1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     } else if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
149       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
150       return true;
151     }
152   }
153 
154   auto *BV = dyn_cast<BuildVectorSDNode>(N);
155   if (!BV)
156     return false;
157 
158   APInt SplatUndef;
159   unsigned SplatBitSize;
160   bool HasUndefs;
161   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
162   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
163                              EltSize) &&
164          EltSize == SplatBitSize;
165 }
166 
167 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
168 // specializations of the more general isConstantSplatVector()?
169 
170 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
171   // Look through a bit convert.
172   while (N->getOpcode() == ISD::BITCAST)
173     N = N->getOperand(0).getNode();
174 
175   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
176     APInt SplatVal;
177     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
178   }
179 
180   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
181 
182   unsigned i = 0, e = N->getNumOperands();
183 
184   // Skip over all of the undef values.
185   while (i != e && N->getOperand(i).isUndef())
186     ++i;
187 
188   // Do not accept an all-undef vector.
189   if (i == e) return false;
190 
191   // Do not accept build_vectors that aren't all constants or which have non-~0
192   // elements. We have to be a bit careful here, as the type of the constant
193   // may not be the same as the type of the vector elements due to type
194   // legalization (the elements are promoted to a legal type for the target and
195   // a vector of a type may be legal when the base element type is not).
196   // We only want to check enough bits to cover the vector elements, because
197   // we care if the resultant vector is all ones, not whether the individual
198   // constants are.
199   SDValue NotZero = N->getOperand(i);
200   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
201   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
202     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
203       return false;
204   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
205     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
206       return false;
207   } else
208     return false;
209 
210   // Okay, we have at least one ~0 value, check to see if the rest match or are
211   // undefs. Even with the above element type twiddling, this should be OK, as
212   // the same type legalization should have applied to all the elements.
213   for (++i; i != e; ++i)
214     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
215       return false;
216   return true;
217 }
218 
219 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
220   // Look through a bit convert.
221   while (N->getOpcode() == ISD::BITCAST)
222     N = N->getOperand(0).getNode();
223 
224   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
225     APInt SplatVal;
226     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
227   }
228 
229   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
230 
231   bool IsAllUndef = true;
232   for (const SDValue &Op : N->op_values()) {
233     if (Op.isUndef())
234       continue;
235     IsAllUndef = false;
236     // Do not accept build_vectors that aren't all constants or which have non-0
237     // elements. We have to be a bit careful here, as the type of the constant
238     // may not be the same as the type of the vector elements due to type
239     // legalization (the elements are promoted to a legal type for the target
240     // and a vector of a type may be legal when the base element type is not).
241     // We only want to check enough bits to cover the vector elements, because
242     // we care if the resultant vector is all zeros, not whether the individual
243     // constants are.
244     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
245     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
246       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
247         return false;
248     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
249       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
250         return false;
251     } else
252       return false;
253   }
254 
255   // Do not accept an all-undef vector.
256   if (IsAllUndef)
257     return false;
258   return true;
259 }
260 
261 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
262   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
263 }
264 
265 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
266   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
267 }
268 
269 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
270   if (N->getOpcode() != ISD::BUILD_VECTOR)
271     return false;
272 
273   for (const SDValue &Op : N->op_values()) {
274     if (Op.isUndef())
275       continue;
276     if (!isa<ConstantSDNode>(Op))
277       return false;
278   }
279   return true;
280 }
281 
282 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
283   if (N->getOpcode() != ISD::BUILD_VECTOR)
284     return false;
285 
286   for (const SDValue &Op : N->op_values()) {
287     if (Op.isUndef())
288       continue;
289     if (!isa<ConstantFPSDNode>(Op))
290       return false;
291   }
292   return true;
293 }
294 
295 bool ISD::allOperandsUndef(const SDNode *N) {
296   // Return false if the node has no operands.
297   // This is "logically inconsistent" with the definition of "all" but
298   // is probably the desired behavior.
299   if (N->getNumOperands() == 0)
300     return false;
301   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
302 }
303 
304 bool ISD::matchUnaryPredicate(SDValue Op,
305                               std::function<bool(ConstantSDNode *)> Match,
306                               bool AllowUndefs) {
307   // FIXME: Add support for scalar UNDEF cases?
308   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
309     return Match(Cst);
310 
311   // FIXME: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
313       ISD::SPLAT_VECTOR != Op.getOpcode())
314     return false;
315 
316   EVT SVT = Op.getValueType().getScalarType();
317   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
318     if (AllowUndefs && Op.getOperand(i).isUndef()) {
319       if (!Match(nullptr))
320         return false;
321       continue;
322     }
323 
324     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
325     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
326       return false;
327   }
328   return true;
329 }
330 
331 bool ISD::matchBinaryPredicate(
332     SDValue LHS, SDValue RHS,
333     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
334     bool AllowUndefs, bool AllowTypeMismatch) {
335   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
336     return false;
337 
338   // TODO: Add support for scalar UNDEF cases?
339   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
340     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
341       return Match(LHSCst, RHSCst);
342 
343   // TODO: Add support for vector UNDEF cases?
344   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
345       ISD::BUILD_VECTOR != RHS.getOpcode())
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373     return ISD::FADD;
374   case ISD::VECREDUCE_FMUL:
375   case ISD::VECREDUCE_SEQ_FMUL:
376     return ISD::FMUL;
377   case ISD::VECREDUCE_ADD:
378     return ISD::ADD;
379   case ISD::VECREDUCE_MUL:
380     return ISD::MUL;
381   case ISD::VECREDUCE_AND:
382     return ISD::AND;
383   case ISD::VECREDUCE_OR:
384     return ISD::OR;
385   case ISD::VECREDUCE_XOR:
386     return ISD::XOR;
387   case ISD::VECREDUCE_SMAX:
388     return ISD::SMAX;
389   case ISD::VECREDUCE_SMIN:
390     return ISD::SMIN;
391   case ISD::VECREDUCE_UMAX:
392     return ISD::UMAX;
393   case ISD::VECREDUCE_UMIN:
394     return ISD::UMIN;
395   case ISD::VECREDUCE_FMAX:
396     return ISD::FMAXNUM;
397   case ISD::VECREDUCE_FMIN:
398     return ISD::FMINNUM;
399   }
400 }
401 
402 bool ISD::isVPOpcode(unsigned Opcode) {
403   switch (Opcode) {
404   default:
405     return false;
406 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
407   case ISD::SDOPC:                                                             \
408     return true;
409 #include "llvm/IR/VPIntrinsics.def"
410   }
411 }
412 
413 /// The operand position of the vector mask.
414 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
415   switch (Opcode) {
416   default:
417     return None;
418 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
419   case ISD::SDOPC:                                                             \
420     return MASKPOS;
421 #include "llvm/IR/VPIntrinsics.def"
422   }
423 }
424 
425 /// The operand position of the explicit vector length parameter.
426 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
427   switch (Opcode) {
428   default:
429     return None;
430 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
431   case ISD::SDOPC:                                                             \
432     return EVLPOS;
433 #include "llvm/IR/VPIntrinsics.def"
434   }
435 }
436 
437 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
438   switch (ExtType) {
439   case ISD::EXTLOAD:
440     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
441   case ISD::SEXTLOAD:
442     return ISD::SIGN_EXTEND;
443   case ISD::ZEXTLOAD:
444     return ISD::ZERO_EXTEND;
445   default:
446     break;
447   }
448 
449   llvm_unreachable("Invalid LoadExtType");
450 }
451 
452 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
453   // To perform this operation, we just need to swap the L and G bits of the
454   // operation.
455   unsigned OldL = (Operation >> 2) & 1;
456   unsigned OldG = (Operation >> 1) & 1;
457   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
458                        (OldL << 1) |       // New G bit
459                        (OldG << 2));       // New L bit.
460 }
461 
462 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
463   unsigned Operation = Op;
464   if (isIntegerLike)
465     Operation ^= 7;   // Flip L, G, E bits, but not U.
466   else
467     Operation ^= 15;  // Flip all of the condition bits.
468 
469   if (Operation > ISD::SETTRUE2)
470     Operation &= ~8;  // Don't let N and U bits get set.
471 
472   return ISD::CondCode(Operation);
473 }
474 
475 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
476   return getSetCCInverseImpl(Op, Type.isInteger());
477 }
478 
479 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
480                                                bool isIntegerLike) {
481   return getSetCCInverseImpl(Op, isIntegerLike);
482 }
483 
484 /// For an integer comparison, return 1 if the comparison is a signed operation
485 /// and 2 if the result is an unsigned comparison. Return zero if the operation
486 /// does not depend on the sign of the input (setne and seteq).
487 static int isSignedOp(ISD::CondCode Opcode) {
488   switch (Opcode) {
489   default: llvm_unreachable("Illegal integer setcc operation!");
490   case ISD::SETEQ:
491   case ISD::SETNE: return 0;
492   case ISD::SETLT:
493   case ISD::SETLE:
494   case ISD::SETGT:
495   case ISD::SETGE: return 1;
496   case ISD::SETULT:
497   case ISD::SETULE:
498   case ISD::SETUGT:
499   case ISD::SETUGE: return 2;
500   }
501 }
502 
503 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
504                                        EVT Type) {
505   bool IsInteger = Type.isInteger();
506   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
507     // Cannot fold a signed integer setcc with an unsigned integer setcc.
508     return ISD::SETCC_INVALID;
509 
510   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
511 
512   // If the N and U bits get set, then the resultant comparison DOES suddenly
513   // care about orderedness, and it is true when ordered.
514   if (Op > ISD::SETTRUE2)
515     Op &= ~16;     // Clear the U bit if the N bit is set.
516 
517   // Canonicalize illegal integer setcc's.
518   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
519     Op = ISD::SETNE;
520 
521   return ISD::CondCode(Op);
522 }
523 
524 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
525                                         EVT Type) {
526   bool IsInteger = Type.isInteger();
527   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
528     // Cannot fold a signed setcc with an unsigned setcc.
529     return ISD::SETCC_INVALID;
530 
531   // Combine all of the condition bits.
532   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
533 
534   // Canonicalize illegal integer setcc's.
535   if (IsInteger) {
536     switch (Result) {
537     default: break;
538     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
539     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
540     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
541     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
542     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
543     }
544   }
545 
546   return Result;
547 }
548 
549 //===----------------------------------------------------------------------===//
550 //                           SDNode Profile Support
551 //===----------------------------------------------------------------------===//
552 
553 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
554 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
555   ID.AddInteger(OpC);
556 }
557 
558 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
559 /// solely with their pointer.
560 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
561   ID.AddPointer(VTList.VTs);
562 }
563 
564 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
565 static void AddNodeIDOperands(FoldingSetNodeID &ID,
566                               ArrayRef<SDValue> Ops) {
567   for (auto& Op : Ops) {
568     ID.AddPointer(Op.getNode());
569     ID.AddInteger(Op.getResNo());
570   }
571 }
572 
573 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
574 static void AddNodeIDOperands(FoldingSetNodeID &ID,
575                               ArrayRef<SDUse> Ops) {
576   for (auto& Op : Ops) {
577     ID.AddPointer(Op.getNode());
578     ID.AddInteger(Op.getResNo());
579   }
580 }
581 
582 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
583                           SDVTList VTList, ArrayRef<SDValue> OpList) {
584   AddNodeIDOpcode(ID, OpC);
585   AddNodeIDValueTypes(ID, VTList);
586   AddNodeIDOperands(ID, OpList);
587 }
588 
589 /// If this is an SDNode with special info, add this info to the NodeID data.
590 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
591   switch (N->getOpcode()) {
592   case ISD::TargetExternalSymbol:
593   case ISD::ExternalSymbol:
594   case ISD::MCSymbol:
595     llvm_unreachable("Should only be used on nodes with operands");
596   default: break;  // Normal nodes don't need extra info.
597   case ISD::TargetConstant:
598   case ISD::Constant: {
599     const ConstantSDNode *C = cast<ConstantSDNode>(N);
600     ID.AddPointer(C->getConstantIntValue());
601     ID.AddBoolean(C->isOpaque());
602     break;
603   }
604   case ISD::TargetConstantFP:
605   case ISD::ConstantFP:
606     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
607     break;
608   case ISD::TargetGlobalAddress:
609   case ISD::GlobalAddress:
610   case ISD::TargetGlobalTLSAddress:
611   case ISD::GlobalTLSAddress: {
612     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
613     ID.AddPointer(GA->getGlobal());
614     ID.AddInteger(GA->getOffset());
615     ID.AddInteger(GA->getTargetFlags());
616     break;
617   }
618   case ISD::BasicBlock:
619     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
620     break;
621   case ISD::Register:
622     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
623     break;
624   case ISD::RegisterMask:
625     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
626     break;
627   case ISD::SRCVALUE:
628     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
629     break;
630   case ISD::FrameIndex:
631   case ISD::TargetFrameIndex:
632     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
633     break;
634   case ISD::LIFETIME_START:
635   case ISD::LIFETIME_END:
636     if (cast<LifetimeSDNode>(N)->hasOffset()) {
637       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
638       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
639     }
640     break;
641   case ISD::PSEUDO_PROBE:
642     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
643     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
645     break;
646   case ISD::JumpTable:
647   case ISD::TargetJumpTable:
648     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
649     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
650     break;
651   case ISD::ConstantPool:
652   case ISD::TargetConstantPool: {
653     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
654     ID.AddInteger(CP->getAlign().value());
655     ID.AddInteger(CP->getOffset());
656     if (CP->isMachineConstantPoolEntry())
657       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
658     else
659       ID.AddPointer(CP->getConstVal());
660     ID.AddInteger(CP->getTargetFlags());
661     break;
662   }
663   case ISD::TargetIndex: {
664     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
665     ID.AddInteger(TI->getIndex());
666     ID.AddInteger(TI->getOffset());
667     ID.AddInteger(TI->getTargetFlags());
668     break;
669   }
670   case ISD::LOAD: {
671     const LoadSDNode *LD = cast<LoadSDNode>(N);
672     ID.AddInteger(LD->getMemoryVT().getRawBits());
673     ID.AddInteger(LD->getRawSubclassData());
674     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
675     break;
676   }
677   case ISD::STORE: {
678     const StoreSDNode *ST = cast<StoreSDNode>(N);
679     ID.AddInteger(ST->getMemoryVT().getRawBits());
680     ID.AddInteger(ST->getRawSubclassData());
681     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
682     break;
683   }
684   case ISD::MLOAD: {
685     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
686     ID.AddInteger(MLD->getMemoryVT().getRawBits());
687     ID.AddInteger(MLD->getRawSubclassData());
688     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
689     break;
690   }
691   case ISD::MSTORE: {
692     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
693     ID.AddInteger(MST->getMemoryVT().getRawBits());
694     ID.AddInteger(MST->getRawSubclassData());
695     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
696     break;
697   }
698   case ISD::MGATHER: {
699     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
700     ID.AddInteger(MG->getMemoryVT().getRawBits());
701     ID.AddInteger(MG->getRawSubclassData());
702     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
703     break;
704   }
705   case ISD::MSCATTER: {
706     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
707     ID.AddInteger(MS->getMemoryVT().getRawBits());
708     ID.AddInteger(MS->getRawSubclassData());
709     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
710     break;
711   }
712   case ISD::ATOMIC_CMP_SWAP:
713   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
714   case ISD::ATOMIC_SWAP:
715   case ISD::ATOMIC_LOAD_ADD:
716   case ISD::ATOMIC_LOAD_SUB:
717   case ISD::ATOMIC_LOAD_AND:
718   case ISD::ATOMIC_LOAD_CLR:
719   case ISD::ATOMIC_LOAD_OR:
720   case ISD::ATOMIC_LOAD_XOR:
721   case ISD::ATOMIC_LOAD_NAND:
722   case ISD::ATOMIC_LOAD_MIN:
723   case ISD::ATOMIC_LOAD_MAX:
724   case ISD::ATOMIC_LOAD_UMIN:
725   case ISD::ATOMIC_LOAD_UMAX:
726   case ISD::ATOMIC_LOAD:
727   case ISD::ATOMIC_STORE: {
728     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
729     ID.AddInteger(AT->getMemoryVT().getRawBits());
730     ID.AddInteger(AT->getRawSubclassData());
731     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
732     break;
733   }
734   case ISD::PREFETCH: {
735     const MemSDNode *PF = cast<MemSDNode>(N);
736     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
737     break;
738   }
739   case ISD::VECTOR_SHUFFLE: {
740     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
741     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
742          i != e; ++i)
743       ID.AddInteger(SVN->getMaskElt(i));
744     break;
745   }
746   case ISD::TargetBlockAddress:
747   case ISD::BlockAddress: {
748     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
749     ID.AddPointer(BA->getBlockAddress());
750     ID.AddInteger(BA->getOffset());
751     ID.AddInteger(BA->getTargetFlags());
752     break;
753   }
754   } // end switch (N->getOpcode())
755 
756   // Target specific memory nodes could also have address spaces to check.
757   if (N->isTargetMemoryOpcode())
758     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
759 }
760 
761 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
762 /// data.
763 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
764   AddNodeIDOpcode(ID, N->getOpcode());
765   // Add the return value info.
766   AddNodeIDValueTypes(ID, N->getVTList());
767   // Add the operand info.
768   AddNodeIDOperands(ID, N->ops());
769 
770   // Handle SDNode leafs with special info.
771   AddNodeIDCustom(ID, N);
772 }
773 
774 //===----------------------------------------------------------------------===//
775 //                              SelectionDAG Class
776 //===----------------------------------------------------------------------===//
777 
778 /// doNotCSE - Return true if CSE should not be performed for this node.
779 static bool doNotCSE(SDNode *N) {
780   if (N->getValueType(0) == MVT::Glue)
781     return true; // Never CSE anything that produces a flag.
782 
783   switch (N->getOpcode()) {
784   default: break;
785   case ISD::HANDLENODE:
786   case ISD::EH_LABEL:
787     return true;   // Never CSE these nodes.
788   }
789 
790   // Check that remaining values produced are not flags.
791   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
792     if (N->getValueType(i) == MVT::Glue)
793       return true; // Never CSE anything that produces a flag.
794 
795   return false;
796 }
797 
798 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
799 /// SelectionDAG.
800 void SelectionDAG::RemoveDeadNodes() {
801   // Create a dummy node (which is not added to allnodes), that adds a reference
802   // to the root node, preventing it from being deleted.
803   HandleSDNode Dummy(getRoot());
804 
805   SmallVector<SDNode*, 128> DeadNodes;
806 
807   // Add all obviously-dead nodes to the DeadNodes worklist.
808   for (SDNode &Node : allnodes())
809     if (Node.use_empty())
810       DeadNodes.push_back(&Node);
811 
812   RemoveDeadNodes(DeadNodes);
813 
814   // If the root changed (e.g. it was a dead load, update the root).
815   setRoot(Dummy.getValue());
816 }
817 
818 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
819 /// given list, and any nodes that become unreachable as a result.
820 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
821 
822   // Process the worklist, deleting the nodes and adding their uses to the
823   // worklist.
824   while (!DeadNodes.empty()) {
825     SDNode *N = DeadNodes.pop_back_val();
826     // Skip to next node if we've already managed to delete the node. This could
827     // happen if replacing a node causes a node previously added to the node to
828     // be deleted.
829     if (N->getOpcode() == ISD::DELETED_NODE)
830       continue;
831 
832     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
833       DUL->NodeDeleted(N, nullptr);
834 
835     // Take the node out of the appropriate CSE map.
836     RemoveNodeFromCSEMaps(N);
837 
838     // Next, brutally remove the operand list.  This is safe to do, as there are
839     // no cycles in the graph.
840     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
841       SDUse &Use = *I++;
842       SDNode *Operand = Use.getNode();
843       Use.set(SDValue());
844 
845       // Now that we removed this operand, see if there are no uses of it left.
846       if (Operand->use_empty())
847         DeadNodes.push_back(Operand);
848     }
849 
850     DeallocateNode(N);
851   }
852 }
853 
854 void SelectionDAG::RemoveDeadNode(SDNode *N){
855   SmallVector<SDNode*, 16> DeadNodes(1, N);
856 
857   // Create a dummy node that adds a reference to the root node, preventing
858   // it from being deleted.  (This matters if the root is an operand of the
859   // dead node.)
860   HandleSDNode Dummy(getRoot());
861 
862   RemoveDeadNodes(DeadNodes);
863 }
864 
865 void SelectionDAG::DeleteNode(SDNode *N) {
866   // First take this out of the appropriate CSE map.
867   RemoveNodeFromCSEMaps(N);
868 
869   // Finally, remove uses due to operands of this node, remove from the
870   // AllNodes list, and delete the node.
871   DeleteNodeNotInCSEMaps(N);
872 }
873 
874 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
875   assert(N->getIterator() != AllNodes.begin() &&
876          "Cannot delete the entry node!");
877   assert(N->use_empty() && "Cannot delete a node that is not dead!");
878 
879   // Drop all of the operands and decrement used node's use counts.
880   N->DropOperands();
881 
882   DeallocateNode(N);
883 }
884 
885 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
886   assert(!(V->isVariadic() && isParameter));
887   if (isParameter)
888     ByvalParmDbgValues.push_back(V);
889   else
890     DbgValues.push_back(V);
891   for (const SDNode *Node : V->getSDNodes())
892     if (Node)
893       DbgValMap[Node].push_back(V);
894 }
895 
896 void SDDbgInfo::erase(const SDNode *Node) {
897   DbgValMapType::iterator I = DbgValMap.find(Node);
898   if (I == DbgValMap.end())
899     return;
900   for (auto &Val: I->second)
901     Val->setIsInvalidated();
902   DbgValMap.erase(I);
903 }
904 
905 void SelectionDAG::DeallocateNode(SDNode *N) {
906   // If we have operands, deallocate them.
907   removeOperands(N);
908 
909   NodeAllocator.Deallocate(AllNodes.remove(N));
910 
911   // Set the opcode to DELETED_NODE to help catch bugs when node
912   // memory is reallocated.
913   // FIXME: There are places in SDag that have grown a dependency on the opcode
914   // value in the released node.
915   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
916   N->NodeType = ISD::DELETED_NODE;
917 
918   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
919   // them and forget about that node.
920   DbgInfo->erase(N);
921 }
922 
923 #ifndef NDEBUG
924 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
925 static void VerifySDNode(SDNode *N) {
926   switch (N->getOpcode()) {
927   default:
928     break;
929   case ISD::BUILD_PAIR: {
930     EVT VT = N->getValueType(0);
931     assert(N->getNumValues() == 1 && "Too many results!");
932     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
933            "Wrong return type!");
934     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
935     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
936            "Mismatched operand types!");
937     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
938            "Wrong operand type!");
939     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
940            "Wrong return type size");
941     break;
942   }
943   case ISD::BUILD_VECTOR: {
944     assert(N->getNumValues() == 1 && "Too many results!");
945     assert(N->getValueType(0).isVector() && "Wrong return type!");
946     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
947            "Wrong number of operands!");
948     EVT EltVT = N->getValueType(0).getVectorElementType();
949     for (const SDUse &Op : N->ops()) {
950       assert((Op.getValueType() == EltVT ||
951               (EltVT.isInteger() && Op.getValueType().isInteger() &&
952                EltVT.bitsLE(Op.getValueType()))) &&
953              "Wrong operand type!");
954       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
955              "Operands must all have the same type");
956     }
957     break;
958   }
959   }
960 }
961 #endif // NDEBUG
962 
963 /// Insert a newly allocated node into the DAG.
964 ///
965 /// Handles insertion into the all nodes list and CSE map, as well as
966 /// verification and other common operations when a new node is allocated.
967 void SelectionDAG::InsertNode(SDNode *N) {
968   AllNodes.push_back(N);
969 #ifndef NDEBUG
970   N->PersistentId = NextPersistentId++;
971   VerifySDNode(N);
972 #endif
973   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
974     DUL->NodeInserted(N);
975 }
976 
977 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
978 /// correspond to it.  This is useful when we're about to delete or repurpose
979 /// the node.  We don't want future request for structurally identical nodes
980 /// to return N anymore.
981 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
982   bool Erased = false;
983   switch (N->getOpcode()) {
984   case ISD::HANDLENODE: return false;  // noop.
985   case ISD::CONDCODE:
986     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
987            "Cond code doesn't exist!");
988     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
989     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
990     break;
991   case ISD::ExternalSymbol:
992     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
993     break;
994   case ISD::TargetExternalSymbol: {
995     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
996     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
997         ESN->getSymbol(), ESN->getTargetFlags()));
998     break;
999   }
1000   case ISD::MCSymbol: {
1001     auto *MCSN = cast<MCSymbolSDNode>(N);
1002     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1003     break;
1004   }
1005   case ISD::VALUETYPE: {
1006     EVT VT = cast<VTSDNode>(N)->getVT();
1007     if (VT.isExtended()) {
1008       Erased = ExtendedValueTypeNodes.erase(VT);
1009     } else {
1010       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1011       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1012     }
1013     break;
1014   }
1015   default:
1016     // Remove it from the CSE Map.
1017     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1018     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1019     Erased = CSEMap.RemoveNode(N);
1020     break;
1021   }
1022 #ifndef NDEBUG
1023   // Verify that the node was actually in one of the CSE maps, unless it has a
1024   // flag result (which cannot be CSE'd) or is one of the special cases that are
1025   // not subject to CSE.
1026   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1027       !N->isMachineOpcode() && !doNotCSE(N)) {
1028     N->dump(this);
1029     dbgs() << "\n";
1030     llvm_unreachable("Node is not in map!");
1031   }
1032 #endif
1033   return Erased;
1034 }
1035 
1036 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1037 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1038 /// node already exists, in which case transfer all its users to the existing
1039 /// node. This transfer can potentially trigger recursive merging.
1040 void
1041 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1042   // For node types that aren't CSE'd, just act as if no identical node
1043   // already exists.
1044   if (!doNotCSE(N)) {
1045     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1046     if (Existing != N) {
1047       // If there was already an existing matching node, use ReplaceAllUsesWith
1048       // to replace the dead one with the existing one.  This can cause
1049       // recursive merging of other unrelated nodes down the line.
1050       ReplaceAllUsesWith(N, Existing);
1051 
1052       // N is now dead. Inform the listeners and delete it.
1053       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1054         DUL->NodeDeleted(N, Existing);
1055       DeleteNodeNotInCSEMaps(N);
1056       return;
1057     }
1058   }
1059 
1060   // If the node doesn't already exist, we updated it.  Inform listeners.
1061   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1062     DUL->NodeUpdated(N);
1063 }
1064 
1065 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1066 /// were replaced with those specified.  If this node is never memoized,
1067 /// return null, otherwise return a pointer to the slot it would take.  If a
1068 /// node already exists with these operands, the slot will be non-null.
1069 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1070                                            void *&InsertPos) {
1071   if (doNotCSE(N))
1072     return nullptr;
1073 
1074   SDValue Ops[] = { Op };
1075   FoldingSetNodeID ID;
1076   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1077   AddNodeIDCustom(ID, N);
1078   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1079   if (Node)
1080     Node->intersectFlagsWith(N->getFlags());
1081   return Node;
1082 }
1083 
1084 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1085 /// were replaced with those specified.  If this node is never memoized,
1086 /// return null, otherwise return a pointer to the slot it would take.  If a
1087 /// node already exists with these operands, the slot will be non-null.
1088 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1089                                            SDValue Op1, SDValue Op2,
1090                                            void *&InsertPos) {
1091   if (doNotCSE(N))
1092     return nullptr;
1093 
1094   SDValue Ops[] = { Op1, Op2 };
1095   FoldingSetNodeID ID;
1096   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1097   AddNodeIDCustom(ID, N);
1098   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1099   if (Node)
1100     Node->intersectFlagsWith(N->getFlags());
1101   return Node;
1102 }
1103 
1104 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1105 /// were replaced with those specified.  If this node is never memoized,
1106 /// return null, otherwise return a pointer to the slot it would take.  If a
1107 /// node already exists with these operands, the slot will be non-null.
1108 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1109                                            void *&InsertPos) {
1110   if (doNotCSE(N))
1111     return nullptr;
1112 
1113   FoldingSetNodeID ID;
1114   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1115   AddNodeIDCustom(ID, N);
1116   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1117   if (Node)
1118     Node->intersectFlagsWith(N->getFlags());
1119   return Node;
1120 }
1121 
1122 Align SelectionDAG::getEVTAlign(EVT VT) const {
1123   Type *Ty = VT == MVT::iPTR ?
1124                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1125                    VT.getTypeForEVT(*getContext());
1126 
1127   return getDataLayout().getABITypeAlign(Ty);
1128 }
1129 
1130 // EntryNode could meaningfully have debug info if we can find it...
1131 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1132     : TM(tm), OptLevel(OL),
1133       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1134       Root(getEntryNode()) {
1135   InsertNode(&EntryNode);
1136   DbgInfo = new SDDbgInfo();
1137 }
1138 
1139 void SelectionDAG::init(MachineFunction &NewMF,
1140                         OptimizationRemarkEmitter &NewORE,
1141                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1142                         LegacyDivergenceAnalysis * Divergence,
1143                         ProfileSummaryInfo *PSIin,
1144                         BlockFrequencyInfo *BFIin) {
1145   MF = &NewMF;
1146   SDAGISelPass = PassPtr;
1147   ORE = &NewORE;
1148   TLI = getSubtarget().getTargetLowering();
1149   TSI = getSubtarget().getSelectionDAGInfo();
1150   LibInfo = LibraryInfo;
1151   Context = &MF->getFunction().getContext();
1152   DA = Divergence;
1153   PSI = PSIin;
1154   BFI = BFIin;
1155 }
1156 
1157 SelectionDAG::~SelectionDAG() {
1158   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1159   allnodes_clear();
1160   OperandRecycler.clear(OperandAllocator);
1161   delete DbgInfo;
1162 }
1163 
1164 bool SelectionDAG::shouldOptForSize() const {
1165   return MF->getFunction().hasOptSize() ||
1166       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1167 }
1168 
1169 void SelectionDAG::allnodes_clear() {
1170   assert(&*AllNodes.begin() == &EntryNode);
1171   AllNodes.remove(AllNodes.begin());
1172   while (!AllNodes.empty())
1173     DeallocateNode(&AllNodes.front());
1174 #ifndef NDEBUG
1175   NextPersistentId = 0;
1176 #endif
1177 }
1178 
1179 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1180                                           void *&InsertPos) {
1181   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1182   if (N) {
1183     switch (N->getOpcode()) {
1184     default: break;
1185     case ISD::Constant:
1186     case ISD::ConstantFP:
1187       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1188                        "debug location.  Use another overload.");
1189     }
1190   }
1191   return N;
1192 }
1193 
1194 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1195                                           const SDLoc &DL, void *&InsertPos) {
1196   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1197   if (N) {
1198     switch (N->getOpcode()) {
1199     case ISD::Constant:
1200     case ISD::ConstantFP:
1201       // Erase debug location from the node if the node is used at several
1202       // different places. Do not propagate one location to all uses as it
1203       // will cause a worse single stepping debugging experience.
1204       if (N->getDebugLoc() != DL.getDebugLoc())
1205         N->setDebugLoc(DebugLoc());
1206       break;
1207     default:
1208       // When the node's point of use is located earlier in the instruction
1209       // sequence than its prior point of use, update its debug info to the
1210       // earlier location.
1211       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1212         N->setDebugLoc(DL.getDebugLoc());
1213       break;
1214     }
1215   }
1216   return N;
1217 }
1218 
1219 void SelectionDAG::clear() {
1220   allnodes_clear();
1221   OperandRecycler.clear(OperandAllocator);
1222   OperandAllocator.Reset();
1223   CSEMap.clear();
1224 
1225   ExtendedValueTypeNodes.clear();
1226   ExternalSymbols.clear();
1227   TargetExternalSymbols.clear();
1228   MCSymbols.clear();
1229   SDCallSiteDbgInfo.clear();
1230   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1231             static_cast<CondCodeSDNode*>(nullptr));
1232   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1233             static_cast<SDNode*>(nullptr));
1234 
1235   EntryNode.UseList = nullptr;
1236   InsertNode(&EntryNode);
1237   Root = getEntryNode();
1238   DbgInfo->clear();
1239 }
1240 
1241 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1242   return VT.bitsGT(Op.getValueType())
1243              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1244              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1245 }
1246 
1247 std::pair<SDValue, SDValue>
1248 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1249                                        const SDLoc &DL, EVT VT) {
1250   assert(!VT.bitsEq(Op.getValueType()) &&
1251          "Strict no-op FP extend/round not allowed.");
1252   SDValue Res =
1253       VT.bitsGT(Op.getValueType())
1254           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1255           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1256                     {Chain, Op, getIntPtrConstant(0, DL)});
1257 
1258   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1259 }
1260 
1261 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1262   return VT.bitsGT(Op.getValueType()) ?
1263     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1264     getNode(ISD::TRUNCATE, DL, VT, Op);
1265 }
1266 
1267 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1268   return VT.bitsGT(Op.getValueType()) ?
1269     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1270     getNode(ISD::TRUNCATE, DL, VT, Op);
1271 }
1272 
1273 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1274   return VT.bitsGT(Op.getValueType()) ?
1275     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1276     getNode(ISD::TRUNCATE, DL, VT, Op);
1277 }
1278 
1279 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1280                                         EVT OpVT) {
1281   if (VT.bitsLE(Op.getValueType()))
1282     return getNode(ISD::TRUNCATE, SL, VT, Op);
1283 
1284   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1285   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1286 }
1287 
1288 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1289   EVT OpVT = Op.getValueType();
1290   assert(VT.isInteger() && OpVT.isInteger() &&
1291          "Cannot getZeroExtendInReg FP types");
1292   assert(VT.isVector() == OpVT.isVector() &&
1293          "getZeroExtendInReg type should be vector iff the operand "
1294          "type is vector!");
1295   assert((!VT.isVector() ||
1296           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1297          "Vector element counts must match in getZeroExtendInReg");
1298   assert(VT.bitsLE(OpVT) && "Not extending!");
1299   if (OpVT == VT)
1300     return Op;
1301   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1302                                    VT.getScalarSizeInBits());
1303   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1304 }
1305 
1306 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1307   // Only unsigned pointer semantics are supported right now. In the future this
1308   // might delegate to TLI to check pointer signedness.
1309   return getZExtOrTrunc(Op, DL, VT);
1310 }
1311 
1312 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1313   // Only unsigned pointer semantics are supported right now. In the future this
1314   // might delegate to TLI to check pointer signedness.
1315   return getZeroExtendInReg(Op, DL, VT);
1316 }
1317 
1318 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1319 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1320   EVT EltVT = VT.getScalarType();
1321   SDValue NegOne =
1322     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1323   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1324 }
1325 
1326 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1327   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1328   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1329 }
1330 
1331 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1332                                       EVT OpVT) {
1333   if (!V)
1334     return getConstant(0, DL, VT);
1335 
1336   switch (TLI->getBooleanContents(OpVT)) {
1337   case TargetLowering::ZeroOrOneBooleanContent:
1338   case TargetLowering::UndefinedBooleanContent:
1339     return getConstant(1, DL, VT);
1340   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1341     return getAllOnesConstant(DL, VT);
1342   }
1343   llvm_unreachable("Unexpected boolean content enum!");
1344 }
1345 
1346 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1347                                   bool isT, bool isO) {
1348   EVT EltVT = VT.getScalarType();
1349   assert((EltVT.getSizeInBits() >= 64 ||
1350           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1351          "getConstant with a uint64_t value that doesn't fit in the type!");
1352   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1353 }
1354 
1355 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1356                                   bool isT, bool isO) {
1357   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1358 }
1359 
1360 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1361                                   EVT VT, bool isT, bool isO) {
1362   assert(VT.isInteger() && "Cannot create FP integer constant!");
1363 
1364   EVT EltVT = VT.getScalarType();
1365   const ConstantInt *Elt = &Val;
1366 
1367   // In some cases the vector type is legal but the element type is illegal and
1368   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1369   // inserted value (the type does not need to match the vector element type).
1370   // Any extra bits introduced will be truncated away.
1371   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1372                            TargetLowering::TypePromoteInteger) {
1373     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1374     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1375     Elt = ConstantInt::get(*getContext(), NewVal);
1376   }
1377   // In other cases the element type is illegal and needs to be expanded, for
1378   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1379   // the value into n parts and use a vector type with n-times the elements.
1380   // Then bitcast to the type requested.
1381   // Legalizing constants too early makes the DAGCombiner's job harder so we
1382   // only legalize if the DAG tells us we must produce legal types.
1383   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1384            TLI->getTypeAction(*getContext(), EltVT) ==
1385                TargetLowering::TypeExpandInteger) {
1386     const APInt &NewVal = Elt->getValue();
1387     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1388     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1389 
1390     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1391     if (VT.isScalableVector()) {
1392       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1393              "Can only handle an even split!");
1394       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1395 
1396       SmallVector<SDValue, 2> ScalarParts;
1397       for (unsigned i = 0; i != Parts; ++i)
1398         ScalarParts.push_back(getConstant(
1399             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1400             ViaEltVT, isT, isO));
1401 
1402       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1403     }
1404 
1405     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1406     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1407 
1408     // Check the temporary vector is the correct size. If this fails then
1409     // getTypeToTransformTo() probably returned a type whose size (in bits)
1410     // isn't a power-of-2 factor of the requested type size.
1411     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1412 
1413     SmallVector<SDValue, 2> EltParts;
1414     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1415       EltParts.push_back(getConstant(
1416           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1417           ViaEltVT, isT, isO));
1418     }
1419 
1420     // EltParts is currently in little endian order. If we actually want
1421     // big-endian order then reverse it now.
1422     if (getDataLayout().isBigEndian())
1423       std::reverse(EltParts.begin(), EltParts.end());
1424 
1425     // The elements must be reversed when the element order is different
1426     // to the endianness of the elements (because the BITCAST is itself a
1427     // vector shuffle in this situation). However, we do not need any code to
1428     // perform this reversal because getConstant() is producing a vector
1429     // splat.
1430     // This situation occurs in MIPS MSA.
1431 
1432     SmallVector<SDValue, 8> Ops;
1433     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1434       llvm::append_range(Ops, EltParts);
1435 
1436     SDValue V =
1437         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1438     return V;
1439   }
1440 
1441   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1442          "APInt size does not match type size!");
1443   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1444   FoldingSetNodeID ID;
1445   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1446   ID.AddPointer(Elt);
1447   ID.AddBoolean(isO);
1448   void *IP = nullptr;
1449   SDNode *N = nullptr;
1450   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1451     if (!VT.isVector())
1452       return SDValue(N, 0);
1453 
1454   if (!N) {
1455     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1456     CSEMap.InsertNode(N, IP);
1457     InsertNode(N);
1458     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1459   }
1460 
1461   SDValue Result(N, 0);
1462   if (VT.isScalableVector())
1463     Result = getSplatVector(VT, DL, Result);
1464   else if (VT.isVector())
1465     Result = getSplatBuildVector(VT, DL, Result);
1466 
1467   return Result;
1468 }
1469 
1470 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1471                                         bool isTarget) {
1472   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1473 }
1474 
1475 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1476                                              const SDLoc &DL, bool LegalTypes) {
1477   assert(VT.isInteger() && "Shift amount is not an integer type!");
1478   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1479   return getConstant(Val, DL, ShiftVT);
1480 }
1481 
1482 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1483                                            bool isTarget) {
1484   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1485 }
1486 
1487 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1488                                     bool isTarget) {
1489   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1490 }
1491 
1492 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1493                                     EVT VT, bool isTarget) {
1494   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1495 
1496   EVT EltVT = VT.getScalarType();
1497 
1498   // Do the map lookup using the actual bit pattern for the floating point
1499   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1500   // we don't have issues with SNANs.
1501   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1502   FoldingSetNodeID ID;
1503   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1504   ID.AddPointer(&V);
1505   void *IP = nullptr;
1506   SDNode *N = nullptr;
1507   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1508     if (!VT.isVector())
1509       return SDValue(N, 0);
1510 
1511   if (!N) {
1512     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1513     CSEMap.InsertNode(N, IP);
1514     InsertNode(N);
1515   }
1516 
1517   SDValue Result(N, 0);
1518   if (VT.isScalableVector())
1519     Result = getSplatVector(VT, DL, Result);
1520   else if (VT.isVector())
1521     Result = getSplatBuildVector(VT, DL, Result);
1522   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1523   return Result;
1524 }
1525 
1526 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1527                                     bool isTarget) {
1528   EVT EltVT = VT.getScalarType();
1529   if (EltVT == MVT::f32)
1530     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1531   else if (EltVT == MVT::f64)
1532     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1533   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1534            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1535     bool Ignored;
1536     APFloat APF = APFloat(Val);
1537     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1538                 &Ignored);
1539     return getConstantFP(APF, DL, VT, isTarget);
1540   } else
1541     llvm_unreachable("Unsupported type in getConstantFP");
1542 }
1543 
1544 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1545                                        EVT VT, int64_t Offset, bool isTargetGA,
1546                                        unsigned TargetFlags) {
1547   assert((TargetFlags == 0 || isTargetGA) &&
1548          "Cannot set target flags on target-independent globals");
1549 
1550   // Truncate (with sign-extension) the offset value to the pointer size.
1551   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1552   if (BitWidth < 64)
1553     Offset = SignExtend64(Offset, BitWidth);
1554 
1555   unsigned Opc;
1556   if (GV->isThreadLocal())
1557     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1558   else
1559     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1560 
1561   FoldingSetNodeID ID;
1562   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1563   ID.AddPointer(GV);
1564   ID.AddInteger(Offset);
1565   ID.AddInteger(TargetFlags);
1566   void *IP = nullptr;
1567   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1568     return SDValue(E, 0);
1569 
1570   auto *N = newSDNode<GlobalAddressSDNode>(
1571       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1572   CSEMap.InsertNode(N, IP);
1573     InsertNode(N);
1574   return SDValue(N, 0);
1575 }
1576 
1577 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1578   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1579   FoldingSetNodeID ID;
1580   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1581   ID.AddInteger(FI);
1582   void *IP = nullptr;
1583   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1584     return SDValue(E, 0);
1585 
1586   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1587   CSEMap.InsertNode(N, IP);
1588   InsertNode(N);
1589   return SDValue(N, 0);
1590 }
1591 
1592 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1593                                    unsigned TargetFlags) {
1594   assert((TargetFlags == 0 || isTarget) &&
1595          "Cannot set target flags on target-independent jump tables");
1596   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1597   FoldingSetNodeID ID;
1598   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1599   ID.AddInteger(JTI);
1600   ID.AddInteger(TargetFlags);
1601   void *IP = nullptr;
1602   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1603     return SDValue(E, 0);
1604 
1605   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1606   CSEMap.InsertNode(N, IP);
1607   InsertNode(N);
1608   return SDValue(N, 0);
1609 }
1610 
1611 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1612                                       MaybeAlign Alignment, int Offset,
1613                                       bool isTarget, unsigned TargetFlags) {
1614   assert((TargetFlags == 0 || isTarget) &&
1615          "Cannot set target flags on target-independent globals");
1616   if (!Alignment)
1617     Alignment = shouldOptForSize()
1618                     ? getDataLayout().getABITypeAlign(C->getType())
1619                     : getDataLayout().getPrefTypeAlign(C->getType());
1620   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1621   FoldingSetNodeID ID;
1622   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1623   ID.AddInteger(Alignment->value());
1624   ID.AddInteger(Offset);
1625   ID.AddPointer(C);
1626   ID.AddInteger(TargetFlags);
1627   void *IP = nullptr;
1628   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1629     return SDValue(E, 0);
1630 
1631   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1632                                           TargetFlags);
1633   CSEMap.InsertNode(N, IP);
1634   InsertNode(N);
1635   SDValue V = SDValue(N, 0);
1636   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1637   return V;
1638 }
1639 
1640 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1641                                       MaybeAlign Alignment, int Offset,
1642                                       bool isTarget, unsigned TargetFlags) {
1643   assert((TargetFlags == 0 || isTarget) &&
1644          "Cannot set target flags on target-independent globals");
1645   if (!Alignment)
1646     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1647   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1648   FoldingSetNodeID ID;
1649   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1650   ID.AddInteger(Alignment->value());
1651   ID.AddInteger(Offset);
1652   C->addSelectionDAGCSEId(ID);
1653   ID.AddInteger(TargetFlags);
1654   void *IP = nullptr;
1655   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1656     return SDValue(E, 0);
1657 
1658   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1659                                           TargetFlags);
1660   CSEMap.InsertNode(N, IP);
1661   InsertNode(N);
1662   return SDValue(N, 0);
1663 }
1664 
1665 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1666                                      unsigned TargetFlags) {
1667   FoldingSetNodeID ID;
1668   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1669   ID.AddInteger(Index);
1670   ID.AddInteger(Offset);
1671   ID.AddInteger(TargetFlags);
1672   void *IP = nullptr;
1673   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1674     return SDValue(E, 0);
1675 
1676   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1677   CSEMap.InsertNode(N, IP);
1678   InsertNode(N);
1679   return SDValue(N, 0);
1680 }
1681 
1682 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1683   FoldingSetNodeID ID;
1684   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1685   ID.AddPointer(MBB);
1686   void *IP = nullptr;
1687   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1688     return SDValue(E, 0);
1689 
1690   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1691   CSEMap.InsertNode(N, IP);
1692   InsertNode(N);
1693   return SDValue(N, 0);
1694 }
1695 
1696 SDValue SelectionDAG::getValueType(EVT VT) {
1697   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1698       ValueTypeNodes.size())
1699     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1700 
1701   SDNode *&N = VT.isExtended() ?
1702     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1703 
1704   if (N) return SDValue(N, 0);
1705   N = newSDNode<VTSDNode>(VT);
1706   InsertNode(N);
1707   return SDValue(N, 0);
1708 }
1709 
1710 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1711   SDNode *&N = ExternalSymbols[Sym];
1712   if (N) return SDValue(N, 0);
1713   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1714   InsertNode(N);
1715   return SDValue(N, 0);
1716 }
1717 
1718 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1719   SDNode *&N = MCSymbols[Sym];
1720   if (N)
1721     return SDValue(N, 0);
1722   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1723   InsertNode(N);
1724   return SDValue(N, 0);
1725 }
1726 
1727 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1728                                               unsigned TargetFlags) {
1729   SDNode *&N =
1730       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1731   if (N) return SDValue(N, 0);
1732   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1733   InsertNode(N);
1734   return SDValue(N, 0);
1735 }
1736 
1737 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1738   if ((unsigned)Cond >= CondCodeNodes.size())
1739     CondCodeNodes.resize(Cond+1);
1740 
1741   if (!CondCodeNodes[Cond]) {
1742     auto *N = newSDNode<CondCodeSDNode>(Cond);
1743     CondCodeNodes[Cond] = N;
1744     InsertNode(N);
1745   }
1746 
1747   return SDValue(CondCodeNodes[Cond], 0);
1748 }
1749 
1750 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1751   if (ResVT.isScalableVector())
1752     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1753 
1754   EVT OpVT = Step.getValueType();
1755   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1756   SmallVector<SDValue, 16> OpsStepConstants;
1757   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1758     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1759   return getBuildVector(ResVT, DL, OpsStepConstants);
1760 }
1761 
1762 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1763 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1764 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1765   std::swap(N1, N2);
1766   ShuffleVectorSDNode::commuteMask(M);
1767 }
1768 
1769 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1770                                        SDValue N2, ArrayRef<int> Mask) {
1771   assert(VT.getVectorNumElements() == Mask.size() &&
1772            "Must have the same number of vector elements as mask elements!");
1773   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1774          "Invalid VECTOR_SHUFFLE");
1775 
1776   // Canonicalize shuffle undef, undef -> undef
1777   if (N1.isUndef() && N2.isUndef())
1778     return getUNDEF(VT);
1779 
1780   // Validate that all indices in Mask are within the range of the elements
1781   // input to the shuffle.
1782   int NElts = Mask.size();
1783   assert(llvm::all_of(Mask,
1784                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1785          "Index out of range");
1786 
1787   // Copy the mask so we can do any needed cleanup.
1788   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1789 
1790   // Canonicalize shuffle v, v -> v, undef
1791   if (N1 == N2) {
1792     N2 = getUNDEF(VT);
1793     for (int i = 0; i != NElts; ++i)
1794       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1795   }
1796 
1797   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1798   if (N1.isUndef())
1799     commuteShuffle(N1, N2, MaskVec);
1800 
1801   if (TLI->hasVectorBlend()) {
1802     // If shuffling a splat, try to blend the splat instead. We do this here so
1803     // that even when this arises during lowering we don't have to re-handle it.
1804     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1805       BitVector UndefElements;
1806       SDValue Splat = BV->getSplatValue(&UndefElements);
1807       if (!Splat)
1808         return;
1809 
1810       for (int i = 0; i < NElts; ++i) {
1811         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1812           continue;
1813 
1814         // If this input comes from undef, mark it as such.
1815         if (UndefElements[MaskVec[i] - Offset]) {
1816           MaskVec[i] = -1;
1817           continue;
1818         }
1819 
1820         // If we can blend a non-undef lane, use that instead.
1821         if (!UndefElements[i])
1822           MaskVec[i] = i + Offset;
1823       }
1824     };
1825     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1826       BlendSplat(N1BV, 0);
1827     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1828       BlendSplat(N2BV, NElts);
1829   }
1830 
1831   // Canonicalize all index into lhs, -> shuffle lhs, undef
1832   // Canonicalize all index into rhs, -> shuffle rhs, undef
1833   bool AllLHS = true, AllRHS = true;
1834   bool N2Undef = N2.isUndef();
1835   for (int i = 0; i != NElts; ++i) {
1836     if (MaskVec[i] >= NElts) {
1837       if (N2Undef)
1838         MaskVec[i] = -1;
1839       else
1840         AllLHS = false;
1841     } else if (MaskVec[i] >= 0) {
1842       AllRHS = false;
1843     }
1844   }
1845   if (AllLHS && AllRHS)
1846     return getUNDEF(VT);
1847   if (AllLHS && !N2Undef)
1848     N2 = getUNDEF(VT);
1849   if (AllRHS) {
1850     N1 = getUNDEF(VT);
1851     commuteShuffle(N1, N2, MaskVec);
1852   }
1853   // Reset our undef status after accounting for the mask.
1854   N2Undef = N2.isUndef();
1855   // Re-check whether both sides ended up undef.
1856   if (N1.isUndef() && N2Undef)
1857     return getUNDEF(VT);
1858 
1859   // If Identity shuffle return that node.
1860   bool Identity = true, AllSame = true;
1861   for (int i = 0; i != NElts; ++i) {
1862     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1863     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1864   }
1865   if (Identity && NElts)
1866     return N1;
1867 
1868   // Shuffling a constant splat doesn't change the result.
1869   if (N2Undef) {
1870     SDValue V = N1;
1871 
1872     // Look through any bitcasts. We check that these don't change the number
1873     // (and size) of elements and just changes their types.
1874     while (V.getOpcode() == ISD::BITCAST)
1875       V = V->getOperand(0);
1876 
1877     // A splat should always show up as a build vector node.
1878     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1879       BitVector UndefElements;
1880       SDValue Splat = BV->getSplatValue(&UndefElements);
1881       // If this is a splat of an undef, shuffling it is also undef.
1882       if (Splat && Splat.isUndef())
1883         return getUNDEF(VT);
1884 
1885       bool SameNumElts =
1886           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1887 
1888       // We only have a splat which can skip shuffles if there is a splatted
1889       // value and no undef lanes rearranged by the shuffle.
1890       if (Splat && UndefElements.none()) {
1891         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1892         // number of elements match or the value splatted is a zero constant.
1893         if (SameNumElts)
1894           return N1;
1895         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1896           if (C->isNullValue())
1897             return N1;
1898       }
1899 
1900       // If the shuffle itself creates a splat, build the vector directly.
1901       if (AllSame && SameNumElts) {
1902         EVT BuildVT = BV->getValueType(0);
1903         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1904         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1905 
1906         // We may have jumped through bitcasts, so the type of the
1907         // BUILD_VECTOR may not match the type of the shuffle.
1908         if (BuildVT != VT)
1909           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1910         return NewBV;
1911       }
1912     }
1913   }
1914 
1915   FoldingSetNodeID ID;
1916   SDValue Ops[2] = { N1, N2 };
1917   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1918   for (int i = 0; i != NElts; ++i)
1919     ID.AddInteger(MaskVec[i]);
1920 
1921   void* IP = nullptr;
1922   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1923     return SDValue(E, 0);
1924 
1925   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1926   // SDNode doesn't have access to it.  This memory will be "leaked" when
1927   // the node is deallocated, but recovered when the NodeAllocator is released.
1928   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1929   llvm::copy(MaskVec, MaskAlloc);
1930 
1931   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1932                                            dl.getDebugLoc(), MaskAlloc);
1933   createOperands(N, Ops);
1934 
1935   CSEMap.InsertNode(N, IP);
1936   InsertNode(N);
1937   SDValue V = SDValue(N, 0);
1938   NewSDValueDbgMsg(V, "Creating new node: ", this);
1939   return V;
1940 }
1941 
1942 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1943   EVT VT = SV.getValueType(0);
1944   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1945   ShuffleVectorSDNode::commuteMask(MaskVec);
1946 
1947   SDValue Op0 = SV.getOperand(0);
1948   SDValue Op1 = SV.getOperand(1);
1949   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1950 }
1951 
1952 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1953   FoldingSetNodeID ID;
1954   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1955   ID.AddInteger(RegNo);
1956   void *IP = nullptr;
1957   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1958     return SDValue(E, 0);
1959 
1960   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1961   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1962   CSEMap.InsertNode(N, IP);
1963   InsertNode(N);
1964   return SDValue(N, 0);
1965 }
1966 
1967 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1968   FoldingSetNodeID ID;
1969   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1970   ID.AddPointer(RegMask);
1971   void *IP = nullptr;
1972   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1973     return SDValue(E, 0);
1974 
1975   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1976   CSEMap.InsertNode(N, IP);
1977   InsertNode(N);
1978   return SDValue(N, 0);
1979 }
1980 
1981 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1982                                  MCSymbol *Label) {
1983   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1984 }
1985 
1986 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1987                                    SDValue Root, MCSymbol *Label) {
1988   FoldingSetNodeID ID;
1989   SDValue Ops[] = { Root };
1990   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1991   ID.AddPointer(Label);
1992   void *IP = nullptr;
1993   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1994     return SDValue(E, 0);
1995 
1996   auto *N =
1997       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1998   createOperands(N, Ops);
1999 
2000   CSEMap.InsertNode(N, IP);
2001   InsertNode(N);
2002   return SDValue(N, 0);
2003 }
2004 
2005 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2006                                       int64_t Offset, bool isTarget,
2007                                       unsigned TargetFlags) {
2008   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2009 
2010   FoldingSetNodeID ID;
2011   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2012   ID.AddPointer(BA);
2013   ID.AddInteger(Offset);
2014   ID.AddInteger(TargetFlags);
2015   void *IP = nullptr;
2016   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2017     return SDValue(E, 0);
2018 
2019   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2020   CSEMap.InsertNode(N, IP);
2021   InsertNode(N);
2022   return SDValue(N, 0);
2023 }
2024 
2025 SDValue SelectionDAG::getSrcValue(const Value *V) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2028   ID.AddPointer(V);
2029 
2030   void *IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2032     return SDValue(E, 0);
2033 
2034   auto *N = newSDNode<SrcValueSDNode>(V);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2043   ID.AddPointer(MD);
2044 
2045   void *IP = nullptr;
2046   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2047     return SDValue(E, 0);
2048 
2049   auto *N = newSDNode<MDNodeSDNode>(MD);
2050   CSEMap.InsertNode(N, IP);
2051   InsertNode(N);
2052   return SDValue(N, 0);
2053 }
2054 
2055 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2056   if (VT == V.getValueType())
2057     return V;
2058 
2059   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2060 }
2061 
2062 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2063                                        unsigned SrcAS, unsigned DestAS) {
2064   SDValue Ops[] = {Ptr};
2065   FoldingSetNodeID ID;
2066   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2067   ID.AddInteger(SrcAS);
2068   ID.AddInteger(DestAS);
2069 
2070   void *IP = nullptr;
2071   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2072     return SDValue(E, 0);
2073 
2074   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2075                                            VT, SrcAS, DestAS);
2076   createOperands(N, Ops);
2077 
2078   CSEMap.InsertNode(N, IP);
2079   InsertNode(N);
2080   return SDValue(N, 0);
2081 }
2082 
2083 SDValue SelectionDAG::getFreeze(SDValue V) {
2084   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2085 }
2086 
2087 /// getShiftAmountOperand - Return the specified value casted to
2088 /// the target's desired shift amount type.
2089 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2090   EVT OpTy = Op.getValueType();
2091   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2092   if (OpTy == ShTy || OpTy.isVector()) return Op;
2093 
2094   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2095 }
2096 
2097 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2098   SDLoc dl(Node);
2099   const TargetLowering &TLI = getTargetLoweringInfo();
2100   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2101   EVT VT = Node->getValueType(0);
2102   SDValue Tmp1 = Node->getOperand(0);
2103   SDValue Tmp2 = Node->getOperand(1);
2104   const MaybeAlign MA(Node->getConstantOperandVal(3));
2105 
2106   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2107                                Tmp2, MachinePointerInfo(V));
2108   SDValue VAList = VAListLoad;
2109 
2110   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2111     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2112                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2113 
2114     VAList =
2115         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2116                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2117   }
2118 
2119   // Increment the pointer, VAList, to the next vaarg
2120   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2121                  getConstant(getDataLayout().getTypeAllocSize(
2122                                                VT.getTypeForEVT(*getContext())),
2123                              dl, VAList.getValueType()));
2124   // Store the incremented VAList to the legalized pointer
2125   Tmp1 =
2126       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2127   // Load the actual argument out of the pointer VAList
2128   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2129 }
2130 
2131 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2132   SDLoc dl(Node);
2133   const TargetLowering &TLI = getTargetLoweringInfo();
2134   // This defaults to loading a pointer from the input and storing it to the
2135   // output, returning the chain.
2136   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2137   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2138   SDValue Tmp1 =
2139       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2140               Node->getOperand(2), MachinePointerInfo(VS));
2141   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2142                   MachinePointerInfo(VD));
2143 }
2144 
2145 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2146   const DataLayout &DL = getDataLayout();
2147   Type *Ty = VT.getTypeForEVT(*getContext());
2148   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2149 
2150   if (TLI->isTypeLegal(VT) || !VT.isVector())
2151     return RedAlign;
2152 
2153   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2154   const Align StackAlign = TFI->getStackAlign();
2155 
2156   // See if we can choose a smaller ABI alignment in cases where it's an
2157   // illegal vector type that will get broken down.
2158   if (RedAlign > StackAlign) {
2159     EVT IntermediateVT;
2160     MVT RegisterVT;
2161     unsigned NumIntermediates;
2162     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2163                                 NumIntermediates, RegisterVT);
2164     Ty = IntermediateVT.getTypeForEVT(*getContext());
2165     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2166     if (RedAlign2 < RedAlign)
2167       RedAlign = RedAlign2;
2168   }
2169 
2170   return RedAlign;
2171 }
2172 
2173 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2174   MachineFrameInfo &MFI = MF->getFrameInfo();
2175   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2176   int StackID = 0;
2177   if (Bytes.isScalable())
2178     StackID = TFI->getStackIDForScalableVectors();
2179   // The stack id gives an indication of whether the object is scalable or
2180   // not, so it's safe to pass in the minimum size here.
2181   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2182                                        false, nullptr, StackID);
2183   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2184 }
2185 
2186 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2187   Type *Ty = VT.getTypeForEVT(*getContext());
2188   Align StackAlign =
2189       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2190   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2191 }
2192 
2193 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2194   TypeSize VT1Size = VT1.getStoreSize();
2195   TypeSize VT2Size = VT2.getStoreSize();
2196   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2197          "Don't know how to choose the maximum size when creating a stack "
2198          "temporary");
2199   TypeSize Bytes =
2200       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2201 
2202   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2203   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2204   const DataLayout &DL = getDataLayout();
2205   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2206   return CreateStackTemporary(Bytes, Align);
2207 }
2208 
2209 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2210                                 ISD::CondCode Cond, const SDLoc &dl) {
2211   EVT OpVT = N1.getValueType();
2212 
2213   // These setcc operations always fold.
2214   switch (Cond) {
2215   default: break;
2216   case ISD::SETFALSE:
2217   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2218   case ISD::SETTRUE:
2219   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2220 
2221   case ISD::SETOEQ:
2222   case ISD::SETOGT:
2223   case ISD::SETOGE:
2224   case ISD::SETOLT:
2225   case ISD::SETOLE:
2226   case ISD::SETONE:
2227   case ISD::SETO:
2228   case ISD::SETUO:
2229   case ISD::SETUEQ:
2230   case ISD::SETUNE:
2231     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2232     break;
2233   }
2234 
2235   if (OpVT.isInteger()) {
2236     // For EQ and NE, we can always pick a value for the undef to make the
2237     // predicate pass or fail, so we can return undef.
2238     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2239     // icmp eq/ne X, undef -> undef.
2240     if ((N1.isUndef() || N2.isUndef()) &&
2241         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2242       return getUNDEF(VT);
2243 
2244     // If both operands are undef, we can return undef for int comparison.
2245     // icmp undef, undef -> undef.
2246     if (N1.isUndef() && N2.isUndef())
2247       return getUNDEF(VT);
2248 
2249     // icmp X, X -> true/false
2250     // icmp X, undef -> true/false because undef could be X.
2251     if (N1 == N2)
2252       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2253   }
2254 
2255   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2256     const APInt &C2 = N2C->getAPIntValue();
2257     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2258       const APInt &C1 = N1C->getAPIntValue();
2259 
2260       switch (Cond) {
2261       default: llvm_unreachable("Unknown integer setcc!");
2262       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2263       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2264       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2265       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2266       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2267       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2268       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2269       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2270       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2271       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2272       }
2273     }
2274   }
2275 
2276   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2277   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2278 
2279   if (N1CFP && N2CFP) {
2280     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2281     switch (Cond) {
2282     default: break;
2283     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2284                         return getUNDEF(VT);
2285                       LLVM_FALLTHROUGH;
2286     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2287                                              OpVT);
2288     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2289                         return getUNDEF(VT);
2290                       LLVM_FALLTHROUGH;
2291     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2292                                              R==APFloat::cmpLessThan, dl, VT,
2293                                              OpVT);
2294     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2295                         return getUNDEF(VT);
2296                       LLVM_FALLTHROUGH;
2297     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2298                                              OpVT);
2299     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2300                         return getUNDEF(VT);
2301                       LLVM_FALLTHROUGH;
2302     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2303                                              VT, OpVT);
2304     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2305                         return getUNDEF(VT);
2306                       LLVM_FALLTHROUGH;
2307     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2308                                              R==APFloat::cmpEqual, dl, VT,
2309                                              OpVT);
2310     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2311                         return getUNDEF(VT);
2312                       LLVM_FALLTHROUGH;
2313     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2314                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2315     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2316                                              OpVT);
2317     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2318                                              OpVT);
2319     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2320                                              R==APFloat::cmpEqual, dl, VT,
2321                                              OpVT);
2322     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2323                                              OpVT);
2324     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2325                                              R==APFloat::cmpLessThan, dl, VT,
2326                                              OpVT);
2327     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2328                                              R==APFloat::cmpUnordered, dl, VT,
2329                                              OpVT);
2330     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2331                                              VT, OpVT);
2332     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2333                                              OpVT);
2334     }
2335   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2336     // Ensure that the constant occurs on the RHS.
2337     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2338     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2339       return SDValue();
2340     return getSetCC(dl, VT, N2, N1, SwappedCond);
2341   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2342              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2343     // If an operand is known to be a nan (or undef that could be a nan), we can
2344     // fold it.
2345     // Choosing NaN for the undef will always make unordered comparison succeed
2346     // and ordered comparison fails.
2347     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2348     switch (ISD::getUnorderedFlavor(Cond)) {
2349     default:
2350       llvm_unreachable("Unknown flavor!");
2351     case 0: // Known false.
2352       return getBoolConstant(false, dl, VT, OpVT);
2353     case 1: // Known true.
2354       return getBoolConstant(true, dl, VT, OpVT);
2355     case 2: // Undefined.
2356       return getUNDEF(VT);
2357     }
2358   }
2359 
2360   // Could not fold it.
2361   return SDValue();
2362 }
2363 
2364 /// See if the specified operand can be simplified with the knowledge that only
2365 /// the bits specified by DemandedBits are used.
2366 /// TODO: really we should be making this into the DAG equivalent of
2367 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2368 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2369   EVT VT = V.getValueType();
2370 
2371   if (VT.isScalableVector())
2372     return SDValue();
2373 
2374   APInt DemandedElts = VT.isVector()
2375                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2376                            : APInt(1, 1);
2377   return GetDemandedBits(V, DemandedBits, DemandedElts);
2378 }
2379 
2380 /// See if the specified operand can be simplified with the knowledge that only
2381 /// the bits specified by DemandedBits are used in the elements specified by
2382 /// DemandedElts.
2383 /// TODO: really we should be making this into the DAG equivalent of
2384 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2385 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2386                                       const APInt &DemandedElts) {
2387   switch (V.getOpcode()) {
2388   default:
2389     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2390                                                 *this, 0);
2391   case ISD::Constant: {
2392     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2393     APInt NewVal = CVal & DemandedBits;
2394     if (NewVal != CVal)
2395       return getConstant(NewVal, SDLoc(V), V.getValueType());
2396     break;
2397   }
2398   case ISD::SRL:
2399     // Only look at single-use SRLs.
2400     if (!V.getNode()->hasOneUse())
2401       break;
2402     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2403       // See if we can recursively simplify the LHS.
2404       unsigned Amt = RHSC->getZExtValue();
2405 
2406       // Watch out for shift count overflow though.
2407       if (Amt >= DemandedBits.getBitWidth())
2408         break;
2409       APInt SrcDemandedBits = DemandedBits << Amt;
2410       if (SDValue SimplifyLHS =
2411               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2412         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2413                        V.getOperand(1));
2414     }
2415     break;
2416   }
2417   return SDValue();
2418 }
2419 
2420 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2421 /// use this predicate to simplify operations downstream.
2422 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2423   unsigned BitWidth = Op.getScalarValueSizeInBits();
2424   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2425 }
2426 
2427 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2428 /// this predicate to simplify operations downstream.  Mask is known to be zero
2429 /// for bits that V cannot have.
2430 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2431                                      unsigned Depth) const {
2432   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2433 }
2434 
2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2436 /// DemandedElts.  We use this predicate to simplify operations downstream.
2437 /// Mask is known to be zero for bits that V cannot have.
2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2439                                      const APInt &DemandedElts,
2440                                      unsigned Depth) const {
2441   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2442 }
2443 
2444 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2445 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2446                                         unsigned Depth) const {
2447   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2448 }
2449 
2450 /// isSplatValue - Return true if the vector V has the same value
2451 /// across all DemandedElts. For scalable vectors it does not make
2452 /// sense to specify which elements are demanded or undefined, therefore
2453 /// they are simply ignored.
2454 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2455                                 APInt &UndefElts, unsigned Depth) {
2456   EVT VT = V.getValueType();
2457   assert(VT.isVector() && "Vector type expected");
2458 
2459   if (!VT.isScalableVector() && !DemandedElts)
2460     return false; // No demanded elts, better to assume we don't know anything.
2461 
2462   if (Depth >= MaxRecursionDepth)
2463     return false; // Limit search depth.
2464 
2465   // Deal with some common cases here that work for both fixed and scalable
2466   // vector types.
2467   switch (V.getOpcode()) {
2468   case ISD::SPLAT_VECTOR:
2469     UndefElts = V.getOperand(0).isUndef()
2470                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2471                     : APInt(DemandedElts.getBitWidth(), 0);
2472     return true;
2473   case ISD::ADD:
2474   case ISD::SUB:
2475   case ISD::AND:
2476   case ISD::XOR:
2477   case ISD::OR: {
2478     APInt UndefLHS, UndefRHS;
2479     SDValue LHS = V.getOperand(0);
2480     SDValue RHS = V.getOperand(1);
2481     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2482         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2483       UndefElts = UndefLHS | UndefRHS;
2484       return true;
2485     }
2486     break;
2487   }
2488   case ISD::ABS:
2489   case ISD::TRUNCATE:
2490   case ISD::SIGN_EXTEND:
2491   case ISD::ZERO_EXTEND:
2492     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2493   }
2494 
2495   // We don't support other cases than those above for scalable vectors at
2496   // the moment.
2497   if (VT.isScalableVector())
2498     return false;
2499 
2500   unsigned NumElts = VT.getVectorNumElements();
2501   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2502   UndefElts = APInt::getNullValue(NumElts);
2503 
2504   switch (V.getOpcode()) {
2505   case ISD::BUILD_VECTOR: {
2506     SDValue Scl;
2507     for (unsigned i = 0; i != NumElts; ++i) {
2508       SDValue Op = V.getOperand(i);
2509       if (Op.isUndef()) {
2510         UndefElts.setBit(i);
2511         continue;
2512       }
2513       if (!DemandedElts[i])
2514         continue;
2515       if (Scl && Scl != Op)
2516         return false;
2517       Scl = Op;
2518     }
2519     return true;
2520   }
2521   case ISD::VECTOR_SHUFFLE: {
2522     // Check if this is a shuffle node doing a splat.
2523     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2524     int SplatIndex = -1;
2525     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2526     for (int i = 0; i != (int)NumElts; ++i) {
2527       int M = Mask[i];
2528       if (M < 0) {
2529         UndefElts.setBit(i);
2530         continue;
2531       }
2532       if (!DemandedElts[i])
2533         continue;
2534       if (0 <= SplatIndex && SplatIndex != M)
2535         return false;
2536       SplatIndex = M;
2537     }
2538     return true;
2539   }
2540   case ISD::EXTRACT_SUBVECTOR: {
2541     // Offset the demanded elts by the subvector index.
2542     SDValue Src = V.getOperand(0);
2543     // We don't support scalable vectors at the moment.
2544     if (Src.getValueType().isScalableVector())
2545       return false;
2546     uint64_t Idx = V.getConstantOperandVal(1);
2547     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2548     APInt UndefSrcElts;
2549     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2550     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2551       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2552       return true;
2553     }
2554     break;
2555   }
2556   }
2557 
2558   return false;
2559 }
2560 
2561 /// Helper wrapper to main isSplatValue function.
2562 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2563   EVT VT = V.getValueType();
2564   assert(VT.isVector() && "Vector type expected");
2565 
2566   APInt UndefElts;
2567   APInt DemandedElts;
2568 
2569   // For now we don't support this with scalable vectors.
2570   if (!VT.isScalableVector())
2571     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2572   return isSplatValue(V, DemandedElts, UndefElts) &&
2573          (AllowUndefs || !UndefElts);
2574 }
2575 
2576 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2577   V = peekThroughExtractSubvectors(V);
2578 
2579   EVT VT = V.getValueType();
2580   unsigned Opcode = V.getOpcode();
2581   switch (Opcode) {
2582   default: {
2583     APInt UndefElts;
2584     APInt DemandedElts;
2585 
2586     if (!VT.isScalableVector())
2587       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2588 
2589     if (isSplatValue(V, DemandedElts, UndefElts)) {
2590       if (VT.isScalableVector()) {
2591         // DemandedElts and UndefElts are ignored for scalable vectors, since
2592         // the only supported cases are SPLAT_VECTOR nodes.
2593         SplatIdx = 0;
2594       } else {
2595         // Handle case where all demanded elements are UNDEF.
2596         if (DemandedElts.isSubsetOf(UndefElts)) {
2597           SplatIdx = 0;
2598           return getUNDEF(VT);
2599         }
2600         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2601       }
2602       return V;
2603     }
2604     break;
2605   }
2606   case ISD::SPLAT_VECTOR:
2607     SplatIdx = 0;
2608     return V;
2609   case ISD::VECTOR_SHUFFLE: {
2610     if (VT.isScalableVector())
2611       return SDValue();
2612 
2613     // Check if this is a shuffle node doing a splat.
2614     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2615     // getTargetVShiftNode currently struggles without the splat source.
2616     auto *SVN = cast<ShuffleVectorSDNode>(V);
2617     if (!SVN->isSplat())
2618       break;
2619     int Idx = SVN->getSplatIndex();
2620     int NumElts = V.getValueType().getVectorNumElements();
2621     SplatIdx = Idx % NumElts;
2622     return V.getOperand(Idx / NumElts);
2623   }
2624   }
2625 
2626   return SDValue();
2627 }
2628 
2629 SDValue SelectionDAG::getSplatValue(SDValue V) {
2630   int SplatIdx;
2631   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2632     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2633                    SrcVector.getValueType().getScalarType(), SrcVector,
2634                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2635   return SDValue();
2636 }
2637 
2638 const APInt *
2639 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2640                                           const APInt &DemandedElts) const {
2641   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2642           V.getOpcode() == ISD::SRA) &&
2643          "Unknown shift node");
2644   unsigned BitWidth = V.getScalarValueSizeInBits();
2645   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2646     // Shifting more than the bitwidth is not valid.
2647     const APInt &ShAmt = SA->getAPIntValue();
2648     if (ShAmt.ult(BitWidth))
2649       return &ShAmt;
2650   }
2651   return nullptr;
2652 }
2653 
2654 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2655     SDValue V, const APInt &DemandedElts) const {
2656   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2657           V.getOpcode() == ISD::SRA) &&
2658          "Unknown shift node");
2659   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2660     return ValidAmt;
2661   unsigned BitWidth = V.getScalarValueSizeInBits();
2662   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2663   if (!BV)
2664     return nullptr;
2665   const APInt *MinShAmt = nullptr;
2666   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2667     if (!DemandedElts[i])
2668       continue;
2669     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2670     if (!SA)
2671       return nullptr;
2672     // Shifting more than the bitwidth is not valid.
2673     const APInt &ShAmt = SA->getAPIntValue();
2674     if (ShAmt.uge(BitWidth))
2675       return nullptr;
2676     if (MinShAmt && MinShAmt->ule(ShAmt))
2677       continue;
2678     MinShAmt = &ShAmt;
2679   }
2680   return MinShAmt;
2681 }
2682 
2683 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2684     SDValue V, const APInt &DemandedElts) const {
2685   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2686           V.getOpcode() == ISD::SRA) &&
2687          "Unknown shift node");
2688   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2689     return ValidAmt;
2690   unsigned BitWidth = V.getScalarValueSizeInBits();
2691   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2692   if (!BV)
2693     return nullptr;
2694   const APInt *MaxShAmt = nullptr;
2695   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2696     if (!DemandedElts[i])
2697       continue;
2698     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2699     if (!SA)
2700       return nullptr;
2701     // Shifting more than the bitwidth is not valid.
2702     const APInt &ShAmt = SA->getAPIntValue();
2703     if (ShAmt.uge(BitWidth))
2704       return nullptr;
2705     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2706       continue;
2707     MaxShAmt = &ShAmt;
2708   }
2709   return MaxShAmt;
2710 }
2711 
2712 /// Determine which bits of Op are known to be either zero or one and return
2713 /// them in Known. For vectors, the known bits are those that are shared by
2714 /// every vector element.
2715 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2716   EVT VT = Op.getValueType();
2717 
2718   // TOOD: Until we have a plan for how to represent demanded elements for
2719   // scalable vectors, we can just bail out for now.
2720   if (Op.getValueType().isScalableVector()) {
2721     unsigned BitWidth = Op.getScalarValueSizeInBits();
2722     return KnownBits(BitWidth);
2723   }
2724 
2725   APInt DemandedElts = VT.isVector()
2726                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2727                            : APInt(1, 1);
2728   return computeKnownBits(Op, DemandedElts, Depth);
2729 }
2730 
2731 /// Determine which bits of Op are known to be either zero or one and return
2732 /// them in Known. The DemandedElts argument allows us to only collect the known
2733 /// bits that are shared by the requested vector elements.
2734 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2735                                          unsigned Depth) const {
2736   unsigned BitWidth = Op.getScalarValueSizeInBits();
2737 
2738   KnownBits Known(BitWidth);   // Don't know anything.
2739 
2740   // TOOD: Until we have a plan for how to represent demanded elements for
2741   // scalable vectors, we can just bail out for now.
2742   if (Op.getValueType().isScalableVector())
2743     return Known;
2744 
2745   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2746     // We know all of the bits for a constant!
2747     return KnownBits::makeConstant(C->getAPIntValue());
2748   }
2749   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2750     // We know all of the bits for a constant fp!
2751     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2752   }
2753 
2754   if (Depth >= MaxRecursionDepth)
2755     return Known;  // Limit search depth.
2756 
2757   KnownBits Known2;
2758   unsigned NumElts = DemandedElts.getBitWidth();
2759   assert((!Op.getValueType().isVector() ||
2760           NumElts == Op.getValueType().getVectorNumElements()) &&
2761          "Unexpected vector size");
2762 
2763   if (!DemandedElts)
2764     return Known;  // No demanded elts, better to assume we don't know anything.
2765 
2766   unsigned Opcode = Op.getOpcode();
2767   switch (Opcode) {
2768   case ISD::BUILD_VECTOR:
2769     // Collect the known bits that are shared by every demanded vector element.
2770     Known.Zero.setAllBits(); Known.One.setAllBits();
2771     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2772       if (!DemandedElts[i])
2773         continue;
2774 
2775       SDValue SrcOp = Op.getOperand(i);
2776       Known2 = computeKnownBits(SrcOp, Depth + 1);
2777 
2778       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2779       if (SrcOp.getValueSizeInBits() != BitWidth) {
2780         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2781                "Expected BUILD_VECTOR implicit truncation");
2782         Known2 = Known2.trunc(BitWidth);
2783       }
2784 
2785       // Known bits are the values that are shared by every demanded element.
2786       Known = KnownBits::commonBits(Known, Known2);
2787 
2788       // If we don't know any bits, early out.
2789       if (Known.isUnknown())
2790         break;
2791     }
2792     break;
2793   case ISD::VECTOR_SHUFFLE: {
2794     // Collect the known bits that are shared by every vector element referenced
2795     // by the shuffle.
2796     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2797     Known.Zero.setAllBits(); Known.One.setAllBits();
2798     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2799     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2800     for (unsigned i = 0; i != NumElts; ++i) {
2801       if (!DemandedElts[i])
2802         continue;
2803 
2804       int M = SVN->getMaskElt(i);
2805       if (M < 0) {
2806         // For UNDEF elements, we don't know anything about the common state of
2807         // the shuffle result.
2808         Known.resetAll();
2809         DemandedLHS.clearAllBits();
2810         DemandedRHS.clearAllBits();
2811         break;
2812       }
2813 
2814       if ((unsigned)M < NumElts)
2815         DemandedLHS.setBit((unsigned)M % NumElts);
2816       else
2817         DemandedRHS.setBit((unsigned)M % NumElts);
2818     }
2819     // Known bits are the values that are shared by every demanded element.
2820     if (!!DemandedLHS) {
2821       SDValue LHS = Op.getOperand(0);
2822       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2823       Known = KnownBits::commonBits(Known, Known2);
2824     }
2825     // If we don't know any bits, early out.
2826     if (Known.isUnknown())
2827       break;
2828     if (!!DemandedRHS) {
2829       SDValue RHS = Op.getOperand(1);
2830       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2831       Known = KnownBits::commonBits(Known, Known2);
2832     }
2833     break;
2834   }
2835   case ISD::CONCAT_VECTORS: {
2836     // Split DemandedElts and test each of the demanded subvectors.
2837     Known.Zero.setAllBits(); Known.One.setAllBits();
2838     EVT SubVectorVT = Op.getOperand(0).getValueType();
2839     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2840     unsigned NumSubVectors = Op.getNumOperands();
2841     for (unsigned i = 0; i != NumSubVectors; ++i) {
2842       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2843       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2844       if (!!DemandedSub) {
2845         SDValue Sub = Op.getOperand(i);
2846         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2847         Known = KnownBits::commonBits(Known, Known2);
2848       }
2849       // If we don't know any bits, early out.
2850       if (Known.isUnknown())
2851         break;
2852     }
2853     break;
2854   }
2855   case ISD::INSERT_SUBVECTOR: {
2856     // Demand any elements from the subvector and the remainder from the src its
2857     // inserted into.
2858     SDValue Src = Op.getOperand(0);
2859     SDValue Sub = Op.getOperand(1);
2860     uint64_t Idx = Op.getConstantOperandVal(2);
2861     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2862     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2863     APInt DemandedSrcElts = DemandedElts;
2864     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2865 
2866     Known.One.setAllBits();
2867     Known.Zero.setAllBits();
2868     if (!!DemandedSubElts) {
2869       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2870       if (Known.isUnknown())
2871         break; // early-out.
2872     }
2873     if (!!DemandedSrcElts) {
2874       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2875       Known = KnownBits::commonBits(Known, Known2);
2876     }
2877     break;
2878   }
2879   case ISD::EXTRACT_SUBVECTOR: {
2880     // Offset the demanded elts by the subvector index.
2881     SDValue Src = Op.getOperand(0);
2882     // Bail until we can represent demanded elements for scalable vectors.
2883     if (Src.getValueType().isScalableVector())
2884       break;
2885     uint64_t Idx = Op.getConstantOperandVal(1);
2886     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2887     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2888     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2889     break;
2890   }
2891   case ISD::SCALAR_TO_VECTOR: {
2892     // We know about scalar_to_vector as much as we know about it source,
2893     // which becomes the first element of otherwise unknown vector.
2894     if (DemandedElts != 1)
2895       break;
2896 
2897     SDValue N0 = Op.getOperand(0);
2898     Known = computeKnownBits(N0, Depth + 1);
2899     if (N0.getValueSizeInBits() != BitWidth)
2900       Known = Known.trunc(BitWidth);
2901 
2902     break;
2903   }
2904   case ISD::BITCAST: {
2905     SDValue N0 = Op.getOperand(0);
2906     EVT SubVT = N0.getValueType();
2907     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2908 
2909     // Ignore bitcasts from unsupported types.
2910     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2911       break;
2912 
2913     // Fast handling of 'identity' bitcasts.
2914     if (BitWidth == SubBitWidth) {
2915       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2916       break;
2917     }
2918 
2919     bool IsLE = getDataLayout().isLittleEndian();
2920 
2921     // Bitcast 'small element' vector to 'large element' scalar/vector.
2922     if ((BitWidth % SubBitWidth) == 0) {
2923       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2924 
2925       // Collect known bits for the (larger) output by collecting the known
2926       // bits from each set of sub elements and shift these into place.
2927       // We need to separately call computeKnownBits for each set of
2928       // sub elements as the knownbits for each is likely to be different.
2929       unsigned SubScale = BitWidth / SubBitWidth;
2930       APInt SubDemandedElts(NumElts * SubScale, 0);
2931       for (unsigned i = 0; i != NumElts; ++i)
2932         if (DemandedElts[i])
2933           SubDemandedElts.setBit(i * SubScale);
2934 
2935       for (unsigned i = 0; i != SubScale; ++i) {
2936         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2937                          Depth + 1);
2938         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2939         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2940         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2941       }
2942     }
2943 
2944     // Bitcast 'large element' scalar/vector to 'small element' vector.
2945     if ((SubBitWidth % BitWidth) == 0) {
2946       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2947 
2948       // Collect known bits for the (smaller) output by collecting the known
2949       // bits from the overlapping larger input elements and extracting the
2950       // sub sections we actually care about.
2951       unsigned SubScale = SubBitWidth / BitWidth;
2952       APInt SubDemandedElts(NumElts / SubScale, 0);
2953       for (unsigned i = 0; i != NumElts; ++i)
2954         if (DemandedElts[i])
2955           SubDemandedElts.setBit(i / SubScale);
2956 
2957       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2958 
2959       Known.Zero.setAllBits(); Known.One.setAllBits();
2960       for (unsigned i = 0; i != NumElts; ++i)
2961         if (DemandedElts[i]) {
2962           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2963           unsigned Offset = (Shifts % SubScale) * BitWidth;
2964           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2965           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2966           // If we don't know any bits, early out.
2967           if (Known.isUnknown())
2968             break;
2969         }
2970     }
2971     break;
2972   }
2973   case ISD::AND:
2974     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2975     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2976 
2977     Known &= Known2;
2978     break;
2979   case ISD::OR:
2980     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2981     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2982 
2983     Known |= Known2;
2984     break;
2985   case ISD::XOR:
2986     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2987     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2988 
2989     Known ^= Known2;
2990     break;
2991   case ISD::MUL: {
2992     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2993     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2994     Known = KnownBits::mul(Known, Known2);
2995     break;
2996   }
2997   case ISD::MULHU: {
2998     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2999     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3000     Known = KnownBits::mulhu(Known, Known2);
3001     break;
3002   }
3003   case ISD::MULHS: {
3004     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3005     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3006     Known = KnownBits::mulhs(Known, Known2);
3007     break;
3008   }
3009   case ISD::UMUL_LOHI: {
3010     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3011     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3012     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3013     if (Op.getResNo() == 0)
3014       Known = KnownBits::mul(Known, Known2);
3015     else
3016       Known = KnownBits::mulhu(Known, Known2);
3017     break;
3018   }
3019   case ISD::SMUL_LOHI: {
3020     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3021     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3022     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3023     if (Op.getResNo() == 0)
3024       Known = KnownBits::mul(Known, Known2);
3025     else
3026       Known = KnownBits::mulhs(Known, Known2);
3027     break;
3028   }
3029   case ISD::UDIV: {
3030     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3031     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3032     Known = KnownBits::udiv(Known, Known2);
3033     break;
3034   }
3035   case ISD::SELECT:
3036   case ISD::VSELECT:
3037     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3038     // If we don't know any bits, early out.
3039     if (Known.isUnknown())
3040       break;
3041     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3042 
3043     // Only known if known in both the LHS and RHS.
3044     Known = KnownBits::commonBits(Known, Known2);
3045     break;
3046   case ISD::SELECT_CC:
3047     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3048     // If we don't know any bits, early out.
3049     if (Known.isUnknown())
3050       break;
3051     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3052 
3053     // Only known if known in both the LHS and RHS.
3054     Known = KnownBits::commonBits(Known, Known2);
3055     break;
3056   case ISD::SMULO:
3057   case ISD::UMULO:
3058   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3059     if (Op.getResNo() != 1)
3060       break;
3061     // The boolean result conforms to getBooleanContents.
3062     // If we know the result of a setcc has the top bits zero, use this info.
3063     // We know that we have an integer-based boolean since these operations
3064     // are only available for integer.
3065     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3066             TargetLowering::ZeroOrOneBooleanContent &&
3067         BitWidth > 1)
3068       Known.Zero.setBitsFrom(1);
3069     break;
3070   case ISD::SETCC:
3071   case ISD::STRICT_FSETCC:
3072   case ISD::STRICT_FSETCCS: {
3073     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3074     // If we know the result of a setcc has the top bits zero, use this info.
3075     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3076             TargetLowering::ZeroOrOneBooleanContent &&
3077         BitWidth > 1)
3078       Known.Zero.setBitsFrom(1);
3079     break;
3080   }
3081   case ISD::SHL:
3082     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3084     Known = KnownBits::shl(Known, Known2);
3085 
3086     // Minimum shift low bits are known zero.
3087     if (const APInt *ShMinAmt =
3088             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3089       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3090     break;
3091   case ISD::SRL:
3092     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3093     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3094     Known = KnownBits::lshr(Known, Known2);
3095 
3096     // Minimum shift high bits are known zero.
3097     if (const APInt *ShMinAmt =
3098             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3099       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3100     break;
3101   case ISD::SRA:
3102     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3103     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3104     Known = KnownBits::ashr(Known, Known2);
3105     // TODO: Add minimum shift high known sign bits.
3106     break;
3107   case ISD::FSHL:
3108   case ISD::FSHR:
3109     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3110       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3111 
3112       // For fshl, 0-shift returns the 1st arg.
3113       // For fshr, 0-shift returns the 2nd arg.
3114       if (Amt == 0) {
3115         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3116                                  DemandedElts, Depth + 1);
3117         break;
3118       }
3119 
3120       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3121       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3122       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3123       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3124       if (Opcode == ISD::FSHL) {
3125         Known.One <<= Amt;
3126         Known.Zero <<= Amt;
3127         Known2.One.lshrInPlace(BitWidth - Amt);
3128         Known2.Zero.lshrInPlace(BitWidth - Amt);
3129       } else {
3130         Known.One <<= BitWidth - Amt;
3131         Known.Zero <<= BitWidth - Amt;
3132         Known2.One.lshrInPlace(Amt);
3133         Known2.Zero.lshrInPlace(Amt);
3134       }
3135       Known.One |= Known2.One;
3136       Known.Zero |= Known2.Zero;
3137     }
3138     break;
3139   case ISD::SIGN_EXTEND_INREG: {
3140     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3141     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3142     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3143     break;
3144   }
3145   case ISD::CTTZ:
3146   case ISD::CTTZ_ZERO_UNDEF: {
3147     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3148     // If we have a known 1, its position is our upper bound.
3149     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3150     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3151     Known.Zero.setBitsFrom(LowBits);
3152     break;
3153   }
3154   case ISD::CTLZ:
3155   case ISD::CTLZ_ZERO_UNDEF: {
3156     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157     // If we have a known 1, its position is our upper bound.
3158     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3159     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3160     Known.Zero.setBitsFrom(LowBits);
3161     break;
3162   }
3163   case ISD::CTPOP: {
3164     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3165     // If we know some of the bits are zero, they can't be one.
3166     unsigned PossibleOnes = Known2.countMaxPopulation();
3167     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3168     break;
3169   }
3170   case ISD::PARITY: {
3171     // Parity returns 0 everywhere but the LSB.
3172     Known.Zero.setBitsFrom(1);
3173     break;
3174   }
3175   case ISD::LOAD: {
3176     LoadSDNode *LD = cast<LoadSDNode>(Op);
3177     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3178     if (ISD::isNON_EXTLoad(LD) && Cst) {
3179       // Determine any common known bits from the loaded constant pool value.
3180       Type *CstTy = Cst->getType();
3181       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3182         // If its a vector splat, then we can (quickly) reuse the scalar path.
3183         // NOTE: We assume all elements match and none are UNDEF.
3184         if (CstTy->isVectorTy()) {
3185           if (const Constant *Splat = Cst->getSplatValue()) {
3186             Cst = Splat;
3187             CstTy = Cst->getType();
3188           }
3189         }
3190         // TODO - do we need to handle different bitwidths?
3191         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3192           // Iterate across all vector elements finding common known bits.
3193           Known.One.setAllBits();
3194           Known.Zero.setAllBits();
3195           for (unsigned i = 0; i != NumElts; ++i) {
3196             if (!DemandedElts[i])
3197               continue;
3198             if (Constant *Elt = Cst->getAggregateElement(i)) {
3199               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3200                 const APInt &Value = CInt->getValue();
3201                 Known.One &= Value;
3202                 Known.Zero &= ~Value;
3203                 continue;
3204               }
3205               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3206                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3207                 Known.One &= Value;
3208                 Known.Zero &= ~Value;
3209                 continue;
3210               }
3211             }
3212             Known.One.clearAllBits();
3213             Known.Zero.clearAllBits();
3214             break;
3215           }
3216         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3217           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3218             Known = KnownBits::makeConstant(CInt->getValue());
3219           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3220             Known =
3221                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3222           }
3223         }
3224       }
3225     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3226       // If this is a ZEXTLoad and we are looking at the loaded value.
3227       EVT VT = LD->getMemoryVT();
3228       unsigned MemBits = VT.getScalarSizeInBits();
3229       Known.Zero.setBitsFrom(MemBits);
3230     } else if (const MDNode *Ranges = LD->getRanges()) {
3231       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3232         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3233     }
3234     break;
3235   }
3236   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3237     EVT InVT = Op.getOperand(0).getValueType();
3238     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3239     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3240     Known = Known.zext(BitWidth);
3241     break;
3242   }
3243   case ISD::ZERO_EXTEND: {
3244     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3245     Known = Known.zext(BitWidth);
3246     break;
3247   }
3248   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3249     EVT InVT = Op.getOperand(0).getValueType();
3250     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3251     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3252     // If the sign bit is known to be zero or one, then sext will extend
3253     // it to the top bits, else it will just zext.
3254     Known = Known.sext(BitWidth);
3255     break;
3256   }
3257   case ISD::SIGN_EXTEND: {
3258     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3259     // If the sign bit is known to be zero or one, then sext will extend
3260     // it to the top bits, else it will just zext.
3261     Known = Known.sext(BitWidth);
3262     break;
3263   }
3264   case ISD::ANY_EXTEND_VECTOR_INREG: {
3265     EVT InVT = Op.getOperand(0).getValueType();
3266     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3267     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3268     Known = Known.anyext(BitWidth);
3269     break;
3270   }
3271   case ISD::ANY_EXTEND: {
3272     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3273     Known = Known.anyext(BitWidth);
3274     break;
3275   }
3276   case ISD::TRUNCATE: {
3277     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3278     Known = Known.trunc(BitWidth);
3279     break;
3280   }
3281   case ISD::AssertZext: {
3282     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3283     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3284     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3285     Known.Zero |= (~InMask);
3286     Known.One  &= (~Known.Zero);
3287     break;
3288   }
3289   case ISD::AssertAlign: {
3290     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3291     assert(LogOfAlign != 0);
3292     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3293     // well as clearing one bits.
3294     Known.Zero.setLowBits(LogOfAlign);
3295     Known.One.clearLowBits(LogOfAlign);
3296     break;
3297   }
3298   case ISD::FGETSIGN:
3299     // All bits are zero except the low bit.
3300     Known.Zero.setBitsFrom(1);
3301     break;
3302   case ISD::USUBO:
3303   case ISD::SSUBO:
3304     if (Op.getResNo() == 1) {
3305       // If we know the result of a setcc has the top bits zero, use this info.
3306       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3307               TargetLowering::ZeroOrOneBooleanContent &&
3308           BitWidth > 1)
3309         Known.Zero.setBitsFrom(1);
3310       break;
3311     }
3312     LLVM_FALLTHROUGH;
3313   case ISD::SUB:
3314   case ISD::SUBC: {
3315     assert(Op.getResNo() == 0 &&
3316            "We only compute knownbits for the difference here.");
3317 
3318     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3319     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3320     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3321                                         Known, Known2);
3322     break;
3323   }
3324   case ISD::UADDO:
3325   case ISD::SADDO:
3326   case ISD::ADDCARRY:
3327     if (Op.getResNo() == 1) {
3328       // If we know the result of a setcc has the top bits zero, use this info.
3329       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3330               TargetLowering::ZeroOrOneBooleanContent &&
3331           BitWidth > 1)
3332         Known.Zero.setBitsFrom(1);
3333       break;
3334     }
3335     LLVM_FALLTHROUGH;
3336   case ISD::ADD:
3337   case ISD::ADDC:
3338   case ISD::ADDE: {
3339     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3340 
3341     // With ADDE and ADDCARRY, a carry bit may be added in.
3342     KnownBits Carry(1);
3343     if (Opcode == ISD::ADDE)
3344       // Can't track carry from glue, set carry to unknown.
3345       Carry.resetAll();
3346     else if (Opcode == ISD::ADDCARRY)
3347       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3348       // the trouble (how often will we find a known carry bit). And I haven't
3349       // tested this very much yet, but something like this might work:
3350       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3351       //   Carry = Carry.zextOrTrunc(1, false);
3352       Carry.resetAll();
3353     else
3354       Carry.setAllZero();
3355 
3356     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3357     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3358     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3359     break;
3360   }
3361   case ISD::SREM: {
3362     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3363     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3364     Known = KnownBits::srem(Known, Known2);
3365     break;
3366   }
3367   case ISD::UREM: {
3368     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3369     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3370     Known = KnownBits::urem(Known, Known2);
3371     break;
3372   }
3373   case ISD::EXTRACT_ELEMENT: {
3374     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3375     const unsigned Index = Op.getConstantOperandVal(1);
3376     const unsigned EltBitWidth = Op.getValueSizeInBits();
3377 
3378     // Remove low part of known bits mask
3379     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3380     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3381 
3382     // Remove high part of known bit mask
3383     Known = Known.trunc(EltBitWidth);
3384     break;
3385   }
3386   case ISD::EXTRACT_VECTOR_ELT: {
3387     SDValue InVec = Op.getOperand(0);
3388     SDValue EltNo = Op.getOperand(1);
3389     EVT VecVT = InVec.getValueType();
3390     // computeKnownBits not yet implemented for scalable vectors.
3391     if (VecVT.isScalableVector())
3392       break;
3393     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3394     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3395 
3396     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3397     // anything about the extended bits.
3398     if (BitWidth > EltBitWidth)
3399       Known = Known.trunc(EltBitWidth);
3400 
3401     // If we know the element index, just demand that vector element, else for
3402     // an unknown element index, ignore DemandedElts and demand them all.
3403     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3404     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3405     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3406       DemandedSrcElts =
3407           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3408 
3409     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3410     if (BitWidth > EltBitWidth)
3411       Known = Known.anyext(BitWidth);
3412     break;
3413   }
3414   case ISD::INSERT_VECTOR_ELT: {
3415     // If we know the element index, split the demand between the
3416     // source vector and the inserted element, otherwise assume we need
3417     // the original demanded vector elements and the value.
3418     SDValue InVec = Op.getOperand(0);
3419     SDValue InVal = Op.getOperand(1);
3420     SDValue EltNo = Op.getOperand(2);
3421     bool DemandedVal = true;
3422     APInt DemandedVecElts = DemandedElts;
3423     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3424     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3425       unsigned EltIdx = CEltNo->getZExtValue();
3426       DemandedVal = !!DemandedElts[EltIdx];
3427       DemandedVecElts.clearBit(EltIdx);
3428     }
3429     Known.One.setAllBits();
3430     Known.Zero.setAllBits();
3431     if (DemandedVal) {
3432       Known2 = computeKnownBits(InVal, Depth + 1);
3433       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3434     }
3435     if (!!DemandedVecElts) {
3436       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3437       Known = KnownBits::commonBits(Known, Known2);
3438     }
3439     break;
3440   }
3441   case ISD::BITREVERSE: {
3442     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3443     Known = Known2.reverseBits();
3444     break;
3445   }
3446   case ISD::BSWAP: {
3447     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3448     Known = Known2.byteSwap();
3449     break;
3450   }
3451   case ISD::ABS: {
3452     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3453     Known = Known2.abs();
3454     break;
3455   }
3456   case ISD::USUBSAT: {
3457     // The result of usubsat will never be larger than the LHS.
3458     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3459     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3460     break;
3461   }
3462   case ISD::UMIN: {
3463     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3464     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3465     Known = KnownBits::umin(Known, Known2);
3466     break;
3467   }
3468   case ISD::UMAX: {
3469     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3470     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3471     Known = KnownBits::umax(Known, Known2);
3472     break;
3473   }
3474   case ISD::SMIN:
3475   case ISD::SMAX: {
3476     // If we have a clamp pattern, we know that the number of sign bits will be
3477     // the minimum of the clamp min/max range.
3478     bool IsMax = (Opcode == ISD::SMAX);
3479     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3480     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3481       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3482         CstHigh =
3483             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3484     if (CstLow && CstHigh) {
3485       if (!IsMax)
3486         std::swap(CstLow, CstHigh);
3487 
3488       const APInt &ValueLow = CstLow->getAPIntValue();
3489       const APInt &ValueHigh = CstHigh->getAPIntValue();
3490       if (ValueLow.sle(ValueHigh)) {
3491         unsigned LowSignBits = ValueLow.getNumSignBits();
3492         unsigned HighSignBits = ValueHigh.getNumSignBits();
3493         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3494         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3495           Known.One.setHighBits(MinSignBits);
3496           break;
3497         }
3498         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3499           Known.Zero.setHighBits(MinSignBits);
3500           break;
3501         }
3502       }
3503     }
3504 
3505     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3506     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3507     if (IsMax)
3508       Known = KnownBits::smax(Known, Known2);
3509     else
3510       Known = KnownBits::smin(Known, Known2);
3511     break;
3512   }
3513   case ISD::FrameIndex:
3514   case ISD::TargetFrameIndex:
3515     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3516                                        Known, getMachineFunction());
3517     break;
3518 
3519   default:
3520     if (Opcode < ISD::BUILTIN_OP_END)
3521       break;
3522     LLVM_FALLTHROUGH;
3523   case ISD::INTRINSIC_WO_CHAIN:
3524   case ISD::INTRINSIC_W_CHAIN:
3525   case ISD::INTRINSIC_VOID:
3526     // Allow the target to implement this method for its nodes.
3527     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3528     break;
3529   }
3530 
3531   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3532   return Known;
3533 }
3534 
3535 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3536                                                              SDValue N1) const {
3537   // X + 0 never overflow
3538   if (isNullConstant(N1))
3539     return OFK_Never;
3540 
3541   KnownBits N1Known = computeKnownBits(N1);
3542   if (N1Known.Zero.getBoolValue()) {
3543     KnownBits N0Known = computeKnownBits(N0);
3544 
3545     bool overflow;
3546     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3547     if (!overflow)
3548       return OFK_Never;
3549   }
3550 
3551   // mulhi + 1 never overflow
3552   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3553       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3554     return OFK_Never;
3555 
3556   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3557     KnownBits N0Known = computeKnownBits(N0);
3558 
3559     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3560       return OFK_Never;
3561   }
3562 
3563   return OFK_Sometime;
3564 }
3565 
3566 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3567   EVT OpVT = Val.getValueType();
3568   unsigned BitWidth = OpVT.getScalarSizeInBits();
3569 
3570   // Is the constant a known power of 2?
3571   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3572     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3573 
3574   // A left-shift of a constant one will have exactly one bit set because
3575   // shifting the bit off the end is undefined.
3576   if (Val.getOpcode() == ISD::SHL) {
3577     auto *C = isConstOrConstSplat(Val.getOperand(0));
3578     if (C && C->getAPIntValue() == 1)
3579       return true;
3580   }
3581 
3582   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3583   // one bit set.
3584   if (Val.getOpcode() == ISD::SRL) {
3585     auto *C = isConstOrConstSplat(Val.getOperand(0));
3586     if (C && C->getAPIntValue().isSignMask())
3587       return true;
3588   }
3589 
3590   // Are all operands of a build vector constant powers of two?
3591   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3592     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3593           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3594             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3595           return false;
3596         }))
3597       return true;
3598 
3599   // More could be done here, though the above checks are enough
3600   // to handle some common cases.
3601 
3602   // Fall back to computeKnownBits to catch other known cases.
3603   KnownBits Known = computeKnownBits(Val);
3604   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3605 }
3606 
3607 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3608   EVT VT = Op.getValueType();
3609 
3610   // TODO: Assume we don't know anything for now.
3611   if (VT.isScalableVector())
3612     return 1;
3613 
3614   APInt DemandedElts = VT.isVector()
3615                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3616                            : APInt(1, 1);
3617   return ComputeNumSignBits(Op, DemandedElts, Depth);
3618 }
3619 
3620 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3621                                           unsigned Depth) const {
3622   EVT VT = Op.getValueType();
3623   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3624   unsigned VTBits = VT.getScalarSizeInBits();
3625   unsigned NumElts = DemandedElts.getBitWidth();
3626   unsigned Tmp, Tmp2;
3627   unsigned FirstAnswer = 1;
3628 
3629   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3630     const APInt &Val = C->getAPIntValue();
3631     return Val.getNumSignBits();
3632   }
3633 
3634   if (Depth >= MaxRecursionDepth)
3635     return 1;  // Limit search depth.
3636 
3637   if (!DemandedElts || VT.isScalableVector())
3638     return 1;  // No demanded elts, better to assume we don't know anything.
3639 
3640   unsigned Opcode = Op.getOpcode();
3641   switch (Opcode) {
3642   default: break;
3643   case ISD::AssertSext:
3644     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3645     return VTBits-Tmp+1;
3646   case ISD::AssertZext:
3647     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3648     return VTBits-Tmp;
3649 
3650   case ISD::BUILD_VECTOR:
3651     Tmp = VTBits;
3652     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3653       if (!DemandedElts[i])
3654         continue;
3655 
3656       SDValue SrcOp = Op.getOperand(i);
3657       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3658 
3659       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3660       if (SrcOp.getValueSizeInBits() != VTBits) {
3661         assert(SrcOp.getValueSizeInBits() > VTBits &&
3662                "Expected BUILD_VECTOR implicit truncation");
3663         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3664         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3665       }
3666       Tmp = std::min(Tmp, Tmp2);
3667     }
3668     return Tmp;
3669 
3670   case ISD::VECTOR_SHUFFLE: {
3671     // Collect the minimum number of sign bits that are shared by every vector
3672     // element referenced by the shuffle.
3673     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3674     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3675     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3676     for (unsigned i = 0; i != NumElts; ++i) {
3677       int M = SVN->getMaskElt(i);
3678       if (!DemandedElts[i])
3679         continue;
3680       // For UNDEF elements, we don't know anything about the common state of
3681       // the shuffle result.
3682       if (M < 0)
3683         return 1;
3684       if ((unsigned)M < NumElts)
3685         DemandedLHS.setBit((unsigned)M % NumElts);
3686       else
3687         DemandedRHS.setBit((unsigned)M % NumElts);
3688     }
3689     Tmp = std::numeric_limits<unsigned>::max();
3690     if (!!DemandedLHS)
3691       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3692     if (!!DemandedRHS) {
3693       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3694       Tmp = std::min(Tmp, Tmp2);
3695     }
3696     // If we don't know anything, early out and try computeKnownBits fall-back.
3697     if (Tmp == 1)
3698       break;
3699     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3700     return Tmp;
3701   }
3702 
3703   case ISD::BITCAST: {
3704     SDValue N0 = Op.getOperand(0);
3705     EVT SrcVT = N0.getValueType();
3706     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3707 
3708     // Ignore bitcasts from unsupported types..
3709     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3710       break;
3711 
3712     // Fast handling of 'identity' bitcasts.
3713     if (VTBits == SrcBits)
3714       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3715 
3716     bool IsLE = getDataLayout().isLittleEndian();
3717 
3718     // Bitcast 'large element' scalar/vector to 'small element' vector.
3719     if ((SrcBits % VTBits) == 0) {
3720       assert(VT.isVector() && "Expected bitcast to vector");
3721 
3722       unsigned Scale = SrcBits / VTBits;
3723       APInt SrcDemandedElts(NumElts / Scale, 0);
3724       for (unsigned i = 0; i != NumElts; ++i)
3725         if (DemandedElts[i])
3726           SrcDemandedElts.setBit(i / Scale);
3727 
3728       // Fast case - sign splat can be simply split across the small elements.
3729       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3730       if (Tmp == SrcBits)
3731         return VTBits;
3732 
3733       // Slow case - determine how far the sign extends into each sub-element.
3734       Tmp2 = VTBits;
3735       for (unsigned i = 0; i != NumElts; ++i)
3736         if (DemandedElts[i]) {
3737           unsigned SubOffset = i % Scale;
3738           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3739           SubOffset = SubOffset * VTBits;
3740           if (Tmp <= SubOffset)
3741             return 1;
3742           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3743         }
3744       return Tmp2;
3745     }
3746     break;
3747   }
3748 
3749   case ISD::SIGN_EXTEND:
3750     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3751     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3752   case ISD::SIGN_EXTEND_INREG:
3753     // Max of the input and what this extends.
3754     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3755     Tmp = VTBits-Tmp+1;
3756     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3757     return std::max(Tmp, Tmp2);
3758   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3759     SDValue Src = Op.getOperand(0);
3760     EVT SrcVT = Src.getValueType();
3761     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3762     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3763     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3764   }
3765   case ISD::SRA:
3766     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767     // SRA X, C -> adds C sign bits.
3768     if (const APInt *ShAmt =
3769             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3770       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3771     return Tmp;
3772   case ISD::SHL:
3773     if (const APInt *ShAmt =
3774             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3775       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3776       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3777       if (ShAmt->ult(Tmp))
3778         return Tmp - ShAmt->getZExtValue();
3779     }
3780     break;
3781   case ISD::AND:
3782   case ISD::OR:
3783   case ISD::XOR:    // NOT is handled here.
3784     // Logical binary ops preserve the number of sign bits at the worst.
3785     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3786     if (Tmp != 1) {
3787       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3788       FirstAnswer = std::min(Tmp, Tmp2);
3789       // We computed what we know about the sign bits as our first
3790       // answer. Now proceed to the generic code that uses
3791       // computeKnownBits, and pick whichever answer is better.
3792     }
3793     break;
3794 
3795   case ISD::SELECT:
3796   case ISD::VSELECT:
3797     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3798     if (Tmp == 1) return 1;  // Early out.
3799     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3800     return std::min(Tmp, Tmp2);
3801   case ISD::SELECT_CC:
3802     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3803     if (Tmp == 1) return 1;  // Early out.
3804     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3805     return std::min(Tmp, Tmp2);
3806 
3807   case ISD::SMIN:
3808   case ISD::SMAX: {
3809     // If we have a clamp pattern, we know that the number of sign bits will be
3810     // the minimum of the clamp min/max range.
3811     bool IsMax = (Opcode == ISD::SMAX);
3812     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3813     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3814       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3815         CstHigh =
3816             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3817     if (CstLow && CstHigh) {
3818       if (!IsMax)
3819         std::swap(CstLow, CstHigh);
3820       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3821         Tmp = CstLow->getAPIntValue().getNumSignBits();
3822         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3823         return std::min(Tmp, Tmp2);
3824       }
3825     }
3826 
3827     // Fallback - just get the minimum number of sign bits of the operands.
3828     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3829     if (Tmp == 1)
3830       return 1;  // Early out.
3831     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832     return std::min(Tmp, Tmp2);
3833   }
3834   case ISD::UMIN:
3835   case ISD::UMAX:
3836     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3837     if (Tmp == 1)
3838       return 1;  // Early out.
3839     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3840     return std::min(Tmp, Tmp2);
3841   case ISD::SADDO:
3842   case ISD::UADDO:
3843   case ISD::SSUBO:
3844   case ISD::USUBO:
3845   case ISD::SMULO:
3846   case ISD::UMULO:
3847     if (Op.getResNo() != 1)
3848       break;
3849     // The boolean result conforms to getBooleanContents.  Fall through.
3850     // If setcc returns 0/-1, all bits are sign bits.
3851     // We know that we have an integer-based boolean since these operations
3852     // are only available for integer.
3853     if (TLI->getBooleanContents(VT.isVector(), false) ==
3854         TargetLowering::ZeroOrNegativeOneBooleanContent)
3855       return VTBits;
3856     break;
3857   case ISD::SETCC:
3858   case ISD::STRICT_FSETCC:
3859   case ISD::STRICT_FSETCCS: {
3860     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3861     // If setcc returns 0/-1, all bits are sign bits.
3862     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3863         TargetLowering::ZeroOrNegativeOneBooleanContent)
3864       return VTBits;
3865     break;
3866   }
3867   case ISD::ROTL:
3868   case ISD::ROTR:
3869     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3870 
3871     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3872     if (Tmp == VTBits)
3873       return VTBits;
3874 
3875     if (ConstantSDNode *C =
3876             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3877       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3878 
3879       // Handle rotate right by N like a rotate left by 32-N.
3880       if (Opcode == ISD::ROTR)
3881         RotAmt = (VTBits - RotAmt) % VTBits;
3882 
3883       // If we aren't rotating out all of the known-in sign bits, return the
3884       // number that are left.  This handles rotl(sext(x), 1) for example.
3885       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3886     }
3887     break;
3888   case ISD::ADD:
3889   case ISD::ADDC:
3890     // Add can have at most one carry bit.  Thus we know that the output
3891     // is, at worst, one more bit than the inputs.
3892     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3893     if (Tmp == 1) return 1; // Early out.
3894 
3895     // Special case decrementing a value (ADD X, -1):
3896     if (ConstantSDNode *CRHS =
3897             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3898       if (CRHS->isAllOnesValue()) {
3899         KnownBits Known =
3900             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3901 
3902         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3903         // sign bits set.
3904         if ((Known.Zero | 1).isAllOnesValue())
3905           return VTBits;
3906 
3907         // If we are subtracting one from a positive number, there is no carry
3908         // out of the result.
3909         if (Known.isNonNegative())
3910           return Tmp;
3911       }
3912 
3913     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3914     if (Tmp2 == 1) return 1; // Early out.
3915     return std::min(Tmp, Tmp2) - 1;
3916   case ISD::SUB:
3917     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3918     if (Tmp2 == 1) return 1; // Early out.
3919 
3920     // Handle NEG.
3921     if (ConstantSDNode *CLHS =
3922             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3923       if (CLHS->isNullValue()) {
3924         KnownBits Known =
3925             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3926         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3927         // sign bits set.
3928         if ((Known.Zero | 1).isAllOnesValue())
3929           return VTBits;
3930 
3931         // If the input is known to be positive (the sign bit is known clear),
3932         // the output of the NEG has the same number of sign bits as the input.
3933         if (Known.isNonNegative())
3934           return Tmp2;
3935 
3936         // Otherwise, we treat this like a SUB.
3937       }
3938 
3939     // Sub can have at most one carry bit.  Thus we know that the output
3940     // is, at worst, one more bit than the inputs.
3941     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3942     if (Tmp == 1) return 1; // Early out.
3943     return std::min(Tmp, Tmp2) - 1;
3944   case ISD::MUL: {
3945     // The output of the Mul can be at most twice the valid bits in the inputs.
3946     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3947     if (SignBitsOp0 == 1)
3948       break;
3949     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3950     if (SignBitsOp1 == 1)
3951       break;
3952     unsigned OutValidBits =
3953         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3954     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3955   }
3956   case ISD::SREM:
3957     // The sign bit is the LHS's sign bit, except when the result of the
3958     // remainder is zero. The magnitude of the result should be less than or
3959     // equal to the magnitude of the LHS. Therefore, the result should have
3960     // at least as many sign bits as the left hand side.
3961     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3962   case ISD::TRUNCATE: {
3963     // Check if the sign bits of source go down as far as the truncated value.
3964     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3965     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3966     if (NumSrcSignBits > (NumSrcBits - VTBits))
3967       return NumSrcSignBits - (NumSrcBits - VTBits);
3968     break;
3969   }
3970   case ISD::EXTRACT_ELEMENT: {
3971     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3972     const int BitWidth = Op.getValueSizeInBits();
3973     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3974 
3975     // Get reverse index (starting from 1), Op1 value indexes elements from
3976     // little end. Sign starts at big end.
3977     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3978 
3979     // If the sign portion ends in our element the subtraction gives correct
3980     // result. Otherwise it gives either negative or > bitwidth result
3981     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3982   }
3983   case ISD::INSERT_VECTOR_ELT: {
3984     // If we know the element index, split the demand between the
3985     // source vector and the inserted element, otherwise assume we need
3986     // the original demanded vector elements and the value.
3987     SDValue InVec = Op.getOperand(0);
3988     SDValue InVal = Op.getOperand(1);
3989     SDValue EltNo = Op.getOperand(2);
3990     bool DemandedVal = true;
3991     APInt DemandedVecElts = DemandedElts;
3992     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3993     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3994       unsigned EltIdx = CEltNo->getZExtValue();
3995       DemandedVal = !!DemandedElts[EltIdx];
3996       DemandedVecElts.clearBit(EltIdx);
3997     }
3998     Tmp = std::numeric_limits<unsigned>::max();
3999     if (DemandedVal) {
4000       // TODO - handle implicit truncation of inserted elements.
4001       if (InVal.getScalarValueSizeInBits() != VTBits)
4002         break;
4003       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4004       Tmp = std::min(Tmp, Tmp2);
4005     }
4006     if (!!DemandedVecElts) {
4007       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4008       Tmp = std::min(Tmp, Tmp2);
4009     }
4010     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4011     return Tmp;
4012   }
4013   case ISD::EXTRACT_VECTOR_ELT: {
4014     SDValue InVec = Op.getOperand(0);
4015     SDValue EltNo = Op.getOperand(1);
4016     EVT VecVT = InVec.getValueType();
4017     // ComputeNumSignBits not yet implemented for scalable vectors.
4018     if (VecVT.isScalableVector())
4019       break;
4020     const unsigned BitWidth = Op.getValueSizeInBits();
4021     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4022     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4023 
4024     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4025     // anything about sign bits. But if the sizes match we can derive knowledge
4026     // about sign bits from the vector operand.
4027     if (BitWidth != EltBitWidth)
4028       break;
4029 
4030     // If we know the element index, just demand that vector element, else for
4031     // an unknown element index, ignore DemandedElts and demand them all.
4032     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4033     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4034     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4035       DemandedSrcElts =
4036           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4037 
4038     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4039   }
4040   case ISD::EXTRACT_SUBVECTOR: {
4041     // Offset the demanded elts by the subvector index.
4042     SDValue Src = Op.getOperand(0);
4043     // Bail until we can represent demanded elements for scalable vectors.
4044     if (Src.getValueType().isScalableVector())
4045       break;
4046     uint64_t Idx = Op.getConstantOperandVal(1);
4047     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4048     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4049     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4050   }
4051   case ISD::CONCAT_VECTORS: {
4052     // Determine the minimum number of sign bits across all demanded
4053     // elts of the input vectors. Early out if the result is already 1.
4054     Tmp = std::numeric_limits<unsigned>::max();
4055     EVT SubVectorVT = Op.getOperand(0).getValueType();
4056     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4057     unsigned NumSubVectors = Op.getNumOperands();
4058     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4059       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4060       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4061       if (!DemandedSub)
4062         continue;
4063       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4064       Tmp = std::min(Tmp, Tmp2);
4065     }
4066     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4067     return Tmp;
4068   }
4069   case ISD::INSERT_SUBVECTOR: {
4070     // Demand any elements from the subvector and the remainder from the src its
4071     // inserted into.
4072     SDValue Src = Op.getOperand(0);
4073     SDValue Sub = Op.getOperand(1);
4074     uint64_t Idx = Op.getConstantOperandVal(2);
4075     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4076     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4077     APInt DemandedSrcElts = DemandedElts;
4078     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4079 
4080     Tmp = std::numeric_limits<unsigned>::max();
4081     if (!!DemandedSubElts) {
4082       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4083       if (Tmp == 1)
4084         return 1; // early-out
4085     }
4086     if (!!DemandedSrcElts) {
4087       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4088       Tmp = std::min(Tmp, Tmp2);
4089     }
4090     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4091     return Tmp;
4092   }
4093   }
4094 
4095   // If we are looking at the loaded value of the SDNode.
4096   if (Op.getResNo() == 0) {
4097     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4098     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4099       unsigned ExtType = LD->getExtensionType();
4100       switch (ExtType) {
4101       default: break;
4102       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4103         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4104         return VTBits - Tmp + 1;
4105       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4106         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4107         return VTBits - Tmp;
4108       case ISD::NON_EXTLOAD:
4109         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4110           // We only need to handle vectors - computeKnownBits should handle
4111           // scalar cases.
4112           Type *CstTy = Cst->getType();
4113           if (CstTy->isVectorTy() &&
4114               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4115             Tmp = VTBits;
4116             for (unsigned i = 0; i != NumElts; ++i) {
4117               if (!DemandedElts[i])
4118                 continue;
4119               if (Constant *Elt = Cst->getAggregateElement(i)) {
4120                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4121                   const APInt &Value = CInt->getValue();
4122                   Tmp = std::min(Tmp, Value.getNumSignBits());
4123                   continue;
4124                 }
4125                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4126                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4127                   Tmp = std::min(Tmp, Value.getNumSignBits());
4128                   continue;
4129                 }
4130               }
4131               // Unknown type. Conservatively assume no bits match sign bit.
4132               return 1;
4133             }
4134             return Tmp;
4135           }
4136         }
4137         break;
4138       }
4139     }
4140   }
4141 
4142   // Allow the target to implement this method for its nodes.
4143   if (Opcode >= ISD::BUILTIN_OP_END ||
4144       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4145       Opcode == ISD::INTRINSIC_W_CHAIN ||
4146       Opcode == ISD::INTRINSIC_VOID) {
4147     unsigned NumBits =
4148         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4149     if (NumBits > 1)
4150       FirstAnswer = std::max(FirstAnswer, NumBits);
4151   }
4152 
4153   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4154   // use this information.
4155   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4156 
4157   APInt Mask;
4158   if (Known.isNonNegative()) {        // sign bit is 0
4159     Mask = Known.Zero;
4160   } else if (Known.isNegative()) {  // sign bit is 1;
4161     Mask = Known.One;
4162   } else {
4163     // Nothing known.
4164     return FirstAnswer;
4165   }
4166 
4167   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4168   // the number of identical bits in the top of the input value.
4169   Mask <<= Mask.getBitWidth()-VTBits;
4170   return std::max(FirstAnswer, Mask.countLeadingOnes());
4171 }
4172 
4173 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4174   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4175       !isa<ConstantSDNode>(Op.getOperand(1)))
4176     return false;
4177 
4178   if (Op.getOpcode() == ISD::OR &&
4179       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4180     return false;
4181 
4182   return true;
4183 }
4184 
4185 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4186   // If we're told that NaNs won't happen, assume they won't.
4187   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4188     return true;
4189 
4190   if (Depth >= MaxRecursionDepth)
4191     return false; // Limit search depth.
4192 
4193   // TODO: Handle vectors.
4194   // If the value is a constant, we can obviously see if it is a NaN or not.
4195   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4196     return !C->getValueAPF().isNaN() ||
4197            (SNaN && !C->getValueAPF().isSignaling());
4198   }
4199 
4200   unsigned Opcode = Op.getOpcode();
4201   switch (Opcode) {
4202   case ISD::FADD:
4203   case ISD::FSUB:
4204   case ISD::FMUL:
4205   case ISD::FDIV:
4206   case ISD::FREM:
4207   case ISD::FSIN:
4208   case ISD::FCOS: {
4209     if (SNaN)
4210       return true;
4211     // TODO: Need isKnownNeverInfinity
4212     return false;
4213   }
4214   case ISD::FCANONICALIZE:
4215   case ISD::FEXP:
4216   case ISD::FEXP2:
4217   case ISD::FTRUNC:
4218   case ISD::FFLOOR:
4219   case ISD::FCEIL:
4220   case ISD::FROUND:
4221   case ISD::FROUNDEVEN:
4222   case ISD::FRINT:
4223   case ISD::FNEARBYINT: {
4224     if (SNaN)
4225       return true;
4226     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4227   }
4228   case ISD::FABS:
4229   case ISD::FNEG:
4230   case ISD::FCOPYSIGN: {
4231     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4232   }
4233   case ISD::SELECT:
4234     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4235            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4236   case ISD::FP_EXTEND:
4237   case ISD::FP_ROUND: {
4238     if (SNaN)
4239       return true;
4240     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4241   }
4242   case ISD::SINT_TO_FP:
4243   case ISD::UINT_TO_FP:
4244     return true;
4245   case ISD::FMA:
4246   case ISD::FMAD: {
4247     if (SNaN)
4248       return true;
4249     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4250            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4251            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4252   }
4253   case ISD::FSQRT: // Need is known positive
4254   case ISD::FLOG:
4255   case ISD::FLOG2:
4256   case ISD::FLOG10:
4257   case ISD::FPOWI:
4258   case ISD::FPOW: {
4259     if (SNaN)
4260       return true;
4261     // TODO: Refine on operand
4262     return false;
4263   }
4264   case ISD::FMINNUM:
4265   case ISD::FMAXNUM: {
4266     // Only one needs to be known not-nan, since it will be returned if the
4267     // other ends up being one.
4268     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4269            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4270   }
4271   case ISD::FMINNUM_IEEE:
4272   case ISD::FMAXNUM_IEEE: {
4273     if (SNaN)
4274       return true;
4275     // This can return a NaN if either operand is an sNaN, or if both operands
4276     // are NaN.
4277     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4278             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4279            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4280             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4281   }
4282   case ISD::FMINIMUM:
4283   case ISD::FMAXIMUM: {
4284     // TODO: Does this quiet or return the origina NaN as-is?
4285     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4286            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4287   }
4288   case ISD::EXTRACT_VECTOR_ELT: {
4289     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4290   }
4291   default:
4292     if (Opcode >= ISD::BUILTIN_OP_END ||
4293         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4294         Opcode == ISD::INTRINSIC_W_CHAIN ||
4295         Opcode == ISD::INTRINSIC_VOID) {
4296       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4297     }
4298 
4299     return false;
4300   }
4301 }
4302 
4303 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4304   assert(Op.getValueType().isFloatingPoint() &&
4305          "Floating point type expected");
4306 
4307   // If the value is a constant, we can obviously see if it is a zero or not.
4308   // TODO: Add BuildVector support.
4309   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4310     return !C->isZero();
4311   return false;
4312 }
4313 
4314 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4315   assert(!Op.getValueType().isFloatingPoint() &&
4316          "Floating point types unsupported - use isKnownNeverZeroFloat");
4317 
4318   // If the value is a constant, we can obviously see if it is a zero or not.
4319   if (ISD::matchUnaryPredicate(
4320           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4321     return true;
4322 
4323   // TODO: Recognize more cases here.
4324   switch (Op.getOpcode()) {
4325   default: break;
4326   case ISD::OR:
4327     if (isKnownNeverZero(Op.getOperand(1)) ||
4328         isKnownNeverZero(Op.getOperand(0)))
4329       return true;
4330     break;
4331   }
4332 
4333   return false;
4334 }
4335 
4336 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4337   // Check the obvious case.
4338   if (A == B) return true;
4339 
4340   // For for negative and positive zero.
4341   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4342     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4343       if (CA->isZero() && CB->isZero()) return true;
4344 
4345   // Otherwise they may not be equal.
4346   return false;
4347 }
4348 
4349 // FIXME: unify with llvm::haveNoCommonBitsSet.
4350 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4351 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4352   assert(A.getValueType() == B.getValueType() &&
4353          "Values must have the same type");
4354   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4355                                         computeKnownBits(B));
4356 }
4357 
4358 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4359                                SelectionDAG &DAG) {
4360   if (cast<ConstantSDNode>(Step)->isNullValue())
4361     return DAG.getConstant(0, DL, VT);
4362 
4363   return SDValue();
4364 }
4365 
4366 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4367                                 ArrayRef<SDValue> Ops,
4368                                 SelectionDAG &DAG) {
4369   int NumOps = Ops.size();
4370   assert(NumOps != 0 && "Can't build an empty vector!");
4371   assert(!VT.isScalableVector() &&
4372          "BUILD_VECTOR cannot be used with scalable types");
4373   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4374          "Incorrect element count in BUILD_VECTOR!");
4375 
4376   // BUILD_VECTOR of UNDEFs is UNDEF.
4377   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4378     return DAG.getUNDEF(VT);
4379 
4380   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4381   SDValue IdentitySrc;
4382   bool IsIdentity = true;
4383   for (int i = 0; i != NumOps; ++i) {
4384     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4385         Ops[i].getOperand(0).getValueType() != VT ||
4386         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4387         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4388         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4389       IsIdentity = false;
4390       break;
4391     }
4392     IdentitySrc = Ops[i].getOperand(0);
4393   }
4394   if (IsIdentity)
4395     return IdentitySrc;
4396 
4397   return SDValue();
4398 }
4399 
4400 /// Try to simplify vector concatenation to an input value, undef, or build
4401 /// vector.
4402 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4403                                   ArrayRef<SDValue> Ops,
4404                                   SelectionDAG &DAG) {
4405   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4406   assert(llvm::all_of(Ops,
4407                       [Ops](SDValue Op) {
4408                         return Ops[0].getValueType() == Op.getValueType();
4409                       }) &&
4410          "Concatenation of vectors with inconsistent value types!");
4411   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4412              VT.getVectorElementCount() &&
4413          "Incorrect element count in vector concatenation!");
4414 
4415   if (Ops.size() == 1)
4416     return Ops[0];
4417 
4418   // Concat of UNDEFs is UNDEF.
4419   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4420     return DAG.getUNDEF(VT);
4421 
4422   // Scan the operands and look for extract operations from a single source
4423   // that correspond to insertion at the same location via this concatenation:
4424   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4425   SDValue IdentitySrc;
4426   bool IsIdentity = true;
4427   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4428     SDValue Op = Ops[i];
4429     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4430     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4431         Op.getOperand(0).getValueType() != VT ||
4432         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4433         Op.getConstantOperandVal(1) != IdentityIndex) {
4434       IsIdentity = false;
4435       break;
4436     }
4437     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4438            "Unexpected identity source vector for concat of extracts");
4439     IdentitySrc = Op.getOperand(0);
4440   }
4441   if (IsIdentity) {
4442     assert(IdentitySrc && "Failed to set source vector of extracts");
4443     return IdentitySrc;
4444   }
4445 
4446   // The code below this point is only designed to work for fixed width
4447   // vectors, so we bail out for now.
4448   if (VT.isScalableVector())
4449     return SDValue();
4450 
4451   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4452   // simplified to one big BUILD_VECTOR.
4453   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4454   EVT SVT = VT.getScalarType();
4455   SmallVector<SDValue, 16> Elts;
4456   for (SDValue Op : Ops) {
4457     EVT OpVT = Op.getValueType();
4458     if (Op.isUndef())
4459       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4460     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4461       Elts.append(Op->op_begin(), Op->op_end());
4462     else
4463       return SDValue();
4464   }
4465 
4466   // BUILD_VECTOR requires all inputs to be of the same type, find the
4467   // maximum type and extend them all.
4468   for (SDValue Op : Elts)
4469     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4470 
4471   if (SVT.bitsGT(VT.getScalarType())) {
4472     for (SDValue &Op : Elts) {
4473       if (Op.isUndef())
4474         Op = DAG.getUNDEF(SVT);
4475       else
4476         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4477                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4478                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4479     }
4480   }
4481 
4482   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4483   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4484   return V;
4485 }
4486 
4487 /// Gets or creates the specified node.
4488 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4489   FoldingSetNodeID ID;
4490   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4491   void *IP = nullptr;
4492   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4493     return SDValue(E, 0);
4494 
4495   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4496                               getVTList(VT));
4497   CSEMap.InsertNode(N, IP);
4498 
4499   InsertNode(N);
4500   SDValue V = SDValue(N, 0);
4501   NewSDValueDbgMsg(V, "Creating new node: ", this);
4502   return V;
4503 }
4504 
4505 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4506                               SDValue Operand) {
4507   SDNodeFlags Flags;
4508   if (Inserter)
4509     Flags = Inserter->getFlags();
4510   return getNode(Opcode, DL, VT, Operand, Flags);
4511 }
4512 
4513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4514                               SDValue Operand, const SDNodeFlags Flags) {
4515   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4516          "Operand is DELETED_NODE!");
4517   // Constant fold unary operations with an integer constant operand. Even
4518   // opaque constant will be folded, because the folding of unary operations
4519   // doesn't create new constants with different values. Nevertheless, the
4520   // opaque flag is preserved during folding to prevent future folding with
4521   // other constants.
4522   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4523     const APInt &Val = C->getAPIntValue();
4524     switch (Opcode) {
4525     default: break;
4526     case ISD::SIGN_EXTEND:
4527       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4528                          C->isTargetOpcode(), C->isOpaque());
4529     case ISD::TRUNCATE:
4530       if (C->isOpaque())
4531         break;
4532       LLVM_FALLTHROUGH;
4533     case ISD::ANY_EXTEND:
4534     case ISD::ZERO_EXTEND:
4535       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4536                          C->isTargetOpcode(), C->isOpaque());
4537     case ISD::UINT_TO_FP:
4538     case ISD::SINT_TO_FP: {
4539       APFloat apf(EVTToAPFloatSemantics(VT),
4540                   APInt::getNullValue(VT.getSizeInBits()));
4541       (void)apf.convertFromAPInt(Val,
4542                                  Opcode==ISD::SINT_TO_FP,
4543                                  APFloat::rmNearestTiesToEven);
4544       return getConstantFP(apf, DL, VT);
4545     }
4546     case ISD::BITCAST:
4547       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4548         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4549       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4550         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4551       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4552         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4553       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4554         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4555       break;
4556     case ISD::ABS:
4557       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4558                          C->isOpaque());
4559     case ISD::BITREVERSE:
4560       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4561                          C->isOpaque());
4562     case ISD::BSWAP:
4563       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4564                          C->isOpaque());
4565     case ISD::CTPOP:
4566       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4567                          C->isOpaque());
4568     case ISD::CTLZ:
4569     case ISD::CTLZ_ZERO_UNDEF:
4570       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4571                          C->isOpaque());
4572     case ISD::CTTZ:
4573     case ISD::CTTZ_ZERO_UNDEF:
4574       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4575                          C->isOpaque());
4576     case ISD::FP16_TO_FP: {
4577       bool Ignored;
4578       APFloat FPV(APFloat::IEEEhalf(),
4579                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4580 
4581       // This can return overflow, underflow, or inexact; we don't care.
4582       // FIXME need to be more flexible about rounding mode.
4583       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4584                         APFloat::rmNearestTiesToEven, &Ignored);
4585       return getConstantFP(FPV, DL, VT);
4586     }
4587     case ISD::STEP_VECTOR: {
4588       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4589         return V;
4590       break;
4591     }
4592     }
4593   }
4594 
4595   // Constant fold unary operations with a floating point constant operand.
4596   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4597     APFloat V = C->getValueAPF();    // make copy
4598     switch (Opcode) {
4599     case ISD::FNEG:
4600       V.changeSign();
4601       return getConstantFP(V, DL, VT);
4602     case ISD::FABS:
4603       V.clearSign();
4604       return getConstantFP(V, DL, VT);
4605     case ISD::FCEIL: {
4606       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4607       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4608         return getConstantFP(V, DL, VT);
4609       break;
4610     }
4611     case ISD::FTRUNC: {
4612       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4613       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4614         return getConstantFP(V, DL, VT);
4615       break;
4616     }
4617     case ISD::FFLOOR: {
4618       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4619       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4620         return getConstantFP(V, DL, VT);
4621       break;
4622     }
4623     case ISD::FP_EXTEND: {
4624       bool ignored;
4625       // This can return overflow, underflow, or inexact; we don't care.
4626       // FIXME need to be more flexible about rounding mode.
4627       (void)V.convert(EVTToAPFloatSemantics(VT),
4628                       APFloat::rmNearestTiesToEven, &ignored);
4629       return getConstantFP(V, DL, VT);
4630     }
4631     case ISD::FP_TO_SINT:
4632     case ISD::FP_TO_UINT: {
4633       bool ignored;
4634       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4635       // FIXME need to be more flexible about rounding mode.
4636       APFloat::opStatus s =
4637           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4638       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4639         break;
4640       return getConstant(IntVal, DL, VT);
4641     }
4642     case ISD::BITCAST:
4643       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4644         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4645       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4646         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4647       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4648         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4649       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4650         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4651       break;
4652     case ISD::FP_TO_FP16: {
4653       bool Ignored;
4654       // This can return overflow, underflow, or inexact; we don't care.
4655       // FIXME need to be more flexible about rounding mode.
4656       (void)V.convert(APFloat::IEEEhalf(),
4657                       APFloat::rmNearestTiesToEven, &Ignored);
4658       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4659     }
4660     }
4661   }
4662 
4663   // Constant fold unary operations with a vector integer or float operand.
4664   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4665     if (BV->isConstant()) {
4666       switch (Opcode) {
4667       default:
4668         // FIXME: Entirely reasonable to perform folding of other unary
4669         // operations here as the need arises.
4670         break;
4671       case ISD::FNEG:
4672       case ISD::FABS:
4673       case ISD::FCEIL:
4674       case ISD::FTRUNC:
4675       case ISD::FFLOOR:
4676       case ISD::FP_EXTEND:
4677       case ISD::FP_TO_SINT:
4678       case ISD::FP_TO_UINT:
4679       case ISD::TRUNCATE:
4680       case ISD::ANY_EXTEND:
4681       case ISD::ZERO_EXTEND:
4682       case ISD::SIGN_EXTEND:
4683       case ISD::UINT_TO_FP:
4684       case ISD::SINT_TO_FP:
4685       case ISD::ABS:
4686       case ISD::BITREVERSE:
4687       case ISD::BSWAP:
4688       case ISD::CTLZ:
4689       case ISD::CTLZ_ZERO_UNDEF:
4690       case ISD::CTTZ:
4691       case ISD::CTTZ_ZERO_UNDEF:
4692       case ISD::CTPOP: {
4693         SDValue Ops = { Operand };
4694         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4695           return Fold;
4696       }
4697       }
4698     }
4699   }
4700 
4701   unsigned OpOpcode = Operand.getNode()->getOpcode();
4702   switch (Opcode) {
4703   case ISD::STEP_VECTOR:
4704     assert(VT.isScalableVector() &&
4705            "STEP_VECTOR can only be used with scalable types");
4706     assert(VT.getScalarSizeInBits() >= 8 &&
4707            "STEP_VECTOR can only be used with vectors of integers that are at "
4708            "least 8 bits wide");
4709     assert(Operand.getValueType().bitsGE(VT.getScalarType()) &&
4710            "Operand type should be at least as large as the element type");
4711     assert(isa<ConstantSDNode>(Operand) &&
4712            cast<ConstantSDNode>(Operand)->getAPIntValue().isNonNegative() &&
4713            "Expected positive integer constant for STEP_VECTOR");
4714     break;
4715   case ISD::FREEZE:
4716     assert(VT == Operand.getValueType() && "Unexpected VT!");
4717     break;
4718   case ISD::TokenFactor:
4719   case ISD::MERGE_VALUES:
4720   case ISD::CONCAT_VECTORS:
4721     return Operand;         // Factor, merge or concat of one node?  No need.
4722   case ISD::BUILD_VECTOR: {
4723     // Attempt to simplify BUILD_VECTOR.
4724     SDValue Ops[] = {Operand};
4725     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4726       return V;
4727     break;
4728   }
4729   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4730   case ISD::FP_EXTEND:
4731     assert(VT.isFloatingPoint() &&
4732            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4733     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4734     assert((!VT.isVector() ||
4735             VT.getVectorElementCount() ==
4736             Operand.getValueType().getVectorElementCount()) &&
4737            "Vector element count mismatch!");
4738     assert(Operand.getValueType().bitsLT(VT) &&
4739            "Invalid fpext node, dst < src!");
4740     if (Operand.isUndef())
4741       return getUNDEF(VT);
4742     break;
4743   case ISD::FP_TO_SINT:
4744   case ISD::FP_TO_UINT:
4745     if (Operand.isUndef())
4746       return getUNDEF(VT);
4747     break;
4748   case ISD::SINT_TO_FP:
4749   case ISD::UINT_TO_FP:
4750     // [us]itofp(undef) = 0, because the result value is bounded.
4751     if (Operand.isUndef())
4752       return getConstantFP(0.0, DL, VT);
4753     break;
4754   case ISD::SIGN_EXTEND:
4755     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4756            "Invalid SIGN_EXTEND!");
4757     assert(VT.isVector() == Operand.getValueType().isVector() &&
4758            "SIGN_EXTEND result type type should be vector iff the operand "
4759            "type is vector!");
4760     if (Operand.getValueType() == VT) return Operand;   // noop extension
4761     assert((!VT.isVector() ||
4762             VT.getVectorElementCount() ==
4763                 Operand.getValueType().getVectorElementCount()) &&
4764            "Vector element count mismatch!");
4765     assert(Operand.getValueType().bitsLT(VT) &&
4766            "Invalid sext node, dst < src!");
4767     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4768       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4769     else if (OpOpcode == ISD::UNDEF)
4770       // sext(undef) = 0, because the top bits will all be the same.
4771       return getConstant(0, DL, VT);
4772     break;
4773   case ISD::ZERO_EXTEND:
4774     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4775            "Invalid ZERO_EXTEND!");
4776     assert(VT.isVector() == Operand.getValueType().isVector() &&
4777            "ZERO_EXTEND result type type should be vector iff the operand "
4778            "type is vector!");
4779     if (Operand.getValueType() == VT) return Operand;   // noop extension
4780     assert((!VT.isVector() ||
4781             VT.getVectorElementCount() ==
4782                 Operand.getValueType().getVectorElementCount()) &&
4783            "Vector element count mismatch!");
4784     assert(Operand.getValueType().bitsLT(VT) &&
4785            "Invalid zext node, dst < src!");
4786     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4787       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4788     else if (OpOpcode == ISD::UNDEF)
4789       // zext(undef) = 0, because the top bits will be zero.
4790       return getConstant(0, DL, VT);
4791     break;
4792   case ISD::ANY_EXTEND:
4793     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4794            "Invalid ANY_EXTEND!");
4795     assert(VT.isVector() == Operand.getValueType().isVector() &&
4796            "ANY_EXTEND result type type should be vector iff the operand "
4797            "type is vector!");
4798     if (Operand.getValueType() == VT) return Operand;   // noop extension
4799     assert((!VT.isVector() ||
4800             VT.getVectorElementCount() ==
4801                 Operand.getValueType().getVectorElementCount()) &&
4802            "Vector element count mismatch!");
4803     assert(Operand.getValueType().bitsLT(VT) &&
4804            "Invalid anyext node, dst < src!");
4805 
4806     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4807         OpOpcode == ISD::ANY_EXTEND)
4808       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4809       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4810     else if (OpOpcode == ISD::UNDEF)
4811       return getUNDEF(VT);
4812 
4813     // (ext (trunc x)) -> x
4814     if (OpOpcode == ISD::TRUNCATE) {
4815       SDValue OpOp = Operand.getOperand(0);
4816       if (OpOp.getValueType() == VT) {
4817         transferDbgValues(Operand, OpOp);
4818         return OpOp;
4819       }
4820     }
4821     break;
4822   case ISD::TRUNCATE:
4823     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4824            "Invalid TRUNCATE!");
4825     assert(VT.isVector() == Operand.getValueType().isVector() &&
4826            "TRUNCATE result type type should be vector iff the operand "
4827            "type is vector!");
4828     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4829     assert((!VT.isVector() ||
4830             VT.getVectorElementCount() ==
4831                 Operand.getValueType().getVectorElementCount()) &&
4832            "Vector element count mismatch!");
4833     assert(Operand.getValueType().bitsGT(VT) &&
4834            "Invalid truncate node, src < dst!");
4835     if (OpOpcode == ISD::TRUNCATE)
4836       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4837     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4838         OpOpcode == ISD::ANY_EXTEND) {
4839       // If the source is smaller than the dest, we still need an extend.
4840       if (Operand.getOperand(0).getValueType().getScalarType()
4841             .bitsLT(VT.getScalarType()))
4842         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4843       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4844         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4845       return Operand.getOperand(0);
4846     }
4847     if (OpOpcode == ISD::UNDEF)
4848       return getUNDEF(VT);
4849     break;
4850   case ISD::ANY_EXTEND_VECTOR_INREG:
4851   case ISD::ZERO_EXTEND_VECTOR_INREG:
4852   case ISD::SIGN_EXTEND_VECTOR_INREG:
4853     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4854     assert(Operand.getValueType().bitsLE(VT) &&
4855            "The input must be the same size or smaller than the result.");
4856     assert(VT.getVectorMinNumElements() <
4857                Operand.getValueType().getVectorMinNumElements() &&
4858            "The destination vector type must have fewer lanes than the input.");
4859     break;
4860   case ISD::ABS:
4861     assert(VT.isInteger() && VT == Operand.getValueType() &&
4862            "Invalid ABS!");
4863     if (OpOpcode == ISD::UNDEF)
4864       return getUNDEF(VT);
4865     break;
4866   case ISD::BSWAP:
4867     assert(VT.isInteger() && VT == Operand.getValueType() &&
4868            "Invalid BSWAP!");
4869     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4870            "BSWAP types must be a multiple of 16 bits!");
4871     if (OpOpcode == ISD::UNDEF)
4872       return getUNDEF(VT);
4873     break;
4874   case ISD::BITREVERSE:
4875     assert(VT.isInteger() && VT == Operand.getValueType() &&
4876            "Invalid BITREVERSE!");
4877     if (OpOpcode == ISD::UNDEF)
4878       return getUNDEF(VT);
4879     break;
4880   case ISD::BITCAST:
4881     // Basic sanity checking.
4882     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4883            "Cannot BITCAST between types of different sizes!");
4884     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4885     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4886       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4887     if (OpOpcode == ISD::UNDEF)
4888       return getUNDEF(VT);
4889     break;
4890   case ISD::SCALAR_TO_VECTOR:
4891     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4892            (VT.getVectorElementType() == Operand.getValueType() ||
4893             (VT.getVectorElementType().isInteger() &&
4894              Operand.getValueType().isInteger() &&
4895              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4896            "Illegal SCALAR_TO_VECTOR node!");
4897     if (OpOpcode == ISD::UNDEF)
4898       return getUNDEF(VT);
4899     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4900     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4901         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4902         Operand.getConstantOperandVal(1) == 0 &&
4903         Operand.getOperand(0).getValueType() == VT)
4904       return Operand.getOperand(0);
4905     break;
4906   case ISD::FNEG:
4907     // Negation of an unknown bag of bits is still completely undefined.
4908     if (OpOpcode == ISD::UNDEF)
4909       return getUNDEF(VT);
4910 
4911     if (OpOpcode == ISD::FNEG)  // --X -> X
4912       return Operand.getOperand(0);
4913     break;
4914   case ISD::FABS:
4915     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4916       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4917     break;
4918   case ISD::VSCALE:
4919     assert(VT == Operand.getValueType() && "Unexpected VT!");
4920     break;
4921   case ISD::CTPOP:
4922     if (Operand.getValueType().getScalarType() == MVT::i1)
4923       return Operand;
4924     break;
4925   case ISD::CTLZ:
4926   case ISD::CTTZ:
4927     if (Operand.getValueType().getScalarType() == MVT::i1)
4928       return getNOT(DL, Operand, Operand.getValueType());
4929     break;
4930   case ISD::VECREDUCE_SMIN:
4931   case ISD::VECREDUCE_UMAX:
4932     if (Operand.getValueType().getScalarType() == MVT::i1)
4933       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4934     break;
4935   case ISD::VECREDUCE_SMAX:
4936   case ISD::VECREDUCE_UMIN:
4937     if (Operand.getValueType().getScalarType() == MVT::i1)
4938       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4939     break;
4940   }
4941 
4942   SDNode *N;
4943   SDVTList VTs = getVTList(VT);
4944   SDValue Ops[] = {Operand};
4945   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4946     FoldingSetNodeID ID;
4947     AddNodeIDNode(ID, Opcode, VTs, Ops);
4948     void *IP = nullptr;
4949     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4950       E->intersectFlagsWith(Flags);
4951       return SDValue(E, 0);
4952     }
4953 
4954     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4955     N->setFlags(Flags);
4956     createOperands(N, Ops);
4957     CSEMap.InsertNode(N, IP);
4958   } else {
4959     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4960     createOperands(N, Ops);
4961   }
4962 
4963   InsertNode(N);
4964   SDValue V = SDValue(N, 0);
4965   NewSDValueDbgMsg(V, "Creating new node: ", this);
4966   return V;
4967 }
4968 
4969 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4970                                        const APInt &C2) {
4971   switch (Opcode) {
4972   case ISD::ADD:  return C1 + C2;
4973   case ISD::SUB:  return C1 - C2;
4974   case ISD::MUL:  return C1 * C2;
4975   case ISD::AND:  return C1 & C2;
4976   case ISD::OR:   return C1 | C2;
4977   case ISD::XOR:  return C1 ^ C2;
4978   case ISD::SHL:  return C1 << C2;
4979   case ISD::SRL:  return C1.lshr(C2);
4980   case ISD::SRA:  return C1.ashr(C2);
4981   case ISD::ROTL: return C1.rotl(C2);
4982   case ISD::ROTR: return C1.rotr(C2);
4983   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4984   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4985   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4986   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4987   case ISD::SADDSAT: return C1.sadd_sat(C2);
4988   case ISD::UADDSAT: return C1.uadd_sat(C2);
4989   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4990   case ISD::USUBSAT: return C1.usub_sat(C2);
4991   case ISD::UDIV:
4992     if (!C2.getBoolValue())
4993       break;
4994     return C1.udiv(C2);
4995   case ISD::UREM:
4996     if (!C2.getBoolValue())
4997       break;
4998     return C1.urem(C2);
4999   case ISD::SDIV:
5000     if (!C2.getBoolValue())
5001       break;
5002     return C1.sdiv(C2);
5003   case ISD::SREM:
5004     if (!C2.getBoolValue())
5005       break;
5006     return C1.srem(C2);
5007   }
5008   return llvm::None;
5009 }
5010 
5011 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5012                                        const GlobalAddressSDNode *GA,
5013                                        const SDNode *N2) {
5014   if (GA->getOpcode() != ISD::GlobalAddress)
5015     return SDValue();
5016   if (!TLI->isOffsetFoldingLegal(GA))
5017     return SDValue();
5018   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5019   if (!C2)
5020     return SDValue();
5021   int64_t Offset = C2->getSExtValue();
5022   switch (Opcode) {
5023   case ISD::ADD: break;
5024   case ISD::SUB: Offset = -uint64_t(Offset); break;
5025   default: return SDValue();
5026   }
5027   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5028                           GA->getOffset() + uint64_t(Offset));
5029 }
5030 
5031 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5032   switch (Opcode) {
5033   case ISD::SDIV:
5034   case ISD::UDIV:
5035   case ISD::SREM:
5036   case ISD::UREM: {
5037     // If a divisor is zero/undef or any element of a divisor vector is
5038     // zero/undef, the whole op is undef.
5039     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5040     SDValue Divisor = Ops[1];
5041     if (Divisor.isUndef() || isNullConstant(Divisor))
5042       return true;
5043 
5044     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5045            llvm::any_of(Divisor->op_values(),
5046                         [](SDValue V) { return V.isUndef() ||
5047                                         isNullConstant(V); });
5048     // TODO: Handle signed overflow.
5049   }
5050   // TODO: Handle oversized shifts.
5051   default:
5052     return false;
5053   }
5054 }
5055 
5056 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5057                                              EVT VT, ArrayRef<SDValue> Ops) {
5058   // If the opcode is a target-specific ISD node, there's nothing we can
5059   // do here and the operand rules may not line up with the below, so
5060   // bail early.
5061   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5062   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5063   // foldCONCAT_VECTORS in getNode before this is called.
5064   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5065     return SDValue();
5066 
5067   // For now, the array Ops should only contain two values.
5068   // This enforcement will be removed once this function is merged with
5069   // FoldConstantVectorArithmetic
5070   if (Ops.size() != 2)
5071     return SDValue();
5072 
5073   if (isUndef(Opcode, Ops))
5074     return getUNDEF(VT);
5075 
5076   SDNode *N1 = Ops[0].getNode();
5077   SDNode *N2 = Ops[1].getNode();
5078 
5079   // Handle the case of two scalars.
5080   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5081     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5082       if (C1->isOpaque() || C2->isOpaque())
5083         return SDValue();
5084 
5085       Optional<APInt> FoldAttempt =
5086           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5087       if (!FoldAttempt)
5088         return SDValue();
5089 
5090       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5091       assert((!Folded || !VT.isVector()) &&
5092              "Can't fold vectors ops with scalar operands");
5093       return Folded;
5094     }
5095   }
5096 
5097   // fold (add Sym, c) -> Sym+c
5098   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5099     return FoldSymbolOffset(Opcode, VT, GA, N2);
5100   if (TLI->isCommutativeBinOp(Opcode))
5101     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5102       return FoldSymbolOffset(Opcode, VT, GA, N1);
5103 
5104   // For fixed width vectors, extract each constant element and fold them
5105   // individually. Either input may be an undef value.
5106   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5107                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5108   if (!IsBVOrSV1 && !N1->isUndef())
5109     return SDValue();
5110   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5111                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5112   if (!IsBVOrSV2 && !N2->isUndef())
5113     return SDValue();
5114   // If both operands are undef, that's handled the same way as scalars.
5115   if (!IsBVOrSV1 && !IsBVOrSV2)
5116     return SDValue();
5117 
5118   EVT SVT = VT.getScalarType();
5119   EVT LegalSVT = SVT;
5120   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5121     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5122     if (LegalSVT.bitsLT(SVT))
5123       return SDValue();
5124   }
5125 
5126   SmallVector<SDValue, 4> Outputs;
5127   unsigned NumOps = 0;
5128   if (IsBVOrSV1)
5129     NumOps = std::max(NumOps, N1->getNumOperands());
5130   if (IsBVOrSV2)
5131     NumOps = std::max(NumOps, N2->getNumOperands());
5132   assert(NumOps != 0 && "Expected non-zero operands");
5133   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5134   // one iteration for that.
5135   assert((!VT.isScalableVector() || NumOps == 1) &&
5136          "Scalar vector should only have one scalar");
5137 
5138   for (unsigned I = 0; I != NumOps; ++I) {
5139     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5140     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5141     SDValue V1;
5142     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5143       V1 = N1->getOperand(I);
5144     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5145       V1 = N1->getOperand(0);
5146     else
5147       V1 = getUNDEF(SVT);
5148 
5149     SDValue V2;
5150     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5151       V2 = N2->getOperand(I);
5152     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5153       V2 = N2->getOperand(0);
5154     else
5155       V2 = getUNDEF(SVT);
5156 
5157     if (SVT.isInteger()) {
5158       if (V1.getValueType().bitsGT(SVT))
5159         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5160       if (V2.getValueType().bitsGT(SVT))
5161         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5162     }
5163 
5164     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5165       return SDValue();
5166 
5167     // Fold one vector element.
5168     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5169     if (LegalSVT != SVT)
5170       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5171 
5172     // Scalar folding only succeeded if the result is a constant or UNDEF.
5173     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5174         ScalarResult.getOpcode() != ISD::ConstantFP)
5175       return SDValue();
5176     Outputs.push_back(ScalarResult);
5177   }
5178 
5179   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5180       N2->getOpcode() == ISD::BUILD_VECTOR) {
5181     assert(VT.getVectorNumElements() == Outputs.size() &&
5182            "Vector size mismatch!");
5183 
5184     // Build a big vector out of the scalar elements we generated.
5185     return getBuildVector(VT, SDLoc(), Outputs);
5186   }
5187 
5188   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5189           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5190          "One operand should be a splat vector");
5191 
5192   assert(Outputs.size() == 1 && "Vector size mismatch!");
5193   return getSplatVector(VT, SDLoc(), Outputs[0]);
5194 }
5195 
5196 // TODO: Merge with FoldConstantArithmetic
5197 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5198                                                    const SDLoc &DL, EVT VT,
5199                                                    ArrayRef<SDValue> Ops,
5200                                                    const SDNodeFlags Flags) {
5201   // If the opcode is a target-specific ISD node, there's nothing we can
5202   // do here and the operand rules may not line up with the below, so
5203   // bail early.
5204   if (Opcode >= ISD::BUILTIN_OP_END)
5205     return SDValue();
5206 
5207   if (isUndef(Opcode, Ops))
5208     return getUNDEF(VT);
5209 
5210   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5211   if (!VT.isVector())
5212     return SDValue();
5213 
5214   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5215   // vector width, however we should be able to do constant folds involving
5216   // splat vector nodes too.
5217   if (VT.isScalableVector())
5218     return SDValue();
5219 
5220   // From this point onwards all vectors are assumed to be fixed width.
5221   unsigned NumElts = VT.getVectorNumElements();
5222 
5223   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5224     return !Op.getValueType().isVector() ||
5225            Op.getValueType().getVectorNumElements() == NumElts;
5226   };
5227 
5228   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5229     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5230     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5231            (BV && BV->isConstant());
5232   };
5233 
5234   // All operands must be vector types with the same number of elements as
5235   // the result type and must be either UNDEF or a build vector of constant
5236   // or UNDEF scalars.
5237   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5238       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5239     return SDValue();
5240 
5241   // If we are comparing vectors, then the result needs to be a i1 boolean
5242   // that is then sign-extended back to the legal result type.
5243   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5244 
5245   // Find legal integer scalar type for constant promotion and
5246   // ensure that its scalar size is at least as large as source.
5247   EVT LegalSVT = VT.getScalarType();
5248   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5249     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5250     if (LegalSVT.bitsLT(VT.getScalarType()))
5251       return SDValue();
5252   }
5253 
5254   // Constant fold each scalar lane separately.
5255   SmallVector<SDValue, 4> ScalarResults;
5256   for (unsigned i = 0; i != NumElts; i++) {
5257     SmallVector<SDValue, 4> ScalarOps;
5258     for (SDValue Op : Ops) {
5259       EVT InSVT = Op.getValueType().getScalarType();
5260       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5261       if (!InBV) {
5262         // We've checked that this is UNDEF or a constant of some kind.
5263         if (Op.isUndef())
5264           ScalarOps.push_back(getUNDEF(InSVT));
5265         else
5266           ScalarOps.push_back(Op);
5267         continue;
5268       }
5269 
5270       SDValue ScalarOp = InBV->getOperand(i);
5271       EVT ScalarVT = ScalarOp.getValueType();
5272 
5273       // Build vector (integer) scalar operands may need implicit
5274       // truncation - do this before constant folding.
5275       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5276         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5277 
5278       ScalarOps.push_back(ScalarOp);
5279     }
5280 
5281     // Constant fold the scalar operands.
5282     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5283 
5284     // Legalize the (integer) scalar constant if necessary.
5285     if (LegalSVT != SVT)
5286       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5287 
5288     // Scalar folding only succeeded if the result is a constant or UNDEF.
5289     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5290         ScalarResult.getOpcode() != ISD::ConstantFP)
5291       return SDValue();
5292     ScalarResults.push_back(ScalarResult);
5293   }
5294 
5295   SDValue V = getBuildVector(VT, DL, ScalarResults);
5296   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5297   return V;
5298 }
5299 
5300 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5301                                          EVT VT, SDValue N1, SDValue N2) {
5302   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5303   //       should. That will require dealing with a potentially non-default
5304   //       rounding mode, checking the "opStatus" return value from the APFloat
5305   //       math calculations, and possibly other variations.
5306   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5307   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5308   if (N1CFP && N2CFP) {
5309     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5310     switch (Opcode) {
5311     case ISD::FADD:
5312       C1.add(C2, APFloat::rmNearestTiesToEven);
5313       return getConstantFP(C1, DL, VT);
5314     case ISD::FSUB:
5315       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5316       return getConstantFP(C1, DL, VT);
5317     case ISD::FMUL:
5318       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5319       return getConstantFP(C1, DL, VT);
5320     case ISD::FDIV:
5321       C1.divide(C2, APFloat::rmNearestTiesToEven);
5322       return getConstantFP(C1, DL, VT);
5323     case ISD::FREM:
5324       C1.mod(C2);
5325       return getConstantFP(C1, DL, VT);
5326     case ISD::FCOPYSIGN:
5327       C1.copySign(C2);
5328       return getConstantFP(C1, DL, VT);
5329     default: break;
5330     }
5331   }
5332   if (N1CFP && Opcode == ISD::FP_ROUND) {
5333     APFloat C1 = N1CFP->getValueAPF();    // make copy
5334     bool Unused;
5335     // This can return overflow, underflow, or inexact; we don't care.
5336     // FIXME need to be more flexible about rounding mode.
5337     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5338                       &Unused);
5339     return getConstantFP(C1, DL, VT);
5340   }
5341 
5342   switch (Opcode) {
5343   case ISD::FSUB:
5344     // -0.0 - undef --> undef (consistent with "fneg undef")
5345     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5346       return getUNDEF(VT);
5347     LLVM_FALLTHROUGH;
5348 
5349   case ISD::FADD:
5350   case ISD::FMUL:
5351   case ISD::FDIV:
5352   case ISD::FREM:
5353     // If both operands are undef, the result is undef. If 1 operand is undef,
5354     // the result is NaN. This should match the behavior of the IR optimizer.
5355     if (N1.isUndef() && N2.isUndef())
5356       return getUNDEF(VT);
5357     if (N1.isUndef() || N2.isUndef())
5358       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5359   }
5360   return SDValue();
5361 }
5362 
5363 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5364   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5365 
5366   // There's no need to assert on a byte-aligned pointer. All pointers are at
5367   // least byte aligned.
5368   if (A == Align(1))
5369     return Val;
5370 
5371   FoldingSetNodeID ID;
5372   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5373   ID.AddInteger(A.value());
5374 
5375   void *IP = nullptr;
5376   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5377     return SDValue(E, 0);
5378 
5379   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5380                                          Val.getValueType(), A);
5381   createOperands(N, {Val});
5382 
5383   CSEMap.InsertNode(N, IP);
5384   InsertNode(N);
5385 
5386   SDValue V(N, 0);
5387   NewSDValueDbgMsg(V, "Creating new node: ", this);
5388   return V;
5389 }
5390 
5391 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5392                               SDValue N1, SDValue N2) {
5393   SDNodeFlags Flags;
5394   if (Inserter)
5395     Flags = Inserter->getFlags();
5396   return getNode(Opcode, DL, VT, N1, N2, Flags);
5397 }
5398 
5399 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5400                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5401   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5402          N2.getOpcode() != ISD::DELETED_NODE &&
5403          "Operand is DELETED_NODE!");
5404   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5405   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5406   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5407   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5408 
5409   // Canonicalize constant to RHS if commutative.
5410   if (TLI->isCommutativeBinOp(Opcode)) {
5411     if (N1C && !N2C) {
5412       std::swap(N1C, N2C);
5413       std::swap(N1, N2);
5414     } else if (N1CFP && !N2CFP) {
5415       std::swap(N1CFP, N2CFP);
5416       std::swap(N1, N2);
5417     }
5418   }
5419 
5420   switch (Opcode) {
5421   default: break;
5422   case ISD::TokenFactor:
5423     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5424            N2.getValueType() == MVT::Other && "Invalid token factor!");
5425     // Fold trivial token factors.
5426     if (N1.getOpcode() == ISD::EntryToken) return N2;
5427     if (N2.getOpcode() == ISD::EntryToken) return N1;
5428     if (N1 == N2) return N1;
5429     break;
5430   case ISD::BUILD_VECTOR: {
5431     // Attempt to simplify BUILD_VECTOR.
5432     SDValue Ops[] = {N1, N2};
5433     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5434       return V;
5435     break;
5436   }
5437   case ISD::CONCAT_VECTORS: {
5438     SDValue Ops[] = {N1, N2};
5439     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5440       return V;
5441     break;
5442   }
5443   case ISD::AND:
5444     assert(VT.isInteger() && "This operator does not apply to FP types!");
5445     assert(N1.getValueType() == N2.getValueType() &&
5446            N1.getValueType() == VT && "Binary operator types must match!");
5447     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5448     // worth handling here.
5449     if (N2C && N2C->isNullValue())
5450       return N2;
5451     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5452       return N1;
5453     break;
5454   case ISD::OR:
5455   case ISD::XOR:
5456   case ISD::ADD:
5457   case ISD::SUB:
5458     assert(VT.isInteger() && "This operator does not apply to FP types!");
5459     assert(N1.getValueType() == N2.getValueType() &&
5460            N1.getValueType() == VT && "Binary operator types must match!");
5461     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5462     // it's worth handling here.
5463     if (N2C && N2C->isNullValue())
5464       return N1;
5465     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5466         VT.getVectorElementType() == MVT::i1)
5467       return getNode(ISD::XOR, DL, VT, N1, N2);
5468     break;
5469   case ISD::MUL:
5470     assert(VT.isInteger() && "This operator does not apply to FP types!");
5471     assert(N1.getValueType() == N2.getValueType() &&
5472            N1.getValueType() == VT && "Binary operator types must match!");
5473     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5474       return getNode(ISD::AND, DL, VT, N1, N2);
5475     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5476       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5477       const APInt &N2CImm = N2C->getAPIntValue();
5478       return getVScale(DL, VT, MulImm * N2CImm);
5479     }
5480     break;
5481   case ISD::UDIV:
5482   case ISD::UREM:
5483   case ISD::MULHU:
5484   case ISD::MULHS:
5485   case ISD::SDIV:
5486   case ISD::SREM:
5487   case ISD::SADDSAT:
5488   case ISD::SSUBSAT:
5489   case ISD::UADDSAT:
5490   case ISD::USUBSAT:
5491     assert(VT.isInteger() && "This operator does not apply to FP types!");
5492     assert(N1.getValueType() == N2.getValueType() &&
5493            N1.getValueType() == VT && "Binary operator types must match!");
5494     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5495       // fold (add_sat x, y) -> (or x, y) for bool types.
5496       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5497         return getNode(ISD::OR, DL, VT, N1, N2);
5498       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5499       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5500         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5501     }
5502     break;
5503   case ISD::SMIN:
5504   case ISD::UMAX:
5505     assert(VT.isInteger() && "This operator does not apply to FP types!");
5506     assert(N1.getValueType() == N2.getValueType() &&
5507            N1.getValueType() == VT && "Binary operator types must match!");
5508     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5509       return getNode(ISD::OR, DL, VT, N1, N2);
5510     break;
5511   case ISD::SMAX:
5512   case ISD::UMIN:
5513     assert(VT.isInteger() && "This operator does not apply to FP types!");
5514     assert(N1.getValueType() == N2.getValueType() &&
5515            N1.getValueType() == VT && "Binary operator types must match!");
5516     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5517       return getNode(ISD::AND, DL, VT, N1, N2);
5518     break;
5519   case ISD::FADD:
5520   case ISD::FSUB:
5521   case ISD::FMUL:
5522   case ISD::FDIV:
5523   case ISD::FREM:
5524     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5525     assert(N1.getValueType() == N2.getValueType() &&
5526            N1.getValueType() == VT && "Binary operator types must match!");
5527     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5528       return V;
5529     break;
5530   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5531     assert(N1.getValueType() == VT &&
5532            N1.getValueType().isFloatingPoint() &&
5533            N2.getValueType().isFloatingPoint() &&
5534            "Invalid FCOPYSIGN!");
5535     break;
5536   case ISD::SHL:
5537     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5538       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5539       const APInt &ShiftImm = N2C->getAPIntValue();
5540       return getVScale(DL, VT, MulImm << ShiftImm);
5541     }
5542     LLVM_FALLTHROUGH;
5543   case ISD::SRA:
5544   case ISD::SRL:
5545     if (SDValue V = simplifyShift(N1, N2))
5546       return V;
5547     LLVM_FALLTHROUGH;
5548   case ISD::ROTL:
5549   case ISD::ROTR:
5550     assert(VT == N1.getValueType() &&
5551            "Shift operators return type must be the same as their first arg");
5552     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5553            "Shifts only work on integers");
5554     assert((!VT.isVector() || VT == N2.getValueType()) &&
5555            "Vector shift amounts must be in the same as their first arg");
5556     // Verify that the shift amount VT is big enough to hold valid shift
5557     // amounts.  This catches things like trying to shift an i1024 value by an
5558     // i8, which is easy to fall into in generic code that uses
5559     // TLI.getShiftAmount().
5560     assert(N2.getValueType().getScalarSizeInBits() >=
5561                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5562            "Invalid use of small shift amount with oversized value!");
5563 
5564     // Always fold shifts of i1 values so the code generator doesn't need to
5565     // handle them.  Since we know the size of the shift has to be less than the
5566     // size of the value, the shift/rotate count is guaranteed to be zero.
5567     if (VT == MVT::i1)
5568       return N1;
5569     if (N2C && N2C->isNullValue())
5570       return N1;
5571     break;
5572   case ISD::FP_ROUND:
5573     assert(VT.isFloatingPoint() &&
5574            N1.getValueType().isFloatingPoint() &&
5575            VT.bitsLE(N1.getValueType()) &&
5576            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5577            "Invalid FP_ROUND!");
5578     if (N1.getValueType() == VT) return N1;  // noop conversion.
5579     break;
5580   case ISD::AssertSext:
5581   case ISD::AssertZext: {
5582     EVT EVT = cast<VTSDNode>(N2)->getVT();
5583     assert(VT == N1.getValueType() && "Not an inreg extend!");
5584     assert(VT.isInteger() && EVT.isInteger() &&
5585            "Cannot *_EXTEND_INREG FP types");
5586     assert(!EVT.isVector() &&
5587            "AssertSExt/AssertZExt type should be the vector element type "
5588            "rather than the vector type!");
5589     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5590     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5591     break;
5592   }
5593   case ISD::SIGN_EXTEND_INREG: {
5594     EVT EVT = cast<VTSDNode>(N2)->getVT();
5595     assert(VT == N1.getValueType() && "Not an inreg extend!");
5596     assert(VT.isInteger() && EVT.isInteger() &&
5597            "Cannot *_EXTEND_INREG FP types");
5598     assert(EVT.isVector() == VT.isVector() &&
5599            "SIGN_EXTEND_INREG type should be vector iff the operand "
5600            "type is vector!");
5601     assert((!EVT.isVector() ||
5602             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5603            "Vector element counts must match in SIGN_EXTEND_INREG");
5604     assert(EVT.bitsLE(VT) && "Not extending!");
5605     if (EVT == VT) return N1;  // Not actually extending
5606 
5607     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5608       unsigned FromBits = EVT.getScalarSizeInBits();
5609       Val <<= Val.getBitWidth() - FromBits;
5610       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5611       return getConstant(Val, DL, ConstantVT);
5612     };
5613 
5614     if (N1C) {
5615       const APInt &Val = N1C->getAPIntValue();
5616       return SignExtendInReg(Val, VT);
5617     }
5618     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5619       SmallVector<SDValue, 8> Ops;
5620       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5621       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5622         SDValue Op = N1.getOperand(i);
5623         if (Op.isUndef()) {
5624           Ops.push_back(getUNDEF(OpVT));
5625           continue;
5626         }
5627         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5628         APInt Val = C->getAPIntValue();
5629         Ops.push_back(SignExtendInReg(Val, OpVT));
5630       }
5631       return getBuildVector(VT, DL, Ops);
5632     }
5633     break;
5634   }
5635   case ISD::EXTRACT_VECTOR_ELT:
5636     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5637            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5638              element type of the vector.");
5639 
5640     // Extract from an undefined value or using an undefined index is undefined.
5641     if (N1.isUndef() || N2.isUndef())
5642       return getUNDEF(VT);
5643 
5644     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5645     // vectors. For scalable vectors we will provide appropriate support for
5646     // dealing with arbitrary indices.
5647     if (N2C && N1.getValueType().isFixedLengthVector() &&
5648         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5649       return getUNDEF(VT);
5650 
5651     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5652     // expanding copies of large vectors from registers. This only works for
5653     // fixed length vectors, since we need to know the exact number of
5654     // elements.
5655     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5656         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5657       unsigned Factor =
5658         N1.getOperand(0).getValueType().getVectorNumElements();
5659       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5660                      N1.getOperand(N2C->getZExtValue() / Factor),
5661                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5662     }
5663 
5664     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5665     // lowering is expanding large vector constants.
5666     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5667                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5668       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5669               N1.getValueType().isFixedLengthVector()) &&
5670              "BUILD_VECTOR used for scalable vectors");
5671       unsigned Index =
5672           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5673       SDValue Elt = N1.getOperand(Index);
5674 
5675       if (VT != Elt.getValueType())
5676         // If the vector element type is not legal, the BUILD_VECTOR operands
5677         // are promoted and implicitly truncated, and the result implicitly
5678         // extended. Make that explicit here.
5679         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5680 
5681       return Elt;
5682     }
5683 
5684     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5685     // operations are lowered to scalars.
5686     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5687       // If the indices are the same, return the inserted element else
5688       // if the indices are known different, extract the element from
5689       // the original vector.
5690       SDValue N1Op2 = N1.getOperand(2);
5691       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5692 
5693       if (N1Op2C && N2C) {
5694         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5695           if (VT == N1.getOperand(1).getValueType())
5696             return N1.getOperand(1);
5697           else
5698             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5699         }
5700 
5701         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5702       }
5703     }
5704 
5705     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5706     // when vector types are scalarized and v1iX is legal.
5707     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5708     // Here we are completely ignoring the extract element index (N2),
5709     // which is fine for fixed width vectors, since any index other than 0
5710     // is undefined anyway. However, this cannot be ignored for scalable
5711     // vectors - in theory we could support this, but we don't want to do this
5712     // without a profitability check.
5713     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5714         N1.getValueType().isFixedLengthVector() &&
5715         N1.getValueType().getVectorNumElements() == 1) {
5716       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5717                      N1.getOperand(1));
5718     }
5719     break;
5720   case ISD::EXTRACT_ELEMENT:
5721     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5722     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5723            (N1.getValueType().isInteger() == VT.isInteger()) &&
5724            N1.getValueType() != VT &&
5725            "Wrong types for EXTRACT_ELEMENT!");
5726 
5727     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5728     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5729     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5730     if (N1.getOpcode() == ISD::BUILD_PAIR)
5731       return N1.getOperand(N2C->getZExtValue());
5732 
5733     // EXTRACT_ELEMENT of a constant int is also very common.
5734     if (N1C) {
5735       unsigned ElementSize = VT.getSizeInBits();
5736       unsigned Shift = ElementSize * N2C->getZExtValue();
5737       const APInt &Val = N1C->getAPIntValue();
5738       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5739     }
5740     break;
5741   case ISD::EXTRACT_SUBVECTOR:
5742     EVT N1VT = N1.getValueType();
5743     assert(VT.isVector() && N1VT.isVector() &&
5744            "Extract subvector VTs must be vectors!");
5745     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5746            "Extract subvector VTs must have the same element type!");
5747     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5748            "Cannot extract a scalable vector from a fixed length vector!");
5749     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5750             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5751            "Extract subvector must be from larger vector to smaller vector!");
5752     assert(N2C && "Extract subvector index must be a constant");
5753     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5754             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5755                 N1VT.getVectorMinNumElements()) &&
5756            "Extract subvector overflow!");
5757     assert(N2C->getAPIntValue().getBitWidth() ==
5758                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5759            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5760 
5761     // Trivial extraction.
5762     if (VT == N1VT)
5763       return N1;
5764 
5765     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5766     if (N1.isUndef())
5767       return getUNDEF(VT);
5768 
5769     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5770     // the concat have the same type as the extract.
5771     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5772         VT == N1.getOperand(0).getValueType()) {
5773       unsigned Factor = VT.getVectorMinNumElements();
5774       return N1.getOperand(N2C->getZExtValue() / Factor);
5775     }
5776 
5777     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5778     // during shuffle legalization.
5779     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5780         VT == N1.getOperand(1).getValueType())
5781       return N1.getOperand(1);
5782     break;
5783   }
5784 
5785   // Perform trivial constant folding.
5786   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5787     return SV;
5788 
5789   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5790     return V;
5791 
5792   // Canonicalize an UNDEF to the RHS, even over a constant.
5793   if (N1.isUndef()) {
5794     if (TLI->isCommutativeBinOp(Opcode)) {
5795       std::swap(N1, N2);
5796     } else {
5797       switch (Opcode) {
5798       case ISD::SIGN_EXTEND_INREG:
5799       case ISD::SUB:
5800         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5801       case ISD::UDIV:
5802       case ISD::SDIV:
5803       case ISD::UREM:
5804       case ISD::SREM:
5805       case ISD::SSUBSAT:
5806       case ISD::USUBSAT:
5807         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5808       }
5809     }
5810   }
5811 
5812   // Fold a bunch of operators when the RHS is undef.
5813   if (N2.isUndef()) {
5814     switch (Opcode) {
5815     case ISD::XOR:
5816       if (N1.isUndef())
5817         // Handle undef ^ undef -> 0 special case. This is a common
5818         // idiom (misuse).
5819         return getConstant(0, DL, VT);
5820       LLVM_FALLTHROUGH;
5821     case ISD::ADD:
5822     case ISD::SUB:
5823     case ISD::UDIV:
5824     case ISD::SDIV:
5825     case ISD::UREM:
5826     case ISD::SREM:
5827       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5828     case ISD::MUL:
5829     case ISD::AND:
5830     case ISD::SSUBSAT:
5831     case ISD::USUBSAT:
5832       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5833     case ISD::OR:
5834     case ISD::SADDSAT:
5835     case ISD::UADDSAT:
5836       return getAllOnesConstant(DL, VT);
5837     }
5838   }
5839 
5840   // Memoize this node if possible.
5841   SDNode *N;
5842   SDVTList VTs = getVTList(VT);
5843   SDValue Ops[] = {N1, N2};
5844   if (VT != MVT::Glue) {
5845     FoldingSetNodeID ID;
5846     AddNodeIDNode(ID, Opcode, VTs, Ops);
5847     void *IP = nullptr;
5848     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5849       E->intersectFlagsWith(Flags);
5850       return SDValue(E, 0);
5851     }
5852 
5853     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5854     N->setFlags(Flags);
5855     createOperands(N, Ops);
5856     CSEMap.InsertNode(N, IP);
5857   } else {
5858     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5859     createOperands(N, Ops);
5860   }
5861 
5862   InsertNode(N);
5863   SDValue V = SDValue(N, 0);
5864   NewSDValueDbgMsg(V, "Creating new node: ", this);
5865   return V;
5866 }
5867 
5868 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5869                               SDValue N1, SDValue N2, SDValue N3) {
5870   SDNodeFlags Flags;
5871   if (Inserter)
5872     Flags = Inserter->getFlags();
5873   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5874 }
5875 
5876 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5877                               SDValue N1, SDValue N2, SDValue N3,
5878                               const SDNodeFlags Flags) {
5879   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5880          N2.getOpcode() != ISD::DELETED_NODE &&
5881          N3.getOpcode() != ISD::DELETED_NODE &&
5882          "Operand is DELETED_NODE!");
5883   // Perform various simplifications.
5884   switch (Opcode) {
5885   case ISD::FMA: {
5886     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5887     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5888            N3.getValueType() == VT && "FMA types must match!");
5889     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5890     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5891     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5892     if (N1CFP && N2CFP && N3CFP) {
5893       APFloat  V1 = N1CFP->getValueAPF();
5894       const APFloat &V2 = N2CFP->getValueAPF();
5895       const APFloat &V3 = N3CFP->getValueAPF();
5896       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5897       return getConstantFP(V1, DL, VT);
5898     }
5899     break;
5900   }
5901   case ISD::BUILD_VECTOR: {
5902     // Attempt to simplify BUILD_VECTOR.
5903     SDValue Ops[] = {N1, N2, N3};
5904     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5905       return V;
5906     break;
5907   }
5908   case ISD::CONCAT_VECTORS: {
5909     SDValue Ops[] = {N1, N2, N3};
5910     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5911       return V;
5912     break;
5913   }
5914   case ISD::SETCC: {
5915     assert(VT.isInteger() && "SETCC result type must be an integer!");
5916     assert(N1.getValueType() == N2.getValueType() &&
5917            "SETCC operands must have the same type!");
5918     assert(VT.isVector() == N1.getValueType().isVector() &&
5919            "SETCC type should be vector iff the operand type is vector!");
5920     assert((!VT.isVector() || VT.getVectorElementCount() ==
5921                                   N1.getValueType().getVectorElementCount()) &&
5922            "SETCC vector element counts must match!");
5923     // Use FoldSetCC to simplify SETCC's.
5924     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5925       return V;
5926     // Vector constant folding.
5927     SDValue Ops[] = {N1, N2, N3};
5928     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5929       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5930       return V;
5931     }
5932     break;
5933   }
5934   case ISD::SELECT:
5935   case ISD::VSELECT:
5936     if (SDValue V = simplifySelect(N1, N2, N3))
5937       return V;
5938     break;
5939   case ISD::VECTOR_SHUFFLE:
5940     llvm_unreachable("should use getVectorShuffle constructor!");
5941   case ISD::INSERT_VECTOR_ELT: {
5942     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5943     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5944     // for scalable vectors where we will generate appropriate code to
5945     // deal with out-of-bounds cases correctly.
5946     if (N3C && N1.getValueType().isFixedLengthVector() &&
5947         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5948       return getUNDEF(VT);
5949 
5950     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5951     if (N3.isUndef())
5952       return getUNDEF(VT);
5953 
5954     // If the inserted element is an UNDEF, just use the input vector.
5955     if (N2.isUndef())
5956       return N1;
5957 
5958     break;
5959   }
5960   case ISD::INSERT_SUBVECTOR: {
5961     // Inserting undef into undef is still undef.
5962     if (N1.isUndef() && N2.isUndef())
5963       return getUNDEF(VT);
5964 
5965     EVT N2VT = N2.getValueType();
5966     assert(VT == N1.getValueType() &&
5967            "Dest and insert subvector source types must match!");
5968     assert(VT.isVector() && N2VT.isVector() &&
5969            "Insert subvector VTs must be vectors!");
5970     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5971            "Cannot insert a scalable vector into a fixed length vector!");
5972     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5973             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5974            "Insert subvector must be from smaller vector to larger vector!");
5975     assert(isa<ConstantSDNode>(N3) &&
5976            "Insert subvector index must be constant");
5977     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5978             (N2VT.getVectorMinNumElements() +
5979              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5980                 VT.getVectorMinNumElements()) &&
5981            "Insert subvector overflow!");
5982     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
5983                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5984            "Constant index for INSERT_SUBVECTOR has an invalid size");
5985 
5986     // Trivial insertion.
5987     if (VT == N2VT)
5988       return N2;
5989 
5990     // If this is an insert of an extracted vector into an undef vector, we
5991     // can just use the input to the extract.
5992     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5993         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5994       return N2.getOperand(0);
5995     break;
5996   }
5997   case ISD::BITCAST:
5998     // Fold bit_convert nodes from a type to themselves.
5999     if (N1.getValueType() == VT)
6000       return N1;
6001     break;
6002   }
6003 
6004   // Memoize node if it doesn't produce a flag.
6005   SDNode *N;
6006   SDVTList VTs = getVTList(VT);
6007   SDValue Ops[] = {N1, N2, N3};
6008   if (VT != MVT::Glue) {
6009     FoldingSetNodeID ID;
6010     AddNodeIDNode(ID, Opcode, VTs, Ops);
6011     void *IP = nullptr;
6012     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6013       E->intersectFlagsWith(Flags);
6014       return SDValue(E, 0);
6015     }
6016 
6017     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6018     N->setFlags(Flags);
6019     createOperands(N, Ops);
6020     CSEMap.InsertNode(N, IP);
6021   } else {
6022     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6023     createOperands(N, Ops);
6024   }
6025 
6026   InsertNode(N);
6027   SDValue V = SDValue(N, 0);
6028   NewSDValueDbgMsg(V, "Creating new node: ", this);
6029   return V;
6030 }
6031 
6032 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6033                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6034   SDValue Ops[] = { N1, N2, N3, N4 };
6035   return getNode(Opcode, DL, VT, Ops);
6036 }
6037 
6038 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6039                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6040                               SDValue N5) {
6041   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6042   return getNode(Opcode, DL, VT, Ops);
6043 }
6044 
6045 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6046 /// the incoming stack arguments to be loaded from the stack.
6047 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6048   SmallVector<SDValue, 8> ArgChains;
6049 
6050   // Include the original chain at the beginning of the list. When this is
6051   // used by target LowerCall hooks, this helps legalize find the
6052   // CALLSEQ_BEGIN node.
6053   ArgChains.push_back(Chain);
6054 
6055   // Add a chain value for each stack argument.
6056   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6057        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6058     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6059       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6060         if (FI->getIndex() < 0)
6061           ArgChains.push_back(SDValue(L, 1));
6062 
6063   // Build a tokenfactor for all the chains.
6064   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6065 }
6066 
6067 /// getMemsetValue - Vectorized representation of the memset value
6068 /// operand.
6069 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6070                               const SDLoc &dl) {
6071   assert(!Value.isUndef());
6072 
6073   unsigned NumBits = VT.getScalarSizeInBits();
6074   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6075     assert(C->getAPIntValue().getBitWidth() == 8);
6076     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6077     if (VT.isInteger()) {
6078       bool IsOpaque = VT.getSizeInBits() > 64 ||
6079           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6080       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6081     }
6082     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6083                              VT);
6084   }
6085 
6086   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6087   EVT IntVT = VT.getScalarType();
6088   if (!IntVT.isInteger())
6089     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6090 
6091   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6092   if (NumBits > 8) {
6093     // Use a multiplication with 0x010101... to extend the input to the
6094     // required length.
6095     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6096     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6097                         DAG.getConstant(Magic, dl, IntVT));
6098   }
6099 
6100   if (VT != Value.getValueType() && !VT.isInteger())
6101     Value = DAG.getBitcast(VT.getScalarType(), Value);
6102   if (VT != Value.getValueType())
6103     Value = DAG.getSplatBuildVector(VT, dl, Value);
6104 
6105   return Value;
6106 }
6107 
6108 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6109 /// used when a memcpy is turned into a memset when the source is a constant
6110 /// string ptr.
6111 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6112                                   const TargetLowering &TLI,
6113                                   const ConstantDataArraySlice &Slice) {
6114   // Handle vector with all elements zero.
6115   if (Slice.Array == nullptr) {
6116     if (VT.isInteger())
6117       return DAG.getConstant(0, dl, VT);
6118     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6119       return DAG.getConstantFP(0.0, dl, VT);
6120     else if (VT.isVector()) {
6121       unsigned NumElts = VT.getVectorNumElements();
6122       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6123       return DAG.getNode(ISD::BITCAST, dl, VT,
6124                          DAG.getConstant(0, dl,
6125                                          EVT::getVectorVT(*DAG.getContext(),
6126                                                           EltVT, NumElts)));
6127     } else
6128       llvm_unreachable("Expected type!");
6129   }
6130 
6131   assert(!VT.isVector() && "Can't handle vector type here!");
6132   unsigned NumVTBits = VT.getSizeInBits();
6133   unsigned NumVTBytes = NumVTBits / 8;
6134   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6135 
6136   APInt Val(NumVTBits, 0);
6137   if (DAG.getDataLayout().isLittleEndian()) {
6138     for (unsigned i = 0; i != NumBytes; ++i)
6139       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6140   } else {
6141     for (unsigned i = 0; i != NumBytes; ++i)
6142       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6143   }
6144 
6145   // If the "cost" of materializing the integer immediate is less than the cost
6146   // of a load, then it is cost effective to turn the load into the immediate.
6147   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6148   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6149     return DAG.getConstant(Val, dl, VT);
6150   return SDValue(nullptr, 0);
6151 }
6152 
6153 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6154                                            const SDLoc &DL,
6155                                            const SDNodeFlags Flags) {
6156   EVT VT = Base.getValueType();
6157   SDValue Index;
6158 
6159   if (Offset.isScalable())
6160     Index = getVScale(DL, Base.getValueType(),
6161                       APInt(Base.getValueSizeInBits().getFixedSize(),
6162                             Offset.getKnownMinSize()));
6163   else
6164     Index = getConstant(Offset.getFixedSize(), DL, VT);
6165 
6166   return getMemBasePlusOffset(Base, Index, DL, Flags);
6167 }
6168 
6169 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6170                                            const SDLoc &DL,
6171                                            const SDNodeFlags Flags) {
6172   assert(Offset.getValueType().isInteger());
6173   EVT BasePtrVT = Ptr.getValueType();
6174   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6175 }
6176 
6177 /// Returns true if memcpy source is constant data.
6178 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6179   uint64_t SrcDelta = 0;
6180   GlobalAddressSDNode *G = nullptr;
6181   if (Src.getOpcode() == ISD::GlobalAddress)
6182     G = cast<GlobalAddressSDNode>(Src);
6183   else if (Src.getOpcode() == ISD::ADD &&
6184            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6185            Src.getOperand(1).getOpcode() == ISD::Constant) {
6186     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6187     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6188   }
6189   if (!G)
6190     return false;
6191 
6192   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6193                                   SrcDelta + G->getOffset());
6194 }
6195 
6196 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6197                                       SelectionDAG &DAG) {
6198   // On Darwin, -Os means optimize for size without hurting performance, so
6199   // only really optimize for size when -Oz (MinSize) is used.
6200   if (MF.getTarget().getTargetTriple().isOSDarwin())
6201     return MF.getFunction().hasMinSize();
6202   return DAG.shouldOptForSize();
6203 }
6204 
6205 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6206                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6207                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6208                           SmallVector<SDValue, 16> &OutStoreChains) {
6209   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6210   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6211   SmallVector<SDValue, 16> GluedLoadChains;
6212   for (unsigned i = From; i < To; ++i) {
6213     OutChains.push_back(OutLoadChains[i]);
6214     GluedLoadChains.push_back(OutLoadChains[i]);
6215   }
6216 
6217   // Chain for all loads.
6218   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6219                                   GluedLoadChains);
6220 
6221   for (unsigned i = From; i < To; ++i) {
6222     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6223     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6224                                   ST->getBasePtr(), ST->getMemoryVT(),
6225                                   ST->getMemOperand());
6226     OutChains.push_back(NewStore);
6227   }
6228 }
6229 
6230 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6231                                        SDValue Chain, SDValue Dst, SDValue Src,
6232                                        uint64_t Size, Align Alignment,
6233                                        bool isVol, bool AlwaysInline,
6234                                        MachinePointerInfo DstPtrInfo,
6235                                        MachinePointerInfo SrcPtrInfo) {
6236   // Turn a memcpy of undef to nop.
6237   // FIXME: We need to honor volatile even is Src is undef.
6238   if (Src.isUndef())
6239     return Chain;
6240 
6241   // Expand memcpy to a series of load and store ops if the size operand falls
6242   // below a certain threshold.
6243   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6244   // rather than maybe a humongous number of loads and stores.
6245   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6246   const DataLayout &DL = DAG.getDataLayout();
6247   LLVMContext &C = *DAG.getContext();
6248   std::vector<EVT> MemOps;
6249   bool DstAlignCanChange = false;
6250   MachineFunction &MF = DAG.getMachineFunction();
6251   MachineFrameInfo &MFI = MF.getFrameInfo();
6252   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6253   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6254   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6255     DstAlignCanChange = true;
6256   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6257   if (!SrcAlign || Alignment > *SrcAlign)
6258     SrcAlign = Alignment;
6259   assert(SrcAlign && "SrcAlign must be set");
6260   ConstantDataArraySlice Slice;
6261   // If marked as volatile, perform a copy even when marked as constant.
6262   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6263   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6264   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6265   const MemOp Op = isZeroConstant
6266                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6267                                     /*IsZeroMemset*/ true, isVol)
6268                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6269                                      *SrcAlign, isVol, CopyFromConstant);
6270   if (!TLI.findOptimalMemOpLowering(
6271           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6272           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6273     return SDValue();
6274 
6275   if (DstAlignCanChange) {
6276     Type *Ty = MemOps[0].getTypeForEVT(C);
6277     Align NewAlign = DL.getABITypeAlign(Ty);
6278 
6279     // Don't promote to an alignment that would require dynamic stack
6280     // realignment.
6281     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6282     if (!TRI->hasStackRealignment(MF))
6283       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6284         NewAlign = NewAlign / 2;
6285 
6286     if (NewAlign > Alignment) {
6287       // Give the stack frame object a larger alignment if needed.
6288       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6289         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6290       Alignment = NewAlign;
6291     }
6292   }
6293 
6294   MachineMemOperand::Flags MMOFlags =
6295       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6296   SmallVector<SDValue, 16> OutLoadChains;
6297   SmallVector<SDValue, 16> OutStoreChains;
6298   SmallVector<SDValue, 32> OutChains;
6299   unsigned NumMemOps = MemOps.size();
6300   uint64_t SrcOff = 0, DstOff = 0;
6301   for (unsigned i = 0; i != NumMemOps; ++i) {
6302     EVT VT = MemOps[i];
6303     unsigned VTSize = VT.getSizeInBits() / 8;
6304     SDValue Value, Store;
6305 
6306     if (VTSize > Size) {
6307       // Issuing an unaligned load / store pair  that overlaps with the previous
6308       // pair. Adjust the offset accordingly.
6309       assert(i == NumMemOps-1 && i != 0);
6310       SrcOff -= VTSize - Size;
6311       DstOff -= VTSize - Size;
6312     }
6313 
6314     if (CopyFromConstant &&
6315         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6316       // It's unlikely a store of a vector immediate can be done in a single
6317       // instruction. It would require a load from a constantpool first.
6318       // We only handle zero vectors here.
6319       // FIXME: Handle other cases where store of vector immediate is done in
6320       // a single instruction.
6321       ConstantDataArraySlice SubSlice;
6322       if (SrcOff < Slice.Length) {
6323         SubSlice = Slice;
6324         SubSlice.move(SrcOff);
6325       } else {
6326         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6327         SubSlice.Array = nullptr;
6328         SubSlice.Offset = 0;
6329         SubSlice.Length = VTSize;
6330       }
6331       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6332       if (Value.getNode()) {
6333         Store = DAG.getStore(
6334             Chain, dl, Value,
6335             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6336             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6337         OutChains.push_back(Store);
6338       }
6339     }
6340 
6341     if (!Store.getNode()) {
6342       // The type might not be legal for the target.  This should only happen
6343       // if the type is smaller than a legal type, as on PPC, so the right
6344       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6345       // to Load/Store if NVT==VT.
6346       // FIXME does the case above also need this?
6347       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6348       assert(NVT.bitsGE(VT));
6349 
6350       bool isDereferenceable =
6351         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6352       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6353       if (isDereferenceable)
6354         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6355 
6356       Value = DAG.getExtLoad(
6357           ISD::EXTLOAD, dl, NVT, Chain,
6358           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6359           SrcPtrInfo.getWithOffset(SrcOff), VT,
6360           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6361       OutLoadChains.push_back(Value.getValue(1));
6362 
6363       Store = DAG.getTruncStore(
6364           Chain, dl, Value,
6365           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6366           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6367       OutStoreChains.push_back(Store);
6368     }
6369     SrcOff += VTSize;
6370     DstOff += VTSize;
6371     Size -= VTSize;
6372   }
6373 
6374   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6375                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6376   unsigned NumLdStInMemcpy = OutStoreChains.size();
6377 
6378   if (NumLdStInMemcpy) {
6379     // It may be that memcpy might be converted to memset if it's memcpy
6380     // of constants. In such a case, we won't have loads and stores, but
6381     // just stores. In the absence of loads, there is nothing to gang up.
6382     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6383       // If target does not care, just leave as it.
6384       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6385         OutChains.push_back(OutLoadChains[i]);
6386         OutChains.push_back(OutStoreChains[i]);
6387       }
6388     } else {
6389       // Ld/St less than/equal limit set by target.
6390       if (NumLdStInMemcpy <= GluedLdStLimit) {
6391           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6392                                         NumLdStInMemcpy, OutLoadChains,
6393                                         OutStoreChains);
6394       } else {
6395         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6396         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6397         unsigned GlueIter = 0;
6398 
6399         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6400           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6401           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6402 
6403           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6404                                        OutLoadChains, OutStoreChains);
6405           GlueIter += GluedLdStLimit;
6406         }
6407 
6408         // Residual ld/st.
6409         if (RemainingLdStInMemcpy) {
6410           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6411                                         RemainingLdStInMemcpy, OutLoadChains,
6412                                         OutStoreChains);
6413         }
6414       }
6415     }
6416   }
6417   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6418 }
6419 
6420 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6421                                         SDValue Chain, SDValue Dst, SDValue Src,
6422                                         uint64_t Size, Align Alignment,
6423                                         bool isVol, bool AlwaysInline,
6424                                         MachinePointerInfo DstPtrInfo,
6425                                         MachinePointerInfo SrcPtrInfo) {
6426   // Turn a memmove of undef to nop.
6427   // FIXME: We need to honor volatile even is Src is undef.
6428   if (Src.isUndef())
6429     return Chain;
6430 
6431   // Expand memmove to a series of load and store ops if the size operand falls
6432   // below a certain threshold.
6433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6434   const DataLayout &DL = DAG.getDataLayout();
6435   LLVMContext &C = *DAG.getContext();
6436   std::vector<EVT> MemOps;
6437   bool DstAlignCanChange = false;
6438   MachineFunction &MF = DAG.getMachineFunction();
6439   MachineFrameInfo &MFI = MF.getFrameInfo();
6440   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6441   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6442   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6443     DstAlignCanChange = true;
6444   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6445   if (!SrcAlign || Alignment > *SrcAlign)
6446     SrcAlign = Alignment;
6447   assert(SrcAlign && "SrcAlign must be set");
6448   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6449   if (!TLI.findOptimalMemOpLowering(
6450           MemOps, Limit,
6451           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6452                       /*IsVolatile*/ true),
6453           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6454           MF.getFunction().getAttributes()))
6455     return SDValue();
6456 
6457   if (DstAlignCanChange) {
6458     Type *Ty = MemOps[0].getTypeForEVT(C);
6459     Align NewAlign = DL.getABITypeAlign(Ty);
6460     if (NewAlign > Alignment) {
6461       // Give the stack frame object a larger alignment if needed.
6462       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6463         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6464       Alignment = NewAlign;
6465     }
6466   }
6467 
6468   MachineMemOperand::Flags MMOFlags =
6469       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6470   uint64_t SrcOff = 0, DstOff = 0;
6471   SmallVector<SDValue, 8> LoadValues;
6472   SmallVector<SDValue, 8> LoadChains;
6473   SmallVector<SDValue, 8> OutChains;
6474   unsigned NumMemOps = MemOps.size();
6475   for (unsigned i = 0; i < NumMemOps; i++) {
6476     EVT VT = MemOps[i];
6477     unsigned VTSize = VT.getSizeInBits() / 8;
6478     SDValue Value;
6479 
6480     bool isDereferenceable =
6481       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6482     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6483     if (isDereferenceable)
6484       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6485 
6486     Value =
6487         DAG.getLoad(VT, dl, Chain,
6488                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6489                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6490     LoadValues.push_back(Value);
6491     LoadChains.push_back(Value.getValue(1));
6492     SrcOff += VTSize;
6493   }
6494   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6495   OutChains.clear();
6496   for (unsigned i = 0; i < NumMemOps; i++) {
6497     EVT VT = MemOps[i];
6498     unsigned VTSize = VT.getSizeInBits() / 8;
6499     SDValue Store;
6500 
6501     Store =
6502         DAG.getStore(Chain, dl, LoadValues[i],
6503                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6504                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6505     OutChains.push_back(Store);
6506     DstOff += VTSize;
6507   }
6508 
6509   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6510 }
6511 
6512 /// Lower the call to 'memset' intrinsic function into a series of store
6513 /// operations.
6514 ///
6515 /// \param DAG Selection DAG where lowered code is placed.
6516 /// \param dl Link to corresponding IR location.
6517 /// \param Chain Control flow dependency.
6518 /// \param Dst Pointer to destination memory location.
6519 /// \param Src Value of byte to write into the memory.
6520 /// \param Size Number of bytes to write.
6521 /// \param Alignment Alignment of the destination in bytes.
6522 /// \param isVol True if destination is volatile.
6523 /// \param DstPtrInfo IR information on the memory pointer.
6524 /// \returns New head in the control flow, if lowering was successful, empty
6525 /// SDValue otherwise.
6526 ///
6527 /// The function tries to replace 'llvm.memset' intrinsic with several store
6528 /// operations and value calculation code. This is usually profitable for small
6529 /// memory size.
6530 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6531                                SDValue Chain, SDValue Dst, SDValue Src,
6532                                uint64_t Size, Align Alignment, bool isVol,
6533                                MachinePointerInfo DstPtrInfo) {
6534   // Turn a memset of undef to nop.
6535   // FIXME: We need to honor volatile even is Src is undef.
6536   if (Src.isUndef())
6537     return Chain;
6538 
6539   // Expand memset to a series of load/store ops if the size operand
6540   // falls below a certain threshold.
6541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6542   std::vector<EVT> MemOps;
6543   bool DstAlignCanChange = false;
6544   MachineFunction &MF = DAG.getMachineFunction();
6545   MachineFrameInfo &MFI = MF.getFrameInfo();
6546   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6547   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6548   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6549     DstAlignCanChange = true;
6550   bool IsZeroVal =
6551     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6552   if (!TLI.findOptimalMemOpLowering(
6553           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6554           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6555           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6556     return SDValue();
6557 
6558   if (DstAlignCanChange) {
6559     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6560     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6561     if (NewAlign > Alignment) {
6562       // Give the stack frame object a larger alignment if needed.
6563       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6564         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6565       Alignment = NewAlign;
6566     }
6567   }
6568 
6569   SmallVector<SDValue, 8> OutChains;
6570   uint64_t DstOff = 0;
6571   unsigned NumMemOps = MemOps.size();
6572 
6573   // Find the largest store and generate the bit pattern for it.
6574   EVT LargestVT = MemOps[0];
6575   for (unsigned i = 1; i < NumMemOps; i++)
6576     if (MemOps[i].bitsGT(LargestVT))
6577       LargestVT = MemOps[i];
6578   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6579 
6580   for (unsigned i = 0; i < NumMemOps; i++) {
6581     EVT VT = MemOps[i];
6582     unsigned VTSize = VT.getSizeInBits() / 8;
6583     if (VTSize > Size) {
6584       // Issuing an unaligned load / store pair  that overlaps with the previous
6585       // pair. Adjust the offset accordingly.
6586       assert(i == NumMemOps-1 && i != 0);
6587       DstOff -= VTSize - Size;
6588     }
6589 
6590     // If this store is smaller than the largest store see whether we can get
6591     // the smaller value for free with a truncate.
6592     SDValue Value = MemSetValue;
6593     if (VT.bitsLT(LargestVT)) {
6594       if (!LargestVT.isVector() && !VT.isVector() &&
6595           TLI.isTruncateFree(LargestVT, VT))
6596         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6597       else
6598         Value = getMemsetValue(Src, VT, DAG, dl);
6599     }
6600     assert(Value.getValueType() == VT && "Value with wrong type.");
6601     SDValue Store = DAG.getStore(
6602         Chain, dl, Value,
6603         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6604         DstPtrInfo.getWithOffset(DstOff), Alignment,
6605         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6606     OutChains.push_back(Store);
6607     DstOff += VT.getSizeInBits() / 8;
6608     Size -= VTSize;
6609   }
6610 
6611   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6612 }
6613 
6614 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6615                                             unsigned AS) {
6616   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6617   // pointer operands can be losslessly bitcasted to pointers of address space 0
6618   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6619     report_fatal_error("cannot lower memory intrinsic in address space " +
6620                        Twine(AS));
6621   }
6622 }
6623 
6624 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6625                                 SDValue Src, SDValue Size, Align Alignment,
6626                                 bool isVol, bool AlwaysInline, bool isTailCall,
6627                                 MachinePointerInfo DstPtrInfo,
6628                                 MachinePointerInfo SrcPtrInfo) {
6629   // Check to see if we should lower the memcpy to loads and stores first.
6630   // For cases within the target-specified limits, this is the best choice.
6631   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6632   if (ConstantSize) {
6633     // Memcpy with size zero? Just return the original chain.
6634     if (ConstantSize->isNullValue())
6635       return Chain;
6636 
6637     SDValue Result = getMemcpyLoadsAndStores(
6638         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6639         isVol, false, DstPtrInfo, SrcPtrInfo);
6640     if (Result.getNode())
6641       return Result;
6642   }
6643 
6644   // Then check to see if we should lower the memcpy with target-specific
6645   // code. If the target chooses to do this, this is the next best.
6646   if (TSI) {
6647     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6648         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6649         DstPtrInfo, SrcPtrInfo);
6650     if (Result.getNode())
6651       return Result;
6652   }
6653 
6654   // If we really need inline code and the target declined to provide it,
6655   // use a (potentially long) sequence of loads and stores.
6656   if (AlwaysInline) {
6657     assert(ConstantSize && "AlwaysInline requires a constant size!");
6658     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6659                                    ConstantSize->getZExtValue(), Alignment,
6660                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6661   }
6662 
6663   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6664   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6665 
6666   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6667   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6668   // respect volatile, so they may do things like read or write memory
6669   // beyond the given memory regions. But fixing this isn't easy, and most
6670   // people don't care.
6671 
6672   // Emit a library call.
6673   TargetLowering::ArgListTy Args;
6674   TargetLowering::ArgListEntry Entry;
6675   Entry.Ty = Type::getInt8PtrTy(*getContext());
6676   Entry.Node = Dst; Args.push_back(Entry);
6677   Entry.Node = Src; Args.push_back(Entry);
6678 
6679   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6680   Entry.Node = Size; Args.push_back(Entry);
6681   // FIXME: pass in SDLoc
6682   TargetLowering::CallLoweringInfo CLI(*this);
6683   CLI.setDebugLoc(dl)
6684       .setChain(Chain)
6685       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6686                     Dst.getValueType().getTypeForEVT(*getContext()),
6687                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6688                                       TLI->getPointerTy(getDataLayout())),
6689                     std::move(Args))
6690       .setDiscardResult()
6691       .setTailCall(isTailCall);
6692 
6693   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6694   return CallResult.second;
6695 }
6696 
6697 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6698                                       SDValue Dst, unsigned DstAlign,
6699                                       SDValue Src, unsigned SrcAlign,
6700                                       SDValue Size, Type *SizeTy,
6701                                       unsigned ElemSz, bool isTailCall,
6702                                       MachinePointerInfo DstPtrInfo,
6703                                       MachinePointerInfo SrcPtrInfo) {
6704   // Emit a library call.
6705   TargetLowering::ArgListTy Args;
6706   TargetLowering::ArgListEntry Entry;
6707   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6708   Entry.Node = Dst;
6709   Args.push_back(Entry);
6710 
6711   Entry.Node = Src;
6712   Args.push_back(Entry);
6713 
6714   Entry.Ty = SizeTy;
6715   Entry.Node = Size;
6716   Args.push_back(Entry);
6717 
6718   RTLIB::Libcall LibraryCall =
6719       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6720   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6721     report_fatal_error("Unsupported element size");
6722 
6723   TargetLowering::CallLoweringInfo CLI(*this);
6724   CLI.setDebugLoc(dl)
6725       .setChain(Chain)
6726       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6727                     Type::getVoidTy(*getContext()),
6728                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6729                                       TLI->getPointerTy(getDataLayout())),
6730                     std::move(Args))
6731       .setDiscardResult()
6732       .setTailCall(isTailCall);
6733 
6734   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6735   return CallResult.second;
6736 }
6737 
6738 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6739                                  SDValue Src, SDValue Size, Align Alignment,
6740                                  bool isVol, bool isTailCall,
6741                                  MachinePointerInfo DstPtrInfo,
6742                                  MachinePointerInfo SrcPtrInfo) {
6743   // Check to see if we should lower the memmove to loads and stores first.
6744   // For cases within the target-specified limits, this is the best choice.
6745   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6746   if (ConstantSize) {
6747     // Memmove with size zero? Just return the original chain.
6748     if (ConstantSize->isNullValue())
6749       return Chain;
6750 
6751     SDValue Result = getMemmoveLoadsAndStores(
6752         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6753         isVol, false, DstPtrInfo, SrcPtrInfo);
6754     if (Result.getNode())
6755       return Result;
6756   }
6757 
6758   // Then check to see if we should lower the memmove with target-specific
6759   // code. If the target chooses to do this, this is the next best.
6760   if (TSI) {
6761     SDValue Result =
6762         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6763                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6764     if (Result.getNode())
6765       return Result;
6766   }
6767 
6768   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6769   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6770 
6771   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6772   // not be safe.  See memcpy above for more details.
6773 
6774   // Emit a library call.
6775   TargetLowering::ArgListTy Args;
6776   TargetLowering::ArgListEntry Entry;
6777   Entry.Ty = Type::getInt8PtrTy(*getContext());
6778   Entry.Node = Dst; Args.push_back(Entry);
6779   Entry.Node = Src; Args.push_back(Entry);
6780 
6781   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6782   Entry.Node = Size; Args.push_back(Entry);
6783   // FIXME:  pass in SDLoc
6784   TargetLowering::CallLoweringInfo CLI(*this);
6785   CLI.setDebugLoc(dl)
6786       .setChain(Chain)
6787       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6788                     Dst.getValueType().getTypeForEVT(*getContext()),
6789                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6790                                       TLI->getPointerTy(getDataLayout())),
6791                     std::move(Args))
6792       .setDiscardResult()
6793       .setTailCall(isTailCall);
6794 
6795   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6796   return CallResult.second;
6797 }
6798 
6799 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6800                                        SDValue Dst, unsigned DstAlign,
6801                                        SDValue Src, unsigned SrcAlign,
6802                                        SDValue Size, Type *SizeTy,
6803                                        unsigned ElemSz, bool isTailCall,
6804                                        MachinePointerInfo DstPtrInfo,
6805                                        MachinePointerInfo SrcPtrInfo) {
6806   // Emit a library call.
6807   TargetLowering::ArgListTy Args;
6808   TargetLowering::ArgListEntry Entry;
6809   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6810   Entry.Node = Dst;
6811   Args.push_back(Entry);
6812 
6813   Entry.Node = Src;
6814   Args.push_back(Entry);
6815 
6816   Entry.Ty = SizeTy;
6817   Entry.Node = Size;
6818   Args.push_back(Entry);
6819 
6820   RTLIB::Libcall LibraryCall =
6821       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6822   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6823     report_fatal_error("Unsupported element size");
6824 
6825   TargetLowering::CallLoweringInfo CLI(*this);
6826   CLI.setDebugLoc(dl)
6827       .setChain(Chain)
6828       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6829                     Type::getVoidTy(*getContext()),
6830                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6831                                       TLI->getPointerTy(getDataLayout())),
6832                     std::move(Args))
6833       .setDiscardResult()
6834       .setTailCall(isTailCall);
6835 
6836   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6837   return CallResult.second;
6838 }
6839 
6840 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6841                                 SDValue Src, SDValue Size, Align Alignment,
6842                                 bool isVol, bool isTailCall,
6843                                 MachinePointerInfo DstPtrInfo) {
6844   // Check to see if we should lower the memset to stores first.
6845   // For cases within the target-specified limits, this is the best choice.
6846   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6847   if (ConstantSize) {
6848     // Memset with size zero? Just return the original chain.
6849     if (ConstantSize->isNullValue())
6850       return Chain;
6851 
6852     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6853                                      ConstantSize->getZExtValue(), Alignment,
6854                                      isVol, DstPtrInfo);
6855 
6856     if (Result.getNode())
6857       return Result;
6858   }
6859 
6860   // Then check to see if we should lower the memset with target-specific
6861   // code. If the target chooses to do this, this is the next best.
6862   if (TSI) {
6863     SDValue Result = TSI->EmitTargetCodeForMemset(
6864         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6865     if (Result.getNode())
6866       return Result;
6867   }
6868 
6869   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6870 
6871   // Emit a library call.
6872   TargetLowering::ArgListTy Args;
6873   TargetLowering::ArgListEntry Entry;
6874   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6875   Args.push_back(Entry);
6876   Entry.Node = Src;
6877   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6878   Args.push_back(Entry);
6879   Entry.Node = Size;
6880   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6881   Args.push_back(Entry);
6882 
6883   // FIXME: pass in SDLoc
6884   TargetLowering::CallLoweringInfo CLI(*this);
6885   CLI.setDebugLoc(dl)
6886       .setChain(Chain)
6887       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6888                     Dst.getValueType().getTypeForEVT(*getContext()),
6889                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6890                                       TLI->getPointerTy(getDataLayout())),
6891                     std::move(Args))
6892       .setDiscardResult()
6893       .setTailCall(isTailCall);
6894 
6895   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6896   return CallResult.second;
6897 }
6898 
6899 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6900                                       SDValue Dst, unsigned DstAlign,
6901                                       SDValue Value, SDValue Size, Type *SizeTy,
6902                                       unsigned ElemSz, bool isTailCall,
6903                                       MachinePointerInfo DstPtrInfo) {
6904   // Emit a library call.
6905   TargetLowering::ArgListTy Args;
6906   TargetLowering::ArgListEntry Entry;
6907   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6908   Entry.Node = Dst;
6909   Args.push_back(Entry);
6910 
6911   Entry.Ty = Type::getInt8Ty(*getContext());
6912   Entry.Node = Value;
6913   Args.push_back(Entry);
6914 
6915   Entry.Ty = SizeTy;
6916   Entry.Node = Size;
6917   Args.push_back(Entry);
6918 
6919   RTLIB::Libcall LibraryCall =
6920       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6921   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6922     report_fatal_error("Unsupported element size");
6923 
6924   TargetLowering::CallLoweringInfo CLI(*this);
6925   CLI.setDebugLoc(dl)
6926       .setChain(Chain)
6927       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6928                     Type::getVoidTy(*getContext()),
6929                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6930                                       TLI->getPointerTy(getDataLayout())),
6931                     std::move(Args))
6932       .setDiscardResult()
6933       .setTailCall(isTailCall);
6934 
6935   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6936   return CallResult.second;
6937 }
6938 
6939 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6940                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6941                                 MachineMemOperand *MMO) {
6942   FoldingSetNodeID ID;
6943   ID.AddInteger(MemVT.getRawBits());
6944   AddNodeIDNode(ID, Opcode, VTList, Ops);
6945   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6946   void* IP = nullptr;
6947   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6948     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6949     return SDValue(E, 0);
6950   }
6951 
6952   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6953                                     VTList, MemVT, MMO);
6954   createOperands(N, Ops);
6955 
6956   CSEMap.InsertNode(N, IP);
6957   InsertNode(N);
6958   return SDValue(N, 0);
6959 }
6960 
6961 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6962                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6963                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6964                                        MachineMemOperand *MMO) {
6965   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6966          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6967   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6968 
6969   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6970   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6971 }
6972 
6973 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6974                                 SDValue Chain, SDValue Ptr, SDValue Val,
6975                                 MachineMemOperand *MMO) {
6976   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6977           Opcode == ISD::ATOMIC_LOAD_SUB ||
6978           Opcode == ISD::ATOMIC_LOAD_AND ||
6979           Opcode == ISD::ATOMIC_LOAD_CLR ||
6980           Opcode == ISD::ATOMIC_LOAD_OR ||
6981           Opcode == ISD::ATOMIC_LOAD_XOR ||
6982           Opcode == ISD::ATOMIC_LOAD_NAND ||
6983           Opcode == ISD::ATOMIC_LOAD_MIN ||
6984           Opcode == ISD::ATOMIC_LOAD_MAX ||
6985           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6986           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6987           Opcode == ISD::ATOMIC_LOAD_FADD ||
6988           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6989           Opcode == ISD::ATOMIC_SWAP ||
6990           Opcode == ISD::ATOMIC_STORE) &&
6991          "Invalid Atomic Op");
6992 
6993   EVT VT = Val.getValueType();
6994 
6995   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6996                                                getVTList(VT, MVT::Other);
6997   SDValue Ops[] = {Chain, Ptr, Val};
6998   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6999 }
7000 
7001 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7002                                 EVT VT, SDValue Chain, SDValue Ptr,
7003                                 MachineMemOperand *MMO) {
7004   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7005 
7006   SDVTList VTs = getVTList(VT, MVT::Other);
7007   SDValue Ops[] = {Chain, Ptr};
7008   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7009 }
7010 
7011 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7012 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7013   if (Ops.size() == 1)
7014     return Ops[0];
7015 
7016   SmallVector<EVT, 4> VTs;
7017   VTs.reserve(Ops.size());
7018   for (const SDValue &Op : Ops)
7019     VTs.push_back(Op.getValueType());
7020   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7021 }
7022 
7023 SDValue SelectionDAG::getMemIntrinsicNode(
7024     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7025     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7026     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7027   if (!Size && MemVT.isScalableVector())
7028     Size = MemoryLocation::UnknownSize;
7029   else if (!Size)
7030     Size = MemVT.getStoreSize();
7031 
7032   MachineFunction &MF = getMachineFunction();
7033   MachineMemOperand *MMO =
7034       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7035 
7036   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7037 }
7038 
7039 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7040                                           SDVTList VTList,
7041                                           ArrayRef<SDValue> Ops, EVT MemVT,
7042                                           MachineMemOperand *MMO) {
7043   assert((Opcode == ISD::INTRINSIC_VOID ||
7044           Opcode == ISD::INTRINSIC_W_CHAIN ||
7045           Opcode == ISD::PREFETCH ||
7046           ((int)Opcode <= std::numeric_limits<int>::max() &&
7047            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7048          "Opcode is not a memory-accessing opcode!");
7049 
7050   // Memoize the node unless it returns a flag.
7051   MemIntrinsicSDNode *N;
7052   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7053     FoldingSetNodeID ID;
7054     AddNodeIDNode(ID, Opcode, VTList, Ops);
7055     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7056         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7057     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7058     void *IP = nullptr;
7059     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7060       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7061       return SDValue(E, 0);
7062     }
7063 
7064     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7065                                       VTList, MemVT, MMO);
7066     createOperands(N, Ops);
7067 
7068   CSEMap.InsertNode(N, IP);
7069   } else {
7070     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7071                                       VTList, MemVT, MMO);
7072     createOperands(N, Ops);
7073   }
7074   InsertNode(N);
7075   SDValue V(N, 0);
7076   NewSDValueDbgMsg(V, "Creating new node: ", this);
7077   return V;
7078 }
7079 
7080 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7081                                       SDValue Chain, int FrameIndex,
7082                                       int64_t Size, int64_t Offset) {
7083   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7084   const auto VTs = getVTList(MVT::Other);
7085   SDValue Ops[2] = {
7086       Chain,
7087       getFrameIndex(FrameIndex,
7088                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7089                     true)};
7090 
7091   FoldingSetNodeID ID;
7092   AddNodeIDNode(ID, Opcode, VTs, Ops);
7093   ID.AddInteger(FrameIndex);
7094   ID.AddInteger(Size);
7095   ID.AddInteger(Offset);
7096   void *IP = nullptr;
7097   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7098     return SDValue(E, 0);
7099 
7100   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7101       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7102   createOperands(N, Ops);
7103   CSEMap.InsertNode(N, IP);
7104   InsertNode(N);
7105   SDValue V(N, 0);
7106   NewSDValueDbgMsg(V, "Creating new node: ", this);
7107   return V;
7108 }
7109 
7110 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7111                                          uint64_t Guid, uint64_t Index,
7112                                          uint32_t Attr) {
7113   const unsigned Opcode = ISD::PSEUDO_PROBE;
7114   const auto VTs = getVTList(MVT::Other);
7115   SDValue Ops[] = {Chain};
7116   FoldingSetNodeID ID;
7117   AddNodeIDNode(ID, Opcode, VTs, Ops);
7118   ID.AddInteger(Guid);
7119   ID.AddInteger(Index);
7120   void *IP = nullptr;
7121   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7122     return SDValue(E, 0);
7123 
7124   auto *N = newSDNode<PseudoProbeSDNode>(
7125       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7126   createOperands(N, Ops);
7127   CSEMap.InsertNode(N, IP);
7128   InsertNode(N);
7129   SDValue V(N, 0);
7130   NewSDValueDbgMsg(V, "Creating new node: ", this);
7131   return V;
7132 }
7133 
7134 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7135 /// MachinePointerInfo record from it.  This is particularly useful because the
7136 /// code generator has many cases where it doesn't bother passing in a
7137 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7138 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7139                                            SelectionDAG &DAG, SDValue Ptr,
7140                                            int64_t Offset = 0) {
7141   // If this is FI+Offset, we can model it.
7142   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7143     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7144                                              FI->getIndex(), Offset);
7145 
7146   // If this is (FI+Offset1)+Offset2, we can model it.
7147   if (Ptr.getOpcode() != ISD::ADD ||
7148       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7149       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7150     return Info;
7151 
7152   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7153   return MachinePointerInfo::getFixedStack(
7154       DAG.getMachineFunction(), FI,
7155       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7156 }
7157 
7158 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7159 /// MachinePointerInfo record from it.  This is particularly useful because the
7160 /// code generator has many cases where it doesn't bother passing in a
7161 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7162 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7163                                            SelectionDAG &DAG, SDValue Ptr,
7164                                            SDValue OffsetOp) {
7165   // If the 'Offset' value isn't a constant, we can't handle this.
7166   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7167     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7168   if (OffsetOp.isUndef())
7169     return InferPointerInfo(Info, DAG, Ptr);
7170   return Info;
7171 }
7172 
7173 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7174                               EVT VT, const SDLoc &dl, SDValue Chain,
7175                               SDValue Ptr, SDValue Offset,
7176                               MachinePointerInfo PtrInfo, EVT MemVT,
7177                               Align Alignment,
7178                               MachineMemOperand::Flags MMOFlags,
7179                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7180   assert(Chain.getValueType() == MVT::Other &&
7181         "Invalid chain type");
7182 
7183   MMOFlags |= MachineMemOperand::MOLoad;
7184   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7185   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7186   // clients.
7187   if (PtrInfo.V.isNull())
7188     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7189 
7190   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7191   MachineFunction &MF = getMachineFunction();
7192   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7193                                                    Alignment, AAInfo, Ranges);
7194   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7195 }
7196 
7197 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7198                               EVT VT, const SDLoc &dl, SDValue Chain,
7199                               SDValue Ptr, SDValue Offset, EVT MemVT,
7200                               MachineMemOperand *MMO) {
7201   if (VT == MemVT) {
7202     ExtType = ISD::NON_EXTLOAD;
7203   } else if (ExtType == ISD::NON_EXTLOAD) {
7204     assert(VT == MemVT && "Non-extending load from different memory type!");
7205   } else {
7206     // Extending load.
7207     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7208            "Should only be an extending load, not truncating!");
7209     assert(VT.isInteger() == MemVT.isInteger() &&
7210            "Cannot convert from FP to Int or Int -> FP!");
7211     assert(VT.isVector() == MemVT.isVector() &&
7212            "Cannot use an ext load to convert to or from a vector!");
7213     assert((!VT.isVector() ||
7214             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7215            "Cannot use an ext load to change the number of vector elements!");
7216   }
7217 
7218   bool Indexed = AM != ISD::UNINDEXED;
7219   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7220 
7221   SDVTList VTs = Indexed ?
7222     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7223   SDValue Ops[] = { Chain, Ptr, Offset };
7224   FoldingSetNodeID ID;
7225   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7226   ID.AddInteger(MemVT.getRawBits());
7227   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7228       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7229   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7230   void *IP = nullptr;
7231   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7232     cast<LoadSDNode>(E)->refineAlignment(MMO);
7233     return SDValue(E, 0);
7234   }
7235   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7236                                   ExtType, MemVT, MMO);
7237   createOperands(N, Ops);
7238 
7239   CSEMap.InsertNode(N, IP);
7240   InsertNode(N);
7241   SDValue V(N, 0);
7242   NewSDValueDbgMsg(V, "Creating new node: ", this);
7243   return V;
7244 }
7245 
7246 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7247                               SDValue Ptr, MachinePointerInfo PtrInfo,
7248                               MaybeAlign Alignment,
7249                               MachineMemOperand::Flags MMOFlags,
7250                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7251   SDValue Undef = getUNDEF(Ptr.getValueType());
7252   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7253                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7254 }
7255 
7256 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7257                               SDValue Ptr, MachineMemOperand *MMO) {
7258   SDValue Undef = getUNDEF(Ptr.getValueType());
7259   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7260                  VT, MMO);
7261 }
7262 
7263 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7264                                  EVT VT, SDValue Chain, SDValue Ptr,
7265                                  MachinePointerInfo PtrInfo, EVT MemVT,
7266                                  MaybeAlign Alignment,
7267                                  MachineMemOperand::Flags MMOFlags,
7268                                  const AAMDNodes &AAInfo) {
7269   SDValue Undef = getUNDEF(Ptr.getValueType());
7270   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7271                  MemVT, Alignment, MMOFlags, AAInfo);
7272 }
7273 
7274 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7275                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7276                                  MachineMemOperand *MMO) {
7277   SDValue Undef = getUNDEF(Ptr.getValueType());
7278   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7279                  MemVT, MMO);
7280 }
7281 
7282 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7283                                      SDValue Base, SDValue Offset,
7284                                      ISD::MemIndexedMode AM) {
7285   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7286   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7287   // Don't propagate the invariant or dereferenceable flags.
7288   auto MMOFlags =
7289       LD->getMemOperand()->getFlags() &
7290       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7291   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7292                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7293                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7294 }
7295 
7296 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7297                                SDValue Ptr, MachinePointerInfo PtrInfo,
7298                                Align Alignment,
7299                                MachineMemOperand::Flags MMOFlags,
7300                                const AAMDNodes &AAInfo) {
7301   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7302 
7303   MMOFlags |= MachineMemOperand::MOStore;
7304   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7305 
7306   if (PtrInfo.V.isNull())
7307     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7308 
7309   MachineFunction &MF = getMachineFunction();
7310   uint64_t Size =
7311       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7312   MachineMemOperand *MMO =
7313       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7314   return getStore(Chain, dl, Val, Ptr, MMO);
7315 }
7316 
7317 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7318                                SDValue Ptr, MachineMemOperand *MMO) {
7319   assert(Chain.getValueType() == MVT::Other &&
7320         "Invalid chain type");
7321   EVT VT = Val.getValueType();
7322   SDVTList VTs = getVTList(MVT::Other);
7323   SDValue Undef = getUNDEF(Ptr.getValueType());
7324   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7325   FoldingSetNodeID ID;
7326   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7327   ID.AddInteger(VT.getRawBits());
7328   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7329       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7330   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7331   void *IP = nullptr;
7332   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7333     cast<StoreSDNode>(E)->refineAlignment(MMO);
7334     return SDValue(E, 0);
7335   }
7336   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7337                                    ISD::UNINDEXED, false, VT, MMO);
7338   createOperands(N, Ops);
7339 
7340   CSEMap.InsertNode(N, IP);
7341   InsertNode(N);
7342   SDValue V(N, 0);
7343   NewSDValueDbgMsg(V, "Creating new node: ", this);
7344   return V;
7345 }
7346 
7347 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7348                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7349                                     EVT SVT, Align Alignment,
7350                                     MachineMemOperand::Flags MMOFlags,
7351                                     const AAMDNodes &AAInfo) {
7352   assert(Chain.getValueType() == MVT::Other &&
7353         "Invalid chain type");
7354 
7355   MMOFlags |= MachineMemOperand::MOStore;
7356   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7357 
7358   if (PtrInfo.V.isNull())
7359     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7360 
7361   MachineFunction &MF = getMachineFunction();
7362   MachineMemOperand *MMO = MF.getMachineMemOperand(
7363       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7364       Alignment, AAInfo);
7365   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7366 }
7367 
7368 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7369                                     SDValue Ptr, EVT SVT,
7370                                     MachineMemOperand *MMO) {
7371   EVT VT = Val.getValueType();
7372 
7373   assert(Chain.getValueType() == MVT::Other &&
7374         "Invalid chain type");
7375   if (VT == SVT)
7376     return getStore(Chain, dl, Val, Ptr, MMO);
7377 
7378   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7379          "Should only be a truncating store, not extending!");
7380   assert(VT.isInteger() == SVT.isInteger() &&
7381          "Can't do FP-INT conversion!");
7382   assert(VT.isVector() == SVT.isVector() &&
7383          "Cannot use trunc store to convert to or from a vector!");
7384   assert((!VT.isVector() ||
7385           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7386          "Cannot use trunc store to change the number of vector elements!");
7387 
7388   SDVTList VTs = getVTList(MVT::Other);
7389   SDValue Undef = getUNDEF(Ptr.getValueType());
7390   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7391   FoldingSetNodeID ID;
7392   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7393   ID.AddInteger(SVT.getRawBits());
7394   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7395       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7396   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7397   void *IP = nullptr;
7398   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7399     cast<StoreSDNode>(E)->refineAlignment(MMO);
7400     return SDValue(E, 0);
7401   }
7402   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7403                                    ISD::UNINDEXED, true, SVT, MMO);
7404   createOperands(N, Ops);
7405 
7406   CSEMap.InsertNode(N, IP);
7407   InsertNode(N);
7408   SDValue V(N, 0);
7409   NewSDValueDbgMsg(V, "Creating new node: ", this);
7410   return V;
7411 }
7412 
7413 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7414                                       SDValue Base, SDValue Offset,
7415                                       ISD::MemIndexedMode AM) {
7416   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7417   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7418   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7419   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7420   FoldingSetNodeID ID;
7421   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7422   ID.AddInteger(ST->getMemoryVT().getRawBits());
7423   ID.AddInteger(ST->getRawSubclassData());
7424   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7425   void *IP = nullptr;
7426   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7427     return SDValue(E, 0);
7428 
7429   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7430                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7431                                    ST->getMemOperand());
7432   createOperands(N, Ops);
7433 
7434   CSEMap.InsertNode(N, IP);
7435   InsertNode(N);
7436   SDValue V(N, 0);
7437   NewSDValueDbgMsg(V, "Creating new node: ", this);
7438   return V;
7439 }
7440 
7441 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7442                                     SDValue Base, SDValue Offset, SDValue Mask,
7443                                     SDValue PassThru, EVT MemVT,
7444                                     MachineMemOperand *MMO,
7445                                     ISD::MemIndexedMode AM,
7446                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7447   bool Indexed = AM != ISD::UNINDEXED;
7448   assert((Indexed || Offset.isUndef()) &&
7449          "Unindexed masked load with an offset!");
7450   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7451                          : getVTList(VT, MVT::Other);
7452   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7453   FoldingSetNodeID ID;
7454   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7455   ID.AddInteger(MemVT.getRawBits());
7456   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7457       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7458   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7459   void *IP = nullptr;
7460   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7461     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7462     return SDValue(E, 0);
7463   }
7464   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7465                                         AM, ExtTy, isExpanding, MemVT, MMO);
7466   createOperands(N, Ops);
7467 
7468   CSEMap.InsertNode(N, IP);
7469   InsertNode(N);
7470   SDValue V(N, 0);
7471   NewSDValueDbgMsg(V, "Creating new node: ", this);
7472   return V;
7473 }
7474 
7475 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7476                                            SDValue Base, SDValue Offset,
7477                                            ISD::MemIndexedMode AM) {
7478   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7479   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7480   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7481                        Offset, LD->getMask(), LD->getPassThru(),
7482                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7483                        LD->getExtensionType(), LD->isExpandingLoad());
7484 }
7485 
7486 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7487                                      SDValue Val, SDValue Base, SDValue Offset,
7488                                      SDValue Mask, EVT MemVT,
7489                                      MachineMemOperand *MMO,
7490                                      ISD::MemIndexedMode AM, bool IsTruncating,
7491                                      bool IsCompressing) {
7492   assert(Chain.getValueType() == MVT::Other &&
7493         "Invalid chain type");
7494   bool Indexed = AM != ISD::UNINDEXED;
7495   assert((Indexed || Offset.isUndef()) &&
7496          "Unindexed masked store with an offset!");
7497   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7498                          : getVTList(MVT::Other);
7499   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7500   FoldingSetNodeID ID;
7501   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7502   ID.AddInteger(MemVT.getRawBits());
7503   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7504       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7505   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7506   void *IP = nullptr;
7507   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7508     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7509     return SDValue(E, 0);
7510   }
7511   auto *N =
7512       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7513                                    IsTruncating, IsCompressing, MemVT, MMO);
7514   createOperands(N, Ops);
7515 
7516   CSEMap.InsertNode(N, IP);
7517   InsertNode(N);
7518   SDValue V(N, 0);
7519   NewSDValueDbgMsg(V, "Creating new node: ", this);
7520   return V;
7521 }
7522 
7523 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7524                                             SDValue Base, SDValue Offset,
7525                                             ISD::MemIndexedMode AM) {
7526   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7527   assert(ST->getOffset().isUndef() &&
7528          "Masked store is already a indexed store!");
7529   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7530                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7531                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7532 }
7533 
7534 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7535                                       ArrayRef<SDValue> Ops,
7536                                       MachineMemOperand *MMO,
7537                                       ISD::MemIndexType IndexType,
7538                                       ISD::LoadExtType ExtTy) {
7539   assert(Ops.size() == 6 && "Incompatible number of operands");
7540 
7541   FoldingSetNodeID ID;
7542   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7543   ID.AddInteger(VT.getRawBits());
7544   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7545       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7546   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7547   void *IP = nullptr;
7548   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7549     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7550     return SDValue(E, 0);
7551   }
7552 
7553   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7554   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7555                                           VTs, VT, MMO, IndexType, ExtTy);
7556   createOperands(N, Ops);
7557 
7558   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7559          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7560   assert(N->getMask().getValueType().getVectorElementCount() ==
7561              N->getValueType(0).getVectorElementCount() &&
7562          "Vector width mismatch between mask and data");
7563   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7564              N->getValueType(0).getVectorElementCount().isScalable() &&
7565          "Scalable flags of index and data do not match");
7566   assert(ElementCount::isKnownGE(
7567              N->getIndex().getValueType().getVectorElementCount(),
7568              N->getValueType(0).getVectorElementCount()) &&
7569          "Vector width mismatch between index and data");
7570   assert(isa<ConstantSDNode>(N->getScale()) &&
7571          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7572          "Scale should be a constant power of 2");
7573 
7574   CSEMap.InsertNode(N, IP);
7575   InsertNode(N);
7576   SDValue V(N, 0);
7577   NewSDValueDbgMsg(V, "Creating new node: ", this);
7578   return V;
7579 }
7580 
7581 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7582                                        ArrayRef<SDValue> Ops,
7583                                        MachineMemOperand *MMO,
7584                                        ISD::MemIndexType IndexType,
7585                                        bool IsTrunc) {
7586   assert(Ops.size() == 6 && "Incompatible number of operands");
7587 
7588   FoldingSetNodeID ID;
7589   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7590   ID.AddInteger(VT.getRawBits());
7591   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7592       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7593   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7594   void *IP = nullptr;
7595   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7596     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7597     return SDValue(E, 0);
7598   }
7599 
7600   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7601   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7602                                            VTs, VT, MMO, IndexType, IsTrunc);
7603   createOperands(N, Ops);
7604 
7605   assert(N->getMask().getValueType().getVectorElementCount() ==
7606              N->getValue().getValueType().getVectorElementCount() &&
7607          "Vector width mismatch between mask and data");
7608   assert(
7609       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7610           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7611       "Scalable flags of index and data do not match");
7612   assert(ElementCount::isKnownGE(
7613              N->getIndex().getValueType().getVectorElementCount(),
7614              N->getValue().getValueType().getVectorElementCount()) &&
7615          "Vector width mismatch between index and data");
7616   assert(isa<ConstantSDNode>(N->getScale()) &&
7617          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7618          "Scale should be a constant power of 2");
7619 
7620   CSEMap.InsertNode(N, IP);
7621   InsertNode(N);
7622   SDValue V(N, 0);
7623   NewSDValueDbgMsg(V, "Creating new node: ", this);
7624   return V;
7625 }
7626 
7627 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7628   // select undef, T, F --> T (if T is a constant), otherwise F
7629   // select, ?, undef, F --> F
7630   // select, ?, T, undef --> T
7631   if (Cond.isUndef())
7632     return isConstantValueOfAnyType(T) ? T : F;
7633   if (T.isUndef())
7634     return F;
7635   if (F.isUndef())
7636     return T;
7637 
7638   // select true, T, F --> T
7639   // select false, T, F --> F
7640   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7641     return CondC->isNullValue() ? F : T;
7642 
7643   // TODO: This should simplify VSELECT with constant condition using something
7644   // like this (but check boolean contents to be complete?):
7645   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7646   //    return T;
7647   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7648   //    return F;
7649 
7650   // select ?, T, T --> T
7651   if (T == F)
7652     return T;
7653 
7654   return SDValue();
7655 }
7656 
7657 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7658   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7659   if (X.isUndef())
7660     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7661   // shift X, undef --> undef (because it may shift by the bitwidth)
7662   if (Y.isUndef())
7663     return getUNDEF(X.getValueType());
7664 
7665   // shift 0, Y --> 0
7666   // shift X, 0 --> X
7667   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7668     return X;
7669 
7670   // shift X, C >= bitwidth(X) --> undef
7671   // All vector elements must be too big (or undef) to avoid partial undefs.
7672   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7673     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7674   };
7675   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7676     return getUNDEF(X.getValueType());
7677 
7678   return SDValue();
7679 }
7680 
7681 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7682                                       SDNodeFlags Flags) {
7683   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7684   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7685   // operation is poison. That result can be relaxed to undef.
7686   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7687   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7688   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7689                 (YC && YC->getValueAPF().isNaN());
7690   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7691                 (YC && YC->getValueAPF().isInfinity());
7692 
7693   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7694     return getUNDEF(X.getValueType());
7695 
7696   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7697     return getUNDEF(X.getValueType());
7698 
7699   if (!YC)
7700     return SDValue();
7701 
7702   // X + -0.0 --> X
7703   if (Opcode == ISD::FADD)
7704     if (YC->getValueAPF().isNegZero())
7705       return X;
7706 
7707   // X - +0.0 --> X
7708   if (Opcode == ISD::FSUB)
7709     if (YC->getValueAPF().isPosZero())
7710       return X;
7711 
7712   // X * 1.0 --> X
7713   // X / 1.0 --> X
7714   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7715     if (YC->getValueAPF().isExactlyValue(1.0))
7716       return X;
7717 
7718   // X * 0.0 --> 0.0
7719   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7720     if (YC->getValueAPF().isZero())
7721       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7722 
7723   return SDValue();
7724 }
7725 
7726 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7727                                SDValue Ptr, SDValue SV, unsigned Align) {
7728   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7729   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7730 }
7731 
7732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7733                               ArrayRef<SDUse> Ops) {
7734   switch (Ops.size()) {
7735   case 0: return getNode(Opcode, DL, VT);
7736   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7737   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7738   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7739   default: break;
7740   }
7741 
7742   // Copy from an SDUse array into an SDValue array for use with
7743   // the regular getNode logic.
7744   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7745   return getNode(Opcode, DL, VT, NewOps);
7746 }
7747 
7748 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7749                               ArrayRef<SDValue> Ops) {
7750   SDNodeFlags Flags;
7751   if (Inserter)
7752     Flags = Inserter->getFlags();
7753   return getNode(Opcode, DL, VT, Ops, Flags);
7754 }
7755 
7756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7757                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7758   unsigned NumOps = Ops.size();
7759   switch (NumOps) {
7760   case 0: return getNode(Opcode, DL, VT);
7761   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7762   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7763   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7764   default: break;
7765   }
7766 
7767 #ifndef NDEBUG
7768   for (auto &Op : Ops)
7769     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7770            "Operand is DELETED_NODE!");
7771 #endif
7772 
7773   switch (Opcode) {
7774   default: break;
7775   case ISD::BUILD_VECTOR:
7776     // Attempt to simplify BUILD_VECTOR.
7777     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7778       return V;
7779     break;
7780   case ISD::CONCAT_VECTORS:
7781     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7782       return V;
7783     break;
7784   case ISD::SELECT_CC:
7785     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7786     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7787            "LHS and RHS of condition must have same type!");
7788     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7789            "True and False arms of SelectCC must have same type!");
7790     assert(Ops[2].getValueType() == VT &&
7791            "select_cc node must be of same type as true and false value!");
7792     break;
7793   case ISD::BR_CC:
7794     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7795     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7796            "LHS/RHS of comparison should match types!");
7797     break;
7798   }
7799 
7800   // Memoize nodes.
7801   SDNode *N;
7802   SDVTList VTs = getVTList(VT);
7803 
7804   if (VT != MVT::Glue) {
7805     FoldingSetNodeID ID;
7806     AddNodeIDNode(ID, Opcode, VTs, Ops);
7807     void *IP = nullptr;
7808 
7809     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7810       return SDValue(E, 0);
7811 
7812     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7813     createOperands(N, Ops);
7814 
7815     CSEMap.InsertNode(N, IP);
7816   } else {
7817     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7818     createOperands(N, Ops);
7819   }
7820 
7821   N->setFlags(Flags);
7822   InsertNode(N);
7823   SDValue V(N, 0);
7824   NewSDValueDbgMsg(V, "Creating new node: ", this);
7825   return V;
7826 }
7827 
7828 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7829                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7830   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7831 }
7832 
7833 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7834                               ArrayRef<SDValue> Ops) {
7835   SDNodeFlags Flags;
7836   if (Inserter)
7837     Flags = Inserter->getFlags();
7838   return getNode(Opcode, DL, VTList, Ops, Flags);
7839 }
7840 
7841 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7842                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7843   if (VTList.NumVTs == 1)
7844     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7845 
7846 #ifndef NDEBUG
7847   for (auto &Op : Ops)
7848     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7849            "Operand is DELETED_NODE!");
7850 #endif
7851 
7852   switch (Opcode) {
7853   case ISD::STRICT_FP_EXTEND:
7854     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7855            "Invalid STRICT_FP_EXTEND!");
7856     assert(VTList.VTs[0].isFloatingPoint() &&
7857            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7858     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7859            "STRICT_FP_EXTEND result type should be vector iff the operand "
7860            "type is vector!");
7861     assert((!VTList.VTs[0].isVector() ||
7862             VTList.VTs[0].getVectorNumElements() ==
7863             Ops[1].getValueType().getVectorNumElements()) &&
7864            "Vector element count mismatch!");
7865     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7866            "Invalid fpext node, dst <= src!");
7867     break;
7868   case ISD::STRICT_FP_ROUND:
7869     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7870     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7871            "STRICT_FP_ROUND result type should be vector iff the operand "
7872            "type is vector!");
7873     assert((!VTList.VTs[0].isVector() ||
7874             VTList.VTs[0].getVectorNumElements() ==
7875             Ops[1].getValueType().getVectorNumElements()) &&
7876            "Vector element count mismatch!");
7877     assert(VTList.VTs[0].isFloatingPoint() &&
7878            Ops[1].getValueType().isFloatingPoint() &&
7879            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7880            isa<ConstantSDNode>(Ops[2]) &&
7881            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7882             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7883            "Invalid STRICT_FP_ROUND!");
7884     break;
7885 #if 0
7886   // FIXME: figure out how to safely handle things like
7887   // int foo(int x) { return 1 << (x & 255); }
7888   // int bar() { return foo(256); }
7889   case ISD::SRA_PARTS:
7890   case ISD::SRL_PARTS:
7891   case ISD::SHL_PARTS:
7892     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7893         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7894       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7895     else if (N3.getOpcode() == ISD::AND)
7896       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7897         // If the and is only masking out bits that cannot effect the shift,
7898         // eliminate the and.
7899         unsigned NumBits = VT.getScalarSizeInBits()*2;
7900         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7901           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7902       }
7903     break;
7904 #endif
7905   }
7906 
7907   // Memoize the node unless it returns a flag.
7908   SDNode *N;
7909   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7910     FoldingSetNodeID ID;
7911     AddNodeIDNode(ID, Opcode, VTList, Ops);
7912     void *IP = nullptr;
7913     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7914       return SDValue(E, 0);
7915 
7916     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7917     createOperands(N, Ops);
7918     CSEMap.InsertNode(N, IP);
7919   } else {
7920     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7921     createOperands(N, Ops);
7922   }
7923 
7924   N->setFlags(Flags);
7925   InsertNode(N);
7926   SDValue V(N, 0);
7927   NewSDValueDbgMsg(V, "Creating new node: ", this);
7928   return V;
7929 }
7930 
7931 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7932                               SDVTList VTList) {
7933   return getNode(Opcode, DL, VTList, None);
7934 }
7935 
7936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7937                               SDValue N1) {
7938   SDValue Ops[] = { N1 };
7939   return getNode(Opcode, DL, VTList, Ops);
7940 }
7941 
7942 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7943                               SDValue N1, SDValue N2) {
7944   SDValue Ops[] = { N1, N2 };
7945   return getNode(Opcode, DL, VTList, Ops);
7946 }
7947 
7948 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7949                               SDValue N1, SDValue N2, SDValue N3) {
7950   SDValue Ops[] = { N1, N2, N3 };
7951   return getNode(Opcode, DL, VTList, Ops);
7952 }
7953 
7954 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7955                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7956   SDValue Ops[] = { N1, N2, N3, N4 };
7957   return getNode(Opcode, DL, VTList, Ops);
7958 }
7959 
7960 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7961                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7962                               SDValue N5) {
7963   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7964   return getNode(Opcode, DL, VTList, Ops);
7965 }
7966 
7967 SDVTList SelectionDAG::getVTList(EVT VT) {
7968   return makeVTList(SDNode::getValueTypeList(VT), 1);
7969 }
7970 
7971 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7972   FoldingSetNodeID ID;
7973   ID.AddInteger(2U);
7974   ID.AddInteger(VT1.getRawBits());
7975   ID.AddInteger(VT2.getRawBits());
7976 
7977   void *IP = nullptr;
7978   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7979   if (!Result) {
7980     EVT *Array = Allocator.Allocate<EVT>(2);
7981     Array[0] = VT1;
7982     Array[1] = VT2;
7983     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7984     VTListMap.InsertNode(Result, IP);
7985   }
7986   return Result->getSDVTList();
7987 }
7988 
7989 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7990   FoldingSetNodeID ID;
7991   ID.AddInteger(3U);
7992   ID.AddInteger(VT1.getRawBits());
7993   ID.AddInteger(VT2.getRawBits());
7994   ID.AddInteger(VT3.getRawBits());
7995 
7996   void *IP = nullptr;
7997   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7998   if (!Result) {
7999     EVT *Array = Allocator.Allocate<EVT>(3);
8000     Array[0] = VT1;
8001     Array[1] = VT2;
8002     Array[2] = VT3;
8003     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8004     VTListMap.InsertNode(Result, IP);
8005   }
8006   return Result->getSDVTList();
8007 }
8008 
8009 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8010   FoldingSetNodeID ID;
8011   ID.AddInteger(4U);
8012   ID.AddInteger(VT1.getRawBits());
8013   ID.AddInteger(VT2.getRawBits());
8014   ID.AddInteger(VT3.getRawBits());
8015   ID.AddInteger(VT4.getRawBits());
8016 
8017   void *IP = nullptr;
8018   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8019   if (!Result) {
8020     EVT *Array = Allocator.Allocate<EVT>(4);
8021     Array[0] = VT1;
8022     Array[1] = VT2;
8023     Array[2] = VT3;
8024     Array[3] = VT4;
8025     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8026     VTListMap.InsertNode(Result, IP);
8027   }
8028   return Result->getSDVTList();
8029 }
8030 
8031 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8032   unsigned NumVTs = VTs.size();
8033   FoldingSetNodeID ID;
8034   ID.AddInteger(NumVTs);
8035   for (unsigned index = 0; index < NumVTs; index++) {
8036     ID.AddInteger(VTs[index].getRawBits());
8037   }
8038 
8039   void *IP = nullptr;
8040   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8041   if (!Result) {
8042     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8043     llvm::copy(VTs, Array);
8044     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8045     VTListMap.InsertNode(Result, IP);
8046   }
8047   return Result->getSDVTList();
8048 }
8049 
8050 
8051 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8052 /// specified operands.  If the resultant node already exists in the DAG,
8053 /// this does not modify the specified node, instead it returns the node that
8054 /// already exists.  If the resultant node does not exist in the DAG, the
8055 /// input node is returned.  As a degenerate case, if you specify the same
8056 /// input operands as the node already has, the input node is returned.
8057 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8058   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8059 
8060   // Check to see if there is no change.
8061   if (Op == N->getOperand(0)) return N;
8062 
8063   // See if the modified node already exists.
8064   void *InsertPos = nullptr;
8065   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8066     return Existing;
8067 
8068   // Nope it doesn't.  Remove the node from its current place in the maps.
8069   if (InsertPos)
8070     if (!RemoveNodeFromCSEMaps(N))
8071       InsertPos = nullptr;
8072 
8073   // Now we update the operands.
8074   N->OperandList[0].set(Op);
8075 
8076   updateDivergence(N);
8077   // If this gets put into a CSE map, add it.
8078   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8079   return N;
8080 }
8081 
8082 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8083   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8084 
8085   // Check to see if there is no change.
8086   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8087     return N;   // No operands changed, just return the input node.
8088 
8089   // See if the modified node already exists.
8090   void *InsertPos = nullptr;
8091   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8092     return Existing;
8093 
8094   // Nope it doesn't.  Remove the node from its current place in the maps.
8095   if (InsertPos)
8096     if (!RemoveNodeFromCSEMaps(N))
8097       InsertPos = nullptr;
8098 
8099   // Now we update the operands.
8100   if (N->OperandList[0] != Op1)
8101     N->OperandList[0].set(Op1);
8102   if (N->OperandList[1] != Op2)
8103     N->OperandList[1].set(Op2);
8104 
8105   updateDivergence(N);
8106   // If this gets put into a CSE map, add it.
8107   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8108   return N;
8109 }
8110 
8111 SDNode *SelectionDAG::
8112 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8113   SDValue Ops[] = { Op1, Op2, Op3 };
8114   return UpdateNodeOperands(N, Ops);
8115 }
8116 
8117 SDNode *SelectionDAG::
8118 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8119                    SDValue Op3, SDValue Op4) {
8120   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8121   return UpdateNodeOperands(N, Ops);
8122 }
8123 
8124 SDNode *SelectionDAG::
8125 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8126                    SDValue Op3, SDValue Op4, SDValue Op5) {
8127   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8128   return UpdateNodeOperands(N, Ops);
8129 }
8130 
8131 SDNode *SelectionDAG::
8132 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8133   unsigned NumOps = Ops.size();
8134   assert(N->getNumOperands() == NumOps &&
8135          "Update with wrong number of operands");
8136 
8137   // If no operands changed just return the input node.
8138   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8139     return N;
8140 
8141   // See if the modified node already exists.
8142   void *InsertPos = nullptr;
8143   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8144     return Existing;
8145 
8146   // Nope it doesn't.  Remove the node from its current place in the maps.
8147   if (InsertPos)
8148     if (!RemoveNodeFromCSEMaps(N))
8149       InsertPos = nullptr;
8150 
8151   // Now we update the operands.
8152   for (unsigned i = 0; i != NumOps; ++i)
8153     if (N->OperandList[i] != Ops[i])
8154       N->OperandList[i].set(Ops[i]);
8155 
8156   updateDivergence(N);
8157   // If this gets put into a CSE map, add it.
8158   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8159   return N;
8160 }
8161 
8162 /// DropOperands - Release the operands and set this node to have
8163 /// zero operands.
8164 void SDNode::DropOperands() {
8165   // Unlike the code in MorphNodeTo that does this, we don't need to
8166   // watch for dead nodes here.
8167   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8168     SDUse &Use = *I++;
8169     Use.set(SDValue());
8170   }
8171 }
8172 
8173 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8174                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8175   if (NewMemRefs.empty()) {
8176     N->clearMemRefs();
8177     return;
8178   }
8179 
8180   // Check if we can avoid allocating by storing a single reference directly.
8181   if (NewMemRefs.size() == 1) {
8182     N->MemRefs = NewMemRefs[0];
8183     N->NumMemRefs = 1;
8184     return;
8185   }
8186 
8187   MachineMemOperand **MemRefsBuffer =
8188       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8189   llvm::copy(NewMemRefs, MemRefsBuffer);
8190   N->MemRefs = MemRefsBuffer;
8191   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8192 }
8193 
8194 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8195 /// machine opcode.
8196 ///
8197 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8198                                    EVT VT) {
8199   SDVTList VTs = getVTList(VT);
8200   return SelectNodeTo(N, MachineOpc, VTs, None);
8201 }
8202 
8203 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8204                                    EVT VT, SDValue Op1) {
8205   SDVTList VTs = getVTList(VT);
8206   SDValue Ops[] = { Op1 };
8207   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8208 }
8209 
8210 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8211                                    EVT VT, SDValue Op1,
8212                                    SDValue Op2) {
8213   SDVTList VTs = getVTList(VT);
8214   SDValue Ops[] = { Op1, Op2 };
8215   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8216 }
8217 
8218 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8219                                    EVT VT, SDValue Op1,
8220                                    SDValue Op2, SDValue Op3) {
8221   SDVTList VTs = getVTList(VT);
8222   SDValue Ops[] = { Op1, Op2, Op3 };
8223   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8224 }
8225 
8226 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8227                                    EVT VT, ArrayRef<SDValue> Ops) {
8228   SDVTList VTs = getVTList(VT);
8229   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8230 }
8231 
8232 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8233                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8234   SDVTList VTs = getVTList(VT1, VT2);
8235   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8236 }
8237 
8238 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8239                                    EVT VT1, EVT VT2) {
8240   SDVTList VTs = getVTList(VT1, VT2);
8241   return SelectNodeTo(N, MachineOpc, VTs, None);
8242 }
8243 
8244 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8245                                    EVT VT1, EVT VT2, EVT VT3,
8246                                    ArrayRef<SDValue> Ops) {
8247   SDVTList VTs = getVTList(VT1, VT2, VT3);
8248   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8249 }
8250 
8251 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8252                                    EVT VT1, EVT VT2,
8253                                    SDValue Op1, SDValue Op2) {
8254   SDVTList VTs = getVTList(VT1, VT2);
8255   SDValue Ops[] = { Op1, Op2 };
8256   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8257 }
8258 
8259 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8260                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8261   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8262   // Reset the NodeID to -1.
8263   New->setNodeId(-1);
8264   if (New != N) {
8265     ReplaceAllUsesWith(N, New);
8266     RemoveDeadNode(N);
8267   }
8268   return New;
8269 }
8270 
8271 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8272 /// the line number information on the merged node since it is not possible to
8273 /// preserve the information that operation is associated with multiple lines.
8274 /// This will make the debugger working better at -O0, were there is a higher
8275 /// probability having other instructions associated with that line.
8276 ///
8277 /// For IROrder, we keep the smaller of the two
8278 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8279   DebugLoc NLoc = N->getDebugLoc();
8280   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8281     N->setDebugLoc(DebugLoc());
8282   }
8283   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8284   N->setIROrder(Order);
8285   return N;
8286 }
8287 
8288 /// MorphNodeTo - This *mutates* the specified node to have the specified
8289 /// return type, opcode, and operands.
8290 ///
8291 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8292 /// node of the specified opcode and operands, it returns that node instead of
8293 /// the current one.  Note that the SDLoc need not be the same.
8294 ///
8295 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8296 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8297 /// node, and because it doesn't require CSE recalculation for any of
8298 /// the node's users.
8299 ///
8300 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8301 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8302 /// the legalizer which maintain worklists that would need to be updated when
8303 /// deleting things.
8304 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8305                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8306   // If an identical node already exists, use it.
8307   void *IP = nullptr;
8308   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8309     FoldingSetNodeID ID;
8310     AddNodeIDNode(ID, Opc, VTs, Ops);
8311     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8312       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8313   }
8314 
8315   if (!RemoveNodeFromCSEMaps(N))
8316     IP = nullptr;
8317 
8318   // Start the morphing.
8319   N->NodeType = Opc;
8320   N->ValueList = VTs.VTs;
8321   N->NumValues = VTs.NumVTs;
8322 
8323   // Clear the operands list, updating used nodes to remove this from their
8324   // use list.  Keep track of any operands that become dead as a result.
8325   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8326   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8327     SDUse &Use = *I++;
8328     SDNode *Used = Use.getNode();
8329     Use.set(SDValue());
8330     if (Used->use_empty())
8331       DeadNodeSet.insert(Used);
8332   }
8333 
8334   // For MachineNode, initialize the memory references information.
8335   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8336     MN->clearMemRefs();
8337 
8338   // Swap for an appropriately sized array from the recycler.
8339   removeOperands(N);
8340   createOperands(N, Ops);
8341 
8342   // Delete any nodes that are still dead after adding the uses for the
8343   // new operands.
8344   if (!DeadNodeSet.empty()) {
8345     SmallVector<SDNode *, 16> DeadNodes;
8346     for (SDNode *N : DeadNodeSet)
8347       if (N->use_empty())
8348         DeadNodes.push_back(N);
8349     RemoveDeadNodes(DeadNodes);
8350   }
8351 
8352   if (IP)
8353     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8354   return N;
8355 }
8356 
8357 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8358   unsigned OrigOpc = Node->getOpcode();
8359   unsigned NewOpc;
8360   switch (OrigOpc) {
8361   default:
8362     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8363 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8364   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8365 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8366   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8367 #include "llvm/IR/ConstrainedOps.def"
8368   }
8369 
8370   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8371 
8372   // We're taking this node out of the chain, so we need to re-link things.
8373   SDValue InputChain = Node->getOperand(0);
8374   SDValue OutputChain = SDValue(Node, 1);
8375   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8376 
8377   SmallVector<SDValue, 3> Ops;
8378   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8379     Ops.push_back(Node->getOperand(i));
8380 
8381   SDVTList VTs = getVTList(Node->getValueType(0));
8382   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8383 
8384   // MorphNodeTo can operate in two ways: if an existing node with the
8385   // specified operands exists, it can just return it.  Otherwise, it
8386   // updates the node in place to have the requested operands.
8387   if (Res == Node) {
8388     // If we updated the node in place, reset the node ID.  To the isel,
8389     // this should be just like a newly allocated machine node.
8390     Res->setNodeId(-1);
8391   } else {
8392     ReplaceAllUsesWith(Node, Res);
8393     RemoveDeadNode(Node);
8394   }
8395 
8396   return Res;
8397 }
8398 
8399 /// getMachineNode - These are used for target selectors to create a new node
8400 /// with specified return type(s), MachineInstr opcode, and operands.
8401 ///
8402 /// Note that getMachineNode returns the resultant node.  If there is already a
8403 /// node of the specified opcode and operands, it returns that node instead of
8404 /// the current one.
8405 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8406                                             EVT VT) {
8407   SDVTList VTs = getVTList(VT);
8408   return getMachineNode(Opcode, dl, VTs, None);
8409 }
8410 
8411 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8412                                             EVT VT, SDValue Op1) {
8413   SDVTList VTs = getVTList(VT);
8414   SDValue Ops[] = { Op1 };
8415   return getMachineNode(Opcode, dl, VTs, Ops);
8416 }
8417 
8418 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8419                                             EVT VT, SDValue Op1, SDValue Op2) {
8420   SDVTList VTs = getVTList(VT);
8421   SDValue Ops[] = { Op1, Op2 };
8422   return getMachineNode(Opcode, dl, VTs, Ops);
8423 }
8424 
8425 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8426                                             EVT VT, SDValue Op1, SDValue Op2,
8427                                             SDValue Op3) {
8428   SDVTList VTs = getVTList(VT);
8429   SDValue Ops[] = { Op1, Op2, Op3 };
8430   return getMachineNode(Opcode, dl, VTs, Ops);
8431 }
8432 
8433 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8434                                             EVT VT, ArrayRef<SDValue> Ops) {
8435   SDVTList VTs = getVTList(VT);
8436   return getMachineNode(Opcode, dl, VTs, Ops);
8437 }
8438 
8439 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8440                                             EVT VT1, EVT VT2, SDValue Op1,
8441                                             SDValue Op2) {
8442   SDVTList VTs = getVTList(VT1, VT2);
8443   SDValue Ops[] = { Op1, Op2 };
8444   return getMachineNode(Opcode, dl, VTs, Ops);
8445 }
8446 
8447 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8448                                             EVT VT1, EVT VT2, SDValue Op1,
8449                                             SDValue Op2, SDValue Op3) {
8450   SDVTList VTs = getVTList(VT1, VT2);
8451   SDValue Ops[] = { Op1, Op2, Op3 };
8452   return getMachineNode(Opcode, dl, VTs, Ops);
8453 }
8454 
8455 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8456                                             EVT VT1, EVT VT2,
8457                                             ArrayRef<SDValue> Ops) {
8458   SDVTList VTs = getVTList(VT1, VT2);
8459   return getMachineNode(Opcode, dl, VTs, Ops);
8460 }
8461 
8462 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8463                                             EVT VT1, EVT VT2, EVT VT3,
8464                                             SDValue Op1, SDValue Op2) {
8465   SDVTList VTs = getVTList(VT1, VT2, VT3);
8466   SDValue Ops[] = { Op1, Op2 };
8467   return getMachineNode(Opcode, dl, VTs, Ops);
8468 }
8469 
8470 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8471                                             EVT VT1, EVT VT2, EVT VT3,
8472                                             SDValue Op1, SDValue Op2,
8473                                             SDValue Op3) {
8474   SDVTList VTs = getVTList(VT1, VT2, VT3);
8475   SDValue Ops[] = { Op1, Op2, Op3 };
8476   return getMachineNode(Opcode, dl, VTs, Ops);
8477 }
8478 
8479 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8480                                             EVT VT1, EVT VT2, EVT VT3,
8481                                             ArrayRef<SDValue> Ops) {
8482   SDVTList VTs = getVTList(VT1, VT2, VT3);
8483   return getMachineNode(Opcode, dl, VTs, Ops);
8484 }
8485 
8486 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8487                                             ArrayRef<EVT> ResultTys,
8488                                             ArrayRef<SDValue> Ops) {
8489   SDVTList VTs = getVTList(ResultTys);
8490   return getMachineNode(Opcode, dl, VTs, Ops);
8491 }
8492 
8493 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8494                                             SDVTList VTs,
8495                                             ArrayRef<SDValue> Ops) {
8496   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8497   MachineSDNode *N;
8498   void *IP = nullptr;
8499 
8500   if (DoCSE) {
8501     FoldingSetNodeID ID;
8502     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8503     IP = nullptr;
8504     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8505       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8506     }
8507   }
8508 
8509   // Allocate a new MachineSDNode.
8510   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8511   createOperands(N, Ops);
8512 
8513   if (DoCSE)
8514     CSEMap.InsertNode(N, IP);
8515 
8516   InsertNode(N);
8517   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8518   return N;
8519 }
8520 
8521 /// getTargetExtractSubreg - A convenience function for creating
8522 /// TargetOpcode::EXTRACT_SUBREG nodes.
8523 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8524                                              SDValue Operand) {
8525   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8526   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8527                                   VT, Operand, SRIdxVal);
8528   return SDValue(Subreg, 0);
8529 }
8530 
8531 /// getTargetInsertSubreg - A convenience function for creating
8532 /// TargetOpcode::INSERT_SUBREG nodes.
8533 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8534                                             SDValue Operand, SDValue Subreg) {
8535   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8536   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8537                                   VT, Operand, Subreg, SRIdxVal);
8538   return SDValue(Result, 0);
8539 }
8540 
8541 /// getNodeIfExists - Get the specified node if it's already available, or
8542 /// else return NULL.
8543 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8544                                       ArrayRef<SDValue> Ops) {
8545   SDNodeFlags Flags;
8546   if (Inserter)
8547     Flags = Inserter->getFlags();
8548   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8549 }
8550 
8551 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8552                                       ArrayRef<SDValue> Ops,
8553                                       const SDNodeFlags Flags) {
8554   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8555     FoldingSetNodeID ID;
8556     AddNodeIDNode(ID, Opcode, VTList, Ops);
8557     void *IP = nullptr;
8558     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8559       E->intersectFlagsWith(Flags);
8560       return E;
8561     }
8562   }
8563   return nullptr;
8564 }
8565 
8566 /// doesNodeExist - Check if a node exists without modifying its flags.
8567 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8568                                  ArrayRef<SDValue> Ops) {
8569   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8570     FoldingSetNodeID ID;
8571     AddNodeIDNode(ID, Opcode, VTList, Ops);
8572     void *IP = nullptr;
8573     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8574       return true;
8575   }
8576   return false;
8577 }
8578 
8579 /// getDbgValue - Creates a SDDbgValue node.
8580 ///
8581 /// SDNode
8582 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8583                                       SDNode *N, unsigned R, bool IsIndirect,
8584                                       const DebugLoc &DL, unsigned O) {
8585   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8586          "Expected inlined-at fields to agree");
8587   return new (DbgInfo->getAlloc())
8588       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8589                  {}, IsIndirect, DL, O,
8590                  /*IsVariadic=*/false);
8591 }
8592 
8593 /// Constant
8594 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8595                                               DIExpression *Expr,
8596                                               const Value *C,
8597                                               const DebugLoc &DL, unsigned O) {
8598   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8599          "Expected inlined-at fields to agree");
8600   return new (DbgInfo->getAlloc())
8601       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8602                  /*IsIndirect=*/false, DL, O,
8603                  /*IsVariadic=*/false);
8604 }
8605 
8606 /// FrameIndex
8607 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8608                                                 DIExpression *Expr, unsigned FI,
8609                                                 bool IsIndirect,
8610                                                 const DebugLoc &DL,
8611                                                 unsigned O) {
8612   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8613          "Expected inlined-at fields to agree");
8614   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8615 }
8616 
8617 /// FrameIndex with dependencies
8618 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8619                                                 DIExpression *Expr, unsigned FI,
8620                                                 ArrayRef<SDNode *> Dependencies,
8621                                                 bool IsIndirect,
8622                                                 const DebugLoc &DL,
8623                                                 unsigned O) {
8624   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8625          "Expected inlined-at fields to agree");
8626   return new (DbgInfo->getAlloc())
8627       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8628                  Dependencies, IsIndirect, DL, O,
8629                  /*IsVariadic=*/false);
8630 }
8631 
8632 /// VReg
8633 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8634                                           unsigned VReg, bool IsIndirect,
8635                                           const DebugLoc &DL, unsigned O) {
8636   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8637          "Expected inlined-at fields to agree");
8638   return new (DbgInfo->getAlloc())
8639       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8640                  {}, IsIndirect, DL, O,
8641                  /*IsVariadic=*/false);
8642 }
8643 
8644 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8645                                           ArrayRef<SDDbgOperand> Locs,
8646                                           ArrayRef<SDNode *> Dependencies,
8647                                           bool IsIndirect, const DebugLoc &DL,
8648                                           unsigned O, bool IsVariadic) {
8649   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8650          "Expected inlined-at fields to agree");
8651   return new (DbgInfo->getAlloc())
8652       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8653                  DL, O, IsVariadic);
8654 }
8655 
8656 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8657                                      unsigned OffsetInBits, unsigned SizeInBits,
8658                                      bool InvalidateDbg) {
8659   SDNode *FromNode = From.getNode();
8660   SDNode *ToNode = To.getNode();
8661   assert(FromNode && ToNode && "Can't modify dbg values");
8662 
8663   // PR35338
8664   // TODO: assert(From != To && "Redundant dbg value transfer");
8665   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8666   if (From == To || FromNode == ToNode)
8667     return;
8668 
8669   if (!FromNode->getHasDebugValue())
8670     return;
8671 
8672   SDDbgOperand FromLocOp =
8673       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8674   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8675 
8676   SmallVector<SDDbgValue *, 2> ClonedDVs;
8677   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8678     if (Dbg->isInvalidated())
8679       continue;
8680 
8681     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8682 
8683     // Create a new location ops vector that is equal to the old vector, but
8684     // with each instance of FromLocOp replaced with ToLocOp.
8685     bool Changed = false;
8686     auto NewLocOps = Dbg->copyLocationOps();
8687     std::replace_if(
8688         NewLocOps.begin(), NewLocOps.end(),
8689         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8690           bool Match = Op == FromLocOp;
8691           Changed |= Match;
8692           return Match;
8693         },
8694         ToLocOp);
8695     // Ignore this SDDbgValue if we didn't find a matching location.
8696     if (!Changed)
8697       continue;
8698 
8699     DIVariable *Var = Dbg->getVariable();
8700     auto *Expr = Dbg->getExpression();
8701     // If a fragment is requested, update the expression.
8702     if (SizeInBits) {
8703       // When splitting a larger (e.g., sign-extended) value whose
8704       // lower bits are described with an SDDbgValue, do not attempt
8705       // to transfer the SDDbgValue to the upper bits.
8706       if (auto FI = Expr->getFragmentInfo())
8707         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8708           continue;
8709       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8710                                                              SizeInBits);
8711       if (!Fragment)
8712         continue;
8713       Expr = *Fragment;
8714     }
8715 
8716     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8717     // Clone the SDDbgValue and move it to To.
8718     SDDbgValue *Clone = getDbgValueList(
8719         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8720         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8721         Dbg->isVariadic());
8722     ClonedDVs.push_back(Clone);
8723 
8724     if (InvalidateDbg) {
8725       // Invalidate value and indicate the SDDbgValue should not be emitted.
8726       Dbg->setIsInvalidated();
8727       Dbg->setIsEmitted();
8728     }
8729   }
8730 
8731   for (SDDbgValue *Dbg : ClonedDVs) {
8732     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8733            "Transferred DbgValues should depend on the new SDNode");
8734     AddDbgValue(Dbg, false);
8735   }
8736 }
8737 
8738 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8739   if (!N.getHasDebugValue())
8740     return;
8741 
8742   SmallVector<SDDbgValue *, 2> ClonedDVs;
8743   for (auto DV : GetDbgValues(&N)) {
8744     if (DV->isInvalidated())
8745       continue;
8746     switch (N.getOpcode()) {
8747     default:
8748       break;
8749     case ISD::ADD:
8750       SDValue N0 = N.getOperand(0);
8751       SDValue N1 = N.getOperand(1);
8752       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8753           isConstantIntBuildVectorOrConstantInt(N1)) {
8754         uint64_t Offset = N.getConstantOperandVal(1);
8755 
8756         // Rewrite an ADD constant node into a DIExpression. Since we are
8757         // performing arithmetic to compute the variable's *value* in the
8758         // DIExpression, we need to mark the expression with a
8759         // DW_OP_stack_value.
8760         auto *DIExpr = DV->getExpression();
8761         auto NewLocOps = DV->copyLocationOps();
8762         bool Changed = false;
8763         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8764           // We're not given a ResNo to compare against because the whole
8765           // node is going away. We know that any ISD::ADD only has one
8766           // result, so we can assume any node match is using the result.
8767           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8768               NewLocOps[i].getSDNode() != &N)
8769             continue;
8770           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8771           SmallVector<uint64_t, 3> ExprOps;
8772           DIExpression::appendOffset(ExprOps, Offset);
8773           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8774           Changed = true;
8775         }
8776         (void)Changed;
8777         assert(Changed && "Salvage target doesn't use N");
8778 
8779         auto AdditionalDependencies = DV->getAdditionalDependencies();
8780         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8781                                             NewLocOps, AdditionalDependencies,
8782                                             DV->isIndirect(), DV->getDebugLoc(),
8783                                             DV->getOrder(), DV->isVariadic());
8784         ClonedDVs.push_back(Clone);
8785         DV->setIsInvalidated();
8786         DV->setIsEmitted();
8787         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8788                    N0.getNode()->dumprFull(this);
8789                    dbgs() << " into " << *DIExpr << '\n');
8790       }
8791     }
8792   }
8793 
8794   for (SDDbgValue *Dbg : ClonedDVs) {
8795     assert(!Dbg->getSDNodes().empty() &&
8796            "Salvaged DbgValue should depend on a new SDNode");
8797     AddDbgValue(Dbg, false);
8798   }
8799 }
8800 
8801 /// Creates a SDDbgLabel node.
8802 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8803                                       const DebugLoc &DL, unsigned O) {
8804   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8805          "Expected inlined-at fields to agree");
8806   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8807 }
8808 
8809 namespace {
8810 
8811 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8812 /// pointed to by a use iterator is deleted, increment the use iterator
8813 /// so that it doesn't dangle.
8814 ///
8815 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8816   SDNode::use_iterator &UI;
8817   SDNode::use_iterator &UE;
8818 
8819   void NodeDeleted(SDNode *N, SDNode *E) override {
8820     // Increment the iterator as needed.
8821     while (UI != UE && N == *UI)
8822       ++UI;
8823   }
8824 
8825 public:
8826   RAUWUpdateListener(SelectionDAG &d,
8827                      SDNode::use_iterator &ui,
8828                      SDNode::use_iterator &ue)
8829     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8830 };
8831 
8832 } // end anonymous namespace
8833 
8834 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8835 /// This can cause recursive merging of nodes in the DAG.
8836 ///
8837 /// This version assumes From has a single result value.
8838 ///
8839 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8840   SDNode *From = FromN.getNode();
8841   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8842          "Cannot replace with this method!");
8843   assert(From != To.getNode() && "Cannot replace uses of with self");
8844 
8845   // Preserve Debug Values
8846   transferDbgValues(FromN, To);
8847 
8848   // Iterate over all the existing uses of From. New uses will be added
8849   // to the beginning of the use list, which we avoid visiting.
8850   // This specifically avoids visiting uses of From that arise while the
8851   // replacement is happening, because any such uses would be the result
8852   // of CSE: If an existing node looks like From after one of its operands
8853   // is replaced by To, we don't want to replace of all its users with To
8854   // too. See PR3018 for more info.
8855   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8856   RAUWUpdateListener Listener(*this, UI, UE);
8857   while (UI != UE) {
8858     SDNode *User = *UI;
8859 
8860     // This node is about to morph, remove its old self from the CSE maps.
8861     RemoveNodeFromCSEMaps(User);
8862 
8863     // A user can appear in a use list multiple times, and when this
8864     // happens the uses are usually next to each other in the list.
8865     // To help reduce the number of CSE recomputations, process all
8866     // the uses of this user that we can find this way.
8867     do {
8868       SDUse &Use = UI.getUse();
8869       ++UI;
8870       Use.set(To);
8871       if (To->isDivergent() != From->isDivergent())
8872         updateDivergence(User);
8873     } while (UI != UE && *UI == User);
8874     // Now that we have modified User, add it back to the CSE maps.  If it
8875     // already exists there, recursively merge the results together.
8876     AddModifiedNodeToCSEMaps(User);
8877   }
8878 
8879   // If we just RAUW'd the root, take note.
8880   if (FromN == getRoot())
8881     setRoot(To);
8882 }
8883 
8884 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8885 /// This can cause recursive merging of nodes in the DAG.
8886 ///
8887 /// This version assumes that for each value of From, there is a
8888 /// corresponding value in To in the same position with the same type.
8889 ///
8890 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8891 #ifndef NDEBUG
8892   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8893     assert((!From->hasAnyUseOfValue(i) ||
8894             From->getValueType(i) == To->getValueType(i)) &&
8895            "Cannot use this version of ReplaceAllUsesWith!");
8896 #endif
8897 
8898   // Handle the trivial case.
8899   if (From == To)
8900     return;
8901 
8902   // Preserve Debug Info. Only do this if there's a use.
8903   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8904     if (From->hasAnyUseOfValue(i)) {
8905       assert((i < To->getNumValues()) && "Invalid To location");
8906       transferDbgValues(SDValue(From, i), SDValue(To, i));
8907     }
8908 
8909   // Iterate over just the existing users of From. See the comments in
8910   // the ReplaceAllUsesWith above.
8911   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8912   RAUWUpdateListener Listener(*this, UI, UE);
8913   while (UI != UE) {
8914     SDNode *User = *UI;
8915 
8916     // This node is about to morph, remove its old self from the CSE maps.
8917     RemoveNodeFromCSEMaps(User);
8918 
8919     // A user can appear in a use list multiple times, and when this
8920     // happens the uses are usually next to each other in the list.
8921     // To help reduce the number of CSE recomputations, process all
8922     // the uses of this user that we can find this way.
8923     do {
8924       SDUse &Use = UI.getUse();
8925       ++UI;
8926       Use.setNode(To);
8927       if (To->isDivergent() != From->isDivergent())
8928         updateDivergence(User);
8929     } while (UI != UE && *UI == User);
8930 
8931     // Now that we have modified User, add it back to the CSE maps.  If it
8932     // already exists there, recursively merge the results together.
8933     AddModifiedNodeToCSEMaps(User);
8934   }
8935 
8936   // If we just RAUW'd the root, take note.
8937   if (From == getRoot().getNode())
8938     setRoot(SDValue(To, getRoot().getResNo()));
8939 }
8940 
8941 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8942 /// This can cause recursive merging of nodes in the DAG.
8943 ///
8944 /// This version can replace From with any result values.  To must match the
8945 /// number and types of values returned by From.
8946 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8947   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8948     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8949 
8950   // Preserve Debug Info.
8951   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8952     transferDbgValues(SDValue(From, i), To[i]);
8953 
8954   // Iterate over just the existing users of From. See the comments in
8955   // the ReplaceAllUsesWith above.
8956   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8957   RAUWUpdateListener Listener(*this, UI, UE);
8958   while (UI != UE) {
8959     SDNode *User = *UI;
8960 
8961     // This node is about to morph, remove its old self from the CSE maps.
8962     RemoveNodeFromCSEMaps(User);
8963 
8964     // A user can appear in a use list multiple times, and when this happens the
8965     // uses are usually next to each other in the list.  To help reduce the
8966     // number of CSE and divergence recomputations, process all the uses of this
8967     // user that we can find this way.
8968     bool To_IsDivergent = false;
8969     do {
8970       SDUse &Use = UI.getUse();
8971       const SDValue &ToOp = To[Use.getResNo()];
8972       ++UI;
8973       Use.set(ToOp);
8974       To_IsDivergent |= ToOp->isDivergent();
8975     } while (UI != UE && *UI == User);
8976 
8977     if (To_IsDivergent != From->isDivergent())
8978       updateDivergence(User);
8979 
8980     // Now that we have modified User, add it back to the CSE maps.  If it
8981     // already exists there, recursively merge the results together.
8982     AddModifiedNodeToCSEMaps(User);
8983   }
8984 
8985   // If we just RAUW'd the root, take note.
8986   if (From == getRoot().getNode())
8987     setRoot(SDValue(To[getRoot().getResNo()]));
8988 }
8989 
8990 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8991 /// uses of other values produced by From.getNode() alone.  The Deleted
8992 /// vector is handled the same way as for ReplaceAllUsesWith.
8993 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8994   // Handle the really simple, really trivial case efficiently.
8995   if (From == To) return;
8996 
8997   // Handle the simple, trivial, case efficiently.
8998   if (From.getNode()->getNumValues() == 1) {
8999     ReplaceAllUsesWith(From, To);
9000     return;
9001   }
9002 
9003   // Preserve Debug Info.
9004   transferDbgValues(From, To);
9005 
9006   // Iterate over just the existing users of From. See the comments in
9007   // the ReplaceAllUsesWith above.
9008   SDNode::use_iterator UI = From.getNode()->use_begin(),
9009                        UE = From.getNode()->use_end();
9010   RAUWUpdateListener Listener(*this, UI, UE);
9011   while (UI != UE) {
9012     SDNode *User = *UI;
9013     bool UserRemovedFromCSEMaps = false;
9014 
9015     // A user can appear in a use list multiple times, and when this
9016     // happens the uses are usually next to each other in the list.
9017     // To help reduce the number of CSE recomputations, process all
9018     // the uses of this user that we can find this way.
9019     do {
9020       SDUse &Use = UI.getUse();
9021 
9022       // Skip uses of different values from the same node.
9023       if (Use.getResNo() != From.getResNo()) {
9024         ++UI;
9025         continue;
9026       }
9027 
9028       // If this node hasn't been modified yet, it's still in the CSE maps,
9029       // so remove its old self from the CSE maps.
9030       if (!UserRemovedFromCSEMaps) {
9031         RemoveNodeFromCSEMaps(User);
9032         UserRemovedFromCSEMaps = true;
9033       }
9034 
9035       ++UI;
9036       Use.set(To);
9037       if (To->isDivergent() != From->isDivergent())
9038         updateDivergence(User);
9039     } while (UI != UE && *UI == User);
9040     // We are iterating over all uses of the From node, so if a use
9041     // doesn't use the specific value, no changes are made.
9042     if (!UserRemovedFromCSEMaps)
9043       continue;
9044 
9045     // Now that we have modified User, add it back to the CSE maps.  If it
9046     // already exists there, recursively merge the results together.
9047     AddModifiedNodeToCSEMaps(User);
9048   }
9049 
9050   // If we just RAUW'd the root, take note.
9051   if (From == getRoot())
9052     setRoot(To);
9053 }
9054 
9055 namespace {
9056 
9057   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9058   /// to record information about a use.
9059   struct UseMemo {
9060     SDNode *User;
9061     unsigned Index;
9062     SDUse *Use;
9063   };
9064 
9065   /// operator< - Sort Memos by User.
9066   bool operator<(const UseMemo &L, const UseMemo &R) {
9067     return (intptr_t)L.User < (intptr_t)R.User;
9068   }
9069 
9070 } // end anonymous namespace
9071 
9072 bool SelectionDAG::calculateDivergence(SDNode *N) {
9073   if (TLI->isSDNodeAlwaysUniform(N)) {
9074     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9075            "Conflicting divergence information!");
9076     return false;
9077   }
9078   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9079     return true;
9080   for (auto &Op : N->ops()) {
9081     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9082       return true;
9083   }
9084   return false;
9085 }
9086 
9087 void SelectionDAG::updateDivergence(SDNode *N) {
9088   SmallVector<SDNode *, 16> Worklist(1, N);
9089   do {
9090     N = Worklist.pop_back_val();
9091     bool IsDivergent = calculateDivergence(N);
9092     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9093       N->SDNodeBits.IsDivergent = IsDivergent;
9094       llvm::append_range(Worklist, N->uses());
9095     }
9096   } while (!Worklist.empty());
9097 }
9098 
9099 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9100   DenseMap<SDNode *, unsigned> Degree;
9101   Order.reserve(AllNodes.size());
9102   for (auto &N : allnodes()) {
9103     unsigned NOps = N.getNumOperands();
9104     Degree[&N] = NOps;
9105     if (0 == NOps)
9106       Order.push_back(&N);
9107   }
9108   for (size_t I = 0; I != Order.size(); ++I) {
9109     SDNode *N = Order[I];
9110     for (auto U : N->uses()) {
9111       unsigned &UnsortedOps = Degree[U];
9112       if (0 == --UnsortedOps)
9113         Order.push_back(U);
9114     }
9115   }
9116 }
9117 
9118 #ifndef NDEBUG
9119 void SelectionDAG::VerifyDAGDiverence() {
9120   std::vector<SDNode *> TopoOrder;
9121   CreateTopologicalOrder(TopoOrder);
9122   for (auto *N : TopoOrder) {
9123     assert(calculateDivergence(N) == N->isDivergent() &&
9124            "Divergence bit inconsistency detected");
9125   }
9126 }
9127 #endif
9128 
9129 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9130 /// uses of other values produced by From.getNode() alone.  The same value
9131 /// may appear in both the From and To list.  The Deleted vector is
9132 /// handled the same way as for ReplaceAllUsesWith.
9133 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9134                                               const SDValue *To,
9135                                               unsigned Num){
9136   // Handle the simple, trivial case efficiently.
9137   if (Num == 1)
9138     return ReplaceAllUsesOfValueWith(*From, *To);
9139 
9140   transferDbgValues(*From, *To);
9141 
9142   // Read up all the uses and make records of them. This helps
9143   // processing new uses that are introduced during the
9144   // replacement process.
9145   SmallVector<UseMemo, 4> Uses;
9146   for (unsigned i = 0; i != Num; ++i) {
9147     unsigned FromResNo = From[i].getResNo();
9148     SDNode *FromNode = From[i].getNode();
9149     for (SDNode::use_iterator UI = FromNode->use_begin(),
9150          E = FromNode->use_end(); UI != E; ++UI) {
9151       SDUse &Use = UI.getUse();
9152       if (Use.getResNo() == FromResNo) {
9153         UseMemo Memo = { *UI, i, &Use };
9154         Uses.push_back(Memo);
9155       }
9156     }
9157   }
9158 
9159   // Sort the uses, so that all the uses from a given User are together.
9160   llvm::sort(Uses);
9161 
9162   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9163        UseIndex != UseIndexEnd; ) {
9164     // We know that this user uses some value of From.  If it is the right
9165     // value, update it.
9166     SDNode *User = Uses[UseIndex].User;
9167 
9168     // This node is about to morph, remove its old self from the CSE maps.
9169     RemoveNodeFromCSEMaps(User);
9170 
9171     // The Uses array is sorted, so all the uses for a given User
9172     // are next to each other in the list.
9173     // To help reduce the number of CSE recomputations, process all
9174     // the uses of this user that we can find this way.
9175     do {
9176       unsigned i = Uses[UseIndex].Index;
9177       SDUse &Use = *Uses[UseIndex].Use;
9178       ++UseIndex;
9179 
9180       Use.set(To[i]);
9181     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9182 
9183     // Now that we have modified User, add it back to the CSE maps.  If it
9184     // already exists there, recursively merge the results together.
9185     AddModifiedNodeToCSEMaps(User);
9186   }
9187 }
9188 
9189 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9190 /// based on their topological order. It returns the maximum id and a vector
9191 /// of the SDNodes* in assigned order by reference.
9192 unsigned SelectionDAG::AssignTopologicalOrder() {
9193   unsigned DAGSize = 0;
9194 
9195   // SortedPos tracks the progress of the algorithm. Nodes before it are
9196   // sorted, nodes after it are unsorted. When the algorithm completes
9197   // it is at the end of the list.
9198   allnodes_iterator SortedPos = allnodes_begin();
9199 
9200   // Visit all the nodes. Move nodes with no operands to the front of
9201   // the list immediately. Annotate nodes that do have operands with their
9202   // operand count. Before we do this, the Node Id fields of the nodes
9203   // may contain arbitrary values. After, the Node Id fields for nodes
9204   // before SortedPos will contain the topological sort index, and the
9205   // Node Id fields for nodes At SortedPos and after will contain the
9206   // count of outstanding operands.
9207   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9208     SDNode *N = &*I++;
9209     checkForCycles(N, this);
9210     unsigned Degree = N->getNumOperands();
9211     if (Degree == 0) {
9212       // A node with no uses, add it to the result array immediately.
9213       N->setNodeId(DAGSize++);
9214       allnodes_iterator Q(N);
9215       if (Q != SortedPos)
9216         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9217       assert(SortedPos != AllNodes.end() && "Overran node list");
9218       ++SortedPos;
9219     } else {
9220       // Temporarily use the Node Id as scratch space for the degree count.
9221       N->setNodeId(Degree);
9222     }
9223   }
9224 
9225   // Visit all the nodes. As we iterate, move nodes into sorted order,
9226   // such that by the time the end is reached all nodes will be sorted.
9227   for (SDNode &Node : allnodes()) {
9228     SDNode *N = &Node;
9229     checkForCycles(N, this);
9230     // N is in sorted position, so all its uses have one less operand
9231     // that needs to be sorted.
9232     for (SDNode *P : N->uses()) {
9233       unsigned Degree = P->getNodeId();
9234       assert(Degree != 0 && "Invalid node degree");
9235       --Degree;
9236       if (Degree == 0) {
9237         // All of P's operands are sorted, so P may sorted now.
9238         P->setNodeId(DAGSize++);
9239         if (P->getIterator() != SortedPos)
9240           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9241         assert(SortedPos != AllNodes.end() && "Overran node list");
9242         ++SortedPos;
9243       } else {
9244         // Update P's outstanding operand count.
9245         P->setNodeId(Degree);
9246       }
9247     }
9248     if (Node.getIterator() == SortedPos) {
9249 #ifndef NDEBUG
9250       allnodes_iterator I(N);
9251       SDNode *S = &*++I;
9252       dbgs() << "Overran sorted position:\n";
9253       S->dumprFull(this); dbgs() << "\n";
9254       dbgs() << "Checking if this is due to cycles\n";
9255       checkForCycles(this, true);
9256 #endif
9257       llvm_unreachable(nullptr);
9258     }
9259   }
9260 
9261   assert(SortedPos == AllNodes.end() &&
9262          "Topological sort incomplete!");
9263   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9264          "First node in topological sort is not the entry token!");
9265   assert(AllNodes.front().getNodeId() == 0 &&
9266          "First node in topological sort has non-zero id!");
9267   assert(AllNodes.front().getNumOperands() == 0 &&
9268          "First node in topological sort has operands!");
9269   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9270          "Last node in topologic sort has unexpected id!");
9271   assert(AllNodes.back().use_empty() &&
9272          "Last node in topologic sort has users!");
9273   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9274   return DAGSize;
9275 }
9276 
9277 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9278 /// value is produced by SD.
9279 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9280   for (SDNode *SD : DB->getSDNodes()) {
9281     if (!SD)
9282       continue;
9283     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9284     SD->setHasDebugValue(true);
9285   }
9286   DbgInfo->add(DB, isParameter);
9287 }
9288 
9289 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9290 
9291 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9292                                                    SDValue NewMemOpChain) {
9293   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9294   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9295   // The new memory operation must have the same position as the old load in
9296   // terms of memory dependency. Create a TokenFactor for the old load and new
9297   // memory operation and update uses of the old load's output chain to use that
9298   // TokenFactor.
9299   if (OldChain == NewMemOpChain || OldChain.use_empty())
9300     return NewMemOpChain;
9301 
9302   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9303                                 OldChain, NewMemOpChain);
9304   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9305   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9306   return TokenFactor;
9307 }
9308 
9309 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9310                                                    SDValue NewMemOp) {
9311   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9312   SDValue OldChain = SDValue(OldLoad, 1);
9313   SDValue NewMemOpChain = NewMemOp.getValue(1);
9314   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9315 }
9316 
9317 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9318                                                      Function **OutFunction) {
9319   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9320 
9321   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9322   auto *Module = MF->getFunction().getParent();
9323   auto *Function = Module->getFunction(Symbol);
9324 
9325   if (OutFunction != nullptr)
9326       *OutFunction = Function;
9327 
9328   if (Function != nullptr) {
9329     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9330     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9331   }
9332 
9333   std::string ErrorStr;
9334   raw_string_ostream ErrorFormatter(ErrorStr);
9335 
9336   ErrorFormatter << "Undefined external symbol ";
9337   ErrorFormatter << '"' << Symbol << '"';
9338   ErrorFormatter.flush();
9339 
9340   report_fatal_error(ErrorStr);
9341 }
9342 
9343 //===----------------------------------------------------------------------===//
9344 //                              SDNode Class
9345 //===----------------------------------------------------------------------===//
9346 
9347 bool llvm::isNullConstant(SDValue V) {
9348   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9349   return Const != nullptr && Const->isNullValue();
9350 }
9351 
9352 bool llvm::isNullFPConstant(SDValue V) {
9353   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9354   return Const != nullptr && Const->isZero() && !Const->isNegative();
9355 }
9356 
9357 bool llvm::isAllOnesConstant(SDValue V) {
9358   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9359   return Const != nullptr && Const->isAllOnesValue();
9360 }
9361 
9362 bool llvm::isOneConstant(SDValue V) {
9363   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9364   return Const != nullptr && Const->isOne();
9365 }
9366 
9367 SDValue llvm::peekThroughBitcasts(SDValue V) {
9368   while (V.getOpcode() == ISD::BITCAST)
9369     V = V.getOperand(0);
9370   return V;
9371 }
9372 
9373 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9374   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9375     V = V.getOperand(0);
9376   return V;
9377 }
9378 
9379 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9380   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9381     V = V.getOperand(0);
9382   return V;
9383 }
9384 
9385 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9386   if (V.getOpcode() != ISD::XOR)
9387     return false;
9388   V = peekThroughBitcasts(V.getOperand(1));
9389   unsigned NumBits = V.getScalarValueSizeInBits();
9390   ConstantSDNode *C =
9391       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9392   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9393 }
9394 
9395 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9396                                           bool AllowTruncation) {
9397   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9398     return CN;
9399 
9400   // SplatVectors can truncate their operands. Ignore that case here unless
9401   // AllowTruncation is set.
9402   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9403     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9404     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9405       EVT CVT = CN->getValueType(0);
9406       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9407       if (AllowTruncation || CVT == VecEltVT)
9408         return CN;
9409     }
9410   }
9411 
9412   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9413     BitVector UndefElements;
9414     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9415 
9416     // BuildVectors can truncate their operands. Ignore that case here unless
9417     // AllowTruncation is set.
9418     if (CN && (UndefElements.none() || AllowUndefs)) {
9419       EVT CVT = CN->getValueType(0);
9420       EVT NSVT = N.getValueType().getScalarType();
9421       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9422       if (AllowTruncation || (CVT == NSVT))
9423         return CN;
9424     }
9425   }
9426 
9427   return nullptr;
9428 }
9429 
9430 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9431                                           bool AllowUndefs,
9432                                           bool AllowTruncation) {
9433   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9434     return CN;
9435 
9436   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9437     BitVector UndefElements;
9438     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9439 
9440     // BuildVectors can truncate their operands. Ignore that case here unless
9441     // AllowTruncation is set.
9442     if (CN && (UndefElements.none() || AllowUndefs)) {
9443       EVT CVT = CN->getValueType(0);
9444       EVT NSVT = N.getValueType().getScalarType();
9445       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9446       if (AllowTruncation || (CVT == NSVT))
9447         return CN;
9448     }
9449   }
9450 
9451   return nullptr;
9452 }
9453 
9454 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9455   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9456     return CN;
9457 
9458   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9459     BitVector UndefElements;
9460     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9461     if (CN && (UndefElements.none() || AllowUndefs))
9462       return CN;
9463   }
9464 
9465   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9466     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9467       return CN;
9468 
9469   return nullptr;
9470 }
9471 
9472 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9473                                               const APInt &DemandedElts,
9474                                               bool AllowUndefs) {
9475   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9476     return CN;
9477 
9478   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9479     BitVector UndefElements;
9480     ConstantFPSDNode *CN =
9481         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9482     if (CN && (UndefElements.none() || AllowUndefs))
9483       return CN;
9484   }
9485 
9486   return nullptr;
9487 }
9488 
9489 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9490   // TODO: may want to use peekThroughBitcast() here.
9491   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9492   return C && C->isNullValue();
9493 }
9494 
9495 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9496   // TODO: may want to use peekThroughBitcast() here.
9497   unsigned BitWidth = N.getScalarValueSizeInBits();
9498   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9499   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9500 }
9501 
9502 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9503   N = peekThroughBitcasts(N);
9504   unsigned BitWidth = N.getScalarValueSizeInBits();
9505   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9506   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9507 }
9508 
9509 HandleSDNode::~HandleSDNode() {
9510   DropOperands();
9511 }
9512 
9513 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9514                                          const DebugLoc &DL,
9515                                          const GlobalValue *GA, EVT VT,
9516                                          int64_t o, unsigned TF)
9517     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9518   TheGlobal = GA;
9519 }
9520 
9521 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9522                                          EVT VT, unsigned SrcAS,
9523                                          unsigned DestAS)
9524     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9525       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9526 
9527 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9528                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9529     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9530   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9531   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9532   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9533   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9534 
9535   // We check here that the size of the memory operand fits within the size of
9536   // the MMO. This is because the MMO might indicate only a possible address
9537   // range instead of specifying the affected memory addresses precisely.
9538   // TODO: Make MachineMemOperands aware of scalable vectors.
9539   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9540          "Size mismatch!");
9541 }
9542 
9543 /// Profile - Gather unique data for the node.
9544 ///
9545 void SDNode::Profile(FoldingSetNodeID &ID) const {
9546   AddNodeIDNode(ID, this);
9547 }
9548 
9549 namespace {
9550 
9551   struct EVTArray {
9552     std::vector<EVT> VTs;
9553 
9554     EVTArray() {
9555       VTs.reserve(MVT::LAST_VALUETYPE);
9556       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9557         VTs.push_back(MVT((MVT::SimpleValueType)i));
9558     }
9559   };
9560 
9561 } // end anonymous namespace
9562 
9563 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9564 static ManagedStatic<EVTArray> SimpleVTArray;
9565 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9566 
9567 /// getValueTypeList - Return a pointer to the specified value type.
9568 ///
9569 const EVT *SDNode::getValueTypeList(EVT VT) {
9570   if (VT.isExtended()) {
9571     sys::SmartScopedLock<true> Lock(*VTMutex);
9572     return &(*EVTs->insert(VT).first);
9573   } else {
9574     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9575            "Value type out of range!");
9576     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9577   }
9578 }
9579 
9580 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9581 /// indicated value.  This method ignores uses of other values defined by this
9582 /// operation.
9583 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9584   assert(Value < getNumValues() && "Bad value!");
9585 
9586   // TODO: Only iterate over uses of a given value of the node
9587   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9588     if (UI.getUse().getResNo() == Value) {
9589       if (NUses == 0)
9590         return false;
9591       --NUses;
9592     }
9593   }
9594 
9595   // Found exactly the right number of uses?
9596   return NUses == 0;
9597 }
9598 
9599 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9600 /// value. This method ignores uses of other values defined by this operation.
9601 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9602   assert(Value < getNumValues() && "Bad value!");
9603 
9604   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9605     if (UI.getUse().getResNo() == Value)
9606       return true;
9607 
9608   return false;
9609 }
9610 
9611 /// isOnlyUserOf - Return true if this node is the only use of N.
9612 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9613   bool Seen = false;
9614   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9615     SDNode *User = *I;
9616     if (User == this)
9617       Seen = true;
9618     else
9619       return false;
9620   }
9621 
9622   return Seen;
9623 }
9624 
9625 /// Return true if the only users of N are contained in Nodes.
9626 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9627   bool Seen = false;
9628   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9629     SDNode *User = *I;
9630     if (llvm::is_contained(Nodes, User))
9631       Seen = true;
9632     else
9633       return false;
9634   }
9635 
9636   return Seen;
9637 }
9638 
9639 /// isOperand - Return true if this node is an operand of N.
9640 bool SDValue::isOperandOf(const SDNode *N) const {
9641   return is_contained(N->op_values(), *this);
9642 }
9643 
9644 bool SDNode::isOperandOf(const SDNode *N) const {
9645   return any_of(N->op_values(),
9646                 [this](SDValue Op) { return this == Op.getNode(); });
9647 }
9648 
9649 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9650 /// be a chain) reaches the specified operand without crossing any
9651 /// side-effecting instructions on any chain path.  In practice, this looks
9652 /// through token factors and non-volatile loads.  In order to remain efficient,
9653 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9654 ///
9655 /// Note that we only need to examine chains when we're searching for
9656 /// side-effects; SelectionDAG requires that all side-effects are represented
9657 /// by chains, even if another operand would force a specific ordering. This
9658 /// constraint is necessary to allow transformations like splitting loads.
9659 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9660                                              unsigned Depth) const {
9661   if (*this == Dest) return true;
9662 
9663   // Don't search too deeply, we just want to be able to see through
9664   // TokenFactor's etc.
9665   if (Depth == 0) return false;
9666 
9667   // If this is a token factor, all inputs to the TF happen in parallel.
9668   if (getOpcode() == ISD::TokenFactor) {
9669     // First, try a shallow search.
9670     if (is_contained((*this)->ops(), Dest)) {
9671       // We found the chain we want as an operand of this TokenFactor.
9672       // Essentially, we reach the chain without side-effects if we could
9673       // serialize the TokenFactor into a simple chain of operations with
9674       // Dest as the last operation. This is automatically true if the
9675       // chain has one use: there are no other ordering constraints.
9676       // If the chain has more than one use, we give up: some other
9677       // use of Dest might force a side-effect between Dest and the current
9678       // node.
9679       if (Dest.hasOneUse())
9680         return true;
9681     }
9682     // Next, try a deep search: check whether every operand of the TokenFactor
9683     // reaches Dest.
9684     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9685       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9686     });
9687   }
9688 
9689   // Loads don't have side effects, look through them.
9690   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9691     if (Ld->isUnordered())
9692       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9693   }
9694   return false;
9695 }
9696 
9697 bool SDNode::hasPredecessor(const SDNode *N) const {
9698   SmallPtrSet<const SDNode *, 32> Visited;
9699   SmallVector<const SDNode *, 16> Worklist;
9700   Worklist.push_back(this);
9701   return hasPredecessorHelper(N, Visited, Worklist);
9702 }
9703 
9704 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9705   this->Flags.intersectWith(Flags);
9706 }
9707 
9708 SDValue
9709 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9710                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9711                                   bool AllowPartials) {
9712   // The pattern must end in an extract from index 0.
9713   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9714       !isNullConstant(Extract->getOperand(1)))
9715     return SDValue();
9716 
9717   // Match against one of the candidate binary ops.
9718   SDValue Op = Extract->getOperand(0);
9719   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9720         return Op.getOpcode() == unsigned(BinOp);
9721       }))
9722     return SDValue();
9723 
9724   // Floating-point reductions may require relaxed constraints on the final step
9725   // of the reduction because they may reorder intermediate operations.
9726   unsigned CandidateBinOp = Op.getOpcode();
9727   if (Op.getValueType().isFloatingPoint()) {
9728     SDNodeFlags Flags = Op->getFlags();
9729     switch (CandidateBinOp) {
9730     case ISD::FADD:
9731       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9732         return SDValue();
9733       break;
9734     default:
9735       llvm_unreachable("Unhandled FP opcode for binop reduction");
9736     }
9737   }
9738 
9739   // Matching failed - attempt to see if we did enough stages that a partial
9740   // reduction from a subvector is possible.
9741   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9742     if (!AllowPartials || !Op)
9743       return SDValue();
9744     EVT OpVT = Op.getValueType();
9745     EVT OpSVT = OpVT.getScalarType();
9746     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9747     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9748       return SDValue();
9749     BinOp = (ISD::NodeType)CandidateBinOp;
9750     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9751                    getVectorIdxConstant(0, SDLoc(Op)));
9752   };
9753 
9754   // At each stage, we're looking for something that looks like:
9755   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9756   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9757   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9758   // %a = binop <8 x i32> %op, %s
9759   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9760   // we expect something like:
9761   // <4,5,6,7,u,u,u,u>
9762   // <2,3,u,u,u,u,u,u>
9763   // <1,u,u,u,u,u,u,u>
9764   // While a partial reduction match would be:
9765   // <2,3,u,u,u,u,u,u>
9766   // <1,u,u,u,u,u,u,u>
9767   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9768   SDValue PrevOp;
9769   for (unsigned i = 0; i < Stages; ++i) {
9770     unsigned MaskEnd = (1 << i);
9771 
9772     if (Op.getOpcode() != CandidateBinOp)
9773       return PartialReduction(PrevOp, MaskEnd);
9774 
9775     SDValue Op0 = Op.getOperand(0);
9776     SDValue Op1 = Op.getOperand(1);
9777 
9778     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9779     if (Shuffle) {
9780       Op = Op1;
9781     } else {
9782       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9783       Op = Op0;
9784     }
9785 
9786     // The first operand of the shuffle should be the same as the other operand
9787     // of the binop.
9788     if (!Shuffle || Shuffle->getOperand(0) != Op)
9789       return PartialReduction(PrevOp, MaskEnd);
9790 
9791     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9792     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9793       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9794         return PartialReduction(PrevOp, MaskEnd);
9795 
9796     PrevOp = Op;
9797   }
9798 
9799   // Handle subvector reductions, which tend to appear after the shuffle
9800   // reduction stages.
9801   while (Op.getOpcode() == CandidateBinOp) {
9802     unsigned NumElts = Op.getValueType().getVectorNumElements();
9803     SDValue Op0 = Op.getOperand(0);
9804     SDValue Op1 = Op.getOperand(1);
9805     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9806         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9807         Op0.getOperand(0) != Op1.getOperand(0))
9808       break;
9809     SDValue Src = Op0.getOperand(0);
9810     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9811     if (NumSrcElts != (2 * NumElts))
9812       break;
9813     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9814           Op1.getConstantOperandAPInt(1) == NumElts) &&
9815         !(Op1.getConstantOperandAPInt(1) == 0 &&
9816           Op0.getConstantOperandAPInt(1) == NumElts))
9817       break;
9818     Op = Src;
9819   }
9820 
9821   BinOp = (ISD::NodeType)CandidateBinOp;
9822   return Op;
9823 }
9824 
9825 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9826   assert(N->getNumValues() == 1 &&
9827          "Can't unroll a vector with multiple results!");
9828 
9829   EVT VT = N->getValueType(0);
9830   unsigned NE = VT.getVectorNumElements();
9831   EVT EltVT = VT.getVectorElementType();
9832   SDLoc dl(N);
9833 
9834   SmallVector<SDValue, 8> Scalars;
9835   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9836 
9837   // If ResNE is 0, fully unroll the vector op.
9838   if (ResNE == 0)
9839     ResNE = NE;
9840   else if (NE > ResNE)
9841     NE = ResNE;
9842 
9843   unsigned i;
9844   for (i= 0; i != NE; ++i) {
9845     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9846       SDValue Operand = N->getOperand(j);
9847       EVT OperandVT = Operand.getValueType();
9848       if (OperandVT.isVector()) {
9849         // A vector operand; extract a single element.
9850         EVT OperandEltVT = OperandVT.getVectorElementType();
9851         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9852                               Operand, getVectorIdxConstant(i, dl));
9853       } else {
9854         // A scalar operand; just use it as is.
9855         Operands[j] = Operand;
9856       }
9857     }
9858 
9859     switch (N->getOpcode()) {
9860     default: {
9861       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9862                                 N->getFlags()));
9863       break;
9864     }
9865     case ISD::VSELECT:
9866       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9867       break;
9868     case ISD::SHL:
9869     case ISD::SRA:
9870     case ISD::SRL:
9871     case ISD::ROTL:
9872     case ISD::ROTR:
9873       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9874                                getShiftAmountOperand(Operands[0].getValueType(),
9875                                                      Operands[1])));
9876       break;
9877     case ISD::SIGN_EXTEND_INREG: {
9878       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9879       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9880                                 Operands[0],
9881                                 getValueType(ExtVT)));
9882     }
9883     }
9884   }
9885 
9886   for (; i < ResNE; ++i)
9887     Scalars.push_back(getUNDEF(EltVT));
9888 
9889   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9890   return getBuildVector(VecVT, dl, Scalars);
9891 }
9892 
9893 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9894     SDNode *N, unsigned ResNE) {
9895   unsigned Opcode = N->getOpcode();
9896   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9897           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9898           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9899          "Expected an overflow opcode");
9900 
9901   EVT ResVT = N->getValueType(0);
9902   EVT OvVT = N->getValueType(1);
9903   EVT ResEltVT = ResVT.getVectorElementType();
9904   EVT OvEltVT = OvVT.getVectorElementType();
9905   SDLoc dl(N);
9906 
9907   // If ResNE is 0, fully unroll the vector op.
9908   unsigned NE = ResVT.getVectorNumElements();
9909   if (ResNE == 0)
9910     ResNE = NE;
9911   else if (NE > ResNE)
9912     NE = ResNE;
9913 
9914   SmallVector<SDValue, 8> LHSScalars;
9915   SmallVector<SDValue, 8> RHSScalars;
9916   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9917   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9918 
9919   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9920   SDVTList VTs = getVTList(ResEltVT, SVT);
9921   SmallVector<SDValue, 8> ResScalars;
9922   SmallVector<SDValue, 8> OvScalars;
9923   for (unsigned i = 0; i < NE; ++i) {
9924     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9925     SDValue Ov =
9926         getSelect(dl, OvEltVT, Res.getValue(1),
9927                   getBoolConstant(true, dl, OvEltVT, ResVT),
9928                   getConstant(0, dl, OvEltVT));
9929 
9930     ResScalars.push_back(Res);
9931     OvScalars.push_back(Ov);
9932   }
9933 
9934   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9935   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9936 
9937   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9938   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9939   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9940                         getBuildVector(NewOvVT, dl, OvScalars));
9941 }
9942 
9943 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9944                                                   LoadSDNode *Base,
9945                                                   unsigned Bytes,
9946                                                   int Dist) const {
9947   if (LD->isVolatile() || Base->isVolatile())
9948     return false;
9949   // TODO: probably too restrictive for atomics, revisit
9950   if (!LD->isSimple())
9951     return false;
9952   if (LD->isIndexed() || Base->isIndexed())
9953     return false;
9954   if (LD->getChain() != Base->getChain())
9955     return false;
9956   EVT VT = LD->getValueType(0);
9957   if (VT.getSizeInBits() / 8 != Bytes)
9958     return false;
9959 
9960   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9961   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9962 
9963   int64_t Offset = 0;
9964   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9965     return (Dist * Bytes == Offset);
9966   return false;
9967 }
9968 
9969 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9970 /// if it cannot be inferred.
9971 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9972   // If this is a GlobalAddress + cst, return the alignment.
9973   const GlobalValue *GV = nullptr;
9974   int64_t GVOffset = 0;
9975   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9976     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9977     KnownBits Known(PtrWidth);
9978     llvm::computeKnownBits(GV, Known, getDataLayout());
9979     unsigned AlignBits = Known.countMinTrailingZeros();
9980     if (AlignBits)
9981       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9982   }
9983 
9984   // If this is a direct reference to a stack slot, use information about the
9985   // stack slot's alignment.
9986   int FrameIdx = INT_MIN;
9987   int64_t FrameOffset = 0;
9988   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9989     FrameIdx = FI->getIndex();
9990   } else if (isBaseWithConstantOffset(Ptr) &&
9991              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9992     // Handle FI+Cst
9993     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9994     FrameOffset = Ptr.getConstantOperandVal(1);
9995   }
9996 
9997   if (FrameIdx != INT_MIN) {
9998     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9999     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10000   }
10001 
10002   return None;
10003 }
10004 
10005 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10006 /// which is split (or expanded) into two not necessarily identical pieces.
10007 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10008   // Currently all types are split in half.
10009   EVT LoVT, HiVT;
10010   if (!VT.isVector())
10011     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10012   else
10013     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10014 
10015   return std::make_pair(LoVT, HiVT);
10016 }
10017 
10018 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10019 /// type, dependent on an enveloping VT that has been split into two identical
10020 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10021 std::pair<EVT, EVT>
10022 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10023                                        bool *HiIsEmpty) const {
10024   EVT EltTp = VT.getVectorElementType();
10025   // Examples:
10026   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10027   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10028   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10029   //   etc.
10030   ElementCount VTNumElts = VT.getVectorElementCount();
10031   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10032   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10033          "Mixing fixed width and scalable vectors when enveloping a type");
10034   EVT LoVT, HiVT;
10035   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10036     LoVT = EnvVT;
10037     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10038     *HiIsEmpty = false;
10039   } else {
10040     // Flag that hi type has zero storage size, but return split envelop type
10041     // (this would be easier if vector types with zero elements were allowed).
10042     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10043     HiVT = EnvVT;
10044     *HiIsEmpty = true;
10045   }
10046   return std::make_pair(LoVT, HiVT);
10047 }
10048 
10049 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10050 /// low/high part.
10051 std::pair<SDValue, SDValue>
10052 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10053                           const EVT &HiVT) {
10054   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10055          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10056          "Splitting vector with an invalid mixture of fixed and scalable "
10057          "vector types");
10058   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10059              N.getValueType().getVectorMinNumElements() &&
10060          "More vector elements requested than available!");
10061   SDValue Lo, Hi;
10062   Lo =
10063       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10064   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10065   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10066   // IDX with the runtime scaling factor of the result vector type. For
10067   // fixed-width result vectors, that runtime scaling factor is 1.
10068   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10069                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10070   return std::make_pair(Lo, Hi);
10071 }
10072 
10073 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10074 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10075   EVT VT = N.getValueType();
10076   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10077                                 NextPowerOf2(VT.getVectorNumElements()));
10078   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10079                  getVectorIdxConstant(0, DL));
10080 }
10081 
10082 void SelectionDAG::ExtractVectorElements(SDValue Op,
10083                                          SmallVectorImpl<SDValue> &Args,
10084                                          unsigned Start, unsigned Count,
10085                                          EVT EltVT) {
10086   EVT VT = Op.getValueType();
10087   if (Count == 0)
10088     Count = VT.getVectorNumElements();
10089   if (EltVT == EVT())
10090     EltVT = VT.getVectorElementType();
10091   SDLoc SL(Op);
10092   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10093     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10094                            getVectorIdxConstant(i, SL)));
10095   }
10096 }
10097 
10098 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10099 unsigned GlobalAddressSDNode::getAddressSpace() const {
10100   return getGlobal()->getType()->getAddressSpace();
10101 }
10102 
10103 Type *ConstantPoolSDNode::getType() const {
10104   if (isMachineConstantPoolEntry())
10105     return Val.MachineCPVal->getType();
10106   return Val.ConstVal->getType();
10107 }
10108 
10109 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10110                                         unsigned &SplatBitSize,
10111                                         bool &HasAnyUndefs,
10112                                         unsigned MinSplatBits,
10113                                         bool IsBigEndian) const {
10114   EVT VT = getValueType(0);
10115   assert(VT.isVector() && "Expected a vector type");
10116   unsigned VecWidth = VT.getSizeInBits();
10117   if (MinSplatBits > VecWidth)
10118     return false;
10119 
10120   // FIXME: The widths are based on this node's type, but build vectors can
10121   // truncate their operands.
10122   SplatValue = APInt(VecWidth, 0);
10123   SplatUndef = APInt(VecWidth, 0);
10124 
10125   // Get the bits. Bits with undefined values (when the corresponding element
10126   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10127   // in SplatValue. If any of the values are not constant, give up and return
10128   // false.
10129   unsigned int NumOps = getNumOperands();
10130   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10131   unsigned EltWidth = VT.getScalarSizeInBits();
10132 
10133   for (unsigned j = 0; j < NumOps; ++j) {
10134     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10135     SDValue OpVal = getOperand(i);
10136     unsigned BitPos = j * EltWidth;
10137 
10138     if (OpVal.isUndef())
10139       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10140     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10141       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10142     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10143       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10144     else
10145       return false;
10146   }
10147 
10148   // The build_vector is all constants or undefs. Find the smallest element
10149   // size that splats the vector.
10150   HasAnyUndefs = (SplatUndef != 0);
10151 
10152   // FIXME: This does not work for vectors with elements less than 8 bits.
10153   while (VecWidth > 8) {
10154     unsigned HalfSize = VecWidth / 2;
10155     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10156     APInt LowValue = SplatValue.trunc(HalfSize);
10157     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10158     APInt LowUndef = SplatUndef.trunc(HalfSize);
10159 
10160     // If the two halves do not match (ignoring undef bits), stop here.
10161     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10162         MinSplatBits > HalfSize)
10163       break;
10164 
10165     SplatValue = HighValue | LowValue;
10166     SplatUndef = HighUndef & LowUndef;
10167 
10168     VecWidth = HalfSize;
10169   }
10170 
10171   SplatBitSize = VecWidth;
10172   return true;
10173 }
10174 
10175 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10176                                          BitVector *UndefElements) const {
10177   unsigned NumOps = getNumOperands();
10178   if (UndefElements) {
10179     UndefElements->clear();
10180     UndefElements->resize(NumOps);
10181   }
10182   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10183   if (!DemandedElts)
10184     return SDValue();
10185   SDValue Splatted;
10186   for (unsigned i = 0; i != NumOps; ++i) {
10187     if (!DemandedElts[i])
10188       continue;
10189     SDValue Op = getOperand(i);
10190     if (Op.isUndef()) {
10191       if (UndefElements)
10192         (*UndefElements)[i] = true;
10193     } else if (!Splatted) {
10194       Splatted = Op;
10195     } else if (Splatted != Op) {
10196       return SDValue();
10197     }
10198   }
10199 
10200   if (!Splatted) {
10201     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10202     assert(getOperand(FirstDemandedIdx).isUndef() &&
10203            "Can only have a splat without a constant for all undefs.");
10204     return getOperand(FirstDemandedIdx);
10205   }
10206 
10207   return Splatted;
10208 }
10209 
10210 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10211   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10212   return getSplatValue(DemandedElts, UndefElements);
10213 }
10214 
10215 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10216                                             SmallVectorImpl<SDValue> &Sequence,
10217                                             BitVector *UndefElements) const {
10218   unsigned NumOps = getNumOperands();
10219   Sequence.clear();
10220   if (UndefElements) {
10221     UndefElements->clear();
10222     UndefElements->resize(NumOps);
10223   }
10224   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10225   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10226     return false;
10227 
10228   // Set the undefs even if we don't find a sequence (like getSplatValue).
10229   if (UndefElements)
10230     for (unsigned I = 0; I != NumOps; ++I)
10231       if (DemandedElts[I] && getOperand(I).isUndef())
10232         (*UndefElements)[I] = true;
10233 
10234   // Iteratively widen the sequence length looking for repetitions.
10235   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10236     Sequence.append(SeqLen, SDValue());
10237     for (unsigned I = 0; I != NumOps; ++I) {
10238       if (!DemandedElts[I])
10239         continue;
10240       SDValue &SeqOp = Sequence[I % SeqLen];
10241       SDValue Op = getOperand(I);
10242       if (Op.isUndef()) {
10243         if (!SeqOp)
10244           SeqOp = Op;
10245         continue;
10246       }
10247       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10248         Sequence.clear();
10249         break;
10250       }
10251       SeqOp = Op;
10252     }
10253     if (!Sequence.empty())
10254       return true;
10255   }
10256 
10257   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10258   return false;
10259 }
10260 
10261 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10262                                             BitVector *UndefElements) const {
10263   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10264   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10265 }
10266 
10267 ConstantSDNode *
10268 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10269                                         BitVector *UndefElements) const {
10270   return dyn_cast_or_null<ConstantSDNode>(
10271       getSplatValue(DemandedElts, UndefElements));
10272 }
10273 
10274 ConstantSDNode *
10275 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10276   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10277 }
10278 
10279 ConstantFPSDNode *
10280 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10281                                           BitVector *UndefElements) const {
10282   return dyn_cast_or_null<ConstantFPSDNode>(
10283       getSplatValue(DemandedElts, UndefElements));
10284 }
10285 
10286 ConstantFPSDNode *
10287 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10288   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10289 }
10290 
10291 int32_t
10292 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10293                                                    uint32_t BitWidth) const {
10294   if (ConstantFPSDNode *CN =
10295           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10296     bool IsExact;
10297     APSInt IntVal(BitWidth);
10298     const APFloat &APF = CN->getValueAPF();
10299     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10300             APFloat::opOK ||
10301         !IsExact)
10302       return -1;
10303 
10304     return IntVal.exactLogBase2();
10305   }
10306   return -1;
10307 }
10308 
10309 bool BuildVectorSDNode::isConstant() const {
10310   for (const SDValue &Op : op_values()) {
10311     unsigned Opc = Op.getOpcode();
10312     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10313       return false;
10314   }
10315   return true;
10316 }
10317 
10318 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10319   // Find the first non-undef value in the shuffle mask.
10320   unsigned i, e;
10321   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10322     /* search */;
10323 
10324   // If all elements are undefined, this shuffle can be considered a splat
10325   // (although it should eventually get simplified away completely).
10326   if (i == e)
10327     return true;
10328 
10329   // Make sure all remaining elements are either undef or the same as the first
10330   // non-undef value.
10331   for (int Idx = Mask[i]; i != e; ++i)
10332     if (Mask[i] >= 0 && Mask[i] != Idx)
10333       return false;
10334   return true;
10335 }
10336 
10337 // Returns the SDNode if it is a constant integer BuildVector
10338 // or constant integer.
10339 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10340   if (isa<ConstantSDNode>(N))
10341     return N.getNode();
10342   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10343     return N.getNode();
10344   // Treat a GlobalAddress supporting constant offset folding as a
10345   // constant integer.
10346   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10347     if (GA->getOpcode() == ISD::GlobalAddress &&
10348         TLI->isOffsetFoldingLegal(GA))
10349       return GA;
10350   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10351       isa<ConstantSDNode>(N.getOperand(0)))
10352     return N.getNode();
10353   return nullptr;
10354 }
10355 
10356 // Returns the SDNode if it is a constant float BuildVector
10357 // or constant float.
10358 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10359   if (isa<ConstantFPSDNode>(N))
10360     return N.getNode();
10361 
10362   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10363     return N.getNode();
10364 
10365   return nullptr;
10366 }
10367 
10368 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10369   assert(!Node->OperandList && "Node already has operands");
10370   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10371          "too many operands to fit into SDNode");
10372   SDUse *Ops = OperandRecycler.allocate(
10373       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10374 
10375   bool IsDivergent = false;
10376   for (unsigned I = 0; I != Vals.size(); ++I) {
10377     Ops[I].setUser(Node);
10378     Ops[I].setInitial(Vals[I]);
10379     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10380       IsDivergent |= Ops[I].getNode()->isDivergent();
10381   }
10382   Node->NumOperands = Vals.size();
10383   Node->OperandList = Ops;
10384   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10385     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10386     Node->SDNodeBits.IsDivergent = IsDivergent;
10387   }
10388   checkForCycles(Node);
10389 }
10390 
10391 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10392                                      SmallVectorImpl<SDValue> &Vals) {
10393   size_t Limit = SDNode::getMaxNumOperands();
10394   while (Vals.size() > Limit) {
10395     unsigned SliceIdx = Vals.size() - Limit;
10396     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10397     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10398     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10399     Vals.emplace_back(NewTF);
10400   }
10401   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10402 }
10403 
10404 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10405                                         EVT VT, SDNodeFlags Flags) {
10406   switch (Opcode) {
10407   default:
10408     return SDValue();
10409   case ISD::ADD:
10410   case ISD::OR:
10411   case ISD::XOR:
10412   case ISD::UMAX:
10413     return getConstant(0, DL, VT);
10414   case ISD::MUL:
10415     return getConstant(1, DL, VT);
10416   case ISD::AND:
10417   case ISD::UMIN:
10418     return getAllOnesConstant(DL, VT);
10419   case ISD::SMAX:
10420     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10421   case ISD::SMIN:
10422     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10423   case ISD::FADD:
10424     return getConstantFP(-0.0, DL, VT);
10425   case ISD::FMUL:
10426     return getConstantFP(1.0, DL, VT);
10427   case ISD::FMINNUM:
10428   case ISD::FMAXNUM: {
10429     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10430     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10431     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10432                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10433                         APFloat::getLargest(Semantics);
10434     if (Opcode == ISD::FMAXNUM)
10435       NeutralAF.changeSign();
10436 
10437     return getConstantFP(NeutralAF, DL, VT);
10438   }
10439   }
10440 }
10441 
10442 #ifndef NDEBUG
10443 static void checkForCyclesHelper(const SDNode *N,
10444                                  SmallPtrSetImpl<const SDNode*> &Visited,
10445                                  SmallPtrSetImpl<const SDNode*> &Checked,
10446                                  const llvm::SelectionDAG *DAG) {
10447   // If this node has already been checked, don't check it again.
10448   if (Checked.count(N))
10449     return;
10450 
10451   // If a node has already been visited on this depth-first walk, reject it as
10452   // a cycle.
10453   if (!Visited.insert(N).second) {
10454     errs() << "Detected cycle in SelectionDAG\n";
10455     dbgs() << "Offending node:\n";
10456     N->dumprFull(DAG); dbgs() << "\n";
10457     abort();
10458   }
10459 
10460   for (const SDValue &Op : N->op_values())
10461     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10462 
10463   Checked.insert(N);
10464   Visited.erase(N);
10465 }
10466 #endif
10467 
10468 void llvm::checkForCycles(const llvm::SDNode *N,
10469                           const llvm::SelectionDAG *DAG,
10470                           bool force) {
10471 #ifndef NDEBUG
10472   bool check = force;
10473 #ifdef EXPENSIVE_CHECKS
10474   check = true;
10475 #endif  // EXPENSIVE_CHECKS
10476   if (check) {
10477     assert(N && "Checking nonexistent SDNode");
10478     SmallPtrSet<const SDNode*, 32> visited;
10479     SmallPtrSet<const SDNode*, 32> checked;
10480     checkForCyclesHelper(N, visited, checked, DAG);
10481   }
10482 #endif  // !NDEBUG
10483 }
10484 
10485 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10486   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10487 }
10488