1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } else if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 149 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 150 return true; 151 } 152 } 153 154 auto *BV = dyn_cast<BuildVectorSDNode>(N); 155 if (!BV) 156 return false; 157 158 APInt SplatUndef; 159 unsigned SplatBitSize; 160 bool HasUndefs; 161 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 162 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 163 EltSize) && 164 EltSize == SplatBitSize; 165 } 166 167 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 168 // specializations of the more general isConstantSplatVector()? 169 170 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 171 // Look through a bit convert. 172 while (N->getOpcode() == ISD::BITCAST) 173 N = N->getOperand(0).getNode(); 174 175 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 176 APInt SplatVal; 177 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 178 } 179 180 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 181 182 unsigned i = 0, e = N->getNumOperands(); 183 184 // Skip over all of the undef values. 185 while (i != e && N->getOperand(i).isUndef()) 186 ++i; 187 188 // Do not accept an all-undef vector. 189 if (i == e) return false; 190 191 // Do not accept build_vectors that aren't all constants or which have non-~0 192 // elements. We have to be a bit careful here, as the type of the constant 193 // may not be the same as the type of the vector elements due to type 194 // legalization (the elements are promoted to a legal type for the target and 195 // a vector of a type may be legal when the base element type is not). 196 // We only want to check enough bits to cover the vector elements, because 197 // we care if the resultant vector is all ones, not whether the individual 198 // constants are. 199 SDValue NotZero = N->getOperand(i); 200 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 201 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 202 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 203 return false; 204 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 205 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 206 return false; 207 } else 208 return false; 209 210 // Okay, we have at least one ~0 value, check to see if the rest match or are 211 // undefs. Even with the above element type twiddling, this should be OK, as 212 // the same type legalization should have applied to all the elements. 213 for (++i; i != e; ++i) 214 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 215 return false; 216 return true; 217 } 218 219 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 220 // Look through a bit convert. 221 while (N->getOpcode() == ISD::BITCAST) 222 N = N->getOperand(0).getNode(); 223 224 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 225 APInt SplatVal; 226 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 227 } 228 229 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 230 231 bool IsAllUndef = true; 232 for (const SDValue &Op : N->op_values()) { 233 if (Op.isUndef()) 234 continue; 235 IsAllUndef = false; 236 // Do not accept build_vectors that aren't all constants or which have non-0 237 // elements. We have to be a bit careful here, as the type of the constant 238 // may not be the same as the type of the vector elements due to type 239 // legalization (the elements are promoted to a legal type for the target 240 // and a vector of a type may be legal when the base element type is not). 241 // We only want to check enough bits to cover the vector elements, because 242 // we care if the resultant vector is all zeros, not whether the individual 243 // constants are. 244 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 245 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 246 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 247 return false; 248 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 249 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 250 return false; 251 } else 252 return false; 253 } 254 255 // Do not accept an all-undef vector. 256 if (IsAllUndef) 257 return false; 258 return true; 259 } 260 261 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 262 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 263 } 264 265 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 266 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 267 } 268 269 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 270 if (N->getOpcode() != ISD::BUILD_VECTOR) 271 return false; 272 273 for (const SDValue &Op : N->op_values()) { 274 if (Op.isUndef()) 275 continue; 276 if (!isa<ConstantSDNode>(Op)) 277 return false; 278 } 279 return true; 280 } 281 282 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 283 if (N->getOpcode() != ISD::BUILD_VECTOR) 284 return false; 285 286 for (const SDValue &Op : N->op_values()) { 287 if (Op.isUndef()) 288 continue; 289 if (!isa<ConstantFPSDNode>(Op)) 290 return false; 291 } 292 return true; 293 } 294 295 bool ISD::allOperandsUndef(const SDNode *N) { 296 // Return false if the node has no operands. 297 // This is "logically inconsistent" with the definition of "all" but 298 // is probably the desired behavior. 299 if (N->getNumOperands() == 0) 300 return false; 301 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 302 } 303 304 bool ISD::matchUnaryPredicate(SDValue Op, 305 std::function<bool(ConstantSDNode *)> Match, 306 bool AllowUndefs) { 307 // FIXME: Add support for scalar UNDEF cases? 308 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 309 return Match(Cst); 310 311 // FIXME: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != Op.getOpcode() && 313 ISD::SPLAT_VECTOR != Op.getOpcode()) 314 return false; 315 316 EVT SVT = Op.getValueType().getScalarType(); 317 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 318 if (AllowUndefs && Op.getOperand(i).isUndef()) { 319 if (!Match(nullptr)) 320 return false; 321 continue; 322 } 323 324 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 325 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 326 return false; 327 } 328 return true; 329 } 330 331 bool ISD::matchBinaryPredicate( 332 SDValue LHS, SDValue RHS, 333 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 334 bool AllowUndefs, bool AllowTypeMismatch) { 335 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 336 return false; 337 338 // TODO: Add support for scalar UNDEF cases? 339 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 340 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 341 return Match(LHSCst, RHSCst); 342 343 // TODO: Add support for vector UNDEF cases? 344 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 345 ISD::BUILD_VECTOR != RHS.getOpcode()) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 return ISD::FADD; 374 case ISD::VECREDUCE_FMUL: 375 case ISD::VECREDUCE_SEQ_FMUL: 376 return ISD::FMUL; 377 case ISD::VECREDUCE_ADD: 378 return ISD::ADD; 379 case ISD::VECREDUCE_MUL: 380 return ISD::MUL; 381 case ISD::VECREDUCE_AND: 382 return ISD::AND; 383 case ISD::VECREDUCE_OR: 384 return ISD::OR; 385 case ISD::VECREDUCE_XOR: 386 return ISD::XOR; 387 case ISD::VECREDUCE_SMAX: 388 return ISD::SMAX; 389 case ISD::VECREDUCE_SMIN: 390 return ISD::SMIN; 391 case ISD::VECREDUCE_UMAX: 392 return ISD::UMAX; 393 case ISD::VECREDUCE_UMIN: 394 return ISD::UMIN; 395 case ISD::VECREDUCE_FMAX: 396 return ISD::FMAXNUM; 397 case ISD::VECREDUCE_FMIN: 398 return ISD::FMINNUM; 399 } 400 } 401 402 bool ISD::isVPOpcode(unsigned Opcode) { 403 switch (Opcode) { 404 default: 405 return false; 406 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 407 case ISD::SDOPC: \ 408 return true; 409 #include "llvm/IR/VPIntrinsics.def" 410 } 411 } 412 413 /// The operand position of the vector mask. 414 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 415 switch (Opcode) { 416 default: 417 return None; 418 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 419 case ISD::SDOPC: \ 420 return MASKPOS; 421 #include "llvm/IR/VPIntrinsics.def" 422 } 423 } 424 425 /// The operand position of the explicit vector length parameter. 426 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 427 switch (Opcode) { 428 default: 429 return None; 430 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 431 case ISD::SDOPC: \ 432 return EVLPOS; 433 #include "llvm/IR/VPIntrinsics.def" 434 } 435 } 436 437 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 438 switch (ExtType) { 439 case ISD::EXTLOAD: 440 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 441 case ISD::SEXTLOAD: 442 return ISD::SIGN_EXTEND; 443 case ISD::ZEXTLOAD: 444 return ISD::ZERO_EXTEND; 445 default: 446 break; 447 } 448 449 llvm_unreachable("Invalid LoadExtType"); 450 } 451 452 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 453 // To perform this operation, we just need to swap the L and G bits of the 454 // operation. 455 unsigned OldL = (Operation >> 2) & 1; 456 unsigned OldG = (Operation >> 1) & 1; 457 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 458 (OldL << 1) | // New G bit 459 (OldG << 2)); // New L bit. 460 } 461 462 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 463 unsigned Operation = Op; 464 if (isIntegerLike) 465 Operation ^= 7; // Flip L, G, E bits, but not U. 466 else 467 Operation ^= 15; // Flip all of the condition bits. 468 469 if (Operation > ISD::SETTRUE2) 470 Operation &= ~8; // Don't let N and U bits get set. 471 472 return ISD::CondCode(Operation); 473 } 474 475 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 476 return getSetCCInverseImpl(Op, Type.isInteger()); 477 } 478 479 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 480 bool isIntegerLike) { 481 return getSetCCInverseImpl(Op, isIntegerLike); 482 } 483 484 /// For an integer comparison, return 1 if the comparison is a signed operation 485 /// and 2 if the result is an unsigned comparison. Return zero if the operation 486 /// does not depend on the sign of the input (setne and seteq). 487 static int isSignedOp(ISD::CondCode Opcode) { 488 switch (Opcode) { 489 default: llvm_unreachable("Illegal integer setcc operation!"); 490 case ISD::SETEQ: 491 case ISD::SETNE: return 0; 492 case ISD::SETLT: 493 case ISD::SETLE: 494 case ISD::SETGT: 495 case ISD::SETGE: return 1; 496 case ISD::SETULT: 497 case ISD::SETULE: 498 case ISD::SETUGT: 499 case ISD::SETUGE: return 2; 500 } 501 } 502 503 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 504 EVT Type) { 505 bool IsInteger = Type.isInteger(); 506 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 507 // Cannot fold a signed integer setcc with an unsigned integer setcc. 508 return ISD::SETCC_INVALID; 509 510 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 511 512 // If the N and U bits get set, then the resultant comparison DOES suddenly 513 // care about orderedness, and it is true when ordered. 514 if (Op > ISD::SETTRUE2) 515 Op &= ~16; // Clear the U bit if the N bit is set. 516 517 // Canonicalize illegal integer setcc's. 518 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 519 Op = ISD::SETNE; 520 521 return ISD::CondCode(Op); 522 } 523 524 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 525 EVT Type) { 526 bool IsInteger = Type.isInteger(); 527 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 528 // Cannot fold a signed setcc with an unsigned setcc. 529 return ISD::SETCC_INVALID; 530 531 // Combine all of the condition bits. 532 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 533 534 // Canonicalize illegal integer setcc's. 535 if (IsInteger) { 536 switch (Result) { 537 default: break; 538 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 539 case ISD::SETOEQ: // SETEQ & SETU[LG]E 540 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 541 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 542 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 543 } 544 } 545 546 return Result; 547 } 548 549 //===----------------------------------------------------------------------===// 550 // SDNode Profile Support 551 //===----------------------------------------------------------------------===// 552 553 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 554 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 555 ID.AddInteger(OpC); 556 } 557 558 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 559 /// solely with their pointer. 560 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 561 ID.AddPointer(VTList.VTs); 562 } 563 564 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 565 static void AddNodeIDOperands(FoldingSetNodeID &ID, 566 ArrayRef<SDValue> Ops) { 567 for (auto& Op : Ops) { 568 ID.AddPointer(Op.getNode()); 569 ID.AddInteger(Op.getResNo()); 570 } 571 } 572 573 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 574 static void AddNodeIDOperands(FoldingSetNodeID &ID, 575 ArrayRef<SDUse> Ops) { 576 for (auto& Op : Ops) { 577 ID.AddPointer(Op.getNode()); 578 ID.AddInteger(Op.getResNo()); 579 } 580 } 581 582 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 583 SDVTList VTList, ArrayRef<SDValue> OpList) { 584 AddNodeIDOpcode(ID, OpC); 585 AddNodeIDValueTypes(ID, VTList); 586 AddNodeIDOperands(ID, OpList); 587 } 588 589 /// If this is an SDNode with special info, add this info to the NodeID data. 590 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 591 switch (N->getOpcode()) { 592 case ISD::TargetExternalSymbol: 593 case ISD::ExternalSymbol: 594 case ISD::MCSymbol: 595 llvm_unreachable("Should only be used on nodes with operands"); 596 default: break; // Normal nodes don't need extra info. 597 case ISD::TargetConstant: 598 case ISD::Constant: { 599 const ConstantSDNode *C = cast<ConstantSDNode>(N); 600 ID.AddPointer(C->getConstantIntValue()); 601 ID.AddBoolean(C->isOpaque()); 602 break; 603 } 604 case ISD::TargetConstantFP: 605 case ISD::ConstantFP: 606 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 607 break; 608 case ISD::TargetGlobalAddress: 609 case ISD::GlobalAddress: 610 case ISD::TargetGlobalTLSAddress: 611 case ISD::GlobalTLSAddress: { 612 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 613 ID.AddPointer(GA->getGlobal()); 614 ID.AddInteger(GA->getOffset()); 615 ID.AddInteger(GA->getTargetFlags()); 616 break; 617 } 618 case ISD::BasicBlock: 619 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 620 break; 621 case ISD::Register: 622 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 623 break; 624 case ISD::RegisterMask: 625 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 626 break; 627 case ISD::SRCVALUE: 628 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 629 break; 630 case ISD::FrameIndex: 631 case ISD::TargetFrameIndex: 632 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 633 break; 634 case ISD::LIFETIME_START: 635 case ISD::LIFETIME_END: 636 if (cast<LifetimeSDNode>(N)->hasOffset()) { 637 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 638 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 639 } 640 break; 641 case ISD::PSEUDO_PROBE: 642 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 643 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 645 break; 646 case ISD::JumpTable: 647 case ISD::TargetJumpTable: 648 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 649 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 650 break; 651 case ISD::ConstantPool: 652 case ISD::TargetConstantPool: { 653 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 654 ID.AddInteger(CP->getAlign().value()); 655 ID.AddInteger(CP->getOffset()); 656 if (CP->isMachineConstantPoolEntry()) 657 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 658 else 659 ID.AddPointer(CP->getConstVal()); 660 ID.AddInteger(CP->getTargetFlags()); 661 break; 662 } 663 case ISD::TargetIndex: { 664 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 665 ID.AddInteger(TI->getIndex()); 666 ID.AddInteger(TI->getOffset()); 667 ID.AddInteger(TI->getTargetFlags()); 668 break; 669 } 670 case ISD::LOAD: { 671 const LoadSDNode *LD = cast<LoadSDNode>(N); 672 ID.AddInteger(LD->getMemoryVT().getRawBits()); 673 ID.AddInteger(LD->getRawSubclassData()); 674 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 675 break; 676 } 677 case ISD::STORE: { 678 const StoreSDNode *ST = cast<StoreSDNode>(N); 679 ID.AddInteger(ST->getMemoryVT().getRawBits()); 680 ID.AddInteger(ST->getRawSubclassData()); 681 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 682 break; 683 } 684 case ISD::MLOAD: { 685 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 686 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 687 ID.AddInteger(MLD->getRawSubclassData()); 688 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 689 break; 690 } 691 case ISD::MSTORE: { 692 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 693 ID.AddInteger(MST->getMemoryVT().getRawBits()); 694 ID.AddInteger(MST->getRawSubclassData()); 695 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 696 break; 697 } 698 case ISD::MGATHER: { 699 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 700 ID.AddInteger(MG->getMemoryVT().getRawBits()); 701 ID.AddInteger(MG->getRawSubclassData()); 702 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 703 break; 704 } 705 case ISD::MSCATTER: { 706 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 707 ID.AddInteger(MS->getMemoryVT().getRawBits()); 708 ID.AddInteger(MS->getRawSubclassData()); 709 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 710 break; 711 } 712 case ISD::ATOMIC_CMP_SWAP: 713 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 714 case ISD::ATOMIC_SWAP: 715 case ISD::ATOMIC_LOAD_ADD: 716 case ISD::ATOMIC_LOAD_SUB: 717 case ISD::ATOMIC_LOAD_AND: 718 case ISD::ATOMIC_LOAD_CLR: 719 case ISD::ATOMIC_LOAD_OR: 720 case ISD::ATOMIC_LOAD_XOR: 721 case ISD::ATOMIC_LOAD_NAND: 722 case ISD::ATOMIC_LOAD_MIN: 723 case ISD::ATOMIC_LOAD_MAX: 724 case ISD::ATOMIC_LOAD_UMIN: 725 case ISD::ATOMIC_LOAD_UMAX: 726 case ISD::ATOMIC_LOAD: 727 case ISD::ATOMIC_STORE: { 728 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 729 ID.AddInteger(AT->getMemoryVT().getRawBits()); 730 ID.AddInteger(AT->getRawSubclassData()); 731 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 732 break; 733 } 734 case ISD::PREFETCH: { 735 const MemSDNode *PF = cast<MemSDNode>(N); 736 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::VECTOR_SHUFFLE: { 740 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 741 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 742 i != e; ++i) 743 ID.AddInteger(SVN->getMaskElt(i)); 744 break; 745 } 746 case ISD::TargetBlockAddress: 747 case ISD::BlockAddress: { 748 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 749 ID.AddPointer(BA->getBlockAddress()); 750 ID.AddInteger(BA->getOffset()); 751 ID.AddInteger(BA->getTargetFlags()); 752 break; 753 } 754 } // end switch (N->getOpcode()) 755 756 // Target specific memory nodes could also have address spaces to check. 757 if (N->isTargetMemoryOpcode()) 758 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 759 } 760 761 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 762 /// data. 763 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 764 AddNodeIDOpcode(ID, N->getOpcode()); 765 // Add the return value info. 766 AddNodeIDValueTypes(ID, N->getVTList()); 767 // Add the operand info. 768 AddNodeIDOperands(ID, N->ops()); 769 770 // Handle SDNode leafs with special info. 771 AddNodeIDCustom(ID, N); 772 } 773 774 //===----------------------------------------------------------------------===// 775 // SelectionDAG Class 776 //===----------------------------------------------------------------------===// 777 778 /// doNotCSE - Return true if CSE should not be performed for this node. 779 static bool doNotCSE(SDNode *N) { 780 if (N->getValueType(0) == MVT::Glue) 781 return true; // Never CSE anything that produces a flag. 782 783 switch (N->getOpcode()) { 784 default: break; 785 case ISD::HANDLENODE: 786 case ISD::EH_LABEL: 787 return true; // Never CSE these nodes. 788 } 789 790 // Check that remaining values produced are not flags. 791 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 792 if (N->getValueType(i) == MVT::Glue) 793 return true; // Never CSE anything that produces a flag. 794 795 return false; 796 } 797 798 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 799 /// SelectionDAG. 800 void SelectionDAG::RemoveDeadNodes() { 801 // Create a dummy node (which is not added to allnodes), that adds a reference 802 // to the root node, preventing it from being deleted. 803 HandleSDNode Dummy(getRoot()); 804 805 SmallVector<SDNode*, 128> DeadNodes; 806 807 // Add all obviously-dead nodes to the DeadNodes worklist. 808 for (SDNode &Node : allnodes()) 809 if (Node.use_empty()) 810 DeadNodes.push_back(&Node); 811 812 RemoveDeadNodes(DeadNodes); 813 814 // If the root changed (e.g. it was a dead load, update the root). 815 setRoot(Dummy.getValue()); 816 } 817 818 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 819 /// given list, and any nodes that become unreachable as a result. 820 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 821 822 // Process the worklist, deleting the nodes and adding their uses to the 823 // worklist. 824 while (!DeadNodes.empty()) { 825 SDNode *N = DeadNodes.pop_back_val(); 826 // Skip to next node if we've already managed to delete the node. This could 827 // happen if replacing a node causes a node previously added to the node to 828 // be deleted. 829 if (N->getOpcode() == ISD::DELETED_NODE) 830 continue; 831 832 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 833 DUL->NodeDeleted(N, nullptr); 834 835 // Take the node out of the appropriate CSE map. 836 RemoveNodeFromCSEMaps(N); 837 838 // Next, brutally remove the operand list. This is safe to do, as there are 839 // no cycles in the graph. 840 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 841 SDUse &Use = *I++; 842 SDNode *Operand = Use.getNode(); 843 Use.set(SDValue()); 844 845 // Now that we removed this operand, see if there are no uses of it left. 846 if (Operand->use_empty()) 847 DeadNodes.push_back(Operand); 848 } 849 850 DeallocateNode(N); 851 } 852 } 853 854 void SelectionDAG::RemoveDeadNode(SDNode *N){ 855 SmallVector<SDNode*, 16> DeadNodes(1, N); 856 857 // Create a dummy node that adds a reference to the root node, preventing 858 // it from being deleted. (This matters if the root is an operand of the 859 // dead node.) 860 HandleSDNode Dummy(getRoot()); 861 862 RemoveDeadNodes(DeadNodes); 863 } 864 865 void SelectionDAG::DeleteNode(SDNode *N) { 866 // First take this out of the appropriate CSE map. 867 RemoveNodeFromCSEMaps(N); 868 869 // Finally, remove uses due to operands of this node, remove from the 870 // AllNodes list, and delete the node. 871 DeleteNodeNotInCSEMaps(N); 872 } 873 874 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 875 assert(N->getIterator() != AllNodes.begin() && 876 "Cannot delete the entry node!"); 877 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 878 879 // Drop all of the operands and decrement used node's use counts. 880 N->DropOperands(); 881 882 DeallocateNode(N); 883 } 884 885 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 886 assert(!(V->isVariadic() && isParameter)); 887 if (isParameter) 888 ByvalParmDbgValues.push_back(V); 889 else 890 DbgValues.push_back(V); 891 for (const SDNode *Node : V->getSDNodes()) 892 if (Node) 893 DbgValMap[Node].push_back(V); 894 } 895 896 void SDDbgInfo::erase(const SDNode *Node) { 897 DbgValMapType::iterator I = DbgValMap.find(Node); 898 if (I == DbgValMap.end()) 899 return; 900 for (auto &Val: I->second) 901 Val->setIsInvalidated(); 902 DbgValMap.erase(I); 903 } 904 905 void SelectionDAG::DeallocateNode(SDNode *N) { 906 // If we have operands, deallocate them. 907 removeOperands(N); 908 909 NodeAllocator.Deallocate(AllNodes.remove(N)); 910 911 // Set the opcode to DELETED_NODE to help catch bugs when node 912 // memory is reallocated. 913 // FIXME: There are places in SDag that have grown a dependency on the opcode 914 // value in the released node. 915 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 916 N->NodeType = ISD::DELETED_NODE; 917 918 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 919 // them and forget about that node. 920 DbgInfo->erase(N); 921 } 922 923 #ifndef NDEBUG 924 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 925 static void VerifySDNode(SDNode *N) { 926 switch (N->getOpcode()) { 927 default: 928 break; 929 case ISD::BUILD_PAIR: { 930 EVT VT = N->getValueType(0); 931 assert(N->getNumValues() == 1 && "Too many results!"); 932 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 933 "Wrong return type!"); 934 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 935 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 936 "Mismatched operand types!"); 937 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 938 "Wrong operand type!"); 939 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 940 "Wrong return type size"); 941 break; 942 } 943 case ISD::BUILD_VECTOR: { 944 assert(N->getNumValues() == 1 && "Too many results!"); 945 assert(N->getValueType(0).isVector() && "Wrong return type!"); 946 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 947 "Wrong number of operands!"); 948 EVT EltVT = N->getValueType(0).getVectorElementType(); 949 for (const SDUse &Op : N->ops()) { 950 assert((Op.getValueType() == EltVT || 951 (EltVT.isInteger() && Op.getValueType().isInteger() && 952 EltVT.bitsLE(Op.getValueType()))) && 953 "Wrong operand type!"); 954 assert(Op.getValueType() == N->getOperand(0).getValueType() && 955 "Operands must all have the same type"); 956 } 957 break; 958 } 959 } 960 } 961 #endif // NDEBUG 962 963 /// Insert a newly allocated node into the DAG. 964 /// 965 /// Handles insertion into the all nodes list and CSE map, as well as 966 /// verification and other common operations when a new node is allocated. 967 void SelectionDAG::InsertNode(SDNode *N) { 968 AllNodes.push_back(N); 969 #ifndef NDEBUG 970 N->PersistentId = NextPersistentId++; 971 VerifySDNode(N); 972 #endif 973 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 974 DUL->NodeInserted(N); 975 } 976 977 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 978 /// correspond to it. This is useful when we're about to delete or repurpose 979 /// the node. We don't want future request for structurally identical nodes 980 /// to return N anymore. 981 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 982 bool Erased = false; 983 switch (N->getOpcode()) { 984 case ISD::HANDLENODE: return false; // noop. 985 case ISD::CONDCODE: 986 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 987 "Cond code doesn't exist!"); 988 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 989 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 990 break; 991 case ISD::ExternalSymbol: 992 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 993 break; 994 case ISD::TargetExternalSymbol: { 995 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 996 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 997 ESN->getSymbol(), ESN->getTargetFlags())); 998 break; 999 } 1000 case ISD::MCSymbol: { 1001 auto *MCSN = cast<MCSymbolSDNode>(N); 1002 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1003 break; 1004 } 1005 case ISD::VALUETYPE: { 1006 EVT VT = cast<VTSDNode>(N)->getVT(); 1007 if (VT.isExtended()) { 1008 Erased = ExtendedValueTypeNodes.erase(VT); 1009 } else { 1010 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1011 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1012 } 1013 break; 1014 } 1015 default: 1016 // Remove it from the CSE Map. 1017 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1018 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1019 Erased = CSEMap.RemoveNode(N); 1020 break; 1021 } 1022 #ifndef NDEBUG 1023 // Verify that the node was actually in one of the CSE maps, unless it has a 1024 // flag result (which cannot be CSE'd) or is one of the special cases that are 1025 // not subject to CSE. 1026 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1027 !N->isMachineOpcode() && !doNotCSE(N)) { 1028 N->dump(this); 1029 dbgs() << "\n"; 1030 llvm_unreachable("Node is not in map!"); 1031 } 1032 #endif 1033 return Erased; 1034 } 1035 1036 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1037 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1038 /// node already exists, in which case transfer all its users to the existing 1039 /// node. This transfer can potentially trigger recursive merging. 1040 void 1041 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1042 // For node types that aren't CSE'd, just act as if no identical node 1043 // already exists. 1044 if (!doNotCSE(N)) { 1045 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1046 if (Existing != N) { 1047 // If there was already an existing matching node, use ReplaceAllUsesWith 1048 // to replace the dead one with the existing one. This can cause 1049 // recursive merging of other unrelated nodes down the line. 1050 ReplaceAllUsesWith(N, Existing); 1051 1052 // N is now dead. Inform the listeners and delete it. 1053 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1054 DUL->NodeDeleted(N, Existing); 1055 DeleteNodeNotInCSEMaps(N); 1056 return; 1057 } 1058 } 1059 1060 // If the node doesn't already exist, we updated it. Inform listeners. 1061 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1062 DUL->NodeUpdated(N); 1063 } 1064 1065 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1066 /// were replaced with those specified. If this node is never memoized, 1067 /// return null, otherwise return a pointer to the slot it would take. If a 1068 /// node already exists with these operands, the slot will be non-null. 1069 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1070 void *&InsertPos) { 1071 if (doNotCSE(N)) 1072 return nullptr; 1073 1074 SDValue Ops[] = { Op }; 1075 FoldingSetNodeID ID; 1076 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1077 AddNodeIDCustom(ID, N); 1078 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1079 if (Node) 1080 Node->intersectFlagsWith(N->getFlags()); 1081 return Node; 1082 } 1083 1084 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1085 /// were replaced with those specified. If this node is never memoized, 1086 /// return null, otherwise return a pointer to the slot it would take. If a 1087 /// node already exists with these operands, the slot will be non-null. 1088 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1089 SDValue Op1, SDValue Op2, 1090 void *&InsertPos) { 1091 if (doNotCSE(N)) 1092 return nullptr; 1093 1094 SDValue Ops[] = { Op1, Op2 }; 1095 FoldingSetNodeID ID; 1096 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1097 AddNodeIDCustom(ID, N); 1098 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1099 if (Node) 1100 Node->intersectFlagsWith(N->getFlags()); 1101 return Node; 1102 } 1103 1104 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1105 /// were replaced with those specified. If this node is never memoized, 1106 /// return null, otherwise return a pointer to the slot it would take. If a 1107 /// node already exists with these operands, the slot will be non-null. 1108 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1109 void *&InsertPos) { 1110 if (doNotCSE(N)) 1111 return nullptr; 1112 1113 FoldingSetNodeID ID; 1114 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1115 AddNodeIDCustom(ID, N); 1116 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1117 if (Node) 1118 Node->intersectFlagsWith(N->getFlags()); 1119 return Node; 1120 } 1121 1122 Align SelectionDAG::getEVTAlign(EVT VT) const { 1123 Type *Ty = VT == MVT::iPTR ? 1124 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1125 VT.getTypeForEVT(*getContext()); 1126 1127 return getDataLayout().getABITypeAlign(Ty); 1128 } 1129 1130 // EntryNode could meaningfully have debug info if we can find it... 1131 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1132 : TM(tm), OptLevel(OL), 1133 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1134 Root(getEntryNode()) { 1135 InsertNode(&EntryNode); 1136 DbgInfo = new SDDbgInfo(); 1137 } 1138 1139 void SelectionDAG::init(MachineFunction &NewMF, 1140 OptimizationRemarkEmitter &NewORE, 1141 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1142 LegacyDivergenceAnalysis * Divergence, 1143 ProfileSummaryInfo *PSIin, 1144 BlockFrequencyInfo *BFIin) { 1145 MF = &NewMF; 1146 SDAGISelPass = PassPtr; 1147 ORE = &NewORE; 1148 TLI = getSubtarget().getTargetLowering(); 1149 TSI = getSubtarget().getSelectionDAGInfo(); 1150 LibInfo = LibraryInfo; 1151 Context = &MF->getFunction().getContext(); 1152 DA = Divergence; 1153 PSI = PSIin; 1154 BFI = BFIin; 1155 } 1156 1157 SelectionDAG::~SelectionDAG() { 1158 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1159 allnodes_clear(); 1160 OperandRecycler.clear(OperandAllocator); 1161 delete DbgInfo; 1162 } 1163 1164 bool SelectionDAG::shouldOptForSize() const { 1165 return MF->getFunction().hasOptSize() || 1166 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1167 } 1168 1169 void SelectionDAG::allnodes_clear() { 1170 assert(&*AllNodes.begin() == &EntryNode); 1171 AllNodes.remove(AllNodes.begin()); 1172 while (!AllNodes.empty()) 1173 DeallocateNode(&AllNodes.front()); 1174 #ifndef NDEBUG 1175 NextPersistentId = 0; 1176 #endif 1177 } 1178 1179 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1180 void *&InsertPos) { 1181 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1182 if (N) { 1183 switch (N->getOpcode()) { 1184 default: break; 1185 case ISD::Constant: 1186 case ISD::ConstantFP: 1187 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1188 "debug location. Use another overload."); 1189 } 1190 } 1191 return N; 1192 } 1193 1194 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1195 const SDLoc &DL, void *&InsertPos) { 1196 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1197 if (N) { 1198 switch (N->getOpcode()) { 1199 case ISD::Constant: 1200 case ISD::ConstantFP: 1201 // Erase debug location from the node if the node is used at several 1202 // different places. Do not propagate one location to all uses as it 1203 // will cause a worse single stepping debugging experience. 1204 if (N->getDebugLoc() != DL.getDebugLoc()) 1205 N->setDebugLoc(DebugLoc()); 1206 break; 1207 default: 1208 // When the node's point of use is located earlier in the instruction 1209 // sequence than its prior point of use, update its debug info to the 1210 // earlier location. 1211 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1212 N->setDebugLoc(DL.getDebugLoc()); 1213 break; 1214 } 1215 } 1216 return N; 1217 } 1218 1219 void SelectionDAG::clear() { 1220 allnodes_clear(); 1221 OperandRecycler.clear(OperandAllocator); 1222 OperandAllocator.Reset(); 1223 CSEMap.clear(); 1224 1225 ExtendedValueTypeNodes.clear(); 1226 ExternalSymbols.clear(); 1227 TargetExternalSymbols.clear(); 1228 MCSymbols.clear(); 1229 SDCallSiteDbgInfo.clear(); 1230 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1231 static_cast<CondCodeSDNode*>(nullptr)); 1232 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1233 static_cast<SDNode*>(nullptr)); 1234 1235 EntryNode.UseList = nullptr; 1236 InsertNode(&EntryNode); 1237 Root = getEntryNode(); 1238 DbgInfo->clear(); 1239 } 1240 1241 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1242 return VT.bitsGT(Op.getValueType()) 1243 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1244 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1245 } 1246 1247 std::pair<SDValue, SDValue> 1248 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1249 const SDLoc &DL, EVT VT) { 1250 assert(!VT.bitsEq(Op.getValueType()) && 1251 "Strict no-op FP extend/round not allowed."); 1252 SDValue Res = 1253 VT.bitsGT(Op.getValueType()) 1254 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1255 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1256 {Chain, Op, getIntPtrConstant(0, DL)}); 1257 1258 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1259 } 1260 1261 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1262 return VT.bitsGT(Op.getValueType()) ? 1263 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1264 getNode(ISD::TRUNCATE, DL, VT, Op); 1265 } 1266 1267 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1268 return VT.bitsGT(Op.getValueType()) ? 1269 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1270 getNode(ISD::TRUNCATE, DL, VT, Op); 1271 } 1272 1273 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1274 return VT.bitsGT(Op.getValueType()) ? 1275 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1276 getNode(ISD::TRUNCATE, DL, VT, Op); 1277 } 1278 1279 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1280 EVT OpVT) { 1281 if (VT.bitsLE(Op.getValueType())) 1282 return getNode(ISD::TRUNCATE, SL, VT, Op); 1283 1284 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1285 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1286 } 1287 1288 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1289 EVT OpVT = Op.getValueType(); 1290 assert(VT.isInteger() && OpVT.isInteger() && 1291 "Cannot getZeroExtendInReg FP types"); 1292 assert(VT.isVector() == OpVT.isVector() && 1293 "getZeroExtendInReg type should be vector iff the operand " 1294 "type is vector!"); 1295 assert((!VT.isVector() || 1296 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1297 "Vector element counts must match in getZeroExtendInReg"); 1298 assert(VT.bitsLE(OpVT) && "Not extending!"); 1299 if (OpVT == VT) 1300 return Op; 1301 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1302 VT.getScalarSizeInBits()); 1303 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1304 } 1305 1306 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1307 // Only unsigned pointer semantics are supported right now. In the future this 1308 // might delegate to TLI to check pointer signedness. 1309 return getZExtOrTrunc(Op, DL, VT); 1310 } 1311 1312 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1313 // Only unsigned pointer semantics are supported right now. In the future this 1314 // might delegate to TLI to check pointer signedness. 1315 return getZeroExtendInReg(Op, DL, VT); 1316 } 1317 1318 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1319 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1320 EVT EltVT = VT.getScalarType(); 1321 SDValue NegOne = 1322 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1323 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1324 } 1325 1326 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1327 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1328 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1329 } 1330 1331 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1332 EVT OpVT) { 1333 if (!V) 1334 return getConstant(0, DL, VT); 1335 1336 switch (TLI->getBooleanContents(OpVT)) { 1337 case TargetLowering::ZeroOrOneBooleanContent: 1338 case TargetLowering::UndefinedBooleanContent: 1339 return getConstant(1, DL, VT); 1340 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1341 return getAllOnesConstant(DL, VT); 1342 } 1343 llvm_unreachable("Unexpected boolean content enum!"); 1344 } 1345 1346 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1347 bool isT, bool isO) { 1348 EVT EltVT = VT.getScalarType(); 1349 assert((EltVT.getSizeInBits() >= 64 || 1350 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1351 "getConstant with a uint64_t value that doesn't fit in the type!"); 1352 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1353 } 1354 1355 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1356 bool isT, bool isO) { 1357 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1358 } 1359 1360 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1361 EVT VT, bool isT, bool isO) { 1362 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1363 1364 EVT EltVT = VT.getScalarType(); 1365 const ConstantInt *Elt = &Val; 1366 1367 // In some cases the vector type is legal but the element type is illegal and 1368 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1369 // inserted value (the type does not need to match the vector element type). 1370 // Any extra bits introduced will be truncated away. 1371 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1372 TargetLowering::TypePromoteInteger) { 1373 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1374 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1375 Elt = ConstantInt::get(*getContext(), NewVal); 1376 } 1377 // In other cases the element type is illegal and needs to be expanded, for 1378 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1379 // the value into n parts and use a vector type with n-times the elements. 1380 // Then bitcast to the type requested. 1381 // Legalizing constants too early makes the DAGCombiner's job harder so we 1382 // only legalize if the DAG tells us we must produce legal types. 1383 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1384 TLI->getTypeAction(*getContext(), EltVT) == 1385 TargetLowering::TypeExpandInteger) { 1386 const APInt &NewVal = Elt->getValue(); 1387 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1388 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1389 1390 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1391 if (VT.isScalableVector()) { 1392 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1393 "Can only handle an even split!"); 1394 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1395 1396 SmallVector<SDValue, 2> ScalarParts; 1397 for (unsigned i = 0; i != Parts; ++i) 1398 ScalarParts.push_back(getConstant( 1399 NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL, 1400 ViaEltVT, isT, isO)); 1401 1402 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1403 } 1404 1405 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1406 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1407 1408 // Check the temporary vector is the correct size. If this fails then 1409 // getTypeToTransformTo() probably returned a type whose size (in bits) 1410 // isn't a power-of-2 factor of the requested type size. 1411 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1412 1413 SmallVector<SDValue, 2> EltParts; 1414 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1415 EltParts.push_back(getConstant( 1416 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1417 ViaEltVT, isT, isO)); 1418 } 1419 1420 // EltParts is currently in little endian order. If we actually want 1421 // big-endian order then reverse it now. 1422 if (getDataLayout().isBigEndian()) 1423 std::reverse(EltParts.begin(), EltParts.end()); 1424 1425 // The elements must be reversed when the element order is different 1426 // to the endianness of the elements (because the BITCAST is itself a 1427 // vector shuffle in this situation). However, we do not need any code to 1428 // perform this reversal because getConstant() is producing a vector 1429 // splat. 1430 // This situation occurs in MIPS MSA. 1431 1432 SmallVector<SDValue, 8> Ops; 1433 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1434 llvm::append_range(Ops, EltParts); 1435 1436 SDValue V = 1437 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1438 return V; 1439 } 1440 1441 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1442 "APInt size does not match type size!"); 1443 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1444 FoldingSetNodeID ID; 1445 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1446 ID.AddPointer(Elt); 1447 ID.AddBoolean(isO); 1448 void *IP = nullptr; 1449 SDNode *N = nullptr; 1450 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1451 if (!VT.isVector()) 1452 return SDValue(N, 0); 1453 1454 if (!N) { 1455 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1456 CSEMap.InsertNode(N, IP); 1457 InsertNode(N); 1458 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1459 } 1460 1461 SDValue Result(N, 0); 1462 if (VT.isScalableVector()) 1463 Result = getSplatVector(VT, DL, Result); 1464 else if (VT.isVector()) 1465 Result = getSplatBuildVector(VT, DL, Result); 1466 1467 return Result; 1468 } 1469 1470 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1471 bool isTarget) { 1472 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1473 } 1474 1475 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1476 const SDLoc &DL, bool LegalTypes) { 1477 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1478 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1479 return getConstant(Val, DL, ShiftVT); 1480 } 1481 1482 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1483 bool isTarget) { 1484 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1485 } 1486 1487 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1488 bool isTarget) { 1489 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1490 } 1491 1492 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1493 EVT VT, bool isTarget) { 1494 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1495 1496 EVT EltVT = VT.getScalarType(); 1497 1498 // Do the map lookup using the actual bit pattern for the floating point 1499 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1500 // we don't have issues with SNANs. 1501 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1502 FoldingSetNodeID ID; 1503 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1504 ID.AddPointer(&V); 1505 void *IP = nullptr; 1506 SDNode *N = nullptr; 1507 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1508 if (!VT.isVector()) 1509 return SDValue(N, 0); 1510 1511 if (!N) { 1512 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1513 CSEMap.InsertNode(N, IP); 1514 InsertNode(N); 1515 } 1516 1517 SDValue Result(N, 0); 1518 if (VT.isScalableVector()) 1519 Result = getSplatVector(VT, DL, Result); 1520 else if (VT.isVector()) 1521 Result = getSplatBuildVector(VT, DL, Result); 1522 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1523 return Result; 1524 } 1525 1526 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1527 bool isTarget) { 1528 EVT EltVT = VT.getScalarType(); 1529 if (EltVT == MVT::f32) 1530 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1531 else if (EltVT == MVT::f64) 1532 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1533 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1534 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1535 bool Ignored; 1536 APFloat APF = APFloat(Val); 1537 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1538 &Ignored); 1539 return getConstantFP(APF, DL, VT, isTarget); 1540 } else 1541 llvm_unreachable("Unsupported type in getConstantFP"); 1542 } 1543 1544 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1545 EVT VT, int64_t Offset, bool isTargetGA, 1546 unsigned TargetFlags) { 1547 assert((TargetFlags == 0 || isTargetGA) && 1548 "Cannot set target flags on target-independent globals"); 1549 1550 // Truncate (with sign-extension) the offset value to the pointer size. 1551 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1552 if (BitWidth < 64) 1553 Offset = SignExtend64(Offset, BitWidth); 1554 1555 unsigned Opc; 1556 if (GV->isThreadLocal()) 1557 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1558 else 1559 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1560 1561 FoldingSetNodeID ID; 1562 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1563 ID.AddPointer(GV); 1564 ID.AddInteger(Offset); 1565 ID.AddInteger(TargetFlags); 1566 void *IP = nullptr; 1567 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1568 return SDValue(E, 0); 1569 1570 auto *N = newSDNode<GlobalAddressSDNode>( 1571 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1572 CSEMap.InsertNode(N, IP); 1573 InsertNode(N); 1574 return SDValue(N, 0); 1575 } 1576 1577 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1578 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1579 FoldingSetNodeID ID; 1580 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1581 ID.AddInteger(FI); 1582 void *IP = nullptr; 1583 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1584 return SDValue(E, 0); 1585 1586 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1587 CSEMap.InsertNode(N, IP); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1593 unsigned TargetFlags) { 1594 assert((TargetFlags == 0 || isTarget) && 1595 "Cannot set target flags on target-independent jump tables"); 1596 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1597 FoldingSetNodeID ID; 1598 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1599 ID.AddInteger(JTI); 1600 ID.AddInteger(TargetFlags); 1601 void *IP = nullptr; 1602 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1603 return SDValue(E, 0); 1604 1605 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1606 CSEMap.InsertNode(N, IP); 1607 InsertNode(N); 1608 return SDValue(N, 0); 1609 } 1610 1611 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1612 MaybeAlign Alignment, int Offset, 1613 bool isTarget, unsigned TargetFlags) { 1614 assert((TargetFlags == 0 || isTarget) && 1615 "Cannot set target flags on target-independent globals"); 1616 if (!Alignment) 1617 Alignment = shouldOptForSize() 1618 ? getDataLayout().getABITypeAlign(C->getType()) 1619 : getDataLayout().getPrefTypeAlign(C->getType()); 1620 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1621 FoldingSetNodeID ID; 1622 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1623 ID.AddInteger(Alignment->value()); 1624 ID.AddInteger(Offset); 1625 ID.AddPointer(C); 1626 ID.AddInteger(TargetFlags); 1627 void *IP = nullptr; 1628 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1629 return SDValue(E, 0); 1630 1631 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1632 TargetFlags); 1633 CSEMap.InsertNode(N, IP); 1634 InsertNode(N); 1635 SDValue V = SDValue(N, 0); 1636 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1637 return V; 1638 } 1639 1640 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1641 MaybeAlign Alignment, int Offset, 1642 bool isTarget, unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent globals"); 1645 if (!Alignment) 1646 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1647 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(Alignment->value()); 1651 ID.AddInteger(Offset); 1652 C->addSelectionDAGCSEId(ID); 1653 ID.AddInteger(TargetFlags); 1654 void *IP = nullptr; 1655 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1656 return SDValue(E, 0); 1657 1658 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1659 TargetFlags); 1660 CSEMap.InsertNode(N, IP); 1661 InsertNode(N); 1662 return SDValue(N, 0); 1663 } 1664 1665 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1666 unsigned TargetFlags) { 1667 FoldingSetNodeID ID; 1668 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1669 ID.AddInteger(Index); 1670 ID.AddInteger(Offset); 1671 ID.AddInteger(TargetFlags); 1672 void *IP = nullptr; 1673 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1674 return SDValue(E, 0); 1675 1676 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1677 CSEMap.InsertNode(N, IP); 1678 InsertNode(N); 1679 return SDValue(N, 0); 1680 } 1681 1682 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1683 FoldingSetNodeID ID; 1684 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1685 ID.AddPointer(MBB); 1686 void *IP = nullptr; 1687 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1688 return SDValue(E, 0); 1689 1690 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1691 CSEMap.InsertNode(N, IP); 1692 InsertNode(N); 1693 return SDValue(N, 0); 1694 } 1695 1696 SDValue SelectionDAG::getValueType(EVT VT) { 1697 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1698 ValueTypeNodes.size()) 1699 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1700 1701 SDNode *&N = VT.isExtended() ? 1702 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1703 1704 if (N) return SDValue(N, 0); 1705 N = newSDNode<VTSDNode>(VT); 1706 InsertNode(N); 1707 return SDValue(N, 0); 1708 } 1709 1710 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1711 SDNode *&N = ExternalSymbols[Sym]; 1712 if (N) return SDValue(N, 0); 1713 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1714 InsertNode(N); 1715 return SDValue(N, 0); 1716 } 1717 1718 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1719 SDNode *&N = MCSymbols[Sym]; 1720 if (N) 1721 return SDValue(N, 0); 1722 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1723 InsertNode(N); 1724 return SDValue(N, 0); 1725 } 1726 1727 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1728 unsigned TargetFlags) { 1729 SDNode *&N = 1730 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1731 if (N) return SDValue(N, 0); 1732 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1733 InsertNode(N); 1734 return SDValue(N, 0); 1735 } 1736 1737 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1738 if ((unsigned)Cond >= CondCodeNodes.size()) 1739 CondCodeNodes.resize(Cond+1); 1740 1741 if (!CondCodeNodes[Cond]) { 1742 auto *N = newSDNode<CondCodeSDNode>(Cond); 1743 CondCodeNodes[Cond] = N; 1744 InsertNode(N); 1745 } 1746 1747 return SDValue(CondCodeNodes[Cond], 0); 1748 } 1749 1750 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) { 1751 if (ResVT.isScalableVector()) 1752 return getNode(ISD::STEP_VECTOR, DL, ResVT, Step); 1753 1754 EVT OpVT = Step.getValueType(); 1755 APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue(); 1756 SmallVector<SDValue, 16> OpsStepConstants; 1757 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1758 OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT)); 1759 return getBuildVector(ResVT, DL, OpsStepConstants); 1760 } 1761 1762 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1763 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1764 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1765 std::swap(N1, N2); 1766 ShuffleVectorSDNode::commuteMask(M); 1767 } 1768 1769 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1770 SDValue N2, ArrayRef<int> Mask) { 1771 assert(VT.getVectorNumElements() == Mask.size() && 1772 "Must have the same number of vector elements as mask elements!"); 1773 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1774 "Invalid VECTOR_SHUFFLE"); 1775 1776 // Canonicalize shuffle undef, undef -> undef 1777 if (N1.isUndef() && N2.isUndef()) 1778 return getUNDEF(VT); 1779 1780 // Validate that all indices in Mask are within the range of the elements 1781 // input to the shuffle. 1782 int NElts = Mask.size(); 1783 assert(llvm::all_of(Mask, 1784 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1785 "Index out of range"); 1786 1787 // Copy the mask so we can do any needed cleanup. 1788 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1789 1790 // Canonicalize shuffle v, v -> v, undef 1791 if (N1 == N2) { 1792 N2 = getUNDEF(VT); 1793 for (int i = 0; i != NElts; ++i) 1794 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1795 } 1796 1797 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1798 if (N1.isUndef()) 1799 commuteShuffle(N1, N2, MaskVec); 1800 1801 if (TLI->hasVectorBlend()) { 1802 // If shuffling a splat, try to blend the splat instead. We do this here so 1803 // that even when this arises during lowering we don't have to re-handle it. 1804 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1805 BitVector UndefElements; 1806 SDValue Splat = BV->getSplatValue(&UndefElements); 1807 if (!Splat) 1808 return; 1809 1810 for (int i = 0; i < NElts; ++i) { 1811 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1812 continue; 1813 1814 // If this input comes from undef, mark it as such. 1815 if (UndefElements[MaskVec[i] - Offset]) { 1816 MaskVec[i] = -1; 1817 continue; 1818 } 1819 1820 // If we can blend a non-undef lane, use that instead. 1821 if (!UndefElements[i]) 1822 MaskVec[i] = i + Offset; 1823 } 1824 }; 1825 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1826 BlendSplat(N1BV, 0); 1827 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1828 BlendSplat(N2BV, NElts); 1829 } 1830 1831 // Canonicalize all index into lhs, -> shuffle lhs, undef 1832 // Canonicalize all index into rhs, -> shuffle rhs, undef 1833 bool AllLHS = true, AllRHS = true; 1834 bool N2Undef = N2.isUndef(); 1835 for (int i = 0; i != NElts; ++i) { 1836 if (MaskVec[i] >= NElts) { 1837 if (N2Undef) 1838 MaskVec[i] = -1; 1839 else 1840 AllLHS = false; 1841 } else if (MaskVec[i] >= 0) { 1842 AllRHS = false; 1843 } 1844 } 1845 if (AllLHS && AllRHS) 1846 return getUNDEF(VT); 1847 if (AllLHS && !N2Undef) 1848 N2 = getUNDEF(VT); 1849 if (AllRHS) { 1850 N1 = getUNDEF(VT); 1851 commuteShuffle(N1, N2, MaskVec); 1852 } 1853 // Reset our undef status after accounting for the mask. 1854 N2Undef = N2.isUndef(); 1855 // Re-check whether both sides ended up undef. 1856 if (N1.isUndef() && N2Undef) 1857 return getUNDEF(VT); 1858 1859 // If Identity shuffle return that node. 1860 bool Identity = true, AllSame = true; 1861 for (int i = 0; i != NElts; ++i) { 1862 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1863 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1864 } 1865 if (Identity && NElts) 1866 return N1; 1867 1868 // Shuffling a constant splat doesn't change the result. 1869 if (N2Undef) { 1870 SDValue V = N1; 1871 1872 // Look through any bitcasts. We check that these don't change the number 1873 // (and size) of elements and just changes their types. 1874 while (V.getOpcode() == ISD::BITCAST) 1875 V = V->getOperand(0); 1876 1877 // A splat should always show up as a build vector node. 1878 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1879 BitVector UndefElements; 1880 SDValue Splat = BV->getSplatValue(&UndefElements); 1881 // If this is a splat of an undef, shuffling it is also undef. 1882 if (Splat && Splat.isUndef()) 1883 return getUNDEF(VT); 1884 1885 bool SameNumElts = 1886 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1887 1888 // We only have a splat which can skip shuffles if there is a splatted 1889 // value and no undef lanes rearranged by the shuffle. 1890 if (Splat && UndefElements.none()) { 1891 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1892 // number of elements match or the value splatted is a zero constant. 1893 if (SameNumElts) 1894 return N1; 1895 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1896 if (C->isNullValue()) 1897 return N1; 1898 } 1899 1900 // If the shuffle itself creates a splat, build the vector directly. 1901 if (AllSame && SameNumElts) { 1902 EVT BuildVT = BV->getValueType(0); 1903 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1904 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1905 1906 // We may have jumped through bitcasts, so the type of the 1907 // BUILD_VECTOR may not match the type of the shuffle. 1908 if (BuildVT != VT) 1909 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1910 return NewBV; 1911 } 1912 } 1913 } 1914 1915 FoldingSetNodeID ID; 1916 SDValue Ops[2] = { N1, N2 }; 1917 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1918 for (int i = 0; i != NElts; ++i) 1919 ID.AddInteger(MaskVec[i]); 1920 1921 void* IP = nullptr; 1922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1923 return SDValue(E, 0); 1924 1925 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1926 // SDNode doesn't have access to it. This memory will be "leaked" when 1927 // the node is deallocated, but recovered when the NodeAllocator is released. 1928 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1929 llvm::copy(MaskVec, MaskAlloc); 1930 1931 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1932 dl.getDebugLoc(), MaskAlloc); 1933 createOperands(N, Ops); 1934 1935 CSEMap.InsertNode(N, IP); 1936 InsertNode(N); 1937 SDValue V = SDValue(N, 0); 1938 NewSDValueDbgMsg(V, "Creating new node: ", this); 1939 return V; 1940 } 1941 1942 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1943 EVT VT = SV.getValueType(0); 1944 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1945 ShuffleVectorSDNode::commuteMask(MaskVec); 1946 1947 SDValue Op0 = SV.getOperand(0); 1948 SDValue Op1 = SV.getOperand(1); 1949 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1950 } 1951 1952 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1953 FoldingSetNodeID ID; 1954 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1955 ID.AddInteger(RegNo); 1956 void *IP = nullptr; 1957 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1958 return SDValue(E, 0); 1959 1960 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1961 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1962 CSEMap.InsertNode(N, IP); 1963 InsertNode(N); 1964 return SDValue(N, 0); 1965 } 1966 1967 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1970 ID.AddPointer(RegMask); 1971 void *IP = nullptr; 1972 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1973 return SDValue(E, 0); 1974 1975 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1976 CSEMap.InsertNode(N, IP); 1977 InsertNode(N); 1978 return SDValue(N, 0); 1979 } 1980 1981 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1982 MCSymbol *Label) { 1983 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1984 } 1985 1986 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1987 SDValue Root, MCSymbol *Label) { 1988 FoldingSetNodeID ID; 1989 SDValue Ops[] = { Root }; 1990 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1991 ID.AddPointer(Label); 1992 void *IP = nullptr; 1993 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1994 return SDValue(E, 0); 1995 1996 auto *N = 1997 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1998 createOperands(N, Ops); 1999 2000 CSEMap.InsertNode(N, IP); 2001 InsertNode(N); 2002 return SDValue(N, 0); 2003 } 2004 2005 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2006 int64_t Offset, bool isTarget, 2007 unsigned TargetFlags) { 2008 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2009 2010 FoldingSetNodeID ID; 2011 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2012 ID.AddPointer(BA); 2013 ID.AddInteger(Offset); 2014 ID.AddInteger(TargetFlags); 2015 void *IP = nullptr; 2016 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2017 return SDValue(E, 0); 2018 2019 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getSrcValue(const Value *V) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2028 ID.AddPointer(V); 2029 2030 void *IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2032 return SDValue(E, 0); 2033 2034 auto *N = newSDNode<SrcValueSDNode>(V); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2043 ID.AddPointer(MD); 2044 2045 void *IP = nullptr; 2046 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2047 return SDValue(E, 0); 2048 2049 auto *N = newSDNode<MDNodeSDNode>(MD); 2050 CSEMap.InsertNode(N, IP); 2051 InsertNode(N); 2052 return SDValue(N, 0); 2053 } 2054 2055 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2056 if (VT == V.getValueType()) 2057 return V; 2058 2059 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2060 } 2061 2062 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2063 unsigned SrcAS, unsigned DestAS) { 2064 SDValue Ops[] = {Ptr}; 2065 FoldingSetNodeID ID; 2066 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2067 ID.AddInteger(SrcAS); 2068 ID.AddInteger(DestAS); 2069 2070 void *IP = nullptr; 2071 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2072 return SDValue(E, 0); 2073 2074 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2075 VT, SrcAS, DestAS); 2076 createOperands(N, Ops); 2077 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getFreeze(SDValue V) { 2084 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2085 } 2086 2087 /// getShiftAmountOperand - Return the specified value casted to 2088 /// the target's desired shift amount type. 2089 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2090 EVT OpTy = Op.getValueType(); 2091 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2092 if (OpTy == ShTy || OpTy.isVector()) return Op; 2093 2094 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2095 } 2096 2097 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2098 SDLoc dl(Node); 2099 const TargetLowering &TLI = getTargetLoweringInfo(); 2100 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2101 EVT VT = Node->getValueType(0); 2102 SDValue Tmp1 = Node->getOperand(0); 2103 SDValue Tmp2 = Node->getOperand(1); 2104 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2105 2106 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2107 Tmp2, MachinePointerInfo(V)); 2108 SDValue VAList = VAListLoad; 2109 2110 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2111 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2112 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2113 2114 VAList = 2115 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2116 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2117 } 2118 2119 // Increment the pointer, VAList, to the next vaarg 2120 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2121 getConstant(getDataLayout().getTypeAllocSize( 2122 VT.getTypeForEVT(*getContext())), 2123 dl, VAList.getValueType())); 2124 // Store the incremented VAList to the legalized pointer 2125 Tmp1 = 2126 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2127 // Load the actual argument out of the pointer VAList 2128 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2129 } 2130 2131 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2132 SDLoc dl(Node); 2133 const TargetLowering &TLI = getTargetLoweringInfo(); 2134 // This defaults to loading a pointer from the input and storing it to the 2135 // output, returning the chain. 2136 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2137 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2138 SDValue Tmp1 = 2139 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2140 Node->getOperand(2), MachinePointerInfo(VS)); 2141 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2142 MachinePointerInfo(VD)); 2143 } 2144 2145 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2146 const DataLayout &DL = getDataLayout(); 2147 Type *Ty = VT.getTypeForEVT(*getContext()); 2148 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2149 2150 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2151 return RedAlign; 2152 2153 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2154 const Align StackAlign = TFI->getStackAlign(); 2155 2156 // See if we can choose a smaller ABI alignment in cases where it's an 2157 // illegal vector type that will get broken down. 2158 if (RedAlign > StackAlign) { 2159 EVT IntermediateVT; 2160 MVT RegisterVT; 2161 unsigned NumIntermediates; 2162 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2163 NumIntermediates, RegisterVT); 2164 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2165 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2166 if (RedAlign2 < RedAlign) 2167 RedAlign = RedAlign2; 2168 } 2169 2170 return RedAlign; 2171 } 2172 2173 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2174 MachineFrameInfo &MFI = MF->getFrameInfo(); 2175 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2176 int StackID = 0; 2177 if (Bytes.isScalable()) 2178 StackID = TFI->getStackIDForScalableVectors(); 2179 // The stack id gives an indication of whether the object is scalable or 2180 // not, so it's safe to pass in the minimum size here. 2181 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2182 false, nullptr, StackID); 2183 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2184 } 2185 2186 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2187 Type *Ty = VT.getTypeForEVT(*getContext()); 2188 Align StackAlign = 2189 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2190 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2191 } 2192 2193 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2194 TypeSize VT1Size = VT1.getStoreSize(); 2195 TypeSize VT2Size = VT2.getStoreSize(); 2196 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2197 "Don't know how to choose the maximum size when creating a stack " 2198 "temporary"); 2199 TypeSize Bytes = 2200 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2201 2202 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2203 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2204 const DataLayout &DL = getDataLayout(); 2205 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2206 return CreateStackTemporary(Bytes, Align); 2207 } 2208 2209 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2210 ISD::CondCode Cond, const SDLoc &dl) { 2211 EVT OpVT = N1.getValueType(); 2212 2213 // These setcc operations always fold. 2214 switch (Cond) { 2215 default: break; 2216 case ISD::SETFALSE: 2217 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2218 case ISD::SETTRUE: 2219 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2220 2221 case ISD::SETOEQ: 2222 case ISD::SETOGT: 2223 case ISD::SETOGE: 2224 case ISD::SETOLT: 2225 case ISD::SETOLE: 2226 case ISD::SETONE: 2227 case ISD::SETO: 2228 case ISD::SETUO: 2229 case ISD::SETUEQ: 2230 case ISD::SETUNE: 2231 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2232 break; 2233 } 2234 2235 if (OpVT.isInteger()) { 2236 // For EQ and NE, we can always pick a value for the undef to make the 2237 // predicate pass or fail, so we can return undef. 2238 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2239 // icmp eq/ne X, undef -> undef. 2240 if ((N1.isUndef() || N2.isUndef()) && 2241 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2242 return getUNDEF(VT); 2243 2244 // If both operands are undef, we can return undef for int comparison. 2245 // icmp undef, undef -> undef. 2246 if (N1.isUndef() && N2.isUndef()) 2247 return getUNDEF(VT); 2248 2249 // icmp X, X -> true/false 2250 // icmp X, undef -> true/false because undef could be X. 2251 if (N1 == N2) 2252 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2253 } 2254 2255 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2256 const APInt &C2 = N2C->getAPIntValue(); 2257 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2258 const APInt &C1 = N1C->getAPIntValue(); 2259 2260 switch (Cond) { 2261 default: llvm_unreachable("Unknown integer setcc!"); 2262 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2263 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2264 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2265 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2266 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2267 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2268 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2269 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2270 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2271 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2272 } 2273 } 2274 } 2275 2276 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2277 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2278 2279 if (N1CFP && N2CFP) { 2280 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2281 switch (Cond) { 2282 default: break; 2283 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2284 return getUNDEF(VT); 2285 LLVM_FALLTHROUGH; 2286 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2287 OpVT); 2288 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2289 return getUNDEF(VT); 2290 LLVM_FALLTHROUGH; 2291 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2292 R==APFloat::cmpLessThan, dl, VT, 2293 OpVT); 2294 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2295 return getUNDEF(VT); 2296 LLVM_FALLTHROUGH; 2297 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2298 OpVT); 2299 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2300 return getUNDEF(VT); 2301 LLVM_FALLTHROUGH; 2302 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2303 VT, OpVT); 2304 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2305 return getUNDEF(VT); 2306 LLVM_FALLTHROUGH; 2307 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2308 R==APFloat::cmpEqual, dl, VT, 2309 OpVT); 2310 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2311 return getUNDEF(VT); 2312 LLVM_FALLTHROUGH; 2313 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2314 R==APFloat::cmpEqual, dl, VT, OpVT); 2315 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2316 OpVT); 2317 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2318 OpVT); 2319 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2320 R==APFloat::cmpEqual, dl, VT, 2321 OpVT); 2322 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2323 OpVT); 2324 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2325 R==APFloat::cmpLessThan, dl, VT, 2326 OpVT); 2327 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2328 R==APFloat::cmpUnordered, dl, VT, 2329 OpVT); 2330 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2331 VT, OpVT); 2332 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2333 OpVT); 2334 } 2335 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2336 // Ensure that the constant occurs on the RHS. 2337 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2338 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2339 return SDValue(); 2340 return getSetCC(dl, VT, N2, N1, SwappedCond); 2341 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2342 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2343 // If an operand is known to be a nan (or undef that could be a nan), we can 2344 // fold it. 2345 // Choosing NaN for the undef will always make unordered comparison succeed 2346 // and ordered comparison fails. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 switch (ISD::getUnorderedFlavor(Cond)) { 2349 default: 2350 llvm_unreachable("Unknown flavor!"); 2351 case 0: // Known false. 2352 return getBoolConstant(false, dl, VT, OpVT); 2353 case 1: // Known true. 2354 return getBoolConstant(true, dl, VT, OpVT); 2355 case 2: // Undefined. 2356 return getUNDEF(VT); 2357 } 2358 } 2359 2360 // Could not fold it. 2361 return SDValue(); 2362 } 2363 2364 /// See if the specified operand can be simplified with the knowledge that only 2365 /// the bits specified by DemandedBits are used. 2366 /// TODO: really we should be making this into the DAG equivalent of 2367 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2368 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2369 EVT VT = V.getValueType(); 2370 2371 if (VT.isScalableVector()) 2372 return SDValue(); 2373 2374 APInt DemandedElts = VT.isVector() 2375 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2376 : APInt(1, 1); 2377 return GetDemandedBits(V, DemandedBits, DemandedElts); 2378 } 2379 2380 /// See if the specified operand can be simplified with the knowledge that only 2381 /// the bits specified by DemandedBits are used in the elements specified by 2382 /// DemandedElts. 2383 /// TODO: really we should be making this into the DAG equivalent of 2384 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2385 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2386 const APInt &DemandedElts) { 2387 switch (V.getOpcode()) { 2388 default: 2389 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2390 *this, 0); 2391 case ISD::Constant: { 2392 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2393 APInt NewVal = CVal & DemandedBits; 2394 if (NewVal != CVal) 2395 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2396 break; 2397 } 2398 case ISD::SRL: 2399 // Only look at single-use SRLs. 2400 if (!V.getNode()->hasOneUse()) 2401 break; 2402 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2403 // See if we can recursively simplify the LHS. 2404 unsigned Amt = RHSC->getZExtValue(); 2405 2406 // Watch out for shift count overflow though. 2407 if (Amt >= DemandedBits.getBitWidth()) 2408 break; 2409 APInt SrcDemandedBits = DemandedBits << Amt; 2410 if (SDValue SimplifyLHS = 2411 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2412 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2413 V.getOperand(1)); 2414 } 2415 break; 2416 } 2417 return SDValue(); 2418 } 2419 2420 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2421 /// use this predicate to simplify operations downstream. 2422 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2423 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2424 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2425 } 2426 2427 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2428 /// this predicate to simplify operations downstream. Mask is known to be zero 2429 /// for bits that V cannot have. 2430 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2431 unsigned Depth) const { 2432 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2433 } 2434 2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2436 /// DemandedElts. We use this predicate to simplify operations downstream. 2437 /// Mask is known to be zero for bits that V cannot have. 2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2439 const APInt &DemandedElts, 2440 unsigned Depth) const { 2441 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2442 } 2443 2444 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2445 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2446 unsigned Depth) const { 2447 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2448 } 2449 2450 /// isSplatValue - Return true if the vector V has the same value 2451 /// across all DemandedElts. For scalable vectors it does not make 2452 /// sense to specify which elements are demanded or undefined, therefore 2453 /// they are simply ignored. 2454 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2455 APInt &UndefElts, unsigned Depth) { 2456 EVT VT = V.getValueType(); 2457 assert(VT.isVector() && "Vector type expected"); 2458 2459 if (!VT.isScalableVector() && !DemandedElts) 2460 return false; // No demanded elts, better to assume we don't know anything. 2461 2462 if (Depth >= MaxRecursionDepth) 2463 return false; // Limit search depth. 2464 2465 // Deal with some common cases here that work for both fixed and scalable 2466 // vector types. 2467 switch (V.getOpcode()) { 2468 case ISD::SPLAT_VECTOR: 2469 UndefElts = V.getOperand(0).isUndef() 2470 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2471 : APInt(DemandedElts.getBitWidth(), 0); 2472 return true; 2473 case ISD::ADD: 2474 case ISD::SUB: 2475 case ISD::AND: 2476 case ISD::XOR: 2477 case ISD::OR: { 2478 APInt UndefLHS, UndefRHS; 2479 SDValue LHS = V.getOperand(0); 2480 SDValue RHS = V.getOperand(1); 2481 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2482 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2483 UndefElts = UndefLHS | UndefRHS; 2484 return true; 2485 } 2486 break; 2487 } 2488 case ISD::ABS: 2489 case ISD::TRUNCATE: 2490 case ISD::SIGN_EXTEND: 2491 case ISD::ZERO_EXTEND: 2492 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2493 } 2494 2495 // We don't support other cases than those above for scalable vectors at 2496 // the moment. 2497 if (VT.isScalableVector()) 2498 return false; 2499 2500 unsigned NumElts = VT.getVectorNumElements(); 2501 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2502 UndefElts = APInt::getNullValue(NumElts); 2503 2504 switch (V.getOpcode()) { 2505 case ISD::BUILD_VECTOR: { 2506 SDValue Scl; 2507 for (unsigned i = 0; i != NumElts; ++i) { 2508 SDValue Op = V.getOperand(i); 2509 if (Op.isUndef()) { 2510 UndefElts.setBit(i); 2511 continue; 2512 } 2513 if (!DemandedElts[i]) 2514 continue; 2515 if (Scl && Scl != Op) 2516 return false; 2517 Scl = Op; 2518 } 2519 return true; 2520 } 2521 case ISD::VECTOR_SHUFFLE: { 2522 // Check if this is a shuffle node doing a splat. 2523 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2524 int SplatIndex = -1; 2525 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2526 for (int i = 0; i != (int)NumElts; ++i) { 2527 int M = Mask[i]; 2528 if (M < 0) { 2529 UndefElts.setBit(i); 2530 continue; 2531 } 2532 if (!DemandedElts[i]) 2533 continue; 2534 if (0 <= SplatIndex && SplatIndex != M) 2535 return false; 2536 SplatIndex = M; 2537 } 2538 return true; 2539 } 2540 case ISD::EXTRACT_SUBVECTOR: { 2541 // Offset the demanded elts by the subvector index. 2542 SDValue Src = V.getOperand(0); 2543 // We don't support scalable vectors at the moment. 2544 if (Src.getValueType().isScalableVector()) 2545 return false; 2546 uint64_t Idx = V.getConstantOperandVal(1); 2547 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2548 APInt UndefSrcElts; 2549 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2550 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2551 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2552 return true; 2553 } 2554 break; 2555 } 2556 } 2557 2558 return false; 2559 } 2560 2561 /// Helper wrapper to main isSplatValue function. 2562 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2563 EVT VT = V.getValueType(); 2564 assert(VT.isVector() && "Vector type expected"); 2565 2566 APInt UndefElts; 2567 APInt DemandedElts; 2568 2569 // For now we don't support this with scalable vectors. 2570 if (!VT.isScalableVector()) 2571 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2572 return isSplatValue(V, DemandedElts, UndefElts) && 2573 (AllowUndefs || !UndefElts); 2574 } 2575 2576 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2577 V = peekThroughExtractSubvectors(V); 2578 2579 EVT VT = V.getValueType(); 2580 unsigned Opcode = V.getOpcode(); 2581 switch (Opcode) { 2582 default: { 2583 APInt UndefElts; 2584 APInt DemandedElts; 2585 2586 if (!VT.isScalableVector()) 2587 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2588 2589 if (isSplatValue(V, DemandedElts, UndefElts)) { 2590 if (VT.isScalableVector()) { 2591 // DemandedElts and UndefElts are ignored for scalable vectors, since 2592 // the only supported cases are SPLAT_VECTOR nodes. 2593 SplatIdx = 0; 2594 } else { 2595 // Handle case where all demanded elements are UNDEF. 2596 if (DemandedElts.isSubsetOf(UndefElts)) { 2597 SplatIdx = 0; 2598 return getUNDEF(VT); 2599 } 2600 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2601 } 2602 return V; 2603 } 2604 break; 2605 } 2606 case ISD::SPLAT_VECTOR: 2607 SplatIdx = 0; 2608 return V; 2609 case ISD::VECTOR_SHUFFLE: { 2610 if (VT.isScalableVector()) 2611 return SDValue(); 2612 2613 // Check if this is a shuffle node doing a splat. 2614 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2615 // getTargetVShiftNode currently struggles without the splat source. 2616 auto *SVN = cast<ShuffleVectorSDNode>(V); 2617 if (!SVN->isSplat()) 2618 break; 2619 int Idx = SVN->getSplatIndex(); 2620 int NumElts = V.getValueType().getVectorNumElements(); 2621 SplatIdx = Idx % NumElts; 2622 return V.getOperand(Idx / NumElts); 2623 } 2624 } 2625 2626 return SDValue(); 2627 } 2628 2629 SDValue SelectionDAG::getSplatValue(SDValue V) { 2630 int SplatIdx; 2631 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2632 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2633 SrcVector.getValueType().getScalarType(), SrcVector, 2634 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2635 return SDValue(); 2636 } 2637 2638 const APInt * 2639 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2640 const APInt &DemandedElts) const { 2641 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2642 V.getOpcode() == ISD::SRA) && 2643 "Unknown shift node"); 2644 unsigned BitWidth = V.getScalarValueSizeInBits(); 2645 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2646 // Shifting more than the bitwidth is not valid. 2647 const APInt &ShAmt = SA->getAPIntValue(); 2648 if (ShAmt.ult(BitWidth)) 2649 return &ShAmt; 2650 } 2651 return nullptr; 2652 } 2653 2654 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2655 SDValue V, const APInt &DemandedElts) const { 2656 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2657 V.getOpcode() == ISD::SRA) && 2658 "Unknown shift node"); 2659 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2660 return ValidAmt; 2661 unsigned BitWidth = V.getScalarValueSizeInBits(); 2662 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2663 if (!BV) 2664 return nullptr; 2665 const APInt *MinShAmt = nullptr; 2666 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2667 if (!DemandedElts[i]) 2668 continue; 2669 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2670 if (!SA) 2671 return nullptr; 2672 // Shifting more than the bitwidth is not valid. 2673 const APInt &ShAmt = SA->getAPIntValue(); 2674 if (ShAmt.uge(BitWidth)) 2675 return nullptr; 2676 if (MinShAmt && MinShAmt->ule(ShAmt)) 2677 continue; 2678 MinShAmt = &ShAmt; 2679 } 2680 return MinShAmt; 2681 } 2682 2683 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2684 SDValue V, const APInt &DemandedElts) const { 2685 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2686 V.getOpcode() == ISD::SRA) && 2687 "Unknown shift node"); 2688 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2689 return ValidAmt; 2690 unsigned BitWidth = V.getScalarValueSizeInBits(); 2691 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2692 if (!BV) 2693 return nullptr; 2694 const APInt *MaxShAmt = nullptr; 2695 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2696 if (!DemandedElts[i]) 2697 continue; 2698 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2699 if (!SA) 2700 return nullptr; 2701 // Shifting more than the bitwidth is not valid. 2702 const APInt &ShAmt = SA->getAPIntValue(); 2703 if (ShAmt.uge(BitWidth)) 2704 return nullptr; 2705 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2706 continue; 2707 MaxShAmt = &ShAmt; 2708 } 2709 return MaxShAmt; 2710 } 2711 2712 /// Determine which bits of Op are known to be either zero or one and return 2713 /// them in Known. For vectors, the known bits are those that are shared by 2714 /// every vector element. 2715 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2716 EVT VT = Op.getValueType(); 2717 2718 // TOOD: Until we have a plan for how to represent demanded elements for 2719 // scalable vectors, we can just bail out for now. 2720 if (Op.getValueType().isScalableVector()) { 2721 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2722 return KnownBits(BitWidth); 2723 } 2724 2725 APInt DemandedElts = VT.isVector() 2726 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2727 : APInt(1, 1); 2728 return computeKnownBits(Op, DemandedElts, Depth); 2729 } 2730 2731 /// Determine which bits of Op are known to be either zero or one and return 2732 /// them in Known. The DemandedElts argument allows us to only collect the known 2733 /// bits that are shared by the requested vector elements. 2734 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2735 unsigned Depth) const { 2736 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2737 2738 KnownBits Known(BitWidth); // Don't know anything. 2739 2740 // TOOD: Until we have a plan for how to represent demanded elements for 2741 // scalable vectors, we can just bail out for now. 2742 if (Op.getValueType().isScalableVector()) 2743 return Known; 2744 2745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2746 // We know all of the bits for a constant! 2747 return KnownBits::makeConstant(C->getAPIntValue()); 2748 } 2749 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2750 // We know all of the bits for a constant fp! 2751 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2752 } 2753 2754 if (Depth >= MaxRecursionDepth) 2755 return Known; // Limit search depth. 2756 2757 KnownBits Known2; 2758 unsigned NumElts = DemandedElts.getBitWidth(); 2759 assert((!Op.getValueType().isVector() || 2760 NumElts == Op.getValueType().getVectorNumElements()) && 2761 "Unexpected vector size"); 2762 2763 if (!DemandedElts) 2764 return Known; // No demanded elts, better to assume we don't know anything. 2765 2766 unsigned Opcode = Op.getOpcode(); 2767 switch (Opcode) { 2768 case ISD::BUILD_VECTOR: 2769 // Collect the known bits that are shared by every demanded vector element. 2770 Known.Zero.setAllBits(); Known.One.setAllBits(); 2771 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2772 if (!DemandedElts[i]) 2773 continue; 2774 2775 SDValue SrcOp = Op.getOperand(i); 2776 Known2 = computeKnownBits(SrcOp, Depth + 1); 2777 2778 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2779 if (SrcOp.getValueSizeInBits() != BitWidth) { 2780 assert(SrcOp.getValueSizeInBits() > BitWidth && 2781 "Expected BUILD_VECTOR implicit truncation"); 2782 Known2 = Known2.trunc(BitWidth); 2783 } 2784 2785 // Known bits are the values that are shared by every demanded element. 2786 Known = KnownBits::commonBits(Known, Known2); 2787 2788 // If we don't know any bits, early out. 2789 if (Known.isUnknown()) 2790 break; 2791 } 2792 break; 2793 case ISD::VECTOR_SHUFFLE: { 2794 // Collect the known bits that are shared by every vector element referenced 2795 // by the shuffle. 2796 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2797 Known.Zero.setAllBits(); Known.One.setAllBits(); 2798 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2799 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2800 for (unsigned i = 0; i != NumElts; ++i) { 2801 if (!DemandedElts[i]) 2802 continue; 2803 2804 int M = SVN->getMaskElt(i); 2805 if (M < 0) { 2806 // For UNDEF elements, we don't know anything about the common state of 2807 // the shuffle result. 2808 Known.resetAll(); 2809 DemandedLHS.clearAllBits(); 2810 DemandedRHS.clearAllBits(); 2811 break; 2812 } 2813 2814 if ((unsigned)M < NumElts) 2815 DemandedLHS.setBit((unsigned)M % NumElts); 2816 else 2817 DemandedRHS.setBit((unsigned)M % NumElts); 2818 } 2819 // Known bits are the values that are shared by every demanded element. 2820 if (!!DemandedLHS) { 2821 SDValue LHS = Op.getOperand(0); 2822 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2823 Known = KnownBits::commonBits(Known, Known2); 2824 } 2825 // If we don't know any bits, early out. 2826 if (Known.isUnknown()) 2827 break; 2828 if (!!DemandedRHS) { 2829 SDValue RHS = Op.getOperand(1); 2830 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2831 Known = KnownBits::commonBits(Known, Known2); 2832 } 2833 break; 2834 } 2835 case ISD::CONCAT_VECTORS: { 2836 // Split DemandedElts and test each of the demanded subvectors. 2837 Known.Zero.setAllBits(); Known.One.setAllBits(); 2838 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2839 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2840 unsigned NumSubVectors = Op.getNumOperands(); 2841 for (unsigned i = 0; i != NumSubVectors; ++i) { 2842 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2843 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2844 if (!!DemandedSub) { 2845 SDValue Sub = Op.getOperand(i); 2846 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2847 Known = KnownBits::commonBits(Known, Known2); 2848 } 2849 // If we don't know any bits, early out. 2850 if (Known.isUnknown()) 2851 break; 2852 } 2853 break; 2854 } 2855 case ISD::INSERT_SUBVECTOR: { 2856 // Demand any elements from the subvector and the remainder from the src its 2857 // inserted into. 2858 SDValue Src = Op.getOperand(0); 2859 SDValue Sub = Op.getOperand(1); 2860 uint64_t Idx = Op.getConstantOperandVal(2); 2861 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2862 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2863 APInt DemandedSrcElts = DemandedElts; 2864 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2865 2866 Known.One.setAllBits(); 2867 Known.Zero.setAllBits(); 2868 if (!!DemandedSubElts) { 2869 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2870 if (Known.isUnknown()) 2871 break; // early-out. 2872 } 2873 if (!!DemandedSrcElts) { 2874 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2875 Known = KnownBits::commonBits(Known, Known2); 2876 } 2877 break; 2878 } 2879 case ISD::EXTRACT_SUBVECTOR: { 2880 // Offset the demanded elts by the subvector index. 2881 SDValue Src = Op.getOperand(0); 2882 // Bail until we can represent demanded elements for scalable vectors. 2883 if (Src.getValueType().isScalableVector()) 2884 break; 2885 uint64_t Idx = Op.getConstantOperandVal(1); 2886 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2887 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2888 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2889 break; 2890 } 2891 case ISD::SCALAR_TO_VECTOR: { 2892 // We know about scalar_to_vector as much as we know about it source, 2893 // which becomes the first element of otherwise unknown vector. 2894 if (DemandedElts != 1) 2895 break; 2896 2897 SDValue N0 = Op.getOperand(0); 2898 Known = computeKnownBits(N0, Depth + 1); 2899 if (N0.getValueSizeInBits() != BitWidth) 2900 Known = Known.trunc(BitWidth); 2901 2902 break; 2903 } 2904 case ISD::BITCAST: { 2905 SDValue N0 = Op.getOperand(0); 2906 EVT SubVT = N0.getValueType(); 2907 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2908 2909 // Ignore bitcasts from unsupported types. 2910 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2911 break; 2912 2913 // Fast handling of 'identity' bitcasts. 2914 if (BitWidth == SubBitWidth) { 2915 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2916 break; 2917 } 2918 2919 bool IsLE = getDataLayout().isLittleEndian(); 2920 2921 // Bitcast 'small element' vector to 'large element' scalar/vector. 2922 if ((BitWidth % SubBitWidth) == 0) { 2923 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2924 2925 // Collect known bits for the (larger) output by collecting the known 2926 // bits from each set of sub elements and shift these into place. 2927 // We need to separately call computeKnownBits for each set of 2928 // sub elements as the knownbits for each is likely to be different. 2929 unsigned SubScale = BitWidth / SubBitWidth; 2930 APInt SubDemandedElts(NumElts * SubScale, 0); 2931 for (unsigned i = 0; i != NumElts; ++i) 2932 if (DemandedElts[i]) 2933 SubDemandedElts.setBit(i * SubScale); 2934 2935 for (unsigned i = 0; i != SubScale; ++i) { 2936 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2937 Depth + 1); 2938 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2939 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2940 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2941 } 2942 } 2943 2944 // Bitcast 'large element' scalar/vector to 'small element' vector. 2945 if ((SubBitWidth % BitWidth) == 0) { 2946 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2947 2948 // Collect known bits for the (smaller) output by collecting the known 2949 // bits from the overlapping larger input elements and extracting the 2950 // sub sections we actually care about. 2951 unsigned SubScale = SubBitWidth / BitWidth; 2952 APInt SubDemandedElts(NumElts / SubScale, 0); 2953 for (unsigned i = 0; i != NumElts; ++i) 2954 if (DemandedElts[i]) 2955 SubDemandedElts.setBit(i / SubScale); 2956 2957 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2958 2959 Known.Zero.setAllBits(); Known.One.setAllBits(); 2960 for (unsigned i = 0; i != NumElts; ++i) 2961 if (DemandedElts[i]) { 2962 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2963 unsigned Offset = (Shifts % SubScale) * BitWidth; 2964 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2965 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2966 // If we don't know any bits, early out. 2967 if (Known.isUnknown()) 2968 break; 2969 } 2970 } 2971 break; 2972 } 2973 case ISD::AND: 2974 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2975 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2976 2977 Known &= Known2; 2978 break; 2979 case ISD::OR: 2980 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2981 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2982 2983 Known |= Known2; 2984 break; 2985 case ISD::XOR: 2986 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2987 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2988 2989 Known ^= Known2; 2990 break; 2991 case ISD::MUL: { 2992 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2993 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2994 Known = KnownBits::mul(Known, Known2); 2995 break; 2996 } 2997 case ISD::MULHU: { 2998 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2999 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3000 Known = KnownBits::mulhu(Known, Known2); 3001 break; 3002 } 3003 case ISD::MULHS: { 3004 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3005 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3006 Known = KnownBits::mulhs(Known, Known2); 3007 break; 3008 } 3009 case ISD::UMUL_LOHI: { 3010 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3011 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3012 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 if (Op.getResNo() == 0) 3014 Known = KnownBits::mul(Known, Known2); 3015 else 3016 Known = KnownBits::mulhu(Known, Known2); 3017 break; 3018 } 3019 case ISD::SMUL_LOHI: { 3020 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3021 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3022 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 if (Op.getResNo() == 0) 3024 Known = KnownBits::mul(Known, Known2); 3025 else 3026 Known = KnownBits::mulhs(Known, Known2); 3027 break; 3028 } 3029 case ISD::UDIV: { 3030 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3032 Known = KnownBits::udiv(Known, Known2); 3033 break; 3034 } 3035 case ISD::SELECT: 3036 case ISD::VSELECT: 3037 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3038 // If we don't know any bits, early out. 3039 if (Known.isUnknown()) 3040 break; 3041 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3042 3043 // Only known if known in both the LHS and RHS. 3044 Known = KnownBits::commonBits(Known, Known2); 3045 break; 3046 case ISD::SELECT_CC: 3047 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3048 // If we don't know any bits, early out. 3049 if (Known.isUnknown()) 3050 break; 3051 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3052 3053 // Only known if known in both the LHS and RHS. 3054 Known = KnownBits::commonBits(Known, Known2); 3055 break; 3056 case ISD::SMULO: 3057 case ISD::UMULO: 3058 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3059 if (Op.getResNo() != 1) 3060 break; 3061 // The boolean result conforms to getBooleanContents. 3062 // If we know the result of a setcc has the top bits zero, use this info. 3063 // We know that we have an integer-based boolean since these operations 3064 // are only available for integer. 3065 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3066 TargetLowering::ZeroOrOneBooleanContent && 3067 BitWidth > 1) 3068 Known.Zero.setBitsFrom(1); 3069 break; 3070 case ISD::SETCC: 3071 case ISD::STRICT_FSETCC: 3072 case ISD::STRICT_FSETCCS: { 3073 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3074 // If we know the result of a setcc has the top bits zero, use this info. 3075 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3076 TargetLowering::ZeroOrOneBooleanContent && 3077 BitWidth > 1) 3078 Known.Zero.setBitsFrom(1); 3079 break; 3080 } 3081 case ISD::SHL: 3082 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3084 Known = KnownBits::shl(Known, Known2); 3085 3086 // Minimum shift low bits are known zero. 3087 if (const APInt *ShMinAmt = 3088 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3089 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3090 break; 3091 case ISD::SRL: 3092 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3093 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3094 Known = KnownBits::lshr(Known, Known2); 3095 3096 // Minimum shift high bits are known zero. 3097 if (const APInt *ShMinAmt = 3098 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3099 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3100 break; 3101 case ISD::SRA: 3102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3103 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3104 Known = KnownBits::ashr(Known, Known2); 3105 // TODO: Add minimum shift high known sign bits. 3106 break; 3107 case ISD::FSHL: 3108 case ISD::FSHR: 3109 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3110 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3111 3112 // For fshl, 0-shift returns the 1st arg. 3113 // For fshr, 0-shift returns the 2nd arg. 3114 if (Amt == 0) { 3115 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3116 DemandedElts, Depth + 1); 3117 break; 3118 } 3119 3120 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3121 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3122 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3123 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3124 if (Opcode == ISD::FSHL) { 3125 Known.One <<= Amt; 3126 Known.Zero <<= Amt; 3127 Known2.One.lshrInPlace(BitWidth - Amt); 3128 Known2.Zero.lshrInPlace(BitWidth - Amt); 3129 } else { 3130 Known.One <<= BitWidth - Amt; 3131 Known.Zero <<= BitWidth - Amt; 3132 Known2.One.lshrInPlace(Amt); 3133 Known2.Zero.lshrInPlace(Amt); 3134 } 3135 Known.One |= Known2.One; 3136 Known.Zero |= Known2.Zero; 3137 } 3138 break; 3139 case ISD::SIGN_EXTEND_INREG: { 3140 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3141 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3142 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3143 break; 3144 } 3145 case ISD::CTTZ: 3146 case ISD::CTTZ_ZERO_UNDEF: { 3147 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3148 // If we have a known 1, its position is our upper bound. 3149 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3150 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3151 Known.Zero.setBitsFrom(LowBits); 3152 break; 3153 } 3154 case ISD::CTLZ: 3155 case ISD::CTLZ_ZERO_UNDEF: { 3156 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 // If we have a known 1, its position is our upper bound. 3158 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3159 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3160 Known.Zero.setBitsFrom(LowBits); 3161 break; 3162 } 3163 case ISD::CTPOP: { 3164 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3165 // If we know some of the bits are zero, they can't be one. 3166 unsigned PossibleOnes = Known2.countMaxPopulation(); 3167 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3168 break; 3169 } 3170 case ISD::PARITY: { 3171 // Parity returns 0 everywhere but the LSB. 3172 Known.Zero.setBitsFrom(1); 3173 break; 3174 } 3175 case ISD::LOAD: { 3176 LoadSDNode *LD = cast<LoadSDNode>(Op); 3177 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3178 if (ISD::isNON_EXTLoad(LD) && Cst) { 3179 // Determine any common known bits from the loaded constant pool value. 3180 Type *CstTy = Cst->getType(); 3181 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3182 // If its a vector splat, then we can (quickly) reuse the scalar path. 3183 // NOTE: We assume all elements match and none are UNDEF. 3184 if (CstTy->isVectorTy()) { 3185 if (const Constant *Splat = Cst->getSplatValue()) { 3186 Cst = Splat; 3187 CstTy = Cst->getType(); 3188 } 3189 } 3190 // TODO - do we need to handle different bitwidths? 3191 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3192 // Iterate across all vector elements finding common known bits. 3193 Known.One.setAllBits(); 3194 Known.Zero.setAllBits(); 3195 for (unsigned i = 0; i != NumElts; ++i) { 3196 if (!DemandedElts[i]) 3197 continue; 3198 if (Constant *Elt = Cst->getAggregateElement(i)) { 3199 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3200 const APInt &Value = CInt->getValue(); 3201 Known.One &= Value; 3202 Known.Zero &= ~Value; 3203 continue; 3204 } 3205 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3206 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3207 Known.One &= Value; 3208 Known.Zero &= ~Value; 3209 continue; 3210 } 3211 } 3212 Known.One.clearAllBits(); 3213 Known.Zero.clearAllBits(); 3214 break; 3215 } 3216 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3217 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3218 Known = KnownBits::makeConstant(CInt->getValue()); 3219 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3220 Known = 3221 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3222 } 3223 } 3224 } 3225 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3226 // If this is a ZEXTLoad and we are looking at the loaded value. 3227 EVT VT = LD->getMemoryVT(); 3228 unsigned MemBits = VT.getScalarSizeInBits(); 3229 Known.Zero.setBitsFrom(MemBits); 3230 } else if (const MDNode *Ranges = LD->getRanges()) { 3231 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3232 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3233 } 3234 break; 3235 } 3236 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3237 EVT InVT = Op.getOperand(0).getValueType(); 3238 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3239 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3240 Known = Known.zext(BitWidth); 3241 break; 3242 } 3243 case ISD::ZERO_EXTEND: { 3244 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3245 Known = Known.zext(BitWidth); 3246 break; 3247 } 3248 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3249 EVT InVT = Op.getOperand(0).getValueType(); 3250 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3251 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3252 // If the sign bit is known to be zero or one, then sext will extend 3253 // it to the top bits, else it will just zext. 3254 Known = Known.sext(BitWidth); 3255 break; 3256 } 3257 case ISD::SIGN_EXTEND: { 3258 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3259 // If the sign bit is known to be zero or one, then sext will extend 3260 // it to the top bits, else it will just zext. 3261 Known = Known.sext(BitWidth); 3262 break; 3263 } 3264 case ISD::ANY_EXTEND_VECTOR_INREG: { 3265 EVT InVT = Op.getOperand(0).getValueType(); 3266 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3267 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3268 Known = Known.anyext(BitWidth); 3269 break; 3270 } 3271 case ISD::ANY_EXTEND: { 3272 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3273 Known = Known.anyext(BitWidth); 3274 break; 3275 } 3276 case ISD::TRUNCATE: { 3277 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3278 Known = Known.trunc(BitWidth); 3279 break; 3280 } 3281 case ISD::AssertZext: { 3282 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3283 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3284 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3285 Known.Zero |= (~InMask); 3286 Known.One &= (~Known.Zero); 3287 break; 3288 } 3289 case ISD::AssertAlign: { 3290 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3291 assert(LogOfAlign != 0); 3292 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3293 // well as clearing one bits. 3294 Known.Zero.setLowBits(LogOfAlign); 3295 Known.One.clearLowBits(LogOfAlign); 3296 break; 3297 } 3298 case ISD::FGETSIGN: 3299 // All bits are zero except the low bit. 3300 Known.Zero.setBitsFrom(1); 3301 break; 3302 case ISD::USUBO: 3303 case ISD::SSUBO: 3304 if (Op.getResNo() == 1) { 3305 // If we know the result of a setcc has the top bits zero, use this info. 3306 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3307 TargetLowering::ZeroOrOneBooleanContent && 3308 BitWidth > 1) 3309 Known.Zero.setBitsFrom(1); 3310 break; 3311 } 3312 LLVM_FALLTHROUGH; 3313 case ISD::SUB: 3314 case ISD::SUBC: { 3315 assert(Op.getResNo() == 0 && 3316 "We only compute knownbits for the difference here."); 3317 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3320 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3321 Known, Known2); 3322 break; 3323 } 3324 case ISD::UADDO: 3325 case ISD::SADDO: 3326 case ISD::ADDCARRY: 3327 if (Op.getResNo() == 1) { 3328 // If we know the result of a setcc has the top bits zero, use this info. 3329 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3330 TargetLowering::ZeroOrOneBooleanContent && 3331 BitWidth > 1) 3332 Known.Zero.setBitsFrom(1); 3333 break; 3334 } 3335 LLVM_FALLTHROUGH; 3336 case ISD::ADD: 3337 case ISD::ADDC: 3338 case ISD::ADDE: { 3339 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3340 3341 // With ADDE and ADDCARRY, a carry bit may be added in. 3342 KnownBits Carry(1); 3343 if (Opcode == ISD::ADDE) 3344 // Can't track carry from glue, set carry to unknown. 3345 Carry.resetAll(); 3346 else if (Opcode == ISD::ADDCARRY) 3347 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3348 // the trouble (how often will we find a known carry bit). And I haven't 3349 // tested this very much yet, but something like this might work: 3350 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3351 // Carry = Carry.zextOrTrunc(1, false); 3352 Carry.resetAll(); 3353 else 3354 Carry.setAllZero(); 3355 3356 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3358 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3359 break; 3360 } 3361 case ISD::SREM: { 3362 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3363 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3364 Known = KnownBits::srem(Known, Known2); 3365 break; 3366 } 3367 case ISD::UREM: { 3368 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3369 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3370 Known = KnownBits::urem(Known, Known2); 3371 break; 3372 } 3373 case ISD::EXTRACT_ELEMENT: { 3374 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3375 const unsigned Index = Op.getConstantOperandVal(1); 3376 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3377 3378 // Remove low part of known bits mask 3379 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3380 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3381 3382 // Remove high part of known bit mask 3383 Known = Known.trunc(EltBitWidth); 3384 break; 3385 } 3386 case ISD::EXTRACT_VECTOR_ELT: { 3387 SDValue InVec = Op.getOperand(0); 3388 SDValue EltNo = Op.getOperand(1); 3389 EVT VecVT = InVec.getValueType(); 3390 // computeKnownBits not yet implemented for scalable vectors. 3391 if (VecVT.isScalableVector()) 3392 break; 3393 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3394 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3395 3396 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3397 // anything about the extended bits. 3398 if (BitWidth > EltBitWidth) 3399 Known = Known.trunc(EltBitWidth); 3400 3401 // If we know the element index, just demand that vector element, else for 3402 // an unknown element index, ignore DemandedElts and demand them all. 3403 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3404 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3405 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3406 DemandedSrcElts = 3407 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3408 3409 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3410 if (BitWidth > EltBitWidth) 3411 Known = Known.anyext(BitWidth); 3412 break; 3413 } 3414 case ISD::INSERT_VECTOR_ELT: { 3415 // If we know the element index, split the demand between the 3416 // source vector and the inserted element, otherwise assume we need 3417 // the original demanded vector elements and the value. 3418 SDValue InVec = Op.getOperand(0); 3419 SDValue InVal = Op.getOperand(1); 3420 SDValue EltNo = Op.getOperand(2); 3421 bool DemandedVal = true; 3422 APInt DemandedVecElts = DemandedElts; 3423 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3424 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3425 unsigned EltIdx = CEltNo->getZExtValue(); 3426 DemandedVal = !!DemandedElts[EltIdx]; 3427 DemandedVecElts.clearBit(EltIdx); 3428 } 3429 Known.One.setAllBits(); 3430 Known.Zero.setAllBits(); 3431 if (DemandedVal) { 3432 Known2 = computeKnownBits(InVal, Depth + 1); 3433 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3434 } 3435 if (!!DemandedVecElts) { 3436 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3437 Known = KnownBits::commonBits(Known, Known2); 3438 } 3439 break; 3440 } 3441 case ISD::BITREVERSE: { 3442 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3443 Known = Known2.reverseBits(); 3444 break; 3445 } 3446 case ISD::BSWAP: { 3447 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3448 Known = Known2.byteSwap(); 3449 break; 3450 } 3451 case ISD::ABS: { 3452 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 Known = Known2.abs(); 3454 break; 3455 } 3456 case ISD::USUBSAT: { 3457 // The result of usubsat will never be larger than the LHS. 3458 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3460 break; 3461 } 3462 case ISD::UMIN: { 3463 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3464 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3465 Known = KnownBits::umin(Known, Known2); 3466 break; 3467 } 3468 case ISD::UMAX: { 3469 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3470 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3471 Known = KnownBits::umax(Known, Known2); 3472 break; 3473 } 3474 case ISD::SMIN: 3475 case ISD::SMAX: { 3476 // If we have a clamp pattern, we know that the number of sign bits will be 3477 // the minimum of the clamp min/max range. 3478 bool IsMax = (Opcode == ISD::SMAX); 3479 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3480 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3481 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3482 CstHigh = 3483 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3484 if (CstLow && CstHigh) { 3485 if (!IsMax) 3486 std::swap(CstLow, CstHigh); 3487 3488 const APInt &ValueLow = CstLow->getAPIntValue(); 3489 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3490 if (ValueLow.sle(ValueHigh)) { 3491 unsigned LowSignBits = ValueLow.getNumSignBits(); 3492 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3493 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3494 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3495 Known.One.setHighBits(MinSignBits); 3496 break; 3497 } 3498 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3499 Known.Zero.setHighBits(MinSignBits); 3500 break; 3501 } 3502 } 3503 } 3504 3505 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3506 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3507 if (IsMax) 3508 Known = KnownBits::smax(Known, Known2); 3509 else 3510 Known = KnownBits::smin(Known, Known2); 3511 break; 3512 } 3513 case ISD::FrameIndex: 3514 case ISD::TargetFrameIndex: 3515 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3516 Known, getMachineFunction()); 3517 break; 3518 3519 default: 3520 if (Opcode < ISD::BUILTIN_OP_END) 3521 break; 3522 LLVM_FALLTHROUGH; 3523 case ISD::INTRINSIC_WO_CHAIN: 3524 case ISD::INTRINSIC_W_CHAIN: 3525 case ISD::INTRINSIC_VOID: 3526 // Allow the target to implement this method for its nodes. 3527 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3528 break; 3529 } 3530 3531 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3532 return Known; 3533 } 3534 3535 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3536 SDValue N1) const { 3537 // X + 0 never overflow 3538 if (isNullConstant(N1)) 3539 return OFK_Never; 3540 3541 KnownBits N1Known = computeKnownBits(N1); 3542 if (N1Known.Zero.getBoolValue()) { 3543 KnownBits N0Known = computeKnownBits(N0); 3544 3545 bool overflow; 3546 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3547 if (!overflow) 3548 return OFK_Never; 3549 } 3550 3551 // mulhi + 1 never overflow 3552 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3553 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3554 return OFK_Never; 3555 3556 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3557 KnownBits N0Known = computeKnownBits(N0); 3558 3559 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3560 return OFK_Never; 3561 } 3562 3563 return OFK_Sometime; 3564 } 3565 3566 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3567 EVT OpVT = Val.getValueType(); 3568 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3569 3570 // Is the constant a known power of 2? 3571 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3572 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3573 3574 // A left-shift of a constant one will have exactly one bit set because 3575 // shifting the bit off the end is undefined. 3576 if (Val.getOpcode() == ISD::SHL) { 3577 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3578 if (C && C->getAPIntValue() == 1) 3579 return true; 3580 } 3581 3582 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3583 // one bit set. 3584 if (Val.getOpcode() == ISD::SRL) { 3585 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3586 if (C && C->getAPIntValue().isSignMask()) 3587 return true; 3588 } 3589 3590 // Are all operands of a build vector constant powers of two? 3591 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3592 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3593 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3594 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3595 return false; 3596 })) 3597 return true; 3598 3599 // More could be done here, though the above checks are enough 3600 // to handle some common cases. 3601 3602 // Fall back to computeKnownBits to catch other known cases. 3603 KnownBits Known = computeKnownBits(Val); 3604 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3605 } 3606 3607 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3608 EVT VT = Op.getValueType(); 3609 3610 // TODO: Assume we don't know anything for now. 3611 if (VT.isScalableVector()) 3612 return 1; 3613 3614 APInt DemandedElts = VT.isVector() 3615 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3616 : APInt(1, 1); 3617 return ComputeNumSignBits(Op, DemandedElts, Depth); 3618 } 3619 3620 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3621 unsigned Depth) const { 3622 EVT VT = Op.getValueType(); 3623 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3624 unsigned VTBits = VT.getScalarSizeInBits(); 3625 unsigned NumElts = DemandedElts.getBitWidth(); 3626 unsigned Tmp, Tmp2; 3627 unsigned FirstAnswer = 1; 3628 3629 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3630 const APInt &Val = C->getAPIntValue(); 3631 return Val.getNumSignBits(); 3632 } 3633 3634 if (Depth >= MaxRecursionDepth) 3635 return 1; // Limit search depth. 3636 3637 if (!DemandedElts || VT.isScalableVector()) 3638 return 1; // No demanded elts, better to assume we don't know anything. 3639 3640 unsigned Opcode = Op.getOpcode(); 3641 switch (Opcode) { 3642 default: break; 3643 case ISD::AssertSext: 3644 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3645 return VTBits-Tmp+1; 3646 case ISD::AssertZext: 3647 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3648 return VTBits-Tmp; 3649 3650 case ISD::BUILD_VECTOR: 3651 Tmp = VTBits; 3652 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3653 if (!DemandedElts[i]) 3654 continue; 3655 3656 SDValue SrcOp = Op.getOperand(i); 3657 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3658 3659 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3660 if (SrcOp.getValueSizeInBits() != VTBits) { 3661 assert(SrcOp.getValueSizeInBits() > VTBits && 3662 "Expected BUILD_VECTOR implicit truncation"); 3663 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3664 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3665 } 3666 Tmp = std::min(Tmp, Tmp2); 3667 } 3668 return Tmp; 3669 3670 case ISD::VECTOR_SHUFFLE: { 3671 // Collect the minimum number of sign bits that are shared by every vector 3672 // element referenced by the shuffle. 3673 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3674 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3675 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3676 for (unsigned i = 0; i != NumElts; ++i) { 3677 int M = SVN->getMaskElt(i); 3678 if (!DemandedElts[i]) 3679 continue; 3680 // For UNDEF elements, we don't know anything about the common state of 3681 // the shuffle result. 3682 if (M < 0) 3683 return 1; 3684 if ((unsigned)M < NumElts) 3685 DemandedLHS.setBit((unsigned)M % NumElts); 3686 else 3687 DemandedRHS.setBit((unsigned)M % NumElts); 3688 } 3689 Tmp = std::numeric_limits<unsigned>::max(); 3690 if (!!DemandedLHS) 3691 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3692 if (!!DemandedRHS) { 3693 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3694 Tmp = std::min(Tmp, Tmp2); 3695 } 3696 // If we don't know anything, early out and try computeKnownBits fall-back. 3697 if (Tmp == 1) 3698 break; 3699 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3700 return Tmp; 3701 } 3702 3703 case ISD::BITCAST: { 3704 SDValue N0 = Op.getOperand(0); 3705 EVT SrcVT = N0.getValueType(); 3706 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3707 3708 // Ignore bitcasts from unsupported types.. 3709 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3710 break; 3711 3712 // Fast handling of 'identity' bitcasts. 3713 if (VTBits == SrcBits) 3714 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3715 3716 bool IsLE = getDataLayout().isLittleEndian(); 3717 3718 // Bitcast 'large element' scalar/vector to 'small element' vector. 3719 if ((SrcBits % VTBits) == 0) { 3720 assert(VT.isVector() && "Expected bitcast to vector"); 3721 3722 unsigned Scale = SrcBits / VTBits; 3723 APInt SrcDemandedElts(NumElts / Scale, 0); 3724 for (unsigned i = 0; i != NumElts; ++i) 3725 if (DemandedElts[i]) 3726 SrcDemandedElts.setBit(i / Scale); 3727 3728 // Fast case - sign splat can be simply split across the small elements. 3729 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3730 if (Tmp == SrcBits) 3731 return VTBits; 3732 3733 // Slow case - determine how far the sign extends into each sub-element. 3734 Tmp2 = VTBits; 3735 for (unsigned i = 0; i != NumElts; ++i) 3736 if (DemandedElts[i]) { 3737 unsigned SubOffset = i % Scale; 3738 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3739 SubOffset = SubOffset * VTBits; 3740 if (Tmp <= SubOffset) 3741 return 1; 3742 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3743 } 3744 return Tmp2; 3745 } 3746 break; 3747 } 3748 3749 case ISD::SIGN_EXTEND: 3750 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3751 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3752 case ISD::SIGN_EXTEND_INREG: 3753 // Max of the input and what this extends. 3754 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3755 Tmp = VTBits-Tmp+1; 3756 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3757 return std::max(Tmp, Tmp2); 3758 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3759 SDValue Src = Op.getOperand(0); 3760 EVT SrcVT = Src.getValueType(); 3761 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3762 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3763 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3764 } 3765 case ISD::SRA: 3766 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3767 // SRA X, C -> adds C sign bits. 3768 if (const APInt *ShAmt = 3769 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3770 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3771 return Tmp; 3772 case ISD::SHL: 3773 if (const APInt *ShAmt = 3774 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3775 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3776 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3777 if (ShAmt->ult(Tmp)) 3778 return Tmp - ShAmt->getZExtValue(); 3779 } 3780 break; 3781 case ISD::AND: 3782 case ISD::OR: 3783 case ISD::XOR: // NOT is handled here. 3784 // Logical binary ops preserve the number of sign bits at the worst. 3785 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3786 if (Tmp != 1) { 3787 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3788 FirstAnswer = std::min(Tmp, Tmp2); 3789 // We computed what we know about the sign bits as our first 3790 // answer. Now proceed to the generic code that uses 3791 // computeKnownBits, and pick whichever answer is better. 3792 } 3793 break; 3794 3795 case ISD::SELECT: 3796 case ISD::VSELECT: 3797 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3798 if (Tmp == 1) return 1; // Early out. 3799 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3800 return std::min(Tmp, Tmp2); 3801 case ISD::SELECT_CC: 3802 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3803 if (Tmp == 1) return 1; // Early out. 3804 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3805 return std::min(Tmp, Tmp2); 3806 3807 case ISD::SMIN: 3808 case ISD::SMAX: { 3809 // If we have a clamp pattern, we know that the number of sign bits will be 3810 // the minimum of the clamp min/max range. 3811 bool IsMax = (Opcode == ISD::SMAX); 3812 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3813 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3814 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3815 CstHigh = 3816 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3817 if (CstLow && CstHigh) { 3818 if (!IsMax) 3819 std::swap(CstLow, CstHigh); 3820 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3821 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3822 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3823 return std::min(Tmp, Tmp2); 3824 } 3825 } 3826 3827 // Fallback - just get the minimum number of sign bits of the operands. 3828 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3829 if (Tmp == 1) 3830 return 1; // Early out. 3831 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3832 return std::min(Tmp, Tmp2); 3833 } 3834 case ISD::UMIN: 3835 case ISD::UMAX: 3836 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3837 if (Tmp == 1) 3838 return 1; // Early out. 3839 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3840 return std::min(Tmp, Tmp2); 3841 case ISD::SADDO: 3842 case ISD::UADDO: 3843 case ISD::SSUBO: 3844 case ISD::USUBO: 3845 case ISD::SMULO: 3846 case ISD::UMULO: 3847 if (Op.getResNo() != 1) 3848 break; 3849 // The boolean result conforms to getBooleanContents. Fall through. 3850 // If setcc returns 0/-1, all bits are sign bits. 3851 // We know that we have an integer-based boolean since these operations 3852 // are only available for integer. 3853 if (TLI->getBooleanContents(VT.isVector(), false) == 3854 TargetLowering::ZeroOrNegativeOneBooleanContent) 3855 return VTBits; 3856 break; 3857 case ISD::SETCC: 3858 case ISD::STRICT_FSETCC: 3859 case ISD::STRICT_FSETCCS: { 3860 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3861 // If setcc returns 0/-1, all bits are sign bits. 3862 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3863 TargetLowering::ZeroOrNegativeOneBooleanContent) 3864 return VTBits; 3865 break; 3866 } 3867 case ISD::ROTL: 3868 case ISD::ROTR: 3869 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3870 3871 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3872 if (Tmp == VTBits) 3873 return VTBits; 3874 3875 if (ConstantSDNode *C = 3876 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3877 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3878 3879 // Handle rotate right by N like a rotate left by 32-N. 3880 if (Opcode == ISD::ROTR) 3881 RotAmt = (VTBits - RotAmt) % VTBits; 3882 3883 // If we aren't rotating out all of the known-in sign bits, return the 3884 // number that are left. This handles rotl(sext(x), 1) for example. 3885 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3886 } 3887 break; 3888 case ISD::ADD: 3889 case ISD::ADDC: 3890 // Add can have at most one carry bit. Thus we know that the output 3891 // is, at worst, one more bit than the inputs. 3892 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3893 if (Tmp == 1) return 1; // Early out. 3894 3895 // Special case decrementing a value (ADD X, -1): 3896 if (ConstantSDNode *CRHS = 3897 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3898 if (CRHS->isAllOnesValue()) { 3899 KnownBits Known = 3900 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3901 3902 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3903 // sign bits set. 3904 if ((Known.Zero | 1).isAllOnesValue()) 3905 return VTBits; 3906 3907 // If we are subtracting one from a positive number, there is no carry 3908 // out of the result. 3909 if (Known.isNonNegative()) 3910 return Tmp; 3911 } 3912 3913 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3914 if (Tmp2 == 1) return 1; // Early out. 3915 return std::min(Tmp, Tmp2) - 1; 3916 case ISD::SUB: 3917 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3918 if (Tmp2 == 1) return 1; // Early out. 3919 3920 // Handle NEG. 3921 if (ConstantSDNode *CLHS = 3922 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3923 if (CLHS->isNullValue()) { 3924 KnownBits Known = 3925 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3926 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3927 // sign bits set. 3928 if ((Known.Zero | 1).isAllOnesValue()) 3929 return VTBits; 3930 3931 // If the input is known to be positive (the sign bit is known clear), 3932 // the output of the NEG has the same number of sign bits as the input. 3933 if (Known.isNonNegative()) 3934 return Tmp2; 3935 3936 // Otherwise, we treat this like a SUB. 3937 } 3938 3939 // Sub can have at most one carry bit. Thus we know that the output 3940 // is, at worst, one more bit than the inputs. 3941 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3942 if (Tmp == 1) return 1; // Early out. 3943 return std::min(Tmp, Tmp2) - 1; 3944 case ISD::MUL: { 3945 // The output of the Mul can be at most twice the valid bits in the inputs. 3946 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3947 if (SignBitsOp0 == 1) 3948 break; 3949 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3950 if (SignBitsOp1 == 1) 3951 break; 3952 unsigned OutValidBits = 3953 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3954 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3955 } 3956 case ISD::SREM: 3957 // The sign bit is the LHS's sign bit, except when the result of the 3958 // remainder is zero. The magnitude of the result should be less than or 3959 // equal to the magnitude of the LHS. Therefore, the result should have 3960 // at least as many sign bits as the left hand side. 3961 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3962 case ISD::TRUNCATE: { 3963 // Check if the sign bits of source go down as far as the truncated value. 3964 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3965 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3966 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3967 return NumSrcSignBits - (NumSrcBits - VTBits); 3968 break; 3969 } 3970 case ISD::EXTRACT_ELEMENT: { 3971 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3972 const int BitWidth = Op.getValueSizeInBits(); 3973 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3974 3975 // Get reverse index (starting from 1), Op1 value indexes elements from 3976 // little end. Sign starts at big end. 3977 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3978 3979 // If the sign portion ends in our element the subtraction gives correct 3980 // result. Otherwise it gives either negative or > bitwidth result 3981 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3982 } 3983 case ISD::INSERT_VECTOR_ELT: { 3984 // If we know the element index, split the demand between the 3985 // source vector and the inserted element, otherwise assume we need 3986 // the original demanded vector elements and the value. 3987 SDValue InVec = Op.getOperand(0); 3988 SDValue InVal = Op.getOperand(1); 3989 SDValue EltNo = Op.getOperand(2); 3990 bool DemandedVal = true; 3991 APInt DemandedVecElts = DemandedElts; 3992 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3993 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3994 unsigned EltIdx = CEltNo->getZExtValue(); 3995 DemandedVal = !!DemandedElts[EltIdx]; 3996 DemandedVecElts.clearBit(EltIdx); 3997 } 3998 Tmp = std::numeric_limits<unsigned>::max(); 3999 if (DemandedVal) { 4000 // TODO - handle implicit truncation of inserted elements. 4001 if (InVal.getScalarValueSizeInBits() != VTBits) 4002 break; 4003 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4004 Tmp = std::min(Tmp, Tmp2); 4005 } 4006 if (!!DemandedVecElts) { 4007 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4008 Tmp = std::min(Tmp, Tmp2); 4009 } 4010 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4011 return Tmp; 4012 } 4013 case ISD::EXTRACT_VECTOR_ELT: { 4014 SDValue InVec = Op.getOperand(0); 4015 SDValue EltNo = Op.getOperand(1); 4016 EVT VecVT = InVec.getValueType(); 4017 // ComputeNumSignBits not yet implemented for scalable vectors. 4018 if (VecVT.isScalableVector()) 4019 break; 4020 const unsigned BitWidth = Op.getValueSizeInBits(); 4021 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4022 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4023 4024 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4025 // anything about sign bits. But if the sizes match we can derive knowledge 4026 // about sign bits from the vector operand. 4027 if (BitWidth != EltBitWidth) 4028 break; 4029 4030 // If we know the element index, just demand that vector element, else for 4031 // an unknown element index, ignore DemandedElts and demand them all. 4032 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4033 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4034 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4035 DemandedSrcElts = 4036 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4037 4038 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4039 } 4040 case ISD::EXTRACT_SUBVECTOR: { 4041 // Offset the demanded elts by the subvector index. 4042 SDValue Src = Op.getOperand(0); 4043 // Bail until we can represent demanded elements for scalable vectors. 4044 if (Src.getValueType().isScalableVector()) 4045 break; 4046 uint64_t Idx = Op.getConstantOperandVal(1); 4047 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4048 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4049 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4050 } 4051 case ISD::CONCAT_VECTORS: { 4052 // Determine the minimum number of sign bits across all demanded 4053 // elts of the input vectors. Early out if the result is already 1. 4054 Tmp = std::numeric_limits<unsigned>::max(); 4055 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4056 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4057 unsigned NumSubVectors = Op.getNumOperands(); 4058 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4059 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4060 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4061 if (!DemandedSub) 4062 continue; 4063 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4064 Tmp = std::min(Tmp, Tmp2); 4065 } 4066 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4067 return Tmp; 4068 } 4069 case ISD::INSERT_SUBVECTOR: { 4070 // Demand any elements from the subvector and the remainder from the src its 4071 // inserted into. 4072 SDValue Src = Op.getOperand(0); 4073 SDValue Sub = Op.getOperand(1); 4074 uint64_t Idx = Op.getConstantOperandVal(2); 4075 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4076 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4077 APInt DemandedSrcElts = DemandedElts; 4078 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4079 4080 Tmp = std::numeric_limits<unsigned>::max(); 4081 if (!!DemandedSubElts) { 4082 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4083 if (Tmp == 1) 4084 return 1; // early-out 4085 } 4086 if (!!DemandedSrcElts) { 4087 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4088 Tmp = std::min(Tmp, Tmp2); 4089 } 4090 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4091 return Tmp; 4092 } 4093 } 4094 4095 // If we are looking at the loaded value of the SDNode. 4096 if (Op.getResNo() == 0) { 4097 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4098 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4099 unsigned ExtType = LD->getExtensionType(); 4100 switch (ExtType) { 4101 default: break; 4102 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4103 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4104 return VTBits - Tmp + 1; 4105 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4106 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4107 return VTBits - Tmp; 4108 case ISD::NON_EXTLOAD: 4109 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4110 // We only need to handle vectors - computeKnownBits should handle 4111 // scalar cases. 4112 Type *CstTy = Cst->getType(); 4113 if (CstTy->isVectorTy() && 4114 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4115 Tmp = VTBits; 4116 for (unsigned i = 0; i != NumElts; ++i) { 4117 if (!DemandedElts[i]) 4118 continue; 4119 if (Constant *Elt = Cst->getAggregateElement(i)) { 4120 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4121 const APInt &Value = CInt->getValue(); 4122 Tmp = std::min(Tmp, Value.getNumSignBits()); 4123 continue; 4124 } 4125 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4126 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4127 Tmp = std::min(Tmp, Value.getNumSignBits()); 4128 continue; 4129 } 4130 } 4131 // Unknown type. Conservatively assume no bits match sign bit. 4132 return 1; 4133 } 4134 return Tmp; 4135 } 4136 } 4137 break; 4138 } 4139 } 4140 } 4141 4142 // Allow the target to implement this method for its nodes. 4143 if (Opcode >= ISD::BUILTIN_OP_END || 4144 Opcode == ISD::INTRINSIC_WO_CHAIN || 4145 Opcode == ISD::INTRINSIC_W_CHAIN || 4146 Opcode == ISD::INTRINSIC_VOID) { 4147 unsigned NumBits = 4148 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4149 if (NumBits > 1) 4150 FirstAnswer = std::max(FirstAnswer, NumBits); 4151 } 4152 4153 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4154 // use this information. 4155 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4156 4157 APInt Mask; 4158 if (Known.isNonNegative()) { // sign bit is 0 4159 Mask = Known.Zero; 4160 } else if (Known.isNegative()) { // sign bit is 1; 4161 Mask = Known.One; 4162 } else { 4163 // Nothing known. 4164 return FirstAnswer; 4165 } 4166 4167 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4168 // the number of identical bits in the top of the input value. 4169 Mask <<= Mask.getBitWidth()-VTBits; 4170 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4171 } 4172 4173 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4174 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4175 !isa<ConstantSDNode>(Op.getOperand(1))) 4176 return false; 4177 4178 if (Op.getOpcode() == ISD::OR && 4179 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4180 return false; 4181 4182 return true; 4183 } 4184 4185 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4186 // If we're told that NaNs won't happen, assume they won't. 4187 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4188 return true; 4189 4190 if (Depth >= MaxRecursionDepth) 4191 return false; // Limit search depth. 4192 4193 // TODO: Handle vectors. 4194 // If the value is a constant, we can obviously see if it is a NaN or not. 4195 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4196 return !C->getValueAPF().isNaN() || 4197 (SNaN && !C->getValueAPF().isSignaling()); 4198 } 4199 4200 unsigned Opcode = Op.getOpcode(); 4201 switch (Opcode) { 4202 case ISD::FADD: 4203 case ISD::FSUB: 4204 case ISD::FMUL: 4205 case ISD::FDIV: 4206 case ISD::FREM: 4207 case ISD::FSIN: 4208 case ISD::FCOS: { 4209 if (SNaN) 4210 return true; 4211 // TODO: Need isKnownNeverInfinity 4212 return false; 4213 } 4214 case ISD::FCANONICALIZE: 4215 case ISD::FEXP: 4216 case ISD::FEXP2: 4217 case ISD::FTRUNC: 4218 case ISD::FFLOOR: 4219 case ISD::FCEIL: 4220 case ISD::FROUND: 4221 case ISD::FROUNDEVEN: 4222 case ISD::FRINT: 4223 case ISD::FNEARBYINT: { 4224 if (SNaN) 4225 return true; 4226 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4227 } 4228 case ISD::FABS: 4229 case ISD::FNEG: 4230 case ISD::FCOPYSIGN: { 4231 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4232 } 4233 case ISD::SELECT: 4234 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4235 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4236 case ISD::FP_EXTEND: 4237 case ISD::FP_ROUND: { 4238 if (SNaN) 4239 return true; 4240 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4241 } 4242 case ISD::SINT_TO_FP: 4243 case ISD::UINT_TO_FP: 4244 return true; 4245 case ISD::FMA: 4246 case ISD::FMAD: { 4247 if (SNaN) 4248 return true; 4249 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4250 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4251 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4252 } 4253 case ISD::FSQRT: // Need is known positive 4254 case ISD::FLOG: 4255 case ISD::FLOG2: 4256 case ISD::FLOG10: 4257 case ISD::FPOWI: 4258 case ISD::FPOW: { 4259 if (SNaN) 4260 return true; 4261 // TODO: Refine on operand 4262 return false; 4263 } 4264 case ISD::FMINNUM: 4265 case ISD::FMAXNUM: { 4266 // Only one needs to be known not-nan, since it will be returned if the 4267 // other ends up being one. 4268 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4269 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4270 } 4271 case ISD::FMINNUM_IEEE: 4272 case ISD::FMAXNUM_IEEE: { 4273 if (SNaN) 4274 return true; 4275 // This can return a NaN if either operand is an sNaN, or if both operands 4276 // are NaN. 4277 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4278 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4279 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4280 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4281 } 4282 case ISD::FMINIMUM: 4283 case ISD::FMAXIMUM: { 4284 // TODO: Does this quiet or return the origina NaN as-is? 4285 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4286 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4287 } 4288 case ISD::EXTRACT_VECTOR_ELT: { 4289 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4290 } 4291 default: 4292 if (Opcode >= ISD::BUILTIN_OP_END || 4293 Opcode == ISD::INTRINSIC_WO_CHAIN || 4294 Opcode == ISD::INTRINSIC_W_CHAIN || 4295 Opcode == ISD::INTRINSIC_VOID) { 4296 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4297 } 4298 4299 return false; 4300 } 4301 } 4302 4303 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4304 assert(Op.getValueType().isFloatingPoint() && 4305 "Floating point type expected"); 4306 4307 // If the value is a constant, we can obviously see if it is a zero or not. 4308 // TODO: Add BuildVector support. 4309 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4310 return !C->isZero(); 4311 return false; 4312 } 4313 4314 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4315 assert(!Op.getValueType().isFloatingPoint() && 4316 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4317 4318 // If the value is a constant, we can obviously see if it is a zero or not. 4319 if (ISD::matchUnaryPredicate( 4320 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4321 return true; 4322 4323 // TODO: Recognize more cases here. 4324 switch (Op.getOpcode()) { 4325 default: break; 4326 case ISD::OR: 4327 if (isKnownNeverZero(Op.getOperand(1)) || 4328 isKnownNeverZero(Op.getOperand(0))) 4329 return true; 4330 break; 4331 } 4332 4333 return false; 4334 } 4335 4336 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4337 // Check the obvious case. 4338 if (A == B) return true; 4339 4340 // For for negative and positive zero. 4341 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4342 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4343 if (CA->isZero() && CB->isZero()) return true; 4344 4345 // Otherwise they may not be equal. 4346 return false; 4347 } 4348 4349 // FIXME: unify with llvm::haveNoCommonBitsSet. 4350 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4351 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4352 assert(A.getValueType() == B.getValueType() && 4353 "Values must have the same type"); 4354 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4355 computeKnownBits(B)); 4356 } 4357 4358 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4359 SelectionDAG &DAG) { 4360 if (cast<ConstantSDNode>(Step)->isNullValue()) 4361 return DAG.getConstant(0, DL, VT); 4362 4363 return SDValue(); 4364 } 4365 4366 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4367 ArrayRef<SDValue> Ops, 4368 SelectionDAG &DAG) { 4369 int NumOps = Ops.size(); 4370 assert(NumOps != 0 && "Can't build an empty vector!"); 4371 assert(!VT.isScalableVector() && 4372 "BUILD_VECTOR cannot be used with scalable types"); 4373 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4374 "Incorrect element count in BUILD_VECTOR!"); 4375 4376 // BUILD_VECTOR of UNDEFs is UNDEF. 4377 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4378 return DAG.getUNDEF(VT); 4379 4380 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4381 SDValue IdentitySrc; 4382 bool IsIdentity = true; 4383 for (int i = 0; i != NumOps; ++i) { 4384 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4385 Ops[i].getOperand(0).getValueType() != VT || 4386 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4387 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4388 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4389 IsIdentity = false; 4390 break; 4391 } 4392 IdentitySrc = Ops[i].getOperand(0); 4393 } 4394 if (IsIdentity) 4395 return IdentitySrc; 4396 4397 return SDValue(); 4398 } 4399 4400 /// Try to simplify vector concatenation to an input value, undef, or build 4401 /// vector. 4402 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4403 ArrayRef<SDValue> Ops, 4404 SelectionDAG &DAG) { 4405 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4406 assert(llvm::all_of(Ops, 4407 [Ops](SDValue Op) { 4408 return Ops[0].getValueType() == Op.getValueType(); 4409 }) && 4410 "Concatenation of vectors with inconsistent value types!"); 4411 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4412 VT.getVectorElementCount() && 4413 "Incorrect element count in vector concatenation!"); 4414 4415 if (Ops.size() == 1) 4416 return Ops[0]; 4417 4418 // Concat of UNDEFs is UNDEF. 4419 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4420 return DAG.getUNDEF(VT); 4421 4422 // Scan the operands and look for extract operations from a single source 4423 // that correspond to insertion at the same location via this concatenation: 4424 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4425 SDValue IdentitySrc; 4426 bool IsIdentity = true; 4427 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4428 SDValue Op = Ops[i]; 4429 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4430 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4431 Op.getOperand(0).getValueType() != VT || 4432 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4433 Op.getConstantOperandVal(1) != IdentityIndex) { 4434 IsIdentity = false; 4435 break; 4436 } 4437 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4438 "Unexpected identity source vector for concat of extracts"); 4439 IdentitySrc = Op.getOperand(0); 4440 } 4441 if (IsIdentity) { 4442 assert(IdentitySrc && "Failed to set source vector of extracts"); 4443 return IdentitySrc; 4444 } 4445 4446 // The code below this point is only designed to work for fixed width 4447 // vectors, so we bail out for now. 4448 if (VT.isScalableVector()) 4449 return SDValue(); 4450 4451 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4452 // simplified to one big BUILD_VECTOR. 4453 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4454 EVT SVT = VT.getScalarType(); 4455 SmallVector<SDValue, 16> Elts; 4456 for (SDValue Op : Ops) { 4457 EVT OpVT = Op.getValueType(); 4458 if (Op.isUndef()) 4459 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4460 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4461 Elts.append(Op->op_begin(), Op->op_end()); 4462 else 4463 return SDValue(); 4464 } 4465 4466 // BUILD_VECTOR requires all inputs to be of the same type, find the 4467 // maximum type and extend them all. 4468 for (SDValue Op : Elts) 4469 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4470 4471 if (SVT.bitsGT(VT.getScalarType())) { 4472 for (SDValue &Op : Elts) { 4473 if (Op.isUndef()) 4474 Op = DAG.getUNDEF(SVT); 4475 else 4476 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4477 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4478 : DAG.getSExtOrTrunc(Op, DL, SVT); 4479 } 4480 } 4481 4482 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4483 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4484 return V; 4485 } 4486 4487 /// Gets or creates the specified node. 4488 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4489 FoldingSetNodeID ID; 4490 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4491 void *IP = nullptr; 4492 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4493 return SDValue(E, 0); 4494 4495 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4496 getVTList(VT)); 4497 CSEMap.InsertNode(N, IP); 4498 4499 InsertNode(N); 4500 SDValue V = SDValue(N, 0); 4501 NewSDValueDbgMsg(V, "Creating new node: ", this); 4502 return V; 4503 } 4504 4505 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4506 SDValue Operand) { 4507 SDNodeFlags Flags; 4508 if (Inserter) 4509 Flags = Inserter->getFlags(); 4510 return getNode(Opcode, DL, VT, Operand, Flags); 4511 } 4512 4513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4514 SDValue Operand, const SDNodeFlags Flags) { 4515 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4516 "Operand is DELETED_NODE!"); 4517 // Constant fold unary operations with an integer constant operand. Even 4518 // opaque constant will be folded, because the folding of unary operations 4519 // doesn't create new constants with different values. Nevertheless, the 4520 // opaque flag is preserved during folding to prevent future folding with 4521 // other constants. 4522 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4523 const APInt &Val = C->getAPIntValue(); 4524 switch (Opcode) { 4525 default: break; 4526 case ISD::SIGN_EXTEND: 4527 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4528 C->isTargetOpcode(), C->isOpaque()); 4529 case ISD::TRUNCATE: 4530 if (C->isOpaque()) 4531 break; 4532 LLVM_FALLTHROUGH; 4533 case ISD::ANY_EXTEND: 4534 case ISD::ZERO_EXTEND: 4535 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4536 C->isTargetOpcode(), C->isOpaque()); 4537 case ISD::UINT_TO_FP: 4538 case ISD::SINT_TO_FP: { 4539 APFloat apf(EVTToAPFloatSemantics(VT), 4540 APInt::getNullValue(VT.getSizeInBits())); 4541 (void)apf.convertFromAPInt(Val, 4542 Opcode==ISD::SINT_TO_FP, 4543 APFloat::rmNearestTiesToEven); 4544 return getConstantFP(apf, DL, VT); 4545 } 4546 case ISD::BITCAST: 4547 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4548 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4549 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4550 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4551 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4552 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4553 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4554 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4555 break; 4556 case ISD::ABS: 4557 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4558 C->isOpaque()); 4559 case ISD::BITREVERSE: 4560 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4561 C->isOpaque()); 4562 case ISD::BSWAP: 4563 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4564 C->isOpaque()); 4565 case ISD::CTPOP: 4566 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4567 C->isOpaque()); 4568 case ISD::CTLZ: 4569 case ISD::CTLZ_ZERO_UNDEF: 4570 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4571 C->isOpaque()); 4572 case ISD::CTTZ: 4573 case ISD::CTTZ_ZERO_UNDEF: 4574 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4575 C->isOpaque()); 4576 case ISD::FP16_TO_FP: { 4577 bool Ignored; 4578 APFloat FPV(APFloat::IEEEhalf(), 4579 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4580 4581 // This can return overflow, underflow, or inexact; we don't care. 4582 // FIXME need to be more flexible about rounding mode. 4583 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4584 APFloat::rmNearestTiesToEven, &Ignored); 4585 return getConstantFP(FPV, DL, VT); 4586 } 4587 case ISD::STEP_VECTOR: { 4588 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4589 return V; 4590 break; 4591 } 4592 } 4593 } 4594 4595 // Constant fold unary operations with a floating point constant operand. 4596 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4597 APFloat V = C->getValueAPF(); // make copy 4598 switch (Opcode) { 4599 case ISD::FNEG: 4600 V.changeSign(); 4601 return getConstantFP(V, DL, VT); 4602 case ISD::FABS: 4603 V.clearSign(); 4604 return getConstantFP(V, DL, VT); 4605 case ISD::FCEIL: { 4606 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4607 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4608 return getConstantFP(V, DL, VT); 4609 break; 4610 } 4611 case ISD::FTRUNC: { 4612 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4613 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4614 return getConstantFP(V, DL, VT); 4615 break; 4616 } 4617 case ISD::FFLOOR: { 4618 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4619 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4620 return getConstantFP(V, DL, VT); 4621 break; 4622 } 4623 case ISD::FP_EXTEND: { 4624 bool ignored; 4625 // This can return overflow, underflow, or inexact; we don't care. 4626 // FIXME need to be more flexible about rounding mode. 4627 (void)V.convert(EVTToAPFloatSemantics(VT), 4628 APFloat::rmNearestTiesToEven, &ignored); 4629 return getConstantFP(V, DL, VT); 4630 } 4631 case ISD::FP_TO_SINT: 4632 case ISD::FP_TO_UINT: { 4633 bool ignored; 4634 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4635 // FIXME need to be more flexible about rounding mode. 4636 APFloat::opStatus s = 4637 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4638 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4639 break; 4640 return getConstant(IntVal, DL, VT); 4641 } 4642 case ISD::BITCAST: 4643 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4644 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4645 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4646 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4647 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4648 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4649 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4650 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4651 break; 4652 case ISD::FP_TO_FP16: { 4653 bool Ignored; 4654 // This can return overflow, underflow, or inexact; we don't care. 4655 // FIXME need to be more flexible about rounding mode. 4656 (void)V.convert(APFloat::IEEEhalf(), 4657 APFloat::rmNearestTiesToEven, &Ignored); 4658 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4659 } 4660 } 4661 } 4662 4663 // Constant fold unary operations with a vector integer or float operand. 4664 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4665 if (BV->isConstant()) { 4666 switch (Opcode) { 4667 default: 4668 // FIXME: Entirely reasonable to perform folding of other unary 4669 // operations here as the need arises. 4670 break; 4671 case ISD::FNEG: 4672 case ISD::FABS: 4673 case ISD::FCEIL: 4674 case ISD::FTRUNC: 4675 case ISD::FFLOOR: 4676 case ISD::FP_EXTEND: 4677 case ISD::FP_TO_SINT: 4678 case ISD::FP_TO_UINT: 4679 case ISD::TRUNCATE: 4680 case ISD::ANY_EXTEND: 4681 case ISD::ZERO_EXTEND: 4682 case ISD::SIGN_EXTEND: 4683 case ISD::UINT_TO_FP: 4684 case ISD::SINT_TO_FP: 4685 case ISD::ABS: 4686 case ISD::BITREVERSE: 4687 case ISD::BSWAP: 4688 case ISD::CTLZ: 4689 case ISD::CTLZ_ZERO_UNDEF: 4690 case ISD::CTTZ: 4691 case ISD::CTTZ_ZERO_UNDEF: 4692 case ISD::CTPOP: { 4693 SDValue Ops = { Operand }; 4694 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4695 return Fold; 4696 } 4697 } 4698 } 4699 } 4700 4701 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4702 switch (Opcode) { 4703 case ISD::STEP_VECTOR: 4704 assert(VT.isScalableVector() && 4705 "STEP_VECTOR can only be used with scalable types"); 4706 assert(VT.getScalarSizeInBits() >= 8 && 4707 "STEP_VECTOR can only be used with vectors of integers that are at " 4708 "least 8 bits wide"); 4709 assert(Operand.getValueType().bitsGE(VT.getScalarType()) && 4710 "Operand type should be at least as large as the element type"); 4711 assert(isa<ConstantSDNode>(Operand) && 4712 cast<ConstantSDNode>(Operand)->getAPIntValue().isNonNegative() && 4713 "Expected positive integer constant for STEP_VECTOR"); 4714 break; 4715 case ISD::FREEZE: 4716 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4717 break; 4718 case ISD::TokenFactor: 4719 case ISD::MERGE_VALUES: 4720 case ISD::CONCAT_VECTORS: 4721 return Operand; // Factor, merge or concat of one node? No need. 4722 case ISD::BUILD_VECTOR: { 4723 // Attempt to simplify BUILD_VECTOR. 4724 SDValue Ops[] = {Operand}; 4725 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4726 return V; 4727 break; 4728 } 4729 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4730 case ISD::FP_EXTEND: 4731 assert(VT.isFloatingPoint() && 4732 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4733 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4734 assert((!VT.isVector() || 4735 VT.getVectorElementCount() == 4736 Operand.getValueType().getVectorElementCount()) && 4737 "Vector element count mismatch!"); 4738 assert(Operand.getValueType().bitsLT(VT) && 4739 "Invalid fpext node, dst < src!"); 4740 if (Operand.isUndef()) 4741 return getUNDEF(VT); 4742 break; 4743 case ISD::FP_TO_SINT: 4744 case ISD::FP_TO_UINT: 4745 if (Operand.isUndef()) 4746 return getUNDEF(VT); 4747 break; 4748 case ISD::SINT_TO_FP: 4749 case ISD::UINT_TO_FP: 4750 // [us]itofp(undef) = 0, because the result value is bounded. 4751 if (Operand.isUndef()) 4752 return getConstantFP(0.0, DL, VT); 4753 break; 4754 case ISD::SIGN_EXTEND: 4755 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4756 "Invalid SIGN_EXTEND!"); 4757 assert(VT.isVector() == Operand.getValueType().isVector() && 4758 "SIGN_EXTEND result type type should be vector iff the operand " 4759 "type is vector!"); 4760 if (Operand.getValueType() == VT) return Operand; // noop extension 4761 assert((!VT.isVector() || 4762 VT.getVectorElementCount() == 4763 Operand.getValueType().getVectorElementCount()) && 4764 "Vector element count mismatch!"); 4765 assert(Operand.getValueType().bitsLT(VT) && 4766 "Invalid sext node, dst < src!"); 4767 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4768 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4769 else if (OpOpcode == ISD::UNDEF) 4770 // sext(undef) = 0, because the top bits will all be the same. 4771 return getConstant(0, DL, VT); 4772 break; 4773 case ISD::ZERO_EXTEND: 4774 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4775 "Invalid ZERO_EXTEND!"); 4776 assert(VT.isVector() == Operand.getValueType().isVector() && 4777 "ZERO_EXTEND result type type should be vector iff the operand " 4778 "type is vector!"); 4779 if (Operand.getValueType() == VT) return Operand; // noop extension 4780 assert((!VT.isVector() || 4781 VT.getVectorElementCount() == 4782 Operand.getValueType().getVectorElementCount()) && 4783 "Vector element count mismatch!"); 4784 assert(Operand.getValueType().bitsLT(VT) && 4785 "Invalid zext node, dst < src!"); 4786 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4787 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4788 else if (OpOpcode == ISD::UNDEF) 4789 // zext(undef) = 0, because the top bits will be zero. 4790 return getConstant(0, DL, VT); 4791 break; 4792 case ISD::ANY_EXTEND: 4793 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4794 "Invalid ANY_EXTEND!"); 4795 assert(VT.isVector() == Operand.getValueType().isVector() && 4796 "ANY_EXTEND result type type should be vector iff the operand " 4797 "type is vector!"); 4798 if (Operand.getValueType() == VT) return Operand; // noop extension 4799 assert((!VT.isVector() || 4800 VT.getVectorElementCount() == 4801 Operand.getValueType().getVectorElementCount()) && 4802 "Vector element count mismatch!"); 4803 assert(Operand.getValueType().bitsLT(VT) && 4804 "Invalid anyext node, dst < src!"); 4805 4806 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4807 OpOpcode == ISD::ANY_EXTEND) 4808 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4809 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4810 else if (OpOpcode == ISD::UNDEF) 4811 return getUNDEF(VT); 4812 4813 // (ext (trunc x)) -> x 4814 if (OpOpcode == ISD::TRUNCATE) { 4815 SDValue OpOp = Operand.getOperand(0); 4816 if (OpOp.getValueType() == VT) { 4817 transferDbgValues(Operand, OpOp); 4818 return OpOp; 4819 } 4820 } 4821 break; 4822 case ISD::TRUNCATE: 4823 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4824 "Invalid TRUNCATE!"); 4825 assert(VT.isVector() == Operand.getValueType().isVector() && 4826 "TRUNCATE result type type should be vector iff the operand " 4827 "type is vector!"); 4828 if (Operand.getValueType() == VT) return Operand; // noop truncate 4829 assert((!VT.isVector() || 4830 VT.getVectorElementCount() == 4831 Operand.getValueType().getVectorElementCount()) && 4832 "Vector element count mismatch!"); 4833 assert(Operand.getValueType().bitsGT(VT) && 4834 "Invalid truncate node, src < dst!"); 4835 if (OpOpcode == ISD::TRUNCATE) 4836 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4837 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4838 OpOpcode == ISD::ANY_EXTEND) { 4839 // If the source is smaller than the dest, we still need an extend. 4840 if (Operand.getOperand(0).getValueType().getScalarType() 4841 .bitsLT(VT.getScalarType())) 4842 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4843 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4844 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4845 return Operand.getOperand(0); 4846 } 4847 if (OpOpcode == ISD::UNDEF) 4848 return getUNDEF(VT); 4849 break; 4850 case ISD::ANY_EXTEND_VECTOR_INREG: 4851 case ISD::ZERO_EXTEND_VECTOR_INREG: 4852 case ISD::SIGN_EXTEND_VECTOR_INREG: 4853 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4854 assert(Operand.getValueType().bitsLE(VT) && 4855 "The input must be the same size or smaller than the result."); 4856 assert(VT.getVectorMinNumElements() < 4857 Operand.getValueType().getVectorMinNumElements() && 4858 "The destination vector type must have fewer lanes than the input."); 4859 break; 4860 case ISD::ABS: 4861 assert(VT.isInteger() && VT == Operand.getValueType() && 4862 "Invalid ABS!"); 4863 if (OpOpcode == ISD::UNDEF) 4864 return getUNDEF(VT); 4865 break; 4866 case ISD::BSWAP: 4867 assert(VT.isInteger() && VT == Operand.getValueType() && 4868 "Invalid BSWAP!"); 4869 assert((VT.getScalarSizeInBits() % 16 == 0) && 4870 "BSWAP types must be a multiple of 16 bits!"); 4871 if (OpOpcode == ISD::UNDEF) 4872 return getUNDEF(VT); 4873 break; 4874 case ISD::BITREVERSE: 4875 assert(VT.isInteger() && VT == Operand.getValueType() && 4876 "Invalid BITREVERSE!"); 4877 if (OpOpcode == ISD::UNDEF) 4878 return getUNDEF(VT); 4879 break; 4880 case ISD::BITCAST: 4881 // Basic sanity checking. 4882 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4883 "Cannot BITCAST between types of different sizes!"); 4884 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4885 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4886 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4887 if (OpOpcode == ISD::UNDEF) 4888 return getUNDEF(VT); 4889 break; 4890 case ISD::SCALAR_TO_VECTOR: 4891 assert(VT.isVector() && !Operand.getValueType().isVector() && 4892 (VT.getVectorElementType() == Operand.getValueType() || 4893 (VT.getVectorElementType().isInteger() && 4894 Operand.getValueType().isInteger() && 4895 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4896 "Illegal SCALAR_TO_VECTOR node!"); 4897 if (OpOpcode == ISD::UNDEF) 4898 return getUNDEF(VT); 4899 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4900 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4901 isa<ConstantSDNode>(Operand.getOperand(1)) && 4902 Operand.getConstantOperandVal(1) == 0 && 4903 Operand.getOperand(0).getValueType() == VT) 4904 return Operand.getOperand(0); 4905 break; 4906 case ISD::FNEG: 4907 // Negation of an unknown bag of bits is still completely undefined. 4908 if (OpOpcode == ISD::UNDEF) 4909 return getUNDEF(VT); 4910 4911 if (OpOpcode == ISD::FNEG) // --X -> X 4912 return Operand.getOperand(0); 4913 break; 4914 case ISD::FABS: 4915 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4916 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4917 break; 4918 case ISD::VSCALE: 4919 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4920 break; 4921 case ISD::CTPOP: 4922 if (Operand.getValueType().getScalarType() == MVT::i1) 4923 return Operand; 4924 break; 4925 case ISD::CTLZ: 4926 case ISD::CTTZ: 4927 if (Operand.getValueType().getScalarType() == MVT::i1) 4928 return getNOT(DL, Operand, Operand.getValueType()); 4929 break; 4930 case ISD::VECREDUCE_SMIN: 4931 case ISD::VECREDUCE_UMAX: 4932 if (Operand.getValueType().getScalarType() == MVT::i1) 4933 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4934 break; 4935 case ISD::VECREDUCE_SMAX: 4936 case ISD::VECREDUCE_UMIN: 4937 if (Operand.getValueType().getScalarType() == MVT::i1) 4938 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4939 break; 4940 } 4941 4942 SDNode *N; 4943 SDVTList VTs = getVTList(VT); 4944 SDValue Ops[] = {Operand}; 4945 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4946 FoldingSetNodeID ID; 4947 AddNodeIDNode(ID, Opcode, VTs, Ops); 4948 void *IP = nullptr; 4949 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4950 E->intersectFlagsWith(Flags); 4951 return SDValue(E, 0); 4952 } 4953 4954 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4955 N->setFlags(Flags); 4956 createOperands(N, Ops); 4957 CSEMap.InsertNode(N, IP); 4958 } else { 4959 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4960 createOperands(N, Ops); 4961 } 4962 4963 InsertNode(N); 4964 SDValue V = SDValue(N, 0); 4965 NewSDValueDbgMsg(V, "Creating new node: ", this); 4966 return V; 4967 } 4968 4969 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4970 const APInt &C2) { 4971 switch (Opcode) { 4972 case ISD::ADD: return C1 + C2; 4973 case ISD::SUB: return C1 - C2; 4974 case ISD::MUL: return C1 * C2; 4975 case ISD::AND: return C1 & C2; 4976 case ISD::OR: return C1 | C2; 4977 case ISD::XOR: return C1 ^ C2; 4978 case ISD::SHL: return C1 << C2; 4979 case ISD::SRL: return C1.lshr(C2); 4980 case ISD::SRA: return C1.ashr(C2); 4981 case ISD::ROTL: return C1.rotl(C2); 4982 case ISD::ROTR: return C1.rotr(C2); 4983 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4984 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4985 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4986 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4987 case ISD::SADDSAT: return C1.sadd_sat(C2); 4988 case ISD::UADDSAT: return C1.uadd_sat(C2); 4989 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4990 case ISD::USUBSAT: return C1.usub_sat(C2); 4991 case ISD::UDIV: 4992 if (!C2.getBoolValue()) 4993 break; 4994 return C1.udiv(C2); 4995 case ISD::UREM: 4996 if (!C2.getBoolValue()) 4997 break; 4998 return C1.urem(C2); 4999 case ISD::SDIV: 5000 if (!C2.getBoolValue()) 5001 break; 5002 return C1.sdiv(C2); 5003 case ISD::SREM: 5004 if (!C2.getBoolValue()) 5005 break; 5006 return C1.srem(C2); 5007 } 5008 return llvm::None; 5009 } 5010 5011 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5012 const GlobalAddressSDNode *GA, 5013 const SDNode *N2) { 5014 if (GA->getOpcode() != ISD::GlobalAddress) 5015 return SDValue(); 5016 if (!TLI->isOffsetFoldingLegal(GA)) 5017 return SDValue(); 5018 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5019 if (!C2) 5020 return SDValue(); 5021 int64_t Offset = C2->getSExtValue(); 5022 switch (Opcode) { 5023 case ISD::ADD: break; 5024 case ISD::SUB: Offset = -uint64_t(Offset); break; 5025 default: return SDValue(); 5026 } 5027 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5028 GA->getOffset() + uint64_t(Offset)); 5029 } 5030 5031 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5032 switch (Opcode) { 5033 case ISD::SDIV: 5034 case ISD::UDIV: 5035 case ISD::SREM: 5036 case ISD::UREM: { 5037 // If a divisor is zero/undef or any element of a divisor vector is 5038 // zero/undef, the whole op is undef. 5039 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5040 SDValue Divisor = Ops[1]; 5041 if (Divisor.isUndef() || isNullConstant(Divisor)) 5042 return true; 5043 5044 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5045 llvm::any_of(Divisor->op_values(), 5046 [](SDValue V) { return V.isUndef() || 5047 isNullConstant(V); }); 5048 // TODO: Handle signed overflow. 5049 } 5050 // TODO: Handle oversized shifts. 5051 default: 5052 return false; 5053 } 5054 } 5055 5056 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5057 EVT VT, ArrayRef<SDValue> Ops) { 5058 // If the opcode is a target-specific ISD node, there's nothing we can 5059 // do here and the operand rules may not line up with the below, so 5060 // bail early. 5061 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5062 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5063 // foldCONCAT_VECTORS in getNode before this is called. 5064 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5065 return SDValue(); 5066 5067 // For now, the array Ops should only contain two values. 5068 // This enforcement will be removed once this function is merged with 5069 // FoldConstantVectorArithmetic 5070 if (Ops.size() != 2) 5071 return SDValue(); 5072 5073 if (isUndef(Opcode, Ops)) 5074 return getUNDEF(VT); 5075 5076 SDNode *N1 = Ops[0].getNode(); 5077 SDNode *N2 = Ops[1].getNode(); 5078 5079 // Handle the case of two scalars. 5080 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5081 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5082 if (C1->isOpaque() || C2->isOpaque()) 5083 return SDValue(); 5084 5085 Optional<APInt> FoldAttempt = 5086 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5087 if (!FoldAttempt) 5088 return SDValue(); 5089 5090 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5091 assert((!Folded || !VT.isVector()) && 5092 "Can't fold vectors ops with scalar operands"); 5093 return Folded; 5094 } 5095 } 5096 5097 // fold (add Sym, c) -> Sym+c 5098 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5099 return FoldSymbolOffset(Opcode, VT, GA, N2); 5100 if (TLI->isCommutativeBinOp(Opcode)) 5101 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5102 return FoldSymbolOffset(Opcode, VT, GA, N1); 5103 5104 // For fixed width vectors, extract each constant element and fold them 5105 // individually. Either input may be an undef value. 5106 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5107 N1->getOpcode() == ISD::SPLAT_VECTOR; 5108 if (!IsBVOrSV1 && !N1->isUndef()) 5109 return SDValue(); 5110 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5111 N2->getOpcode() == ISD::SPLAT_VECTOR; 5112 if (!IsBVOrSV2 && !N2->isUndef()) 5113 return SDValue(); 5114 // If both operands are undef, that's handled the same way as scalars. 5115 if (!IsBVOrSV1 && !IsBVOrSV2) 5116 return SDValue(); 5117 5118 EVT SVT = VT.getScalarType(); 5119 EVT LegalSVT = SVT; 5120 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5121 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5122 if (LegalSVT.bitsLT(SVT)) 5123 return SDValue(); 5124 } 5125 5126 SmallVector<SDValue, 4> Outputs; 5127 unsigned NumOps = 0; 5128 if (IsBVOrSV1) 5129 NumOps = std::max(NumOps, N1->getNumOperands()); 5130 if (IsBVOrSV2) 5131 NumOps = std::max(NumOps, N2->getNumOperands()); 5132 assert(NumOps != 0 && "Expected non-zero operands"); 5133 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5134 // one iteration for that. 5135 assert((!VT.isScalableVector() || NumOps == 1) && 5136 "Scalar vector should only have one scalar"); 5137 5138 for (unsigned I = 0; I != NumOps; ++I) { 5139 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5140 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5141 SDValue V1; 5142 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5143 V1 = N1->getOperand(I); 5144 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5145 V1 = N1->getOperand(0); 5146 else 5147 V1 = getUNDEF(SVT); 5148 5149 SDValue V2; 5150 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5151 V2 = N2->getOperand(I); 5152 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5153 V2 = N2->getOperand(0); 5154 else 5155 V2 = getUNDEF(SVT); 5156 5157 if (SVT.isInteger()) { 5158 if (V1.getValueType().bitsGT(SVT)) 5159 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5160 if (V2.getValueType().bitsGT(SVT)) 5161 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5162 } 5163 5164 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5165 return SDValue(); 5166 5167 // Fold one vector element. 5168 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5169 if (LegalSVT != SVT) 5170 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5171 5172 // Scalar folding only succeeded if the result is a constant or UNDEF. 5173 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5174 ScalarResult.getOpcode() != ISD::ConstantFP) 5175 return SDValue(); 5176 Outputs.push_back(ScalarResult); 5177 } 5178 5179 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5180 N2->getOpcode() == ISD::BUILD_VECTOR) { 5181 assert(VT.getVectorNumElements() == Outputs.size() && 5182 "Vector size mismatch!"); 5183 5184 // Build a big vector out of the scalar elements we generated. 5185 return getBuildVector(VT, SDLoc(), Outputs); 5186 } 5187 5188 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5189 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5190 "One operand should be a splat vector"); 5191 5192 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5193 return getSplatVector(VT, SDLoc(), Outputs[0]); 5194 } 5195 5196 // TODO: Merge with FoldConstantArithmetic 5197 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5198 const SDLoc &DL, EVT VT, 5199 ArrayRef<SDValue> Ops, 5200 const SDNodeFlags Flags) { 5201 // If the opcode is a target-specific ISD node, there's nothing we can 5202 // do here and the operand rules may not line up with the below, so 5203 // bail early. 5204 if (Opcode >= ISD::BUILTIN_OP_END) 5205 return SDValue(); 5206 5207 if (isUndef(Opcode, Ops)) 5208 return getUNDEF(VT); 5209 5210 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5211 if (!VT.isVector()) 5212 return SDValue(); 5213 5214 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5215 // vector width, however we should be able to do constant folds involving 5216 // splat vector nodes too. 5217 if (VT.isScalableVector()) 5218 return SDValue(); 5219 5220 // From this point onwards all vectors are assumed to be fixed width. 5221 unsigned NumElts = VT.getVectorNumElements(); 5222 5223 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5224 return !Op.getValueType().isVector() || 5225 Op.getValueType().getVectorNumElements() == NumElts; 5226 }; 5227 5228 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5229 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5230 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5231 (BV && BV->isConstant()); 5232 }; 5233 5234 // All operands must be vector types with the same number of elements as 5235 // the result type and must be either UNDEF or a build vector of constant 5236 // or UNDEF scalars. 5237 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5238 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5239 return SDValue(); 5240 5241 // If we are comparing vectors, then the result needs to be a i1 boolean 5242 // that is then sign-extended back to the legal result type. 5243 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5244 5245 // Find legal integer scalar type for constant promotion and 5246 // ensure that its scalar size is at least as large as source. 5247 EVT LegalSVT = VT.getScalarType(); 5248 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5249 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5250 if (LegalSVT.bitsLT(VT.getScalarType())) 5251 return SDValue(); 5252 } 5253 5254 // Constant fold each scalar lane separately. 5255 SmallVector<SDValue, 4> ScalarResults; 5256 for (unsigned i = 0; i != NumElts; i++) { 5257 SmallVector<SDValue, 4> ScalarOps; 5258 for (SDValue Op : Ops) { 5259 EVT InSVT = Op.getValueType().getScalarType(); 5260 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5261 if (!InBV) { 5262 // We've checked that this is UNDEF or a constant of some kind. 5263 if (Op.isUndef()) 5264 ScalarOps.push_back(getUNDEF(InSVT)); 5265 else 5266 ScalarOps.push_back(Op); 5267 continue; 5268 } 5269 5270 SDValue ScalarOp = InBV->getOperand(i); 5271 EVT ScalarVT = ScalarOp.getValueType(); 5272 5273 // Build vector (integer) scalar operands may need implicit 5274 // truncation - do this before constant folding. 5275 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5276 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5277 5278 ScalarOps.push_back(ScalarOp); 5279 } 5280 5281 // Constant fold the scalar operands. 5282 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5283 5284 // Legalize the (integer) scalar constant if necessary. 5285 if (LegalSVT != SVT) 5286 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5287 5288 // Scalar folding only succeeded if the result is a constant or UNDEF. 5289 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5290 ScalarResult.getOpcode() != ISD::ConstantFP) 5291 return SDValue(); 5292 ScalarResults.push_back(ScalarResult); 5293 } 5294 5295 SDValue V = getBuildVector(VT, DL, ScalarResults); 5296 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5297 return V; 5298 } 5299 5300 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5301 EVT VT, SDValue N1, SDValue N2) { 5302 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5303 // should. That will require dealing with a potentially non-default 5304 // rounding mode, checking the "opStatus" return value from the APFloat 5305 // math calculations, and possibly other variations. 5306 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5307 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5308 if (N1CFP && N2CFP) { 5309 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5310 switch (Opcode) { 5311 case ISD::FADD: 5312 C1.add(C2, APFloat::rmNearestTiesToEven); 5313 return getConstantFP(C1, DL, VT); 5314 case ISD::FSUB: 5315 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5316 return getConstantFP(C1, DL, VT); 5317 case ISD::FMUL: 5318 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5319 return getConstantFP(C1, DL, VT); 5320 case ISD::FDIV: 5321 C1.divide(C2, APFloat::rmNearestTiesToEven); 5322 return getConstantFP(C1, DL, VT); 5323 case ISD::FREM: 5324 C1.mod(C2); 5325 return getConstantFP(C1, DL, VT); 5326 case ISD::FCOPYSIGN: 5327 C1.copySign(C2); 5328 return getConstantFP(C1, DL, VT); 5329 default: break; 5330 } 5331 } 5332 if (N1CFP && Opcode == ISD::FP_ROUND) { 5333 APFloat C1 = N1CFP->getValueAPF(); // make copy 5334 bool Unused; 5335 // This can return overflow, underflow, or inexact; we don't care. 5336 // FIXME need to be more flexible about rounding mode. 5337 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5338 &Unused); 5339 return getConstantFP(C1, DL, VT); 5340 } 5341 5342 switch (Opcode) { 5343 case ISD::FSUB: 5344 // -0.0 - undef --> undef (consistent with "fneg undef") 5345 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5346 return getUNDEF(VT); 5347 LLVM_FALLTHROUGH; 5348 5349 case ISD::FADD: 5350 case ISD::FMUL: 5351 case ISD::FDIV: 5352 case ISD::FREM: 5353 // If both operands are undef, the result is undef. If 1 operand is undef, 5354 // the result is NaN. This should match the behavior of the IR optimizer. 5355 if (N1.isUndef() && N2.isUndef()) 5356 return getUNDEF(VT); 5357 if (N1.isUndef() || N2.isUndef()) 5358 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5359 } 5360 return SDValue(); 5361 } 5362 5363 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5364 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5365 5366 // There's no need to assert on a byte-aligned pointer. All pointers are at 5367 // least byte aligned. 5368 if (A == Align(1)) 5369 return Val; 5370 5371 FoldingSetNodeID ID; 5372 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5373 ID.AddInteger(A.value()); 5374 5375 void *IP = nullptr; 5376 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5377 return SDValue(E, 0); 5378 5379 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5380 Val.getValueType(), A); 5381 createOperands(N, {Val}); 5382 5383 CSEMap.InsertNode(N, IP); 5384 InsertNode(N); 5385 5386 SDValue V(N, 0); 5387 NewSDValueDbgMsg(V, "Creating new node: ", this); 5388 return V; 5389 } 5390 5391 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5392 SDValue N1, SDValue N2) { 5393 SDNodeFlags Flags; 5394 if (Inserter) 5395 Flags = Inserter->getFlags(); 5396 return getNode(Opcode, DL, VT, N1, N2, Flags); 5397 } 5398 5399 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5400 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5401 assert(N1.getOpcode() != ISD::DELETED_NODE && 5402 N2.getOpcode() != ISD::DELETED_NODE && 5403 "Operand is DELETED_NODE!"); 5404 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5405 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5406 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5407 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5408 5409 // Canonicalize constant to RHS if commutative. 5410 if (TLI->isCommutativeBinOp(Opcode)) { 5411 if (N1C && !N2C) { 5412 std::swap(N1C, N2C); 5413 std::swap(N1, N2); 5414 } else if (N1CFP && !N2CFP) { 5415 std::swap(N1CFP, N2CFP); 5416 std::swap(N1, N2); 5417 } 5418 } 5419 5420 switch (Opcode) { 5421 default: break; 5422 case ISD::TokenFactor: 5423 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5424 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5425 // Fold trivial token factors. 5426 if (N1.getOpcode() == ISD::EntryToken) return N2; 5427 if (N2.getOpcode() == ISD::EntryToken) return N1; 5428 if (N1 == N2) return N1; 5429 break; 5430 case ISD::BUILD_VECTOR: { 5431 // Attempt to simplify BUILD_VECTOR. 5432 SDValue Ops[] = {N1, N2}; 5433 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5434 return V; 5435 break; 5436 } 5437 case ISD::CONCAT_VECTORS: { 5438 SDValue Ops[] = {N1, N2}; 5439 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5440 return V; 5441 break; 5442 } 5443 case ISD::AND: 5444 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5445 assert(N1.getValueType() == N2.getValueType() && 5446 N1.getValueType() == VT && "Binary operator types must match!"); 5447 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5448 // worth handling here. 5449 if (N2C && N2C->isNullValue()) 5450 return N2; 5451 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5452 return N1; 5453 break; 5454 case ISD::OR: 5455 case ISD::XOR: 5456 case ISD::ADD: 5457 case ISD::SUB: 5458 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5459 assert(N1.getValueType() == N2.getValueType() && 5460 N1.getValueType() == VT && "Binary operator types must match!"); 5461 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5462 // it's worth handling here. 5463 if (N2C && N2C->isNullValue()) 5464 return N1; 5465 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5466 VT.getVectorElementType() == MVT::i1) 5467 return getNode(ISD::XOR, DL, VT, N1, N2); 5468 break; 5469 case ISD::MUL: 5470 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5471 assert(N1.getValueType() == N2.getValueType() && 5472 N1.getValueType() == VT && "Binary operator types must match!"); 5473 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5474 return getNode(ISD::AND, DL, VT, N1, N2); 5475 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5476 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5477 const APInt &N2CImm = N2C->getAPIntValue(); 5478 return getVScale(DL, VT, MulImm * N2CImm); 5479 } 5480 break; 5481 case ISD::UDIV: 5482 case ISD::UREM: 5483 case ISD::MULHU: 5484 case ISD::MULHS: 5485 case ISD::SDIV: 5486 case ISD::SREM: 5487 case ISD::SADDSAT: 5488 case ISD::SSUBSAT: 5489 case ISD::UADDSAT: 5490 case ISD::USUBSAT: 5491 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5492 assert(N1.getValueType() == N2.getValueType() && 5493 N1.getValueType() == VT && "Binary operator types must match!"); 5494 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5495 // fold (add_sat x, y) -> (or x, y) for bool types. 5496 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5497 return getNode(ISD::OR, DL, VT, N1, N2); 5498 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5499 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5500 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5501 } 5502 break; 5503 case ISD::SMIN: 5504 case ISD::UMAX: 5505 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5506 assert(N1.getValueType() == N2.getValueType() && 5507 N1.getValueType() == VT && "Binary operator types must match!"); 5508 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5509 return getNode(ISD::OR, DL, VT, N1, N2); 5510 break; 5511 case ISD::SMAX: 5512 case ISD::UMIN: 5513 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5514 assert(N1.getValueType() == N2.getValueType() && 5515 N1.getValueType() == VT && "Binary operator types must match!"); 5516 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5517 return getNode(ISD::AND, DL, VT, N1, N2); 5518 break; 5519 case ISD::FADD: 5520 case ISD::FSUB: 5521 case ISD::FMUL: 5522 case ISD::FDIV: 5523 case ISD::FREM: 5524 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5525 assert(N1.getValueType() == N2.getValueType() && 5526 N1.getValueType() == VT && "Binary operator types must match!"); 5527 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5528 return V; 5529 break; 5530 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5531 assert(N1.getValueType() == VT && 5532 N1.getValueType().isFloatingPoint() && 5533 N2.getValueType().isFloatingPoint() && 5534 "Invalid FCOPYSIGN!"); 5535 break; 5536 case ISD::SHL: 5537 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5538 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5539 const APInt &ShiftImm = N2C->getAPIntValue(); 5540 return getVScale(DL, VT, MulImm << ShiftImm); 5541 } 5542 LLVM_FALLTHROUGH; 5543 case ISD::SRA: 5544 case ISD::SRL: 5545 if (SDValue V = simplifyShift(N1, N2)) 5546 return V; 5547 LLVM_FALLTHROUGH; 5548 case ISD::ROTL: 5549 case ISD::ROTR: 5550 assert(VT == N1.getValueType() && 5551 "Shift operators return type must be the same as their first arg"); 5552 assert(VT.isInteger() && N2.getValueType().isInteger() && 5553 "Shifts only work on integers"); 5554 assert((!VT.isVector() || VT == N2.getValueType()) && 5555 "Vector shift amounts must be in the same as their first arg"); 5556 // Verify that the shift amount VT is big enough to hold valid shift 5557 // amounts. This catches things like trying to shift an i1024 value by an 5558 // i8, which is easy to fall into in generic code that uses 5559 // TLI.getShiftAmount(). 5560 assert(N2.getValueType().getScalarSizeInBits() >= 5561 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5562 "Invalid use of small shift amount with oversized value!"); 5563 5564 // Always fold shifts of i1 values so the code generator doesn't need to 5565 // handle them. Since we know the size of the shift has to be less than the 5566 // size of the value, the shift/rotate count is guaranteed to be zero. 5567 if (VT == MVT::i1) 5568 return N1; 5569 if (N2C && N2C->isNullValue()) 5570 return N1; 5571 break; 5572 case ISD::FP_ROUND: 5573 assert(VT.isFloatingPoint() && 5574 N1.getValueType().isFloatingPoint() && 5575 VT.bitsLE(N1.getValueType()) && 5576 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5577 "Invalid FP_ROUND!"); 5578 if (N1.getValueType() == VT) return N1; // noop conversion. 5579 break; 5580 case ISD::AssertSext: 5581 case ISD::AssertZext: { 5582 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5583 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5584 assert(VT.isInteger() && EVT.isInteger() && 5585 "Cannot *_EXTEND_INREG FP types"); 5586 assert(!EVT.isVector() && 5587 "AssertSExt/AssertZExt type should be the vector element type " 5588 "rather than the vector type!"); 5589 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5590 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5591 break; 5592 } 5593 case ISD::SIGN_EXTEND_INREG: { 5594 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5595 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5596 assert(VT.isInteger() && EVT.isInteger() && 5597 "Cannot *_EXTEND_INREG FP types"); 5598 assert(EVT.isVector() == VT.isVector() && 5599 "SIGN_EXTEND_INREG type should be vector iff the operand " 5600 "type is vector!"); 5601 assert((!EVT.isVector() || 5602 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5603 "Vector element counts must match in SIGN_EXTEND_INREG"); 5604 assert(EVT.bitsLE(VT) && "Not extending!"); 5605 if (EVT == VT) return N1; // Not actually extending 5606 5607 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5608 unsigned FromBits = EVT.getScalarSizeInBits(); 5609 Val <<= Val.getBitWidth() - FromBits; 5610 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5611 return getConstant(Val, DL, ConstantVT); 5612 }; 5613 5614 if (N1C) { 5615 const APInt &Val = N1C->getAPIntValue(); 5616 return SignExtendInReg(Val, VT); 5617 } 5618 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5619 SmallVector<SDValue, 8> Ops; 5620 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5621 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5622 SDValue Op = N1.getOperand(i); 5623 if (Op.isUndef()) { 5624 Ops.push_back(getUNDEF(OpVT)); 5625 continue; 5626 } 5627 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5628 APInt Val = C->getAPIntValue(); 5629 Ops.push_back(SignExtendInReg(Val, OpVT)); 5630 } 5631 return getBuildVector(VT, DL, Ops); 5632 } 5633 break; 5634 } 5635 case ISD::EXTRACT_VECTOR_ELT: 5636 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5637 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5638 element type of the vector."); 5639 5640 // Extract from an undefined value or using an undefined index is undefined. 5641 if (N1.isUndef() || N2.isUndef()) 5642 return getUNDEF(VT); 5643 5644 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5645 // vectors. For scalable vectors we will provide appropriate support for 5646 // dealing with arbitrary indices. 5647 if (N2C && N1.getValueType().isFixedLengthVector() && 5648 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5649 return getUNDEF(VT); 5650 5651 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5652 // expanding copies of large vectors from registers. This only works for 5653 // fixed length vectors, since we need to know the exact number of 5654 // elements. 5655 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5656 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5657 unsigned Factor = 5658 N1.getOperand(0).getValueType().getVectorNumElements(); 5659 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5660 N1.getOperand(N2C->getZExtValue() / Factor), 5661 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5662 } 5663 5664 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5665 // lowering is expanding large vector constants. 5666 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5667 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5668 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5669 N1.getValueType().isFixedLengthVector()) && 5670 "BUILD_VECTOR used for scalable vectors"); 5671 unsigned Index = 5672 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5673 SDValue Elt = N1.getOperand(Index); 5674 5675 if (VT != Elt.getValueType()) 5676 // If the vector element type is not legal, the BUILD_VECTOR operands 5677 // are promoted and implicitly truncated, and the result implicitly 5678 // extended. Make that explicit here. 5679 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5680 5681 return Elt; 5682 } 5683 5684 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5685 // operations are lowered to scalars. 5686 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5687 // If the indices are the same, return the inserted element else 5688 // if the indices are known different, extract the element from 5689 // the original vector. 5690 SDValue N1Op2 = N1.getOperand(2); 5691 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5692 5693 if (N1Op2C && N2C) { 5694 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5695 if (VT == N1.getOperand(1).getValueType()) 5696 return N1.getOperand(1); 5697 else 5698 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5699 } 5700 5701 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5702 } 5703 } 5704 5705 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5706 // when vector types are scalarized and v1iX is legal. 5707 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5708 // Here we are completely ignoring the extract element index (N2), 5709 // which is fine for fixed width vectors, since any index other than 0 5710 // is undefined anyway. However, this cannot be ignored for scalable 5711 // vectors - in theory we could support this, but we don't want to do this 5712 // without a profitability check. 5713 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5714 N1.getValueType().isFixedLengthVector() && 5715 N1.getValueType().getVectorNumElements() == 1) { 5716 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5717 N1.getOperand(1)); 5718 } 5719 break; 5720 case ISD::EXTRACT_ELEMENT: 5721 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5722 assert(!N1.getValueType().isVector() && !VT.isVector() && 5723 (N1.getValueType().isInteger() == VT.isInteger()) && 5724 N1.getValueType() != VT && 5725 "Wrong types for EXTRACT_ELEMENT!"); 5726 5727 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5728 // 64-bit integers into 32-bit parts. Instead of building the extract of 5729 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5730 if (N1.getOpcode() == ISD::BUILD_PAIR) 5731 return N1.getOperand(N2C->getZExtValue()); 5732 5733 // EXTRACT_ELEMENT of a constant int is also very common. 5734 if (N1C) { 5735 unsigned ElementSize = VT.getSizeInBits(); 5736 unsigned Shift = ElementSize * N2C->getZExtValue(); 5737 const APInt &Val = N1C->getAPIntValue(); 5738 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5739 } 5740 break; 5741 case ISD::EXTRACT_SUBVECTOR: 5742 EVT N1VT = N1.getValueType(); 5743 assert(VT.isVector() && N1VT.isVector() && 5744 "Extract subvector VTs must be vectors!"); 5745 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5746 "Extract subvector VTs must have the same element type!"); 5747 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5748 "Cannot extract a scalable vector from a fixed length vector!"); 5749 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5750 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5751 "Extract subvector must be from larger vector to smaller vector!"); 5752 assert(N2C && "Extract subvector index must be a constant"); 5753 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5754 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5755 N1VT.getVectorMinNumElements()) && 5756 "Extract subvector overflow!"); 5757 assert(N2C->getAPIntValue().getBitWidth() == 5758 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5759 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5760 5761 // Trivial extraction. 5762 if (VT == N1VT) 5763 return N1; 5764 5765 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5766 if (N1.isUndef()) 5767 return getUNDEF(VT); 5768 5769 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5770 // the concat have the same type as the extract. 5771 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5772 VT == N1.getOperand(0).getValueType()) { 5773 unsigned Factor = VT.getVectorMinNumElements(); 5774 return N1.getOperand(N2C->getZExtValue() / Factor); 5775 } 5776 5777 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5778 // during shuffle legalization. 5779 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5780 VT == N1.getOperand(1).getValueType()) 5781 return N1.getOperand(1); 5782 break; 5783 } 5784 5785 // Perform trivial constant folding. 5786 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5787 return SV; 5788 5789 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5790 return V; 5791 5792 // Canonicalize an UNDEF to the RHS, even over a constant. 5793 if (N1.isUndef()) { 5794 if (TLI->isCommutativeBinOp(Opcode)) { 5795 std::swap(N1, N2); 5796 } else { 5797 switch (Opcode) { 5798 case ISD::SIGN_EXTEND_INREG: 5799 case ISD::SUB: 5800 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5801 case ISD::UDIV: 5802 case ISD::SDIV: 5803 case ISD::UREM: 5804 case ISD::SREM: 5805 case ISD::SSUBSAT: 5806 case ISD::USUBSAT: 5807 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5808 } 5809 } 5810 } 5811 5812 // Fold a bunch of operators when the RHS is undef. 5813 if (N2.isUndef()) { 5814 switch (Opcode) { 5815 case ISD::XOR: 5816 if (N1.isUndef()) 5817 // Handle undef ^ undef -> 0 special case. This is a common 5818 // idiom (misuse). 5819 return getConstant(0, DL, VT); 5820 LLVM_FALLTHROUGH; 5821 case ISD::ADD: 5822 case ISD::SUB: 5823 case ISD::UDIV: 5824 case ISD::SDIV: 5825 case ISD::UREM: 5826 case ISD::SREM: 5827 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5828 case ISD::MUL: 5829 case ISD::AND: 5830 case ISD::SSUBSAT: 5831 case ISD::USUBSAT: 5832 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5833 case ISD::OR: 5834 case ISD::SADDSAT: 5835 case ISD::UADDSAT: 5836 return getAllOnesConstant(DL, VT); 5837 } 5838 } 5839 5840 // Memoize this node if possible. 5841 SDNode *N; 5842 SDVTList VTs = getVTList(VT); 5843 SDValue Ops[] = {N1, N2}; 5844 if (VT != MVT::Glue) { 5845 FoldingSetNodeID ID; 5846 AddNodeIDNode(ID, Opcode, VTs, Ops); 5847 void *IP = nullptr; 5848 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5849 E->intersectFlagsWith(Flags); 5850 return SDValue(E, 0); 5851 } 5852 5853 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5854 N->setFlags(Flags); 5855 createOperands(N, Ops); 5856 CSEMap.InsertNode(N, IP); 5857 } else { 5858 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5859 createOperands(N, Ops); 5860 } 5861 5862 InsertNode(N); 5863 SDValue V = SDValue(N, 0); 5864 NewSDValueDbgMsg(V, "Creating new node: ", this); 5865 return V; 5866 } 5867 5868 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5869 SDValue N1, SDValue N2, SDValue N3) { 5870 SDNodeFlags Flags; 5871 if (Inserter) 5872 Flags = Inserter->getFlags(); 5873 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5874 } 5875 5876 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5877 SDValue N1, SDValue N2, SDValue N3, 5878 const SDNodeFlags Flags) { 5879 assert(N1.getOpcode() != ISD::DELETED_NODE && 5880 N2.getOpcode() != ISD::DELETED_NODE && 5881 N3.getOpcode() != ISD::DELETED_NODE && 5882 "Operand is DELETED_NODE!"); 5883 // Perform various simplifications. 5884 switch (Opcode) { 5885 case ISD::FMA: { 5886 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5887 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5888 N3.getValueType() == VT && "FMA types must match!"); 5889 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5890 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5891 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5892 if (N1CFP && N2CFP && N3CFP) { 5893 APFloat V1 = N1CFP->getValueAPF(); 5894 const APFloat &V2 = N2CFP->getValueAPF(); 5895 const APFloat &V3 = N3CFP->getValueAPF(); 5896 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5897 return getConstantFP(V1, DL, VT); 5898 } 5899 break; 5900 } 5901 case ISD::BUILD_VECTOR: { 5902 // Attempt to simplify BUILD_VECTOR. 5903 SDValue Ops[] = {N1, N2, N3}; 5904 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5905 return V; 5906 break; 5907 } 5908 case ISD::CONCAT_VECTORS: { 5909 SDValue Ops[] = {N1, N2, N3}; 5910 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5911 return V; 5912 break; 5913 } 5914 case ISD::SETCC: { 5915 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5916 assert(N1.getValueType() == N2.getValueType() && 5917 "SETCC operands must have the same type!"); 5918 assert(VT.isVector() == N1.getValueType().isVector() && 5919 "SETCC type should be vector iff the operand type is vector!"); 5920 assert((!VT.isVector() || VT.getVectorElementCount() == 5921 N1.getValueType().getVectorElementCount()) && 5922 "SETCC vector element counts must match!"); 5923 // Use FoldSetCC to simplify SETCC's. 5924 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5925 return V; 5926 // Vector constant folding. 5927 SDValue Ops[] = {N1, N2, N3}; 5928 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5929 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5930 return V; 5931 } 5932 break; 5933 } 5934 case ISD::SELECT: 5935 case ISD::VSELECT: 5936 if (SDValue V = simplifySelect(N1, N2, N3)) 5937 return V; 5938 break; 5939 case ISD::VECTOR_SHUFFLE: 5940 llvm_unreachable("should use getVectorShuffle constructor!"); 5941 case ISD::INSERT_VECTOR_ELT: { 5942 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5943 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5944 // for scalable vectors where we will generate appropriate code to 5945 // deal with out-of-bounds cases correctly. 5946 if (N3C && N1.getValueType().isFixedLengthVector() && 5947 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5948 return getUNDEF(VT); 5949 5950 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5951 if (N3.isUndef()) 5952 return getUNDEF(VT); 5953 5954 // If the inserted element is an UNDEF, just use the input vector. 5955 if (N2.isUndef()) 5956 return N1; 5957 5958 break; 5959 } 5960 case ISD::INSERT_SUBVECTOR: { 5961 // Inserting undef into undef is still undef. 5962 if (N1.isUndef() && N2.isUndef()) 5963 return getUNDEF(VT); 5964 5965 EVT N2VT = N2.getValueType(); 5966 assert(VT == N1.getValueType() && 5967 "Dest and insert subvector source types must match!"); 5968 assert(VT.isVector() && N2VT.isVector() && 5969 "Insert subvector VTs must be vectors!"); 5970 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5971 "Cannot insert a scalable vector into a fixed length vector!"); 5972 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5973 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5974 "Insert subvector must be from smaller vector to larger vector!"); 5975 assert(isa<ConstantSDNode>(N3) && 5976 "Insert subvector index must be constant"); 5977 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5978 (N2VT.getVectorMinNumElements() + 5979 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5980 VT.getVectorMinNumElements()) && 5981 "Insert subvector overflow!"); 5982 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 5983 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5984 "Constant index for INSERT_SUBVECTOR has an invalid size"); 5985 5986 // Trivial insertion. 5987 if (VT == N2VT) 5988 return N2; 5989 5990 // If this is an insert of an extracted vector into an undef vector, we 5991 // can just use the input to the extract. 5992 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5993 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5994 return N2.getOperand(0); 5995 break; 5996 } 5997 case ISD::BITCAST: 5998 // Fold bit_convert nodes from a type to themselves. 5999 if (N1.getValueType() == VT) 6000 return N1; 6001 break; 6002 } 6003 6004 // Memoize node if it doesn't produce a flag. 6005 SDNode *N; 6006 SDVTList VTs = getVTList(VT); 6007 SDValue Ops[] = {N1, N2, N3}; 6008 if (VT != MVT::Glue) { 6009 FoldingSetNodeID ID; 6010 AddNodeIDNode(ID, Opcode, VTs, Ops); 6011 void *IP = nullptr; 6012 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6013 E->intersectFlagsWith(Flags); 6014 return SDValue(E, 0); 6015 } 6016 6017 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6018 N->setFlags(Flags); 6019 createOperands(N, Ops); 6020 CSEMap.InsertNode(N, IP); 6021 } else { 6022 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6023 createOperands(N, Ops); 6024 } 6025 6026 InsertNode(N); 6027 SDValue V = SDValue(N, 0); 6028 NewSDValueDbgMsg(V, "Creating new node: ", this); 6029 return V; 6030 } 6031 6032 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6033 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6034 SDValue Ops[] = { N1, N2, N3, N4 }; 6035 return getNode(Opcode, DL, VT, Ops); 6036 } 6037 6038 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6039 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6040 SDValue N5) { 6041 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6042 return getNode(Opcode, DL, VT, Ops); 6043 } 6044 6045 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6046 /// the incoming stack arguments to be loaded from the stack. 6047 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6048 SmallVector<SDValue, 8> ArgChains; 6049 6050 // Include the original chain at the beginning of the list. When this is 6051 // used by target LowerCall hooks, this helps legalize find the 6052 // CALLSEQ_BEGIN node. 6053 ArgChains.push_back(Chain); 6054 6055 // Add a chain value for each stack argument. 6056 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6057 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6058 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6059 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6060 if (FI->getIndex() < 0) 6061 ArgChains.push_back(SDValue(L, 1)); 6062 6063 // Build a tokenfactor for all the chains. 6064 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6065 } 6066 6067 /// getMemsetValue - Vectorized representation of the memset value 6068 /// operand. 6069 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6070 const SDLoc &dl) { 6071 assert(!Value.isUndef()); 6072 6073 unsigned NumBits = VT.getScalarSizeInBits(); 6074 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6075 assert(C->getAPIntValue().getBitWidth() == 8); 6076 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6077 if (VT.isInteger()) { 6078 bool IsOpaque = VT.getSizeInBits() > 64 || 6079 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6080 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6081 } 6082 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6083 VT); 6084 } 6085 6086 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6087 EVT IntVT = VT.getScalarType(); 6088 if (!IntVT.isInteger()) 6089 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6090 6091 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6092 if (NumBits > 8) { 6093 // Use a multiplication with 0x010101... to extend the input to the 6094 // required length. 6095 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6096 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6097 DAG.getConstant(Magic, dl, IntVT)); 6098 } 6099 6100 if (VT != Value.getValueType() && !VT.isInteger()) 6101 Value = DAG.getBitcast(VT.getScalarType(), Value); 6102 if (VT != Value.getValueType()) 6103 Value = DAG.getSplatBuildVector(VT, dl, Value); 6104 6105 return Value; 6106 } 6107 6108 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6109 /// used when a memcpy is turned into a memset when the source is a constant 6110 /// string ptr. 6111 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6112 const TargetLowering &TLI, 6113 const ConstantDataArraySlice &Slice) { 6114 // Handle vector with all elements zero. 6115 if (Slice.Array == nullptr) { 6116 if (VT.isInteger()) 6117 return DAG.getConstant(0, dl, VT); 6118 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6119 return DAG.getConstantFP(0.0, dl, VT); 6120 else if (VT.isVector()) { 6121 unsigned NumElts = VT.getVectorNumElements(); 6122 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6123 return DAG.getNode(ISD::BITCAST, dl, VT, 6124 DAG.getConstant(0, dl, 6125 EVT::getVectorVT(*DAG.getContext(), 6126 EltVT, NumElts))); 6127 } else 6128 llvm_unreachable("Expected type!"); 6129 } 6130 6131 assert(!VT.isVector() && "Can't handle vector type here!"); 6132 unsigned NumVTBits = VT.getSizeInBits(); 6133 unsigned NumVTBytes = NumVTBits / 8; 6134 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6135 6136 APInt Val(NumVTBits, 0); 6137 if (DAG.getDataLayout().isLittleEndian()) { 6138 for (unsigned i = 0; i != NumBytes; ++i) 6139 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6140 } else { 6141 for (unsigned i = 0; i != NumBytes; ++i) 6142 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6143 } 6144 6145 // If the "cost" of materializing the integer immediate is less than the cost 6146 // of a load, then it is cost effective to turn the load into the immediate. 6147 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6148 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6149 return DAG.getConstant(Val, dl, VT); 6150 return SDValue(nullptr, 0); 6151 } 6152 6153 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6154 const SDLoc &DL, 6155 const SDNodeFlags Flags) { 6156 EVT VT = Base.getValueType(); 6157 SDValue Index; 6158 6159 if (Offset.isScalable()) 6160 Index = getVScale(DL, Base.getValueType(), 6161 APInt(Base.getValueSizeInBits().getFixedSize(), 6162 Offset.getKnownMinSize())); 6163 else 6164 Index = getConstant(Offset.getFixedSize(), DL, VT); 6165 6166 return getMemBasePlusOffset(Base, Index, DL, Flags); 6167 } 6168 6169 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6170 const SDLoc &DL, 6171 const SDNodeFlags Flags) { 6172 assert(Offset.getValueType().isInteger()); 6173 EVT BasePtrVT = Ptr.getValueType(); 6174 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6175 } 6176 6177 /// Returns true if memcpy source is constant data. 6178 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6179 uint64_t SrcDelta = 0; 6180 GlobalAddressSDNode *G = nullptr; 6181 if (Src.getOpcode() == ISD::GlobalAddress) 6182 G = cast<GlobalAddressSDNode>(Src); 6183 else if (Src.getOpcode() == ISD::ADD && 6184 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6185 Src.getOperand(1).getOpcode() == ISD::Constant) { 6186 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6187 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6188 } 6189 if (!G) 6190 return false; 6191 6192 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6193 SrcDelta + G->getOffset()); 6194 } 6195 6196 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6197 SelectionDAG &DAG) { 6198 // On Darwin, -Os means optimize for size without hurting performance, so 6199 // only really optimize for size when -Oz (MinSize) is used. 6200 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6201 return MF.getFunction().hasMinSize(); 6202 return DAG.shouldOptForSize(); 6203 } 6204 6205 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6206 SmallVector<SDValue, 32> &OutChains, unsigned From, 6207 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6208 SmallVector<SDValue, 16> &OutStoreChains) { 6209 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6210 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6211 SmallVector<SDValue, 16> GluedLoadChains; 6212 for (unsigned i = From; i < To; ++i) { 6213 OutChains.push_back(OutLoadChains[i]); 6214 GluedLoadChains.push_back(OutLoadChains[i]); 6215 } 6216 6217 // Chain for all loads. 6218 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6219 GluedLoadChains); 6220 6221 for (unsigned i = From; i < To; ++i) { 6222 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6223 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6224 ST->getBasePtr(), ST->getMemoryVT(), 6225 ST->getMemOperand()); 6226 OutChains.push_back(NewStore); 6227 } 6228 } 6229 6230 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6231 SDValue Chain, SDValue Dst, SDValue Src, 6232 uint64_t Size, Align Alignment, 6233 bool isVol, bool AlwaysInline, 6234 MachinePointerInfo DstPtrInfo, 6235 MachinePointerInfo SrcPtrInfo) { 6236 // Turn a memcpy of undef to nop. 6237 // FIXME: We need to honor volatile even is Src is undef. 6238 if (Src.isUndef()) 6239 return Chain; 6240 6241 // Expand memcpy to a series of load and store ops if the size operand falls 6242 // below a certain threshold. 6243 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6244 // rather than maybe a humongous number of loads and stores. 6245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6246 const DataLayout &DL = DAG.getDataLayout(); 6247 LLVMContext &C = *DAG.getContext(); 6248 std::vector<EVT> MemOps; 6249 bool DstAlignCanChange = false; 6250 MachineFunction &MF = DAG.getMachineFunction(); 6251 MachineFrameInfo &MFI = MF.getFrameInfo(); 6252 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6253 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6254 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6255 DstAlignCanChange = true; 6256 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6257 if (!SrcAlign || Alignment > *SrcAlign) 6258 SrcAlign = Alignment; 6259 assert(SrcAlign && "SrcAlign must be set"); 6260 ConstantDataArraySlice Slice; 6261 // If marked as volatile, perform a copy even when marked as constant. 6262 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6263 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6264 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6265 const MemOp Op = isZeroConstant 6266 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6267 /*IsZeroMemset*/ true, isVol) 6268 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6269 *SrcAlign, isVol, CopyFromConstant); 6270 if (!TLI.findOptimalMemOpLowering( 6271 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6272 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6273 return SDValue(); 6274 6275 if (DstAlignCanChange) { 6276 Type *Ty = MemOps[0].getTypeForEVT(C); 6277 Align NewAlign = DL.getABITypeAlign(Ty); 6278 6279 // Don't promote to an alignment that would require dynamic stack 6280 // realignment. 6281 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6282 if (!TRI->hasStackRealignment(MF)) 6283 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6284 NewAlign = NewAlign / 2; 6285 6286 if (NewAlign > Alignment) { 6287 // Give the stack frame object a larger alignment if needed. 6288 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6289 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6290 Alignment = NewAlign; 6291 } 6292 } 6293 6294 MachineMemOperand::Flags MMOFlags = 6295 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6296 SmallVector<SDValue, 16> OutLoadChains; 6297 SmallVector<SDValue, 16> OutStoreChains; 6298 SmallVector<SDValue, 32> OutChains; 6299 unsigned NumMemOps = MemOps.size(); 6300 uint64_t SrcOff = 0, DstOff = 0; 6301 for (unsigned i = 0; i != NumMemOps; ++i) { 6302 EVT VT = MemOps[i]; 6303 unsigned VTSize = VT.getSizeInBits() / 8; 6304 SDValue Value, Store; 6305 6306 if (VTSize > Size) { 6307 // Issuing an unaligned load / store pair that overlaps with the previous 6308 // pair. Adjust the offset accordingly. 6309 assert(i == NumMemOps-1 && i != 0); 6310 SrcOff -= VTSize - Size; 6311 DstOff -= VTSize - Size; 6312 } 6313 6314 if (CopyFromConstant && 6315 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6316 // It's unlikely a store of a vector immediate can be done in a single 6317 // instruction. It would require a load from a constantpool first. 6318 // We only handle zero vectors here. 6319 // FIXME: Handle other cases where store of vector immediate is done in 6320 // a single instruction. 6321 ConstantDataArraySlice SubSlice; 6322 if (SrcOff < Slice.Length) { 6323 SubSlice = Slice; 6324 SubSlice.move(SrcOff); 6325 } else { 6326 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6327 SubSlice.Array = nullptr; 6328 SubSlice.Offset = 0; 6329 SubSlice.Length = VTSize; 6330 } 6331 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6332 if (Value.getNode()) { 6333 Store = DAG.getStore( 6334 Chain, dl, Value, 6335 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6336 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6337 OutChains.push_back(Store); 6338 } 6339 } 6340 6341 if (!Store.getNode()) { 6342 // The type might not be legal for the target. This should only happen 6343 // if the type is smaller than a legal type, as on PPC, so the right 6344 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6345 // to Load/Store if NVT==VT. 6346 // FIXME does the case above also need this? 6347 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6348 assert(NVT.bitsGE(VT)); 6349 6350 bool isDereferenceable = 6351 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6352 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6353 if (isDereferenceable) 6354 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6355 6356 Value = DAG.getExtLoad( 6357 ISD::EXTLOAD, dl, NVT, Chain, 6358 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6359 SrcPtrInfo.getWithOffset(SrcOff), VT, 6360 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6361 OutLoadChains.push_back(Value.getValue(1)); 6362 6363 Store = DAG.getTruncStore( 6364 Chain, dl, Value, 6365 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6366 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6367 OutStoreChains.push_back(Store); 6368 } 6369 SrcOff += VTSize; 6370 DstOff += VTSize; 6371 Size -= VTSize; 6372 } 6373 6374 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6375 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6376 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6377 6378 if (NumLdStInMemcpy) { 6379 // It may be that memcpy might be converted to memset if it's memcpy 6380 // of constants. In such a case, we won't have loads and stores, but 6381 // just stores. In the absence of loads, there is nothing to gang up. 6382 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6383 // If target does not care, just leave as it. 6384 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6385 OutChains.push_back(OutLoadChains[i]); 6386 OutChains.push_back(OutStoreChains[i]); 6387 } 6388 } else { 6389 // Ld/St less than/equal limit set by target. 6390 if (NumLdStInMemcpy <= GluedLdStLimit) { 6391 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6392 NumLdStInMemcpy, OutLoadChains, 6393 OutStoreChains); 6394 } else { 6395 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6396 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6397 unsigned GlueIter = 0; 6398 6399 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6400 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6401 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6402 6403 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6404 OutLoadChains, OutStoreChains); 6405 GlueIter += GluedLdStLimit; 6406 } 6407 6408 // Residual ld/st. 6409 if (RemainingLdStInMemcpy) { 6410 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6411 RemainingLdStInMemcpy, OutLoadChains, 6412 OutStoreChains); 6413 } 6414 } 6415 } 6416 } 6417 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6418 } 6419 6420 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6421 SDValue Chain, SDValue Dst, SDValue Src, 6422 uint64_t Size, Align Alignment, 6423 bool isVol, bool AlwaysInline, 6424 MachinePointerInfo DstPtrInfo, 6425 MachinePointerInfo SrcPtrInfo) { 6426 // Turn a memmove of undef to nop. 6427 // FIXME: We need to honor volatile even is Src is undef. 6428 if (Src.isUndef()) 6429 return Chain; 6430 6431 // Expand memmove to a series of load and store ops if the size operand falls 6432 // below a certain threshold. 6433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6434 const DataLayout &DL = DAG.getDataLayout(); 6435 LLVMContext &C = *DAG.getContext(); 6436 std::vector<EVT> MemOps; 6437 bool DstAlignCanChange = false; 6438 MachineFunction &MF = DAG.getMachineFunction(); 6439 MachineFrameInfo &MFI = MF.getFrameInfo(); 6440 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6441 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6442 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6443 DstAlignCanChange = true; 6444 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6445 if (!SrcAlign || Alignment > *SrcAlign) 6446 SrcAlign = Alignment; 6447 assert(SrcAlign && "SrcAlign must be set"); 6448 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6449 if (!TLI.findOptimalMemOpLowering( 6450 MemOps, Limit, 6451 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6452 /*IsVolatile*/ true), 6453 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6454 MF.getFunction().getAttributes())) 6455 return SDValue(); 6456 6457 if (DstAlignCanChange) { 6458 Type *Ty = MemOps[0].getTypeForEVT(C); 6459 Align NewAlign = DL.getABITypeAlign(Ty); 6460 if (NewAlign > Alignment) { 6461 // Give the stack frame object a larger alignment if needed. 6462 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6463 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6464 Alignment = NewAlign; 6465 } 6466 } 6467 6468 MachineMemOperand::Flags MMOFlags = 6469 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6470 uint64_t SrcOff = 0, DstOff = 0; 6471 SmallVector<SDValue, 8> LoadValues; 6472 SmallVector<SDValue, 8> LoadChains; 6473 SmallVector<SDValue, 8> OutChains; 6474 unsigned NumMemOps = MemOps.size(); 6475 for (unsigned i = 0; i < NumMemOps; i++) { 6476 EVT VT = MemOps[i]; 6477 unsigned VTSize = VT.getSizeInBits() / 8; 6478 SDValue Value; 6479 6480 bool isDereferenceable = 6481 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6482 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6483 if (isDereferenceable) 6484 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6485 6486 Value = 6487 DAG.getLoad(VT, dl, Chain, 6488 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6489 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6490 LoadValues.push_back(Value); 6491 LoadChains.push_back(Value.getValue(1)); 6492 SrcOff += VTSize; 6493 } 6494 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6495 OutChains.clear(); 6496 for (unsigned i = 0; i < NumMemOps; i++) { 6497 EVT VT = MemOps[i]; 6498 unsigned VTSize = VT.getSizeInBits() / 8; 6499 SDValue Store; 6500 6501 Store = 6502 DAG.getStore(Chain, dl, LoadValues[i], 6503 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6504 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6505 OutChains.push_back(Store); 6506 DstOff += VTSize; 6507 } 6508 6509 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6510 } 6511 6512 /// Lower the call to 'memset' intrinsic function into a series of store 6513 /// operations. 6514 /// 6515 /// \param DAG Selection DAG where lowered code is placed. 6516 /// \param dl Link to corresponding IR location. 6517 /// \param Chain Control flow dependency. 6518 /// \param Dst Pointer to destination memory location. 6519 /// \param Src Value of byte to write into the memory. 6520 /// \param Size Number of bytes to write. 6521 /// \param Alignment Alignment of the destination in bytes. 6522 /// \param isVol True if destination is volatile. 6523 /// \param DstPtrInfo IR information on the memory pointer. 6524 /// \returns New head in the control flow, if lowering was successful, empty 6525 /// SDValue otherwise. 6526 /// 6527 /// The function tries to replace 'llvm.memset' intrinsic with several store 6528 /// operations and value calculation code. This is usually profitable for small 6529 /// memory size. 6530 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6531 SDValue Chain, SDValue Dst, SDValue Src, 6532 uint64_t Size, Align Alignment, bool isVol, 6533 MachinePointerInfo DstPtrInfo) { 6534 // Turn a memset of undef to nop. 6535 // FIXME: We need to honor volatile even is Src is undef. 6536 if (Src.isUndef()) 6537 return Chain; 6538 6539 // Expand memset to a series of load/store ops if the size operand 6540 // falls below a certain threshold. 6541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6542 std::vector<EVT> MemOps; 6543 bool DstAlignCanChange = false; 6544 MachineFunction &MF = DAG.getMachineFunction(); 6545 MachineFrameInfo &MFI = MF.getFrameInfo(); 6546 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6547 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6548 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6549 DstAlignCanChange = true; 6550 bool IsZeroVal = 6551 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6552 if (!TLI.findOptimalMemOpLowering( 6553 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6554 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6555 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6556 return SDValue(); 6557 6558 if (DstAlignCanChange) { 6559 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6560 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6561 if (NewAlign > Alignment) { 6562 // Give the stack frame object a larger alignment if needed. 6563 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6564 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6565 Alignment = NewAlign; 6566 } 6567 } 6568 6569 SmallVector<SDValue, 8> OutChains; 6570 uint64_t DstOff = 0; 6571 unsigned NumMemOps = MemOps.size(); 6572 6573 // Find the largest store and generate the bit pattern for it. 6574 EVT LargestVT = MemOps[0]; 6575 for (unsigned i = 1; i < NumMemOps; i++) 6576 if (MemOps[i].bitsGT(LargestVT)) 6577 LargestVT = MemOps[i]; 6578 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6579 6580 for (unsigned i = 0; i < NumMemOps; i++) { 6581 EVT VT = MemOps[i]; 6582 unsigned VTSize = VT.getSizeInBits() / 8; 6583 if (VTSize > Size) { 6584 // Issuing an unaligned load / store pair that overlaps with the previous 6585 // pair. Adjust the offset accordingly. 6586 assert(i == NumMemOps-1 && i != 0); 6587 DstOff -= VTSize - Size; 6588 } 6589 6590 // If this store is smaller than the largest store see whether we can get 6591 // the smaller value for free with a truncate. 6592 SDValue Value = MemSetValue; 6593 if (VT.bitsLT(LargestVT)) { 6594 if (!LargestVT.isVector() && !VT.isVector() && 6595 TLI.isTruncateFree(LargestVT, VT)) 6596 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6597 else 6598 Value = getMemsetValue(Src, VT, DAG, dl); 6599 } 6600 assert(Value.getValueType() == VT && "Value with wrong type."); 6601 SDValue Store = DAG.getStore( 6602 Chain, dl, Value, 6603 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6604 DstPtrInfo.getWithOffset(DstOff), Alignment, 6605 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6606 OutChains.push_back(Store); 6607 DstOff += VT.getSizeInBits() / 8; 6608 Size -= VTSize; 6609 } 6610 6611 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6612 } 6613 6614 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6615 unsigned AS) { 6616 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6617 // pointer operands can be losslessly bitcasted to pointers of address space 0 6618 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6619 report_fatal_error("cannot lower memory intrinsic in address space " + 6620 Twine(AS)); 6621 } 6622 } 6623 6624 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6625 SDValue Src, SDValue Size, Align Alignment, 6626 bool isVol, bool AlwaysInline, bool isTailCall, 6627 MachinePointerInfo DstPtrInfo, 6628 MachinePointerInfo SrcPtrInfo) { 6629 // Check to see if we should lower the memcpy to loads and stores first. 6630 // For cases within the target-specified limits, this is the best choice. 6631 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6632 if (ConstantSize) { 6633 // Memcpy with size zero? Just return the original chain. 6634 if (ConstantSize->isNullValue()) 6635 return Chain; 6636 6637 SDValue Result = getMemcpyLoadsAndStores( 6638 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6639 isVol, false, DstPtrInfo, SrcPtrInfo); 6640 if (Result.getNode()) 6641 return Result; 6642 } 6643 6644 // Then check to see if we should lower the memcpy with target-specific 6645 // code. If the target chooses to do this, this is the next best. 6646 if (TSI) { 6647 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6648 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6649 DstPtrInfo, SrcPtrInfo); 6650 if (Result.getNode()) 6651 return Result; 6652 } 6653 6654 // If we really need inline code and the target declined to provide it, 6655 // use a (potentially long) sequence of loads and stores. 6656 if (AlwaysInline) { 6657 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6658 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6659 ConstantSize->getZExtValue(), Alignment, 6660 isVol, true, DstPtrInfo, SrcPtrInfo); 6661 } 6662 6663 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6664 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6665 6666 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6667 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6668 // respect volatile, so they may do things like read or write memory 6669 // beyond the given memory regions. But fixing this isn't easy, and most 6670 // people don't care. 6671 6672 // Emit a library call. 6673 TargetLowering::ArgListTy Args; 6674 TargetLowering::ArgListEntry Entry; 6675 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6676 Entry.Node = Dst; Args.push_back(Entry); 6677 Entry.Node = Src; Args.push_back(Entry); 6678 6679 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6680 Entry.Node = Size; Args.push_back(Entry); 6681 // FIXME: pass in SDLoc 6682 TargetLowering::CallLoweringInfo CLI(*this); 6683 CLI.setDebugLoc(dl) 6684 .setChain(Chain) 6685 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6686 Dst.getValueType().getTypeForEVT(*getContext()), 6687 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6688 TLI->getPointerTy(getDataLayout())), 6689 std::move(Args)) 6690 .setDiscardResult() 6691 .setTailCall(isTailCall); 6692 6693 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6694 return CallResult.second; 6695 } 6696 6697 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6698 SDValue Dst, unsigned DstAlign, 6699 SDValue Src, unsigned SrcAlign, 6700 SDValue Size, Type *SizeTy, 6701 unsigned ElemSz, bool isTailCall, 6702 MachinePointerInfo DstPtrInfo, 6703 MachinePointerInfo SrcPtrInfo) { 6704 // Emit a library call. 6705 TargetLowering::ArgListTy Args; 6706 TargetLowering::ArgListEntry Entry; 6707 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6708 Entry.Node = Dst; 6709 Args.push_back(Entry); 6710 6711 Entry.Node = Src; 6712 Args.push_back(Entry); 6713 6714 Entry.Ty = SizeTy; 6715 Entry.Node = Size; 6716 Args.push_back(Entry); 6717 6718 RTLIB::Libcall LibraryCall = 6719 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6720 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6721 report_fatal_error("Unsupported element size"); 6722 6723 TargetLowering::CallLoweringInfo CLI(*this); 6724 CLI.setDebugLoc(dl) 6725 .setChain(Chain) 6726 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6727 Type::getVoidTy(*getContext()), 6728 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6729 TLI->getPointerTy(getDataLayout())), 6730 std::move(Args)) 6731 .setDiscardResult() 6732 .setTailCall(isTailCall); 6733 6734 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6735 return CallResult.second; 6736 } 6737 6738 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6739 SDValue Src, SDValue Size, Align Alignment, 6740 bool isVol, bool isTailCall, 6741 MachinePointerInfo DstPtrInfo, 6742 MachinePointerInfo SrcPtrInfo) { 6743 // Check to see if we should lower the memmove to loads and stores first. 6744 // For cases within the target-specified limits, this is the best choice. 6745 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6746 if (ConstantSize) { 6747 // Memmove with size zero? Just return the original chain. 6748 if (ConstantSize->isNullValue()) 6749 return Chain; 6750 6751 SDValue Result = getMemmoveLoadsAndStores( 6752 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6753 isVol, false, DstPtrInfo, SrcPtrInfo); 6754 if (Result.getNode()) 6755 return Result; 6756 } 6757 6758 // Then check to see if we should lower the memmove with target-specific 6759 // code. If the target chooses to do this, this is the next best. 6760 if (TSI) { 6761 SDValue Result = 6762 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6763 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6764 if (Result.getNode()) 6765 return Result; 6766 } 6767 6768 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6769 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6770 6771 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6772 // not be safe. See memcpy above for more details. 6773 6774 // Emit a library call. 6775 TargetLowering::ArgListTy Args; 6776 TargetLowering::ArgListEntry Entry; 6777 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6778 Entry.Node = Dst; Args.push_back(Entry); 6779 Entry.Node = Src; Args.push_back(Entry); 6780 6781 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6782 Entry.Node = Size; Args.push_back(Entry); 6783 // FIXME: pass in SDLoc 6784 TargetLowering::CallLoweringInfo CLI(*this); 6785 CLI.setDebugLoc(dl) 6786 .setChain(Chain) 6787 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6788 Dst.getValueType().getTypeForEVT(*getContext()), 6789 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6790 TLI->getPointerTy(getDataLayout())), 6791 std::move(Args)) 6792 .setDiscardResult() 6793 .setTailCall(isTailCall); 6794 6795 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6796 return CallResult.second; 6797 } 6798 6799 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6800 SDValue Dst, unsigned DstAlign, 6801 SDValue Src, unsigned SrcAlign, 6802 SDValue Size, Type *SizeTy, 6803 unsigned ElemSz, bool isTailCall, 6804 MachinePointerInfo DstPtrInfo, 6805 MachinePointerInfo SrcPtrInfo) { 6806 // Emit a library call. 6807 TargetLowering::ArgListTy Args; 6808 TargetLowering::ArgListEntry Entry; 6809 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6810 Entry.Node = Dst; 6811 Args.push_back(Entry); 6812 6813 Entry.Node = Src; 6814 Args.push_back(Entry); 6815 6816 Entry.Ty = SizeTy; 6817 Entry.Node = Size; 6818 Args.push_back(Entry); 6819 6820 RTLIB::Libcall LibraryCall = 6821 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6822 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6823 report_fatal_error("Unsupported element size"); 6824 6825 TargetLowering::CallLoweringInfo CLI(*this); 6826 CLI.setDebugLoc(dl) 6827 .setChain(Chain) 6828 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6829 Type::getVoidTy(*getContext()), 6830 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6831 TLI->getPointerTy(getDataLayout())), 6832 std::move(Args)) 6833 .setDiscardResult() 6834 .setTailCall(isTailCall); 6835 6836 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6837 return CallResult.second; 6838 } 6839 6840 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6841 SDValue Src, SDValue Size, Align Alignment, 6842 bool isVol, bool isTailCall, 6843 MachinePointerInfo DstPtrInfo) { 6844 // Check to see if we should lower the memset to stores first. 6845 // For cases within the target-specified limits, this is the best choice. 6846 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6847 if (ConstantSize) { 6848 // Memset with size zero? Just return the original chain. 6849 if (ConstantSize->isNullValue()) 6850 return Chain; 6851 6852 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6853 ConstantSize->getZExtValue(), Alignment, 6854 isVol, DstPtrInfo); 6855 6856 if (Result.getNode()) 6857 return Result; 6858 } 6859 6860 // Then check to see if we should lower the memset with target-specific 6861 // code. If the target chooses to do this, this is the next best. 6862 if (TSI) { 6863 SDValue Result = TSI->EmitTargetCodeForMemset( 6864 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6865 if (Result.getNode()) 6866 return Result; 6867 } 6868 6869 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6870 6871 // Emit a library call. 6872 TargetLowering::ArgListTy Args; 6873 TargetLowering::ArgListEntry Entry; 6874 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6875 Args.push_back(Entry); 6876 Entry.Node = Src; 6877 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6878 Args.push_back(Entry); 6879 Entry.Node = Size; 6880 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6881 Args.push_back(Entry); 6882 6883 // FIXME: pass in SDLoc 6884 TargetLowering::CallLoweringInfo CLI(*this); 6885 CLI.setDebugLoc(dl) 6886 .setChain(Chain) 6887 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6888 Dst.getValueType().getTypeForEVT(*getContext()), 6889 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6890 TLI->getPointerTy(getDataLayout())), 6891 std::move(Args)) 6892 .setDiscardResult() 6893 .setTailCall(isTailCall); 6894 6895 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6896 return CallResult.second; 6897 } 6898 6899 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6900 SDValue Dst, unsigned DstAlign, 6901 SDValue Value, SDValue Size, Type *SizeTy, 6902 unsigned ElemSz, bool isTailCall, 6903 MachinePointerInfo DstPtrInfo) { 6904 // Emit a library call. 6905 TargetLowering::ArgListTy Args; 6906 TargetLowering::ArgListEntry Entry; 6907 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6908 Entry.Node = Dst; 6909 Args.push_back(Entry); 6910 6911 Entry.Ty = Type::getInt8Ty(*getContext()); 6912 Entry.Node = Value; 6913 Args.push_back(Entry); 6914 6915 Entry.Ty = SizeTy; 6916 Entry.Node = Size; 6917 Args.push_back(Entry); 6918 6919 RTLIB::Libcall LibraryCall = 6920 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6921 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6922 report_fatal_error("Unsupported element size"); 6923 6924 TargetLowering::CallLoweringInfo CLI(*this); 6925 CLI.setDebugLoc(dl) 6926 .setChain(Chain) 6927 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6928 Type::getVoidTy(*getContext()), 6929 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6930 TLI->getPointerTy(getDataLayout())), 6931 std::move(Args)) 6932 .setDiscardResult() 6933 .setTailCall(isTailCall); 6934 6935 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6936 return CallResult.second; 6937 } 6938 6939 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6940 SDVTList VTList, ArrayRef<SDValue> Ops, 6941 MachineMemOperand *MMO) { 6942 FoldingSetNodeID ID; 6943 ID.AddInteger(MemVT.getRawBits()); 6944 AddNodeIDNode(ID, Opcode, VTList, Ops); 6945 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6946 void* IP = nullptr; 6947 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6948 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6949 return SDValue(E, 0); 6950 } 6951 6952 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6953 VTList, MemVT, MMO); 6954 createOperands(N, Ops); 6955 6956 CSEMap.InsertNode(N, IP); 6957 InsertNode(N); 6958 return SDValue(N, 0); 6959 } 6960 6961 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6962 EVT MemVT, SDVTList VTs, SDValue Chain, 6963 SDValue Ptr, SDValue Cmp, SDValue Swp, 6964 MachineMemOperand *MMO) { 6965 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6966 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6967 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6968 6969 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6970 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6971 } 6972 6973 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6974 SDValue Chain, SDValue Ptr, SDValue Val, 6975 MachineMemOperand *MMO) { 6976 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6977 Opcode == ISD::ATOMIC_LOAD_SUB || 6978 Opcode == ISD::ATOMIC_LOAD_AND || 6979 Opcode == ISD::ATOMIC_LOAD_CLR || 6980 Opcode == ISD::ATOMIC_LOAD_OR || 6981 Opcode == ISD::ATOMIC_LOAD_XOR || 6982 Opcode == ISD::ATOMIC_LOAD_NAND || 6983 Opcode == ISD::ATOMIC_LOAD_MIN || 6984 Opcode == ISD::ATOMIC_LOAD_MAX || 6985 Opcode == ISD::ATOMIC_LOAD_UMIN || 6986 Opcode == ISD::ATOMIC_LOAD_UMAX || 6987 Opcode == ISD::ATOMIC_LOAD_FADD || 6988 Opcode == ISD::ATOMIC_LOAD_FSUB || 6989 Opcode == ISD::ATOMIC_SWAP || 6990 Opcode == ISD::ATOMIC_STORE) && 6991 "Invalid Atomic Op"); 6992 6993 EVT VT = Val.getValueType(); 6994 6995 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6996 getVTList(VT, MVT::Other); 6997 SDValue Ops[] = {Chain, Ptr, Val}; 6998 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6999 } 7000 7001 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7002 EVT VT, SDValue Chain, SDValue Ptr, 7003 MachineMemOperand *MMO) { 7004 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7005 7006 SDVTList VTs = getVTList(VT, MVT::Other); 7007 SDValue Ops[] = {Chain, Ptr}; 7008 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7009 } 7010 7011 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7012 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7013 if (Ops.size() == 1) 7014 return Ops[0]; 7015 7016 SmallVector<EVT, 4> VTs; 7017 VTs.reserve(Ops.size()); 7018 for (const SDValue &Op : Ops) 7019 VTs.push_back(Op.getValueType()); 7020 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7021 } 7022 7023 SDValue SelectionDAG::getMemIntrinsicNode( 7024 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7025 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7026 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7027 if (!Size && MemVT.isScalableVector()) 7028 Size = MemoryLocation::UnknownSize; 7029 else if (!Size) 7030 Size = MemVT.getStoreSize(); 7031 7032 MachineFunction &MF = getMachineFunction(); 7033 MachineMemOperand *MMO = 7034 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7035 7036 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7037 } 7038 7039 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7040 SDVTList VTList, 7041 ArrayRef<SDValue> Ops, EVT MemVT, 7042 MachineMemOperand *MMO) { 7043 assert((Opcode == ISD::INTRINSIC_VOID || 7044 Opcode == ISD::INTRINSIC_W_CHAIN || 7045 Opcode == ISD::PREFETCH || 7046 ((int)Opcode <= std::numeric_limits<int>::max() && 7047 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7048 "Opcode is not a memory-accessing opcode!"); 7049 7050 // Memoize the node unless it returns a flag. 7051 MemIntrinsicSDNode *N; 7052 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7053 FoldingSetNodeID ID; 7054 AddNodeIDNode(ID, Opcode, VTList, Ops); 7055 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7056 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7057 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7058 void *IP = nullptr; 7059 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7060 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7061 return SDValue(E, 0); 7062 } 7063 7064 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7065 VTList, MemVT, MMO); 7066 createOperands(N, Ops); 7067 7068 CSEMap.InsertNode(N, IP); 7069 } else { 7070 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7071 VTList, MemVT, MMO); 7072 createOperands(N, Ops); 7073 } 7074 InsertNode(N); 7075 SDValue V(N, 0); 7076 NewSDValueDbgMsg(V, "Creating new node: ", this); 7077 return V; 7078 } 7079 7080 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7081 SDValue Chain, int FrameIndex, 7082 int64_t Size, int64_t Offset) { 7083 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7084 const auto VTs = getVTList(MVT::Other); 7085 SDValue Ops[2] = { 7086 Chain, 7087 getFrameIndex(FrameIndex, 7088 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7089 true)}; 7090 7091 FoldingSetNodeID ID; 7092 AddNodeIDNode(ID, Opcode, VTs, Ops); 7093 ID.AddInteger(FrameIndex); 7094 ID.AddInteger(Size); 7095 ID.AddInteger(Offset); 7096 void *IP = nullptr; 7097 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7098 return SDValue(E, 0); 7099 7100 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7101 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7102 createOperands(N, Ops); 7103 CSEMap.InsertNode(N, IP); 7104 InsertNode(N); 7105 SDValue V(N, 0); 7106 NewSDValueDbgMsg(V, "Creating new node: ", this); 7107 return V; 7108 } 7109 7110 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7111 uint64_t Guid, uint64_t Index, 7112 uint32_t Attr) { 7113 const unsigned Opcode = ISD::PSEUDO_PROBE; 7114 const auto VTs = getVTList(MVT::Other); 7115 SDValue Ops[] = {Chain}; 7116 FoldingSetNodeID ID; 7117 AddNodeIDNode(ID, Opcode, VTs, Ops); 7118 ID.AddInteger(Guid); 7119 ID.AddInteger(Index); 7120 void *IP = nullptr; 7121 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7122 return SDValue(E, 0); 7123 7124 auto *N = newSDNode<PseudoProbeSDNode>( 7125 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7126 createOperands(N, Ops); 7127 CSEMap.InsertNode(N, IP); 7128 InsertNode(N); 7129 SDValue V(N, 0); 7130 NewSDValueDbgMsg(V, "Creating new node: ", this); 7131 return V; 7132 } 7133 7134 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7135 /// MachinePointerInfo record from it. This is particularly useful because the 7136 /// code generator has many cases where it doesn't bother passing in a 7137 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7138 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7139 SelectionDAG &DAG, SDValue Ptr, 7140 int64_t Offset = 0) { 7141 // If this is FI+Offset, we can model it. 7142 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7143 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7144 FI->getIndex(), Offset); 7145 7146 // If this is (FI+Offset1)+Offset2, we can model it. 7147 if (Ptr.getOpcode() != ISD::ADD || 7148 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7149 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7150 return Info; 7151 7152 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7153 return MachinePointerInfo::getFixedStack( 7154 DAG.getMachineFunction(), FI, 7155 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7156 } 7157 7158 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7159 /// MachinePointerInfo record from it. This is particularly useful because the 7160 /// code generator has many cases where it doesn't bother passing in a 7161 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7162 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7163 SelectionDAG &DAG, SDValue Ptr, 7164 SDValue OffsetOp) { 7165 // If the 'Offset' value isn't a constant, we can't handle this. 7166 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7167 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7168 if (OffsetOp.isUndef()) 7169 return InferPointerInfo(Info, DAG, Ptr); 7170 return Info; 7171 } 7172 7173 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7174 EVT VT, const SDLoc &dl, SDValue Chain, 7175 SDValue Ptr, SDValue Offset, 7176 MachinePointerInfo PtrInfo, EVT MemVT, 7177 Align Alignment, 7178 MachineMemOperand::Flags MMOFlags, 7179 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7180 assert(Chain.getValueType() == MVT::Other && 7181 "Invalid chain type"); 7182 7183 MMOFlags |= MachineMemOperand::MOLoad; 7184 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7185 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7186 // clients. 7187 if (PtrInfo.V.isNull()) 7188 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7189 7190 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7191 MachineFunction &MF = getMachineFunction(); 7192 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7193 Alignment, AAInfo, Ranges); 7194 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7195 } 7196 7197 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7198 EVT VT, const SDLoc &dl, SDValue Chain, 7199 SDValue Ptr, SDValue Offset, EVT MemVT, 7200 MachineMemOperand *MMO) { 7201 if (VT == MemVT) { 7202 ExtType = ISD::NON_EXTLOAD; 7203 } else if (ExtType == ISD::NON_EXTLOAD) { 7204 assert(VT == MemVT && "Non-extending load from different memory type!"); 7205 } else { 7206 // Extending load. 7207 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7208 "Should only be an extending load, not truncating!"); 7209 assert(VT.isInteger() == MemVT.isInteger() && 7210 "Cannot convert from FP to Int or Int -> FP!"); 7211 assert(VT.isVector() == MemVT.isVector() && 7212 "Cannot use an ext load to convert to or from a vector!"); 7213 assert((!VT.isVector() || 7214 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7215 "Cannot use an ext load to change the number of vector elements!"); 7216 } 7217 7218 bool Indexed = AM != ISD::UNINDEXED; 7219 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7220 7221 SDVTList VTs = Indexed ? 7222 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7223 SDValue Ops[] = { Chain, Ptr, Offset }; 7224 FoldingSetNodeID ID; 7225 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7226 ID.AddInteger(MemVT.getRawBits()); 7227 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7228 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7229 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7230 void *IP = nullptr; 7231 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7232 cast<LoadSDNode>(E)->refineAlignment(MMO); 7233 return SDValue(E, 0); 7234 } 7235 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7236 ExtType, MemVT, MMO); 7237 createOperands(N, Ops); 7238 7239 CSEMap.InsertNode(N, IP); 7240 InsertNode(N); 7241 SDValue V(N, 0); 7242 NewSDValueDbgMsg(V, "Creating new node: ", this); 7243 return V; 7244 } 7245 7246 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7247 SDValue Ptr, MachinePointerInfo PtrInfo, 7248 MaybeAlign Alignment, 7249 MachineMemOperand::Flags MMOFlags, 7250 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7251 SDValue Undef = getUNDEF(Ptr.getValueType()); 7252 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7253 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7254 } 7255 7256 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7257 SDValue Ptr, MachineMemOperand *MMO) { 7258 SDValue Undef = getUNDEF(Ptr.getValueType()); 7259 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7260 VT, MMO); 7261 } 7262 7263 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7264 EVT VT, SDValue Chain, SDValue Ptr, 7265 MachinePointerInfo PtrInfo, EVT MemVT, 7266 MaybeAlign Alignment, 7267 MachineMemOperand::Flags MMOFlags, 7268 const AAMDNodes &AAInfo) { 7269 SDValue Undef = getUNDEF(Ptr.getValueType()); 7270 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7271 MemVT, Alignment, MMOFlags, AAInfo); 7272 } 7273 7274 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7275 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7276 MachineMemOperand *MMO) { 7277 SDValue Undef = getUNDEF(Ptr.getValueType()); 7278 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7279 MemVT, MMO); 7280 } 7281 7282 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7283 SDValue Base, SDValue Offset, 7284 ISD::MemIndexedMode AM) { 7285 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7286 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7287 // Don't propagate the invariant or dereferenceable flags. 7288 auto MMOFlags = 7289 LD->getMemOperand()->getFlags() & 7290 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7291 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7292 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7293 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7294 } 7295 7296 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7297 SDValue Ptr, MachinePointerInfo PtrInfo, 7298 Align Alignment, 7299 MachineMemOperand::Flags MMOFlags, 7300 const AAMDNodes &AAInfo) { 7301 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7302 7303 MMOFlags |= MachineMemOperand::MOStore; 7304 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7305 7306 if (PtrInfo.V.isNull()) 7307 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7308 7309 MachineFunction &MF = getMachineFunction(); 7310 uint64_t Size = 7311 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7312 MachineMemOperand *MMO = 7313 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7314 return getStore(Chain, dl, Val, Ptr, MMO); 7315 } 7316 7317 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7318 SDValue Ptr, MachineMemOperand *MMO) { 7319 assert(Chain.getValueType() == MVT::Other && 7320 "Invalid chain type"); 7321 EVT VT = Val.getValueType(); 7322 SDVTList VTs = getVTList(MVT::Other); 7323 SDValue Undef = getUNDEF(Ptr.getValueType()); 7324 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7325 FoldingSetNodeID ID; 7326 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7327 ID.AddInteger(VT.getRawBits()); 7328 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7329 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7330 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7331 void *IP = nullptr; 7332 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7333 cast<StoreSDNode>(E)->refineAlignment(MMO); 7334 return SDValue(E, 0); 7335 } 7336 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7337 ISD::UNINDEXED, false, VT, MMO); 7338 createOperands(N, Ops); 7339 7340 CSEMap.InsertNode(N, IP); 7341 InsertNode(N); 7342 SDValue V(N, 0); 7343 NewSDValueDbgMsg(V, "Creating new node: ", this); 7344 return V; 7345 } 7346 7347 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7348 SDValue Ptr, MachinePointerInfo PtrInfo, 7349 EVT SVT, Align Alignment, 7350 MachineMemOperand::Flags MMOFlags, 7351 const AAMDNodes &AAInfo) { 7352 assert(Chain.getValueType() == MVT::Other && 7353 "Invalid chain type"); 7354 7355 MMOFlags |= MachineMemOperand::MOStore; 7356 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7357 7358 if (PtrInfo.V.isNull()) 7359 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7360 7361 MachineFunction &MF = getMachineFunction(); 7362 MachineMemOperand *MMO = MF.getMachineMemOperand( 7363 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7364 Alignment, AAInfo); 7365 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7366 } 7367 7368 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7369 SDValue Ptr, EVT SVT, 7370 MachineMemOperand *MMO) { 7371 EVT VT = Val.getValueType(); 7372 7373 assert(Chain.getValueType() == MVT::Other && 7374 "Invalid chain type"); 7375 if (VT == SVT) 7376 return getStore(Chain, dl, Val, Ptr, MMO); 7377 7378 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7379 "Should only be a truncating store, not extending!"); 7380 assert(VT.isInteger() == SVT.isInteger() && 7381 "Can't do FP-INT conversion!"); 7382 assert(VT.isVector() == SVT.isVector() && 7383 "Cannot use trunc store to convert to or from a vector!"); 7384 assert((!VT.isVector() || 7385 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7386 "Cannot use trunc store to change the number of vector elements!"); 7387 7388 SDVTList VTs = getVTList(MVT::Other); 7389 SDValue Undef = getUNDEF(Ptr.getValueType()); 7390 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7391 FoldingSetNodeID ID; 7392 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7393 ID.AddInteger(SVT.getRawBits()); 7394 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7395 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7396 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7397 void *IP = nullptr; 7398 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7399 cast<StoreSDNode>(E)->refineAlignment(MMO); 7400 return SDValue(E, 0); 7401 } 7402 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7403 ISD::UNINDEXED, true, SVT, MMO); 7404 createOperands(N, Ops); 7405 7406 CSEMap.InsertNode(N, IP); 7407 InsertNode(N); 7408 SDValue V(N, 0); 7409 NewSDValueDbgMsg(V, "Creating new node: ", this); 7410 return V; 7411 } 7412 7413 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7414 SDValue Base, SDValue Offset, 7415 ISD::MemIndexedMode AM) { 7416 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7417 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7418 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7419 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7420 FoldingSetNodeID ID; 7421 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7422 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7423 ID.AddInteger(ST->getRawSubclassData()); 7424 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7425 void *IP = nullptr; 7426 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7427 return SDValue(E, 0); 7428 7429 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7430 ST->isTruncatingStore(), ST->getMemoryVT(), 7431 ST->getMemOperand()); 7432 createOperands(N, Ops); 7433 7434 CSEMap.InsertNode(N, IP); 7435 InsertNode(N); 7436 SDValue V(N, 0); 7437 NewSDValueDbgMsg(V, "Creating new node: ", this); 7438 return V; 7439 } 7440 7441 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7442 SDValue Base, SDValue Offset, SDValue Mask, 7443 SDValue PassThru, EVT MemVT, 7444 MachineMemOperand *MMO, 7445 ISD::MemIndexedMode AM, 7446 ISD::LoadExtType ExtTy, bool isExpanding) { 7447 bool Indexed = AM != ISD::UNINDEXED; 7448 assert((Indexed || Offset.isUndef()) && 7449 "Unindexed masked load with an offset!"); 7450 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7451 : getVTList(VT, MVT::Other); 7452 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7453 FoldingSetNodeID ID; 7454 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7455 ID.AddInteger(MemVT.getRawBits()); 7456 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7457 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7458 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7459 void *IP = nullptr; 7460 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7461 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7462 return SDValue(E, 0); 7463 } 7464 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7465 AM, ExtTy, isExpanding, MemVT, MMO); 7466 createOperands(N, Ops); 7467 7468 CSEMap.InsertNode(N, IP); 7469 InsertNode(N); 7470 SDValue V(N, 0); 7471 NewSDValueDbgMsg(V, "Creating new node: ", this); 7472 return V; 7473 } 7474 7475 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7476 SDValue Base, SDValue Offset, 7477 ISD::MemIndexedMode AM) { 7478 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7479 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7480 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7481 Offset, LD->getMask(), LD->getPassThru(), 7482 LD->getMemoryVT(), LD->getMemOperand(), AM, 7483 LD->getExtensionType(), LD->isExpandingLoad()); 7484 } 7485 7486 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7487 SDValue Val, SDValue Base, SDValue Offset, 7488 SDValue Mask, EVT MemVT, 7489 MachineMemOperand *MMO, 7490 ISD::MemIndexedMode AM, bool IsTruncating, 7491 bool IsCompressing) { 7492 assert(Chain.getValueType() == MVT::Other && 7493 "Invalid chain type"); 7494 bool Indexed = AM != ISD::UNINDEXED; 7495 assert((Indexed || Offset.isUndef()) && 7496 "Unindexed masked store with an offset!"); 7497 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7498 : getVTList(MVT::Other); 7499 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7500 FoldingSetNodeID ID; 7501 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7502 ID.AddInteger(MemVT.getRawBits()); 7503 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7504 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7505 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7506 void *IP = nullptr; 7507 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7508 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7509 return SDValue(E, 0); 7510 } 7511 auto *N = 7512 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7513 IsTruncating, IsCompressing, MemVT, MMO); 7514 createOperands(N, Ops); 7515 7516 CSEMap.InsertNode(N, IP); 7517 InsertNode(N); 7518 SDValue V(N, 0); 7519 NewSDValueDbgMsg(V, "Creating new node: ", this); 7520 return V; 7521 } 7522 7523 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7524 SDValue Base, SDValue Offset, 7525 ISD::MemIndexedMode AM) { 7526 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7527 assert(ST->getOffset().isUndef() && 7528 "Masked store is already a indexed store!"); 7529 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7530 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7531 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7532 } 7533 7534 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7535 ArrayRef<SDValue> Ops, 7536 MachineMemOperand *MMO, 7537 ISD::MemIndexType IndexType, 7538 ISD::LoadExtType ExtTy) { 7539 assert(Ops.size() == 6 && "Incompatible number of operands"); 7540 7541 FoldingSetNodeID ID; 7542 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7543 ID.AddInteger(VT.getRawBits()); 7544 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7545 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7546 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7547 void *IP = nullptr; 7548 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7549 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7550 return SDValue(E, 0); 7551 } 7552 7553 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7554 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7555 VTs, VT, MMO, IndexType, ExtTy); 7556 createOperands(N, Ops); 7557 7558 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7559 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7560 assert(N->getMask().getValueType().getVectorElementCount() == 7561 N->getValueType(0).getVectorElementCount() && 7562 "Vector width mismatch between mask and data"); 7563 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7564 N->getValueType(0).getVectorElementCount().isScalable() && 7565 "Scalable flags of index and data do not match"); 7566 assert(ElementCount::isKnownGE( 7567 N->getIndex().getValueType().getVectorElementCount(), 7568 N->getValueType(0).getVectorElementCount()) && 7569 "Vector width mismatch between index and data"); 7570 assert(isa<ConstantSDNode>(N->getScale()) && 7571 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7572 "Scale should be a constant power of 2"); 7573 7574 CSEMap.InsertNode(N, IP); 7575 InsertNode(N); 7576 SDValue V(N, 0); 7577 NewSDValueDbgMsg(V, "Creating new node: ", this); 7578 return V; 7579 } 7580 7581 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7582 ArrayRef<SDValue> Ops, 7583 MachineMemOperand *MMO, 7584 ISD::MemIndexType IndexType, 7585 bool IsTrunc) { 7586 assert(Ops.size() == 6 && "Incompatible number of operands"); 7587 7588 FoldingSetNodeID ID; 7589 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7590 ID.AddInteger(VT.getRawBits()); 7591 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7592 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7593 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7594 void *IP = nullptr; 7595 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7596 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7597 return SDValue(E, 0); 7598 } 7599 7600 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7601 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7602 VTs, VT, MMO, IndexType, IsTrunc); 7603 createOperands(N, Ops); 7604 7605 assert(N->getMask().getValueType().getVectorElementCount() == 7606 N->getValue().getValueType().getVectorElementCount() && 7607 "Vector width mismatch between mask and data"); 7608 assert( 7609 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7610 N->getValue().getValueType().getVectorElementCount().isScalable() && 7611 "Scalable flags of index and data do not match"); 7612 assert(ElementCount::isKnownGE( 7613 N->getIndex().getValueType().getVectorElementCount(), 7614 N->getValue().getValueType().getVectorElementCount()) && 7615 "Vector width mismatch between index and data"); 7616 assert(isa<ConstantSDNode>(N->getScale()) && 7617 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7618 "Scale should be a constant power of 2"); 7619 7620 CSEMap.InsertNode(N, IP); 7621 InsertNode(N); 7622 SDValue V(N, 0); 7623 NewSDValueDbgMsg(V, "Creating new node: ", this); 7624 return V; 7625 } 7626 7627 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7628 // select undef, T, F --> T (if T is a constant), otherwise F 7629 // select, ?, undef, F --> F 7630 // select, ?, T, undef --> T 7631 if (Cond.isUndef()) 7632 return isConstantValueOfAnyType(T) ? T : F; 7633 if (T.isUndef()) 7634 return F; 7635 if (F.isUndef()) 7636 return T; 7637 7638 // select true, T, F --> T 7639 // select false, T, F --> F 7640 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7641 return CondC->isNullValue() ? F : T; 7642 7643 // TODO: This should simplify VSELECT with constant condition using something 7644 // like this (but check boolean contents to be complete?): 7645 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7646 // return T; 7647 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7648 // return F; 7649 7650 // select ?, T, T --> T 7651 if (T == F) 7652 return T; 7653 7654 return SDValue(); 7655 } 7656 7657 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7658 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7659 if (X.isUndef()) 7660 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7661 // shift X, undef --> undef (because it may shift by the bitwidth) 7662 if (Y.isUndef()) 7663 return getUNDEF(X.getValueType()); 7664 7665 // shift 0, Y --> 0 7666 // shift X, 0 --> X 7667 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7668 return X; 7669 7670 // shift X, C >= bitwidth(X) --> undef 7671 // All vector elements must be too big (or undef) to avoid partial undefs. 7672 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7673 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7674 }; 7675 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7676 return getUNDEF(X.getValueType()); 7677 7678 return SDValue(); 7679 } 7680 7681 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7682 SDNodeFlags Flags) { 7683 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7684 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7685 // operation is poison. That result can be relaxed to undef. 7686 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7687 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7688 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7689 (YC && YC->getValueAPF().isNaN()); 7690 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7691 (YC && YC->getValueAPF().isInfinity()); 7692 7693 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7694 return getUNDEF(X.getValueType()); 7695 7696 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7697 return getUNDEF(X.getValueType()); 7698 7699 if (!YC) 7700 return SDValue(); 7701 7702 // X + -0.0 --> X 7703 if (Opcode == ISD::FADD) 7704 if (YC->getValueAPF().isNegZero()) 7705 return X; 7706 7707 // X - +0.0 --> X 7708 if (Opcode == ISD::FSUB) 7709 if (YC->getValueAPF().isPosZero()) 7710 return X; 7711 7712 // X * 1.0 --> X 7713 // X / 1.0 --> X 7714 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7715 if (YC->getValueAPF().isExactlyValue(1.0)) 7716 return X; 7717 7718 // X * 0.0 --> 0.0 7719 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7720 if (YC->getValueAPF().isZero()) 7721 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7722 7723 return SDValue(); 7724 } 7725 7726 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7727 SDValue Ptr, SDValue SV, unsigned Align) { 7728 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7729 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7730 } 7731 7732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7733 ArrayRef<SDUse> Ops) { 7734 switch (Ops.size()) { 7735 case 0: return getNode(Opcode, DL, VT); 7736 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7737 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7738 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7739 default: break; 7740 } 7741 7742 // Copy from an SDUse array into an SDValue array for use with 7743 // the regular getNode logic. 7744 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7745 return getNode(Opcode, DL, VT, NewOps); 7746 } 7747 7748 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7749 ArrayRef<SDValue> Ops) { 7750 SDNodeFlags Flags; 7751 if (Inserter) 7752 Flags = Inserter->getFlags(); 7753 return getNode(Opcode, DL, VT, Ops, Flags); 7754 } 7755 7756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7757 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7758 unsigned NumOps = Ops.size(); 7759 switch (NumOps) { 7760 case 0: return getNode(Opcode, DL, VT); 7761 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7762 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7763 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7764 default: break; 7765 } 7766 7767 #ifndef NDEBUG 7768 for (auto &Op : Ops) 7769 assert(Op.getOpcode() != ISD::DELETED_NODE && 7770 "Operand is DELETED_NODE!"); 7771 #endif 7772 7773 switch (Opcode) { 7774 default: break; 7775 case ISD::BUILD_VECTOR: 7776 // Attempt to simplify BUILD_VECTOR. 7777 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7778 return V; 7779 break; 7780 case ISD::CONCAT_VECTORS: 7781 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7782 return V; 7783 break; 7784 case ISD::SELECT_CC: 7785 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7786 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7787 "LHS and RHS of condition must have same type!"); 7788 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7789 "True and False arms of SelectCC must have same type!"); 7790 assert(Ops[2].getValueType() == VT && 7791 "select_cc node must be of same type as true and false value!"); 7792 break; 7793 case ISD::BR_CC: 7794 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7795 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7796 "LHS/RHS of comparison should match types!"); 7797 break; 7798 } 7799 7800 // Memoize nodes. 7801 SDNode *N; 7802 SDVTList VTs = getVTList(VT); 7803 7804 if (VT != MVT::Glue) { 7805 FoldingSetNodeID ID; 7806 AddNodeIDNode(ID, Opcode, VTs, Ops); 7807 void *IP = nullptr; 7808 7809 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7810 return SDValue(E, 0); 7811 7812 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7813 createOperands(N, Ops); 7814 7815 CSEMap.InsertNode(N, IP); 7816 } else { 7817 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7818 createOperands(N, Ops); 7819 } 7820 7821 N->setFlags(Flags); 7822 InsertNode(N); 7823 SDValue V(N, 0); 7824 NewSDValueDbgMsg(V, "Creating new node: ", this); 7825 return V; 7826 } 7827 7828 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7829 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7830 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7831 } 7832 7833 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7834 ArrayRef<SDValue> Ops) { 7835 SDNodeFlags Flags; 7836 if (Inserter) 7837 Flags = Inserter->getFlags(); 7838 return getNode(Opcode, DL, VTList, Ops, Flags); 7839 } 7840 7841 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7842 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7843 if (VTList.NumVTs == 1) 7844 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7845 7846 #ifndef NDEBUG 7847 for (auto &Op : Ops) 7848 assert(Op.getOpcode() != ISD::DELETED_NODE && 7849 "Operand is DELETED_NODE!"); 7850 #endif 7851 7852 switch (Opcode) { 7853 case ISD::STRICT_FP_EXTEND: 7854 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7855 "Invalid STRICT_FP_EXTEND!"); 7856 assert(VTList.VTs[0].isFloatingPoint() && 7857 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7858 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7859 "STRICT_FP_EXTEND result type should be vector iff the operand " 7860 "type is vector!"); 7861 assert((!VTList.VTs[0].isVector() || 7862 VTList.VTs[0].getVectorNumElements() == 7863 Ops[1].getValueType().getVectorNumElements()) && 7864 "Vector element count mismatch!"); 7865 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7866 "Invalid fpext node, dst <= src!"); 7867 break; 7868 case ISD::STRICT_FP_ROUND: 7869 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7870 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7871 "STRICT_FP_ROUND result type should be vector iff the operand " 7872 "type is vector!"); 7873 assert((!VTList.VTs[0].isVector() || 7874 VTList.VTs[0].getVectorNumElements() == 7875 Ops[1].getValueType().getVectorNumElements()) && 7876 "Vector element count mismatch!"); 7877 assert(VTList.VTs[0].isFloatingPoint() && 7878 Ops[1].getValueType().isFloatingPoint() && 7879 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7880 isa<ConstantSDNode>(Ops[2]) && 7881 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7882 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7883 "Invalid STRICT_FP_ROUND!"); 7884 break; 7885 #if 0 7886 // FIXME: figure out how to safely handle things like 7887 // int foo(int x) { return 1 << (x & 255); } 7888 // int bar() { return foo(256); } 7889 case ISD::SRA_PARTS: 7890 case ISD::SRL_PARTS: 7891 case ISD::SHL_PARTS: 7892 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7893 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7894 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7895 else if (N3.getOpcode() == ISD::AND) 7896 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7897 // If the and is only masking out bits that cannot effect the shift, 7898 // eliminate the and. 7899 unsigned NumBits = VT.getScalarSizeInBits()*2; 7900 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7901 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7902 } 7903 break; 7904 #endif 7905 } 7906 7907 // Memoize the node unless it returns a flag. 7908 SDNode *N; 7909 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7910 FoldingSetNodeID ID; 7911 AddNodeIDNode(ID, Opcode, VTList, Ops); 7912 void *IP = nullptr; 7913 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7914 return SDValue(E, 0); 7915 7916 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7917 createOperands(N, Ops); 7918 CSEMap.InsertNode(N, IP); 7919 } else { 7920 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7921 createOperands(N, Ops); 7922 } 7923 7924 N->setFlags(Flags); 7925 InsertNode(N); 7926 SDValue V(N, 0); 7927 NewSDValueDbgMsg(V, "Creating new node: ", this); 7928 return V; 7929 } 7930 7931 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7932 SDVTList VTList) { 7933 return getNode(Opcode, DL, VTList, None); 7934 } 7935 7936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7937 SDValue N1) { 7938 SDValue Ops[] = { N1 }; 7939 return getNode(Opcode, DL, VTList, Ops); 7940 } 7941 7942 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7943 SDValue N1, SDValue N2) { 7944 SDValue Ops[] = { N1, N2 }; 7945 return getNode(Opcode, DL, VTList, Ops); 7946 } 7947 7948 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7949 SDValue N1, SDValue N2, SDValue N3) { 7950 SDValue Ops[] = { N1, N2, N3 }; 7951 return getNode(Opcode, DL, VTList, Ops); 7952 } 7953 7954 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7955 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7956 SDValue Ops[] = { N1, N2, N3, N4 }; 7957 return getNode(Opcode, DL, VTList, Ops); 7958 } 7959 7960 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7961 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7962 SDValue N5) { 7963 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7964 return getNode(Opcode, DL, VTList, Ops); 7965 } 7966 7967 SDVTList SelectionDAG::getVTList(EVT VT) { 7968 return makeVTList(SDNode::getValueTypeList(VT), 1); 7969 } 7970 7971 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7972 FoldingSetNodeID ID; 7973 ID.AddInteger(2U); 7974 ID.AddInteger(VT1.getRawBits()); 7975 ID.AddInteger(VT2.getRawBits()); 7976 7977 void *IP = nullptr; 7978 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7979 if (!Result) { 7980 EVT *Array = Allocator.Allocate<EVT>(2); 7981 Array[0] = VT1; 7982 Array[1] = VT2; 7983 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7984 VTListMap.InsertNode(Result, IP); 7985 } 7986 return Result->getSDVTList(); 7987 } 7988 7989 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7990 FoldingSetNodeID ID; 7991 ID.AddInteger(3U); 7992 ID.AddInteger(VT1.getRawBits()); 7993 ID.AddInteger(VT2.getRawBits()); 7994 ID.AddInteger(VT3.getRawBits()); 7995 7996 void *IP = nullptr; 7997 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7998 if (!Result) { 7999 EVT *Array = Allocator.Allocate<EVT>(3); 8000 Array[0] = VT1; 8001 Array[1] = VT2; 8002 Array[2] = VT3; 8003 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8004 VTListMap.InsertNode(Result, IP); 8005 } 8006 return Result->getSDVTList(); 8007 } 8008 8009 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8010 FoldingSetNodeID ID; 8011 ID.AddInteger(4U); 8012 ID.AddInteger(VT1.getRawBits()); 8013 ID.AddInteger(VT2.getRawBits()); 8014 ID.AddInteger(VT3.getRawBits()); 8015 ID.AddInteger(VT4.getRawBits()); 8016 8017 void *IP = nullptr; 8018 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8019 if (!Result) { 8020 EVT *Array = Allocator.Allocate<EVT>(4); 8021 Array[0] = VT1; 8022 Array[1] = VT2; 8023 Array[2] = VT3; 8024 Array[3] = VT4; 8025 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8026 VTListMap.InsertNode(Result, IP); 8027 } 8028 return Result->getSDVTList(); 8029 } 8030 8031 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8032 unsigned NumVTs = VTs.size(); 8033 FoldingSetNodeID ID; 8034 ID.AddInteger(NumVTs); 8035 for (unsigned index = 0; index < NumVTs; index++) { 8036 ID.AddInteger(VTs[index].getRawBits()); 8037 } 8038 8039 void *IP = nullptr; 8040 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8041 if (!Result) { 8042 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8043 llvm::copy(VTs, Array); 8044 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8045 VTListMap.InsertNode(Result, IP); 8046 } 8047 return Result->getSDVTList(); 8048 } 8049 8050 8051 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8052 /// specified operands. If the resultant node already exists in the DAG, 8053 /// this does not modify the specified node, instead it returns the node that 8054 /// already exists. If the resultant node does not exist in the DAG, the 8055 /// input node is returned. As a degenerate case, if you specify the same 8056 /// input operands as the node already has, the input node is returned. 8057 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8058 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8059 8060 // Check to see if there is no change. 8061 if (Op == N->getOperand(0)) return N; 8062 8063 // See if the modified node already exists. 8064 void *InsertPos = nullptr; 8065 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8066 return Existing; 8067 8068 // Nope it doesn't. Remove the node from its current place in the maps. 8069 if (InsertPos) 8070 if (!RemoveNodeFromCSEMaps(N)) 8071 InsertPos = nullptr; 8072 8073 // Now we update the operands. 8074 N->OperandList[0].set(Op); 8075 8076 updateDivergence(N); 8077 // If this gets put into a CSE map, add it. 8078 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8079 return N; 8080 } 8081 8082 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8083 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8084 8085 // Check to see if there is no change. 8086 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8087 return N; // No operands changed, just return the input node. 8088 8089 // See if the modified node already exists. 8090 void *InsertPos = nullptr; 8091 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8092 return Existing; 8093 8094 // Nope it doesn't. Remove the node from its current place in the maps. 8095 if (InsertPos) 8096 if (!RemoveNodeFromCSEMaps(N)) 8097 InsertPos = nullptr; 8098 8099 // Now we update the operands. 8100 if (N->OperandList[0] != Op1) 8101 N->OperandList[0].set(Op1); 8102 if (N->OperandList[1] != Op2) 8103 N->OperandList[1].set(Op2); 8104 8105 updateDivergence(N); 8106 // If this gets put into a CSE map, add it. 8107 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8108 return N; 8109 } 8110 8111 SDNode *SelectionDAG:: 8112 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8113 SDValue Ops[] = { Op1, Op2, Op3 }; 8114 return UpdateNodeOperands(N, Ops); 8115 } 8116 8117 SDNode *SelectionDAG:: 8118 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8119 SDValue Op3, SDValue Op4) { 8120 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8121 return UpdateNodeOperands(N, Ops); 8122 } 8123 8124 SDNode *SelectionDAG:: 8125 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8126 SDValue Op3, SDValue Op4, SDValue Op5) { 8127 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8128 return UpdateNodeOperands(N, Ops); 8129 } 8130 8131 SDNode *SelectionDAG:: 8132 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8133 unsigned NumOps = Ops.size(); 8134 assert(N->getNumOperands() == NumOps && 8135 "Update with wrong number of operands"); 8136 8137 // If no operands changed just return the input node. 8138 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8139 return N; 8140 8141 // See if the modified node already exists. 8142 void *InsertPos = nullptr; 8143 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8144 return Existing; 8145 8146 // Nope it doesn't. Remove the node from its current place in the maps. 8147 if (InsertPos) 8148 if (!RemoveNodeFromCSEMaps(N)) 8149 InsertPos = nullptr; 8150 8151 // Now we update the operands. 8152 for (unsigned i = 0; i != NumOps; ++i) 8153 if (N->OperandList[i] != Ops[i]) 8154 N->OperandList[i].set(Ops[i]); 8155 8156 updateDivergence(N); 8157 // If this gets put into a CSE map, add it. 8158 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8159 return N; 8160 } 8161 8162 /// DropOperands - Release the operands and set this node to have 8163 /// zero operands. 8164 void SDNode::DropOperands() { 8165 // Unlike the code in MorphNodeTo that does this, we don't need to 8166 // watch for dead nodes here. 8167 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8168 SDUse &Use = *I++; 8169 Use.set(SDValue()); 8170 } 8171 } 8172 8173 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8174 ArrayRef<MachineMemOperand *> NewMemRefs) { 8175 if (NewMemRefs.empty()) { 8176 N->clearMemRefs(); 8177 return; 8178 } 8179 8180 // Check if we can avoid allocating by storing a single reference directly. 8181 if (NewMemRefs.size() == 1) { 8182 N->MemRefs = NewMemRefs[0]; 8183 N->NumMemRefs = 1; 8184 return; 8185 } 8186 8187 MachineMemOperand **MemRefsBuffer = 8188 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8189 llvm::copy(NewMemRefs, MemRefsBuffer); 8190 N->MemRefs = MemRefsBuffer; 8191 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8192 } 8193 8194 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8195 /// machine opcode. 8196 /// 8197 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8198 EVT VT) { 8199 SDVTList VTs = getVTList(VT); 8200 return SelectNodeTo(N, MachineOpc, VTs, None); 8201 } 8202 8203 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8204 EVT VT, SDValue Op1) { 8205 SDVTList VTs = getVTList(VT); 8206 SDValue Ops[] = { Op1 }; 8207 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8208 } 8209 8210 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8211 EVT VT, SDValue Op1, 8212 SDValue Op2) { 8213 SDVTList VTs = getVTList(VT); 8214 SDValue Ops[] = { Op1, Op2 }; 8215 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8216 } 8217 8218 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8219 EVT VT, SDValue Op1, 8220 SDValue Op2, SDValue Op3) { 8221 SDVTList VTs = getVTList(VT); 8222 SDValue Ops[] = { Op1, Op2, Op3 }; 8223 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8224 } 8225 8226 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8227 EVT VT, ArrayRef<SDValue> Ops) { 8228 SDVTList VTs = getVTList(VT); 8229 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8230 } 8231 8232 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8233 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8234 SDVTList VTs = getVTList(VT1, VT2); 8235 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8236 } 8237 8238 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8239 EVT VT1, EVT VT2) { 8240 SDVTList VTs = getVTList(VT1, VT2); 8241 return SelectNodeTo(N, MachineOpc, VTs, None); 8242 } 8243 8244 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8245 EVT VT1, EVT VT2, EVT VT3, 8246 ArrayRef<SDValue> Ops) { 8247 SDVTList VTs = getVTList(VT1, VT2, VT3); 8248 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8249 } 8250 8251 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8252 EVT VT1, EVT VT2, 8253 SDValue Op1, SDValue Op2) { 8254 SDVTList VTs = getVTList(VT1, VT2); 8255 SDValue Ops[] = { Op1, Op2 }; 8256 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8257 } 8258 8259 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8260 SDVTList VTs,ArrayRef<SDValue> Ops) { 8261 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8262 // Reset the NodeID to -1. 8263 New->setNodeId(-1); 8264 if (New != N) { 8265 ReplaceAllUsesWith(N, New); 8266 RemoveDeadNode(N); 8267 } 8268 return New; 8269 } 8270 8271 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8272 /// the line number information on the merged node since it is not possible to 8273 /// preserve the information that operation is associated with multiple lines. 8274 /// This will make the debugger working better at -O0, were there is a higher 8275 /// probability having other instructions associated with that line. 8276 /// 8277 /// For IROrder, we keep the smaller of the two 8278 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8279 DebugLoc NLoc = N->getDebugLoc(); 8280 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8281 N->setDebugLoc(DebugLoc()); 8282 } 8283 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8284 N->setIROrder(Order); 8285 return N; 8286 } 8287 8288 /// MorphNodeTo - This *mutates* the specified node to have the specified 8289 /// return type, opcode, and operands. 8290 /// 8291 /// Note that MorphNodeTo returns the resultant node. If there is already a 8292 /// node of the specified opcode and operands, it returns that node instead of 8293 /// the current one. Note that the SDLoc need not be the same. 8294 /// 8295 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8296 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8297 /// node, and because it doesn't require CSE recalculation for any of 8298 /// the node's users. 8299 /// 8300 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8301 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8302 /// the legalizer which maintain worklists that would need to be updated when 8303 /// deleting things. 8304 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8305 SDVTList VTs, ArrayRef<SDValue> Ops) { 8306 // If an identical node already exists, use it. 8307 void *IP = nullptr; 8308 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8309 FoldingSetNodeID ID; 8310 AddNodeIDNode(ID, Opc, VTs, Ops); 8311 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8312 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8313 } 8314 8315 if (!RemoveNodeFromCSEMaps(N)) 8316 IP = nullptr; 8317 8318 // Start the morphing. 8319 N->NodeType = Opc; 8320 N->ValueList = VTs.VTs; 8321 N->NumValues = VTs.NumVTs; 8322 8323 // Clear the operands list, updating used nodes to remove this from their 8324 // use list. Keep track of any operands that become dead as a result. 8325 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8326 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8327 SDUse &Use = *I++; 8328 SDNode *Used = Use.getNode(); 8329 Use.set(SDValue()); 8330 if (Used->use_empty()) 8331 DeadNodeSet.insert(Used); 8332 } 8333 8334 // For MachineNode, initialize the memory references information. 8335 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8336 MN->clearMemRefs(); 8337 8338 // Swap for an appropriately sized array from the recycler. 8339 removeOperands(N); 8340 createOperands(N, Ops); 8341 8342 // Delete any nodes that are still dead after adding the uses for the 8343 // new operands. 8344 if (!DeadNodeSet.empty()) { 8345 SmallVector<SDNode *, 16> DeadNodes; 8346 for (SDNode *N : DeadNodeSet) 8347 if (N->use_empty()) 8348 DeadNodes.push_back(N); 8349 RemoveDeadNodes(DeadNodes); 8350 } 8351 8352 if (IP) 8353 CSEMap.InsertNode(N, IP); // Memoize the new node. 8354 return N; 8355 } 8356 8357 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8358 unsigned OrigOpc = Node->getOpcode(); 8359 unsigned NewOpc; 8360 switch (OrigOpc) { 8361 default: 8362 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8363 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8364 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8365 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8366 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8367 #include "llvm/IR/ConstrainedOps.def" 8368 } 8369 8370 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8371 8372 // We're taking this node out of the chain, so we need to re-link things. 8373 SDValue InputChain = Node->getOperand(0); 8374 SDValue OutputChain = SDValue(Node, 1); 8375 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8376 8377 SmallVector<SDValue, 3> Ops; 8378 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8379 Ops.push_back(Node->getOperand(i)); 8380 8381 SDVTList VTs = getVTList(Node->getValueType(0)); 8382 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8383 8384 // MorphNodeTo can operate in two ways: if an existing node with the 8385 // specified operands exists, it can just return it. Otherwise, it 8386 // updates the node in place to have the requested operands. 8387 if (Res == Node) { 8388 // If we updated the node in place, reset the node ID. To the isel, 8389 // this should be just like a newly allocated machine node. 8390 Res->setNodeId(-1); 8391 } else { 8392 ReplaceAllUsesWith(Node, Res); 8393 RemoveDeadNode(Node); 8394 } 8395 8396 return Res; 8397 } 8398 8399 /// getMachineNode - These are used for target selectors to create a new node 8400 /// with specified return type(s), MachineInstr opcode, and operands. 8401 /// 8402 /// Note that getMachineNode returns the resultant node. If there is already a 8403 /// node of the specified opcode and operands, it returns that node instead of 8404 /// the current one. 8405 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8406 EVT VT) { 8407 SDVTList VTs = getVTList(VT); 8408 return getMachineNode(Opcode, dl, VTs, None); 8409 } 8410 8411 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8412 EVT VT, SDValue Op1) { 8413 SDVTList VTs = getVTList(VT); 8414 SDValue Ops[] = { Op1 }; 8415 return getMachineNode(Opcode, dl, VTs, Ops); 8416 } 8417 8418 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8419 EVT VT, SDValue Op1, SDValue Op2) { 8420 SDVTList VTs = getVTList(VT); 8421 SDValue Ops[] = { Op1, Op2 }; 8422 return getMachineNode(Opcode, dl, VTs, Ops); 8423 } 8424 8425 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8426 EVT VT, SDValue Op1, SDValue Op2, 8427 SDValue Op3) { 8428 SDVTList VTs = getVTList(VT); 8429 SDValue Ops[] = { Op1, Op2, Op3 }; 8430 return getMachineNode(Opcode, dl, VTs, Ops); 8431 } 8432 8433 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8434 EVT VT, ArrayRef<SDValue> Ops) { 8435 SDVTList VTs = getVTList(VT); 8436 return getMachineNode(Opcode, dl, VTs, Ops); 8437 } 8438 8439 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8440 EVT VT1, EVT VT2, SDValue Op1, 8441 SDValue Op2) { 8442 SDVTList VTs = getVTList(VT1, VT2); 8443 SDValue Ops[] = { Op1, Op2 }; 8444 return getMachineNode(Opcode, dl, VTs, Ops); 8445 } 8446 8447 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8448 EVT VT1, EVT VT2, SDValue Op1, 8449 SDValue Op2, SDValue Op3) { 8450 SDVTList VTs = getVTList(VT1, VT2); 8451 SDValue Ops[] = { Op1, Op2, Op3 }; 8452 return getMachineNode(Opcode, dl, VTs, Ops); 8453 } 8454 8455 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8456 EVT VT1, EVT VT2, 8457 ArrayRef<SDValue> Ops) { 8458 SDVTList VTs = getVTList(VT1, VT2); 8459 return getMachineNode(Opcode, dl, VTs, Ops); 8460 } 8461 8462 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8463 EVT VT1, EVT VT2, EVT VT3, 8464 SDValue Op1, SDValue Op2) { 8465 SDVTList VTs = getVTList(VT1, VT2, VT3); 8466 SDValue Ops[] = { Op1, Op2 }; 8467 return getMachineNode(Opcode, dl, VTs, Ops); 8468 } 8469 8470 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8471 EVT VT1, EVT VT2, EVT VT3, 8472 SDValue Op1, SDValue Op2, 8473 SDValue Op3) { 8474 SDVTList VTs = getVTList(VT1, VT2, VT3); 8475 SDValue Ops[] = { Op1, Op2, Op3 }; 8476 return getMachineNode(Opcode, dl, VTs, Ops); 8477 } 8478 8479 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8480 EVT VT1, EVT VT2, EVT VT3, 8481 ArrayRef<SDValue> Ops) { 8482 SDVTList VTs = getVTList(VT1, VT2, VT3); 8483 return getMachineNode(Opcode, dl, VTs, Ops); 8484 } 8485 8486 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8487 ArrayRef<EVT> ResultTys, 8488 ArrayRef<SDValue> Ops) { 8489 SDVTList VTs = getVTList(ResultTys); 8490 return getMachineNode(Opcode, dl, VTs, Ops); 8491 } 8492 8493 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8494 SDVTList VTs, 8495 ArrayRef<SDValue> Ops) { 8496 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8497 MachineSDNode *N; 8498 void *IP = nullptr; 8499 8500 if (DoCSE) { 8501 FoldingSetNodeID ID; 8502 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8503 IP = nullptr; 8504 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8505 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8506 } 8507 } 8508 8509 // Allocate a new MachineSDNode. 8510 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8511 createOperands(N, Ops); 8512 8513 if (DoCSE) 8514 CSEMap.InsertNode(N, IP); 8515 8516 InsertNode(N); 8517 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8518 return N; 8519 } 8520 8521 /// getTargetExtractSubreg - A convenience function for creating 8522 /// TargetOpcode::EXTRACT_SUBREG nodes. 8523 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8524 SDValue Operand) { 8525 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8526 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8527 VT, Operand, SRIdxVal); 8528 return SDValue(Subreg, 0); 8529 } 8530 8531 /// getTargetInsertSubreg - A convenience function for creating 8532 /// TargetOpcode::INSERT_SUBREG nodes. 8533 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8534 SDValue Operand, SDValue Subreg) { 8535 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8536 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8537 VT, Operand, Subreg, SRIdxVal); 8538 return SDValue(Result, 0); 8539 } 8540 8541 /// getNodeIfExists - Get the specified node if it's already available, or 8542 /// else return NULL. 8543 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8544 ArrayRef<SDValue> Ops) { 8545 SDNodeFlags Flags; 8546 if (Inserter) 8547 Flags = Inserter->getFlags(); 8548 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8549 } 8550 8551 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8552 ArrayRef<SDValue> Ops, 8553 const SDNodeFlags Flags) { 8554 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8555 FoldingSetNodeID ID; 8556 AddNodeIDNode(ID, Opcode, VTList, Ops); 8557 void *IP = nullptr; 8558 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8559 E->intersectFlagsWith(Flags); 8560 return E; 8561 } 8562 } 8563 return nullptr; 8564 } 8565 8566 /// doesNodeExist - Check if a node exists without modifying its flags. 8567 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8568 ArrayRef<SDValue> Ops) { 8569 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8570 FoldingSetNodeID ID; 8571 AddNodeIDNode(ID, Opcode, VTList, Ops); 8572 void *IP = nullptr; 8573 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8574 return true; 8575 } 8576 return false; 8577 } 8578 8579 /// getDbgValue - Creates a SDDbgValue node. 8580 /// 8581 /// SDNode 8582 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8583 SDNode *N, unsigned R, bool IsIndirect, 8584 const DebugLoc &DL, unsigned O) { 8585 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8586 "Expected inlined-at fields to agree"); 8587 return new (DbgInfo->getAlloc()) 8588 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 8589 {}, IsIndirect, DL, O, 8590 /*IsVariadic=*/false); 8591 } 8592 8593 /// Constant 8594 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8595 DIExpression *Expr, 8596 const Value *C, 8597 const DebugLoc &DL, unsigned O) { 8598 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8599 "Expected inlined-at fields to agree"); 8600 return new (DbgInfo->getAlloc()) 8601 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 8602 /*IsIndirect=*/false, DL, O, 8603 /*IsVariadic=*/false); 8604 } 8605 8606 /// FrameIndex 8607 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8608 DIExpression *Expr, unsigned FI, 8609 bool IsIndirect, 8610 const DebugLoc &DL, 8611 unsigned O) { 8612 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8613 "Expected inlined-at fields to agree"); 8614 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8615 } 8616 8617 /// FrameIndex with dependencies 8618 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8619 DIExpression *Expr, unsigned FI, 8620 ArrayRef<SDNode *> Dependencies, 8621 bool IsIndirect, 8622 const DebugLoc &DL, 8623 unsigned O) { 8624 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8625 "Expected inlined-at fields to agree"); 8626 return new (DbgInfo->getAlloc()) 8627 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 8628 Dependencies, IsIndirect, DL, O, 8629 /*IsVariadic=*/false); 8630 } 8631 8632 /// VReg 8633 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8634 unsigned VReg, bool IsIndirect, 8635 const DebugLoc &DL, unsigned O) { 8636 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8637 "Expected inlined-at fields to agree"); 8638 return new (DbgInfo->getAlloc()) 8639 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 8640 {}, IsIndirect, DL, O, 8641 /*IsVariadic=*/false); 8642 } 8643 8644 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8645 ArrayRef<SDDbgOperand> Locs, 8646 ArrayRef<SDNode *> Dependencies, 8647 bool IsIndirect, const DebugLoc &DL, 8648 unsigned O, bool IsVariadic) { 8649 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8650 "Expected inlined-at fields to agree"); 8651 return new (DbgInfo->getAlloc()) 8652 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 8653 DL, O, IsVariadic); 8654 } 8655 8656 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8657 unsigned OffsetInBits, unsigned SizeInBits, 8658 bool InvalidateDbg) { 8659 SDNode *FromNode = From.getNode(); 8660 SDNode *ToNode = To.getNode(); 8661 assert(FromNode && ToNode && "Can't modify dbg values"); 8662 8663 // PR35338 8664 // TODO: assert(From != To && "Redundant dbg value transfer"); 8665 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8666 if (From == To || FromNode == ToNode) 8667 return; 8668 8669 if (!FromNode->getHasDebugValue()) 8670 return; 8671 8672 SDDbgOperand FromLocOp = 8673 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8674 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8675 8676 SmallVector<SDDbgValue *, 2> ClonedDVs; 8677 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8678 if (Dbg->isInvalidated()) 8679 continue; 8680 8681 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8682 8683 // Create a new location ops vector that is equal to the old vector, but 8684 // with each instance of FromLocOp replaced with ToLocOp. 8685 bool Changed = false; 8686 auto NewLocOps = Dbg->copyLocationOps(); 8687 std::replace_if( 8688 NewLocOps.begin(), NewLocOps.end(), 8689 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8690 bool Match = Op == FromLocOp; 8691 Changed |= Match; 8692 return Match; 8693 }, 8694 ToLocOp); 8695 // Ignore this SDDbgValue if we didn't find a matching location. 8696 if (!Changed) 8697 continue; 8698 8699 DIVariable *Var = Dbg->getVariable(); 8700 auto *Expr = Dbg->getExpression(); 8701 // If a fragment is requested, update the expression. 8702 if (SizeInBits) { 8703 // When splitting a larger (e.g., sign-extended) value whose 8704 // lower bits are described with an SDDbgValue, do not attempt 8705 // to transfer the SDDbgValue to the upper bits. 8706 if (auto FI = Expr->getFragmentInfo()) 8707 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8708 continue; 8709 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8710 SizeInBits); 8711 if (!Fragment) 8712 continue; 8713 Expr = *Fragment; 8714 } 8715 8716 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 8717 // Clone the SDDbgValue and move it to To. 8718 SDDbgValue *Clone = getDbgValueList( 8719 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 8720 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8721 Dbg->isVariadic()); 8722 ClonedDVs.push_back(Clone); 8723 8724 if (InvalidateDbg) { 8725 // Invalidate value and indicate the SDDbgValue should not be emitted. 8726 Dbg->setIsInvalidated(); 8727 Dbg->setIsEmitted(); 8728 } 8729 } 8730 8731 for (SDDbgValue *Dbg : ClonedDVs) { 8732 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8733 "Transferred DbgValues should depend on the new SDNode"); 8734 AddDbgValue(Dbg, false); 8735 } 8736 } 8737 8738 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8739 if (!N.getHasDebugValue()) 8740 return; 8741 8742 SmallVector<SDDbgValue *, 2> ClonedDVs; 8743 for (auto DV : GetDbgValues(&N)) { 8744 if (DV->isInvalidated()) 8745 continue; 8746 switch (N.getOpcode()) { 8747 default: 8748 break; 8749 case ISD::ADD: 8750 SDValue N0 = N.getOperand(0); 8751 SDValue N1 = N.getOperand(1); 8752 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8753 isConstantIntBuildVectorOrConstantInt(N1)) { 8754 uint64_t Offset = N.getConstantOperandVal(1); 8755 8756 // Rewrite an ADD constant node into a DIExpression. Since we are 8757 // performing arithmetic to compute the variable's *value* in the 8758 // DIExpression, we need to mark the expression with a 8759 // DW_OP_stack_value. 8760 auto *DIExpr = DV->getExpression(); 8761 auto NewLocOps = DV->copyLocationOps(); 8762 bool Changed = false; 8763 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8764 // We're not given a ResNo to compare against because the whole 8765 // node is going away. We know that any ISD::ADD only has one 8766 // result, so we can assume any node match is using the result. 8767 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8768 NewLocOps[i].getSDNode() != &N) 8769 continue; 8770 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8771 SmallVector<uint64_t, 3> ExprOps; 8772 DIExpression::appendOffset(ExprOps, Offset); 8773 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8774 Changed = true; 8775 } 8776 (void)Changed; 8777 assert(Changed && "Salvage target doesn't use N"); 8778 8779 auto AdditionalDependencies = DV->getAdditionalDependencies(); 8780 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8781 NewLocOps, AdditionalDependencies, 8782 DV->isIndirect(), DV->getDebugLoc(), 8783 DV->getOrder(), DV->isVariadic()); 8784 ClonedDVs.push_back(Clone); 8785 DV->setIsInvalidated(); 8786 DV->setIsEmitted(); 8787 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8788 N0.getNode()->dumprFull(this); 8789 dbgs() << " into " << *DIExpr << '\n'); 8790 } 8791 } 8792 } 8793 8794 for (SDDbgValue *Dbg : ClonedDVs) { 8795 assert(!Dbg->getSDNodes().empty() && 8796 "Salvaged DbgValue should depend on a new SDNode"); 8797 AddDbgValue(Dbg, false); 8798 } 8799 } 8800 8801 /// Creates a SDDbgLabel node. 8802 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8803 const DebugLoc &DL, unsigned O) { 8804 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8805 "Expected inlined-at fields to agree"); 8806 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8807 } 8808 8809 namespace { 8810 8811 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8812 /// pointed to by a use iterator is deleted, increment the use iterator 8813 /// so that it doesn't dangle. 8814 /// 8815 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8816 SDNode::use_iterator &UI; 8817 SDNode::use_iterator &UE; 8818 8819 void NodeDeleted(SDNode *N, SDNode *E) override { 8820 // Increment the iterator as needed. 8821 while (UI != UE && N == *UI) 8822 ++UI; 8823 } 8824 8825 public: 8826 RAUWUpdateListener(SelectionDAG &d, 8827 SDNode::use_iterator &ui, 8828 SDNode::use_iterator &ue) 8829 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8830 }; 8831 8832 } // end anonymous namespace 8833 8834 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8835 /// This can cause recursive merging of nodes in the DAG. 8836 /// 8837 /// This version assumes From has a single result value. 8838 /// 8839 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8840 SDNode *From = FromN.getNode(); 8841 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8842 "Cannot replace with this method!"); 8843 assert(From != To.getNode() && "Cannot replace uses of with self"); 8844 8845 // Preserve Debug Values 8846 transferDbgValues(FromN, To); 8847 8848 // Iterate over all the existing uses of From. New uses will be added 8849 // to the beginning of the use list, which we avoid visiting. 8850 // This specifically avoids visiting uses of From that arise while the 8851 // replacement is happening, because any such uses would be the result 8852 // of CSE: If an existing node looks like From after one of its operands 8853 // is replaced by To, we don't want to replace of all its users with To 8854 // too. See PR3018 for more info. 8855 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8856 RAUWUpdateListener Listener(*this, UI, UE); 8857 while (UI != UE) { 8858 SDNode *User = *UI; 8859 8860 // This node is about to morph, remove its old self from the CSE maps. 8861 RemoveNodeFromCSEMaps(User); 8862 8863 // A user can appear in a use list multiple times, and when this 8864 // happens the uses are usually next to each other in the list. 8865 // To help reduce the number of CSE recomputations, process all 8866 // the uses of this user that we can find this way. 8867 do { 8868 SDUse &Use = UI.getUse(); 8869 ++UI; 8870 Use.set(To); 8871 if (To->isDivergent() != From->isDivergent()) 8872 updateDivergence(User); 8873 } while (UI != UE && *UI == User); 8874 // Now that we have modified User, add it back to the CSE maps. If it 8875 // already exists there, recursively merge the results together. 8876 AddModifiedNodeToCSEMaps(User); 8877 } 8878 8879 // If we just RAUW'd the root, take note. 8880 if (FromN == getRoot()) 8881 setRoot(To); 8882 } 8883 8884 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8885 /// This can cause recursive merging of nodes in the DAG. 8886 /// 8887 /// This version assumes that for each value of From, there is a 8888 /// corresponding value in To in the same position with the same type. 8889 /// 8890 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8891 #ifndef NDEBUG 8892 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8893 assert((!From->hasAnyUseOfValue(i) || 8894 From->getValueType(i) == To->getValueType(i)) && 8895 "Cannot use this version of ReplaceAllUsesWith!"); 8896 #endif 8897 8898 // Handle the trivial case. 8899 if (From == To) 8900 return; 8901 8902 // Preserve Debug Info. Only do this if there's a use. 8903 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8904 if (From->hasAnyUseOfValue(i)) { 8905 assert((i < To->getNumValues()) && "Invalid To location"); 8906 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8907 } 8908 8909 // Iterate over just the existing users of From. See the comments in 8910 // the ReplaceAllUsesWith above. 8911 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8912 RAUWUpdateListener Listener(*this, UI, UE); 8913 while (UI != UE) { 8914 SDNode *User = *UI; 8915 8916 // This node is about to morph, remove its old self from the CSE maps. 8917 RemoveNodeFromCSEMaps(User); 8918 8919 // A user can appear in a use list multiple times, and when this 8920 // happens the uses are usually next to each other in the list. 8921 // To help reduce the number of CSE recomputations, process all 8922 // the uses of this user that we can find this way. 8923 do { 8924 SDUse &Use = UI.getUse(); 8925 ++UI; 8926 Use.setNode(To); 8927 if (To->isDivergent() != From->isDivergent()) 8928 updateDivergence(User); 8929 } while (UI != UE && *UI == User); 8930 8931 // Now that we have modified User, add it back to the CSE maps. If it 8932 // already exists there, recursively merge the results together. 8933 AddModifiedNodeToCSEMaps(User); 8934 } 8935 8936 // If we just RAUW'd the root, take note. 8937 if (From == getRoot().getNode()) 8938 setRoot(SDValue(To, getRoot().getResNo())); 8939 } 8940 8941 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8942 /// This can cause recursive merging of nodes in the DAG. 8943 /// 8944 /// This version can replace From with any result values. To must match the 8945 /// number and types of values returned by From. 8946 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8947 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8948 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8949 8950 // Preserve Debug Info. 8951 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8952 transferDbgValues(SDValue(From, i), To[i]); 8953 8954 // Iterate over just the existing users of From. See the comments in 8955 // the ReplaceAllUsesWith above. 8956 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8957 RAUWUpdateListener Listener(*this, UI, UE); 8958 while (UI != UE) { 8959 SDNode *User = *UI; 8960 8961 // This node is about to morph, remove its old self from the CSE maps. 8962 RemoveNodeFromCSEMaps(User); 8963 8964 // A user can appear in a use list multiple times, and when this happens the 8965 // uses are usually next to each other in the list. To help reduce the 8966 // number of CSE and divergence recomputations, process all the uses of this 8967 // user that we can find this way. 8968 bool To_IsDivergent = false; 8969 do { 8970 SDUse &Use = UI.getUse(); 8971 const SDValue &ToOp = To[Use.getResNo()]; 8972 ++UI; 8973 Use.set(ToOp); 8974 To_IsDivergent |= ToOp->isDivergent(); 8975 } while (UI != UE && *UI == User); 8976 8977 if (To_IsDivergent != From->isDivergent()) 8978 updateDivergence(User); 8979 8980 // Now that we have modified User, add it back to the CSE maps. If it 8981 // already exists there, recursively merge the results together. 8982 AddModifiedNodeToCSEMaps(User); 8983 } 8984 8985 // If we just RAUW'd the root, take note. 8986 if (From == getRoot().getNode()) 8987 setRoot(SDValue(To[getRoot().getResNo()])); 8988 } 8989 8990 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8991 /// uses of other values produced by From.getNode() alone. The Deleted 8992 /// vector is handled the same way as for ReplaceAllUsesWith. 8993 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8994 // Handle the really simple, really trivial case efficiently. 8995 if (From == To) return; 8996 8997 // Handle the simple, trivial, case efficiently. 8998 if (From.getNode()->getNumValues() == 1) { 8999 ReplaceAllUsesWith(From, To); 9000 return; 9001 } 9002 9003 // Preserve Debug Info. 9004 transferDbgValues(From, To); 9005 9006 // Iterate over just the existing users of From. See the comments in 9007 // the ReplaceAllUsesWith above. 9008 SDNode::use_iterator UI = From.getNode()->use_begin(), 9009 UE = From.getNode()->use_end(); 9010 RAUWUpdateListener Listener(*this, UI, UE); 9011 while (UI != UE) { 9012 SDNode *User = *UI; 9013 bool UserRemovedFromCSEMaps = false; 9014 9015 // A user can appear in a use list multiple times, and when this 9016 // happens the uses are usually next to each other in the list. 9017 // To help reduce the number of CSE recomputations, process all 9018 // the uses of this user that we can find this way. 9019 do { 9020 SDUse &Use = UI.getUse(); 9021 9022 // Skip uses of different values from the same node. 9023 if (Use.getResNo() != From.getResNo()) { 9024 ++UI; 9025 continue; 9026 } 9027 9028 // If this node hasn't been modified yet, it's still in the CSE maps, 9029 // so remove its old self from the CSE maps. 9030 if (!UserRemovedFromCSEMaps) { 9031 RemoveNodeFromCSEMaps(User); 9032 UserRemovedFromCSEMaps = true; 9033 } 9034 9035 ++UI; 9036 Use.set(To); 9037 if (To->isDivergent() != From->isDivergent()) 9038 updateDivergence(User); 9039 } while (UI != UE && *UI == User); 9040 // We are iterating over all uses of the From node, so if a use 9041 // doesn't use the specific value, no changes are made. 9042 if (!UserRemovedFromCSEMaps) 9043 continue; 9044 9045 // Now that we have modified User, add it back to the CSE maps. If it 9046 // already exists there, recursively merge the results together. 9047 AddModifiedNodeToCSEMaps(User); 9048 } 9049 9050 // If we just RAUW'd the root, take note. 9051 if (From == getRoot()) 9052 setRoot(To); 9053 } 9054 9055 namespace { 9056 9057 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9058 /// to record information about a use. 9059 struct UseMemo { 9060 SDNode *User; 9061 unsigned Index; 9062 SDUse *Use; 9063 }; 9064 9065 /// operator< - Sort Memos by User. 9066 bool operator<(const UseMemo &L, const UseMemo &R) { 9067 return (intptr_t)L.User < (intptr_t)R.User; 9068 } 9069 9070 } // end anonymous namespace 9071 9072 bool SelectionDAG::calculateDivergence(SDNode *N) { 9073 if (TLI->isSDNodeAlwaysUniform(N)) { 9074 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9075 "Conflicting divergence information!"); 9076 return false; 9077 } 9078 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9079 return true; 9080 for (auto &Op : N->ops()) { 9081 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9082 return true; 9083 } 9084 return false; 9085 } 9086 9087 void SelectionDAG::updateDivergence(SDNode *N) { 9088 SmallVector<SDNode *, 16> Worklist(1, N); 9089 do { 9090 N = Worklist.pop_back_val(); 9091 bool IsDivergent = calculateDivergence(N); 9092 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9093 N->SDNodeBits.IsDivergent = IsDivergent; 9094 llvm::append_range(Worklist, N->uses()); 9095 } 9096 } while (!Worklist.empty()); 9097 } 9098 9099 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9100 DenseMap<SDNode *, unsigned> Degree; 9101 Order.reserve(AllNodes.size()); 9102 for (auto &N : allnodes()) { 9103 unsigned NOps = N.getNumOperands(); 9104 Degree[&N] = NOps; 9105 if (0 == NOps) 9106 Order.push_back(&N); 9107 } 9108 for (size_t I = 0; I != Order.size(); ++I) { 9109 SDNode *N = Order[I]; 9110 for (auto U : N->uses()) { 9111 unsigned &UnsortedOps = Degree[U]; 9112 if (0 == --UnsortedOps) 9113 Order.push_back(U); 9114 } 9115 } 9116 } 9117 9118 #ifndef NDEBUG 9119 void SelectionDAG::VerifyDAGDiverence() { 9120 std::vector<SDNode *> TopoOrder; 9121 CreateTopologicalOrder(TopoOrder); 9122 for (auto *N : TopoOrder) { 9123 assert(calculateDivergence(N) == N->isDivergent() && 9124 "Divergence bit inconsistency detected"); 9125 } 9126 } 9127 #endif 9128 9129 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9130 /// uses of other values produced by From.getNode() alone. The same value 9131 /// may appear in both the From and To list. The Deleted vector is 9132 /// handled the same way as for ReplaceAllUsesWith. 9133 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9134 const SDValue *To, 9135 unsigned Num){ 9136 // Handle the simple, trivial case efficiently. 9137 if (Num == 1) 9138 return ReplaceAllUsesOfValueWith(*From, *To); 9139 9140 transferDbgValues(*From, *To); 9141 9142 // Read up all the uses and make records of them. This helps 9143 // processing new uses that are introduced during the 9144 // replacement process. 9145 SmallVector<UseMemo, 4> Uses; 9146 for (unsigned i = 0; i != Num; ++i) { 9147 unsigned FromResNo = From[i].getResNo(); 9148 SDNode *FromNode = From[i].getNode(); 9149 for (SDNode::use_iterator UI = FromNode->use_begin(), 9150 E = FromNode->use_end(); UI != E; ++UI) { 9151 SDUse &Use = UI.getUse(); 9152 if (Use.getResNo() == FromResNo) { 9153 UseMemo Memo = { *UI, i, &Use }; 9154 Uses.push_back(Memo); 9155 } 9156 } 9157 } 9158 9159 // Sort the uses, so that all the uses from a given User are together. 9160 llvm::sort(Uses); 9161 9162 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9163 UseIndex != UseIndexEnd; ) { 9164 // We know that this user uses some value of From. If it is the right 9165 // value, update it. 9166 SDNode *User = Uses[UseIndex].User; 9167 9168 // This node is about to morph, remove its old self from the CSE maps. 9169 RemoveNodeFromCSEMaps(User); 9170 9171 // The Uses array is sorted, so all the uses for a given User 9172 // are next to each other in the list. 9173 // To help reduce the number of CSE recomputations, process all 9174 // the uses of this user that we can find this way. 9175 do { 9176 unsigned i = Uses[UseIndex].Index; 9177 SDUse &Use = *Uses[UseIndex].Use; 9178 ++UseIndex; 9179 9180 Use.set(To[i]); 9181 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9182 9183 // Now that we have modified User, add it back to the CSE maps. If it 9184 // already exists there, recursively merge the results together. 9185 AddModifiedNodeToCSEMaps(User); 9186 } 9187 } 9188 9189 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9190 /// based on their topological order. It returns the maximum id and a vector 9191 /// of the SDNodes* in assigned order by reference. 9192 unsigned SelectionDAG::AssignTopologicalOrder() { 9193 unsigned DAGSize = 0; 9194 9195 // SortedPos tracks the progress of the algorithm. Nodes before it are 9196 // sorted, nodes after it are unsorted. When the algorithm completes 9197 // it is at the end of the list. 9198 allnodes_iterator SortedPos = allnodes_begin(); 9199 9200 // Visit all the nodes. Move nodes with no operands to the front of 9201 // the list immediately. Annotate nodes that do have operands with their 9202 // operand count. Before we do this, the Node Id fields of the nodes 9203 // may contain arbitrary values. After, the Node Id fields for nodes 9204 // before SortedPos will contain the topological sort index, and the 9205 // Node Id fields for nodes At SortedPos and after will contain the 9206 // count of outstanding operands. 9207 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9208 SDNode *N = &*I++; 9209 checkForCycles(N, this); 9210 unsigned Degree = N->getNumOperands(); 9211 if (Degree == 0) { 9212 // A node with no uses, add it to the result array immediately. 9213 N->setNodeId(DAGSize++); 9214 allnodes_iterator Q(N); 9215 if (Q != SortedPos) 9216 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9217 assert(SortedPos != AllNodes.end() && "Overran node list"); 9218 ++SortedPos; 9219 } else { 9220 // Temporarily use the Node Id as scratch space for the degree count. 9221 N->setNodeId(Degree); 9222 } 9223 } 9224 9225 // Visit all the nodes. As we iterate, move nodes into sorted order, 9226 // such that by the time the end is reached all nodes will be sorted. 9227 for (SDNode &Node : allnodes()) { 9228 SDNode *N = &Node; 9229 checkForCycles(N, this); 9230 // N is in sorted position, so all its uses have one less operand 9231 // that needs to be sorted. 9232 for (SDNode *P : N->uses()) { 9233 unsigned Degree = P->getNodeId(); 9234 assert(Degree != 0 && "Invalid node degree"); 9235 --Degree; 9236 if (Degree == 0) { 9237 // All of P's operands are sorted, so P may sorted now. 9238 P->setNodeId(DAGSize++); 9239 if (P->getIterator() != SortedPos) 9240 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9241 assert(SortedPos != AllNodes.end() && "Overran node list"); 9242 ++SortedPos; 9243 } else { 9244 // Update P's outstanding operand count. 9245 P->setNodeId(Degree); 9246 } 9247 } 9248 if (Node.getIterator() == SortedPos) { 9249 #ifndef NDEBUG 9250 allnodes_iterator I(N); 9251 SDNode *S = &*++I; 9252 dbgs() << "Overran sorted position:\n"; 9253 S->dumprFull(this); dbgs() << "\n"; 9254 dbgs() << "Checking if this is due to cycles\n"; 9255 checkForCycles(this, true); 9256 #endif 9257 llvm_unreachable(nullptr); 9258 } 9259 } 9260 9261 assert(SortedPos == AllNodes.end() && 9262 "Topological sort incomplete!"); 9263 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9264 "First node in topological sort is not the entry token!"); 9265 assert(AllNodes.front().getNodeId() == 0 && 9266 "First node in topological sort has non-zero id!"); 9267 assert(AllNodes.front().getNumOperands() == 0 && 9268 "First node in topological sort has operands!"); 9269 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9270 "Last node in topologic sort has unexpected id!"); 9271 assert(AllNodes.back().use_empty() && 9272 "Last node in topologic sort has users!"); 9273 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9274 return DAGSize; 9275 } 9276 9277 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9278 /// value is produced by SD. 9279 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9280 for (SDNode *SD : DB->getSDNodes()) { 9281 if (!SD) 9282 continue; 9283 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9284 SD->setHasDebugValue(true); 9285 } 9286 DbgInfo->add(DB, isParameter); 9287 } 9288 9289 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9290 9291 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9292 SDValue NewMemOpChain) { 9293 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9294 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9295 // The new memory operation must have the same position as the old load in 9296 // terms of memory dependency. Create a TokenFactor for the old load and new 9297 // memory operation and update uses of the old load's output chain to use that 9298 // TokenFactor. 9299 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9300 return NewMemOpChain; 9301 9302 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9303 OldChain, NewMemOpChain); 9304 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9305 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9306 return TokenFactor; 9307 } 9308 9309 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9310 SDValue NewMemOp) { 9311 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9312 SDValue OldChain = SDValue(OldLoad, 1); 9313 SDValue NewMemOpChain = NewMemOp.getValue(1); 9314 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9315 } 9316 9317 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9318 Function **OutFunction) { 9319 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9320 9321 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9322 auto *Module = MF->getFunction().getParent(); 9323 auto *Function = Module->getFunction(Symbol); 9324 9325 if (OutFunction != nullptr) 9326 *OutFunction = Function; 9327 9328 if (Function != nullptr) { 9329 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9330 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9331 } 9332 9333 std::string ErrorStr; 9334 raw_string_ostream ErrorFormatter(ErrorStr); 9335 9336 ErrorFormatter << "Undefined external symbol "; 9337 ErrorFormatter << '"' << Symbol << '"'; 9338 ErrorFormatter.flush(); 9339 9340 report_fatal_error(ErrorStr); 9341 } 9342 9343 //===----------------------------------------------------------------------===// 9344 // SDNode Class 9345 //===----------------------------------------------------------------------===// 9346 9347 bool llvm::isNullConstant(SDValue V) { 9348 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9349 return Const != nullptr && Const->isNullValue(); 9350 } 9351 9352 bool llvm::isNullFPConstant(SDValue V) { 9353 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9354 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9355 } 9356 9357 bool llvm::isAllOnesConstant(SDValue V) { 9358 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9359 return Const != nullptr && Const->isAllOnesValue(); 9360 } 9361 9362 bool llvm::isOneConstant(SDValue V) { 9363 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9364 return Const != nullptr && Const->isOne(); 9365 } 9366 9367 SDValue llvm::peekThroughBitcasts(SDValue V) { 9368 while (V.getOpcode() == ISD::BITCAST) 9369 V = V.getOperand(0); 9370 return V; 9371 } 9372 9373 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9374 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9375 V = V.getOperand(0); 9376 return V; 9377 } 9378 9379 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9380 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9381 V = V.getOperand(0); 9382 return V; 9383 } 9384 9385 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9386 if (V.getOpcode() != ISD::XOR) 9387 return false; 9388 V = peekThroughBitcasts(V.getOperand(1)); 9389 unsigned NumBits = V.getScalarValueSizeInBits(); 9390 ConstantSDNode *C = 9391 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9392 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9393 } 9394 9395 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9396 bool AllowTruncation) { 9397 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9398 return CN; 9399 9400 // SplatVectors can truncate their operands. Ignore that case here unless 9401 // AllowTruncation is set. 9402 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9403 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9404 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9405 EVT CVT = CN->getValueType(0); 9406 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9407 if (AllowTruncation || CVT == VecEltVT) 9408 return CN; 9409 } 9410 } 9411 9412 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9413 BitVector UndefElements; 9414 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9415 9416 // BuildVectors can truncate their operands. Ignore that case here unless 9417 // AllowTruncation is set. 9418 if (CN && (UndefElements.none() || AllowUndefs)) { 9419 EVT CVT = CN->getValueType(0); 9420 EVT NSVT = N.getValueType().getScalarType(); 9421 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9422 if (AllowTruncation || (CVT == NSVT)) 9423 return CN; 9424 } 9425 } 9426 9427 return nullptr; 9428 } 9429 9430 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9431 bool AllowUndefs, 9432 bool AllowTruncation) { 9433 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9434 return CN; 9435 9436 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9437 BitVector UndefElements; 9438 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9439 9440 // BuildVectors can truncate their operands. Ignore that case here unless 9441 // AllowTruncation is set. 9442 if (CN && (UndefElements.none() || AllowUndefs)) { 9443 EVT CVT = CN->getValueType(0); 9444 EVT NSVT = N.getValueType().getScalarType(); 9445 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9446 if (AllowTruncation || (CVT == NSVT)) 9447 return CN; 9448 } 9449 } 9450 9451 return nullptr; 9452 } 9453 9454 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9455 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9456 return CN; 9457 9458 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9459 BitVector UndefElements; 9460 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9461 if (CN && (UndefElements.none() || AllowUndefs)) 9462 return CN; 9463 } 9464 9465 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9466 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9467 return CN; 9468 9469 return nullptr; 9470 } 9471 9472 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9473 const APInt &DemandedElts, 9474 bool AllowUndefs) { 9475 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9476 return CN; 9477 9478 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9479 BitVector UndefElements; 9480 ConstantFPSDNode *CN = 9481 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9482 if (CN && (UndefElements.none() || AllowUndefs)) 9483 return CN; 9484 } 9485 9486 return nullptr; 9487 } 9488 9489 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9490 // TODO: may want to use peekThroughBitcast() here. 9491 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9492 return C && C->isNullValue(); 9493 } 9494 9495 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9496 // TODO: may want to use peekThroughBitcast() here. 9497 unsigned BitWidth = N.getScalarValueSizeInBits(); 9498 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9499 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9500 } 9501 9502 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9503 N = peekThroughBitcasts(N); 9504 unsigned BitWidth = N.getScalarValueSizeInBits(); 9505 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9506 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9507 } 9508 9509 HandleSDNode::~HandleSDNode() { 9510 DropOperands(); 9511 } 9512 9513 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9514 const DebugLoc &DL, 9515 const GlobalValue *GA, EVT VT, 9516 int64_t o, unsigned TF) 9517 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9518 TheGlobal = GA; 9519 } 9520 9521 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9522 EVT VT, unsigned SrcAS, 9523 unsigned DestAS) 9524 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9525 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9526 9527 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9528 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9529 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9530 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9531 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9532 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9533 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9534 9535 // We check here that the size of the memory operand fits within the size of 9536 // the MMO. This is because the MMO might indicate only a possible address 9537 // range instead of specifying the affected memory addresses precisely. 9538 // TODO: Make MachineMemOperands aware of scalable vectors. 9539 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9540 "Size mismatch!"); 9541 } 9542 9543 /// Profile - Gather unique data for the node. 9544 /// 9545 void SDNode::Profile(FoldingSetNodeID &ID) const { 9546 AddNodeIDNode(ID, this); 9547 } 9548 9549 namespace { 9550 9551 struct EVTArray { 9552 std::vector<EVT> VTs; 9553 9554 EVTArray() { 9555 VTs.reserve(MVT::LAST_VALUETYPE); 9556 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9557 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9558 } 9559 }; 9560 9561 } // end anonymous namespace 9562 9563 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9564 static ManagedStatic<EVTArray> SimpleVTArray; 9565 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9566 9567 /// getValueTypeList - Return a pointer to the specified value type. 9568 /// 9569 const EVT *SDNode::getValueTypeList(EVT VT) { 9570 if (VT.isExtended()) { 9571 sys::SmartScopedLock<true> Lock(*VTMutex); 9572 return &(*EVTs->insert(VT).first); 9573 } else { 9574 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9575 "Value type out of range!"); 9576 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9577 } 9578 } 9579 9580 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9581 /// indicated value. This method ignores uses of other values defined by this 9582 /// operation. 9583 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9584 assert(Value < getNumValues() && "Bad value!"); 9585 9586 // TODO: Only iterate over uses of a given value of the node 9587 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9588 if (UI.getUse().getResNo() == Value) { 9589 if (NUses == 0) 9590 return false; 9591 --NUses; 9592 } 9593 } 9594 9595 // Found exactly the right number of uses? 9596 return NUses == 0; 9597 } 9598 9599 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9600 /// value. This method ignores uses of other values defined by this operation. 9601 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9602 assert(Value < getNumValues() && "Bad value!"); 9603 9604 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9605 if (UI.getUse().getResNo() == Value) 9606 return true; 9607 9608 return false; 9609 } 9610 9611 /// isOnlyUserOf - Return true if this node is the only use of N. 9612 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9613 bool Seen = false; 9614 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9615 SDNode *User = *I; 9616 if (User == this) 9617 Seen = true; 9618 else 9619 return false; 9620 } 9621 9622 return Seen; 9623 } 9624 9625 /// Return true if the only users of N are contained in Nodes. 9626 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9627 bool Seen = false; 9628 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9629 SDNode *User = *I; 9630 if (llvm::is_contained(Nodes, User)) 9631 Seen = true; 9632 else 9633 return false; 9634 } 9635 9636 return Seen; 9637 } 9638 9639 /// isOperand - Return true if this node is an operand of N. 9640 bool SDValue::isOperandOf(const SDNode *N) const { 9641 return is_contained(N->op_values(), *this); 9642 } 9643 9644 bool SDNode::isOperandOf(const SDNode *N) const { 9645 return any_of(N->op_values(), 9646 [this](SDValue Op) { return this == Op.getNode(); }); 9647 } 9648 9649 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9650 /// be a chain) reaches the specified operand without crossing any 9651 /// side-effecting instructions on any chain path. In practice, this looks 9652 /// through token factors and non-volatile loads. In order to remain efficient, 9653 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9654 /// 9655 /// Note that we only need to examine chains when we're searching for 9656 /// side-effects; SelectionDAG requires that all side-effects are represented 9657 /// by chains, even if another operand would force a specific ordering. This 9658 /// constraint is necessary to allow transformations like splitting loads. 9659 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9660 unsigned Depth) const { 9661 if (*this == Dest) return true; 9662 9663 // Don't search too deeply, we just want to be able to see through 9664 // TokenFactor's etc. 9665 if (Depth == 0) return false; 9666 9667 // If this is a token factor, all inputs to the TF happen in parallel. 9668 if (getOpcode() == ISD::TokenFactor) { 9669 // First, try a shallow search. 9670 if (is_contained((*this)->ops(), Dest)) { 9671 // We found the chain we want as an operand of this TokenFactor. 9672 // Essentially, we reach the chain without side-effects if we could 9673 // serialize the TokenFactor into a simple chain of operations with 9674 // Dest as the last operation. This is automatically true if the 9675 // chain has one use: there are no other ordering constraints. 9676 // If the chain has more than one use, we give up: some other 9677 // use of Dest might force a side-effect between Dest and the current 9678 // node. 9679 if (Dest.hasOneUse()) 9680 return true; 9681 } 9682 // Next, try a deep search: check whether every operand of the TokenFactor 9683 // reaches Dest. 9684 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9685 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9686 }); 9687 } 9688 9689 // Loads don't have side effects, look through them. 9690 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9691 if (Ld->isUnordered()) 9692 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9693 } 9694 return false; 9695 } 9696 9697 bool SDNode::hasPredecessor(const SDNode *N) const { 9698 SmallPtrSet<const SDNode *, 32> Visited; 9699 SmallVector<const SDNode *, 16> Worklist; 9700 Worklist.push_back(this); 9701 return hasPredecessorHelper(N, Visited, Worklist); 9702 } 9703 9704 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9705 this->Flags.intersectWith(Flags); 9706 } 9707 9708 SDValue 9709 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9710 ArrayRef<ISD::NodeType> CandidateBinOps, 9711 bool AllowPartials) { 9712 // The pattern must end in an extract from index 0. 9713 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9714 !isNullConstant(Extract->getOperand(1))) 9715 return SDValue(); 9716 9717 // Match against one of the candidate binary ops. 9718 SDValue Op = Extract->getOperand(0); 9719 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9720 return Op.getOpcode() == unsigned(BinOp); 9721 })) 9722 return SDValue(); 9723 9724 // Floating-point reductions may require relaxed constraints on the final step 9725 // of the reduction because they may reorder intermediate operations. 9726 unsigned CandidateBinOp = Op.getOpcode(); 9727 if (Op.getValueType().isFloatingPoint()) { 9728 SDNodeFlags Flags = Op->getFlags(); 9729 switch (CandidateBinOp) { 9730 case ISD::FADD: 9731 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9732 return SDValue(); 9733 break; 9734 default: 9735 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9736 } 9737 } 9738 9739 // Matching failed - attempt to see if we did enough stages that a partial 9740 // reduction from a subvector is possible. 9741 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9742 if (!AllowPartials || !Op) 9743 return SDValue(); 9744 EVT OpVT = Op.getValueType(); 9745 EVT OpSVT = OpVT.getScalarType(); 9746 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9747 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9748 return SDValue(); 9749 BinOp = (ISD::NodeType)CandidateBinOp; 9750 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9751 getVectorIdxConstant(0, SDLoc(Op))); 9752 }; 9753 9754 // At each stage, we're looking for something that looks like: 9755 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9756 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9757 // i32 undef, i32 undef, i32 undef, i32 undef> 9758 // %a = binop <8 x i32> %op, %s 9759 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9760 // we expect something like: 9761 // <4,5,6,7,u,u,u,u> 9762 // <2,3,u,u,u,u,u,u> 9763 // <1,u,u,u,u,u,u,u> 9764 // While a partial reduction match would be: 9765 // <2,3,u,u,u,u,u,u> 9766 // <1,u,u,u,u,u,u,u> 9767 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9768 SDValue PrevOp; 9769 for (unsigned i = 0; i < Stages; ++i) { 9770 unsigned MaskEnd = (1 << i); 9771 9772 if (Op.getOpcode() != CandidateBinOp) 9773 return PartialReduction(PrevOp, MaskEnd); 9774 9775 SDValue Op0 = Op.getOperand(0); 9776 SDValue Op1 = Op.getOperand(1); 9777 9778 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9779 if (Shuffle) { 9780 Op = Op1; 9781 } else { 9782 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9783 Op = Op0; 9784 } 9785 9786 // The first operand of the shuffle should be the same as the other operand 9787 // of the binop. 9788 if (!Shuffle || Shuffle->getOperand(0) != Op) 9789 return PartialReduction(PrevOp, MaskEnd); 9790 9791 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9792 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9793 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9794 return PartialReduction(PrevOp, MaskEnd); 9795 9796 PrevOp = Op; 9797 } 9798 9799 // Handle subvector reductions, which tend to appear after the shuffle 9800 // reduction stages. 9801 while (Op.getOpcode() == CandidateBinOp) { 9802 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9803 SDValue Op0 = Op.getOperand(0); 9804 SDValue Op1 = Op.getOperand(1); 9805 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9806 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9807 Op0.getOperand(0) != Op1.getOperand(0)) 9808 break; 9809 SDValue Src = Op0.getOperand(0); 9810 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9811 if (NumSrcElts != (2 * NumElts)) 9812 break; 9813 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9814 Op1.getConstantOperandAPInt(1) == NumElts) && 9815 !(Op1.getConstantOperandAPInt(1) == 0 && 9816 Op0.getConstantOperandAPInt(1) == NumElts)) 9817 break; 9818 Op = Src; 9819 } 9820 9821 BinOp = (ISD::NodeType)CandidateBinOp; 9822 return Op; 9823 } 9824 9825 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9826 assert(N->getNumValues() == 1 && 9827 "Can't unroll a vector with multiple results!"); 9828 9829 EVT VT = N->getValueType(0); 9830 unsigned NE = VT.getVectorNumElements(); 9831 EVT EltVT = VT.getVectorElementType(); 9832 SDLoc dl(N); 9833 9834 SmallVector<SDValue, 8> Scalars; 9835 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9836 9837 // If ResNE is 0, fully unroll the vector op. 9838 if (ResNE == 0) 9839 ResNE = NE; 9840 else if (NE > ResNE) 9841 NE = ResNE; 9842 9843 unsigned i; 9844 for (i= 0; i != NE; ++i) { 9845 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9846 SDValue Operand = N->getOperand(j); 9847 EVT OperandVT = Operand.getValueType(); 9848 if (OperandVT.isVector()) { 9849 // A vector operand; extract a single element. 9850 EVT OperandEltVT = OperandVT.getVectorElementType(); 9851 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9852 Operand, getVectorIdxConstant(i, dl)); 9853 } else { 9854 // A scalar operand; just use it as is. 9855 Operands[j] = Operand; 9856 } 9857 } 9858 9859 switch (N->getOpcode()) { 9860 default: { 9861 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9862 N->getFlags())); 9863 break; 9864 } 9865 case ISD::VSELECT: 9866 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9867 break; 9868 case ISD::SHL: 9869 case ISD::SRA: 9870 case ISD::SRL: 9871 case ISD::ROTL: 9872 case ISD::ROTR: 9873 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9874 getShiftAmountOperand(Operands[0].getValueType(), 9875 Operands[1]))); 9876 break; 9877 case ISD::SIGN_EXTEND_INREG: { 9878 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9879 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9880 Operands[0], 9881 getValueType(ExtVT))); 9882 } 9883 } 9884 } 9885 9886 for (; i < ResNE; ++i) 9887 Scalars.push_back(getUNDEF(EltVT)); 9888 9889 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9890 return getBuildVector(VecVT, dl, Scalars); 9891 } 9892 9893 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9894 SDNode *N, unsigned ResNE) { 9895 unsigned Opcode = N->getOpcode(); 9896 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9897 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9898 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9899 "Expected an overflow opcode"); 9900 9901 EVT ResVT = N->getValueType(0); 9902 EVT OvVT = N->getValueType(1); 9903 EVT ResEltVT = ResVT.getVectorElementType(); 9904 EVT OvEltVT = OvVT.getVectorElementType(); 9905 SDLoc dl(N); 9906 9907 // If ResNE is 0, fully unroll the vector op. 9908 unsigned NE = ResVT.getVectorNumElements(); 9909 if (ResNE == 0) 9910 ResNE = NE; 9911 else if (NE > ResNE) 9912 NE = ResNE; 9913 9914 SmallVector<SDValue, 8> LHSScalars; 9915 SmallVector<SDValue, 8> RHSScalars; 9916 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9917 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9918 9919 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9920 SDVTList VTs = getVTList(ResEltVT, SVT); 9921 SmallVector<SDValue, 8> ResScalars; 9922 SmallVector<SDValue, 8> OvScalars; 9923 for (unsigned i = 0; i < NE; ++i) { 9924 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9925 SDValue Ov = 9926 getSelect(dl, OvEltVT, Res.getValue(1), 9927 getBoolConstant(true, dl, OvEltVT, ResVT), 9928 getConstant(0, dl, OvEltVT)); 9929 9930 ResScalars.push_back(Res); 9931 OvScalars.push_back(Ov); 9932 } 9933 9934 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9935 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9936 9937 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9938 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9939 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9940 getBuildVector(NewOvVT, dl, OvScalars)); 9941 } 9942 9943 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9944 LoadSDNode *Base, 9945 unsigned Bytes, 9946 int Dist) const { 9947 if (LD->isVolatile() || Base->isVolatile()) 9948 return false; 9949 // TODO: probably too restrictive for atomics, revisit 9950 if (!LD->isSimple()) 9951 return false; 9952 if (LD->isIndexed() || Base->isIndexed()) 9953 return false; 9954 if (LD->getChain() != Base->getChain()) 9955 return false; 9956 EVT VT = LD->getValueType(0); 9957 if (VT.getSizeInBits() / 8 != Bytes) 9958 return false; 9959 9960 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9961 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9962 9963 int64_t Offset = 0; 9964 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9965 return (Dist * Bytes == Offset); 9966 return false; 9967 } 9968 9969 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9970 /// if it cannot be inferred. 9971 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9972 // If this is a GlobalAddress + cst, return the alignment. 9973 const GlobalValue *GV = nullptr; 9974 int64_t GVOffset = 0; 9975 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9976 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9977 KnownBits Known(PtrWidth); 9978 llvm::computeKnownBits(GV, Known, getDataLayout()); 9979 unsigned AlignBits = Known.countMinTrailingZeros(); 9980 if (AlignBits) 9981 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9982 } 9983 9984 // If this is a direct reference to a stack slot, use information about the 9985 // stack slot's alignment. 9986 int FrameIdx = INT_MIN; 9987 int64_t FrameOffset = 0; 9988 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9989 FrameIdx = FI->getIndex(); 9990 } else if (isBaseWithConstantOffset(Ptr) && 9991 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9992 // Handle FI+Cst 9993 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9994 FrameOffset = Ptr.getConstantOperandVal(1); 9995 } 9996 9997 if (FrameIdx != INT_MIN) { 9998 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9999 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10000 } 10001 10002 return None; 10003 } 10004 10005 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10006 /// which is split (or expanded) into two not necessarily identical pieces. 10007 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10008 // Currently all types are split in half. 10009 EVT LoVT, HiVT; 10010 if (!VT.isVector()) 10011 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10012 else 10013 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10014 10015 return std::make_pair(LoVT, HiVT); 10016 } 10017 10018 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10019 /// type, dependent on an enveloping VT that has been split into two identical 10020 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10021 std::pair<EVT, EVT> 10022 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10023 bool *HiIsEmpty) const { 10024 EVT EltTp = VT.getVectorElementType(); 10025 // Examples: 10026 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10027 // custom VL=9 with enveloping VL=8/8 yields 8/1 10028 // custom VL=10 with enveloping VL=8/8 yields 8/2 10029 // etc. 10030 ElementCount VTNumElts = VT.getVectorElementCount(); 10031 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10032 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10033 "Mixing fixed width and scalable vectors when enveloping a type"); 10034 EVT LoVT, HiVT; 10035 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10036 LoVT = EnvVT; 10037 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10038 *HiIsEmpty = false; 10039 } else { 10040 // Flag that hi type has zero storage size, but return split envelop type 10041 // (this would be easier if vector types with zero elements were allowed). 10042 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10043 HiVT = EnvVT; 10044 *HiIsEmpty = true; 10045 } 10046 return std::make_pair(LoVT, HiVT); 10047 } 10048 10049 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10050 /// low/high part. 10051 std::pair<SDValue, SDValue> 10052 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10053 const EVT &HiVT) { 10054 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10055 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10056 "Splitting vector with an invalid mixture of fixed and scalable " 10057 "vector types"); 10058 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10059 N.getValueType().getVectorMinNumElements() && 10060 "More vector elements requested than available!"); 10061 SDValue Lo, Hi; 10062 Lo = 10063 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10064 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10065 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10066 // IDX with the runtime scaling factor of the result vector type. For 10067 // fixed-width result vectors, that runtime scaling factor is 1. 10068 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10069 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10070 return std::make_pair(Lo, Hi); 10071 } 10072 10073 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10074 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10075 EVT VT = N.getValueType(); 10076 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10077 NextPowerOf2(VT.getVectorNumElements())); 10078 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10079 getVectorIdxConstant(0, DL)); 10080 } 10081 10082 void SelectionDAG::ExtractVectorElements(SDValue Op, 10083 SmallVectorImpl<SDValue> &Args, 10084 unsigned Start, unsigned Count, 10085 EVT EltVT) { 10086 EVT VT = Op.getValueType(); 10087 if (Count == 0) 10088 Count = VT.getVectorNumElements(); 10089 if (EltVT == EVT()) 10090 EltVT = VT.getVectorElementType(); 10091 SDLoc SL(Op); 10092 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10093 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10094 getVectorIdxConstant(i, SL))); 10095 } 10096 } 10097 10098 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10099 unsigned GlobalAddressSDNode::getAddressSpace() const { 10100 return getGlobal()->getType()->getAddressSpace(); 10101 } 10102 10103 Type *ConstantPoolSDNode::getType() const { 10104 if (isMachineConstantPoolEntry()) 10105 return Val.MachineCPVal->getType(); 10106 return Val.ConstVal->getType(); 10107 } 10108 10109 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10110 unsigned &SplatBitSize, 10111 bool &HasAnyUndefs, 10112 unsigned MinSplatBits, 10113 bool IsBigEndian) const { 10114 EVT VT = getValueType(0); 10115 assert(VT.isVector() && "Expected a vector type"); 10116 unsigned VecWidth = VT.getSizeInBits(); 10117 if (MinSplatBits > VecWidth) 10118 return false; 10119 10120 // FIXME: The widths are based on this node's type, but build vectors can 10121 // truncate their operands. 10122 SplatValue = APInt(VecWidth, 0); 10123 SplatUndef = APInt(VecWidth, 0); 10124 10125 // Get the bits. Bits with undefined values (when the corresponding element 10126 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10127 // in SplatValue. If any of the values are not constant, give up and return 10128 // false. 10129 unsigned int NumOps = getNumOperands(); 10130 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10131 unsigned EltWidth = VT.getScalarSizeInBits(); 10132 10133 for (unsigned j = 0; j < NumOps; ++j) { 10134 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10135 SDValue OpVal = getOperand(i); 10136 unsigned BitPos = j * EltWidth; 10137 10138 if (OpVal.isUndef()) 10139 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10140 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10141 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10142 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10143 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10144 else 10145 return false; 10146 } 10147 10148 // The build_vector is all constants or undefs. Find the smallest element 10149 // size that splats the vector. 10150 HasAnyUndefs = (SplatUndef != 0); 10151 10152 // FIXME: This does not work for vectors with elements less than 8 bits. 10153 while (VecWidth > 8) { 10154 unsigned HalfSize = VecWidth / 2; 10155 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 10156 APInt LowValue = SplatValue.trunc(HalfSize); 10157 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 10158 APInt LowUndef = SplatUndef.trunc(HalfSize); 10159 10160 // If the two halves do not match (ignoring undef bits), stop here. 10161 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10162 MinSplatBits > HalfSize) 10163 break; 10164 10165 SplatValue = HighValue | LowValue; 10166 SplatUndef = HighUndef & LowUndef; 10167 10168 VecWidth = HalfSize; 10169 } 10170 10171 SplatBitSize = VecWidth; 10172 return true; 10173 } 10174 10175 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10176 BitVector *UndefElements) const { 10177 unsigned NumOps = getNumOperands(); 10178 if (UndefElements) { 10179 UndefElements->clear(); 10180 UndefElements->resize(NumOps); 10181 } 10182 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10183 if (!DemandedElts) 10184 return SDValue(); 10185 SDValue Splatted; 10186 for (unsigned i = 0; i != NumOps; ++i) { 10187 if (!DemandedElts[i]) 10188 continue; 10189 SDValue Op = getOperand(i); 10190 if (Op.isUndef()) { 10191 if (UndefElements) 10192 (*UndefElements)[i] = true; 10193 } else if (!Splatted) { 10194 Splatted = Op; 10195 } else if (Splatted != Op) { 10196 return SDValue(); 10197 } 10198 } 10199 10200 if (!Splatted) { 10201 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10202 assert(getOperand(FirstDemandedIdx).isUndef() && 10203 "Can only have a splat without a constant for all undefs."); 10204 return getOperand(FirstDemandedIdx); 10205 } 10206 10207 return Splatted; 10208 } 10209 10210 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10211 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10212 return getSplatValue(DemandedElts, UndefElements); 10213 } 10214 10215 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10216 SmallVectorImpl<SDValue> &Sequence, 10217 BitVector *UndefElements) const { 10218 unsigned NumOps = getNumOperands(); 10219 Sequence.clear(); 10220 if (UndefElements) { 10221 UndefElements->clear(); 10222 UndefElements->resize(NumOps); 10223 } 10224 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10225 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10226 return false; 10227 10228 // Set the undefs even if we don't find a sequence (like getSplatValue). 10229 if (UndefElements) 10230 for (unsigned I = 0; I != NumOps; ++I) 10231 if (DemandedElts[I] && getOperand(I).isUndef()) 10232 (*UndefElements)[I] = true; 10233 10234 // Iteratively widen the sequence length looking for repetitions. 10235 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10236 Sequence.append(SeqLen, SDValue()); 10237 for (unsigned I = 0; I != NumOps; ++I) { 10238 if (!DemandedElts[I]) 10239 continue; 10240 SDValue &SeqOp = Sequence[I % SeqLen]; 10241 SDValue Op = getOperand(I); 10242 if (Op.isUndef()) { 10243 if (!SeqOp) 10244 SeqOp = Op; 10245 continue; 10246 } 10247 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10248 Sequence.clear(); 10249 break; 10250 } 10251 SeqOp = Op; 10252 } 10253 if (!Sequence.empty()) 10254 return true; 10255 } 10256 10257 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10258 return false; 10259 } 10260 10261 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10262 BitVector *UndefElements) const { 10263 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10264 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10265 } 10266 10267 ConstantSDNode * 10268 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10269 BitVector *UndefElements) const { 10270 return dyn_cast_or_null<ConstantSDNode>( 10271 getSplatValue(DemandedElts, UndefElements)); 10272 } 10273 10274 ConstantSDNode * 10275 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10276 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10277 } 10278 10279 ConstantFPSDNode * 10280 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10281 BitVector *UndefElements) const { 10282 return dyn_cast_or_null<ConstantFPSDNode>( 10283 getSplatValue(DemandedElts, UndefElements)); 10284 } 10285 10286 ConstantFPSDNode * 10287 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10288 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10289 } 10290 10291 int32_t 10292 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10293 uint32_t BitWidth) const { 10294 if (ConstantFPSDNode *CN = 10295 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10296 bool IsExact; 10297 APSInt IntVal(BitWidth); 10298 const APFloat &APF = CN->getValueAPF(); 10299 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10300 APFloat::opOK || 10301 !IsExact) 10302 return -1; 10303 10304 return IntVal.exactLogBase2(); 10305 } 10306 return -1; 10307 } 10308 10309 bool BuildVectorSDNode::isConstant() const { 10310 for (const SDValue &Op : op_values()) { 10311 unsigned Opc = Op.getOpcode(); 10312 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10313 return false; 10314 } 10315 return true; 10316 } 10317 10318 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10319 // Find the first non-undef value in the shuffle mask. 10320 unsigned i, e; 10321 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10322 /* search */; 10323 10324 // If all elements are undefined, this shuffle can be considered a splat 10325 // (although it should eventually get simplified away completely). 10326 if (i == e) 10327 return true; 10328 10329 // Make sure all remaining elements are either undef or the same as the first 10330 // non-undef value. 10331 for (int Idx = Mask[i]; i != e; ++i) 10332 if (Mask[i] >= 0 && Mask[i] != Idx) 10333 return false; 10334 return true; 10335 } 10336 10337 // Returns the SDNode if it is a constant integer BuildVector 10338 // or constant integer. 10339 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10340 if (isa<ConstantSDNode>(N)) 10341 return N.getNode(); 10342 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10343 return N.getNode(); 10344 // Treat a GlobalAddress supporting constant offset folding as a 10345 // constant integer. 10346 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10347 if (GA->getOpcode() == ISD::GlobalAddress && 10348 TLI->isOffsetFoldingLegal(GA)) 10349 return GA; 10350 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10351 isa<ConstantSDNode>(N.getOperand(0))) 10352 return N.getNode(); 10353 return nullptr; 10354 } 10355 10356 // Returns the SDNode if it is a constant float BuildVector 10357 // or constant float. 10358 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10359 if (isa<ConstantFPSDNode>(N)) 10360 return N.getNode(); 10361 10362 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10363 return N.getNode(); 10364 10365 return nullptr; 10366 } 10367 10368 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10369 assert(!Node->OperandList && "Node already has operands"); 10370 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10371 "too many operands to fit into SDNode"); 10372 SDUse *Ops = OperandRecycler.allocate( 10373 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10374 10375 bool IsDivergent = false; 10376 for (unsigned I = 0; I != Vals.size(); ++I) { 10377 Ops[I].setUser(Node); 10378 Ops[I].setInitial(Vals[I]); 10379 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10380 IsDivergent |= Ops[I].getNode()->isDivergent(); 10381 } 10382 Node->NumOperands = Vals.size(); 10383 Node->OperandList = Ops; 10384 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10385 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10386 Node->SDNodeBits.IsDivergent = IsDivergent; 10387 } 10388 checkForCycles(Node); 10389 } 10390 10391 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10392 SmallVectorImpl<SDValue> &Vals) { 10393 size_t Limit = SDNode::getMaxNumOperands(); 10394 while (Vals.size() > Limit) { 10395 unsigned SliceIdx = Vals.size() - Limit; 10396 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10397 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10398 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10399 Vals.emplace_back(NewTF); 10400 } 10401 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10402 } 10403 10404 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10405 EVT VT, SDNodeFlags Flags) { 10406 switch (Opcode) { 10407 default: 10408 return SDValue(); 10409 case ISD::ADD: 10410 case ISD::OR: 10411 case ISD::XOR: 10412 case ISD::UMAX: 10413 return getConstant(0, DL, VT); 10414 case ISD::MUL: 10415 return getConstant(1, DL, VT); 10416 case ISD::AND: 10417 case ISD::UMIN: 10418 return getAllOnesConstant(DL, VT); 10419 case ISD::SMAX: 10420 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10421 case ISD::SMIN: 10422 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10423 case ISD::FADD: 10424 return getConstantFP(-0.0, DL, VT); 10425 case ISD::FMUL: 10426 return getConstantFP(1.0, DL, VT); 10427 case ISD::FMINNUM: 10428 case ISD::FMAXNUM: { 10429 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10430 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10431 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10432 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10433 APFloat::getLargest(Semantics); 10434 if (Opcode == ISD::FMAXNUM) 10435 NeutralAF.changeSign(); 10436 10437 return getConstantFP(NeutralAF, DL, VT); 10438 } 10439 } 10440 } 10441 10442 #ifndef NDEBUG 10443 static void checkForCyclesHelper(const SDNode *N, 10444 SmallPtrSetImpl<const SDNode*> &Visited, 10445 SmallPtrSetImpl<const SDNode*> &Checked, 10446 const llvm::SelectionDAG *DAG) { 10447 // If this node has already been checked, don't check it again. 10448 if (Checked.count(N)) 10449 return; 10450 10451 // If a node has already been visited on this depth-first walk, reject it as 10452 // a cycle. 10453 if (!Visited.insert(N).second) { 10454 errs() << "Detected cycle in SelectionDAG\n"; 10455 dbgs() << "Offending node:\n"; 10456 N->dumprFull(DAG); dbgs() << "\n"; 10457 abort(); 10458 } 10459 10460 for (const SDValue &Op : N->op_values()) 10461 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10462 10463 Checked.insert(N); 10464 Visited.erase(N); 10465 } 10466 #endif 10467 10468 void llvm::checkForCycles(const llvm::SDNode *N, 10469 const llvm::SelectionDAG *DAG, 10470 bool force) { 10471 #ifndef NDEBUG 10472 bool check = force; 10473 #ifdef EXPENSIVE_CHECKS 10474 check = true; 10475 #endif // EXPENSIVE_CHECKS 10476 if (check) { 10477 assert(N && "Checking nonexistent SDNode"); 10478 SmallPtrSet<const SDNode*, 32> visited; 10479 SmallPtrSet<const SDNode*, 32> checked; 10480 checkForCyclesHelper(N, visited, checked, DAG); 10481 } 10482 #endif // !NDEBUG 10483 } 10484 10485 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10486 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10487 } 10488