 4100 case ISD::UMAX: 4101 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4102 if (Tmp == 1) 4103 return 1; // Early out. 4104 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4105 return std::min(Tmp, Tmp2); 4106 case ISD::SADDO: 4107 case ISD::UADDO: 4108 case ISD::SSUBO: 4109 case ISD::USUBO: 4110 case ISD::SMULO: 4111 case ISD::UMULO: 4112 if (Op.getResNo() != 1) 4113 break; 4114 // The boolean result conforms to getBooleanContents. Fall through. 4115 // If setcc returns 0/-1, all bits are sign bits. 4116 // We know that we have an integer-based boolean since these operations 4117 // are only available for integer. 4118 if (TLI->getBooleanContents(VT.isVector(), false) == 4119 TargetLowering::ZeroOrNegativeOneBooleanContent) 4120 return VTBits; 4121 break; 4122 case ISD::SETCC: 4123 case ISD::STRICT_FSETCC: 4124 case ISD::STRICT_FSETCCS: { 4125 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4126 // If setcc returns 0/-1, all bits are sign bits. 4127 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4128 TargetLowering::ZeroOrNegativeOneBooleanContent) 4129 return VTBits; 4130 break; 4131 } 4132 case ISD::ROTL: 4133 case ISD::ROTR: 4134 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4135 4136 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4137 if (Tmp == VTBits) 4138 return VTBits; 4139 4140 if (ConstantSDNode *C = 4141 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4142 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4143 4144 // Handle rotate right by N like a rotate left by 32-N. 4145 if (Opcode == ISD::ROTR) 4146 RotAmt = (VTBits - RotAmt) % VTBits; 4147 4148 // If we aren't rotating out all of the known-in sign bits, return the 4149 // number that are left. This handles rotl(sext(x), 1) for example. 4150 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4151 } 4152 break; 4153 case ISD::ADD: 4154 case ISD::ADDC: 4155 // Add can have at most one carry bit. Thus we know that the output 4156 // is, at worst, one more bit than the inputs. 4157 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4158 if (Tmp == 1) return 1; // Early out. 4159 4160 // Special case decrementing a value (ADD X, -1): 4161 if (ConstantSDNode *CRHS = 4162 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4163 if (CRHS->isAllOnes()) { 4164 KnownBits Known = 4165 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4166 4167 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4168 // sign bits set. 4169 if ((Known.Zero | 1).isAllOnes()) 4170 return VTBits; 4171 4172 // If we are subtracting one from a positive number, there is no carry 4173 // out of the result. 4174 if (Known.isNonNegative()) 4175 return Tmp; 4176 } 4177 4178 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4179 if (Tmp2 == 1) return 1; // Early out. 4180 return std::min(Tmp, Tmp2) - 1; 4181 case ISD::SUB: 4182 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4183 if (Tmp2 == 1) return 1; // Early out. 4184 4185 // Handle NEG. 4186 if (ConstantSDNode *CLHS = 4187 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4188 if (CLHS->isZero()) { 4189 KnownBits Known = 4190 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4191 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4192 // sign bits set. 4193 if ((Known.Zero | 1).isAllOnes()) 4194 return VTBits; 4195 4196 // If the input is known to be positive (the sign bit is known clear), 4197 // the output of the NEG has the same number of sign bits as the input. 4198 if (Known.isNonNegative()) 4199 return Tmp2; 4200 4201 // Otherwise, we treat this like a SUB. 4202 } 4203 4204 // Sub can have at most one carry bit. Thus we know that the output 4205 // is, at worst, one more bit than the inputs. 4206 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4207 if (Tmp == 1) return 1; // Early out. 4208 return std::min(Tmp, Tmp2) - 1; 4209 case ISD::MUL: { 4210 // The output of the Mul can be at most twice the valid bits in the inputs. 4211 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4212 if (SignBitsOp0 == 1) 4213 break; 4214 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4215 if (SignBitsOp1 == 1) 4216 break; 4217 unsigned OutValidBits = 4218 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4219 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4220 } 4221 case ISD::SREM: 4222 // The sign bit is the LHS's sign bit, except when the result of the 4223 // remainder is zero. The magnitude of the result should be less than or 4224 // equal to the magnitude of the LHS. Therefore, the result should have 4225 // at least as many sign bits as the left hand side. 4226 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4227 case ISD::TRUNCATE: { 4228 // Check if the sign bits of source go down as far as the truncated value. 4229 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4230 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4231 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4232 return NumSrcSignBits - (NumSrcBits - VTBits); 4233 break; 4234 } 4235 case ISD::EXTRACT_ELEMENT: { 4236 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4237 const int BitWidth = Op.getValueSizeInBits(); 4238 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4239 4240 // Get reverse index (starting from 1), Op1 value indexes elements from 4241 // little end. Sign starts at big end. 4242 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4243 4244 // If the sign portion ends in our element the subtraction gives correct 4245 // result. Otherwise it gives either negative or > bitwidth result 4246 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4247 } 4248 case ISD::INSERT_VECTOR_ELT: { 4249 // If we know the element index, split the demand between the 4250 // source vector and the inserted element, otherwise assume we need 4251 // the original demanded vector elements and the value. 4252 SDValue InVec = Op.getOperand(0); 4253 SDValue InVal = Op.getOperand(1); 4254 SDValue EltNo = Op.getOperand(2); 4255 bool DemandedVal = true; 4256 APInt DemandedVecElts = DemandedElts; 4257 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4258 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4259 unsigned EltIdx = CEltNo->getZExtValue(); 4260 DemandedVal = !!DemandedElts[EltIdx]; 4261 DemandedVecElts.clearBit(EltIdx); 4262 } 4263 Tmp = std::numeric_limits<unsigned>::max(); 4264 if (DemandedVal) { 4265 // TODO - handle implicit truncation of inserted elements. 4266 if (InVal.getScalarValueSizeInBits() != VTBits) 4267 break; 4268 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4269 Tmp = std::min(Tmp, Tmp2); 4270 } 4271 if (!!DemandedVecElts) { 4272 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4273 Tmp = std::min(Tmp, Tmp2); 4274 } 4275 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4276 return Tmp; 4277 } 4278 case ISD::EXTRACT_VECTOR_ELT: { 4279 SDValue InVec = Op.getOperand(0); 4280 SDValue EltNo = Op.getOperand(1); 4281 EVT VecVT = InVec.getValueType(); 4282 // ComputeNumSignBits not yet implemented for scalable vectors. 4283 if (VecVT.isScalableVector()) 4284 break; 4285 const unsigned BitWidth = Op.getValueSizeInBits(); 4286 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4287 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4288 4289 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4290 // anything about sign bits. But if the sizes match we can derive knowledge 4291 // about sign bits from the vector operand. 4292 if (BitWidth != EltBitWidth) 4293 break; 4294 4295 // If we know the element index, just demand that vector element, else for 4296 // an unknown element index, ignore DemandedElts and demand them all. 4297 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4298 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4299 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4300 DemandedSrcElts = 4301 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4302 4303 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4304 } 4305 case ISD::EXTRACT_SUBVECTOR: { 4306 // Offset the demanded elts by the subvector index. 4307 SDValue Src = Op.getOperand(0); 4308 // Bail until we can represent demanded elements for scalable vectors. 4309 if (Src.getValueType().isScalableVector()) 4310 break; 4311 uint64_t Idx = Op.getConstantOperandVal(1); 4312 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4313 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4314 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4315 } 4316 case ISD::CONCAT_VECTORS: { 4317 // Determine the minimum number of sign bits across all demanded 4318 // elts of the input vectors. Early out if the result is already 1. 4319 Tmp = std::numeric_limits<unsigned>::max(); 4320 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4321 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4322 unsigned NumSubVectors = Op.getNumOperands(); 4323 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4324 APInt DemandedSub = 4325 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4326 if (!DemandedSub) 4327 continue; 4328 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4329 Tmp = std::min(Tmp, Tmp2); 4330 } 4331 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4332 return Tmp; 4333 } 4334 case ISD::INSERT_SUBVECTOR: { 4335 // Demand any elements from the subvector and the remainder from the src its 4336 // inserted into. 4337 SDValue Src = Op.getOperand(0); 4338 SDValue Sub = Op.getOperand(1); 4339 uint64_t Idx = Op.getConstantOperandVal(2); 4340 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4341 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4342 APInt DemandedSrcElts = DemandedElts; 4343 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4344 4345 Tmp = std::numeric_limits<unsigned>::max(); 4346 if (!!DemandedSubElts) { 4347 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4348 if (Tmp == 1) 4349 return 1; // early-out 4350 } 4351 if (!!DemandedSrcElts) { 4352 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4353 Tmp = std::min(Tmp, Tmp2); 4354 } 4355 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4356 return Tmp; 4357 } 4358 case ISD::ATOMIC_CMP_SWAP: 4359 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4360 case ISD::ATOMIC_SWAP: 4361 case ISD::ATOMIC_LOAD_ADD: 4362 case ISD::ATOMIC_LOAD_SUB: 4363 case ISD::ATOMIC_LOAD_AND: 4364 case ISD::ATOMIC_LOAD_CLR: 4365 case ISD::ATOMIC_LOAD_OR: 4366 case ISD::ATOMIC_LOAD_XOR: 4367 case ISD::ATOMIC_LOAD_NAND: 4368 case ISD::ATOMIC_LOAD_MIN: 4369 case ISD::ATOMIC_LOAD_MAX: 4370 case ISD::ATOMIC_LOAD_UMIN: 4371 case ISD::ATOMIC_LOAD_UMAX: 4372 case ISD::ATOMIC_LOAD: { 4373 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4374 // If we are looking at the loaded value. 4375 if (Op.getResNo() == 0) { 4376 if (Tmp == VTBits) 4377 return 1; // early-out 4378 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4379 return VTBits - Tmp + 1; 4380 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4381 return VTBits - Tmp; 4382 } 4383 break; 4384 } 4385 } 4386 4387 // If we are looking at the loaded value of the SDNode. 4388 if (Op.getResNo() == 0) { 4389 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4390 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4391 unsigned ExtType = LD->getExtensionType(); 4392 switch (ExtType) { 4393 default: break; 4394 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4395 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4396 return VTBits - Tmp + 1; 4397 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4398 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4399 return VTBits - Tmp; 4400 case ISD::NON_EXTLOAD: 4401 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4402 // We only need to handle vectors - computeKnownBits should handle 4403 // scalar cases. 4404 Type *CstTy = Cst->getType(); 4405 if (CstTy->isVectorTy() && 4406 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4407 VTBits == CstTy->getScalarSizeInBits()) { 4408 Tmp = VTBits; 4409 for (unsigned i = 0; i != NumElts; ++i) { 4410 if (!DemandedElts[i]) 4411 continue; 4412 if (Constant *Elt = Cst->getAggregateElement(i)) { 4413 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4414 const APInt &Value = CInt->getValue(); 4415 Tmp = std::min(Tmp, Value.getNumSignBits()); 4416 continue; 4417 } 4418 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4419 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4420 Tmp = std::min(Tmp, Value.getNumSignBits()); 4421 continue; 4422 } 4423 } 4424 // Unknown type. Conservatively assume no bits match sign bit. 4425 return 1; 4426 } 4427 return Tmp; 4428 } 4429 } 4430 break; 4431 } 4432 } 4433 } 4434 4435 // Allow the target to implement this method for its nodes. 4436 if (Opcode >= ISD::BUILTIN_OP_END || 4437 Opcode == ISD::INTRINSIC_WO_CHAIN || 4438 Opcode == ISD::INTRINSIC_W_CHAIN || 4439 Opcode == ISD::INTRINSIC_VOID) { 4440 unsigned NumBits = 4441 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4442 if (NumBits > 1) 4443 FirstAnswer = std::max(FirstAnswer, NumBits); 4444 } 4445 4446 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4447 // use this information. 4448 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4449 return std::max(FirstAnswer, Known.countMinSignBits()); 4450 } 4451 4452 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4453 unsigned Depth) const { 4454 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4455 return Op.getScalarValueSizeInBits() - SignBits + 1; 4456 } 4457 4458 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4459 const APInt &DemandedElts, 4460 unsigned Depth) const { 4461 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4462 return Op.getScalarValueSizeInBits() - SignBits + 1; 4463 } 4464 4465 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4466 unsigned Depth) const { 4467 // Early out for FREEZE. 4468 if (Op.getOpcode() == ISD::FREEZE) 4469 return true; 4470 4471 // TODO: Assume we don't know anything for now. 4472 EVT VT = Op.getValueType(); 4473 if (VT.isScalableVector()) 4474 return false; 4475 4476 APInt DemandedElts = VT.isVector() 4477 ? APInt::getAllOnes(VT.getVectorNumElements()) 4478 : APInt(1, 1); 4479 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4480 } 4481 4482 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4483 const APInt &DemandedElts, 4484 bool PoisonOnly, 4485 unsigned Depth) const { 4486 unsigned Opcode = Op.getOpcode(); 4487 4488 // Early out for FREEZE. 4489 if (Opcode == ISD::FREEZE) 4490 return true; 4491 4492 if (Depth >= MaxRecursionDepth) 4493 return false; // Limit search depth. 4494 4495 if (isIntOrFPConstant(Op)) 4496 return true; 4497 4498 switch (Opcode) { 4499 case ISD::UNDEF: 4500 return PoisonOnly; 4501 4502 case ISD::BUILD_VECTOR: 4503 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4504 // this shouldn't affect the result. 4505 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4506 if (!DemandedElts[i]) 4507 continue; 4508 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4509 Depth + 1)) 4510 return false; 4511 } 4512 return true; 4513 4514 // TODO: Search for noundef attributes from library functions. 4515 4516 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4517 4518 default: 4519 // Allow the target to implement this method for its nodes. 4520 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4521 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4522 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4523 Op, DemandedElts, *this, PoisonOnly, Depth); 4524 break; 4525 } 4526 4527 return false; 4528 } 4529 4530 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4531 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4532 !isa<ConstantSDNode>(Op.getOperand(1))) 4533 return false; 4534 4535 if (Op.getOpcode() == ISD::OR && 4536 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4537 return false; 4538 4539 return true; 4540 } 4541 4542 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4543 // If we're told that NaNs won't happen, assume they won't. 4544 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4545 return true; 4546 4547 if (Depth >= MaxRecursionDepth) 4548 return false; // Limit search depth. 4549 4550 // TODO: Handle vectors. 4551 // If the value is a constant, we can obviously see if it is a NaN or not. 4552 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4553 return !C->getValueAPF().isNaN() || 4554 (SNaN && !C->getValueAPF().isSignaling()); 4555 } 4556 4557 unsigned Opcode = Op.getOpcode(); 4558 switch (Opcode) { 4559 case ISD::FADD: 4560 case ISD::FSUB: 4561 case ISD::FMUL: 4562 case ISD::FDIV: 4563 case ISD::FREM: 4564 case ISD::FSIN: 4565 case ISD::FCOS: { 4566 if (SNaN) 4567 return true; 4568 // TODO: Need isKnownNeverInfinity 4569 return false; 4570 } 4571 case ISD::FCANONICALIZE: 4572 case ISD::FEXP: 4573 case ISD::FEXP2: 4574 case ISD::FTRUNC: 4575 case ISD::FFLOOR: 4576 case ISD::FCEIL: 4577 case ISD::FROUND: 4578 case ISD::FROUNDEVEN: 4579 case ISD::FRINT: 4580 case ISD::FNEARBYINT: { 4581 if (SNaN) 4582 return true; 4583 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4584 } 4585 case ISD::FABS: 4586 case ISD::FNEG: 4587 case ISD::FCOPYSIGN: { 4588 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4589 } 4590 case ISD::SELECT: 4591 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4592 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4593 case ISD::FP_EXTEND: 4594 case ISD::FP_ROUND: { 4595 if (SNaN) 4596 return true; 4597 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4598 } 4599 case ISD::SINT_TO_FP: 4600 case ISD::UINT_TO_FP: 4601 return true; 4602 case ISD::FMA: 4603 case ISD::FMAD: { 4604 if (SNaN) 4605 return true; 4606 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4607 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4608 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4609 } 4610 case ISD::FSQRT: // Need is known positive 4611 case ISD::FLOG: 4612 case ISD::FLOG2: 4613 case ISD::FLOG10: 4614 case ISD::FPOWI: 4615 case ISD::FPOW: { 4616 if (SNaN) 4617 return true; 4618 // TODO: Refine on operand 4619 return false; 4620 } 4621 case ISD::FMINNUM: 4622 case ISD::FMAXNUM: { 4623 // Only one needs to be known not-nan, since it will be returned if the 4624 // other ends up being one. 4625 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4626 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4627 } 4628 case ISD::FMINNUM_IEEE: 4629 case ISD::FMAXNUM_IEEE: { 4630 if (SNaN) 4631 return true; 4632 // This can return a NaN if either operand is an sNaN, or if both operands 4633 // are NaN. 4634 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4635 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4636 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4637 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4638 } 4639 case ISD::FMINIMUM: 4640 case ISD::FMAXIMUM: { 4641 // TODO: Does this quiet or return the origina NaN as-is? 4642 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4643 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4644 } 4645 case ISD::EXTRACT_VECTOR_ELT: { 4646 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4647 } 4648 default: 4649 if (Opcode >= ISD::BUILTIN_OP_END || 4650 Opcode == ISD::INTRINSIC_WO_CHAIN || 4651 Opcode == ISD::INTRINSIC_W_CHAIN || 4652 Opcode == ISD::INTRINSIC_VOID) { 4653 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4654 } 4655 4656 return false; 4657 } 4658 } 4659 4660 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4661 assert(Op.getValueType().isFloatingPoint() && 4662 "Floating point type expected"); 4663 4664 // If the value is a constant, we can obviously see if it is a zero or not. 4665 // TODO: Add BuildVector support. 4666 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4667 return !C->isZero(); 4668 return false; 4669 } 4670 4671 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4672 assert(!Op.getValueType().isFloatingPoint() && 4673 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4674 4675 // If the value is a constant, we can obviously see if it is a zero or not. 4676 if (ISD::matchUnaryPredicate(Op, 4677 [](ConstantSDNode *C) { return !C->isZero(); })) 4678 return true; 4679 4680 // TODO: Recognize more cases here. 4681 switch (Op.getOpcode()) { 4682 default: break; 4683 case ISD::OR: 4684 if (isKnownNeverZero(Op.getOperand(1)) || 4685 isKnownNeverZero(Op.getOperand(0))) 4686 return true; 4687 break; 4688 } 4689 4690 return false; 4691 } 4692 4693 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4694 // Check the obvious case. 4695 if (A == B) return true; 4696 4697 // For for negative and positive zero. 4698 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4699 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4700 if (CA->isZero() && CB->isZero()) return true; 4701 4702 // Otherwise they may not be equal. 4703 return false; 4704 } 4705 4706 // Only bits set in Mask must be negated, other bits may be arbitrary. 4707 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4708 if (isBitwiseNot(V, AllowUndefs)) 4709 return V.getOperand(0); 4710 4711 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4712 // bits in the non-extended part. 4713 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4714 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4715 return SDValue(); 4716 SDValue ExtArg = V.getOperand(0); 4717 if (ExtArg.getScalarValueSizeInBits() >= 4718 MaskC->getAPIntValue().getActiveBits() && 4719 isBitwiseNot(ExtArg, AllowUndefs) && 4720 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4721 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4722 return ExtArg.getOperand(0).getOperand(0); 4723 return SDValue(); 4724 } 4725 4726 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4727 // Match masked merge pattern (X & ~M) op (Y & M) 4728 // Including degenerate case (X & ~M) op M 4729 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4730 SDValue Other) { 4731 if (SDValue NotOperand = 4732 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4733 if (Other == NotOperand) 4734 return true; 4735 if (Other->getOpcode() == ISD::AND) 4736 return NotOperand == Other->getOperand(0) || 4737 NotOperand == Other->getOperand(1); 4738 } 4739 return false; 4740 }; 4741 if (A->getOpcode() == ISD::AND) 4742 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4743 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4744 return false; 4745 } 4746 4747 // FIXME: unify with llvm::haveNoCommonBitsSet. 4748 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4749 assert(A.getValueType() == B.getValueType() && 4750 "Values must have the same type"); 4751 if (haveNoCommonBitsSetCommutative(A, B) || 4752 haveNoCommonBitsSetCommutative(B, A)) 4753 return true; 4754 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4755 computeKnownBits(B)); 4756 } 4757 4758 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4759 SelectionDAG &DAG) { 4760 if (cast<ConstantSDNode>(Step)->isZero()) 4761 return DAG.getConstant(0, DL, VT); 4762 4763 return SDValue(); 4764 } 4765 4766 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4767 ArrayRef<SDValue> Ops, 4768 SelectionDAG &DAG) { 4769 int NumOps = Ops.size(); 4770 assert(NumOps != 0 && "Can't build an empty vector!"); 4771 assert(!VT.isScalableVector() && 4772 "BUILD_VECTOR cannot be used with scalable types"); 4773 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4774 "Incorrect element count in BUILD_VECTOR!"); 4775 4776 // BUILD_VECTOR of UNDEFs is UNDEF. 4777 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4778 return DAG.getUNDEF(VT); 4779 4780 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4781 SDValue IdentitySrc; 4782 bool IsIdentity = true; 4783 for (int i = 0; i != NumOps; ++i) { 4784 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4785 Ops[i].getOperand(0).getValueType() != VT || 4786 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4787 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4788 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4789 IsIdentity = false; 4790 break; 4791 } 4792 IdentitySrc = Ops[i].getOperand(0); 4793 } 4794 if (IsIdentity) 4795 return IdentitySrc; 4796 4797 return SDValue(); 4798 } 4799 4800 /// Try to simplify vector concatenation to an input value, undef, or build 4801 /// vector. 4802 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4803 ArrayRef<SDValue> Ops, 4804 SelectionDAG &DAG) { 4805 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4806 assert(llvm::all_of(Ops, 4807 [Ops](SDValue Op) { 4808 return Ops[0].getValueType() == Op.getValueType(); 4809 }) && 4810 "Concatenation of vectors with inconsistent value types!"); 4811 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4812 VT.getVectorElementCount() && 4813 "Incorrect element count in vector concatenation!"); 4814 4815 if (Ops.size() == 1) 4816 return Ops[0]; 4817 4818 // Concat of UNDEFs is UNDEF. 4819 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4820 return DAG.getUNDEF(VT); 4821 4822 // Scan the operands and look for extract operations from a single source 4823 // that correspond to insertion at the same location via this concatenation: 4824 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4825 SDValue IdentitySrc; 4826 bool IsIdentity = true; 4827 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4828 SDValue Op = Ops[i]; 4829 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4830 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4831 Op.getOperand(0).getValueType() != VT || 4832 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4833 Op.getConstantOperandVal(1) != IdentityIndex) { 4834 IsIdentity = false; 4835 break; 4836 } 4837 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4838 "Unexpected identity source vector for concat of extracts"); 4839 IdentitySrc = Op.getOperand(0); 4840 } 4841 if (IsIdentity) { 4842 assert(IdentitySrc && "Failed to set source vector of extracts"); 4843 return IdentitySrc; 4844 } 4845 4846 // The code below this point is only designed to work for fixed width 4847 // vectors, so we bail out for now. 4848 if (VT.isScalableVector()) 4849 return SDValue(); 4850 4851 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4852 // simplified to one big BUILD_VECTOR. 4853 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4854 EVT SVT = VT.getScalarType(); 4855 SmallVector<SDValue, 16> Elts; 4856 for (SDValue Op : Ops) { 4857 EVT OpVT = Op.getValueType(); 4858 if (Op.isUndef()) 4859 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4860 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4861 Elts.append(Op->op_begin(), Op->op_end()); 4862 else 4863 return SDValue(); 4864 } 4865 4866 // BUILD_VECTOR requires all inputs to be of the same type, find the 4867 // maximum type and extend them all. 4868 for (SDValue Op : Elts) 4869 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4870 4871 if (SVT.bitsGT(VT.getScalarType())) { 4872 for (SDValue &Op : Elts) { 4873 if (Op.isUndef()) 4874 Op = DAG.getUNDEF(SVT); 4875 else 4876 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4877 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4878 : DAG.getSExtOrTrunc(Op, DL, SVT); 4879 } 4880 } 4881 4882 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4883 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4884 return V; 4885 } 4886 4887 /// Gets or creates the specified node. 4888 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4889 FoldingSetNodeID ID; 4890 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4891 void *IP = nullptr; 4892 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4893 return SDValue(E, 0); 4894 4895 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4896 getVTList(VT)); 4897 CSEMap.InsertNode(N, IP); 4898 4899 InsertNode(N); 4900 SDValue V = SDValue(N, 0); 4901 NewSDValueDbgMsg(V, "Creating new node: ", this); 4902 return V; 4903 } 4904 4905 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4906 SDValue Operand) { 4907 SDNodeFlags Flags; 4908 if (Inserter) 4909 Flags = Inserter->getFlags(); 4910 return getNode(Opcode, DL, VT, Operand, Flags); 4911 } 4912 4913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4914 SDValue Operand, const SDNodeFlags Flags) { 4915 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4916 "Operand is DELETED_NODE!"); 4917 // Constant fold unary operations with an integer constant operand. Even 4918 // opaque constant will be folded, because the folding of unary operations 4919 // doesn't create new constants with different values. Nevertheless, the 4920 // opaque flag is preserved during folding to prevent future folding with 4921 // other constants. 4922 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4923 const APInt &Val = C->getAPIntValue(); 4924 switch (Opcode) { 4925 default: break; 4926 case ISD::SIGN_EXTEND: 4927 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4928 C->isTargetOpcode(), C->isOpaque()); 4929 case ISD::TRUNCATE: 4930 if (C->isOpaque()) 4931 break; 4932 LLVM_FALLTHROUGH; 4933 case ISD::ZERO_EXTEND: 4934 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4935 C->isTargetOpcode(), C->isOpaque()); 4936 case ISD::ANY_EXTEND: 4937 // Some targets like RISCV prefer to sign extend some types. 4938 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4939 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4940 C->isTargetOpcode(), C->isOpaque()); 4941 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4942 C->isTargetOpcode(), C->isOpaque()); 4943 case ISD::UINT_TO_FP: 4944 case ISD::SINT_TO_FP: { 4945 APFloat apf(EVTToAPFloatSemantics(VT), 4946 APInt::getZero(VT.getSizeInBits())); 4947 (void)apf.convertFromAPInt(Val, 4948 Opcode==ISD::SINT_TO_FP, 4949 APFloat::rmNearestTiesToEven); 4950 return getConstantFP(apf, DL, VT); 4951 } 4952 case ISD::BITCAST: 4953 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4954 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4955 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4956 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4957 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4958 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4959 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4960 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4961 break; 4962 case ISD::ABS: 4963 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4964 C->isOpaque()); 4965 case ISD::BITREVERSE: 4966 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4967 C->isOpaque()); 4968 case ISD::BSWAP: 4969 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4970 C->isOpaque()); 4971 case ISD::CTPOP: 4972 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4973 C->isOpaque()); 4974 case ISD::CTLZ: 4975 case ISD::CTLZ_ZERO_UNDEF: 4976 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4977 C->isOpaque()); 4978 case ISD::CTTZ: 4979 case ISD::CTTZ_ZERO_UNDEF: 4980 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4981 C->isOpaque()); 4982 case ISD::FP16_TO_FP: { 4983 bool Ignored; 4984 APFloat FPV(APFloat::IEEEhalf(), 4985 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4986 4987 // This can return overflow, underflow, or inexact; we don't care. 4988 // FIXME need to be more flexible about rounding mode. 4989 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4990 APFloat::rmNearestTiesToEven, &Ignored); 4991 return getConstantFP(FPV, DL, VT); 4992 } 4993 case ISD::STEP_VECTOR: { 4994 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4995 return V; 4996 break; 4997 } 4998 } 4999 } 5000 5001 // Constant fold unary operations with a floating point constant operand. 5002 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5003 APFloat V = C->getValueAPF(); // make copy 5004 switch (Opcode) { 5005 case ISD::FNEG: 5006 V.changeSign(); 5007 return getConstantFP(V, DL, VT); 5008 case ISD::FABS: 5009 V.clearSign(); 5010 return getConstantFP(V, DL, VT); 5011 case ISD::FCEIL: { 5012 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5013 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5014 return getConstantFP(V, DL, VT); 5015 break; 5016 } 5017 case ISD::FTRUNC: { 5018 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5019 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5020 return getConstantFP(V, DL, VT); 5021 break; 5022 } 5023 case ISD::FFLOOR: { 5024 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5025 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5026 return getConstantFP(V, DL, VT); 5027 break; 5028 } 5029 case ISD::FP_EXTEND: { 5030 bool ignored; 5031 // This can return overflow, underflow, or inexact; we don't care. 5032 // FIXME need to be more flexible about rounding mode. 5033 (void)V.convert(EVTToAPFloatSemantics(VT), 5034 APFloat::rmNearestTiesToEven, &ignored); 5035 return getConstantFP(V, DL, VT); 5036 } 5037 case ISD::FP_TO_SINT: 5038 case ISD::FP_TO_UINT: { 5039 bool ignored; 5040 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5041 // FIXME need to be more flexible about rounding mode. 5042 APFloat::opStatus s = 5043 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5044 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5045 break; 5046 return getConstant(IntVal, DL, VT); 5047 } 5048 case ISD::BITCAST: 5049 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5050 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5051 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5052 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5053 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5054 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5055 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5056 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5057 break; 5058 case ISD::FP_TO_FP16: { 5059 bool Ignored; 5060 // This can return overflow, underflow, or inexact; we don't care. 5061 // FIXME need to be more flexible about rounding mode. 5062 (void)V.convert(APFloat::IEEEhalf(), 5063 APFloat::rmNearestTiesToEven, &Ignored); 5064 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5065 } 5066 } 5067 } 5068 5069 // Constant fold unary operations with a vector integer or float operand. 5070 switch (Opcode) { 5071 default: 5072 // FIXME: Entirely reasonable to perform folding of other unary 5073 // operations here as the need arises. 5074 break; 5075 case ISD::FNEG: 5076 case ISD::FABS: 5077 case ISD::FCEIL: 5078 case ISD::FTRUNC: 5079 case ISD::FFLOOR: 5080 case ISD::FP_EXTEND: 5081 case ISD::FP_TO_SINT: 5082 case ISD::FP_TO_UINT: 5083 case ISD::TRUNCATE: 5084 case ISD::ANY_EXTEND: 5085 case ISD::ZERO_EXTEND: 5086 case ISD::SIGN_EXTEND: 5087 case ISD::UINT_TO_FP: 5088 case ISD::SINT_TO_FP: 5089 case ISD::ABS: 5090 case ISD::BITREVERSE: 5091 case ISD::BSWAP: 5092 case ISD::CTLZ: 5093 case ISD::CTLZ_ZERO_UNDEF: 5094 case ISD::CTTZ: 5095 case ISD::CTTZ_ZERO_UNDEF: 5096 case ISD::CTPOP: { 5097 SDValue Ops = {Operand}; 5098 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5099 return Fold; 5100 } 5101 } 5102 5103 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5104 switch (Opcode) { 5105 case ISD::STEP_VECTOR: 5106 assert(VT.isScalableVector() && 5107 "STEP_VECTOR can only be used with scalable types"); 5108 assert(OpOpcode == ISD::TargetConstant && 5109 VT.getVectorElementType() == Operand.getValueType() && 5110 "Unexpected step operand"); 5111 break; 5112 case ISD::FREEZE: 5113 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5114 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5115 return Operand; 5116 break; 5117 case ISD::TokenFactor: 5118 case ISD::MERGE_VALUES: 5119 case ISD::CONCAT_VECTORS: 5120 return Operand; // Factor, merge or concat of one node? No need. 5121 case ISD::BUILD_VECTOR: { 5122 // Attempt to simplify BUILD_VECTOR. 5123 SDValue Ops[] = {Operand}; 5124 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5125 return V; 5126 break; 5127 } 5128 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5129 case ISD::FP_EXTEND: 5130 assert(VT.isFloatingPoint() && 5131 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5132 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5133 assert((!VT.isVector() || 5134 VT.getVectorElementCount() == 5135 Operand.getValueType().getVectorElementCount()) && 5136 "Vector element count mismatch!"); 5137 assert(Operand.getValueType().bitsLT(VT) && 5138 "Invalid fpext node, dst < src!"); 5139 if (Operand.isUndef()) 5140 return getUNDEF(VT); 5141 break; 5142 case ISD::FP_TO_SINT: 5143 case ISD::FP_TO_UINT: 5144 if (Operand.isUndef()) 5145 return getUNDEF(VT); 5146 break; 5147 case ISD::SINT_TO_FP: 5148 case ISD::UINT_TO_FP: 5149 // [us]itofp(undef) = 0, because the result value is bounded. 5150 if (Operand.isUndef()) 5151 return getConstantFP(0.0, DL, VT); 5152 break; 5153 case ISD::SIGN_EXTEND: 5154 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5155 "Invalid SIGN_EXTEND!"); 5156 assert(VT.isVector() == Operand.getValueType().isVector() && 5157 "SIGN_EXTEND result type type should be vector iff the operand " 5158 "type is vector!"); 5159 if (Operand.getValueType() == VT) return Operand; // noop extension 5160 assert((!VT.isVector() || 5161 VT.getVectorElementCount() == 5162 Operand.getValueType().getVectorElementCount()) && 5163 "Vector element count mismatch!"); 5164 assert(Operand.getValueType().bitsLT(VT) && 5165 "Invalid sext node, dst < src!"); 5166 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5167 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5168 if (OpOpcode == ISD::UNDEF) 5169 // sext(undef) = 0, because the top bits will all be the same. 5170 return getConstant(0, DL, VT); 5171 break; 5172 case ISD::ZERO_EXTEND: 5173 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5174 "Invalid ZERO_EXTEND!"); 5175 assert(VT.isVector() == Operand.getValueType().isVector() && 5176 "ZERO_EXTEND result type type should be vector iff the operand " 5177 "type is vector!"); 5178 if (Operand.getValueType() == VT) return Operand; // noop extension 5179 assert((!VT.isVector() || 5180 VT.getVectorElementCount() == 5181 Operand.getValueType().getVectorElementCount()) && 5182 "Vector element count mismatch!"); 5183 assert(Operand.getValueType().bitsLT(VT) && 5184 "Invalid zext node, dst < src!"); 5185 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5186 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5187 if (OpOpcode == ISD::UNDEF) 5188 // zext(undef) = 0, because the top bits will be zero. 5189 return getConstant(0, DL, VT); 5190 break; 5191 case ISD::ANY_EXTEND: 5192 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5193 "Invalid ANY_EXTEND!"); 5194 assert(VT.isVector() == Operand.getValueType().isVector() && 5195 "ANY_EXTEND result type type should be vector iff the operand " 5196 "type is vector!"); 5197 if (Operand.getValueType() == VT) return Operand; // noop extension 5198 assert((!VT.isVector() || 5199 VT.getVectorElementCount() == 5200 Operand.getValueType().getVectorElementCount()) && 5201 "Vector element count mismatch!"); 5202 assert(Operand.getValueType().bitsLT(VT) && 5203 "Invalid anyext node, dst < src!"); 5204 5205 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5206 OpOpcode == ISD::ANY_EXTEND) 5207 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5208 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5209 if (OpOpcode == ISD::UNDEF) 5210 return getUNDEF(VT); 5211 5212 // (ext (trunc x)) -> x 5213 if (OpOpcode == ISD::TRUNCATE) { 5214 SDValue OpOp = Operand.getOperand(0); 5215 if (OpOp.getValueType() == VT) { 5216 transferDbgValues(Operand, OpOp); 5217 return OpOp; 5218 } 5219 } 5220 break; 5221 case ISD::TRUNCATE: 5222 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5223 "Invalid TRUNCATE!"); 5224 assert(VT.isVector() == Operand.getValueType().isVector() && 5225 "TRUNCATE result type type should be vector iff the operand " 5226 "type is vector!"); 5227 if (Operand.getValueType() == VT) return Operand; // noop truncate 5228 assert((!VT.isVector() || 5229 VT.getVectorElementCount() == 5230 Operand.getValueType().getVectorElementCount()) && 5231 "Vector element count mismatch!"); 5232 assert(Operand.getValueType().bitsGT(VT) && 5233 "Invalid truncate node, src < dst!"); 5234 if (OpOpcode == ISD::TRUNCATE) 5235 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5236 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5237 OpOpcode == ISD::ANY_EXTEND) { 5238 // If the source is smaller than the dest, we still need an extend. 5239 if (Operand.getOperand(0).getValueType().getScalarType() 5240 .bitsLT(VT.getScalarType())) 5241 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5242 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5243 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5244 return Operand.getOperand(0); 5245 } 5246 if (OpOpcode == ISD::UNDEF) 5247 return getUNDEF(VT); 5248 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5249 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5250 break; 5251 case ISD::ANY_EXTEND_VECTOR_INREG: 5252 case ISD::ZERO_EXTEND_VECTOR_INREG: 5253 case ISD::SIGN_EXTEND_VECTOR_INREG: 5254 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5255 assert(Operand.getValueType().bitsLE(VT) && 5256 "The input must be the same size or smaller than the result."); 5257 assert(VT.getVectorMinNumElements() < 5258 Operand.getValueType().getVectorMinNumElements() && 5259 "The destination vector type must have fewer lanes than the input."); 5260 break; 5261 case ISD::ABS: 5262 assert(VT.isInteger() && VT == Operand.getValueType() && 5263 "Invalid ABS!"); 5264 if (OpOpcode == ISD::UNDEF) 5265 return getConstant(0, DL, VT); 5266 break; 5267 case ISD::BSWAP: 5268 assert(VT.isInteger() && VT == Operand.getValueType() && 5269 "Invalid BSWAP!"); 5270 assert((VT.getScalarSizeInBits() % 16 == 0) && 5271 "BSWAP types must be a multiple of 16 bits!"); 5272 if (OpOpcode == ISD::UNDEF) 5273 return getUNDEF(VT); 5274 // bswap(bswap(X)) -> X. 5275 if (OpOpcode == ISD::BSWAP) 5276 return Operand.getOperand(0); 5277 break; 5278 case ISD::BITREVERSE: 5279 assert(VT.isInteger() && VT == Operand.getValueType() && 5280 "Invalid BITREVERSE!"); 5281 if (OpOpcode == ISD::UNDEF) 5282 return getUNDEF(VT); 5283 break; 5284 case ISD::BITCAST: 5285 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5286 "Cannot BITCAST between types of different sizes!"); 5287 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5288 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5289 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5290 if (OpOpcode == ISD::UNDEF) 5291 return getUNDEF(VT); 5292 break; 5293 case ISD::SCALAR_TO_VECTOR: 5294 assert(VT.isVector() && !Operand.getValueType().isVector() && 5295 (VT.getVectorElementType() == Operand.getValueType() || 5296 (VT.getVectorElementType().isInteger() && 5297 Operand.getValueType().isInteger() && 5298 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5299 "Illegal SCALAR_TO_VECTOR node!"); 5300 if (OpOpcode == ISD::UNDEF) 5301 return getUNDEF(VT); 5302 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5303 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5304 isa<ConstantSDNode>(Operand.getOperand(1)) && 5305 Operand.getConstantOperandVal(1) == 0 && 5306 Operand.getOperand(0).getValueType() == VT) 5307 return Operand.getOperand(0); 5308 break; 5309 case ISD::FNEG: 5310 // Negation of an unknown bag of bits is still completely undefined. 5311 if (OpOpcode == ISD::UNDEF) 5312 return getUNDEF(VT); 5313 5314 if (OpOpcode == ISD::FNEG) // --X -> X 5315 return Operand.getOperand(0); 5316 break; 5317 case ISD::FABS: 5318 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5319 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5320 break; 5321 case ISD::VSCALE: 5322 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5323 break; 5324 case ISD::CTPOP: 5325 if (Operand.getValueType().getScalarType() == MVT::i1) 5326 return Operand; 5327 break; 5328 case ISD::CTLZ: 5329 case ISD::CTTZ: 5330 if (Operand.getValueType().getScalarType() == MVT::i1) 5331 return getNOT(DL, Operand, Operand.getValueType()); 5332 break; 5333 case ISD::VECREDUCE_ADD: 5334 if (Operand.getValueType().getScalarType() == MVT::i1) 5335 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5336 break; 5337 case ISD::VECREDUCE_SMIN: 5338 case ISD::VECREDUCE_UMAX: 5339 if (Operand.getValueType().getScalarType() == MVT::i1) 5340 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5341 break; 5342 case ISD::VECREDUCE_SMAX: 5343 case ISD::VECREDUCE_UMIN: 5344 if (Operand.getValueType().getScalarType() == MVT::i1) 5345 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5346 break; 5347 } 5348 5349 SDNode *N; 5350 SDVTList VTs = getVTList(VT); 5351 SDValue Ops[] = {Operand}; 5352 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5353 FoldingSetNodeID ID; 5354 AddNodeIDNode(ID, Opcode, VTs, Ops); 5355 void *IP = nullptr; 5356 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5357 E->intersectFlagsWith(Flags); 5358 return SDValue(E, 0); 5359 } 5360 5361 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5362 N->setFlags(Flags); 5363 createOperands(N, Ops); 5364 CSEMap.InsertNode(N, IP); 5365 } else { 5366 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5367 createOperands(N, Ops); 5368 } 5369 5370 InsertNode(N); 5371 SDValue V = SDValue(N, 0); 5372 NewSDValueDbgMsg(V, "Creating new node: ", this); 5373 return V; 5374 } 5375 5376 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5377 const APInt &C2) { 5378 switch (Opcode) { 5379 case ISD::ADD: return C1 + C2; 5380 case ISD::SUB: return C1 - C2; 5381 case ISD::MUL: return C1 * C2; 5382 case ISD::AND: return C1 & C2; 5383 case ISD::OR: return C1 | C2; 5384 case ISD::XOR: return C1 ^ C2; 5385 case ISD::SHL: return C1 << C2; 5386 case ISD::SRL: return C1.lshr(C2); 5387 case ISD::SRA: return C1.ashr(C2); 5388 case ISD::ROTL: return C1.rotl(C2); 5389 case ISD::ROTR: return C1.rotr(C2); 5390 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5391 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5392 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5393 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5394 case ISD::SADDSAT: return C1.sadd_sat(C2); 5395 case ISD::UADDSAT: return C1.uadd_sat(C2); 5396 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5397 case ISD::USUBSAT: return C1.usub_sat(C2); 5398 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5399 case ISD::USHLSAT: return C1.ushl_sat(C2); 5400 case ISD::UDIV: 5401 if (!C2.getBoolValue()) 5402 break; 5403 return C1.udiv(C2); 5404 case ISD::UREM: 5405 if (!C2.getBoolValue()) 5406 break; 5407 return C1.urem(C2); 5408 case ISD::SDIV: 5409 if (!C2.getBoolValue()) 5410 break; 5411 return C1.sdiv(C2); 5412 case ISD::SREM: 5413 if (!C2.getBoolValue()) 5414 break; 5415 return C1.srem(C2); 5416 case ISD::MULHS: { 5417 unsigned FullWidth = C1.getBitWidth() * 2; 5418 APInt C1Ext = C1.sext(FullWidth); 5419 APInt C2Ext = C2.sext(FullWidth); 5420 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5421 } 5422 case ISD::MULHU: { 5423 unsigned FullWidth = C1.getBitWidth() * 2; 5424 APInt C1Ext = C1.zext(FullWidth); 5425 APInt C2Ext = C2.zext(FullWidth); 5426 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5427 } 5428 case ISD::AVGFLOORS: { 5429 unsigned FullWidth = C1.getBitWidth() + 1; 5430 APInt C1Ext = C1.sext(FullWidth); 5431 APInt C2Ext = C2.sext(FullWidth); 5432 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5433 } 5434 case ISD::AVGFLOORU: { 5435 unsigned FullWidth = C1.getBitWidth() + 1; 5436 APInt C1Ext = C1.zext(FullWidth); 5437 APInt C2Ext = C2.zext(FullWidth); 5438 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5439 } 5440 case ISD::AVGCEILS: { 5441 unsigned FullWidth = C1.getBitWidth() + 1; 5442 APInt C1Ext = C1.sext(FullWidth); 5443 APInt C2Ext = C2.sext(FullWidth); 5444 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5445 } 5446 case ISD::AVGCEILU: { 5447 unsigned FullWidth = C1.getBitWidth() + 1; 5448 APInt C1Ext = C1.zext(FullWidth); 5449 APInt C2Ext = C2.zext(FullWidth); 5450 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5451 } 5452 } 5453 return llvm::None; 5454 } 5455 5456 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5457 const GlobalAddressSDNode *GA, 5458 const SDNode *N2) { 5459 if (GA->getOpcode() != ISD::GlobalAddress) 5460 return SDValue(); 5461 if (!TLI->isOffsetFoldingLegal(GA)) 5462 return SDValue(); 5463 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5464 if (!C2) 5465 return SDValue(); 5466 int64_t Offset = C2->getSExtValue(); 5467 switch (Opcode) { 5468 case ISD::ADD: break; 5469 case ISD::SUB: Offset = -uint64_t(Offset); break; 5470 default: return SDValue(); 5471 } 5472 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5473 GA->getOffset() + uint64_t(Offset)); 5474 } 5475 5476 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5477 switch (Opcode) { 5478 case ISD::SDIV: 5479 case ISD::UDIV: 5480 case ISD::SREM: 5481 case ISD::UREM: { 5482 // If a divisor is zero/undef or any element of a divisor vector is 5483 // zero/undef, the whole op is undef. 5484 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5485 SDValue Divisor = Ops[1]; 5486 if (Divisor.isUndef() || isNullConstant(Divisor)) 5487 return true; 5488 5489 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5490 llvm::any_of(Divisor->op_values(), 5491 [](SDValue V) { return V.isUndef() || 5492 isNullConstant(V); }); 5493 // TODO: Handle signed overflow. 5494 } 5495 // TODO: Handle oversized shifts. 5496 default: 5497 return false; 5498 } 5499 } 5500 5501 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5502 EVT VT, ArrayRef<SDValue> Ops) { 5503 // If the opcode is a target-specific ISD node, there's nothing we can 5504 // do here and the operand rules may not line up with the below, so 5505 // bail early. 5506 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5507 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5508 // foldCONCAT_VECTORS in getNode before this is called. 5509 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5510 return SDValue(); 5511 5512 unsigned NumOps = Ops.size(); 5513 if (NumOps == 0) 5514 return SDValue(); 5515 5516 if (isUndef(Opcode, Ops)) 5517 return getUNDEF(VT); 5518 5519 // Handle binops special cases. 5520 if (NumOps == 2) { 5521 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5522 return CFP; 5523 5524 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5525 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5526 if (C1->isOpaque() || C2->isOpaque()) 5527 return SDValue(); 5528 5529 Optional<APInt> FoldAttempt = 5530 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5531 if (!FoldAttempt) 5532 return SDValue(); 5533 5534 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5535 assert((!Folded || !VT.isVector()) && 5536 "Can't fold vectors ops with scalar operands"); 5537 return Folded; 5538 } 5539 } 5540 5541 // fold (add Sym, c) -> Sym+c 5542 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5543 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5544 if (TLI->isCommutativeBinOp(Opcode)) 5545 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5546 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5547 } 5548 5549 // This is for vector folding only from here on. 5550 if (!VT.isVector()) 5551 return SDValue(); 5552 5553 ElementCount NumElts = VT.getVectorElementCount(); 5554 5555 // See if we can fold through bitcasted integer ops. 5556 // TODO: Can we handle undef elements? 5557 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5558 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5559 Ops[0].getOpcode() == ISD::BITCAST && 5560 Ops[1].getOpcode() == ISD::BITCAST) { 5561 SDValue N1 = peekThroughBitcasts(Ops[0]); 5562 SDValue N2 = peekThroughBitcasts(Ops[1]); 5563 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5564 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5565 EVT BVVT = N1.getValueType(); 5566 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5567 bool IsLE = getDataLayout().isLittleEndian(); 5568 unsigned EltBits = VT.getScalarSizeInBits(); 5569 SmallVector<APInt> RawBits1, RawBits2; 5570 BitVector UndefElts1, UndefElts2; 5571 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5572 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5573 UndefElts1.none() && UndefElts2.none()) { 5574 SmallVector<APInt> RawBits; 5575 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5576 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5577 if (!Fold) 5578 break; 5579 RawBits.push_back(Fold.getValue()); 5580 } 5581 if (RawBits.size() == NumElts.getFixedValue()) { 5582 // We have constant folded, but we need to cast this again back to 5583 // the original (possibly legalized) type. 5584 SmallVector<APInt> DstBits; 5585 BitVector DstUndefs; 5586 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5587 DstBits, RawBits, DstUndefs, 5588 BitVector(RawBits.size(), false)); 5589 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5590 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5591 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5592 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5593 if (DstUndefs[I]) 5594 continue; 5595 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5596 } 5597 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5598 } 5599 } 5600 } 5601 } 5602 5603 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5604 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5605 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5606 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5607 APInt RHSVal; 5608 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5609 APInt NewStep = Opcode == ISD::MUL 5610 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5611 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5612 return getStepVector(DL, VT, NewStep); 5613 } 5614 } 5615 5616 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5617 return !Op.getValueType().isVector() || 5618 Op.getValueType().getVectorElementCount() == NumElts; 5619 }; 5620 5621 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5622 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5623 Op.getOpcode() == ISD::BUILD_VECTOR || 5624 Op.getOpcode() == ISD::SPLAT_VECTOR; 5625 }; 5626 5627 // All operands must be vector types with the same number of elements as 5628 // the result type and must be either UNDEF or a build/splat vector 5629 // or UNDEF scalars. 5630 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5631 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5632 return SDValue(); 5633 5634 // If we are comparing vectors, then the result needs to be a i1 boolean that 5635 // is then extended back to the legal result type depending on how booleans 5636 // are represented. 5637 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5638 ISD::NodeType ExtendCode = 5639 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5640 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5641 : ISD::SIGN_EXTEND; 5642 5643 // Find legal integer scalar type for constant promotion and 5644 // ensure that its scalar size is at least as large as source. 5645 EVT LegalSVT = VT.getScalarType(); 5646 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5647 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5648 if (LegalSVT.bitsLT(VT.getScalarType())) 5649 return SDValue(); 5650 } 5651 5652 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5653 // only have one operand to check. For fixed-length vector types we may have 5654 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5655 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5656 5657 // Constant fold each scalar lane separately. 5658 SmallVector<SDValue, 4> ScalarResults; 5659 for (unsigned I = 0; I != NumVectorElts; I++) { 5660 SmallVector<SDValue, 4> ScalarOps; 5661 for (SDValue Op : Ops) { 5662 EVT InSVT = Op.getValueType().getScalarType(); 5663 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5664 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5665 if (Op.isUndef()) 5666 ScalarOps.push_back(getUNDEF(InSVT)); 5667 else 5668 ScalarOps.push_back(Op); 5669 continue; 5670 } 5671 5672 SDValue ScalarOp = 5673 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5674 EVT ScalarVT = ScalarOp.getValueType(); 5675 5676 // Build vector (integer) scalar operands may need implicit 5677 // truncation - do this before constant folding. 5678 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5679 // Don't create illegally-typed nodes unless they're constants or undef 5680 // - if we fail to constant fold we can't guarantee the (dead) nodes 5681 // we're creating will be cleaned up before being visited for 5682 // legalization. 5683 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5684 !isa<ConstantSDNode>(ScalarOp) && 5685 TLI->getTypeAction(*getContext(), InSVT) != 5686 TargetLowering::TypeLegal) 5687 return SDValue(); 5688 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5689 } 5690 5691 ScalarOps.push_back(ScalarOp); 5692 } 5693 5694 // Constant fold the scalar operands. 5695 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5696 5697 // Legalize the (integer) scalar constant if necessary. 5698 if (LegalSVT != SVT) 5699 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5700 5701 // Scalar folding only succeeded if the result is a constant or UNDEF. 5702 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5703 ScalarResult.getOpcode() != ISD::ConstantFP) 5704 return SDValue(); 5705 ScalarResults.push_back(ScalarResult); 5706 } 5707 5708 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5709 : getBuildVector(VT, DL, ScalarResults); 5710 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5711 return V; 5712 } 5713 5714 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5715 EVT VT, SDValue N1, SDValue N2) { 5716 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5717 // should. That will require dealing with a potentially non-default 5718 // rounding mode, checking the "opStatus" return value from the APFloat 5719 // math calculations, and possibly other variations. 5720 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5721 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5722 if (N1CFP && N2CFP) { 5723 APFloat C1 = N1CFP->getValueAPF(); // make copy 5724 const APFloat &C2 = N2CFP->getValueAPF(); 5725 switch (Opcode) { 5726 case ISD::FADD: 5727 C1.add(C2, APFloat::rmNearestTiesToEven); 5728 return getConstantFP(C1, DL, VT); 5729 case ISD::FSUB: 5730 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5731 return getConstantFP(C1, DL, VT); 5732 case ISD::FMUL: 5733 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5734 return getConstantFP(C1, DL, VT); 5735 case ISD::FDIV: 5736 C1.divide(C2, APFloat::rmNearestTiesToEven); 5737 return getConstantFP(C1, DL, VT); 5738 case ISD::FREM: 5739 C1.mod(C2); 5740 return getConstantFP(C1, DL, VT); 5741 case ISD::FCOPYSIGN: 5742 C1.copySign(C2); 5743 return getConstantFP(C1, DL, VT); 5744 case ISD::FMINNUM: 5745 return getConstantFP(minnum(C1, C2), DL, VT); 5746 case ISD::FMAXNUM: 5747 return getConstantFP(maxnum(C1, C2), DL, VT); 5748 case ISD::FMINIMUM: 5749 return getConstantFP(minimum(C1, C2), DL, VT); 5750 case ISD::FMAXIMUM: 5751 return getConstantFP(maximum(C1, C2), DL, VT); 5752 default: break; 5753 } 5754 } 5755 if (N1CFP && Opcode == ISD::FP_ROUND) { 5756 APFloat C1 = N1CFP->getValueAPF(); // make copy 5757 bool Unused; 5758 // This can return overflow, underflow, or inexact; we don't care. 5759 // FIXME need to be more flexible about rounding mode. 5760 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5761 &Unused); 5762 return getConstantFP(C1, DL, VT); 5763 } 5764 5765 switch (Opcode) { 5766 case ISD::FSUB: 5767 // -0.0 - undef --> undef (consistent with "fneg undef") 5768 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5769 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5770 return getUNDEF(VT); 5771 LLVM_FALLTHROUGH; 5772 5773 case ISD::FADD: 5774 case ISD::FMUL: 5775 case ISD::FDIV: 5776 case ISD::FREM: 5777 // If both operands are undef, the result is undef. If 1 operand is undef, 5778 // the result is NaN. This should match the behavior of the IR optimizer. 5779 if (N1.isUndef() && N2.isUndef()) 5780 return getUNDEF(VT); 5781 if (N1.isUndef() || N2.isUndef()) 5782 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5783 } 5784 return SDValue(); 5785 } 5786 5787 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5788 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5789 5790 // There's no need to assert on a byte-aligned pointer. All pointers are at 5791 // least byte aligned. 5792 if (A == Align(1)) 5793 return Val; 5794 5795 FoldingSetNodeID ID; 5796 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5797 ID.AddInteger(A.value()); 5798 5799 void *IP = nullptr; 5800 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5801 return SDValue(E, 0); 5802 5803 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5804 Val.getValueType(), A); 5805 createOperands(N, {Val}); 5806 5807 CSEMap.InsertNode(N, IP); 5808 InsertNode(N); 5809 5810 SDValue V(N, 0); 5811 NewSDValueDbgMsg(V, "Creating new node: ", this); 5812 return V; 5813 } 5814 5815 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5816 SDValue N1, SDValue N2) { 5817 SDNodeFlags Flags; 5818 if (Inserter) 5819 Flags = Inserter->getFlags(); 5820 return getNode(Opcode, DL, VT, N1, N2, Flags); 5821 } 5822 5823 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5824 SDValue &N2) const { 5825 if (!TLI->isCommutativeBinOp(Opcode)) 5826 return; 5827 5828 // Canonicalize: 5829 // binop(const, nonconst) -> binop(nonconst, const) 5830 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5831 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5832 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5833 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5834 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5835 std::swap(N1, N2); 5836 5837 // Canonicalize: 5838 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5839 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5840 N2.getOpcode() == ISD::STEP_VECTOR) 5841 std::swap(N1, N2); 5842 } 5843 5844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5845 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5846 assert(N1.getOpcode() != ISD::DELETED_NODE && 5847 N2.getOpcode() != ISD::DELETED_NODE && 5848 "Operand is DELETED_NODE!"); 5849 5850 canonicalizeCommutativeBinop(Opcode, N1, N2); 5851 5852 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5853 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5854 5855 // Don't allow undefs in vector splats - we might be returning N2 when folding 5856 // to zero etc. 5857 ConstantSDNode *N2CV = 5858 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5859 5860 switch (Opcode) { 5861 default: break; 5862 case ISD::TokenFactor: 5863 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5864 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5865 // Fold trivial token factors. 5866 if (N1.getOpcode() == ISD::EntryToken) return N2; 5867 if (N2.getOpcode() == ISD::EntryToken) return N1; 5868 if (N1 == N2) return N1; 5869 break; 5870 case ISD::BUILD_VECTOR: { 5871 // Attempt to simplify BUILD_VECTOR. 5872 SDValue Ops[] = {N1, N2}; 5873 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5874 return V; 5875 break; 5876 } 5877 case ISD::CONCAT_VECTORS: { 5878 SDValue Ops[] = {N1, N2}; 5879 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5880 return V; 5881 break; 5882 } 5883 case ISD::AND: 5884 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5885 assert(N1.getValueType() == N2.getValueType() && 5886 N1.getValueType() == VT && "Binary operator types must match!"); 5887 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5888 // worth handling here. 5889 if (N2CV && N2CV->isZero()) 5890 return N2; 5891 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5892 return N1; 5893 break; 5894 case ISD::OR: 5895 case ISD::XOR: 5896 case ISD::ADD: 5897 case ISD::SUB: 5898 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5899 assert(N1.getValueType() == N2.getValueType() && 5900 N1.getValueType() == VT && "Binary operator types must match!"); 5901 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5902 // it's worth handling here. 5903 if (N2CV && N2CV->isZero()) 5904 return N1; 5905 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5906 VT.getVectorElementType() == MVT::i1) 5907 return getNode(ISD::XOR, DL, VT, N1, N2); 5908 break; 5909 case ISD::MUL: 5910 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5911 assert(N1.getValueType() == N2.getValueType() && 5912 N1.getValueType() == VT && "Binary operator types must match!"); 5913 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5914 return getNode(ISD::AND, DL, VT, N1, N2); 5915 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5916 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5917 const APInt &N2CImm = N2C->getAPIntValue(); 5918 return getVScale(DL, VT, MulImm * N2CImm); 5919 } 5920 break; 5921 case ISD::UDIV: 5922 case ISD::UREM: 5923 case ISD::MULHU: 5924 case ISD::MULHS: 5925 case ISD::SDIV: 5926 case ISD::SREM: 5927 case ISD::SADDSAT: 5928 case ISD::SSUBSAT: 5929 case ISD::UADDSAT: 5930 case ISD::USUBSAT: 5931 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5932 assert(N1.getValueType() == N2.getValueType() && 5933 N1.getValueType() == VT && "Binary operator types must match!"); 5934 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5935 // fold (add_sat x, y) -> (or x, y) for bool types. 5936 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5937 return getNode(ISD::OR, DL, VT, N1, N2); 5938 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5939 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5940 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5941 } 5942 break; 5943 case ISD::SMIN: 5944 case ISD::UMAX: 5945 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5946 assert(N1.getValueType() == N2.getValueType() && 5947 N1.getValueType() == VT && "Binary operator types must match!"); 5948 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5949 return getNode(ISD::OR, DL, VT, N1, N2); 5950 break; 5951 case ISD::SMAX: 5952 case ISD::UMIN: 5953 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5954 assert(N1.getValueType() == N2.getValueType() && 5955 N1.getValueType() == VT && "Binary operator types must match!"); 5956 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5957 return getNode(ISD::AND, DL, VT, N1, N2); 5958 break; 5959 case ISD::FADD: 5960 case ISD::FSUB: 5961 case ISD::FMUL: 5962 case ISD::FDIV: 5963 case ISD::FREM: 5964 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5965 assert(N1.getValueType() == N2.getValueType() && 5966 N1.getValueType() == VT && "Binary operator types must match!"); 5967 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5968 return V; 5969 break; 5970 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5971 assert(N1.getValueType() == VT && 5972 N1.getValueType().isFloatingPoint() && 5973 N2.getValueType().isFloatingPoint() && 5974 "Invalid FCOPYSIGN!"); 5975 break; 5976 case ISD::SHL: 5977 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5978 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5979 const APInt &ShiftImm = N2C->getAPIntValue(); 5980 return getVScale(DL, VT, MulImm << ShiftImm); 5981 } 5982 LLVM_FALLTHROUGH; 5983 case ISD::SRA: 5984 case ISD::SRL: 5985 if (SDValue V = simplifyShift(N1, N2)) 5986 return V; 5987 LLVM_FALLTHROUGH; 5988 case ISD::ROTL: 5989 case ISD::ROTR: 5990 assert(VT == N1.getValueType() && 5991 "Shift operators return type must be the same as their first arg"); 5992 assert(VT.isInteger() && N2.getValueType().isInteger() && 5993 "Shifts only work on integers"); 5994 assert((!VT.isVector() || VT == N2.getValueType()) && 5995 "Vector shift amounts must be in the same as their first arg"); 5996 // Verify that the shift amount VT is big enough to hold valid shift 5997 // amounts. This catches things like trying to shift an i1024 value by an 5998 // i8, which is easy to fall into in generic code that uses 5999 // TLI.getShiftAmount(). 6000 assert(N2.getValueType().getScalarSizeInBits() >= 6001 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6002 "Invalid use of small shift amount with oversized value!"); 6003 6004 // Always fold shifts of i1 values so the code generator doesn't need to 6005 // handle them. Since we know the size of the shift has to be less than the 6006 // size of the value, the shift/rotate count is guaranteed to be zero. 6007 if (VT == MVT::i1) 6008 return N1; 6009 if (N2CV && N2CV->isZero()) 6010 return N1; 6011 break; 6012 case ISD::FP_ROUND: 6013 assert(VT.isFloatingPoint() && 6014 N1.getValueType().isFloatingPoint() && 6015 VT.bitsLE(N1.getValueType()) && 6016 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6017 "Invalid FP_ROUND!"); 6018 if (N1.getValueType() == VT) return N1; // noop conversion. 6019 break; 6020 case ISD::AssertSext: 6021 case ISD::AssertZext: { 6022 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6023 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6024 assert(VT.isInteger() && EVT.isInteger() && 6025 "Cannot *_EXTEND_INREG FP types"); 6026 assert(!EVT.isVector() && 6027 "AssertSExt/AssertZExt type should be the vector element type " 6028 "rather than the vector type!"); 6029 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6030 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6031 break; 6032 } 6033 case ISD::SIGN_EXTEND_INREG: { 6034 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6035 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6036 assert(VT.isInteger() && EVT.isInteger() && 6037 "Cannot *_EXTEND_INREG FP types"); 6038 assert(EVT.isVector() == VT.isVector() && 6039 "SIGN_EXTEND_INREG type should be vector iff the operand " 6040 "type is vector!"); 6041 assert((!EVT.isVector() || 6042 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6043 "Vector element counts must match in SIGN_EXTEND_INREG"); 6044 assert(EVT.bitsLE(VT) && "Not extending!"); 6045 if (EVT == VT) return N1; // Not actually extending 6046 6047 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6048 unsigned FromBits = EVT.getScalarSizeInBits(); 6049 Val <<= Val.getBitWidth() - FromBits; 6050 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6051 return getConstant(Val, DL, ConstantVT); 6052 }; 6053 6054 if (N1C) { 6055 const APInt &Val = N1C->getAPIntValue(); 6056 return SignExtendInReg(Val, VT); 6057 } 6058 6059 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6060 SmallVector<SDValue, 8> Ops; 6061 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6062 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6063 SDValue Op = N1.getOperand(i); 6064 if (Op.isUndef()) { 6065 Ops.push_back(getUNDEF(OpVT)); 6066 continue; 6067 } 6068 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6069 APInt Val = C->getAPIntValue(); 6070 Ops.push_back(SignExtendInReg(Val, OpVT)); 6071 } 6072 return getBuildVector(VT, DL, Ops); 6073 } 6074 break; 6075 } 6076 case ISD::FP_TO_SINT_SAT: 6077 case ISD::FP_TO_UINT_SAT: { 6078 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6079 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6080 assert(N1.getValueType().isVector() == VT.isVector() && 6081 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6082 "vector!"); 6083 assert((!VT.isVector() || VT.getVectorNumElements() == 6084 N1.getValueType().getVectorNumElements()) && 6085 "Vector element counts must match in FP_TO_*INT_SAT"); 6086 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6087 "Type to saturate to must be a scalar."); 6088 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6089 "Not extending!"); 6090 break; 6091 } 6092 case ISD::EXTRACT_VECTOR_ELT: 6093 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6094 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6095 element type of the vector."); 6096 6097 // Extract from an undefined value or using an undefined index is undefined. 6098 if (N1.isUndef() || N2.isUndef()) 6099 return getUNDEF(VT); 6100 6101 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6102 // vectors. For scalable vectors we will provide appropriate support for 6103 // dealing with arbitrary indices. 6104 if (N2C && N1.getValueType().isFixedLengthVector() && 6105 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6106 return getUNDEF(VT); 6107 6108 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6109 // expanding copies of large vectors from registers. This only works for 6110 // fixed length vectors, since we need to know the exact number of 6111 // elements. 6112 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6113 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6114 unsigned Factor = 6115 N1.getOperand(0).getValueType().getVectorNumElements(); 6116 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6117 N1.getOperand(N2C->getZExtValue() / Factor), 6118 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6119 } 6120 6121 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6122 // lowering is expanding large vector constants. 6123 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6124 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6125 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6126 N1.getValueType().isFixedLengthVector()) && 6127 "BUILD_VECTOR used for scalable vectors"); 6128 unsigned Index = 6129 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6130 SDValue Elt = N1.getOperand(Index); 6131 6132 if (VT != Elt.getValueType()) 6133 // If the vector element type is not legal, the BUILD_VECTOR operands 6134 // are promoted and implicitly truncated, and the result implicitly 6135 // extended. Make that explicit here. 6136 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6137 6138 return Elt; 6139 } 6140 6141 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6142 // operations are lowered to scalars. 6143 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6144 // If the indices are the same, return the inserted element else 6145 // if the indices are known different, extract the element from 6146 // the original vector. 6147 SDValue N1Op2 = N1.getOperand(2); 6148 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6149 6150 if (N1Op2C && N2C) { 6151 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6152 if (VT == N1.getOperand(1).getValueType()) 6153 return N1.getOperand(1); 6154 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6155 } 6156 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6157 } 6158 } 6159 6160 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6161 // when vector types are scalarized and v1iX is legal. 6162 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6163 // Here we are completely ignoring the extract element index (N2), 6164 // which is fine for fixed width vectors, since any index other than 0 6165 // is undefined anyway. However, this cannot be ignored for scalable 6166 // vectors - in theory we could support this, but we don't want to do this 6167 // without a profitability check. 6168 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6169 N1.getValueType().isFixedLengthVector() && 6170 N1.getValueType().getVectorNumElements() == 1) { 6171 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6172 N1.getOperand(1)); 6173 } 6174 break; 6175 case ISD::EXTRACT_ELEMENT: 6176 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6177 assert(!N1.getValueType().isVector() && !VT.isVector() && 6178 (N1.getValueType().isInteger() == VT.isInteger()) && 6179 N1.getValueType() != VT && 6180 "Wrong types for EXTRACT_ELEMENT!"); 6181 6182 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6183 // 64-bit integers into 32-bit parts. Instead of building the extract of 6184 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6185 if (N1.getOpcode() == ISD::BUILD_PAIR) 6186 return N1.getOperand(N2C->getZExtValue()); 6187 6188 // EXTRACT_ELEMENT of a constant int is also very common. 6189 if (N1C) { 6190 unsigned ElementSize = VT.getSizeInBits(); 6191 unsigned Shift = ElementSize * N2C->getZExtValue(); 6192 const APInt &Val = N1C->getAPIntValue(); 6193 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6194 } 6195 break; 6196 case ISD::EXTRACT_SUBVECTOR: { 6197 EVT N1VT = N1.getValueType(); 6198 assert(VT.isVector() && N1VT.isVector() && 6199 "Extract subvector VTs must be vectors!"); 6200 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6201 "Extract subvector VTs must have the same element type!"); 6202 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6203 "Cannot extract a scalable vector from a fixed length vector!"); 6204 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6205 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6206 "Extract subvector must be from larger vector to smaller vector!"); 6207 assert(N2C && "Extract subvector index must be a constant"); 6208 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6209 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6210 N1VT.getVectorMinNumElements()) && 6211 "Extract subvector overflow!"); 6212 assert(N2C->getAPIntValue().getBitWidth() == 6213 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6214 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6215 6216 // Trivial extraction. 6217 if (VT == N1VT) 6218 return N1; 6219 6220 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6221 if (N1.isUndef()) 6222 return getUNDEF(VT); 6223 6224 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6225 // the concat have the same type as the extract. 6226 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6227 VT == N1.getOperand(0).getValueType()) { 6228 unsigned Factor = VT.getVectorMinNumElements(); 6229 return N1.getOperand(N2C->getZExtValue() / Factor); 6230 } 6231 6232 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6233 // during shuffle legalization. 6234 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6235 VT == N1.getOperand(1).getValueType()) 6236 return N1.getOperand(1); 6237 break; 6238 } 6239 } 6240 6241 // Perform trivial constant folding. 6242 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6243 return SV; 6244 6245 // Canonicalize an UNDEF to the RHS, even over a constant. 6246 if (N1.isUndef()) { 6247 if (TLI->isCommutativeBinOp(Opcode)) { 6248 std::swap(N1, N2); 6249 } else { 6250 switch (Opcode) { 6251 case ISD::SUB: 6252 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6253 case ISD::SIGN_EXTEND_INREG: 6254 case ISD::UDIV: 6255 case ISD::SDIV: 6256 case ISD::UREM: 6257 case ISD::SREM: 6258 case ISD::SSUBSAT: 6259 case ISD::USUBSAT: 6260 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6261 } 6262 } 6263 } 6264 6265 // Fold a bunch of operators when the RHS is undef. 6266 if (N2.isUndef()) { 6267 switch (Opcode) { 6268 case ISD::XOR: 6269 if (N1.isUndef()) 6270 // Handle undef ^ undef -> 0 special case. This is a common 6271 // idiom (misuse). 6272 return getConstant(0, DL, VT); 6273 LLVM_FALLTHROUGH; 6274 case ISD::ADD: 6275 case ISD::SUB: 6276 case ISD::UDIV: 6277 case ISD::SDIV: 6278 case ISD::UREM: 6279 case ISD::SREM: 6280 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6281 case ISD::MUL: 6282 case ISD::AND: 6283 case ISD::SSUBSAT: 6284 case ISD::USUBSAT: 6285 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6286 case ISD::OR: 6287 case ISD::SADDSAT: 6288 case ISD::UADDSAT: 6289 return getAllOnesConstant(DL, VT); 6290 } 6291 } 6292 6293 // Memoize this node if possible. 6294 SDNode *N; 6295 SDVTList VTs = getVTList(VT); 6296 SDValue Ops[] = {N1, N2}; 6297 if (VT != MVT::Glue) { 6298 FoldingSetNodeID ID; 6299 AddNodeIDNode(ID, Opcode, VTs, Ops); 6300 void *IP = nullptr; 6301 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6302 E->intersectFlagsWith(Flags); 6303 return SDValue(E, 0); 6304 } 6305 6306 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6307 N->setFlags(Flags); 6308 createOperands(N, Ops); 6309 CSEMap.InsertNode(N, IP); 6310 } else { 6311 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6312 createOperands(N, Ops); 6313 } 6314 6315 InsertNode(N); 6316 SDValue V = SDValue(N, 0); 6317 NewSDValueDbgMsg(V, "Creating new node: ", this); 6318 return V; 6319 } 6320 6321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6322 SDValue N1, SDValue N2, SDValue N3) { 6323 SDNodeFlags Flags; 6324 if (Inserter) 6325 Flags = Inserter->getFlags(); 6326 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6327 } 6328 6329 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6330 SDValue N1, SDValue N2, SDValue N3, 6331 const SDNodeFlags Flags) { 6332 assert(N1.getOpcode() != ISD::DELETED_NODE && 6333 N2.getOpcode() != ISD::DELETED_NODE && 6334 N3.getOpcode() != ISD::DELETED_NODE && 6335 "Operand is DELETED_NODE!"); 6336 // Perform various simplifications. 6337 switch (Opcode) { 6338 case ISD::FMA: { 6339 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6340 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6341 N3.getValueType() == VT && "FMA types must match!"); 6342 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6343 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6344 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6345 if (N1CFP && N2CFP && N3CFP) { 6346 APFloat V1 = N1CFP->getValueAPF(); 6347 const APFloat &V2 = N2CFP->getValueAPF(); 6348 const APFloat &V3 = N3CFP->getValueAPF(); 6349 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6350 return getConstantFP(V1, DL, VT); 6351 } 6352 break; 6353 } 6354 case ISD::BUILD_VECTOR: { 6355 // Attempt to simplify BUILD_VECTOR. 6356 SDValue Ops[] = {N1, N2, N3}; 6357 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6358 return V; 6359 break; 6360 } 6361 case ISD::CONCAT_VECTORS: { 6362 SDValue Ops[] = {N1, N2, N3}; 6363 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6364 return V; 6365 break; 6366 } 6367 case ISD::SETCC: { 6368 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6369 assert(N1.getValueType() == N2.getValueType() && 6370 "SETCC operands must have the same type!"); 6371 assert(VT.isVector() == N1.getValueType().isVector() && 6372 "SETCC type should be vector iff the operand type is vector!"); 6373 assert((!VT.isVector() || VT.getVectorElementCount() == 6374 N1.getValueType().getVectorElementCount()) && 6375 "SETCC vector element counts must match!"); 6376 // Use FoldSetCC to simplify SETCC's. 6377 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6378 return V; 6379 // Vector constant folding. 6380 SDValue Ops[] = {N1, N2, N3}; 6381 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6382 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6383 return V; 6384 } 6385 break; 6386 } 6387 case ISD::SELECT: 6388 case ISD::VSELECT: 6389 if (SDValue V = simplifySelect(N1, N2, N3)) 6390 return V; 6391 break; 6392 case ISD::VECTOR_SHUFFLE: 6393 llvm_unreachable("should use getVectorShuffle constructor!"); 6394 case ISD::VECTOR_SPLICE: { 6395 if (cast<ConstantSDNode>(N3)->isNullValue()) 6396 return N1; 6397 break; 6398 } 6399 case ISD::INSERT_VECTOR_ELT: { 6400 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6401 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6402 // for scalable vectors where we will generate appropriate code to 6403 // deal with out-of-bounds cases correctly. 6404 if (N3C && N1.getValueType().isFixedLengthVector() && 6405 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6406 return getUNDEF(VT); 6407 6408 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6409 if (N3.isUndef()) 6410 return getUNDEF(VT); 6411 6412 // If the inserted element is an UNDEF, just use the input vector. 6413 if (N2.isUndef()) 6414 return N1; 6415 6416 break; 6417 } 6418 case ISD::INSERT_SUBVECTOR: { 6419 // Inserting undef into undef is still undef. 6420 if (N1.isUndef() && N2.isUndef()) 6421 return getUNDEF(VT); 6422 6423 EVT N2VT = N2.getValueType(); 6424 assert(VT == N1.getValueType() && 6425 "Dest and insert subvector source types must match!"); 6426 assert(VT.isVector() && N2VT.isVector() && 6427 "Insert subvector VTs must be vectors!"); 6428 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6429 "Cannot insert a scalable vector into a fixed length vector!"); 6430 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6431 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6432 "Insert subvector must be from smaller vector to larger vector!"); 6433 assert(isa<ConstantSDNode>(N3) && 6434 "Insert subvector index must be constant"); 6435 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6436 (N2VT.getVectorMinNumElements() + 6437 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6438 VT.getVectorMinNumElements()) && 6439 "Insert subvector overflow!"); 6440 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6441 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6442 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6443 6444 // Trivial insertion. 6445 if (VT == N2VT) 6446 return N2; 6447 6448 // If this is an insert of an extracted vector into an undef vector, we 6449 // can just use the input to the extract. 6450 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6451 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6452 return N2.getOperand(0); 6453 break; 6454 } 6455 case ISD::BITCAST: 6456 // Fold bit_convert nodes from a type to themselves. 6457 if (N1.getValueType() == VT) 6458 return N1; 6459 break; 6460 } 6461 6462 // Memoize node if it doesn't produce a flag. 6463 SDNode *N; 6464 SDVTList VTs = getVTList(VT); 6465 SDValue Ops[] = {N1, N2, N3}; 6466 if (VT != MVT::Glue) { 6467 FoldingSetNodeID ID; 6468 AddNodeIDNode(ID, Opcode, VTs, Ops); 6469 void *IP = nullptr; 6470 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6471 E->intersectFlagsWith(Flags); 6472 return SDValue(E, 0); 6473 } 6474 6475 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6476 N->setFlags(Flags); 6477 createOperands(N, Ops); 6478 CSEMap.InsertNode(N, IP); 6479 } else { 6480 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6481 createOperands(N, Ops); 6482 } 6483 6484 InsertNode(N); 6485 SDValue V = SDValue(N, 0); 6486 NewSDValueDbgMsg(V, "Creating new node: ", this); 6487 return V; 6488 } 6489 6490 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6491 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6492 SDValue Ops[] = { N1, N2, N3, N4 }; 6493 return getNode(Opcode, DL, VT, Ops); 6494 } 6495 6496 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6497 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6498 SDValue N5) { 6499 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6500 return getNode(Opcode, DL, VT, Ops); 6501 } 6502 6503 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6504 /// the incoming stack arguments to be loaded from the stack. 6505 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6506 SmallVector<SDValue, 8> ArgChains; 6507 6508 // Include the original chain at the beginning of the list. When this is 6509 // used by target LowerCall hooks, this helps legalize find the 6510 // CALLSEQ_BEGIN node. 6511 ArgChains.push_back(Chain); 6512 6513 // Add a chain value for each stack argument. 6514 for (SDNode *U : getEntryNode().getNode()->uses()) 6515 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6516 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6517 if (FI->getIndex() < 0) 6518 ArgChains.push_back(SDValue(L, 1)); 6519 6520 // Build a tokenfactor for all the chains. 6521 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6522 } 6523 6524 /// getMemsetValue - Vectorized representation of the memset value 6525 /// operand. 6526 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6527 const SDLoc &dl) { 6528 assert(!Value.isUndef()); 6529 6530 unsigned NumBits = VT.getScalarSizeInBits(); 6531 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6532 assert(C->getAPIntValue().getBitWidth() == 8); 6533 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6534 if (VT.isInteger()) { 6535 bool IsOpaque = VT.getSizeInBits() > 64 || 6536 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6537 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6538 } 6539 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6540 VT); 6541 } 6542 6543 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6544 EVT IntVT = VT.getScalarType(); 6545 if (!IntVT.isInteger()) 6546 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6547 6548 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6549 if (NumBits > 8) { 6550 // Use a multiplication with 0x010101... to extend the input to the 6551 // required length. 6552 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6553 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6554 DAG.getConstant(Magic, dl, IntVT)); 6555 } 6556 6557 if (VT != Value.getValueType() && !VT.isInteger()) 6558 Value = DAG.getBitcast(VT.getScalarType(), Value); 6559 if (VT != Value.getValueType()) 6560 Value = DAG.getSplatBuildVector(VT, dl, Value); 6561 6562 return Value; 6563 } 6564 6565 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6566 /// used when a memcpy is turned into a memset when the source is a constant 6567 /// string ptr. 6568 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6569 const TargetLowering &TLI, 6570 const ConstantDataArraySlice &Slice) { 6571 // Handle vector with all elements zero. 6572 if (Slice.Array == nullptr) { 6573 if (VT.isInteger()) 6574 return DAG.getConstant(0, dl, VT); 6575 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6576 return DAG.getConstantFP(0.0, dl, VT); 6577 if (VT.isVector()) { 6578 unsigned NumElts = VT.getVectorNumElements(); 6579 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6580 return DAG.getNode(ISD::BITCAST, dl, VT, 6581 DAG.getConstant(0, dl, 6582 EVT::getVectorVT(*DAG.getContext(), 6583 EltVT, NumElts))); 6584 } 6585 llvm_unreachable("Expected type!"); 6586 } 6587 6588 assert(!VT.isVector() && "Can't handle vector type here!"); 6589 unsigned NumVTBits = VT.getSizeInBits(); 6590 unsigned NumVTBytes = NumVTBits / 8; 6591 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6592 6593 APInt Val(NumVTBits, 0); 6594 if (DAG.getDataLayout().isLittleEndian()) { 6595 for (unsigned i = 0; i != NumBytes; ++i) 6596 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6597 } else { 6598 for (unsigned i = 0; i != NumBytes; ++i) 6599 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6600 } 6601 6602 // If the "cost" of materializing the integer immediate is less than the cost 6603 // of a load, then it is cost effective to turn the load into the immediate. 6604 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6605 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6606 return DAG.getConstant(Val, dl, VT); 6607 return SDValue(); 6608 } 6609 6610 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6611 const SDLoc &DL, 6612 const SDNodeFlags Flags) { 6613 EVT VT = Base.getValueType(); 6614 SDValue Index; 6615 6616 if (Offset.isScalable()) 6617 Index = getVScale(DL, Base.getValueType(), 6618 APInt(Base.getValueSizeInBits().getFixedSize(), 6619 Offset.getKnownMinSize())); 6620 else 6621 Index = getConstant(Offset.getFixedSize(), DL, VT); 6622 6623 return getMemBasePlusOffset(Base, Index, DL, Flags); 6624 } 6625 6626 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6627 const SDLoc &DL, 6628 const SDNodeFlags Flags) { 6629 assert(Offset.getValueType().isInteger()); 6630 EVT BasePtrVT = Ptr.getValueType(); 6631 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6632 } 6633 6634 /// Returns true if memcpy source is constant data. 6635 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6636 uint64_t SrcDelta = 0; 6637 GlobalAddressSDNode *G = nullptr; 6638 if (Src.getOpcode() == ISD::GlobalAddress) 6639 G = cast<GlobalAddressSDNode>(Src); 6640 else if (Src.getOpcode() == ISD::ADD && 6641 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6642 Src.getOperand(1).getOpcode() == ISD::Constant) { 6643 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6644 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6645 } 6646 if (!G) 6647 return false; 6648 6649 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6650 SrcDelta + G->getOffset()); 6651 } 6652 6653 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6654 SelectionDAG &DAG) { 6655 // On Darwin, -Os means optimize for size without hurting performance, so 6656 // only really optimize for size when -Oz (MinSize) is used. 6657 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6658 return MF.getFunction().hasMinSize(); 6659 return DAG.shouldOptForSize(); 6660 } 6661 6662 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6663 SmallVector<SDValue, 32> &OutChains, unsigned From, 6664 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6665 SmallVector<SDValue, 16> &OutStoreChains) { 6666 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6667 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6668 SmallVector<SDValue, 16> GluedLoadChains; 6669 for (unsigned i = From; i < To; ++i) { 6670 OutChains.push_back(OutLoadChains[i]); 6671 GluedLoadChains.push_back(OutLoadChains[i]); 6672 } 6673 6674 // Chain for all loads. 6675 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6676 GluedLoadChains); 6677 6678 for (unsigned i = From; i < To; ++i) { 6679 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6680 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6681 ST->getBasePtr(), ST->getMemoryVT(), 6682 ST->getMemOperand()); 6683 OutChains.push_back(NewStore); 6684 } 6685 } 6686 6687 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6688 SDValue Chain, SDValue Dst, SDValue Src, 6689 uint64_t Size, Align Alignment, 6690 bool isVol, bool AlwaysInline, 6691 MachinePointerInfo DstPtrInfo, 6692 MachinePointerInfo SrcPtrInfo, 6693 const AAMDNodes &AAInfo) { 6694 // Turn a memcpy of undef to nop. 6695 // FIXME: We need to honor volatile even is Src is undef. 6696 if (Src.isUndef()) 6697 return Chain; 6698 6699 // Expand memcpy to a series of load and store ops if the size operand falls 6700 // below a certain threshold. 6701 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6702 // rather than maybe a humongous number of loads and stores. 6703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6704 const DataLayout &DL = DAG.getDataLayout(); 6705 LLVMContext &C = *DAG.getContext(); 6706 std::vector<EVT> MemOps; 6707 bool DstAlignCanChange = false; 6708 MachineFunction &MF = DAG.getMachineFunction(); 6709 MachineFrameInfo &MFI = MF.getFrameInfo(); 6710 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6711 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6712 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6713 DstAlignCanChange = true; 6714 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6715 if (!SrcAlign || Alignment > *SrcAlign) 6716 SrcAlign = Alignment; 6717 assert(SrcAlign && "SrcAlign must be set"); 6718 ConstantDataArraySlice Slice; 6719 // If marked as volatile, perform a copy even when marked as constant. 6720 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6721 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6722 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6723 const MemOp Op = isZeroConstant 6724 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6725 /*IsZeroMemset*/ true, isVol) 6726 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6727 *SrcAlign, isVol, CopyFromConstant); 6728 if (!TLI.findOptimalMemOpLowering( 6729 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6730 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6731 return SDValue(); 6732 6733 if (DstAlignCanChange) { 6734 Type *Ty = MemOps[0].getTypeForEVT(C); 6735 Align NewAlign = DL.getABITypeAlign(Ty); 6736 6737 // Don't promote to an alignment that would require dynamic stack 6738 // realignment. 6739 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6740 if (!TRI->hasStackRealignment(MF)) 6741 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6742 NewAlign = NewAlign / 2; 6743 6744 if (NewAlign > Alignment) { 6745 // Give the stack frame object a larger alignment if needed. 6746 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6747 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6748 Alignment = NewAlign; 6749 } 6750 } 6751 6752 // Prepare AAInfo for loads/stores after lowering this memcpy. 6753 AAMDNodes NewAAInfo = AAInfo; 6754 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6755 6756 MachineMemOperand::Flags MMOFlags = 6757 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6758 SmallVector<SDValue, 16> OutLoadChains; 6759 SmallVector<SDValue, 16> OutStoreChains; 6760 SmallVector<SDValue, 32> OutChains; 6761 unsigned NumMemOps = MemOps.size(); 6762 uint64_t SrcOff = 0, DstOff = 0; 6763 for (unsigned i = 0; i != NumMemOps; ++i) { 6764 EVT VT = MemOps[i]; 6765 unsigned VTSize = VT.getSizeInBits() / 8; 6766 SDValue Value, Store; 6767 6768 if (VTSize > Size) { 6769 // Issuing an unaligned load / store pair that overlaps with the previous 6770 // pair. Adjust the offset accordingly. 6771 assert(i == NumMemOps-1 && i != 0); 6772 SrcOff -= VTSize - Size; 6773 DstOff -= VTSize - Size; 6774 } 6775 6776 if (CopyFromConstant && 6777 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6778 // It's unlikely a store of a vector immediate can be done in a single 6779 // instruction. It would require a load from a constantpool first. 6780 // We only handle zero vectors here. 6781 // FIXME: Handle other cases where store of vector immediate is done in 6782 // a single instruction. 6783 ConstantDataArraySlice SubSlice; 6784 if (SrcOff < Slice.Length) { 6785 SubSlice = Slice; 6786 SubSlice.move(SrcOff); 6787 } else { 6788 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6789 SubSlice.Array = nullptr; 6790 SubSlice.Offset = 0; 6791 SubSlice.Length = VTSize; 6792 } 6793 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6794 if (Value.getNode()) { 6795 Store = DAG.getStore( 6796 Chain, dl, Value, 6797 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6798 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6799 OutChains.push_back(Store); 6800 } 6801 } 6802 6803 if (!Store.getNode()) { 6804 // The type might not be legal for the target. This should only happen 6805 // if the type is smaller than a legal type, as on PPC, so the right 6806 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6807 // to Load/Store if NVT==VT. 6808 // FIXME does the case above also need this? 6809 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6810 assert(NVT.bitsGE(VT)); 6811 6812 bool isDereferenceable = 6813 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6814 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6815 if (isDereferenceable) 6816 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6817 6818 Value = DAG.getExtLoad( 6819 ISD::EXTLOAD, dl, NVT, Chain, 6820 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6821 SrcPtrInfo.getWithOffset(SrcOff), VT, 6822 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6823 OutLoadChains.push_back(Value.getValue(1)); 6824 6825 Store = DAG.getTruncStore( 6826 Chain, dl, Value, 6827 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6828 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6829 OutStoreChains.push_back(Store); 6830 } 6831 SrcOff += VTSize; 6832 DstOff += VTSize; 6833 Size -= VTSize; 6834 } 6835 6836 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6837 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6838 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6839 6840 if (NumLdStInMemcpy) { 6841 // It may be that memcpy might be converted to memset if it's memcpy 6842 // of constants. In such a case, we won't have loads and stores, but 6843 // just stores. In the absence of loads, there is nothing to gang up. 6844 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6845 // If target does not care, just leave as it. 6846 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6847 OutChains.push_back(OutLoadChains[i]); 6848 OutChains.push_back(OutStoreChains[i]); 6849 } 6850 } else { 6851 // Ld/St less than/equal limit set by target. 6852 if (NumLdStInMemcpy <= GluedLdStLimit) { 6853 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6854 NumLdStInMemcpy, OutLoadChains, 6855 OutStoreChains); 6856 } else { 6857 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6858 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6859 unsigned GlueIter = 0; 6860 6861 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6862 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6863 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6864 6865 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6866 OutLoadChains, OutStoreChains); 6867 GlueIter += GluedLdStLimit; 6868 } 6869 6870 // Residual ld/st. 6871 if (RemainingLdStInMemcpy) { 6872 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6873 RemainingLdStInMemcpy, OutLoadChains, 6874 OutStoreChains); 6875 } 6876 } 6877 } 6878 } 6879 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6880 } 6881 6882 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6883 SDValue Chain, SDValue Dst, SDValue Src, 6884 uint64_t Size, Align Alignment, 6885 bool isVol, bool AlwaysInline, 6886 MachinePointerInfo DstPtrInfo, 6887 MachinePointerInfo SrcPtrInfo, 6888 const AAMDNodes &AAInfo) { 6889 // Turn a memmove of undef to nop. 6890 // FIXME: We need to honor volatile even is Src is undef. 6891 if (Src.isUndef()) 6892 return Chain; 6893 6894 // Expand memmove to a series of load and store ops if the size operand falls 6895 // below a certain threshold. 6896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6897 const DataLayout &DL = DAG.getDataLayout(); 6898 LLVMContext &C = *DAG.getContext(); 6899 std::vector<EVT> MemOps; 6900 bool DstAlignCanChange = false; 6901 MachineFunction &MF = DAG.getMachineFunction(); 6902 MachineFrameInfo &MFI = MF.getFrameInfo(); 6903 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6904 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6905 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6906 DstAlignCanChange = true; 6907 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6908 if (!SrcAlign || Alignment > *SrcAlign) 6909 SrcAlign = Alignment; 6910 assert(SrcAlign && "SrcAlign must be set"); 6911 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6912 if (!TLI.findOptimalMemOpLowering( 6913 MemOps, Limit, 6914 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6915 /*IsVolatile*/ true), 6916 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6917 MF.getFunction().getAttributes())) 6918 return SDValue(); 6919 6920 if (DstAlignCanChange) { 6921 Type *Ty = MemOps[0].getTypeForEVT(C); 6922 Align NewAlign = DL.getABITypeAlign(Ty); 6923 if (NewAlign > Alignment) { 6924 // Give the stack frame object a larger alignment if needed. 6925 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6926 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6927 Alignment = NewAlign; 6928 } 6929 } 6930 6931 // Prepare AAInfo for loads/stores after lowering this memmove. 6932 AAMDNodes NewAAInfo = AAInfo; 6933 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6934 6935 MachineMemOperand::Flags MMOFlags = 6936 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6937 uint64_t SrcOff = 0, DstOff = 0; 6938 SmallVector<SDValue, 8> LoadValues; 6939 SmallVector<SDValue, 8> LoadChains; 6940 SmallVector<SDValue, 8> OutChains; 6941 unsigned NumMemOps = MemOps.size(); 6942 for (unsigned i = 0; i < NumMemOps; i++) { 6943 EVT VT = MemOps[i]; 6944 unsigned VTSize = VT.getSizeInBits() / 8; 6945 SDValue Value; 6946 6947 bool isDereferenceable = 6948 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6949 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6950 if (isDereferenceable) 6951 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6952 6953 Value = DAG.getLoad( 6954 VT, dl, Chain, 6955 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6956 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6957 LoadValues.push_back(Value); 6958 LoadChains.push_back(Value.getValue(1)); 6959 SrcOff += VTSize; 6960 } 6961 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6962 OutChains.clear(); 6963 for (unsigned i = 0; i < NumMemOps; i++) { 6964 EVT VT = MemOps[i]; 6965 unsigned VTSize = VT.getSizeInBits() / 8; 6966 SDValue Store; 6967 6968 Store = DAG.getStore( 6969 Chain, dl, LoadValues[i], 6970 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6971 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6972 OutChains.push_back(Store); 6973 DstOff += VTSize; 6974 } 6975 6976 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6977 } 6978 6979 /// Lower the call to 'memset' intrinsic function into a series of store 6980 /// operations. 6981 /// 6982 /// \param DAG Selection DAG where lowered code is placed. 6983 /// \param dl Link to corresponding IR location. 6984 /// \param Chain Control flow dependency. 6985 /// \param Dst Pointer to destination memory location. 6986 /// \param Src Value of byte to write into the memory. 6987 /// \param Size Number of bytes to write. 6988 /// \param Alignment Alignment of the destination in bytes. 6989 /// \param isVol True if destination is volatile. 6990 /// \param AlwaysInline Makes sure no function call is generated. 6991 /// \param DstPtrInfo IR information on the memory pointer. 6992 /// \returns New head in the control flow, if lowering was successful, empty 6993 /// SDValue otherwise. 6994 /// 6995 /// The function tries to replace 'llvm.memset' intrinsic with several store 6996 /// operations and value calculation code. This is usually profitable for small 6997 /// memory size or when the semantic requires inlining. 6998 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6999 SDValue Chain, SDValue Dst, SDValue Src, 7000 uint64_t Size, Align Alignment, bool isVol, 7001 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7002 const AAMDNodes &AAInfo) { 7003 // Turn a memset of undef to nop. 7004 // FIXME: We need to honor volatile even is Src is undef. 7005 if (Src.isUndef()) 7006 return Chain; 7007 7008 // Expand memset to a series of load/store ops if the size operand 7009 // falls below a certain threshold. 7010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7011 std::vector<EVT> MemOps; 7012 bool DstAlignCanChange = false; 7013 MachineFunction &MF = DAG.getMachineFunction(); 7014 MachineFrameInfo &MFI = MF.getFrameInfo(); 7015 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7016 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7017 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7018 DstAlignCanChange = true; 7019 bool IsZeroVal = 7020 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7021 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7022 7023 if (!TLI.findOptimalMemOpLowering( 7024 MemOps, Limit, 7025 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7026 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7027 return SDValue(); 7028 7029 if (DstAlignCanChange) { 7030 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7031 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7032 if (NewAlign > Alignment) { 7033 // Give the stack frame object a larger alignment if needed. 7034 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7035 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7036 Alignment = NewAlign; 7037 } 7038 } 7039 7040 SmallVector<SDValue, 8> OutChains; 7041 uint64_t DstOff = 0; 7042 unsigned NumMemOps = MemOps.size(); 7043 7044 // Find the largest store and generate the bit pattern for it. 7045 EVT LargestVT = MemOps[0]; 7046 for (unsigned i = 1; i < NumMemOps; i++) 7047 if (MemOps[i].bitsGT(LargestVT)) 7048 LargestVT = MemOps[i]; 7049 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7050 7051 // Prepare AAInfo for loads/stores after lowering this memset. 7052 AAMDNodes NewAAInfo = AAInfo; 7053 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7054 7055 for (unsigned i = 0; i < NumMemOps; i++) { 7056 EVT VT = MemOps[i]; 7057 unsigned VTSize = VT.getSizeInBits() / 8; 7058 if (VTSize > Size) { 7059 // Issuing an unaligned load / store pair that overlaps with the previous 7060 // pair. Adjust the offset accordingly. 7061 assert(i == NumMemOps-1 && i != 0); 7062 DstOff -= VTSize - Size; 7063 } 7064 7065 // If this store is smaller than the largest store see whether we can get 7066 // the smaller value for free with a truncate. 7067 SDValue Value = MemSetValue; 7068 if (VT.bitsLT(LargestVT)) { 7069 if (!LargestVT.isVector() && !VT.isVector() && 7070 TLI.isTruncateFree(LargestVT, VT)) 7071 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7072 else 7073 Value = getMemsetValue(Src, VT, DAG, dl); 7074 } 7075 assert(Value.getValueType() == VT && "Value with wrong type."); 7076 SDValue Store = DAG.getStore( 7077 Chain, dl, Value, 7078 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7079 DstPtrInfo.getWithOffset(DstOff), Alignment, 7080 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7081 NewAAInfo); 7082 OutChains.push_back(Store); 7083 DstOff += VT.getSizeInBits() / 8; 7084 Size -= VTSize; 7085 } 7086 7087 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7088 } 7089 7090 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7091 unsigned AS) { 7092 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7093 // pointer operands can be losslessly bitcasted to pointers of address space 0 7094 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7095 report_fatal_error("cannot lower memory intrinsic in address space " + 7096 Twine(AS)); 7097 } 7098 } 7099 7100 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7101 SDValue Src, SDValue Size, Align Alignment, 7102 bool isVol, bool AlwaysInline, bool isTailCall, 7103 MachinePointerInfo DstPtrInfo, 7104 MachinePointerInfo SrcPtrInfo, 7105 const AAMDNodes &AAInfo) { 7106 // Check to see if we should lower the memcpy to loads and stores first. 7107 // For cases within the target-specified limits, this is the best choice. 7108 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7109 if (ConstantSize) { 7110 // Memcpy with size zero? Just return the original chain. 7111 if (ConstantSize->isZero()) 7112 return Chain; 7113 7114 SDValue Result = getMemcpyLoadsAndStores( 7115 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7116 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7117 if (Result.getNode()) 7118 return Result; 7119 } 7120 7121 // Then check to see if we should lower the memcpy with target-specific 7122 // code. If the target chooses to do this, this is the next best. 7123 if (TSI) { 7124 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7125 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7126 DstPtrInfo, SrcPtrInfo); 7127 if (Result.getNode()) 7128 return Result; 7129 } 7130 7131 // If we really need inline code and the target declined to provide it, 7132 // use a (potentially long) sequence of loads and stores. 7133 if (AlwaysInline) { 7134 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7135 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7136 ConstantSize->getZExtValue(), Alignment, 7137 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7138 } 7139 7140 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7141 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7142 7143 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7144 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7145 // respect volatile, so they may do things like read or write memory 7146 // beyond the given memory regions. But fixing this isn't easy, and most 7147 // people don't care. 7148 7149 // Emit a library call. 7150 TargetLowering::ArgListTy Args; 7151 TargetLowering::ArgListEntry Entry; 7152 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7153 Entry.Node = Dst; Args.push_back(Entry); 7154 Entry.Node = Src; Args.push_back(Entry); 7155 7156 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7157 Entry.Node = Size; Args.push_back(Entry); 7158 // FIXME: pass in SDLoc 7159 TargetLowering::CallLoweringInfo CLI(*this); 7160 CLI.setDebugLoc(dl) 7161 .setChain(Chain) 7162 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7163 Dst.getValueType().getTypeForEVT(*getContext()), 7164 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7165 TLI->getPointerTy(getDataLayout())), 7166 std::move(Args)) 7167 .setDiscardResult() 7168 .setTailCall(isTailCall); 7169 7170 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7171 return CallResult.second; 7172 } 7173 7174 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7175 SDValue Dst, SDValue Src, SDValue Size, 7176 Type *SizeTy, unsigned ElemSz, 7177 bool isTailCall, 7178 MachinePointerInfo DstPtrInfo, 7179 MachinePointerInfo SrcPtrInfo) { 7180 // Emit a library call. 7181 TargetLowering::ArgListTy Args; 7182 TargetLowering::ArgListEntry Entry; 7183 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7184 Entry.Node = Dst; 7185 Args.push_back(Entry); 7186 7187 Entry.Node = Src; 7188 Args.push_back(Entry); 7189 7190 Entry.Ty = SizeTy; 7191 Entry.Node = Size; 7192 Args.push_back(Entry); 7193 7194 RTLIB::Libcall LibraryCall = 7195 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7196 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7197 report_fatal_error("Unsupported element size"); 7198 7199 TargetLowering::CallLoweringInfo CLI(*this); 7200 CLI.setDebugLoc(dl) 7201 .setChain(Chain) 7202 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7203 Type::getVoidTy(*getContext()), 7204 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7205 TLI->getPointerTy(getDataLayout())), 7206 std::move(Args)) 7207 .setDiscardResult() 7208 .setTailCall(isTailCall); 7209 7210 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7211 return CallResult.second; 7212 } 7213 7214 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7215 SDValue Src, SDValue Size, Align Alignment, 7216 bool isVol, bool isTailCall, 7217 MachinePointerInfo DstPtrInfo, 7218 MachinePointerInfo SrcPtrInfo, 7219 const AAMDNodes &AAInfo) { 7220 // Check to see if we should lower the memmove to loads and stores first. 7221 // For cases within the target-specified limits, this is the best choice. 7222 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7223 if (ConstantSize) { 7224 // Memmove with size zero? Just return the original chain. 7225 if (ConstantSize->isZero()) 7226 return Chain; 7227 7228 SDValue Result = getMemmoveLoadsAndStores( 7229 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7230 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7231 if (Result.getNode()) 7232 return Result; 7233 } 7234 7235 // Then check to see if we should lower the memmove with target-specific 7236 // code. If the target chooses to do this, this is the next best. 7237 if (TSI) { 7238 SDValue Result = 7239 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7240 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7241 if (Result.getNode()) 7242 return Result; 7243 } 7244 7245 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7246 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7247 7248 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7249 // not be safe. See memcpy above for more details. 7250 7251 // Emit a library call. 7252 TargetLowering::ArgListTy Args; 7253 TargetLowering::ArgListEntry Entry; 7254 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7255 Entry.Node = Dst; Args.push_back(Entry); 7256 Entry.Node = Src; Args.push_back(Entry); 7257 7258 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7259 Entry.Node = Size; Args.push_back(Entry); 7260 // FIXME: pass in SDLoc 7261 TargetLowering::CallLoweringInfo CLI(*this); 7262 CLI.setDebugLoc(dl) 7263 .setChain(Chain) 7264 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7265 Dst.getValueType().getTypeForEVT(*getContext()), 7266 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7267 TLI->getPointerTy(getDataLayout())), 7268 std::move(Args)) 7269 .setDiscardResult() 7270 .setTailCall(isTailCall); 7271 7272 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7273 return CallResult.second; 7274 } 7275 7276 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7277 SDValue Dst, SDValue Src, SDValue Size, 7278 Type *SizeTy, unsigned ElemSz, 7279 bool isTailCall, 7280 MachinePointerInfo DstPtrInfo, 7281 MachinePointerInfo SrcPtrInfo) { 7282 // Emit a library call. 7283 TargetLowering::ArgListTy Args; 7284 TargetLowering::ArgListEntry Entry; 7285 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7286 Entry.Node = Dst; 7287 Args.push_back(Entry); 7288 7289 Entry.Node = Src; 7290 Args.push_back(Entry); 7291 7292 Entry.Ty = SizeTy; 7293 Entry.Node = Size; 7294 Args.push_back(Entry); 7295 7296 RTLIB::Libcall LibraryCall = 7297 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7298 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7299 report_fatal_error("Unsupported element size"); 7300 7301 TargetLowering::CallLoweringInfo CLI(*this); 7302 CLI.setDebugLoc(dl) 7303 .setChain(Chain) 7304 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7305 Type::getVoidTy(*getContext()), 7306 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7307 TLI->getPointerTy(getDataLayout())), 7308 std::move(Args)) 7309 .setDiscardResult() 7310 .setTailCall(isTailCall); 7311 7312 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7313 return CallResult.second; 7314 } 7315 7316 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7317 SDValue Src, SDValue Size, Align Alignment, 7318 bool isVol, bool AlwaysInline, bool isTailCall, 7319 MachinePointerInfo DstPtrInfo, 7320 const AAMDNodes &AAInfo) { 7321 // Check to see if we should lower the memset to stores first. 7322 // For cases within the target-specified limits, this is the best choice. 7323 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7324 if (ConstantSize) { 7325 // Memset with size zero? Just return the original chain. 7326 if (ConstantSize->isZero()) 7327 return Chain; 7328 7329 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7330 ConstantSize->getZExtValue(), Alignment, 7331 isVol, false, DstPtrInfo, AAInfo); 7332 7333 if (Result.getNode()) 7334 return Result; 7335 } 7336 7337 // Then check to see if we should lower the memset with target-specific 7338 // code. If the target chooses to do this, this is the next best. 7339 if (TSI) { 7340 SDValue Result = TSI->EmitTargetCodeForMemset( 7341 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7342 if (Result.getNode()) 7343 return Result; 7344 } 7345 7346 // If we really need inline code and the target declined to provide it, 7347 // use a (potentially long) sequence of loads and stores. 7348 if (AlwaysInline) { 7349 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7350 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7351 ConstantSize->getZExtValue(), Alignment, 7352 isVol, true, DstPtrInfo, AAInfo); 7353 assert(Result && 7354 "getMemsetStores must return a valid sequence when AlwaysInline"); 7355 return Result; 7356 } 7357 7358 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7359 7360 // Emit a library call. 7361 auto &Ctx = *getContext(); 7362 const auto& DL = getDataLayout(); 7363 7364 TargetLowering::CallLoweringInfo CLI(*this); 7365 // FIXME: pass in SDLoc 7366 CLI.setDebugLoc(dl).setChain(Chain); 7367 7368 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7369 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7370 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7371 7372 // Helper function to create an Entry from Node and Type. 7373 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7374 TargetLowering::ArgListEntry Entry; 7375 Entry.Node = Node; 7376 Entry.Ty = Ty; 7377 return Entry; 7378 }; 7379 7380 // If zeroing out and bzero is present, use it. 7381 if (SrcIsZero && BzeroName) { 7382 TargetLowering::ArgListTy Args; 7383 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7384 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7385 CLI.setLibCallee( 7386 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7387 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7388 } else { 7389 TargetLowering::ArgListTy Args; 7390 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7391 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7392 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7393 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7394 Dst.getValueType().getTypeForEVT(Ctx), 7395 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7396 TLI->getPointerTy(DL)), 7397 std::move(Args)); 7398 } 7399 7400 CLI.setDiscardResult().setTailCall(isTailCall); 7401 7402 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7403 return CallResult.second; 7404 } 7405 7406 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7407 SDValue Dst, SDValue Value, SDValue Size, 7408 Type *SizeTy, unsigned ElemSz, 7409 bool isTailCall, 7410 MachinePointerInfo DstPtrInfo) { 7411 // Emit a library call. 7412 TargetLowering::ArgListTy Args; 7413 TargetLowering::ArgListEntry Entry; 7414 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7415 Entry.Node = Dst; 7416 Args.push_back(Entry); 7417 7418 Entry.Ty = Type::getInt8Ty(*getContext()); 7419 Entry.Node = Value; 7420 Args.push_back(Entry); 7421 7422 Entry.Ty = SizeTy; 7423 Entry.Node = Size; 7424 Args.push_back(Entry); 7425 7426 RTLIB::Libcall LibraryCall = 7427 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7428 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7429 report_fatal_error("Unsupported element size"); 7430 7431 TargetLowering::CallLoweringInfo CLI(*this); 7432 CLI.setDebugLoc(dl) 7433 .setChain(Chain) 7434 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7435 Type::getVoidTy(*getContext()), 7436 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7437 TLI->getPointerTy(getDataLayout())), 7438 std::move(Args)) 7439 .setDiscardResult() 7440 .setTailCall(isTailCall); 7441 7442 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7443 return CallResult.second; 7444 } 7445 7446 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7447 SDVTList VTList, ArrayRef<SDValue> Ops, 7448 MachineMemOperand *MMO) { 7449 FoldingSetNodeID ID; 7450 ID.AddInteger(MemVT.getRawBits()); 7451 AddNodeIDNode(ID, Opcode, VTList, Ops); 7452 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7453 ID.AddInteger(MMO->getFlags()); 7454 void* IP = nullptr; 7455 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7456 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7457 return SDValue(E, 0); 7458 } 7459 7460 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7461 VTList, MemVT, MMO); 7462 createOperands(N, Ops); 7463 7464 CSEMap.InsertNode(N, IP); 7465 InsertNode(N); 7466 return SDValue(N, 0); 7467 } 7468 7469 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7470 EVT MemVT, SDVTList VTs, SDValue Chain, 7471 SDValue Ptr, SDValue Cmp, SDValue Swp, 7472 MachineMemOperand *MMO) { 7473 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7474 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7475 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7476 7477 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7478 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7479 } 7480 7481 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7482 SDValue Chain, SDValue Ptr, SDValue Val, 7483 MachineMemOperand *MMO) { 7484 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7485 Opcode == ISD::ATOMIC_LOAD_SUB || 7486 Opcode == ISD::ATOMIC_LOAD_AND || 7487 Opcode == ISD::ATOMIC_LOAD_CLR || 7488 Opcode == ISD::ATOMIC_LOAD_OR || 7489 Opcode == ISD::ATOMIC_LOAD_XOR || 7490 Opcode == ISD::ATOMIC_LOAD_NAND || 7491 Opcode == ISD::ATOMIC_LOAD_MIN || 7492 Opcode == ISD::ATOMIC_LOAD_MAX || 7493 Opcode == ISD::ATOMIC_LOAD_UMIN || 7494 Opcode == ISD::ATOMIC_LOAD_UMAX || 7495 Opcode == ISD::ATOMIC_LOAD_FADD || 7496 Opcode == ISD::ATOMIC_LOAD_FSUB || 7497 Opcode == ISD::ATOMIC_SWAP || 7498 Opcode == ISD::ATOMIC_STORE) && 7499 "Invalid Atomic Op"); 7500 7501 EVT VT = Val.getValueType(); 7502 7503 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7504 getVTList(VT, MVT::Other); 7505 SDValue Ops[] = {Chain, Ptr, Val}; 7506 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7507 } 7508 7509 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7510 EVT VT, SDValue Chain, SDValue Ptr, 7511 MachineMemOperand *MMO) { 7512 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7513 7514 SDVTList VTs = getVTList(VT, MVT::Other); 7515 SDValue Ops[] = {Chain, Ptr}; 7516 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7517 } 7518 7519 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7520 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7521 if (Ops.size() == 1) 7522 return Ops[0]; 7523 7524 SmallVector<EVT, 4> VTs; 7525 VTs.reserve(Ops.size()); 7526 for (const SDValue &Op : Ops) 7527 VTs.push_back(Op.getValueType()); 7528 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7529 } 7530 7531 SDValue SelectionDAG::getMemIntrinsicNode( 7532 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7533 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7534 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7535 if (!Size && MemVT.isScalableVector()) 7536 Size = MemoryLocation::UnknownSize; 7537 else if (!Size) 7538 Size = MemVT.getStoreSize(); 7539 7540 MachineFunction &MF = getMachineFunction(); 7541 MachineMemOperand *MMO = 7542 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7543 7544 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7545 } 7546 7547 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7548 SDVTList VTList, 7549 ArrayRef<SDValue> Ops, EVT MemVT, 7550 MachineMemOperand *MMO) { 7551 assert((Opcode == ISD::INTRINSIC_VOID || 7552 Opcode == ISD::INTRINSIC_W_CHAIN || 7553 Opcode == ISD::PREFETCH || 7554 ((int)Opcode <= std::numeric_limits<int>::max() && 7555 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7556 "Opcode is not a memory-accessing opcode!"); 7557 7558 // Memoize the node unless it returns a flag. 7559 MemIntrinsicSDNode *N; 7560 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7561 FoldingSetNodeID ID; 7562 AddNodeIDNode(ID, Opcode, VTList, Ops); 7563 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7564 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7565 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7566 ID.AddInteger(MMO->getFlags()); 7567 void *IP = nullptr; 7568 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7569 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7570 return SDValue(E, 0); 7571 } 7572 7573 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7574 VTList, MemVT, MMO); 7575 createOperands(N, Ops); 7576 7577 CSEMap.InsertNode(N, IP); 7578 } else { 7579 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7580 VTList, MemVT, MMO); 7581 createOperands(N, Ops); 7582 } 7583 InsertNode(N); 7584 SDValue V(N, 0); 7585 NewSDValueDbgMsg(V, "Creating new node: ", this); 7586 return V; 7587 } 7588 7589 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7590 SDValue Chain, int FrameIndex, 7591 int64_t Size, int64_t Offset) { 7592 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7593 const auto VTs = getVTList(MVT::Other); 7594 SDValue Ops[2] = { 7595 Chain, 7596 getFrameIndex(FrameIndex, 7597 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7598 true)}; 7599 7600 FoldingSetNodeID ID; 7601 AddNodeIDNode(ID, Opcode, VTs, Ops); 7602 ID.AddInteger(FrameIndex); 7603 ID.AddInteger(Size); 7604 ID.AddInteger(Offset); 7605 void *IP = nullptr; 7606 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7607 return SDValue(E, 0); 7608 7609 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7610 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7611 createOperands(N, Ops); 7612 CSEMap.InsertNode(N, IP); 7613 InsertNode(N); 7614 SDValue V(N, 0); 7615 NewSDValueDbgMsg(V, "Creating new node: ", this); 7616 return V; 7617 } 7618 7619 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7620 uint64_t Guid, uint64_t Index, 7621 uint32_t Attr) { 7622 const unsigned Opcode = ISD::PSEUDO_PROBE; 7623 const auto VTs = getVTList(MVT::Other); 7624 SDValue Ops[] = {Chain}; 7625 FoldingSetNodeID ID; 7626 AddNodeIDNode(ID, Opcode, VTs, Ops); 7627 ID.AddInteger(Guid); 7628 ID.AddInteger(Index); 7629 void *IP = nullptr; 7630 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7631 return SDValue(E, 0); 7632 7633 auto *N = newSDNode<PseudoProbeSDNode>( 7634 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7635 createOperands(N, Ops); 7636 CSEMap.InsertNode(N, IP); 7637 InsertNode(N); 7638 SDValue V(N, 0); 7639 NewSDValueDbgMsg(V, "Creating new node: ", this); 7640 return V; 7641 } 7642 7643 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7644 /// MachinePointerInfo record from it. This is particularly useful because the 7645 /// code generator has many cases where it doesn't bother passing in a 7646 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7647 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7648 SelectionDAG &DAG, SDValue Ptr, 7649 int64_t Offset = 0) { 7650 // If this is FI+Offset, we can model it. 7651 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7652 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7653 FI->getIndex(), Offset); 7654 7655 // If this is (FI+Offset1)+Offset2, we can model it. 7656 if (Ptr.getOpcode() != ISD::ADD || 7657 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7658 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7659 return Info; 7660 7661 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7662 return MachinePointerInfo::getFixedStack( 7663 DAG.getMachineFunction(), FI, 7664 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7665 } 7666 7667 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7668 /// MachinePointerInfo record from it. This is particularly useful because the 7669 /// code generator has many cases where it doesn't bother passing in a 7670 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7671 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7672 SelectionDAG &DAG, SDValue Ptr, 7673 SDValue OffsetOp) { 7674 // If the 'Offset' value isn't a constant, we can't handle this. 7675 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7676 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7677 if (OffsetOp.isUndef()) 7678 return InferPointerInfo(Info, DAG, Ptr); 7679 return Info; 7680 } 7681 7682 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7683 EVT VT, const SDLoc &dl, SDValue Chain, 7684 SDValue Ptr, SDValue Offset, 7685 MachinePointerInfo PtrInfo, EVT MemVT, 7686 Align Alignment, 7687 MachineMemOperand::Flags MMOFlags, 7688 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7689 assert(Chain.getValueType() == MVT::Other && 7690 "Invalid chain type"); 7691 7692 MMOFlags |= MachineMemOperand::MOLoad; 7693 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7694 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7695 // clients. 7696 if (PtrInfo.V.isNull()) 7697 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7698 7699 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7700 MachineFunction &MF = getMachineFunction(); 7701 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7702 Alignment, AAInfo, Ranges); 7703 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7704 } 7705 7706 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7707 EVT VT, const SDLoc &dl, SDValue Chain, 7708 SDValue Ptr, SDValue Offset, EVT MemVT, 7709 MachineMemOperand *MMO) { 7710 if (VT == MemVT) { 7711 ExtType = ISD::NON_EXTLOAD; 7712 } else if (ExtType == ISD::NON_EXTLOAD) { 7713 assert(VT == MemVT && "Non-extending load from different memory type!"); 7714 } else { 7715 // Extending load. 7716 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7717 "Should only be an extending load, not truncating!"); 7718 assert(VT.isInteger() == MemVT.isInteger() && 7719 "Cannot convert from FP to Int or Int -> FP!"); 7720 assert(VT.isVector() == MemVT.isVector() && 7721 "Cannot use an ext load to convert to or from a vector!"); 7722 assert((!VT.isVector() || 7723 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7724 "Cannot use an ext load to change the number of vector elements!"); 7725 } 7726 7727 bool Indexed = AM != ISD::UNINDEXED; 7728 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7729 7730 SDVTList VTs = Indexed ? 7731 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7732 SDValue Ops[] = { Chain, Ptr, Offset }; 7733 FoldingSetNodeID ID; 7734 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7735 ID.AddInteger(MemVT.getRawBits()); 7736 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7737 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7738 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7739 ID.AddInteger(MMO->getFlags()); 7740 void *IP = nullptr; 7741 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7742 cast<LoadSDNode>(E)->refineAlignment(MMO); 7743 return SDValue(E, 0); 7744 } 7745 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7746 ExtType, MemVT, MMO); 7747 createOperands(N, Ops); 7748 7749 CSEMap.InsertNode(N, IP); 7750 InsertNode(N); 7751 SDValue V(N, 0); 7752 NewSDValueDbgMsg(V, "Creating new node: ", this); 7753 return V; 7754 } 7755 7756 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7757 SDValue Ptr, MachinePointerInfo PtrInfo, 7758 MaybeAlign Alignment, 7759 MachineMemOperand::Flags MMOFlags, 7760 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7761 SDValue Undef = getUNDEF(Ptr.getValueType()); 7762 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7763 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7764 } 7765 7766 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7767 SDValue Ptr, MachineMemOperand *MMO) { 7768 SDValue Undef = getUNDEF(Ptr.getValueType()); 7769 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7770 VT, MMO); 7771 } 7772 7773 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7774 EVT VT, SDValue Chain, SDValue Ptr, 7775 MachinePointerInfo PtrInfo, EVT MemVT, 7776 MaybeAlign Alignment, 7777 MachineMemOperand::Flags MMOFlags, 7778 const AAMDNodes &AAInfo) { 7779 SDValue Undef = getUNDEF(Ptr.getValueType()); 7780 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7781 MemVT, Alignment, MMOFlags, AAInfo); 7782 } 7783 7784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7785 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7786 MachineMemOperand *MMO) { 7787 SDValue Undef = getUNDEF(Ptr.getValueType()); 7788 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7789 MemVT, MMO); 7790 } 7791 7792 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7793 SDValue Base, SDValue Offset, 7794 ISD::MemIndexedMode AM) { 7795 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7796 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7797 // Don't propagate the invariant or dereferenceable flags. 7798 auto MMOFlags = 7799 LD->getMemOperand()->getFlags() & 7800 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7801 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7802 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7803 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7804 } 7805 7806 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7807 SDValue Ptr, MachinePointerInfo PtrInfo, 7808 Align Alignment, 7809 MachineMemOperand::Flags MMOFlags, 7810 const AAMDNodes &AAInfo) { 7811 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7812 7813 MMOFlags |= MachineMemOperand::MOStore; 7814 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7815 7816 if (PtrInfo.V.isNull()) 7817 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7818 7819 MachineFunction &MF = getMachineFunction(); 7820 uint64_t Size = 7821 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7822 MachineMemOperand *MMO = 7823 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7824 return getStore(Chain, dl, Val, Ptr, MMO); 7825 } 7826 7827 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7828 SDValue Ptr, MachineMemOperand *MMO) { 7829 assert(Chain.getValueType() == MVT::Other && 7830 "Invalid chain type"); 7831 EVT VT = Val.getValueType(); 7832 SDVTList VTs = getVTList(MVT::Other); 7833 SDValue Undef = getUNDEF(Ptr.getValueType()); 7834 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7835 FoldingSetNodeID ID; 7836 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7837 ID.AddInteger(VT.getRawBits()); 7838 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7839 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7840 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7841 ID.AddInteger(MMO->getFlags()); 7842 void *IP = nullptr; 7843 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7844 cast<StoreSDNode>(E)->refineAlignment(MMO); 7845 return SDValue(E, 0); 7846 } 7847 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7848 ISD::UNINDEXED, false, VT, MMO); 7849 createOperands(N, Ops); 7850 7851 CSEMap.InsertNode(N, IP); 7852 InsertNode(N); 7853 SDValue V(N, 0); 7854 NewSDValueDbgMsg(V, "Creating new node: ", this); 7855 return V; 7856 } 7857 7858 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7859 SDValue Ptr, MachinePointerInfo PtrInfo, 7860 EVT SVT, Align Alignment, 7861 MachineMemOperand::Flags MMOFlags, 7862 const AAMDNodes &AAInfo) { 7863 assert(Chain.getValueType() == MVT::Other && 7864 "Invalid chain type"); 7865 7866 MMOFlags |= MachineMemOperand::MOStore; 7867 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7868 7869 if (PtrInfo.V.isNull()) 7870 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7871 7872 MachineFunction &MF = getMachineFunction(); 7873 MachineMemOperand *MMO = MF.getMachineMemOperand( 7874 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7875 Alignment, AAInfo); 7876 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7877 } 7878 7879 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7880 SDValue Ptr, EVT SVT, 7881 MachineMemOperand *MMO) { 7882 EVT VT = Val.getValueType(); 7883 7884 assert(Chain.getValueType() == MVT::Other && 7885 "Invalid chain type"); 7886 if (VT == SVT) 7887 return getStore(Chain, dl, Val, Ptr, MMO); 7888 7889 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7890 "Should only be a truncating store, not extending!"); 7891 assert(VT.isInteger() == SVT.isInteger() && 7892 "Can't do FP-INT conversion!"); 7893 assert(VT.isVector() == SVT.isVector() && 7894 "Cannot use trunc store to convert to or from a vector!"); 7895 assert((!VT.isVector() || 7896 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7897 "Cannot use trunc store to change the number of vector elements!"); 7898 7899 SDVTList VTs = getVTList(MVT::Other); 7900 SDValue Undef = getUNDEF(Ptr.getValueType()); 7901 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7902 FoldingSetNodeID ID; 7903 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7904 ID.AddInteger(SVT.getRawBits()); 7905 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7906 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7907 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7908 ID.AddInteger(MMO->getFlags()); 7909 void *IP = nullptr; 7910 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7911 cast<StoreSDNode>(E)->refineAlignment(MMO); 7912 return SDValue(E, 0); 7913 } 7914 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7915 ISD::UNINDEXED, true, SVT, MMO); 7916 createOperands(N, Ops); 7917 7918 CSEMap.InsertNode(N, IP); 7919 InsertNode(N); 7920 SDValue V(N, 0); 7921 NewSDValueDbgMsg(V, "Creating new node: ", this); 7922 return V; 7923 } 7924 7925 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7926 SDValue Base, SDValue Offset, 7927 ISD::MemIndexedMode AM) { 7928 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7929 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7930 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7931 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7932 FoldingSetNodeID ID; 7933 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7934 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7935 ID.AddInteger(ST->getRawSubclassData()); 7936 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7937 ID.AddInteger(ST->getMemOperand()->getFlags()); 7938 void *IP = nullptr; 7939 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7940 return SDValue(E, 0); 7941 7942 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7943 ST->isTruncatingStore(), ST->getMemoryVT(), 7944 ST->getMemOperand()); 7945 createOperands(N, Ops); 7946 7947 CSEMap.InsertNode(N, IP); 7948 InsertNode(N); 7949 SDValue V(N, 0); 7950 NewSDValueDbgMsg(V, "Creating new node: ", this); 7951 return V; 7952 } 7953 7954 SDValue SelectionDAG::getLoadVP( 7955 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7956 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7957 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7958 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7959 const MDNode *Ranges, bool IsExpanding) { 7960 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7961 7962 MMOFlags |= MachineMemOperand::MOLoad; 7963 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7964 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7965 // clients. 7966 if (PtrInfo.V.isNull()) 7967 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7968 7969 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7970 MachineFunction &MF = getMachineFunction(); 7971 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7972 Alignment, AAInfo, Ranges); 7973 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7974 MMO, IsExpanding); 7975 } 7976 7977 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7978 ISD::LoadExtType ExtType, EVT VT, 7979 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7980 SDValue Offset, SDValue Mask, SDValue EVL, 7981 EVT MemVT, MachineMemOperand *MMO, 7982 bool IsExpanding) { 7983 bool Indexed = AM != ISD::UNINDEXED; 7984 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7985 7986 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7987 : getVTList(VT, MVT::Other); 7988 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7989 FoldingSetNodeID ID; 7990 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7991 ID.AddInteger(VT.getRawBits()); 7992 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7993 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7995 ID.AddInteger(MMO->getFlags()); 7996 void *IP = nullptr; 7997 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7998 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7999 return SDValue(E, 0); 8000 } 8001 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8002 ExtType, IsExpanding, MemVT, MMO); 8003 createOperands(N, Ops); 8004 8005 CSEMap.InsertNode(N, IP); 8006 InsertNode(N); 8007 SDValue V(N, 0); 8008 NewSDValueDbgMsg(V, "Creating new node: ", this); 8009 return V; 8010 } 8011 8012 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8013 SDValue Ptr, SDValue Mask, SDValue EVL, 8014 MachinePointerInfo PtrInfo, 8015 MaybeAlign Alignment, 8016 MachineMemOperand::Flags MMOFlags, 8017 const AAMDNodes &AAInfo, const MDNode *Ranges, 8018 bool IsExpanding) { 8019 SDValue Undef = getUNDEF(Ptr.getValueType()); 8020 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8021 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8022 IsExpanding); 8023 } 8024 8025 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8026 SDValue Ptr, SDValue Mask, SDValue EVL, 8027 MachineMemOperand *MMO, bool IsExpanding) { 8028 SDValue Undef = getUNDEF(Ptr.getValueType()); 8029 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8030 Mask, EVL, VT, MMO, IsExpanding); 8031 } 8032 8033 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8034 EVT VT, SDValue Chain, SDValue Ptr, 8035 SDValue Mask, SDValue EVL, 8036 MachinePointerInfo PtrInfo, EVT MemVT, 8037 MaybeAlign Alignment, 8038 MachineMemOperand::Flags MMOFlags, 8039 const AAMDNodes &AAInfo, bool IsExpanding) { 8040 SDValue Undef = getUNDEF(Ptr.getValueType()); 8041 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8042 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8043 IsExpanding); 8044 } 8045 8046 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8047 EVT VT, SDValue Chain, SDValue Ptr, 8048 SDValue Mask, SDValue EVL, EVT MemVT, 8049 MachineMemOperand *MMO, bool IsExpanding) { 8050 SDValue Undef = getUNDEF(Ptr.getValueType()); 8051 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8052 EVL, MemVT, MMO, IsExpanding); 8053 } 8054 8055 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8056 SDValue Base, SDValue Offset, 8057 ISD::MemIndexedMode AM) { 8058 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8059 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8060 // Don't propagate the invariant or dereferenceable flags. 8061 auto MMOFlags = 8062 LD->getMemOperand()->getFlags() & 8063 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8064 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8065 LD->getChain(), Base, Offset, LD->getMask(), 8066 LD->getVectorLength(), LD->getPointerInfo(), 8067 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8068 nullptr, LD->isExpandingLoad()); 8069 } 8070 8071 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8072 SDValue Ptr, SDValue Offset, SDValue Mask, 8073 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8074 ISD::MemIndexedMode AM, bool IsTruncating, 8075 bool IsCompressing) { 8076 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8077 bool Indexed = AM != ISD::UNINDEXED; 8078 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8079 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8080 : getVTList(MVT::Other); 8081 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8082 FoldingSetNodeID ID; 8083 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8084 ID.AddInteger(MemVT.getRawBits()); 8085 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8086 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8087 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8088 ID.AddInteger(MMO->getFlags()); 8089 void *IP = nullptr; 8090 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8091 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8092 return SDValue(E, 0); 8093 } 8094 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8095 IsTruncating, IsCompressing, MemVT, MMO); 8096 createOperands(N, Ops); 8097 8098 CSEMap.InsertNode(N, IP); 8099 InsertNode(N); 8100 SDValue V(N, 0); 8101 NewSDValueDbgMsg(V, "Creating new node: ", this); 8102 return V; 8103 } 8104 8105 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8106 SDValue Val, SDValue Ptr, SDValue Mask, 8107 SDValue EVL, MachinePointerInfo PtrInfo, 8108 EVT SVT, Align Alignment, 8109 MachineMemOperand::Flags MMOFlags, 8110 const AAMDNodes &AAInfo, 8111 bool IsCompressing) { 8112 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8113 8114 MMOFlags |= MachineMemOperand::MOStore; 8115 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8116 8117 if (PtrInfo.V.isNull()) 8118 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8119 8120 MachineFunction &MF = getMachineFunction(); 8121 MachineMemOperand *MMO = MF.getMachineMemOperand( 8122 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8123 Alignment, AAInfo); 8124 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8125 IsCompressing); 8126 } 8127 8128 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8129 SDValue Val, SDValue Ptr, SDValue Mask, 8130 SDValue EVL, EVT SVT, 8131 MachineMemOperand *MMO, 8132 bool IsCompressing) { 8133 EVT VT = Val.getValueType(); 8134 8135 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8136 if (VT == SVT) 8137 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8138 EVL, VT, MMO, ISD::UNINDEXED, 8139 /*IsTruncating*/ false, IsCompressing); 8140 8141 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8142 "Should only be a truncating store, not extending!"); 8143 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8144 assert(VT.isVector() == SVT.isVector() && 8145 "Cannot use trunc store to convert to or from a vector!"); 8146 assert((!VT.isVector() || 8147 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8148 "Cannot use trunc store to change the number of vector elements!"); 8149 8150 SDVTList VTs = getVTList(MVT::Other); 8151 SDValue Undef = getUNDEF(Ptr.getValueType()); 8152 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8153 FoldingSetNodeID ID; 8154 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8155 ID.AddInteger(SVT.getRawBits()); 8156 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8157 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8158 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8159 ID.AddInteger(MMO->getFlags()); 8160 void *IP = nullptr; 8161 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8162 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8163 return SDValue(E, 0); 8164 } 8165 auto *N = 8166 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8167 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8168 createOperands(N, Ops); 8169 8170 CSEMap.InsertNode(N, IP); 8171 InsertNode(N); 8172 SDValue V(N, 0); 8173 NewSDValueDbgMsg(V, "Creating new node: ", this); 8174 return V; 8175 } 8176 8177 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8178 SDValue Base, SDValue Offset, 8179 ISD::MemIndexedMode AM) { 8180 auto *ST = cast<VPStoreSDNode>(OrigStore); 8181 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8182 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8183 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8184 Offset, ST->getMask(), ST->getVectorLength()}; 8185 FoldingSetNodeID ID; 8186 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8187 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8188 ID.AddInteger(ST->getRawSubclassData()); 8189 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8190 ID.AddInteger(ST->getMemOperand()->getFlags()); 8191 void *IP = nullptr; 8192 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8193 return SDValue(E, 0); 8194 8195 auto *N = newSDNode<VPStoreSDNode>( 8196 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8197 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8198 createOperands(N, Ops); 8199 8200 CSEMap.InsertNode(N, IP); 8201 InsertNode(N); 8202 SDValue V(N, 0); 8203 NewSDValueDbgMsg(V, "Creating new node: ", this); 8204 return V; 8205 } 8206 8207 SDValue SelectionDAG::getStridedLoadVP( 8208 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8209 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8210 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8211 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8212 const MDNode *Ranges, bool IsExpanding) { 8213 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8214 8215 MMOFlags |= MachineMemOperand::MOLoad; 8216 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8217 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8218 // clients. 8219 if (PtrInfo.V.isNull()) 8220 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8221 8222 uint64_t Size = MemoryLocation::UnknownSize; 8223 MachineFunction &MF = getMachineFunction(); 8224 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8225 Alignment, AAInfo, Ranges); 8226 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8227 EVL, MemVT, MMO, IsExpanding); 8228 } 8229 8230 SDValue SelectionDAG::getStridedLoadVP( 8231 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8232 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8233 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8234 bool Indexed = AM != ISD::UNINDEXED; 8235 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8236 8237 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8238 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8239 : getVTList(VT, MVT::Other); 8240 FoldingSetNodeID ID; 8241 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8242 ID.AddInteger(VT.getRawBits()); 8243 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8244 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8245 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8246 8247 void *IP = nullptr; 8248 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8249 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8250 return SDValue(E, 0); 8251 } 8252 8253 auto *N = 8254 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8255 ExtType, IsExpanding, MemVT, MMO); 8256 createOperands(N, Ops); 8257 CSEMap.InsertNode(N, IP); 8258 InsertNode(N); 8259 SDValue V(N, 0); 8260 NewSDValueDbgMsg(V, "Creating new node: ", this); 8261 return V; 8262 } 8263 8264 SDValue SelectionDAG::getStridedLoadVP( 8265 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8266 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8267 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8268 const MDNode *Ranges, bool IsExpanding) { 8269 SDValue Undef = getUNDEF(Ptr.getValueType()); 8270 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8271 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8272 MMOFlags, AAInfo, Ranges, IsExpanding); 8273 } 8274 8275 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8276 SDValue Ptr, SDValue Stride, 8277 SDValue Mask, SDValue EVL, 8278 MachineMemOperand *MMO, 8279 bool IsExpanding) { 8280 SDValue Undef = getUNDEF(Ptr.getValueType()); 8281 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8282 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8283 } 8284 8285 SDValue SelectionDAG::getExtStridedLoadVP( 8286 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8287 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8288 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8289 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8290 bool IsExpanding) { 8291 SDValue Undef = getUNDEF(Ptr.getValueType()); 8292 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8293 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8294 MMOFlags, AAInfo, nullptr, IsExpanding); 8295 } 8296 8297 SDValue SelectionDAG::getExtStridedLoadVP( 8298 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8299 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8300 MachineMemOperand *MMO, bool IsExpanding) { 8301 SDValue Undef = getUNDEF(Ptr.getValueType()); 8302 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8303 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8304 } 8305 8306 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8307 SDValue Base, SDValue Offset, 8308 ISD::MemIndexedMode AM) { 8309 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8310 assert(SLD->getOffset().isUndef() && 8311 "Strided load is already a indexed load!"); 8312 // Don't propagate the invariant or dereferenceable flags. 8313 auto MMOFlags = 8314 SLD->getMemOperand()->getFlags() & 8315 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8316 return getStridedLoadVP( 8317 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8318 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8319 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8320 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8321 } 8322 8323 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8324 SDValue Val, SDValue Ptr, 8325 SDValue Offset, SDValue Stride, 8326 SDValue Mask, SDValue EVL, EVT MemVT, 8327 MachineMemOperand *MMO, 8328 ISD::MemIndexedMode AM, 8329 bool IsTruncating, bool IsCompressing) { 8330 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8331 bool Indexed = AM != ISD::UNINDEXED; 8332 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8333 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8334 : getVTList(MVT::Other); 8335 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8336 FoldingSetNodeID ID; 8337 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8338 ID.AddInteger(MemVT.getRawBits()); 8339 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8340 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8341 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8342 void *IP = nullptr; 8343 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8344 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8345 return SDValue(E, 0); 8346 } 8347 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8348 VTs, AM, IsTruncating, 8349 IsCompressing, MemVT, MMO); 8350 createOperands(N, Ops); 8351 8352 CSEMap.InsertNode(N, IP); 8353 InsertNode(N); 8354 SDValue V(N, 0); 8355 NewSDValueDbgMsg(V, "Creating new node: ", this); 8356 return V; 8357 } 8358 8359 SDValue SelectionDAG::getTruncStridedStoreVP( 8360 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8361 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8362 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8363 bool IsCompressing) { 8364 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8365 8366 MMOFlags |= MachineMemOperand::MOStore; 8367 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8368 8369 if (PtrInfo.V.isNull()) 8370 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8371 8372 MachineFunction &MF = getMachineFunction(); 8373 MachineMemOperand *MMO = MF.getMachineMemOperand( 8374 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8375 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8376 MMO, IsCompressing); 8377 } 8378 8379 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8380 SDValue Val, SDValue Ptr, 8381 SDValue Stride, SDValue Mask, 8382 SDValue EVL, EVT SVT, 8383 MachineMemOperand *MMO, 8384 bool IsCompressing) { 8385 EVT VT = Val.getValueType(); 8386 8387 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8388 if (VT == SVT) 8389 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8390 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8391 /*IsTruncating*/ false, IsCompressing); 8392 8393 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8394 "Should only be a truncating store, not extending!"); 8395 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8396 assert(VT.isVector() == SVT.isVector() && 8397 "Cannot use trunc store to convert to or from a vector!"); 8398 assert((!VT.isVector() || 8399 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8400 "Cannot use trunc store to change the number of vector elements!"); 8401 8402 SDVTList VTs = getVTList(MVT::Other); 8403 SDValue Undef = getUNDEF(Ptr.getValueType()); 8404 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8405 FoldingSetNodeID ID; 8406 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8407 ID.AddInteger(SVT.getRawBits()); 8408 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8409 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8410 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8411 void *IP = nullptr; 8412 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8413 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8414 return SDValue(E, 0); 8415 } 8416 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8417 VTs, ISD::UNINDEXED, true, 8418 IsCompressing, SVT, MMO); 8419 createOperands(N, Ops); 8420 8421 CSEMap.InsertNode(N, IP); 8422 InsertNode(N); 8423 SDValue V(N, 0); 8424 NewSDValueDbgMsg(V, "Creating new node: ", this); 8425 return V; 8426 } 8427 8428 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8429 const SDLoc &DL, SDValue Base, 8430 SDValue Offset, 8431 ISD::MemIndexedMode AM) { 8432 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8433 assert(SST->getOffset().isUndef() && 8434 "Strided store is already an indexed store!"); 8435 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8436 SDValue Ops[] = { 8437 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8438 SST->getMask(), SST->getVectorLength()}; 8439 FoldingSetNodeID ID; 8440 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8441 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8442 ID.AddInteger(SST->getRawSubclassData()); 8443 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8444 void *IP = nullptr; 8445 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8446 return SDValue(E, 0); 8447 8448 auto *N = newSDNode<VPStridedStoreSDNode>( 8449 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8450 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8451 createOperands(N, Ops); 8452 8453 CSEMap.InsertNode(N, IP); 8454 InsertNode(N); 8455 SDValue V(N, 0); 8456 NewSDValueDbgMsg(V, "Creating new node: ", this); 8457 return V; 8458 } 8459 8460 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8461 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8462 ISD::MemIndexType IndexType) { 8463 assert(Ops.size() == 6 && "Incompatible number of operands"); 8464 8465 FoldingSetNodeID ID; 8466 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8467 ID.AddInteger(VT.getRawBits()); 8468 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8469 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8470 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8471 ID.AddInteger(MMO->getFlags()); 8472 void *IP = nullptr; 8473 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8474 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8475 return SDValue(E, 0); 8476 } 8477 8478 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8479 VT, MMO, IndexType); 8480 createOperands(N, Ops); 8481 8482 assert(N->getMask().getValueType().getVectorElementCount() == 8483 N->getValueType(0).getVectorElementCount() && 8484 "Vector width mismatch between mask and data"); 8485 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8486 N->getValueType(0).getVectorElementCount().isScalable() && 8487 "Scalable flags of index and data do not match"); 8488 assert(ElementCount::isKnownGE( 8489 N->getIndex().getValueType().getVectorElementCount(), 8490 N->getValueType(0).getVectorElementCount()) && 8491 "Vector width mismatch between index and data"); 8492 assert(isa<ConstantSDNode>(N->getScale()) && 8493 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8494 "Scale should be a constant power of 2"); 8495 8496 CSEMap.InsertNode(N, IP); 8497 InsertNode(N); 8498 SDValue V(N, 0); 8499 NewSDValueDbgMsg(V, "Creating new node: ", this); 8500 return V; 8501 } 8502 8503 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8504 ArrayRef<SDValue> Ops, 8505 MachineMemOperand *MMO, 8506 ISD::MemIndexType IndexType) { 8507 assert(Ops.size() == 7 && "Incompatible number of operands"); 8508 8509 FoldingSetNodeID ID; 8510 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8511 ID.AddInteger(VT.getRawBits()); 8512 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8513 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8514 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8515 ID.AddInteger(MMO->getFlags()); 8516 void *IP = nullptr; 8517 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8518 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8519 return SDValue(E, 0); 8520 } 8521 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8522 VT, MMO, IndexType); 8523 createOperands(N, Ops); 8524 8525 assert(N->getMask().getValueType().getVectorElementCount() == 8526 N->getValue().getValueType().getVectorElementCount() && 8527 "Vector width mismatch between mask and data"); 8528 assert( 8529 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8530 N->getValue().getValueType().getVectorElementCount().isScalable() && 8531 "Scalable flags of index and data do not match"); 8532 assert(ElementCount::isKnownGE( 8533 N->getIndex().getValueType().getVectorElementCount(), 8534 N->getValue().getValueType().getVectorElementCount()) && 8535 "Vector width mismatch between index and data"); 8536 assert(isa<ConstantSDNode>(N->getScale()) && 8537 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8538 "Scale should be a constant power of 2"); 8539 8540 CSEMap.InsertNode(N, IP); 8541 InsertNode(N); 8542 SDValue V(N, 0); 8543 NewSDValueDbgMsg(V, "Creating new node: ", this); 8544 return V; 8545 } 8546 8547 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8548 SDValue Base, SDValue Offset, SDValue Mask, 8549 SDValue PassThru, EVT MemVT, 8550 MachineMemOperand *MMO, 8551 ISD::MemIndexedMode AM, 8552 ISD::LoadExtType ExtTy, bool isExpanding) { 8553 bool Indexed = AM != ISD::UNINDEXED; 8554 assert((Indexed || Offset.isUndef()) && 8555 "Unindexed masked load with an offset!"); 8556 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8557 : getVTList(VT, MVT::Other); 8558 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8559 FoldingSetNodeID ID; 8560 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8561 ID.AddInteger(MemVT.getRawBits()); 8562 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8563 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8564 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8565 ID.AddInteger(MMO->getFlags()); 8566 void *IP = nullptr; 8567 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8568 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8569 return SDValue(E, 0); 8570 } 8571 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8572 AM, ExtTy, isExpanding, MemVT, MMO); 8573 createOperands(N, Ops); 8574 8575 CSEMap.InsertNode(N, IP); 8576 InsertNode(N); 8577 SDValue V(N, 0); 8578 NewSDValueDbgMsg(V, "Creating new node: ", this); 8579 return V; 8580 } 8581 8582 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8583 SDValue Base, SDValue Offset, 8584 ISD::MemIndexedMode AM) { 8585 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8586 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8587 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8588 Offset, LD->getMask(), LD->getPassThru(), 8589 LD->getMemoryVT(), LD->getMemOperand(), AM, 8590 LD->getExtensionType(), LD->isExpandingLoad()); 8591 } 8592 8593 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8594 SDValue Val, SDValue Base, SDValue Offset, 8595 SDValue Mask, EVT MemVT, 8596 MachineMemOperand *MMO, 8597 ISD::MemIndexedMode AM, bool IsTruncating, 8598 bool IsCompressing) { 8599 assert(Chain.getValueType() == MVT::Other && 8600 "Invalid chain type"); 8601 bool Indexed = AM != ISD::UNINDEXED; 8602 assert((Indexed || Offset.isUndef()) && 8603 "Unindexed masked store with an offset!"); 8604 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8605 : getVTList(MVT::Other); 8606 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8607 FoldingSetNodeID ID; 8608 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8609 ID.AddInteger(MemVT.getRawBits()); 8610 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8611 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8612 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8613 ID.AddInteger(MMO->getFlags()); 8614 void *IP = nullptr; 8615 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8616 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8617 return SDValue(E, 0); 8618 } 8619 auto *N = 8620 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8621 IsTruncating, IsCompressing, MemVT, MMO); 8622 createOperands(N, Ops); 8623 8624 CSEMap.InsertNode(N, IP); 8625 InsertNode(N); 8626 SDValue V(N, 0); 8627 NewSDValueDbgMsg(V, "Creating new node: ", this); 8628 return V; 8629 } 8630 8631 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8632 SDValue Base, SDValue Offset, 8633 ISD::MemIndexedMode AM) { 8634 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8635 assert(ST->getOffset().isUndef() && 8636 "Masked store is already a indexed store!"); 8637 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8638 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8639 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8640 } 8641 8642 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8643 ArrayRef<SDValue> Ops, 8644 MachineMemOperand *MMO, 8645 ISD::MemIndexType IndexType, 8646 ISD::LoadExtType ExtTy) { 8647 assert(Ops.size() == 6 && "Incompatible number of operands"); 8648 8649 FoldingSetNodeID ID; 8650 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8651 ID.AddInteger(MemVT.getRawBits()); 8652 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8653 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8654 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8655 ID.AddInteger(MMO->getFlags()); 8656 void *IP = nullptr; 8657 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8658 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8659 return SDValue(E, 0); 8660 } 8661 8662 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8663 VTs, MemVT, MMO, IndexType, ExtTy); 8664 createOperands(N, Ops); 8665 8666 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8667 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8668 assert(N->getMask().getValueType().getVectorElementCount() == 8669 N->getValueType(0).getVectorElementCount() && 8670 "Vector width mismatch between mask and data"); 8671 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8672 N->getValueType(0).getVectorElementCount().isScalable() && 8673 "Scalable flags of index and data do not match"); 8674 assert(ElementCount::isKnownGE( 8675 N->getIndex().getValueType().getVectorElementCount(), 8676 N->getValueType(0).getVectorElementCount()) && 8677 "Vector width mismatch between index and data"); 8678 assert(isa<ConstantSDNode>(N->getScale()) && 8679 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8680 "Scale should be a constant power of 2"); 8681 8682 CSEMap.InsertNode(N, IP); 8683 InsertNode(N); 8684 SDValue V(N, 0); 8685 NewSDValueDbgMsg(V, "Creating new node: ", this); 8686 return V; 8687 } 8688 8689 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8690 ArrayRef<SDValue> Ops, 8691 MachineMemOperand *MMO, 8692 ISD::MemIndexType IndexType, 8693 bool IsTrunc) { 8694 assert(Ops.size() == 6 && "Incompatible number of operands"); 8695 8696 FoldingSetNodeID ID; 8697 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8698 ID.AddInteger(MemVT.getRawBits()); 8699 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8700 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8701 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8702 ID.AddInteger(MMO->getFlags()); 8703 void *IP = nullptr; 8704 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8705 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8706 return SDValue(E, 0); 8707 } 8708 8709 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8710 VTs, MemVT, MMO, IndexType, IsTrunc); 8711 createOperands(N, Ops); 8712 8713 assert(N->getMask().getValueType().getVectorElementCount() == 8714 N->getValue().getValueType().getVectorElementCount() && 8715 "Vector width mismatch between mask and data"); 8716 assert( 8717 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8718 N->getValue().getValueType().getVectorElementCount().isScalable() && 8719 "Scalable flags of index and data do not match"); 8720 assert(ElementCount::isKnownGE( 8721 N->getIndex().getValueType().getVectorElementCount(), 8722 N->getValue().getValueType().getVectorElementCount()) && 8723 "Vector width mismatch between index and data"); 8724 assert(isa<ConstantSDNode>(N->getScale()) && 8725 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8726 "Scale should be a constant power of 2"); 8727 8728 CSEMap.InsertNode(N, IP); 8729 InsertNode(N); 8730 SDValue V(N, 0); 8731 NewSDValueDbgMsg(V, "Creating new node: ", this); 8732 return V; 8733 } 8734 8735 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8736 // select undef, T, F --> T (if T is a constant), otherwise F 8737 // select, ?, undef, F --> F 8738 // select, ?, T, undef --> T 8739 if (Cond.isUndef()) 8740 return isConstantValueOfAnyType(T) ? T : F; 8741 if (T.isUndef()) 8742 return F; 8743 if (F.isUndef()) 8744 return T; 8745 8746 // select true, T, F --> T 8747 // select false, T, F --> F 8748 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8749 return CondC->isZero() ? F : T; 8750 8751 // TODO: This should simplify VSELECT with constant condition using something 8752 // like this (but check boolean contents to be complete?): 8753 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8754 // return T; 8755 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8756 // return F; 8757 8758 // select ?, T, T --> T 8759 if (T == F) 8760 return T; 8761 8762 return SDValue(); 8763 } 8764 8765 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8766 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8767 if (X.isUndef()) 8768 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8769 // shift X, undef --> undef (because it may shift by the bitwidth) 8770 if (Y.isUndef()) 8771 return getUNDEF(X.getValueType()); 8772 8773 // shift 0, Y --> 0 8774 // shift X, 0 --> X 8775 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8776 return X; 8777 8778 // shift X, C >= bitwidth(X) --> undef 8779 // All vector elements must be too big (or undef) to avoid partial undefs. 8780 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8781 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8782 }; 8783 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8784 return getUNDEF(X.getValueType()); 8785 8786 return SDValue(); 8787 } 8788 8789 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8790 SDNodeFlags Flags) { 8791 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8792 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8793 // operation is poison. That result can be relaxed to undef. 8794 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8795 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8796 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8797 (YC && YC->getValueAPF().isNaN()); 8798 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8799 (YC && YC->getValueAPF().isInfinity()); 8800 8801 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8802 return getUNDEF(X.getValueType()); 8803 8804 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8805 return getUNDEF(X.getValueType()); 8806 8807 if (!YC) 8808 return SDValue(); 8809 8810 // X + -0.0 --> X 8811 if (Opcode == ISD::FADD) 8812 if (YC->getValueAPF().isNegZero()) 8813 return X; 8814 8815 // X - +0.0 --> X 8816 if (Opcode == ISD::FSUB) 8817 if (YC->getValueAPF().isPosZero()) 8818 return X; 8819 8820 // X * 1.0 --> X 8821 // X / 1.0 --> X 8822 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8823 if (YC->getValueAPF().isExactlyValue(1.0)) 8824 return X; 8825 8826 // X * 0.0 --> 0.0 8827 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8828 if (YC->getValueAPF().isZero()) 8829 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8830 8831 return SDValue(); 8832 } 8833 8834 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8835 SDValue Ptr, SDValue SV, unsigned Align) { 8836 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8837 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8838 } 8839 8840 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8841 ArrayRef<SDUse> Ops) { 8842 switch (Ops.size()) { 8843 case 0: return getNode(Opcode, DL, VT); 8844 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8845 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8846 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8847 default: break; 8848 } 8849 8850 // Copy from an SDUse array into an SDValue array for use with 8851 // the regular getNode logic. 8852 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8853 return getNode(Opcode, DL, VT, NewOps); 8854 } 8855 8856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8857 ArrayRef<SDValue> Ops) { 8858 SDNodeFlags Flags; 8859 if (Inserter) 8860 Flags = Inserter->getFlags(); 8861 return getNode(Opcode, DL, VT, Ops, Flags); 8862 } 8863 8864 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8865 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8866 unsigned NumOps = Ops.size(); 8867 switch (NumOps) { 8868 case 0: return getNode(Opcode, DL, VT); 8869 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8870 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8871 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8872 default: break; 8873 } 8874 8875 #ifndef NDEBUG 8876 for (auto &Op : Ops) 8877 assert(Op.getOpcode() != ISD::DELETED_NODE && 8878 "Operand is DELETED_NODE!"); 8879 #endif 8880 8881 switch (Opcode) { 8882 default: break; 8883 case ISD::BUILD_VECTOR: 8884 // Attempt to simplify BUILD_VECTOR. 8885 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8886 return V; 8887 break; 8888 case ISD::CONCAT_VECTORS: 8889 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8890 return V; 8891 break; 8892 case ISD::SELECT_CC: 8893 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8894 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8895 "LHS and RHS of condition must have same type!"); 8896 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8897 "True and False arms of SelectCC must have same type!"); 8898 assert(Ops[2].getValueType() == VT && 8899 "select_cc node must be of same type as true and false value!"); 8900 break; 8901 case ISD::BR_CC: 8902 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8903 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8904 "LHS/RHS of comparison should match types!"); 8905 break; 8906 case ISD::VP_ADD: 8907 case ISD::VP_SUB: 8908 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8909 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8910 Opcode = ISD::VP_XOR; 8911 break; 8912 case ISD::VP_MUL: 8913 // If it is VP_MUL mask operation then turn it to VP_AND 8914 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8915 Opcode = ISD::VP_AND; 8916 break; 8917 case ISD::VP_REDUCE_MUL: 8918 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8919 if (VT == MVT::i1) 8920 Opcode = ISD::VP_REDUCE_AND; 8921 break; 8922 case ISD::VP_REDUCE_ADD: 8923 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8924 if (VT == MVT::i1) 8925 Opcode = ISD::VP_REDUCE_XOR; 8926 break; 8927 case ISD::VP_REDUCE_SMAX: 8928 case ISD::VP_REDUCE_UMIN: 8929 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8930 // VP_REDUCE_AND. 8931 if (VT == MVT::i1) 8932 Opcode = ISD::VP_REDUCE_AND; 8933 break; 8934 case ISD::VP_REDUCE_SMIN: 8935 case ISD::VP_REDUCE_UMAX: 8936 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8937 // VP_REDUCE_OR. 8938 if (VT == MVT::i1) 8939 Opcode = ISD::VP_REDUCE_OR; 8940 break; 8941 } 8942 8943 // Memoize nodes. 8944 SDNode *N; 8945 SDVTList VTs = getVTList(VT); 8946 8947 if (VT != MVT::Glue) { 8948 FoldingSetNodeID ID; 8949 AddNodeIDNode(ID, Opcode, VTs, Ops); 8950 void *IP = nullptr; 8951 8952 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8953 return SDValue(E, 0); 8954 8955 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8956 createOperands(N, Ops); 8957 8958 CSEMap.InsertNode(N, IP); 8959 } else { 8960 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8961 createOperands(N, Ops); 8962 } 8963 8964 N->setFlags(Flags); 8965 InsertNode(N); 8966 SDValue V(N, 0); 8967 NewSDValueDbgMsg(V, "Creating new node: ", this); 8968 return V; 8969 } 8970 8971 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8972 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8973 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8974 } 8975 8976 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8977 ArrayRef<SDValue> Ops) { 8978 SDNodeFlags Flags; 8979 if (Inserter) 8980 Flags = Inserter->getFlags(); 8981 return getNode(Opcode, DL, VTList, Ops, Flags); 8982 } 8983 8984 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8985 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8986 if (VTList.NumVTs == 1) 8987 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 8988 8989 #ifndef NDEBUG 8990 for (auto &Op : Ops) 8991 assert(Op.getOpcode() != ISD::DELETED_NODE && 8992 "Operand is DELETED_NODE!"); 8993 #endif 8994 8995 switch (Opcode) { 8996 case ISD::STRICT_FP_EXTEND: 8997 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8998 "Invalid STRICT_FP_EXTEND!"); 8999 assert(VTList.VTs[0].isFloatingPoint() && 9000 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9001 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9002 "STRICT_FP_EXTEND result type should be vector iff the operand " 9003 "type is vector!"); 9004 assert((!VTList.VTs[0].isVector() || 9005 VTList.VTs[0].getVectorNumElements() == 9006 Ops[1].getValueType().getVectorNumElements()) && 9007 "Vector element count mismatch!"); 9008 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9009 "Invalid fpext node, dst <= src!"); 9010 break; 9011 case ISD::STRICT_FP_ROUND: 9012 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9013 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9014 "STRICT_FP_ROUND result type should be vector iff the operand " 9015 "type is vector!"); 9016 assert((!VTList.VTs[0].isVector() || 9017 VTList.VTs[0].getVectorNumElements() == 9018 Ops[1].getValueType().getVectorNumElements()) && 9019 "Vector element count mismatch!"); 9020 assert(VTList.VTs[0].isFloatingPoint() && 9021 Ops[1].getValueType().isFloatingPoint() && 9022 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9023 isa<ConstantSDNode>(Ops[2]) && 9024 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9025 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9026 "Invalid STRICT_FP_ROUND!"); 9027 break; 9028 #if 0 9029 // FIXME: figure out how to safely handle things like 9030 // int foo(int x) { return 1 << (x & 255); } 9031 // int bar() { return foo(256); } 9032 case ISD::SRA_PARTS: 9033 case ISD::SRL_PARTS: 9034 case ISD::SHL_PARTS: 9035 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9036 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9037 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9038 else if (N3.getOpcode() == ISD::AND) 9039 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9040 // If the and is only masking out bits that cannot effect the shift, 9041 // eliminate the and. 9042 unsigned NumBits = VT.getScalarSizeInBits()*2; 9043 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9044 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9045 } 9046 break; 9047 #endif 9048 } 9049 9050 // Memoize the node unless it returns a flag. 9051 SDNode *N; 9052 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9053 FoldingSetNodeID ID; 9054 AddNodeIDNode(ID, Opcode, VTList, Ops); 9055 void *IP = nullptr; 9056 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9057 return SDValue(E, 0); 9058 9059 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9060 createOperands(N, Ops); 9061 CSEMap.InsertNode(N, IP); 9062 } else { 9063 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9064 createOperands(N, Ops); 9065 } 9066 9067 N->setFlags(Flags); 9068 InsertNode(N); 9069 SDValue V(N, 0); 9070 NewSDValueDbgMsg(V, "Creating new node: ", this); 9071 return V; 9072 } 9073 9074 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9075 SDVTList VTList) { 9076 return getNode(Opcode, DL, VTList, None); 9077 } 9078 9079 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9080 SDValue N1) { 9081 SDValue Ops[] = { N1 }; 9082 return getNode(Opcode, DL, VTList, Ops); 9083 } 9084 9085 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9086 SDValue N1, SDValue N2) { 9087 SDValue Ops[] = { N1, N2 }; 9088 return getNode(Opcode, DL, VTList, Ops); 9089 } 9090 9091 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9092 SDValue N1, SDValue N2, SDValue N3) { 9093 SDValue Ops[] = { N1, N2, N3 }; 9094 return getNode(Opcode, DL, VTList, Ops); 9095 } 9096 9097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9098 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9099 SDValue Ops[] = { N1, N2, N3, N4 }; 9100 return getNode(Opcode, DL, VTList, Ops); 9101 } 9102 9103 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9104 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9105 SDValue N5) { 9106 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9107 return getNode(Opcode, DL, VTList, Ops); 9108 } 9109 9110 SDVTList SelectionDAG::getVTList(EVT VT) { 9111 return makeVTList(SDNode::getValueTypeList(VT), 1); 9112 } 9113 9114 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9115 FoldingSetNodeID ID; 9116 ID.AddInteger(2U); 9117 ID.AddInteger(VT1.getRawBits()); 9118 ID.AddInteger(VT2.getRawBits()); 9119 9120 void *IP = nullptr; 9121 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9122 if (!Result) { 9123 EVT *Array = Allocator.Allocate<EVT>(2); 9124 Array[0] = VT1; 9125 Array[1] = VT2; 9126 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9127 VTListMap.InsertNode(Result, IP); 9128 } 9129 return Result->getSDVTList(); 9130 } 9131 9132 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9133 FoldingSetNodeID ID; 9134 ID.AddInteger(3U); 9135 ID.AddInteger(VT1.getRawBits()); 9136 ID.AddInteger(VT2.getRawBits()); 9137 ID.AddInteger(VT3.getRawBits()); 9138 9139 void *IP = nullptr; 9140 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9141 if (!Result) { 9142 EVT *Array = Allocator.Allocate<EVT>(3); 9143 Array[0] = VT1; 9144 Array[1] = VT2; 9145 Array[2] = VT3; 9146 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9147 VTListMap.InsertNode(Result, IP); 9148 } 9149 return Result->getSDVTList(); 9150 } 9151 9152 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9153 FoldingSetNodeID ID; 9154 ID.AddInteger(4U); 9155 ID.AddInteger(VT1.getRawBits()); 9156 ID.AddInteger(VT2.getRawBits()); 9157 ID.AddInteger(VT3.getRawBits()); 9158 ID.AddInteger(VT4.getRawBits()); 9159 9160 void *IP = nullptr; 9161 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9162 if (!Result) { 9163 EVT *Array = Allocator.Allocate<EVT>(4); 9164 Array[0] = VT1; 9165 Array[1] = VT2; 9166 Array[2] = VT3; 9167 Array[3] = VT4; 9168 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9169 VTListMap.InsertNode(Result, IP); 9170 } 9171 return Result->getSDVTList(); 9172 } 9173 9174 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9175 unsigned NumVTs = VTs.size(); 9176 FoldingSetNodeID ID; 9177 ID.AddInteger(NumVTs); 9178 for (unsigned index = 0; index < NumVTs; index++) { 9179 ID.AddInteger(VTs[index].getRawBits()); 9180 } 9181 9182 void *IP = nullptr; 9183 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9184 if (!Result) { 9185 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9186 llvm::copy(VTs, Array); 9187 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9188 VTListMap.InsertNode(Result, IP); 9189 } 9190 return Result->getSDVTList(); 9191 } 9192 9193 9194 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9195 /// specified operands. If the resultant node already exists in the DAG, 9196 /// this does not modify the specified node, instead it returns the node that 9197 /// already exists. If the resultant node does not exist in the DAG, the 9198 /// input node is returned. As a degenerate case, if you specify the same 9199 /// input operands as the node already has, the input node is returned. 9200 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9201 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9202 9203 // Check to see if there is no change. 9204 if (Op == N->getOperand(0)) return N; 9205 9206 // See if the modified node already exists. 9207 void *InsertPos = nullptr; 9208 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9209 return Existing; 9210 9211 // Nope it doesn't. Remove the node from its current place in the maps. 9212 if (InsertPos) 9213 if (!RemoveNodeFromCSEMaps(N)) 9214 InsertPos = nullptr; 9215 9216 // Now we update the operands. 9217 N->OperandList[0].set(Op); 9218 9219 updateDivergence(N); 9220 // If this gets put into a CSE map, add it. 9221 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9222 return N; 9223 } 9224 9225 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9226 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9227 9228 // Check to see if there is no change. 9229 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9230 return N; // No operands changed, just return the input node. 9231 9232 // See if the modified node already exists. 9233 void *InsertPos = nullptr; 9234 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9235 return Existing; 9236 9237 // Nope it doesn't. Remove the node from its current place in the maps. 9238 if (InsertPos) 9239 if (!RemoveNodeFromCSEMaps(N)) 9240 InsertPos = nullptr; 9241 9242 // Now we update the operands. 9243 if (N->OperandList[0] != Op1) 9244 N->OperandList[0].set(Op1); 9245 if (N->OperandList[1] != Op2) 9246 N->OperandList[1].set(Op2); 9247 9248 updateDivergence(N); 9249 // If this gets put into a CSE map, add it. 9250 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9251 return N; 9252 } 9253 9254 SDNode *SelectionDAG:: 9255 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9256 SDValue Ops[] = { Op1, Op2, Op3 }; 9257 return UpdateNodeOperands(N, Ops); 9258 } 9259 9260 SDNode *SelectionDAG:: 9261 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9262 SDValue Op3, SDValue Op4) { 9263 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9264 return UpdateNodeOperands(N, Ops); 9265 } 9266 9267 SDNode *SelectionDAG:: 9268 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9269 SDValue Op3, SDValue Op4, SDValue Op5) { 9270 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9271 return UpdateNodeOperands(N, Ops); 9272 } 9273 9274 SDNode *SelectionDAG:: 9275 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9276 unsigned NumOps = Ops.size(); 9277 assert(N->getNumOperands() == NumOps && 9278 "Update with wrong number of operands"); 9279 9280 // If no operands changed just return the input node. 9281 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9282 return N; 9283 9284 // See if the modified node already exists. 9285 void *InsertPos = nullptr; 9286 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9287 return Existing; 9288 9289 // Nope it doesn't. Remove the node from its current place in the maps. 9290 if (InsertPos) 9291 if (!RemoveNodeFromCSEMaps(N)) 9292 InsertPos = nullptr; 9293 9294 // Now we update the operands. 9295 for (unsigned i = 0; i != NumOps; ++i) 9296 if (N->OperandList[i] != Ops[i]) 9297 N->OperandList[i].set(Ops[i]); 9298 9299 updateDivergence(N); 9300 // If this gets put into a CSE map, add it. 9301 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9302 return N; 9303 } 9304 9305 /// DropOperands - Release the operands and set this node to have 9306 /// zero operands. 9307 void SDNode::DropOperands() { 9308 // Unlike the code in MorphNodeTo that does this, we don't need to 9309 // watch for dead nodes here. 9310 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9311 SDUse &Use = *I++; 9312 Use.set(SDValue()); 9313 } 9314 } 9315 9316 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9317 ArrayRef<MachineMemOperand *> NewMemRefs) { 9318 if (NewMemRefs.empty()) { 9319 N->clearMemRefs(); 9320 return; 9321 } 9322 9323 // Check if we can avoid allocating by storing a single reference directly. 9324 if (NewMemRefs.size() == 1) { 9325 N->MemRefs = NewMemRefs[0]; 9326 N->NumMemRefs = 1; 9327 return; 9328 } 9329 9330 MachineMemOperand **MemRefsBuffer = 9331 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9332 llvm::copy(NewMemRefs, MemRefsBuffer); 9333 N->MemRefs = MemRefsBuffer; 9334 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9335 } 9336 9337 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9338 /// machine opcode. 9339 /// 9340 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9341 EVT VT) { 9342 SDVTList VTs = getVTList(VT); 9343 return SelectNodeTo(N, MachineOpc, VTs, None); 9344 } 9345 9346 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9347 EVT VT, SDValue Op1) { 9348 SDVTList VTs = getVTList(VT); 9349 SDValue Ops[] = { Op1 }; 9350 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9351 } 9352 9353 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9354 EVT VT, SDValue Op1, 9355 SDValue Op2) { 9356 SDVTList VTs = getVTList(VT); 9357 SDValue Ops[] = { Op1, Op2 }; 9358 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9359 } 9360 9361 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9362 EVT VT, SDValue Op1, 9363 SDValue Op2, SDValue Op3) { 9364 SDVTList VTs = getVTList(VT); 9365 SDValue Ops[] = { Op1, Op2, Op3 }; 9366 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9367 } 9368 9369 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9370 EVT VT, ArrayRef<SDValue> Ops) { 9371 SDVTList VTs = getVTList(VT); 9372 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9373 } 9374 9375 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9376 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9377 SDVTList VTs = getVTList(VT1, VT2); 9378 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9379 } 9380 9381 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9382 EVT VT1, EVT VT2) { 9383 SDVTList VTs = getVTList(VT1, VT2); 9384 return SelectNodeTo(N, MachineOpc, VTs, None); 9385 } 9386 9387 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9388 EVT VT1, EVT VT2, EVT VT3, 9389 ArrayRef<SDValue> Ops) { 9390 SDVTList VTs = getVTList(VT1, VT2, VT3); 9391 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9392 } 9393 9394 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9395 EVT VT1, EVT VT2, 9396 SDValue Op1, SDValue Op2) { 9397 SDVTList VTs = getVTList(VT1, VT2); 9398 SDValue Ops[] = { Op1, Op2 }; 9399 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9400 } 9401 9402 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9403 SDVTList VTs,ArrayRef<SDValue> Ops) { 9404 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9405 // Reset the NodeID to -1. 9406 New->setNodeId(-1); 9407 if (New != N) { 9408 ReplaceAllUsesWith(N, New); 9409 RemoveDeadNode(N); 9410 } 9411 return New; 9412 } 9413 9414 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9415 /// the line number information on the merged node since it is not possible to 9416 /// preserve the information that operation is associated with multiple lines. 9417 /// This will make the debugger working better at -O0, were there is a higher 9418 /// probability having other instructions associated with that line. 9419 /// 9420 /// For IROrder, we keep the smaller of the two 9421 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9422 DebugLoc NLoc = N->getDebugLoc(); 9423 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9424 N->setDebugLoc(DebugLoc()); 9425 } 9426 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9427 N->setIROrder(Order); 9428 return N; 9429 } 9430 9431 /// MorphNodeTo - This *mutates* the specified node to have the specified 9432 /// return type, opcode, and operands. 9433 /// 9434 /// Note that MorphNodeTo returns the resultant node. If there is already a 9435 /// node of the specified opcode and operands, it returns that node instead of 9436 /// the current one. Note that the SDLoc need not be the same. 9437 /// 9438 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9439 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9440 /// node, and because it doesn't require CSE recalculation for any of 9441 /// the node's users. 9442 /// 9443 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9444 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9445 /// the legalizer which maintain worklists that would need to be updated when 9446 /// deleting things. 9447 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9448 SDVTList VTs, ArrayRef<SDValue> Ops) { 9449 // If an identical node already exists, use it. 9450 void *IP = nullptr; 9451 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9452 FoldingSetNodeID ID; 9453 AddNodeIDNode(ID, Opc, VTs, Ops); 9454 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9455 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9456 } 9457 9458 if (!RemoveNodeFromCSEMaps(N)) 9459 IP = nullptr; 9460 9461 // Start the morphing. 9462 N->NodeType = Opc; 9463 N->ValueList = VTs.VTs; 9464 N->NumValues = VTs.NumVTs; 9465 9466 // Clear the operands list, updating used nodes to remove this from their 9467 // use list. Keep track of any operands that become dead as a result. 9468 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9469 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9470 SDUse &Use = *I++; 9471 SDNode *Used = Use.getNode(); 9472 Use.set(SDValue()); 9473 if (Used->use_empty()) 9474 DeadNodeSet.insert(Used); 9475 } 9476 9477 // For MachineNode, initialize the memory references information. 9478 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9479 MN->clearMemRefs(); 9480 9481 // Swap for an appropriately sized array from the recycler. 9482 removeOperands(N); 9483 createOperands(N, Ops); 9484 9485 // Delete any nodes that are still dead after adding the uses for the 9486 // new operands. 9487 if (!DeadNodeSet.empty()) { 9488 SmallVector<SDNode *, 16> DeadNodes; 9489 for (SDNode *N : DeadNodeSet) 9490 if (N->use_empty()) 9491 DeadNodes.push_back(N); 9492 RemoveDeadNodes(DeadNodes); 9493 } 9494 9495 if (IP) 9496 CSEMap.InsertNode(N, IP); // Memoize the new node. 9497 return N; 9498 } 9499 9500 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9501 unsigned OrigOpc = Node->getOpcode(); 9502 unsigned NewOpc; 9503 switch (OrigOpc) { 9504 default: 9505 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9506 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9507 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9508 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9509 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9510 #include "llvm/IR/ConstrainedOps.def" 9511 } 9512 9513 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9514 9515 // We're taking this node out of the chain, so we need to re-link things. 9516 SDValue InputChain = Node->getOperand(0); 9517 SDValue OutputChain = SDValue(Node, 1); 9518 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9519 9520 SmallVector<SDValue, 3> Ops; 9521 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9522 Ops.push_back(Node->getOperand(i)); 9523 9524 SDVTList VTs = getVTList(Node->getValueType(0)); 9525 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9526 9527 // MorphNodeTo can operate in two ways: if an existing node with the 9528 // specified operands exists, it can just return it. Otherwise, it 9529 // updates the node in place to have the requested operands. 9530 if (Res == Node) { 9531 // If we updated the node in place, reset the node ID. To the isel, 9532 // this should be just like a newly allocated machine node. 9533 Res->setNodeId(-1); 9534 } else { 9535 ReplaceAllUsesWith(Node, Res); 9536 RemoveDeadNode(Node); 9537 } 9538 9539 return Res; 9540 } 9541 9542 /// getMachineNode - These are used for target selectors to create a new node 9543 /// with specified return type(s), MachineInstr opcode, and operands. 9544 /// 9545 /// Note that getMachineNode returns the resultant node. If there is already a 9546 /// node of the specified opcode and operands, it returns that node instead of 9547 /// the current one. 9548 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9549 EVT VT) { 9550 SDVTList VTs = getVTList(VT); 9551 return getMachineNode(Opcode, dl, VTs, None); 9552 } 9553 9554 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9555 EVT VT, SDValue Op1) { 9556 SDVTList VTs = getVTList(VT); 9557 SDValue Ops[] = { Op1 }; 9558 return getMachineNode(Opcode, dl, VTs, Ops); 9559 } 9560 9561 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9562 EVT VT, SDValue Op1, SDValue Op2) { 9563 SDVTList VTs = getVTList(VT); 9564 SDValue Ops[] = { Op1, Op2 }; 9565 return getMachineNode(Opcode, dl, VTs, Ops); 9566 } 9567 9568 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9569 EVT VT, SDValue Op1, SDValue Op2, 9570 SDValue Op3) { 9571 SDVTList VTs = getVTList(VT); 9572 SDValue Ops[] = { Op1, Op2, Op3 }; 9573 return getMachineNode(Opcode, dl, VTs, Ops); 9574 } 9575 9576 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9577 EVT VT, ArrayRef<SDValue> Ops) { 9578 SDVTList VTs = getVTList(VT); 9579 return getMachineNode(Opcode, dl, VTs, Ops); 9580 } 9581 9582 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9583 EVT VT1, EVT VT2, SDValue Op1, 9584 SDValue Op2) { 9585 SDVTList VTs = getVTList(VT1, VT2); 9586 SDValue Ops[] = { Op1, Op2 }; 9587 return getMachineNode(Opcode, dl, VTs, Ops); 9588 } 9589 9590 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9591 EVT VT1, EVT VT2, SDValue Op1, 9592 SDValue Op2, SDValue Op3) { 9593 SDVTList VTs = getVTList(VT1, VT2); 9594 SDValue Ops[] = { Op1, Op2, Op3 }; 9595 return getMachineNode(Opcode, dl, VTs, Ops); 9596 } 9597 9598 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9599 EVT VT1, EVT VT2, 9600 ArrayRef<SDValue> Ops) { 9601 SDVTList VTs = getVTList(VT1, VT2); 9602 return getMachineNode(Opcode, dl, VTs, Ops); 9603 } 9604 9605 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9606 EVT VT1, EVT VT2, EVT VT3, 9607 SDValue Op1, SDValue Op2) { 9608 SDVTList VTs = getVTList(VT1, VT2, VT3); 9609 SDValue Ops[] = { Op1, Op2 }; 9610 return getMachineNode(Opcode, dl, VTs, Ops); 9611 } 9612 9613 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9614 EVT VT1, EVT VT2, EVT VT3, 9615 SDValue Op1, SDValue Op2, 9616 SDValue Op3) { 9617 SDVTList VTs = getVTList(VT1, VT2, VT3); 9618 SDValue Ops[] = { Op1, Op2, Op3 }; 9619 return getMachineNode(Opcode, dl, VTs, Ops); 9620 } 9621 9622 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9623 EVT VT1, EVT VT2, EVT VT3, 9624 ArrayRef<SDValue> Ops) { 9625 SDVTList VTs = getVTList(VT1, VT2, VT3); 9626 return getMachineNode(Opcode, dl, VTs, Ops); 9627 } 9628 9629 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9630 ArrayRef<EVT> ResultTys, 9631 ArrayRef<SDValue> Ops) { 9632 SDVTList VTs = getVTList(ResultTys); 9633 return getMachineNode(Opcode, dl, VTs, Ops); 9634 } 9635 9636 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9637 SDVTList VTs, 9638 ArrayRef<SDValue> Ops) { 9639 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9640 MachineSDNode *N; 9641 void *IP = nullptr; 9642 9643 if (DoCSE) { 9644 FoldingSetNodeID ID; 9645 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9646 IP = nullptr; 9647 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9648 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9649 } 9650 } 9651 9652 // Allocate a new MachineSDNode. 9653 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9654 createOperands(N, Ops); 9655 9656 if (DoCSE) 9657 CSEMap.InsertNode(N, IP); 9658 9659 InsertNode(N); 9660 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9661 return N; 9662 } 9663 9664 /// getTargetExtractSubreg - A convenience function for creating 9665 /// TargetOpcode::EXTRACT_SUBREG nodes. 9666 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9667 SDValue Operand) { 9668 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9669 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9670 VT, Operand, SRIdxVal); 9671 return SDValue(Subreg, 0); 9672 } 9673 9674 /// getTargetInsertSubreg - A convenience function for creating 9675 /// TargetOpcode::INSERT_SUBREG nodes. 9676 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9677 SDValue Operand, SDValue Subreg) { 9678 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9679 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9680 VT, Operand, Subreg, SRIdxVal); 9681 return SDValue(Result, 0); 9682 } 9683 9684 /// getNodeIfExists - Get the specified node if it's already available, or 9685 /// else return NULL. 9686 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9687 ArrayRef<SDValue> Ops) { 9688 SDNodeFlags Flags; 9689 if (Inserter) 9690 Flags = Inserter->getFlags(); 9691 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9692 } 9693 9694 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9695 ArrayRef<SDValue> Ops, 9696 const SDNodeFlags Flags) { 9697 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9698 FoldingSetNodeID ID; 9699 AddNodeIDNode(ID, Opcode, VTList, Ops); 9700 void *IP = nullptr; 9701 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9702 E->intersectFlagsWith(Flags); 9703 return E; 9704 } 9705 } 9706 return nullptr; 9707 } 9708 9709 /// doesNodeExist - Check if a node exists without modifying its flags. 9710 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9711 ArrayRef<SDValue> Ops) { 9712 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9713 FoldingSetNodeID ID; 9714 AddNodeIDNode(ID, Opcode, VTList, Ops); 9715 void *IP = nullptr; 9716 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9717 return true; 9718 } 9719 return false; 9720 } 9721 9722 /// getDbgValue - Creates a SDDbgValue node. 9723 /// 9724 /// SDNode 9725 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9726 SDNode *N, unsigned R, bool IsIndirect, 9727 const DebugLoc &DL, unsigned O) { 9728 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9729 "Expected inlined-at fields to agree"); 9730 return new (DbgInfo->getAlloc()) 9731 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9732 {}, IsIndirect, DL, O, 9733 /*IsVariadic=*/false); 9734 } 9735 9736 /// Constant 9737 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9738 DIExpression *Expr, 9739 const Value *C, 9740 const DebugLoc &DL, unsigned O) { 9741 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9742 "Expected inlined-at fields to agree"); 9743 return new (DbgInfo->getAlloc()) 9744 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9745 /*IsIndirect=*/false, DL, O, 9746 /*IsVariadic=*/false); 9747 } 9748 9749 /// FrameIndex 9750 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9751 DIExpression *Expr, unsigned FI, 9752 bool IsIndirect, 9753 const DebugLoc &DL, 9754 unsigned O) { 9755 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9756 "Expected inlined-at fields to agree"); 9757 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9758 } 9759 9760 /// FrameIndex with dependencies 9761 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9762 DIExpression *Expr, unsigned FI, 9763 ArrayRef<SDNode *> Dependencies, 9764 bool IsIndirect, 9765 const DebugLoc &DL, 9766 unsigned O) { 9767 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9768 "Expected inlined-at fields to agree"); 9769 return new (DbgInfo->getAlloc()) 9770 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9771 Dependencies, IsIndirect, DL, O, 9772 /*IsVariadic=*/false); 9773 } 9774 9775 /// VReg 9776 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9777 unsigned VReg, bool IsIndirect, 9778 const DebugLoc &DL, unsigned O) { 9779 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9780 "Expected inlined-at fields to agree"); 9781 return new (DbgInfo->getAlloc()) 9782 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9783 {}, IsIndirect, DL, O, 9784 /*IsVariadic=*/false); 9785 } 9786 9787 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9788 ArrayRef<SDDbgOperand> Locs, 9789 ArrayRef<SDNode *> Dependencies, 9790 bool IsIndirect, const DebugLoc &DL, 9791 unsigned O, bool IsVariadic) { 9792 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9793 "Expected inlined-at fields to agree"); 9794 return new (DbgInfo->getAlloc()) 9795 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9796 DL, O, IsVariadic); 9797 } 9798 9799 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9800 unsigned OffsetInBits, unsigned SizeInBits, 9801 bool InvalidateDbg) { 9802 SDNode *FromNode = From.getNode(); 9803 SDNode *ToNode = To.getNode(); 9804 assert(FromNode && ToNode && "Can't modify dbg values"); 9805 9806 // PR35338 9807 // TODO: assert(From != To && "Redundant dbg value transfer"); 9808 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9809 if (From == To || FromNode == ToNode) 9810 return; 9811 9812 if (!FromNode->getHasDebugValue()) 9813 return; 9814 9815 SDDbgOperand FromLocOp = 9816 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9817 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9818 9819 SmallVector<SDDbgValue *, 2> ClonedDVs; 9820 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9821 if (Dbg->isInvalidated()) 9822 continue; 9823 9824 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9825 9826 // Create a new location ops vector that is equal to the old vector, but 9827 // with each instance of FromLocOp replaced with ToLocOp. 9828 bool Changed = false; 9829 auto NewLocOps = Dbg->copyLocationOps(); 9830 std::replace_if( 9831 NewLocOps.begin(), NewLocOps.end(), 9832 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9833 bool Match = Op == FromLocOp; 9834 Changed |= Match; 9835 return Match; 9836 }, 9837 ToLocOp); 9838 // Ignore this SDDbgValue if we didn't find a matching location. 9839 if (!Changed) 9840 continue; 9841 9842 DIVariable *Var = Dbg->getVariable(); 9843 auto *Expr = Dbg->getExpression(); 9844 // If a fragment is requested, update the expression. 9845 if (SizeInBits) { 9846 // When splitting a larger (e.g., sign-extended) value whose 9847 // lower bits are described with an SDDbgValue, do not attempt 9848 // to transfer the SDDbgValue to the upper bits. 9849 if (auto FI = Expr->getFragmentInfo()) 9850 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9851 continue; 9852 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9853 SizeInBits); 9854 if (!Fragment) 9855 continue; 9856 Expr = *Fragment; 9857 } 9858 9859 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9860 // Clone the SDDbgValue and move it to To. 9861 SDDbgValue *Clone = getDbgValueList( 9862 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9863 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9864 Dbg->isVariadic()); 9865 ClonedDVs.push_back(Clone); 9866 9867 if (InvalidateDbg) { 9868 // Invalidate value and indicate the SDDbgValue should not be emitted. 9869 Dbg->setIsInvalidated(); 9870 Dbg->setIsEmitted(); 9871 } 9872 } 9873 9874 for (SDDbgValue *Dbg : ClonedDVs) { 9875 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9876 "Transferred DbgValues should depend on the new SDNode"); 9877 AddDbgValue(Dbg, false); 9878 } 9879 } 9880 9881 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9882 if (!N.getHasDebugValue()) 9883 return; 9884 9885 SmallVector<SDDbgValue *, 2> ClonedDVs; 9886 for (auto DV : GetDbgValues(&N)) { 9887 if (DV->isInvalidated()) 9888 continue; 9889 switch (N.getOpcode()) { 9890 default: 9891 break; 9892 case ISD::ADD: 9893 SDValue N0 = N.getOperand(0); 9894 SDValue N1 = N.getOperand(1); 9895 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9896 isConstantIntBuildVectorOrConstantInt(N1)) { 9897 uint64_t Offset = N.getConstantOperandVal(1); 9898 9899 // Rewrite an ADD constant node into a DIExpression. Since we are 9900 // performing arithmetic to compute the variable's *value* in the 9901 // DIExpression, we need to mark the expression with a 9902 // DW_OP_stack_value. 9903 auto *DIExpr = DV->getExpression(); 9904 auto NewLocOps = DV->copyLocationOps(); 9905 bool Changed = false; 9906 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9907 // We're not given a ResNo to compare against because the whole 9908 // node is going away. We know that any ISD::ADD only has one 9909 // result, so we can assume any node match is using the result. 9910 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9911 NewLocOps[i].getSDNode() != &N) 9912 continue; 9913 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9914 SmallVector<uint64_t, 3> ExprOps; 9915 DIExpression::appendOffset(ExprOps, Offset); 9916 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9917 Changed = true; 9918 } 9919 (void)Changed; 9920 assert(Changed && "Salvage target doesn't use N"); 9921 9922 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9923 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9924 NewLocOps, AdditionalDependencies, 9925 DV->isIndirect(), DV->getDebugLoc(), 9926 DV->getOrder(), DV->isVariadic()); 9927 ClonedDVs.push_back(Clone); 9928 DV->setIsInvalidated(); 9929 DV->setIsEmitted(); 9930 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9931 N0.getNode()->dumprFull(this); 9932 dbgs() << " into " << *DIExpr << '\n'); 9933 } 9934 } 9935 } 9936 9937 for (SDDbgValue *Dbg : ClonedDVs) { 9938 assert(!Dbg->getSDNodes().empty() && 9939 "Salvaged DbgValue should depend on a new SDNode"); 9940 AddDbgValue(Dbg, false); 9941 } 9942 } 9943 9944 /// Creates a SDDbgLabel node. 9945 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9946 const DebugLoc &DL, unsigned O) { 9947 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9948 "Expected inlined-at fields to agree"); 9949 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9950 } 9951 9952 namespace { 9953 9954 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9955 /// pointed to by a use iterator is deleted, increment the use iterator 9956 /// so that it doesn't dangle. 9957 /// 9958 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9959 SDNode::use_iterator &UI; 9960 SDNode::use_iterator &UE; 9961 9962 void NodeDeleted(SDNode *N, SDNode *E) override { 9963 // Increment the iterator as needed. 9964 while (UI != UE && N == *UI) 9965 ++UI; 9966 } 9967 9968 public: 9969 RAUWUpdateListener(SelectionDAG &d, 9970 SDNode::use_iterator &ui, 9971 SDNode::use_iterator &ue) 9972 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9973 }; 9974 9975 } // end anonymous namespace 9976 9977 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9978 /// This can cause recursive merging of nodes in the DAG. 9979 /// 9980 /// This version assumes From has a single result value. 9981 /// 9982 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9983 SDNode *From = FromN.getNode(); 9984 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9985 "Cannot replace with this method!"); 9986 assert(From != To.getNode() && "Cannot replace uses of with self"); 9987 9988 // Preserve Debug Values 9989 transferDbgValues(FromN, To); 9990 9991 // Iterate over all the existing uses of From. New uses will be added 9992 // to the beginning of the use list, which we avoid visiting. 9993 // This specifically avoids visiting uses of From that arise while the 9994 // replacement is happening, because any such uses would be the result 9995 // of CSE: If an existing node looks like From after one of its operands 9996 // is replaced by To, we don't want to replace of all its users with To 9997 // too. See PR3018 for more info. 9998 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9999 RAUWUpdateListener Listener(*this, UI, UE); 10000 while (UI != UE) { 10001 SDNode *User = *UI; 10002 10003 // This node is about to morph, remove its old self from the CSE maps. 10004 RemoveNodeFromCSEMaps(User); 10005 10006 // A user can appear in a use list multiple times, and when this 10007 // happens the uses are usually next to each other in the list. 10008 // To help reduce the number of CSE recomputations, process all 10009 // the uses of this user that we can find this way. 10010 do { 10011 SDUse &Use = UI.getUse(); 10012 ++UI; 10013 Use.set(To); 10014 if (To->isDivergent() != From->isDivergent()) 10015 updateDivergence(User); 10016 } while (UI != UE && *UI == User); 10017 // Now that we have modified User, add it back to the CSE maps. If it 10018 // already exists there, recursively merge the results together. 10019 AddModifiedNodeToCSEMaps(User); 10020 } 10021 10022 // If we just RAUW'd the root, take note. 10023 if (FromN == getRoot()) 10024 setRoot(To); 10025 } 10026 10027 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10028 /// This can cause recursive merging of nodes in the DAG. 10029 /// 10030 /// This version assumes that for each value of From, there is a 10031 /// corresponding value in To in the same position with the same type. 10032 /// 10033 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10034 #ifndef NDEBUG 10035 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10036 assert((!From->hasAnyUseOfValue(i) || 10037 From->getValueType(i) == To->getValueType(i)) && 10038 "Cannot use this version of ReplaceAllUsesWith!"); 10039 #endif 10040 10041 // Handle the trivial case. 10042 if (From == To) 10043 return; 10044 10045 // Preserve Debug Info. Only do this if there's a use. 10046 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10047 if (From->hasAnyUseOfValue(i)) { 10048 assert((i < To->getNumValues()) && "Invalid To location"); 10049 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10050 } 10051 10052 // Iterate over just the existing users of From. See the comments in 10053 // the ReplaceAllUsesWith above. 10054 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10055 RAUWUpdateListener Listener(*this, UI, UE); 10056 while (UI != UE) { 10057 SDNode *User = *UI; 10058 10059 // This node is about to morph, remove its old self from the CSE maps. 10060 RemoveNodeFromCSEMaps(User); 10061 10062 // A user can appear in a use list multiple times, and when this 10063 // happens the uses are usually next to each other in the list. 10064 // To help reduce the number of CSE recomputations, process all 10065 // the uses of this user that we can find this way. 10066 do { 10067 SDUse &Use = UI.getUse(); 10068 ++UI; 10069 Use.setNode(To); 10070 if (To->isDivergent() != From->isDivergent()) 10071 updateDivergence(User); 10072 } while (UI != UE && *UI == User); 10073 10074 // Now that we have modified User, add it back to the CSE maps. If it 10075 // already exists there, recursively merge the results together. 10076 AddModifiedNodeToCSEMaps(User); 10077 } 10078 10079 // If we just RAUW'd the root, take note. 10080 if (From == getRoot().getNode()) 10081 setRoot(SDValue(To, getRoot().getResNo())); 10082 } 10083 10084 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10085 /// This can cause recursive merging of nodes in the DAG. 10086 /// 10087 /// This version can replace From with any result values. To must match the 10088 /// number and types of values returned by From. 10089 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10090 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10091 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10092 10093 // Preserve Debug Info. 10094 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10095 transferDbgValues(SDValue(From, i), To[i]); 10096 10097 // Iterate over just the existing users of From. See the comments in 10098 // the ReplaceAllUsesWith above. 10099 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10100 RAUWUpdateListener Listener(*this, UI, UE); 10101 while (UI != UE) { 10102 SDNode *User = *UI; 10103 10104 // This node is about to morph, remove its old self from the CSE maps. 10105 RemoveNodeFromCSEMaps(User); 10106 10107 // A user can appear in a use list multiple times, and when this happens the 10108 // uses are usually next to each other in the list. To help reduce the 10109 // number of CSE and divergence recomputations, process all the uses of this 10110 // user that we can find this way. 10111 bool To_IsDivergent = false; 10112 do { 10113 SDUse &Use = UI.getUse(); 10114 const SDValue &ToOp = To[Use.getResNo()]; 10115 ++UI; 10116 Use.set(ToOp); 10117 To_IsDivergent |= ToOp->isDivergent(); 10118 } while (UI != UE && *UI == User); 10119 10120 if (To_IsDivergent != From->isDivergent()) 10121 updateDivergence(User); 10122 10123 // Now that we have modified User, add it back to the CSE maps. If it 10124 // already exists there, recursively merge the results together. 10125 AddModifiedNodeToCSEMaps(User); 10126 } 10127 10128 // If we just RAUW'd the root, take note. 10129 if (From == getRoot().getNode()) 10130 setRoot(SDValue(To[getRoot().getResNo()])); 10131 } 10132 10133 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10134 /// uses of other values produced by From.getNode() alone. The Deleted 10135 /// vector is handled the same way as for ReplaceAllUsesWith. 10136 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10137 // Handle the really simple, really trivial case efficiently. 10138 if (From == To) return; 10139 10140 // Handle the simple, trivial, case efficiently. 10141 if (From.getNode()->getNumValues() == 1) { 10142 ReplaceAllUsesWith(From, To); 10143 return; 10144 } 10145 10146 // Preserve Debug Info. 10147 transferDbgValues(From, To); 10148 10149 // Iterate over just the existing users of From. See the comments in 10150 // the ReplaceAllUsesWith above. 10151 SDNode::use_iterator UI = From.getNode()->use_begin(), 10152 UE = From.getNode()->use_end(); 10153 RAUWUpdateListener Listener(*this, UI, UE); 10154 while (UI != UE) { 10155 SDNode *User = *UI; 10156 bool UserRemovedFromCSEMaps = false; 10157 10158 // A user can appear in a use list multiple times, and when this 10159 // happens the uses are usually next to each other in the list. 10160 // To help reduce the number of CSE recomputations, process all 10161 // the uses of this user that we can find this way. 10162 do { 10163 SDUse &Use = UI.getUse(); 10164 10165 // Skip uses of different values from the same node. 10166 if (Use.getResNo() != From.getResNo()) { 10167 ++UI; 10168 continue; 10169 } 10170 10171 // If this node hasn't been modified yet, it's still in the CSE maps, 10172 // so remove its old self from the CSE maps. 10173 if (!UserRemovedFromCSEMaps) { 10174 RemoveNodeFromCSEMaps(User); 10175 UserRemovedFromCSEMaps = true; 10176 } 10177 10178 ++UI; 10179 Use.set(To); 10180 if (To->isDivergent() != From->isDivergent()) 10181 updateDivergence(User); 10182 } while (UI != UE && *UI == User); 10183 // We are iterating over all uses of the From node, so if a use 10184 // doesn't use the specific value, no changes are made. 10185 if (!UserRemovedFromCSEMaps) 10186 continue; 10187 10188 // Now that we have modified User, add it back to the CSE maps. If it 10189 // already exists there, recursively merge the results together. 10190 AddModifiedNodeToCSEMaps(User); 10191 } 10192 10193 // If we just RAUW'd the root, take note. 10194 if (From == getRoot()) 10195 setRoot(To); 10196 } 10197 10198 namespace { 10199 10200 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10201 /// to record information about a use. 10202 struct UseMemo { 10203 SDNode *User; 10204 unsigned Index; 10205 SDUse *Use; 10206 }; 10207 10208 /// operator< - Sort Memos by User. 10209 bool operator<(const UseMemo &L, const UseMemo &R) { 10210 return (intptr_t)L.User < (intptr_t)R.User; 10211 } 10212 10213 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10214 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10215 /// the node already has been taken care of recursively. 10216 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10217 SmallVector<UseMemo, 4> &Uses; 10218 10219 void NodeDeleted(SDNode *N, SDNode *E) override { 10220 for (UseMemo &Memo : Uses) 10221 if (Memo.User == N) 10222 Memo.User = nullptr; 10223 } 10224 10225 public: 10226 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10227 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10228 }; 10229 10230 } // end anonymous namespace 10231 10232 bool SelectionDAG::calculateDivergence(SDNode *N) { 10233 if (TLI->isSDNodeAlwaysUniform(N)) { 10234 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10235 "Conflicting divergence information!"); 10236 return false; 10237 } 10238 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10239 return true; 10240 for (auto &Op : N->ops()) { 10241 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10242 return true; 10243 } 10244 return false; 10245 } 10246 10247 void SelectionDAG::updateDivergence(SDNode *N) { 10248 SmallVector<SDNode *, 16> Worklist(1, N); 10249 do { 10250 N = Worklist.pop_back_val(); 10251 bool IsDivergent = calculateDivergence(N); 10252 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10253 N->SDNodeBits.IsDivergent = IsDivergent; 10254 llvm::append_range(Worklist, N->uses()); 10255 } 10256 } while (!Worklist.empty()); 10257 } 10258 10259 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10260 DenseMap<SDNode *, unsigned> Degree; 10261 Order.reserve(AllNodes.size()); 10262 for (auto &N : allnodes()) { 10263 unsigned NOps = N.getNumOperands(); 10264 Degree[&N] = NOps; 10265 if (0 == NOps) 10266 Order.push_back(&N); 10267 } 10268 for (size_t I = 0; I != Order.size(); ++I) { 10269 SDNode *N = Order[I]; 10270 for (auto U : N->uses()) { 10271 unsigned &UnsortedOps = Degree[U]; 10272 if (0 == --UnsortedOps) 10273 Order.push_back(U); 10274 } 10275 } 10276 } 10277 10278 #ifndef NDEBUG 10279 void SelectionDAG::VerifyDAGDivergence() { 10280 std::vector<SDNode *> TopoOrder; 10281 CreateTopologicalOrder(TopoOrder); 10282 for (auto *N : TopoOrder) { 10283 assert(calculateDivergence(N) == N->isDivergent() && 10284 "Divergence bit inconsistency detected"); 10285 } 10286 } 10287 #endif 10288 10289 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10290 /// uses of other values produced by From.getNode() alone. The same value 10291 /// may appear in both the From and To list. The Deleted vector is 10292 /// handled the same way as for ReplaceAllUsesWith. 10293 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10294 const SDValue *To, 10295 unsigned Num){ 10296 // Handle the simple, trivial case efficiently. 10297 if (Num == 1) 10298 return ReplaceAllUsesOfValueWith(*From, *To); 10299 10300 transferDbgValues(*From, *To); 10301 10302 // Read up all the uses and make records of them. This helps 10303 // processing new uses that are introduced during the 10304 // replacement process. 10305 SmallVector<UseMemo, 4> Uses; 10306 for (unsigned i = 0; i != Num; ++i) { 10307 unsigned FromResNo = From[i].getResNo(); 10308 SDNode *FromNode = From[i].getNode(); 10309 for (SDNode::use_iterator UI = FromNode->use_begin(), 10310 E = FromNode->use_end(); UI != E; ++UI) { 10311 SDUse &Use = UI.getUse(); 10312 if (Use.getResNo() == FromResNo) { 10313 UseMemo Memo = { *UI, i, &Use }; 10314 Uses.push_back(Memo); 10315 } 10316 } 10317 } 10318 10319 // Sort the uses, so that all the uses from a given User are together. 10320 llvm::sort(Uses); 10321 RAUOVWUpdateListener Listener(*this, Uses); 10322 10323 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10324 UseIndex != UseIndexEnd; ) { 10325 // We know that this user uses some value of From. If it is the right 10326 // value, update it. 10327 SDNode *User = Uses[UseIndex].User; 10328 // If the node has been deleted by recursive CSE updates when updating 10329 // another node, then just skip this entry. 10330 if (User == nullptr) { 10331 ++UseIndex; 10332 continue; 10333 } 10334 10335 // This node is about to morph, remove its old self from the CSE maps. 10336 RemoveNodeFromCSEMaps(User); 10337 10338 // The Uses array is sorted, so all the uses for a given User 10339 // are next to each other in the list. 10340 // To help reduce the number of CSE recomputations, process all 10341 // the uses of this user that we can find this way. 10342 do { 10343 unsigned i = Uses[UseIndex].Index; 10344 SDUse &Use = *Uses[UseIndex].Use; 10345 ++UseIndex; 10346 10347 Use.set(To[i]); 10348 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10349 10350 // Now that we have modified User, add it back to the CSE maps. If it 10351 // already exists there, recursively merge the results together. 10352 AddModifiedNodeToCSEMaps(User); 10353 } 10354 } 10355 10356 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10357 /// based on their topological order. It returns the maximum id and a vector 10358 /// of the SDNodes* in assigned order by reference. 10359 unsigned SelectionDAG::AssignTopologicalOrder() { 10360 unsigned DAGSize = 0; 10361 10362 // SortedPos tracks the progress of the algorithm. Nodes before it are 10363 // sorted, nodes after it are unsorted. When the algorithm completes 10364 // it is at the end of the list. 10365 allnodes_iterator SortedPos = allnodes_begin(); 10366 10367 // Visit all the nodes. Move nodes with no operands to the front of 10368 // the list immediately. Annotate nodes that do have operands with their 10369 // operand count. Before we do this, the Node Id fields of the nodes 10370 // may contain arbitrary values. After, the Node Id fields for nodes 10371 // before SortedPos will contain the topological sort index, and the 10372 // Node Id fields for nodes At SortedPos and after will contain the 10373 // count of outstanding operands. 10374 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10375 checkForCycles(&N, this); 10376 unsigned Degree = N.getNumOperands(); 10377 if (Degree == 0) { 10378 // A node with no uses, add it to the result array immediately. 10379 N.setNodeId(DAGSize++); 10380 allnodes_iterator Q(&N); 10381 if (Q != SortedPos) 10382 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10383 assert(SortedPos != AllNodes.end() && "Overran node list"); 10384 ++SortedPos; 10385 } else { 10386 // Temporarily use the Node Id as scratch space for the degree count. 10387 N.setNodeId(Degree); 10388 } 10389 } 10390 10391 // Visit all the nodes. As we iterate, move nodes into sorted order, 10392 // such that by the time the end is reached all nodes will be sorted. 10393 for (SDNode &Node : allnodes()) { 10394 SDNode *N = &Node; 10395 checkForCycles(N, this); 10396 // N is in sorted position, so all its uses have one less operand 10397 // that needs to be sorted. 10398 for (SDNode *P : N->uses()) { 10399 unsigned Degree = P->getNodeId(); 10400 assert(Degree != 0 && "Invalid node degree"); 10401 --Degree; 10402 if (Degree == 0) { 10403 // All of P's operands are sorted, so P may sorted now. 10404 P->setNodeId(DAGSize++); 10405 if (P->getIterator() != SortedPos) 10406 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10407 assert(SortedPos != AllNodes.end() && "Overran node list"); 10408 ++SortedPos; 10409 } else { 10410 // Update P's outstanding operand count. 10411 P->setNodeId(Degree); 10412 } 10413 } 10414 if (Node.getIterator() == SortedPos) { 10415 #ifndef NDEBUG 10416 allnodes_iterator I(N); 10417 SDNode *S = &*++I; 10418 dbgs() << "Overran sorted position:\n"; 10419 S->dumprFull(this); dbgs() << "\n"; 10420 dbgs() << "Checking if this is due to cycles\n"; 10421 checkForCycles(this, true); 10422 #endif 10423 llvm_unreachable(nullptr); 10424 } 10425 } 10426 10427 assert(SortedPos == AllNodes.end() && 10428 "Topological sort incomplete!"); 10429 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10430 "First node in topological sort is not the entry token!"); 10431 assert(AllNodes.front().getNodeId() == 0 && 10432 "First node in topological sort has non-zero id!"); 10433 assert(AllNodes.front().getNumOperands() == 0 && 10434 "First node in topological sort has operands!"); 10435 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10436 "Last node in topologic sort has unexpected id!"); 10437 assert(AllNodes.back().use_empty() && 10438 "Last node in topologic sort has users!"); 10439 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10440 return DAGSize; 10441 } 10442 10443 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10444 /// value is produced by SD. 10445 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10446 for (SDNode *SD : DB->getSDNodes()) { 10447 if (!SD) 10448 continue; 10449 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10450 SD->setHasDebugValue(true); 10451 } 10452 DbgInfo->add(DB, isParameter); 10453 } 10454 10455 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10456 10457 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10458 SDValue NewMemOpChain) { 10459 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10460 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10461 // The new memory operation must have the same position as the old load in 10462 // terms of memory dependency. Create a TokenFactor for the old load and new 10463 // memory operation and update uses of the old load's output chain to use that 10464 // TokenFactor. 10465 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10466 return NewMemOpChain; 10467 10468 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10469 OldChain, NewMemOpChain); 10470 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10471 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10472 return TokenFactor; 10473 } 10474 10475 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10476 SDValue NewMemOp) { 10477 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10478 SDValue OldChain = SDValue(OldLoad, 1); 10479 SDValue NewMemOpChain = NewMemOp.getValue(1); 10480 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10481 } 10482 10483 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10484 Function **OutFunction) { 10485 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10486 10487 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10488 auto *Module = MF->getFunction().getParent(); 10489 auto *Function = Module->getFunction(Symbol); 10490 10491 if (OutFunction != nullptr) 10492 *OutFunction = Function; 10493 10494 if (Function != nullptr) { 10495 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10496 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10497 } 10498 10499 std::string ErrorStr; 10500 raw_string_ostream ErrorFormatter(ErrorStr); 10501 ErrorFormatter << "Undefined external symbol "; 10502 ErrorFormatter << '"' << Symbol << '"'; 10503 report_fatal_error(Twine(ErrorFormatter.str())); 10504 } 10505 10506 //===----------------------------------------------------------------------===// 10507 // SDNode Class 10508 //===----------------------------------------------------------------------===// 10509 10510 bool llvm::isNullConstant(SDValue V) { 10511 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10512 return Const != nullptr && Const->isZero(); 10513 } 10514 10515 bool llvm::isNullFPConstant(SDValue V) { 10516 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10517 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10518 } 10519 10520 bool llvm::isAllOnesConstant(SDValue V) { 10521 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10522 return Const != nullptr && Const->isAllOnes(); 10523 } 10524 10525 bool llvm::isOneConstant(SDValue V) { 10526 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10527 return Const != nullptr && Const->isOne(); 10528 } 10529 10530 bool llvm::isMinSignedConstant(SDValue V) { 10531 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10532 return Const != nullptr && Const->isMinSignedValue(); 10533 } 10534 10535 SDValue llvm::peekThroughBitcasts(SDValue V) { 10536 while (V.getOpcode() == ISD::BITCAST) 10537 V = V.getOperand(0); 10538 return V; 10539 } 10540 10541 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10542 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10543 V = V.getOperand(0); 10544 return V; 10545 } 10546 10547 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10548 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10549 V = V.getOperand(0); 10550 return V; 10551 } 10552 10553 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10554 if (V.getOpcode() != ISD::XOR) 10555 return false; 10556 V = peekThroughBitcasts(V.getOperand(1)); 10557 unsigned NumBits = V.getScalarValueSizeInBits(); 10558 ConstantSDNode *C = 10559 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10560 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10561 } 10562 10563 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10564 bool AllowTruncation) { 10565 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10566 return CN; 10567 10568 // SplatVectors can truncate their operands. Ignore that case here unless 10569 // AllowTruncation is set. 10570 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10571 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10572 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10573 EVT CVT = CN->getValueType(0); 10574 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10575 if (AllowTruncation || CVT == VecEltVT) 10576 return CN; 10577 } 10578 } 10579 10580 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10581 BitVector UndefElements; 10582 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10583 10584 // BuildVectors can truncate their operands. Ignore that case here unless 10585 // AllowTruncation is set. 10586 if (CN && (UndefElements.none() || AllowUndefs)) { 10587 EVT CVT = CN->getValueType(0); 10588 EVT NSVT = N.getValueType().getScalarType(); 10589 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10590 if (AllowTruncation || (CVT == NSVT)) 10591 return CN; 10592 } 10593 } 10594 10595 return nullptr; 10596 } 10597 10598 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10599 bool AllowUndefs, 10600 bool AllowTruncation) { 10601 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10602 return CN; 10603 10604 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10605 BitVector UndefElements; 10606 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10607 10608 // BuildVectors can truncate their operands. Ignore that case here unless 10609 // AllowTruncation is set. 10610 if (CN && (UndefElements.none() || AllowUndefs)) { 10611 EVT CVT = CN->getValueType(0); 10612 EVT NSVT = N.getValueType().getScalarType(); 10613 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10614 if (AllowTruncation || (CVT == NSVT)) 10615 return CN; 10616 } 10617 } 10618 10619 return nullptr; 10620 } 10621 10622 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10623 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10624 return CN; 10625 10626 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10627 BitVector UndefElements; 10628 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10629 if (CN && (UndefElements.none() || AllowUndefs)) 10630 return CN; 10631 } 10632 10633 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10634 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10635 return CN; 10636 10637 return nullptr; 10638 } 10639 10640 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10641 const APInt &DemandedElts, 10642 bool AllowUndefs) { 10643 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10644 return CN; 10645 10646 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10647 BitVector UndefElements; 10648 ConstantFPSDNode *CN = 10649 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10650 if (CN && (UndefElements.none() || AllowUndefs)) 10651 return CN; 10652 } 10653 10654 return nullptr; 10655 } 10656 10657 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10658 // TODO: may want to use peekThroughBitcast() here. 10659 ConstantSDNode *C = 10660 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10661 return C && C->isZero(); 10662 } 10663 10664 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10665 // TODO: may want to use peekThroughBitcast() here. 10666 unsigned BitWidth = N.getScalarValueSizeInBits(); 10667 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10668 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10669 } 10670 10671 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10672 N = peekThroughBitcasts(N); 10673 unsigned BitWidth = N.getScalarValueSizeInBits(); 10674 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10675 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10676 } 10677 10678 HandleSDNode::~HandleSDNode() { 10679 DropOperands(); 10680 } 10681 10682 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10683 const DebugLoc &DL, 10684 const GlobalValue *GA, EVT VT, 10685 int64_t o, unsigned TF) 10686 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10687 TheGlobal = GA; 10688 } 10689 10690 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10691 EVT VT, unsigned SrcAS, 10692 unsigned DestAS) 10693 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10694 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10695 10696 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10697 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10698 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10699 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10700 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10701 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10702 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10703 10704 // We check here that the size of the memory operand fits within the size of 10705 // the MMO. This is because the MMO might indicate only a possible address 10706 // range instead of specifying the affected memory addresses precisely. 10707 // TODO: Make MachineMemOperands aware of scalable vectors. 10708 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10709 "Size mismatch!"); 10710 } 10711 10712 /// Profile - Gather unique data for the node. 10713 /// 10714 void SDNode::Profile(FoldingSetNodeID &ID) const { 10715 AddNodeIDNode(ID, this); 10716 } 10717 10718 namespace { 10719 10720 struct EVTArray { 10721 std::vector<EVT> VTs; 10722 10723 EVTArray() { 10724 VTs.reserve(MVT::VALUETYPE_SIZE); 10725 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10726 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10727 } 10728 }; 10729 10730 } // end anonymous namespace 10731 10732 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10733 static ManagedStatic<EVTArray> SimpleVTArray; 10734 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10735 10736 /// getValueTypeList - Return a pointer to the specified value type. 10737 /// 10738 const EVT *SDNode::getValueTypeList(EVT VT) { 10739 if (VT.isExtended()) { 10740 sys::SmartScopedLock<true> Lock(*VTMutex); 10741 return &(*EVTs->insert(VT).first); 10742 } 10743 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10744 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10745 } 10746 10747 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10748 /// indicated value. This method ignores uses of other values defined by this 10749 /// operation. 10750 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10751 assert(Value < getNumValues() && "Bad value!"); 10752 10753 // TODO: Only iterate over uses of a given value of the node 10754 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10755 if (UI.getUse().getResNo() == Value) { 10756 if (NUses == 0) 10757 return false; 10758 --NUses; 10759 } 10760 } 10761 10762 // Found exactly the right number of uses? 10763 return NUses == 0; 10764 } 10765 10766 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10767 /// value. This method ignores uses of other values defined by this operation. 10768 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10769 assert(Value < getNumValues() && "Bad value!"); 10770 10771 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10772 if (UI.getUse().getResNo() == Value) 10773 return true; 10774 10775 return false; 10776 } 10777 10778 /// isOnlyUserOf - Return true if this node is the only use of N. 10779 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10780 bool Seen = false; 10781 for (const SDNode *User : N->uses()) { 10782 if (User == this) 10783 Seen = true; 10784 else 10785 return false; 10786 } 10787 10788 return Seen; 10789 } 10790 10791 /// Return true if the only users of N are contained in Nodes. 10792 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10793 bool Seen = false; 10794 for (const SDNode *User : N->uses()) { 10795 if (llvm::is_contained(Nodes, User)) 10796 Seen = true; 10797 else 10798 return false; 10799 } 10800 10801 return Seen; 10802 } 10803 10804 /// isOperand - Return true if this node is an operand of N. 10805 bool SDValue::isOperandOf(const SDNode *N) const { 10806 return is_contained(N->op_values(), *this); 10807 } 10808 10809 bool SDNode::isOperandOf(const SDNode *N) const { 10810 return any_of(N->op_values(), 10811 [this](SDValue Op) { return this == Op.getNode(); }); 10812 } 10813 10814 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10815 /// be a chain) reaches the specified operand without crossing any 10816 /// side-effecting instructions on any chain path. In practice, this looks 10817 /// through token factors and non-volatile loads. In order to remain efficient, 10818 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10819 /// 10820 /// Note that we only need to examine chains when we're searching for 10821 /// side-effects; SelectionDAG requires that all side-effects are represented 10822 /// by chains, even if another operand would force a specific ordering. This 10823 /// constraint is necessary to allow transformations like splitting loads. 10824 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10825 unsigned Depth) const { 10826 if (*this == Dest) return true; 10827 10828 // Don't search too deeply, we just want to be able to see through 10829 // TokenFactor's etc. 10830 if (Depth == 0) return false; 10831 10832 // If this is a token factor, all inputs to the TF happen in parallel. 10833 if (getOpcode() == ISD::TokenFactor) { 10834 // First, try a shallow search. 10835 if (is_contained((*this)->ops(), Dest)) { 10836 // We found the chain we want as an operand of this TokenFactor. 10837 // Essentially, we reach the chain without side-effects if we could 10838 // serialize the TokenFactor into a simple chain of operations with 10839 // Dest as the last operation. This is automatically true if the 10840 // chain has one use: there are no other ordering constraints. 10841 // If the chain has more than one use, we give up: some other 10842 // use of Dest might force a side-effect between Dest and the current 10843 // node. 10844 if (Dest.hasOneUse()) 10845 return true; 10846 } 10847 // Next, try a deep search: check whether every operand of the TokenFactor 10848 // reaches Dest. 10849 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10850 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10851 }); 10852 } 10853 10854 // Loads don't have side effects, look through them. 10855 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10856 if (Ld->isUnordered()) 10857 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10858 } 10859 return false; 10860 } 10861 10862 bool SDNode::hasPredecessor(const SDNode *N) const { 10863 SmallPtrSet<const SDNode *, 32> Visited; 10864 SmallVector<const SDNode *, 16> Worklist; 10865 Worklist.push_back(this); 10866 return hasPredecessorHelper(N, Visited, Worklist); 10867 } 10868 10869 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10870 this->Flags.intersectWith(Flags); 10871 } 10872 10873 SDValue 10874 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10875 ArrayRef<ISD::NodeType> CandidateBinOps, 10876 bool AllowPartials) { 10877 // The pattern must end in an extract from index 0. 10878 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10879 !isNullConstant(Extract->getOperand(1))) 10880 return SDValue(); 10881 10882 // Match against one of the candidate binary ops. 10883 SDValue Op = Extract->getOperand(0); 10884 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10885 return Op.getOpcode() == unsigned(BinOp); 10886 })) 10887 return SDValue(); 10888 10889 // Floating-point reductions may require relaxed constraints on the final step 10890 // of the reduction because they may reorder intermediate operations. 10891 unsigned CandidateBinOp = Op.getOpcode(); 10892 if (Op.getValueType().isFloatingPoint()) { 10893 SDNodeFlags Flags = Op->getFlags(); 10894 switch (CandidateBinOp) { 10895 case ISD::FADD: 10896 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10897 return SDValue(); 10898 break; 10899 default: 10900 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10901 } 10902 } 10903 10904 // Matching failed - attempt to see if we did enough stages that a partial 10905 // reduction from a subvector is possible. 10906 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10907 if (!AllowPartials || !Op) 10908 return SDValue(); 10909 EVT OpVT = Op.getValueType(); 10910 EVT OpSVT = OpVT.getScalarType(); 10911 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10912 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10913 return SDValue(); 10914 BinOp = (ISD::NodeType)CandidateBinOp; 10915 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10916 getVectorIdxConstant(0, SDLoc(Op))); 10917 }; 10918 10919 // At each stage, we're looking for something that looks like: 10920 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10921 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10922 // i32 undef, i32 undef, i32 undef, i32 undef> 10923 // %a = binop <8 x i32> %op, %s 10924 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10925 // we expect something like: 10926 // <4,5,6,7,u,u,u,u> 10927 // <2,3,u,u,u,u,u,u> 10928 // <1,u,u,u,u,u,u,u> 10929 // While a partial reduction match would be: 10930 // <2,3,u,u,u,u,u,u> 10931 // <1,u,u,u,u,u,u,u> 10932 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10933 SDValue PrevOp; 10934 for (unsigned i = 0; i < Stages; ++i) { 10935 unsigned MaskEnd = (1 << i); 10936 10937 if (Op.getOpcode() != CandidateBinOp) 10938 return PartialReduction(PrevOp, MaskEnd); 10939 10940 SDValue Op0 = Op.getOperand(0); 10941 SDValue Op1 = Op.getOperand(1); 10942 10943 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10944 if (Shuffle) { 10945 Op = Op1; 10946 } else { 10947 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10948 Op = Op0; 10949 } 10950 10951 // The first operand of the shuffle should be the same as the other operand 10952 // of the binop. 10953 if (!Shuffle || Shuffle->getOperand(0) != Op) 10954 return PartialReduction(PrevOp, MaskEnd); 10955 10956 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10957 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10958 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10959 return PartialReduction(PrevOp, MaskEnd); 10960 10961 PrevOp = Op; 10962 } 10963 10964 // Handle subvector reductions, which tend to appear after the shuffle 10965 // reduction stages. 10966 while (Op.getOpcode() == CandidateBinOp) { 10967 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10968 SDValue Op0 = Op.getOperand(0); 10969 SDValue Op1 = Op.getOperand(1); 10970 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10971 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10972 Op0.getOperand(0) != Op1.getOperand(0)) 10973 break; 10974 SDValue Src = Op0.getOperand(0); 10975 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10976 if (NumSrcElts != (2 * NumElts)) 10977 break; 10978 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10979 Op1.getConstantOperandAPInt(1) == NumElts) && 10980 !(Op1.getConstantOperandAPInt(1) == 0 && 10981 Op0.getConstantOperandAPInt(1) == NumElts)) 10982 break; 10983 Op = Src; 10984 } 10985 10986 BinOp = (ISD::NodeType)CandidateBinOp; 10987 return Op; 10988 } 10989 10990 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10991 assert(N->getNumValues() == 1 && 10992 "Can't unroll a vector with multiple results!"); 10993 10994 EVT VT = N->getValueType(0); 10995 unsigned NE = VT.getVectorNumElements(); 10996 EVT EltVT = VT.getVectorElementType(); 10997 SDLoc dl(N); 10998 10999 SmallVector<SDValue, 8> Scalars; 11000 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11001 11002 // If ResNE is 0, fully unroll the vector op. 11003 if (ResNE == 0) 11004 ResNE = NE; 11005 else if (NE > ResNE) 11006 NE = ResNE; 11007 11008 unsigned i; 11009 for (i= 0; i != NE; ++i) { 11010 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11011 SDValue Operand = N->getOperand(j); 11012 EVT OperandVT = Operand.getValueType(); 11013 if (OperandVT.isVector()) { 11014 // A vector operand; extract a single element. 11015 EVT OperandEltVT = OperandVT.getVectorElementType(); 11016 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11017 Operand, getVectorIdxConstant(i, dl)); 11018 } else { 11019 // A scalar operand; just use it as is. 11020 Operands[j] = Operand; 11021 } 11022 } 11023 11024 switch (N->getOpcode()) { 11025 default: { 11026 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11027 N->getFlags())); 11028 break; 11029 } 11030 case ISD::VSELECT: 11031 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11032 break; 11033 case ISD::SHL: 11034 case ISD::SRA: 11035 case ISD::SRL: 11036 case ISD::ROTL: 11037 case ISD::ROTR: 11038 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11039 getShiftAmountOperand(Operands[0].getValueType(), 11040 Operands[1]))); 11041 break; 11042 case ISD::SIGN_EXTEND_INREG: { 11043 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11044 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11045 Operands[0], 11046 getValueType(ExtVT))); 11047 } 11048 } 11049 } 11050 11051 for (; i < ResNE; ++i) 11052 Scalars.push_back(getUNDEF(EltVT)); 11053 11054 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11055 return getBuildVector(VecVT, dl, Scalars); 11056 } 11057 11058 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11059 SDNode *N, unsigned ResNE) { 11060 unsigned Opcode = N->getOpcode(); 11061 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11062 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11063 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11064 "Expected an overflow opcode"); 11065 11066 EVT ResVT = N->getValueType(0); 11067 EVT OvVT = N->getValueType(1); 11068 EVT ResEltVT = ResVT.getVectorElementType(); 11069 EVT OvEltVT = OvVT.getVectorElementType(); 11070 SDLoc dl(N); 11071 11072 // If ResNE is 0, fully unroll the vector op. 11073 unsigned NE = ResVT.getVectorNumElements(); 11074 if (ResNE == 0) 11075 ResNE = NE; 11076 else if (NE > ResNE) 11077 NE = ResNE; 11078 11079 SmallVector<SDValue, 8> LHSScalars; 11080 SmallVector<SDValue, 8> RHSScalars; 11081 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11082 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11083 11084 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11085 SDVTList VTs = getVTList(ResEltVT, SVT); 11086 SmallVector<SDValue, 8> ResScalars; 11087 SmallVector<SDValue, 8> OvScalars; 11088 for (unsigned i = 0; i < NE; ++i) { 11089 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11090 SDValue Ov = 11091 getSelect(dl, OvEltVT, Res.getValue(1), 11092 getBoolConstant(true, dl, OvEltVT, ResVT), 11093 getConstant(0, dl, OvEltVT)); 11094 11095 ResScalars.push_back(Res); 11096 OvScalars.push_back(Ov); 11097 } 11098 11099 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11100 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11101 11102 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11103 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11104 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11105 getBuildVector(NewOvVT, dl, OvScalars)); 11106 } 11107 11108 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11109 LoadSDNode *Base, 11110 unsigned Bytes, 11111 int Dist) const { 11112 if (LD->isVolatile() || Base->isVolatile()) 11113 return false; 11114 // TODO: probably too restrictive for atomics, revisit 11115 if (!LD->isSimple()) 11116 return false; 11117 if (LD->isIndexed() || Base->isIndexed()) 11118 return false; 11119 if (LD->getChain() != Base->getChain()) 11120 return false; 11121 EVT VT = LD->getValueType(0); 11122 if (VT.getSizeInBits() / 8 != Bytes) 11123 return false; 11124 11125 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11126 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11127 11128 int64_t Offset = 0; 11129 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11130 return (Dist * Bytes == Offset); 11131 return false; 11132 } 11133 11134 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11135 /// if it cannot be inferred. 11136 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11137 // If this is a GlobalAddress + cst, return the alignment. 11138 const GlobalValue *GV = nullptr; 11139 int64_t GVOffset = 0; 11140 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11141 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11142 KnownBits Known(PtrWidth); 11143 llvm::computeKnownBits(GV, Known, getDataLayout()); 11144 unsigned AlignBits = Known.countMinTrailingZeros(); 11145 if (AlignBits) 11146 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11147 } 11148 11149 // If this is a direct reference to a stack slot, use information about the 11150 // stack slot's alignment. 11151 int FrameIdx = INT_MIN; 11152 int64_t FrameOffset = 0; 11153 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11154 FrameIdx = FI->getIndex(); 11155 } else if (isBaseWithConstantOffset(Ptr) && 11156 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11157 // Handle FI+Cst 11158 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11159 FrameOffset = Ptr.getConstantOperandVal(1); 11160 } 11161 11162 if (FrameIdx != INT_MIN) { 11163 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11164 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11165 } 11166 11167 return None; 11168 } 11169 11170 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11171 /// which is split (or expanded) into two not necessarily identical pieces. 11172 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11173 // Currently all types are split in half. 11174 EVT LoVT, HiVT; 11175 if (!VT.isVector()) 11176 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11177 else 11178 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11179 11180 return std::make_pair(LoVT, HiVT); 11181 } 11182 11183 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11184 /// type, dependent on an enveloping VT that has been split into two identical 11185 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11186 std::pair<EVT, EVT> 11187 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11188 bool *HiIsEmpty) const { 11189 EVT EltTp = VT.getVectorElementType(); 11190 // Examples: 11191 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11192 // custom VL=9 with enveloping VL=8/8 yields 8/1 11193 // custom VL=10 with enveloping VL=8/8 yields 8/2 11194 // etc. 11195 ElementCount VTNumElts = VT.getVectorElementCount(); 11196 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11197 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11198 "Mixing fixed width and scalable vectors when enveloping a type"); 11199 EVT LoVT, HiVT; 11200 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11201 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11202 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11203 *HiIsEmpty = false; 11204 } else { 11205 // Flag that hi type has zero storage size, but return split envelop type 11206 // (this would be easier if vector types with zero elements were allowed). 11207 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11208 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11209 *HiIsEmpty = true; 11210 } 11211 return std::make_pair(LoVT, HiVT); 11212 } 11213 11214 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11215 /// low/high part. 11216 std::pair<SDValue, SDValue> 11217 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11218 const EVT &HiVT) { 11219 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11220 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11221 "Splitting vector with an invalid mixture of fixed and scalable " 11222 "vector types"); 11223 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11224 N.getValueType().getVectorMinNumElements() && 11225 "More vector elements requested than available!"); 11226 SDValue Lo, Hi; 11227 Lo = 11228 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11229 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11230 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11231 // IDX with the runtime scaling factor of the result vector type. For 11232 // fixed-width result vectors, that runtime scaling factor is 1. 11233 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11234 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11235 return std::make_pair(Lo, Hi); 11236 } 11237 11238 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11239 const SDLoc &DL) { 11240 // Split the vector length parameter. 11241 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11242 EVT VT = N.getValueType(); 11243 assert(VecVT.getVectorElementCount().isKnownEven() && 11244 "Expecting the mask to be an evenly-sized vector"); 11245 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11246 SDValue HalfNumElts = 11247 VecVT.isFixedLengthVector() 11248 ? getConstant(HalfMinNumElts, DL, VT) 11249 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11250 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11251 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11252 return std::make_pair(Lo, Hi); 11253 } 11254 11255 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11256 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11257 EVT VT = N.getValueType(); 11258 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11259 NextPowerOf2(VT.getVectorNumElements())); 11260 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11261 getVectorIdxConstant(0, DL)); 11262 } 11263 11264 void SelectionDAG::ExtractVectorElements(SDValue Op, 11265 SmallVectorImpl<SDValue> &Args, 11266 unsigned Start, unsigned Count, 11267 EVT EltVT) { 11268 EVT VT = Op.getValueType(); 11269 if (Count == 0) 11270 Count = VT.getVectorNumElements(); 11271 if (EltVT == EVT()) 11272 EltVT = VT.getVectorElementType(); 11273 SDLoc SL(Op); 11274 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11275 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11276 getVectorIdxConstant(i, SL))); 11277 } 11278 } 11279 11280 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11281 unsigned GlobalAddressSDNode::getAddressSpace() const { 11282 return getGlobal()->getType()->getAddressSpace(); 11283 } 11284 11285 Type *ConstantPoolSDNode::getType() const { 11286 if (isMachineConstantPoolEntry()) 11287 return Val.MachineCPVal->getType(); 11288 return Val.ConstVal->getType(); 11289 } 11290 11291 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11292 unsigned &SplatBitSize, 11293 bool &HasAnyUndefs, 11294 unsigned MinSplatBits, 11295 bool IsBigEndian) const { 11296 EVT VT = getValueType(0); 11297 assert(VT.isVector() && "Expected a vector type"); 11298 unsigned VecWidth = VT.getSizeInBits(); 11299 if (MinSplatBits > VecWidth) 11300 return false; 11301 11302 // FIXME: The widths are based on this node's type, but build vectors can 11303 // truncate their operands. 11304 SplatValue = APInt(VecWidth, 0); 11305 SplatUndef = APInt(VecWidth, 0); 11306 11307 // Get the bits. Bits with undefined values (when the corresponding element 11308 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11309 // in SplatValue. If any of the values are not constant, give up and return 11310 // false. 11311 unsigned int NumOps = getNumOperands(); 11312 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11313 unsigned EltWidth = VT.getScalarSizeInBits(); 11314 11315 for (unsigned j = 0; j < NumOps; ++j) { 11316 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11317 SDValue OpVal = getOperand(i); 11318 unsigned BitPos = j * EltWidth; 11319 11320 if (OpVal.isUndef()) 11321 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11322 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11323 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11324 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11325 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11326 else 11327 return false; 11328 } 11329 11330 // The build_vector is all constants or undefs. Find the smallest element 11331 // size that splats the vector. 11332 HasAnyUndefs = (SplatUndef != 0); 11333 11334 // FIXME: This does not work for vectors with elements less than 8 bits. 11335 while (VecWidth > 8) { 11336 unsigned HalfSize = VecWidth / 2; 11337 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11338 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11339 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11340 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11341 11342 // If the two halves do not match (ignoring undef bits), stop here. 11343 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11344 MinSplatBits > HalfSize) 11345 break; 11346 11347 SplatValue = HighValue | LowValue; 11348 SplatUndef = HighUndef & LowUndef; 11349 11350 VecWidth = HalfSize; 11351 } 11352 11353 SplatBitSize = VecWidth; 11354 return true; 11355 } 11356 11357 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11358 BitVector *UndefElements) const { 11359 unsigned NumOps = getNumOperands(); 11360 if (UndefElements) { 11361 UndefElements->clear(); 11362 UndefElements->resize(NumOps); 11363 } 11364 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11365 if (!DemandedElts) 11366 return SDValue(); 11367 SDValue Splatted; 11368 for (unsigned i = 0; i != NumOps; ++i) { 11369 if (!DemandedElts[i]) 11370 continue; 11371 SDValue Op = getOperand(i); 11372 if (Op.isUndef()) { 11373 if (UndefElements) 11374 (*UndefElements)[i] = true; 11375 } else if (!Splatted) { 11376 Splatted = Op; 11377 } else if (Splatted != Op) { 11378 return SDValue(); 11379 } 11380 } 11381 11382 if (!Splatted) { 11383 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11384 assert(getOperand(FirstDemandedIdx).isUndef() && 11385 "Can only have a splat without a constant for all undefs."); 11386 return getOperand(FirstDemandedIdx); 11387 } 11388 11389 return Splatted; 11390 } 11391 11392 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11393 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11394 return getSplatValue(DemandedElts, UndefElements); 11395 } 11396 11397 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11398 SmallVectorImpl<SDValue> &Sequence, 11399 BitVector *UndefElements) const { 11400 unsigned NumOps = getNumOperands(); 11401 Sequence.clear(); 11402 if (UndefElements) { 11403 UndefElements->clear(); 11404 UndefElements->resize(NumOps); 11405 } 11406 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11407 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11408 return false; 11409 11410 // Set the undefs even if we don't find a sequence (like getSplatValue). 11411 if (UndefElements) 11412 for (unsigned I = 0; I != NumOps; ++I) 11413 if (DemandedElts[I] && getOperand(I).isUndef()) 11414 (*UndefElements)[I] = true; 11415 11416 // Iteratively widen the sequence length looking for repetitions. 11417 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11418 Sequence.append(SeqLen, SDValue()); 11419 for (unsigned I = 0; I != NumOps; ++I) { 11420 if (!DemandedElts[I]) 11421 continue; 11422 SDValue &SeqOp = Sequence[I % SeqLen]; 11423 SDValue Op = getOperand(I); 11424 if (Op.isUndef()) { 11425 if (!SeqOp) 11426 SeqOp = Op; 11427 continue; 11428 } 11429 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11430 Sequence.clear(); 11431 break; 11432 } 11433 SeqOp = Op; 11434 } 11435 if (!Sequence.empty()) 11436 return true; 11437 } 11438 11439 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11440 return false; 11441 } 11442 11443 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11444 BitVector *UndefElements) const { 11445 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11446 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11447 } 11448 11449 ConstantSDNode * 11450 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11451 BitVector *UndefElements) const { 11452 return dyn_cast_or_null<ConstantSDNode>( 11453 getSplatValue(DemandedElts, UndefElements)); 11454 } 11455 11456 ConstantSDNode * 11457 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11458 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11459 } 11460 11461 ConstantFPSDNode * 11462 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11463 BitVector *UndefElements) const { 11464 return dyn_cast_or_null<ConstantFPSDNode>( 11465 getSplatValue(DemandedElts, UndefElements)); 11466 } 11467 11468 ConstantFPSDNode * 11469 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11470 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11471 } 11472 11473 int32_t 11474 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11475 uint32_t BitWidth) const { 11476 if (ConstantFPSDNode *CN = 11477 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11478 bool IsExact; 11479 APSInt IntVal(BitWidth); 11480 const APFloat &APF = CN->getValueAPF(); 11481 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11482 APFloat::opOK || 11483 !IsExact) 11484 return -1; 11485 11486 return IntVal.exactLogBase2(); 11487 } 11488 return -1; 11489 } 11490 11491 bool BuildVectorSDNode::getConstantRawBits( 11492 bool IsLittleEndian, unsigned DstEltSizeInBits, 11493 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11494 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11495 if (!isConstant()) 11496 return false; 11497 11498 unsigned NumSrcOps = getNumOperands(); 11499 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11500 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11501 "Invalid bitcast scale"); 11502 11503 // Extract raw src bits. 11504 SmallVector<APInt> SrcBitElements(NumSrcOps, 11505 APInt::getNullValue(SrcEltSizeInBits)); 11506 BitVector SrcUndeElements(NumSrcOps, false); 11507 11508 for (unsigned I = 0; I != NumSrcOps; ++I) { 11509 SDValue Op = getOperand(I); 11510 if (Op.isUndef()) { 11511 SrcUndeElements.set(I); 11512 continue; 11513 } 11514 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11515 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11516 assert((CInt || CFP) && "Unknown constant"); 11517 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11518 : CFP->getValueAPF().bitcastToAPInt(); 11519 } 11520 11521 // Recast to dst width. 11522 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11523 SrcBitElements, UndefElements, SrcUndeElements); 11524 return true; 11525 } 11526 11527 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11528 unsigned DstEltSizeInBits, 11529 SmallVectorImpl<APInt> &DstBitElements, 11530 ArrayRef<APInt> SrcBitElements, 11531 BitVector &DstUndefElements, 11532 const BitVector &SrcUndefElements) { 11533 unsigned NumSrcOps = SrcBitElements.size(); 11534 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11535 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11536 "Invalid bitcast scale"); 11537 assert(NumSrcOps == SrcUndefElements.size() && 11538 "Vector size mismatch"); 11539 11540 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11541 DstUndefElements.clear(); 11542 DstUndefElements.resize(NumDstOps, false); 11543 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11544 11545 // Concatenate src elements constant bits together into dst element. 11546 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11547 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11548 for (unsigned I = 0; I != NumDstOps; ++I) { 11549 DstUndefElements.set(I); 11550 APInt &DstBits = DstBitElements[I]; 11551 for (unsigned J = 0; J != Scale; ++J) { 11552 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11553 if (SrcUndefElements[Idx]) 11554 continue; 11555 DstUndefElements.reset(I); 11556 const APInt &SrcBits = SrcBitElements[Idx]; 11557 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11558 "Illegal constant bitwidths"); 11559 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11560 } 11561 } 11562 return; 11563 } 11564 11565 // Split src element constant bits into dst elements. 11566 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11567 for (unsigned I = 0; I != NumSrcOps; ++I) { 11568 if (SrcUndefElements[I]) { 11569 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11570 continue; 11571 } 11572 const APInt &SrcBits = SrcBitElements[I]; 11573 for (unsigned J = 0; J != Scale; ++J) { 11574 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11575 APInt &DstBits = DstBitElements[Idx]; 11576 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11577 } 11578 } 11579 } 11580 11581 bool BuildVectorSDNode::isConstant() const { 11582 for (const SDValue &Op : op_values()) { 11583 unsigned Opc = Op.getOpcode(); 11584 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11585 return false; 11586 } 11587 return true; 11588 } 11589 11590 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11591 // Find the first non-undef value in the shuffle mask. 11592 unsigned i, e; 11593 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11594 /* search */; 11595 11596 // If all elements are undefined, this shuffle can be considered a splat 11597 // (although it should eventually get simplified away completely). 11598 if (i == e) 11599 return true; 11600 11601 // Make sure all remaining elements are either undef or the same as the first 11602 // non-undef value. 11603 for (int Idx = Mask[i]; i != e; ++i) 11604 if (Mask[i] >= 0 && Mask[i] != Idx) 11605 return false; 11606 return true; 11607 } 11608 11609 // Returns the SDNode if it is a constant integer BuildVector 11610 // or constant integer. 11611 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11612 if (isa<ConstantSDNode>(N)) 11613 return N.getNode(); 11614 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11615 return N.getNode(); 11616 // Treat a GlobalAddress supporting constant offset folding as a 11617 // constant integer. 11618 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11619 if (GA->getOpcode() == ISD::GlobalAddress && 11620 TLI->isOffsetFoldingLegal(GA)) 11621 return GA; 11622 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11623 isa<ConstantSDNode>(N.getOperand(0))) 11624 return N.getNode(); 11625 return nullptr; 11626 } 11627 11628 // Returns the SDNode if it is a constant float BuildVector 11629 // or constant float. 11630 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11631 if (isa<ConstantFPSDNode>(N)) 11632 return N.getNode(); 11633 11634 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11635 return N.getNode(); 11636 11637 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11638 isa<ConstantFPSDNode>(N.getOperand(0))) 11639 return N.getNode(); 11640 11641 return nullptr; 11642 } 11643 11644 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11645 assert(!Node->OperandList && "Node already has operands"); 11646 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11647 "too many operands to fit into SDNode"); 11648 SDUse *Ops = OperandRecycler.allocate( 11649 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11650 11651 bool IsDivergent = false; 11652 for (unsigned I = 0; I != Vals.size(); ++I) { 11653 Ops[I].setUser(Node); 11654 Ops[I].setInitial(Vals[I]); 11655 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11656 IsDivergent |= Ops[I].getNode()->isDivergent(); 11657 } 11658 Node->NumOperands = Vals.size(); 11659 Node->OperandList = Ops; 11660 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11661 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11662 Node->SDNodeBits.IsDivergent = IsDivergent; 11663 } 11664 checkForCycles(Node); 11665 } 11666 11667 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11668 SmallVectorImpl<SDValue> &Vals) { 11669 size_t Limit = SDNode::getMaxNumOperands(); 11670 while (Vals.size() > Limit) { 11671 unsigned SliceIdx = Vals.size() - Limit; 11672 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11673 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11674 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11675 Vals.emplace_back(NewTF); 11676 } 11677 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11678 } 11679 11680 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11681 EVT VT, SDNodeFlags Flags) { 11682 switch (Opcode) { 11683 default: 11684 return SDValue(); 11685 case ISD::ADD: 11686 case ISD::OR: 11687 case ISD::XOR: 11688 case ISD::UMAX: 11689 return getConstant(0, DL, VT); 11690 case ISD::MUL: 11691 return getConstant(1, DL, VT); 11692 case ISD::AND: 11693 case ISD::UMIN: 11694 return getAllOnesConstant(DL, VT); 11695 case ISD::SMAX: 11696 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11697 case ISD::SMIN: 11698 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11699 case ISD::FADD: 11700 return getConstantFP(-0.0, DL, VT); 11701 case ISD::FMUL: 11702 return getConstantFP(1.0, DL, VT); 11703 case ISD::FMINNUM: 11704 case ISD::FMAXNUM: { 11705 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11706 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11707 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11708 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11709 APFloat::getLargest(Semantics); 11710 if (Opcode == ISD::FMAXNUM) 11711 NeutralAF.changeSign(); 11712 11713 return getConstantFP(NeutralAF, DL, VT); 11714 } 11715 } 11716 } 11717 11718 #ifndef NDEBUG 11719 static void checkForCyclesHelper(const SDNode *N, 11720 SmallPtrSetImpl<const SDNode*> &Visited, 11721 SmallPtrSetImpl<const SDNode*> &Checked, 11722 const llvm::SelectionDAG *DAG) { 11723 // If this node has already been checked, don't check it again. 11724 if (Checked.count(N)) 11725 return; 11726 11727 // If a node has already been visited on this depth-first walk, reject it as 11728 // a cycle. 11729 if (!Visited.insert(N).second) { 11730 errs() << "Detected cycle in SelectionDAG\n"; 11731 dbgs() << "Offending node:\n"; 11732 N->dumprFull(DAG); dbgs() << "\n"; 11733 abort(); 11734 } 11735 11736 for (const SDValue &Op : N->op_values()) 11737 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11738 11739 Checked.insert(N); 11740 Visited.erase(N); 11741 } 11742 #endif 11743 11744 void llvm::checkForCycles(const llvm::SDNode *N, 11745 const llvm::SelectionDAG *DAG, 11746 bool force) { 11747 #ifndef NDEBUG 11748 bool check = force; 11749 #ifdef EXPENSIVE_CHECKS 11750 check = true; 11751 #endif // EXPENSIVE_CHECKS 11752 if (check) { 11753 assert(N && "Checking nonexistent SDNode"); 11754 SmallPtrSet<const SDNode*, 32> visited; 11755 SmallPtrSet<const SDNode*, 32> checked; 11756 checkForCyclesHelper(N, visited, checked, DAG); 11757 } 11758 #endif // !NDEBUG 11759 } 11760 11761 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11762 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11763 } 11764