1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 410 case ISD::SDOPC: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return false; 420 #define PROPERTY_VP_BINARYOP_SDNODE(SDOPC) \ 421 case ISD::SDOPC: \ 422 return true; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 bool ISD::isVPReduction(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 return false; 431 #define PROPERTY_VP_REDUCTION_SDNODE(SDOPC) \ 432 case ISD::SDOPC: \ 433 return true; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 } 437 438 /// The operand position of the vector mask. 439 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 440 switch (Opcode) { 441 default: 442 return None; 443 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 444 case ISD::SDOPC: \ 445 return MASKPOS; 446 #include "llvm/IR/VPIntrinsics.def" 447 } 448 } 449 450 /// The operand position of the explicit vector length parameter. 451 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 452 switch (Opcode) { 453 default: 454 return None; 455 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 456 case ISD::SDOPC: \ 457 return EVLPOS; 458 #include "llvm/IR/VPIntrinsics.def" 459 } 460 } 461 462 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 463 switch (ExtType) { 464 case ISD::EXTLOAD: 465 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 466 case ISD::SEXTLOAD: 467 return ISD::SIGN_EXTEND; 468 case ISD::ZEXTLOAD: 469 return ISD::ZERO_EXTEND; 470 default: 471 break; 472 } 473 474 llvm_unreachable("Invalid LoadExtType"); 475 } 476 477 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 478 // To perform this operation, we just need to swap the L and G bits of the 479 // operation. 480 unsigned OldL = (Operation >> 2) & 1; 481 unsigned OldG = (Operation >> 1) & 1; 482 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 483 (OldL << 1) | // New G bit 484 (OldG << 2)); // New L bit. 485 } 486 487 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 488 unsigned Operation = Op; 489 if (isIntegerLike) 490 Operation ^= 7; // Flip L, G, E bits, but not U. 491 else 492 Operation ^= 15; // Flip all of the condition bits. 493 494 if (Operation > ISD::SETTRUE2) 495 Operation &= ~8; // Don't let N and U bits get set. 496 497 return ISD::CondCode(Operation); 498 } 499 500 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 501 return getSetCCInverseImpl(Op, Type.isInteger()); 502 } 503 504 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 505 bool isIntegerLike) { 506 return getSetCCInverseImpl(Op, isIntegerLike); 507 } 508 509 /// For an integer comparison, return 1 if the comparison is a signed operation 510 /// and 2 if the result is an unsigned comparison. Return zero if the operation 511 /// does not depend on the sign of the input (setne and seteq). 512 static int isSignedOp(ISD::CondCode Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Illegal integer setcc operation!"); 515 case ISD::SETEQ: 516 case ISD::SETNE: return 0; 517 case ISD::SETLT: 518 case ISD::SETLE: 519 case ISD::SETGT: 520 case ISD::SETGE: return 1; 521 case ISD::SETULT: 522 case ISD::SETULE: 523 case ISD::SETUGT: 524 case ISD::SETUGE: return 2; 525 } 526 } 527 528 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 529 EVT Type) { 530 bool IsInteger = Type.isInteger(); 531 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 532 // Cannot fold a signed integer setcc with an unsigned integer setcc. 533 return ISD::SETCC_INVALID; 534 535 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 536 537 // If the N and U bits get set, then the resultant comparison DOES suddenly 538 // care about orderedness, and it is true when ordered. 539 if (Op > ISD::SETTRUE2) 540 Op &= ~16; // Clear the U bit if the N bit is set. 541 542 // Canonicalize illegal integer setcc's. 543 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 544 Op = ISD::SETNE; 545 546 return ISD::CondCode(Op); 547 } 548 549 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 550 EVT Type) { 551 bool IsInteger = Type.isInteger(); 552 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 553 // Cannot fold a signed setcc with an unsigned setcc. 554 return ISD::SETCC_INVALID; 555 556 // Combine all of the condition bits. 557 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger) { 561 switch (Result) { 562 default: break; 563 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 564 case ISD::SETOEQ: // SETEQ & SETU[LG]E 565 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 566 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 567 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 568 } 569 } 570 571 return Result; 572 } 573 574 //===----------------------------------------------------------------------===// 575 // SDNode Profile Support 576 //===----------------------------------------------------------------------===// 577 578 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 579 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 580 ID.AddInteger(OpC); 581 } 582 583 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 584 /// solely with their pointer. 585 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 586 ID.AddPointer(VTList.VTs); 587 } 588 589 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 590 static void AddNodeIDOperands(FoldingSetNodeID &ID, 591 ArrayRef<SDValue> Ops) { 592 for (auto& Op : Ops) { 593 ID.AddPointer(Op.getNode()); 594 ID.AddInteger(Op.getResNo()); 595 } 596 } 597 598 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 599 static void AddNodeIDOperands(FoldingSetNodeID &ID, 600 ArrayRef<SDUse> Ops) { 601 for (auto& Op : Ops) { 602 ID.AddPointer(Op.getNode()); 603 ID.AddInteger(Op.getResNo()); 604 } 605 } 606 607 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 608 SDVTList VTList, ArrayRef<SDValue> OpList) { 609 AddNodeIDOpcode(ID, OpC); 610 AddNodeIDValueTypes(ID, VTList); 611 AddNodeIDOperands(ID, OpList); 612 } 613 614 /// If this is an SDNode with special info, add this info to the NodeID data. 615 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 616 switch (N->getOpcode()) { 617 case ISD::TargetExternalSymbol: 618 case ISD::ExternalSymbol: 619 case ISD::MCSymbol: 620 llvm_unreachable("Should only be used on nodes with operands"); 621 default: break; // Normal nodes don't need extra info. 622 case ISD::TargetConstant: 623 case ISD::Constant: { 624 const ConstantSDNode *C = cast<ConstantSDNode>(N); 625 ID.AddPointer(C->getConstantIntValue()); 626 ID.AddBoolean(C->isOpaque()); 627 break; 628 } 629 case ISD::TargetConstantFP: 630 case ISD::ConstantFP: 631 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 632 break; 633 case ISD::TargetGlobalAddress: 634 case ISD::GlobalAddress: 635 case ISD::TargetGlobalTLSAddress: 636 case ISD::GlobalTLSAddress: { 637 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 638 ID.AddPointer(GA->getGlobal()); 639 ID.AddInteger(GA->getOffset()); 640 ID.AddInteger(GA->getTargetFlags()); 641 break; 642 } 643 case ISD::BasicBlock: 644 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 645 break; 646 case ISD::Register: 647 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 648 break; 649 case ISD::RegisterMask: 650 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 651 break; 652 case ISD::SRCVALUE: 653 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 654 break; 655 case ISD::FrameIndex: 656 case ISD::TargetFrameIndex: 657 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 658 break; 659 case ISD::LIFETIME_START: 660 case ISD::LIFETIME_END: 661 if (cast<LifetimeSDNode>(N)->hasOffset()) { 662 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 663 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 664 } 665 break; 666 case ISD::PSEUDO_PROBE: 667 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 668 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 670 break; 671 case ISD::JumpTable: 672 case ISD::TargetJumpTable: 673 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 674 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 675 break; 676 case ISD::ConstantPool: 677 case ISD::TargetConstantPool: { 678 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 679 ID.AddInteger(CP->getAlign().value()); 680 ID.AddInteger(CP->getOffset()); 681 if (CP->isMachineConstantPoolEntry()) 682 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 683 else 684 ID.AddPointer(CP->getConstVal()); 685 ID.AddInteger(CP->getTargetFlags()); 686 break; 687 } 688 case ISD::TargetIndex: { 689 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 690 ID.AddInteger(TI->getIndex()); 691 ID.AddInteger(TI->getOffset()); 692 ID.AddInteger(TI->getTargetFlags()); 693 break; 694 } 695 case ISD::LOAD: { 696 const LoadSDNode *LD = cast<LoadSDNode>(N); 697 ID.AddInteger(LD->getMemoryVT().getRawBits()); 698 ID.AddInteger(LD->getRawSubclassData()); 699 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::STORE: { 703 const StoreSDNode *ST = cast<StoreSDNode>(N); 704 ID.AddInteger(ST->getMemoryVT().getRawBits()); 705 ID.AddInteger(ST->getRawSubclassData()); 706 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::VP_LOAD: { 710 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 711 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 712 ID.AddInteger(ELD->getRawSubclassData()); 713 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 714 break; 715 } 716 case ISD::VP_STORE: { 717 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 718 ID.AddInteger(EST->getMemoryVT().getRawBits()); 719 ID.AddInteger(EST->getRawSubclassData()); 720 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 721 break; 722 } 723 case ISD::VP_GATHER: { 724 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 725 ID.AddInteger(EG->getMemoryVT().getRawBits()); 726 ID.AddInteger(EG->getRawSubclassData()); 727 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 728 break; 729 } 730 case ISD::VP_SCATTER: { 731 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 732 ID.AddInteger(ES->getMemoryVT().getRawBits()); 733 ID.AddInteger(ES->getRawSubclassData()); 734 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 735 break; 736 } 737 case ISD::MLOAD: { 738 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 739 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 740 ID.AddInteger(MLD->getRawSubclassData()); 741 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 742 break; 743 } 744 case ISD::MSTORE: { 745 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 746 ID.AddInteger(MST->getMemoryVT().getRawBits()); 747 ID.AddInteger(MST->getRawSubclassData()); 748 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 749 break; 750 } 751 case ISD::MGATHER: { 752 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 753 ID.AddInteger(MG->getMemoryVT().getRawBits()); 754 ID.AddInteger(MG->getRawSubclassData()); 755 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 756 break; 757 } 758 case ISD::MSCATTER: { 759 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 760 ID.AddInteger(MS->getMemoryVT().getRawBits()); 761 ID.AddInteger(MS->getRawSubclassData()); 762 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 763 break; 764 } 765 case ISD::ATOMIC_CMP_SWAP: 766 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 767 case ISD::ATOMIC_SWAP: 768 case ISD::ATOMIC_LOAD_ADD: 769 case ISD::ATOMIC_LOAD_SUB: 770 case ISD::ATOMIC_LOAD_AND: 771 case ISD::ATOMIC_LOAD_CLR: 772 case ISD::ATOMIC_LOAD_OR: 773 case ISD::ATOMIC_LOAD_XOR: 774 case ISD::ATOMIC_LOAD_NAND: 775 case ISD::ATOMIC_LOAD_MIN: 776 case ISD::ATOMIC_LOAD_MAX: 777 case ISD::ATOMIC_LOAD_UMIN: 778 case ISD::ATOMIC_LOAD_UMAX: 779 case ISD::ATOMIC_LOAD: 780 case ISD::ATOMIC_STORE: { 781 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 782 ID.AddInteger(AT->getMemoryVT().getRawBits()); 783 ID.AddInteger(AT->getRawSubclassData()); 784 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 785 break; 786 } 787 case ISD::PREFETCH: { 788 const MemSDNode *PF = cast<MemSDNode>(N); 789 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 790 break; 791 } 792 case ISD::VECTOR_SHUFFLE: { 793 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 794 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 795 i != e; ++i) 796 ID.AddInteger(SVN->getMaskElt(i)); 797 break; 798 } 799 case ISD::TargetBlockAddress: 800 case ISD::BlockAddress: { 801 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 802 ID.AddPointer(BA->getBlockAddress()); 803 ID.AddInteger(BA->getOffset()); 804 ID.AddInteger(BA->getTargetFlags()); 805 break; 806 } 807 } // end switch (N->getOpcode()) 808 809 // Target specific memory nodes could also have address spaces to check. 810 if (N->isTargetMemoryOpcode()) 811 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 812 } 813 814 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 815 /// data. 816 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 817 AddNodeIDOpcode(ID, N->getOpcode()); 818 // Add the return value info. 819 AddNodeIDValueTypes(ID, N->getVTList()); 820 // Add the operand info. 821 AddNodeIDOperands(ID, N->ops()); 822 823 // Handle SDNode leafs with special info. 824 AddNodeIDCustom(ID, N); 825 } 826 827 //===----------------------------------------------------------------------===// 828 // SelectionDAG Class 829 //===----------------------------------------------------------------------===// 830 831 /// doNotCSE - Return true if CSE should not be performed for this node. 832 static bool doNotCSE(SDNode *N) { 833 if (N->getValueType(0) == MVT::Glue) 834 return true; // Never CSE anything that produces a flag. 835 836 switch (N->getOpcode()) { 837 default: break; 838 case ISD::HANDLENODE: 839 case ISD::EH_LABEL: 840 return true; // Never CSE these nodes. 841 } 842 843 // Check that remaining values produced are not flags. 844 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 845 if (N->getValueType(i) == MVT::Glue) 846 return true; // Never CSE anything that produces a flag. 847 848 return false; 849 } 850 851 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 852 /// SelectionDAG. 853 void SelectionDAG::RemoveDeadNodes() { 854 // Create a dummy node (which is not added to allnodes), that adds a reference 855 // to the root node, preventing it from being deleted. 856 HandleSDNode Dummy(getRoot()); 857 858 SmallVector<SDNode*, 128> DeadNodes; 859 860 // Add all obviously-dead nodes to the DeadNodes worklist. 861 for (SDNode &Node : allnodes()) 862 if (Node.use_empty()) 863 DeadNodes.push_back(&Node); 864 865 RemoveDeadNodes(DeadNodes); 866 867 // If the root changed (e.g. it was a dead load, update the root). 868 setRoot(Dummy.getValue()); 869 } 870 871 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 872 /// given list, and any nodes that become unreachable as a result. 873 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 874 875 // Process the worklist, deleting the nodes and adding their uses to the 876 // worklist. 877 while (!DeadNodes.empty()) { 878 SDNode *N = DeadNodes.pop_back_val(); 879 // Skip to next node if we've already managed to delete the node. This could 880 // happen if replacing a node causes a node previously added to the node to 881 // be deleted. 882 if (N->getOpcode() == ISD::DELETED_NODE) 883 continue; 884 885 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 886 DUL->NodeDeleted(N, nullptr); 887 888 // Take the node out of the appropriate CSE map. 889 RemoveNodeFromCSEMaps(N); 890 891 // Next, brutally remove the operand list. This is safe to do, as there are 892 // no cycles in the graph. 893 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 894 SDUse &Use = *I++; 895 SDNode *Operand = Use.getNode(); 896 Use.set(SDValue()); 897 898 // Now that we removed this operand, see if there are no uses of it left. 899 if (Operand->use_empty()) 900 DeadNodes.push_back(Operand); 901 } 902 903 DeallocateNode(N); 904 } 905 } 906 907 void SelectionDAG::RemoveDeadNode(SDNode *N){ 908 SmallVector<SDNode*, 16> DeadNodes(1, N); 909 910 // Create a dummy node that adds a reference to the root node, preventing 911 // it from being deleted. (This matters if the root is an operand of the 912 // dead node.) 913 HandleSDNode Dummy(getRoot()); 914 915 RemoveDeadNodes(DeadNodes); 916 } 917 918 void SelectionDAG::DeleteNode(SDNode *N) { 919 // First take this out of the appropriate CSE map. 920 RemoveNodeFromCSEMaps(N); 921 922 // Finally, remove uses due to operands of this node, remove from the 923 // AllNodes list, and delete the node. 924 DeleteNodeNotInCSEMaps(N); 925 } 926 927 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 928 assert(N->getIterator() != AllNodes.begin() && 929 "Cannot delete the entry node!"); 930 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 931 932 // Drop all of the operands and decrement used node's use counts. 933 N->DropOperands(); 934 935 DeallocateNode(N); 936 } 937 938 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 939 assert(!(V->isVariadic() && isParameter)); 940 if (isParameter) 941 ByvalParmDbgValues.push_back(V); 942 else 943 DbgValues.push_back(V); 944 for (const SDNode *Node : V->getSDNodes()) 945 if (Node) 946 DbgValMap[Node].push_back(V); 947 } 948 949 void SDDbgInfo::erase(const SDNode *Node) { 950 DbgValMapType::iterator I = DbgValMap.find(Node); 951 if (I == DbgValMap.end()) 952 return; 953 for (auto &Val: I->second) 954 Val->setIsInvalidated(); 955 DbgValMap.erase(I); 956 } 957 958 void SelectionDAG::DeallocateNode(SDNode *N) { 959 // If we have operands, deallocate them. 960 removeOperands(N); 961 962 NodeAllocator.Deallocate(AllNodes.remove(N)); 963 964 // Set the opcode to DELETED_NODE to help catch bugs when node 965 // memory is reallocated. 966 // FIXME: There are places in SDag that have grown a dependency on the opcode 967 // value in the released node. 968 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 969 N->NodeType = ISD::DELETED_NODE; 970 971 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 972 // them and forget about that node. 973 DbgInfo->erase(N); 974 } 975 976 #ifndef NDEBUG 977 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 978 static void VerifySDNode(SDNode *N) { 979 switch (N->getOpcode()) { 980 default: 981 break; 982 case ISD::BUILD_PAIR: { 983 EVT VT = N->getValueType(0); 984 assert(N->getNumValues() == 1 && "Too many results!"); 985 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 986 "Wrong return type!"); 987 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 988 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 989 "Mismatched operand types!"); 990 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 991 "Wrong operand type!"); 992 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 993 "Wrong return type size"); 994 break; 995 } 996 case ISD::BUILD_VECTOR: { 997 assert(N->getNumValues() == 1 && "Too many results!"); 998 assert(N->getValueType(0).isVector() && "Wrong return type!"); 999 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1000 "Wrong number of operands!"); 1001 EVT EltVT = N->getValueType(0).getVectorElementType(); 1002 for (const SDUse &Op : N->ops()) { 1003 assert((Op.getValueType() == EltVT || 1004 (EltVT.isInteger() && Op.getValueType().isInteger() && 1005 EltVT.bitsLE(Op.getValueType()))) && 1006 "Wrong operand type!"); 1007 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1008 "Operands must all have the same type"); 1009 } 1010 break; 1011 } 1012 } 1013 } 1014 #endif // NDEBUG 1015 1016 /// Insert a newly allocated node into the DAG. 1017 /// 1018 /// Handles insertion into the all nodes list and CSE map, as well as 1019 /// verification and other common operations when a new node is allocated. 1020 void SelectionDAG::InsertNode(SDNode *N) { 1021 AllNodes.push_back(N); 1022 #ifndef NDEBUG 1023 N->PersistentId = NextPersistentId++; 1024 VerifySDNode(N); 1025 #endif 1026 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1027 DUL->NodeInserted(N); 1028 } 1029 1030 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1031 /// correspond to it. This is useful when we're about to delete or repurpose 1032 /// the node. We don't want future request for structurally identical nodes 1033 /// to return N anymore. 1034 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1035 bool Erased = false; 1036 switch (N->getOpcode()) { 1037 case ISD::HANDLENODE: return false; // noop. 1038 case ISD::CONDCODE: 1039 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1040 "Cond code doesn't exist!"); 1041 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1042 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1043 break; 1044 case ISD::ExternalSymbol: 1045 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1046 break; 1047 case ISD::TargetExternalSymbol: { 1048 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1049 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1050 ESN->getSymbol(), ESN->getTargetFlags())); 1051 break; 1052 } 1053 case ISD::MCSymbol: { 1054 auto *MCSN = cast<MCSymbolSDNode>(N); 1055 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1056 break; 1057 } 1058 case ISD::VALUETYPE: { 1059 EVT VT = cast<VTSDNode>(N)->getVT(); 1060 if (VT.isExtended()) { 1061 Erased = ExtendedValueTypeNodes.erase(VT); 1062 } else { 1063 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1064 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1065 } 1066 break; 1067 } 1068 default: 1069 // Remove it from the CSE Map. 1070 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1071 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1072 Erased = CSEMap.RemoveNode(N); 1073 break; 1074 } 1075 #ifndef NDEBUG 1076 // Verify that the node was actually in one of the CSE maps, unless it has a 1077 // flag result (which cannot be CSE'd) or is one of the special cases that are 1078 // not subject to CSE. 1079 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1080 !N->isMachineOpcode() && !doNotCSE(N)) { 1081 N->dump(this); 1082 dbgs() << "\n"; 1083 llvm_unreachable("Node is not in map!"); 1084 } 1085 #endif 1086 return Erased; 1087 } 1088 1089 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1090 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1091 /// node already exists, in which case transfer all its users to the existing 1092 /// node. This transfer can potentially trigger recursive merging. 1093 void 1094 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1095 // For node types that aren't CSE'd, just act as if no identical node 1096 // already exists. 1097 if (!doNotCSE(N)) { 1098 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1099 if (Existing != N) { 1100 // If there was already an existing matching node, use ReplaceAllUsesWith 1101 // to replace the dead one with the existing one. This can cause 1102 // recursive merging of other unrelated nodes down the line. 1103 ReplaceAllUsesWith(N, Existing); 1104 1105 // N is now dead. Inform the listeners and delete it. 1106 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1107 DUL->NodeDeleted(N, Existing); 1108 DeleteNodeNotInCSEMaps(N); 1109 return; 1110 } 1111 } 1112 1113 // If the node doesn't already exist, we updated it. Inform listeners. 1114 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1115 DUL->NodeUpdated(N); 1116 } 1117 1118 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1119 /// were replaced with those specified. If this node is never memoized, 1120 /// return null, otherwise return a pointer to the slot it would take. If a 1121 /// node already exists with these operands, the slot will be non-null. 1122 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1123 void *&InsertPos) { 1124 if (doNotCSE(N)) 1125 return nullptr; 1126 1127 SDValue Ops[] = { Op }; 1128 FoldingSetNodeID ID; 1129 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1130 AddNodeIDCustom(ID, N); 1131 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1132 if (Node) 1133 Node->intersectFlagsWith(N->getFlags()); 1134 return Node; 1135 } 1136 1137 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1138 /// were replaced with those specified. If this node is never memoized, 1139 /// return null, otherwise return a pointer to the slot it would take. If a 1140 /// node already exists with these operands, the slot will be non-null. 1141 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1142 SDValue Op1, SDValue Op2, 1143 void *&InsertPos) { 1144 if (doNotCSE(N)) 1145 return nullptr; 1146 1147 SDValue Ops[] = { Op1, Op2 }; 1148 FoldingSetNodeID ID; 1149 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1150 AddNodeIDCustom(ID, N); 1151 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1152 if (Node) 1153 Node->intersectFlagsWith(N->getFlags()); 1154 return Node; 1155 } 1156 1157 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1158 /// were replaced with those specified. If this node is never memoized, 1159 /// return null, otherwise return a pointer to the slot it would take. If a 1160 /// node already exists with these operands, the slot will be non-null. 1161 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1162 void *&InsertPos) { 1163 if (doNotCSE(N)) 1164 return nullptr; 1165 1166 FoldingSetNodeID ID; 1167 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1168 AddNodeIDCustom(ID, N); 1169 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1170 if (Node) 1171 Node->intersectFlagsWith(N->getFlags()); 1172 return Node; 1173 } 1174 1175 Align SelectionDAG::getEVTAlign(EVT VT) const { 1176 Type *Ty = VT == MVT::iPTR ? 1177 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1178 VT.getTypeForEVT(*getContext()); 1179 1180 return getDataLayout().getABITypeAlign(Ty); 1181 } 1182 1183 // EntryNode could meaningfully have debug info if we can find it... 1184 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1185 : TM(tm), OptLevel(OL), 1186 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1187 Root(getEntryNode()) { 1188 InsertNode(&EntryNode); 1189 DbgInfo = new SDDbgInfo(); 1190 } 1191 1192 void SelectionDAG::init(MachineFunction &NewMF, 1193 OptimizationRemarkEmitter &NewORE, 1194 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1195 LegacyDivergenceAnalysis * Divergence, 1196 ProfileSummaryInfo *PSIin, 1197 BlockFrequencyInfo *BFIin) { 1198 MF = &NewMF; 1199 SDAGISelPass = PassPtr; 1200 ORE = &NewORE; 1201 TLI = getSubtarget().getTargetLowering(); 1202 TSI = getSubtarget().getSelectionDAGInfo(); 1203 LibInfo = LibraryInfo; 1204 Context = &MF->getFunction().getContext(); 1205 DA = Divergence; 1206 PSI = PSIin; 1207 BFI = BFIin; 1208 } 1209 1210 SelectionDAG::~SelectionDAG() { 1211 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1212 allnodes_clear(); 1213 OperandRecycler.clear(OperandAllocator); 1214 delete DbgInfo; 1215 } 1216 1217 bool SelectionDAG::shouldOptForSize() const { 1218 return MF->getFunction().hasOptSize() || 1219 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1220 } 1221 1222 void SelectionDAG::allnodes_clear() { 1223 assert(&*AllNodes.begin() == &EntryNode); 1224 AllNodes.remove(AllNodes.begin()); 1225 while (!AllNodes.empty()) 1226 DeallocateNode(&AllNodes.front()); 1227 #ifndef NDEBUG 1228 NextPersistentId = 0; 1229 #endif 1230 } 1231 1232 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1233 void *&InsertPos) { 1234 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1235 if (N) { 1236 switch (N->getOpcode()) { 1237 default: break; 1238 case ISD::Constant: 1239 case ISD::ConstantFP: 1240 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1241 "debug location. Use another overload."); 1242 } 1243 } 1244 return N; 1245 } 1246 1247 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1248 const SDLoc &DL, void *&InsertPos) { 1249 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1250 if (N) { 1251 switch (N->getOpcode()) { 1252 case ISD::Constant: 1253 case ISD::ConstantFP: 1254 // Erase debug location from the node if the node is used at several 1255 // different places. Do not propagate one location to all uses as it 1256 // will cause a worse single stepping debugging experience. 1257 if (N->getDebugLoc() != DL.getDebugLoc()) 1258 N->setDebugLoc(DebugLoc()); 1259 break; 1260 default: 1261 // When the node's point of use is located earlier in the instruction 1262 // sequence than its prior point of use, update its debug info to the 1263 // earlier location. 1264 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1265 N->setDebugLoc(DL.getDebugLoc()); 1266 break; 1267 } 1268 } 1269 return N; 1270 } 1271 1272 void SelectionDAG::clear() { 1273 allnodes_clear(); 1274 OperandRecycler.clear(OperandAllocator); 1275 OperandAllocator.Reset(); 1276 CSEMap.clear(); 1277 1278 ExtendedValueTypeNodes.clear(); 1279 ExternalSymbols.clear(); 1280 TargetExternalSymbols.clear(); 1281 MCSymbols.clear(); 1282 SDCallSiteDbgInfo.clear(); 1283 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1284 static_cast<CondCodeSDNode*>(nullptr)); 1285 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1286 static_cast<SDNode*>(nullptr)); 1287 1288 EntryNode.UseList = nullptr; 1289 InsertNode(&EntryNode); 1290 Root = getEntryNode(); 1291 DbgInfo->clear(); 1292 } 1293 1294 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1295 return VT.bitsGT(Op.getValueType()) 1296 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1297 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1298 } 1299 1300 std::pair<SDValue, SDValue> 1301 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1302 const SDLoc &DL, EVT VT) { 1303 assert(!VT.bitsEq(Op.getValueType()) && 1304 "Strict no-op FP extend/round not allowed."); 1305 SDValue Res = 1306 VT.bitsGT(Op.getValueType()) 1307 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1308 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1309 {Chain, Op, getIntPtrConstant(0, DL)}); 1310 1311 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1312 } 1313 1314 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1315 return VT.bitsGT(Op.getValueType()) ? 1316 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1317 getNode(ISD::TRUNCATE, DL, VT, Op); 1318 } 1319 1320 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1321 return VT.bitsGT(Op.getValueType()) ? 1322 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1323 getNode(ISD::TRUNCATE, DL, VT, Op); 1324 } 1325 1326 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1327 return VT.bitsGT(Op.getValueType()) ? 1328 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1329 getNode(ISD::TRUNCATE, DL, VT, Op); 1330 } 1331 1332 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1333 EVT OpVT) { 1334 if (VT.bitsLE(Op.getValueType())) 1335 return getNode(ISD::TRUNCATE, SL, VT, Op); 1336 1337 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1338 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1339 } 1340 1341 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1342 EVT OpVT = Op.getValueType(); 1343 assert(VT.isInteger() && OpVT.isInteger() && 1344 "Cannot getZeroExtendInReg FP types"); 1345 assert(VT.isVector() == OpVT.isVector() && 1346 "getZeroExtendInReg type should be vector iff the operand " 1347 "type is vector!"); 1348 assert((!VT.isVector() || 1349 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1350 "Vector element counts must match in getZeroExtendInReg"); 1351 assert(VT.bitsLE(OpVT) && "Not extending!"); 1352 if (OpVT == VT) 1353 return Op; 1354 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1355 VT.getScalarSizeInBits()); 1356 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1357 } 1358 1359 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1360 // Only unsigned pointer semantics are supported right now. In the future this 1361 // might delegate to TLI to check pointer signedness. 1362 return getZExtOrTrunc(Op, DL, VT); 1363 } 1364 1365 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1366 // Only unsigned pointer semantics are supported right now. In the future this 1367 // might delegate to TLI to check pointer signedness. 1368 return getZeroExtendInReg(Op, DL, VT); 1369 } 1370 1371 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1372 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1373 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1374 } 1375 1376 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1377 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1378 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1379 } 1380 1381 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1382 EVT OpVT) { 1383 if (!V) 1384 return getConstant(0, DL, VT); 1385 1386 switch (TLI->getBooleanContents(OpVT)) { 1387 case TargetLowering::ZeroOrOneBooleanContent: 1388 case TargetLowering::UndefinedBooleanContent: 1389 return getConstant(1, DL, VT); 1390 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1391 return getAllOnesConstant(DL, VT); 1392 } 1393 llvm_unreachable("Unexpected boolean content enum!"); 1394 } 1395 1396 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1397 bool isT, bool isO) { 1398 EVT EltVT = VT.getScalarType(); 1399 assert((EltVT.getSizeInBits() >= 64 || 1400 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1401 "getConstant with a uint64_t value that doesn't fit in the type!"); 1402 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1403 } 1404 1405 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1406 bool isT, bool isO) { 1407 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1408 } 1409 1410 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1411 EVT VT, bool isT, bool isO) { 1412 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1413 1414 EVT EltVT = VT.getScalarType(); 1415 const ConstantInt *Elt = &Val; 1416 1417 // In some cases the vector type is legal but the element type is illegal and 1418 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1419 // inserted value (the type does not need to match the vector element type). 1420 // Any extra bits introduced will be truncated away. 1421 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1422 TargetLowering::TypePromoteInteger) { 1423 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1424 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1425 Elt = ConstantInt::get(*getContext(), NewVal); 1426 } 1427 // In other cases the element type is illegal and needs to be expanded, for 1428 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1429 // the value into n parts and use a vector type with n-times the elements. 1430 // Then bitcast to the type requested. 1431 // Legalizing constants too early makes the DAGCombiner's job harder so we 1432 // only legalize if the DAG tells us we must produce legal types. 1433 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1434 TLI->getTypeAction(*getContext(), EltVT) == 1435 TargetLowering::TypeExpandInteger) { 1436 const APInt &NewVal = Elt->getValue(); 1437 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1438 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1439 1440 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1441 if (VT.isScalableVector()) { 1442 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1443 "Can only handle an even split!"); 1444 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1445 1446 SmallVector<SDValue, 2> ScalarParts; 1447 for (unsigned i = 0; i != Parts; ++i) 1448 ScalarParts.push_back(getConstant( 1449 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1450 ViaEltVT, isT, isO)); 1451 1452 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1453 } 1454 1455 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1456 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1457 1458 // Check the temporary vector is the correct size. If this fails then 1459 // getTypeToTransformTo() probably returned a type whose size (in bits) 1460 // isn't a power-of-2 factor of the requested type size. 1461 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1462 1463 SmallVector<SDValue, 2> EltParts; 1464 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1465 EltParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 // EltParts is currently in little endian order. If we actually want 1470 // big-endian order then reverse it now. 1471 if (getDataLayout().isBigEndian()) 1472 std::reverse(EltParts.begin(), EltParts.end()); 1473 1474 // The elements must be reversed when the element order is different 1475 // to the endianness of the elements (because the BITCAST is itself a 1476 // vector shuffle in this situation). However, we do not need any code to 1477 // perform this reversal because getConstant() is producing a vector 1478 // splat. 1479 // This situation occurs in MIPS MSA. 1480 1481 SmallVector<SDValue, 8> Ops; 1482 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1483 llvm::append_range(Ops, EltParts); 1484 1485 SDValue V = 1486 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1487 return V; 1488 } 1489 1490 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1491 "APInt size does not match type size!"); 1492 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1495 ID.AddPointer(Elt); 1496 ID.AddBoolean(isO); 1497 void *IP = nullptr; 1498 SDNode *N = nullptr; 1499 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1500 if (!VT.isVector()) 1501 return SDValue(N, 0); 1502 1503 if (!N) { 1504 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1505 CSEMap.InsertNode(N, IP); 1506 InsertNode(N); 1507 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1508 } 1509 1510 SDValue Result(N, 0); 1511 if (VT.isScalableVector()) 1512 Result = getSplatVector(VT, DL, Result); 1513 else if (VT.isVector()) 1514 Result = getSplatBuildVector(VT, DL, Result); 1515 1516 return Result; 1517 } 1518 1519 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1520 bool isTarget) { 1521 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1522 } 1523 1524 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1525 const SDLoc &DL, bool LegalTypes) { 1526 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1527 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1528 return getConstant(Val, DL, ShiftVT); 1529 } 1530 1531 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1532 bool isTarget) { 1533 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1534 } 1535 1536 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1537 bool isTarget) { 1538 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1542 EVT VT, bool isTarget) { 1543 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1544 1545 EVT EltVT = VT.getScalarType(); 1546 1547 // Do the map lookup using the actual bit pattern for the floating point 1548 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1549 // we don't have issues with SNANs. 1550 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1551 FoldingSetNodeID ID; 1552 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1553 ID.AddPointer(&V); 1554 void *IP = nullptr; 1555 SDNode *N = nullptr; 1556 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1557 if (!VT.isVector()) 1558 return SDValue(N, 0); 1559 1560 if (!N) { 1561 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1562 CSEMap.InsertNode(N, IP); 1563 InsertNode(N); 1564 } 1565 1566 SDValue Result(N, 0); 1567 if (VT.isScalableVector()) 1568 Result = getSplatVector(VT, DL, Result); 1569 else if (VT.isVector()) 1570 Result = getSplatBuildVector(VT, DL, Result); 1571 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1572 return Result; 1573 } 1574 1575 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1576 bool isTarget) { 1577 EVT EltVT = VT.getScalarType(); 1578 if (EltVT == MVT::f32) 1579 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1580 if (EltVT == MVT::f64) 1581 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1583 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1584 bool Ignored; 1585 APFloat APF = APFloat(Val); 1586 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1587 &Ignored); 1588 return getConstantFP(APF, DL, VT, isTarget); 1589 } 1590 llvm_unreachable("Unsupported type in getConstantFP"); 1591 } 1592 1593 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1594 EVT VT, int64_t Offset, bool isTargetGA, 1595 unsigned TargetFlags) { 1596 assert((TargetFlags == 0 || isTargetGA) && 1597 "Cannot set target flags on target-independent globals"); 1598 1599 // Truncate (with sign-extension) the offset value to the pointer size. 1600 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1601 if (BitWidth < 64) 1602 Offset = SignExtend64(Offset, BitWidth); 1603 1604 unsigned Opc; 1605 if (GV->isThreadLocal()) 1606 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1607 else 1608 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1609 1610 FoldingSetNodeID ID; 1611 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1612 ID.AddPointer(GV); 1613 ID.AddInteger(Offset); 1614 ID.AddInteger(TargetFlags); 1615 void *IP = nullptr; 1616 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1617 return SDValue(E, 0); 1618 1619 auto *N = newSDNode<GlobalAddressSDNode>( 1620 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1621 CSEMap.InsertNode(N, IP); 1622 InsertNode(N); 1623 return SDValue(N, 0); 1624 } 1625 1626 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1627 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1628 FoldingSetNodeID ID; 1629 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1630 ID.AddInteger(FI); 1631 void *IP = nullptr; 1632 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1633 return SDValue(E, 0); 1634 1635 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1636 CSEMap.InsertNode(N, IP); 1637 InsertNode(N); 1638 return SDValue(N, 0); 1639 } 1640 1641 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1642 unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent jump tables"); 1645 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1646 FoldingSetNodeID ID; 1647 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1648 ID.AddInteger(JTI); 1649 ID.AddInteger(TargetFlags); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1661 MaybeAlign Alignment, int Offset, 1662 bool isTarget, unsigned TargetFlags) { 1663 assert((TargetFlags == 0 || isTarget) && 1664 "Cannot set target flags on target-independent globals"); 1665 if (!Alignment) 1666 Alignment = shouldOptForSize() 1667 ? getDataLayout().getABITypeAlign(C->getType()) 1668 : getDataLayout().getPrefTypeAlign(C->getType()); 1669 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1670 FoldingSetNodeID ID; 1671 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1672 ID.AddInteger(Alignment->value()); 1673 ID.AddInteger(Offset); 1674 ID.AddPointer(C); 1675 ID.AddInteger(TargetFlags); 1676 void *IP = nullptr; 1677 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1678 return SDValue(E, 0); 1679 1680 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1681 TargetFlags); 1682 CSEMap.InsertNode(N, IP); 1683 InsertNode(N); 1684 SDValue V = SDValue(N, 0); 1685 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1686 return V; 1687 } 1688 1689 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1690 MaybeAlign Alignment, int Offset, 1691 bool isTarget, unsigned TargetFlags) { 1692 assert((TargetFlags == 0 || isTarget) && 1693 "Cannot set target flags on target-independent globals"); 1694 if (!Alignment) 1695 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1696 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1697 FoldingSetNodeID ID; 1698 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1699 ID.AddInteger(Alignment->value()); 1700 ID.AddInteger(Offset); 1701 C->addSelectionDAGCSEId(ID); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1708 TargetFlags); 1709 CSEMap.InsertNode(N, IP); 1710 InsertNode(N); 1711 return SDValue(N, 0); 1712 } 1713 1714 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1715 unsigned TargetFlags) { 1716 FoldingSetNodeID ID; 1717 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1718 ID.AddInteger(Index); 1719 ID.AddInteger(Offset); 1720 ID.AddInteger(TargetFlags); 1721 void *IP = nullptr; 1722 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1723 return SDValue(E, 0); 1724 1725 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1732 FoldingSetNodeID ID; 1733 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1734 ID.AddPointer(MBB); 1735 void *IP = nullptr; 1736 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1737 return SDValue(E, 0); 1738 1739 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1740 CSEMap.InsertNode(N, IP); 1741 InsertNode(N); 1742 return SDValue(N, 0); 1743 } 1744 1745 SDValue SelectionDAG::getValueType(EVT VT) { 1746 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1747 ValueTypeNodes.size()) 1748 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1749 1750 SDNode *&N = VT.isExtended() ? 1751 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1752 1753 if (N) return SDValue(N, 0); 1754 N = newSDNode<VTSDNode>(VT); 1755 InsertNode(N); 1756 return SDValue(N, 0); 1757 } 1758 1759 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1760 SDNode *&N = ExternalSymbols[Sym]; 1761 if (N) return SDValue(N, 0); 1762 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1768 SDNode *&N = MCSymbols[Sym]; 1769 if (N) 1770 return SDValue(N, 0); 1771 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1777 unsigned TargetFlags) { 1778 SDNode *&N = 1779 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1780 if (N) return SDValue(N, 0); 1781 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1782 InsertNode(N); 1783 return SDValue(N, 0); 1784 } 1785 1786 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1787 if ((unsigned)Cond >= CondCodeNodes.size()) 1788 CondCodeNodes.resize(Cond+1); 1789 1790 if (!CondCodeNodes[Cond]) { 1791 auto *N = newSDNode<CondCodeSDNode>(Cond); 1792 CondCodeNodes[Cond] = N; 1793 InsertNode(N); 1794 } 1795 1796 return SDValue(CondCodeNodes[Cond], 0); 1797 } 1798 1799 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1800 APInt One(ResVT.getScalarSizeInBits(), 1); 1801 return getStepVector(DL, ResVT, One); 1802 } 1803 1804 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1805 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1806 if (ResVT.isScalableVector()) 1807 return getNode( 1808 ISD::STEP_VECTOR, DL, ResVT, 1809 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1810 1811 SmallVector<SDValue, 16> OpsStepConstants; 1812 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1813 OpsStepConstants.push_back( 1814 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1815 return getBuildVector(ResVT, DL, OpsStepConstants); 1816 } 1817 1818 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1819 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1820 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1821 std::swap(N1, N2); 1822 ShuffleVectorSDNode::commuteMask(M); 1823 } 1824 1825 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1826 SDValue N2, ArrayRef<int> Mask) { 1827 assert(VT.getVectorNumElements() == Mask.size() && 1828 "Must have the same number of vector elements as mask elements!"); 1829 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1830 "Invalid VECTOR_SHUFFLE"); 1831 1832 // Canonicalize shuffle undef, undef -> undef 1833 if (N1.isUndef() && N2.isUndef()) 1834 return getUNDEF(VT); 1835 1836 // Validate that all indices in Mask are within the range of the elements 1837 // input to the shuffle. 1838 int NElts = Mask.size(); 1839 assert(llvm::all_of(Mask, 1840 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1841 "Index out of range"); 1842 1843 // Copy the mask so we can do any needed cleanup. 1844 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1845 1846 // Canonicalize shuffle v, v -> v, undef 1847 if (N1 == N2) { 1848 N2 = getUNDEF(VT); 1849 for (int i = 0; i != NElts; ++i) 1850 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1851 } 1852 1853 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1854 if (N1.isUndef()) 1855 commuteShuffle(N1, N2, MaskVec); 1856 1857 if (TLI->hasVectorBlend()) { 1858 // If shuffling a splat, try to blend the splat instead. We do this here so 1859 // that even when this arises during lowering we don't have to re-handle it. 1860 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1861 BitVector UndefElements; 1862 SDValue Splat = BV->getSplatValue(&UndefElements); 1863 if (!Splat) 1864 return; 1865 1866 for (int i = 0; i < NElts; ++i) { 1867 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1868 continue; 1869 1870 // If this input comes from undef, mark it as such. 1871 if (UndefElements[MaskVec[i] - Offset]) { 1872 MaskVec[i] = -1; 1873 continue; 1874 } 1875 1876 // If we can blend a non-undef lane, use that instead. 1877 if (!UndefElements[i]) 1878 MaskVec[i] = i + Offset; 1879 } 1880 }; 1881 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1882 BlendSplat(N1BV, 0); 1883 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1884 BlendSplat(N2BV, NElts); 1885 } 1886 1887 // Canonicalize all index into lhs, -> shuffle lhs, undef 1888 // Canonicalize all index into rhs, -> shuffle rhs, undef 1889 bool AllLHS = true, AllRHS = true; 1890 bool N2Undef = N2.isUndef(); 1891 for (int i = 0; i != NElts; ++i) { 1892 if (MaskVec[i] >= NElts) { 1893 if (N2Undef) 1894 MaskVec[i] = -1; 1895 else 1896 AllLHS = false; 1897 } else if (MaskVec[i] >= 0) { 1898 AllRHS = false; 1899 } 1900 } 1901 if (AllLHS && AllRHS) 1902 return getUNDEF(VT); 1903 if (AllLHS && !N2Undef) 1904 N2 = getUNDEF(VT); 1905 if (AllRHS) { 1906 N1 = getUNDEF(VT); 1907 commuteShuffle(N1, N2, MaskVec); 1908 } 1909 // Reset our undef status after accounting for the mask. 1910 N2Undef = N2.isUndef(); 1911 // Re-check whether both sides ended up undef. 1912 if (N1.isUndef() && N2Undef) 1913 return getUNDEF(VT); 1914 1915 // If Identity shuffle return that node. 1916 bool Identity = true, AllSame = true; 1917 for (int i = 0; i != NElts; ++i) { 1918 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1919 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1920 } 1921 if (Identity && NElts) 1922 return N1; 1923 1924 // Shuffling a constant splat doesn't change the result. 1925 if (N2Undef) { 1926 SDValue V = N1; 1927 1928 // Look through any bitcasts. We check that these don't change the number 1929 // (and size) of elements and just changes their types. 1930 while (V.getOpcode() == ISD::BITCAST) 1931 V = V->getOperand(0); 1932 1933 // A splat should always show up as a build vector node. 1934 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1935 BitVector UndefElements; 1936 SDValue Splat = BV->getSplatValue(&UndefElements); 1937 // If this is a splat of an undef, shuffling it is also undef. 1938 if (Splat && Splat.isUndef()) 1939 return getUNDEF(VT); 1940 1941 bool SameNumElts = 1942 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1943 1944 // We only have a splat which can skip shuffles if there is a splatted 1945 // value and no undef lanes rearranged by the shuffle. 1946 if (Splat && UndefElements.none()) { 1947 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1948 // number of elements match or the value splatted is a zero constant. 1949 if (SameNumElts) 1950 return N1; 1951 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1952 if (C->isZero()) 1953 return N1; 1954 } 1955 1956 // If the shuffle itself creates a splat, build the vector directly. 1957 if (AllSame && SameNumElts) { 1958 EVT BuildVT = BV->getValueType(0); 1959 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1960 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1961 1962 // We may have jumped through bitcasts, so the type of the 1963 // BUILD_VECTOR may not match the type of the shuffle. 1964 if (BuildVT != VT) 1965 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1966 return NewBV; 1967 } 1968 } 1969 } 1970 1971 FoldingSetNodeID ID; 1972 SDValue Ops[2] = { N1, N2 }; 1973 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1974 for (int i = 0; i != NElts; ++i) 1975 ID.AddInteger(MaskVec[i]); 1976 1977 void* IP = nullptr; 1978 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1979 return SDValue(E, 0); 1980 1981 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1982 // SDNode doesn't have access to it. This memory will be "leaked" when 1983 // the node is deallocated, but recovered when the NodeAllocator is released. 1984 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1985 llvm::copy(MaskVec, MaskAlloc); 1986 1987 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1988 dl.getDebugLoc(), MaskAlloc); 1989 createOperands(N, Ops); 1990 1991 CSEMap.InsertNode(N, IP); 1992 InsertNode(N); 1993 SDValue V = SDValue(N, 0); 1994 NewSDValueDbgMsg(V, "Creating new node: ", this); 1995 return V; 1996 } 1997 1998 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1999 EVT VT = SV.getValueType(0); 2000 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2001 ShuffleVectorSDNode::commuteMask(MaskVec); 2002 2003 SDValue Op0 = SV.getOperand(0); 2004 SDValue Op1 = SV.getOperand(1); 2005 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2006 } 2007 2008 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2009 FoldingSetNodeID ID; 2010 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2011 ID.AddInteger(RegNo); 2012 void *IP = nullptr; 2013 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2014 return SDValue(E, 0); 2015 2016 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2017 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2018 CSEMap.InsertNode(N, IP); 2019 InsertNode(N); 2020 return SDValue(N, 0); 2021 } 2022 2023 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2024 FoldingSetNodeID ID; 2025 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2026 ID.AddPointer(RegMask); 2027 void *IP = nullptr; 2028 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2029 return SDValue(E, 0); 2030 2031 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2032 CSEMap.InsertNode(N, IP); 2033 InsertNode(N); 2034 return SDValue(N, 0); 2035 } 2036 2037 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2038 MCSymbol *Label) { 2039 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2040 } 2041 2042 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2043 SDValue Root, MCSymbol *Label) { 2044 FoldingSetNodeID ID; 2045 SDValue Ops[] = { Root }; 2046 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2047 ID.AddPointer(Label); 2048 void *IP = nullptr; 2049 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2050 return SDValue(E, 0); 2051 2052 auto *N = 2053 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2054 createOperands(N, Ops); 2055 2056 CSEMap.InsertNode(N, IP); 2057 InsertNode(N); 2058 return SDValue(N, 0); 2059 } 2060 2061 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2062 int64_t Offset, bool isTarget, 2063 unsigned TargetFlags) { 2064 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2065 2066 FoldingSetNodeID ID; 2067 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2068 ID.AddPointer(BA); 2069 ID.AddInteger(Offset); 2070 ID.AddInteger(TargetFlags); 2071 void *IP = nullptr; 2072 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2073 return SDValue(E, 0); 2074 2075 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2076 CSEMap.InsertNode(N, IP); 2077 InsertNode(N); 2078 return SDValue(N, 0); 2079 } 2080 2081 SDValue SelectionDAG::getSrcValue(const Value *V) { 2082 FoldingSetNodeID ID; 2083 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2084 ID.AddPointer(V); 2085 2086 void *IP = nullptr; 2087 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2088 return SDValue(E, 0); 2089 2090 auto *N = newSDNode<SrcValueSDNode>(V); 2091 CSEMap.InsertNode(N, IP); 2092 InsertNode(N); 2093 return SDValue(N, 0); 2094 } 2095 2096 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2097 FoldingSetNodeID ID; 2098 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2099 ID.AddPointer(MD); 2100 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = newSDNode<MDNodeSDNode>(MD); 2106 CSEMap.InsertNode(N, IP); 2107 InsertNode(N); 2108 return SDValue(N, 0); 2109 } 2110 2111 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2112 if (VT == V.getValueType()) 2113 return V; 2114 2115 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2116 } 2117 2118 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2119 unsigned SrcAS, unsigned DestAS) { 2120 SDValue Ops[] = {Ptr}; 2121 FoldingSetNodeID ID; 2122 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2123 ID.AddInteger(SrcAS); 2124 ID.AddInteger(DestAS); 2125 2126 void *IP = nullptr; 2127 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2128 return SDValue(E, 0); 2129 2130 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2131 VT, SrcAS, DestAS); 2132 createOperands(N, Ops); 2133 2134 CSEMap.InsertNode(N, IP); 2135 InsertNode(N); 2136 return SDValue(N, 0); 2137 } 2138 2139 SDValue SelectionDAG::getFreeze(SDValue V) { 2140 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2141 } 2142 2143 /// getShiftAmountOperand - Return the specified value casted to 2144 /// the target's desired shift amount type. 2145 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2146 EVT OpTy = Op.getValueType(); 2147 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2148 if (OpTy == ShTy || OpTy.isVector()) return Op; 2149 2150 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2151 } 2152 2153 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2154 SDLoc dl(Node); 2155 const TargetLowering &TLI = getTargetLoweringInfo(); 2156 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2157 EVT VT = Node->getValueType(0); 2158 SDValue Tmp1 = Node->getOperand(0); 2159 SDValue Tmp2 = Node->getOperand(1); 2160 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2161 2162 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2163 Tmp2, MachinePointerInfo(V)); 2164 SDValue VAList = VAListLoad; 2165 2166 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2167 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2168 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2169 2170 VAList = 2171 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2172 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2173 } 2174 2175 // Increment the pointer, VAList, to the next vaarg 2176 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2177 getConstant(getDataLayout().getTypeAllocSize( 2178 VT.getTypeForEVT(*getContext())), 2179 dl, VAList.getValueType())); 2180 // Store the incremented VAList to the legalized pointer 2181 Tmp1 = 2182 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2183 // Load the actual argument out of the pointer VAList 2184 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2185 } 2186 2187 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2188 SDLoc dl(Node); 2189 const TargetLowering &TLI = getTargetLoweringInfo(); 2190 // This defaults to loading a pointer from the input and storing it to the 2191 // output, returning the chain. 2192 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2193 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2194 SDValue Tmp1 = 2195 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2196 Node->getOperand(2), MachinePointerInfo(VS)); 2197 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2198 MachinePointerInfo(VD)); 2199 } 2200 2201 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2202 const DataLayout &DL = getDataLayout(); 2203 Type *Ty = VT.getTypeForEVT(*getContext()); 2204 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2205 2206 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2207 return RedAlign; 2208 2209 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2210 const Align StackAlign = TFI->getStackAlign(); 2211 2212 // See if we can choose a smaller ABI alignment in cases where it's an 2213 // illegal vector type that will get broken down. 2214 if (RedAlign > StackAlign) { 2215 EVT IntermediateVT; 2216 MVT RegisterVT; 2217 unsigned NumIntermediates; 2218 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2219 NumIntermediates, RegisterVT); 2220 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2221 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 if (RedAlign2 < RedAlign) 2223 RedAlign = RedAlign2; 2224 } 2225 2226 return RedAlign; 2227 } 2228 2229 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2230 MachineFrameInfo &MFI = MF->getFrameInfo(); 2231 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2232 int StackID = 0; 2233 if (Bytes.isScalable()) 2234 StackID = TFI->getStackIDForScalableVectors(); 2235 // The stack id gives an indication of whether the object is scalable or 2236 // not, so it's safe to pass in the minimum size here. 2237 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2238 false, nullptr, StackID); 2239 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2240 } 2241 2242 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2243 Type *Ty = VT.getTypeForEVT(*getContext()); 2244 Align StackAlign = 2245 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2246 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2247 } 2248 2249 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2250 TypeSize VT1Size = VT1.getStoreSize(); 2251 TypeSize VT2Size = VT2.getStoreSize(); 2252 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2253 "Don't know how to choose the maximum size when creating a stack " 2254 "temporary"); 2255 TypeSize Bytes = 2256 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2257 2258 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2259 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2260 const DataLayout &DL = getDataLayout(); 2261 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2262 return CreateStackTemporary(Bytes, Align); 2263 } 2264 2265 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2266 ISD::CondCode Cond, const SDLoc &dl) { 2267 EVT OpVT = N1.getValueType(); 2268 2269 // These setcc operations always fold. 2270 switch (Cond) { 2271 default: break; 2272 case ISD::SETFALSE: 2273 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2274 case ISD::SETTRUE: 2275 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2276 2277 case ISD::SETOEQ: 2278 case ISD::SETOGT: 2279 case ISD::SETOGE: 2280 case ISD::SETOLT: 2281 case ISD::SETOLE: 2282 case ISD::SETONE: 2283 case ISD::SETO: 2284 case ISD::SETUO: 2285 case ISD::SETUEQ: 2286 case ISD::SETUNE: 2287 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2288 break; 2289 } 2290 2291 if (OpVT.isInteger()) { 2292 // For EQ and NE, we can always pick a value for the undef to make the 2293 // predicate pass or fail, so we can return undef. 2294 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2295 // icmp eq/ne X, undef -> undef. 2296 if ((N1.isUndef() || N2.isUndef()) && 2297 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2298 return getUNDEF(VT); 2299 2300 // If both operands are undef, we can return undef for int comparison. 2301 // icmp undef, undef -> undef. 2302 if (N1.isUndef() && N2.isUndef()) 2303 return getUNDEF(VT); 2304 2305 // icmp X, X -> true/false 2306 // icmp X, undef -> true/false because undef could be X. 2307 if (N1 == N2) 2308 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2309 } 2310 2311 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2312 const APInt &C2 = N2C->getAPIntValue(); 2313 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2314 const APInt &C1 = N1C->getAPIntValue(); 2315 2316 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2317 dl, VT, OpVT); 2318 } 2319 } 2320 2321 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2322 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2323 2324 if (N1CFP && N2CFP) { 2325 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2326 switch (Cond) { 2327 default: break; 2328 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2329 return getUNDEF(VT); 2330 LLVM_FALLTHROUGH; 2331 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2332 OpVT); 2333 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2334 return getUNDEF(VT); 2335 LLVM_FALLTHROUGH; 2336 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2337 R==APFloat::cmpLessThan, dl, VT, 2338 OpVT); 2339 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2340 return getUNDEF(VT); 2341 LLVM_FALLTHROUGH; 2342 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2343 OpVT); 2344 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2345 return getUNDEF(VT); 2346 LLVM_FALLTHROUGH; 2347 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2348 VT, OpVT); 2349 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2350 return getUNDEF(VT); 2351 LLVM_FALLTHROUGH; 2352 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2353 R==APFloat::cmpEqual, dl, VT, 2354 OpVT); 2355 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2356 return getUNDEF(VT); 2357 LLVM_FALLTHROUGH; 2358 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2359 R==APFloat::cmpEqual, dl, VT, OpVT); 2360 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2361 OpVT); 2362 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2365 R==APFloat::cmpEqual, dl, VT, 2366 OpVT); 2367 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2370 R==APFloat::cmpLessThan, dl, VT, 2371 OpVT); 2372 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2373 R==APFloat::cmpUnordered, dl, VT, 2374 OpVT); 2375 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2376 VT, OpVT); 2377 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2378 OpVT); 2379 } 2380 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2381 // Ensure that the constant occurs on the RHS. 2382 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2383 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2384 return SDValue(); 2385 return getSetCC(dl, VT, N2, N1, SwappedCond); 2386 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2387 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2388 // If an operand is known to be a nan (or undef that could be a nan), we can 2389 // fold it. 2390 // Choosing NaN for the undef will always make unordered comparison succeed 2391 // and ordered comparison fails. 2392 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2393 switch (ISD::getUnorderedFlavor(Cond)) { 2394 default: 2395 llvm_unreachable("Unknown flavor!"); 2396 case 0: // Known false. 2397 return getBoolConstant(false, dl, VT, OpVT); 2398 case 1: // Known true. 2399 return getBoolConstant(true, dl, VT, OpVT); 2400 case 2: // Undefined. 2401 return getUNDEF(VT); 2402 } 2403 } 2404 2405 // Could not fold it. 2406 return SDValue(); 2407 } 2408 2409 /// See if the specified operand can be simplified with the knowledge that only 2410 /// the bits specified by DemandedBits are used. 2411 /// TODO: really we should be making this into the DAG equivalent of 2412 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2413 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2414 EVT VT = V.getValueType(); 2415 2416 if (VT.isScalableVector()) 2417 return SDValue(); 2418 2419 APInt DemandedElts = VT.isVector() 2420 ? APInt::getAllOnes(VT.getVectorNumElements()) 2421 : APInt(1, 1); 2422 return GetDemandedBits(V, DemandedBits, DemandedElts); 2423 } 2424 2425 /// See if the specified operand can be simplified with the knowledge that only 2426 /// the bits specified by DemandedBits are used in the elements specified by 2427 /// DemandedElts. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2431 const APInt &DemandedElts) { 2432 switch (V.getOpcode()) { 2433 default: 2434 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2435 *this, 0); 2436 case ISD::Constant: { 2437 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2438 APInt NewVal = CVal & DemandedBits; 2439 if (NewVal != CVal) 2440 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2441 break; 2442 } 2443 case ISD::SRL: 2444 // Only look at single-use SRLs. 2445 if (!V.getNode()->hasOneUse()) 2446 break; 2447 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2448 // See if we can recursively simplify the LHS. 2449 unsigned Amt = RHSC->getZExtValue(); 2450 2451 // Watch out for shift count overflow though. 2452 if (Amt >= DemandedBits.getBitWidth()) 2453 break; 2454 APInt SrcDemandedBits = DemandedBits << Amt; 2455 if (SDValue SimplifyLHS = 2456 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2457 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2458 V.getOperand(1)); 2459 } 2460 break; 2461 } 2462 return SDValue(); 2463 } 2464 2465 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2466 /// use this predicate to simplify operations downstream. 2467 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2468 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2469 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2470 } 2471 2472 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2473 /// this predicate to simplify operations downstream. Mask is known to be zero 2474 /// for bits that V cannot have. 2475 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2476 unsigned Depth) const { 2477 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2478 } 2479 2480 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2481 /// DemandedElts. We use this predicate to simplify operations downstream. 2482 /// Mask is known to be zero for bits that V cannot have. 2483 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2484 const APInt &DemandedElts, 2485 unsigned Depth) const { 2486 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2487 } 2488 2489 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2490 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2491 unsigned Depth) const { 2492 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2493 } 2494 2495 /// isSplatValue - Return true if the vector V has the same value 2496 /// across all DemandedElts. For scalable vectors it does not make 2497 /// sense to specify which elements are demanded or undefined, therefore 2498 /// they are simply ignored. 2499 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2500 APInt &UndefElts, unsigned Depth) { 2501 EVT VT = V.getValueType(); 2502 assert(VT.isVector() && "Vector type expected"); 2503 2504 if (!VT.isScalableVector() && !DemandedElts) 2505 return false; // No demanded elts, better to assume we don't know anything. 2506 2507 if (Depth >= MaxRecursionDepth) 2508 return false; // Limit search depth. 2509 2510 // Deal with some common cases here that work for both fixed and scalable 2511 // vector types. 2512 switch (V.getOpcode()) { 2513 case ISD::SPLAT_VECTOR: 2514 UndefElts = V.getOperand(0).isUndef() 2515 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2516 : APInt(DemandedElts.getBitWidth(), 0); 2517 return true; 2518 case ISD::ADD: 2519 case ISD::SUB: 2520 case ISD::AND: 2521 case ISD::XOR: 2522 case ISD::OR: { 2523 APInt UndefLHS, UndefRHS; 2524 SDValue LHS = V.getOperand(0); 2525 SDValue RHS = V.getOperand(1); 2526 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2527 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2528 UndefElts = UndefLHS | UndefRHS; 2529 return true; 2530 } 2531 return false; 2532 } 2533 case ISD::ABS: 2534 case ISD::TRUNCATE: 2535 case ISD::SIGN_EXTEND: 2536 case ISD::ZERO_EXTEND: 2537 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2538 } 2539 2540 // We don't support other cases than those above for scalable vectors at 2541 // the moment. 2542 if (VT.isScalableVector()) 2543 return false; 2544 2545 unsigned NumElts = VT.getVectorNumElements(); 2546 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2547 UndefElts = APInt::getZero(NumElts); 2548 2549 switch (V.getOpcode()) { 2550 case ISD::BUILD_VECTOR: { 2551 SDValue Scl; 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 SDValue Op = V.getOperand(i); 2554 if (Op.isUndef()) { 2555 UndefElts.setBit(i); 2556 continue; 2557 } 2558 if (!DemandedElts[i]) 2559 continue; 2560 if (Scl && Scl != Op) 2561 return false; 2562 Scl = Op; 2563 } 2564 return true; 2565 } 2566 case ISD::VECTOR_SHUFFLE: { 2567 // Check if this is a shuffle node doing a splat. 2568 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2569 int SplatIndex = -1; 2570 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2571 for (int i = 0; i != (int)NumElts; ++i) { 2572 int M = Mask[i]; 2573 if (M < 0) { 2574 UndefElts.setBit(i); 2575 continue; 2576 } 2577 if (!DemandedElts[i]) 2578 continue; 2579 if (0 <= SplatIndex && SplatIndex != M) 2580 return false; 2581 SplatIndex = M; 2582 } 2583 return true; 2584 } 2585 case ISD::EXTRACT_SUBVECTOR: { 2586 // Offset the demanded elts by the subvector index. 2587 SDValue Src = V.getOperand(0); 2588 // We don't support scalable vectors at the moment. 2589 if (Src.getValueType().isScalableVector()) 2590 return false; 2591 uint64_t Idx = V.getConstantOperandVal(1); 2592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2593 APInt UndefSrcElts; 2594 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2595 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2596 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2597 return true; 2598 } 2599 break; 2600 } 2601 } 2602 2603 return false; 2604 } 2605 2606 /// Helper wrapper to main isSplatValue function. 2607 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2608 EVT VT = V.getValueType(); 2609 assert(VT.isVector() && "Vector type expected"); 2610 2611 APInt UndefElts; 2612 APInt DemandedElts; 2613 2614 // For now we don't support this with scalable vectors. 2615 if (!VT.isScalableVector()) 2616 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2617 return isSplatValue(V, DemandedElts, UndefElts) && 2618 (AllowUndefs || !UndefElts); 2619 } 2620 2621 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2622 V = peekThroughExtractSubvectors(V); 2623 2624 EVT VT = V.getValueType(); 2625 unsigned Opcode = V.getOpcode(); 2626 switch (Opcode) { 2627 default: { 2628 APInt UndefElts; 2629 APInt DemandedElts; 2630 2631 if (!VT.isScalableVector()) 2632 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2633 2634 if (isSplatValue(V, DemandedElts, UndefElts)) { 2635 if (VT.isScalableVector()) { 2636 // DemandedElts and UndefElts are ignored for scalable vectors, since 2637 // the only supported cases are SPLAT_VECTOR nodes. 2638 SplatIdx = 0; 2639 } else { 2640 // Handle case where all demanded elements are UNDEF. 2641 if (DemandedElts.isSubsetOf(UndefElts)) { 2642 SplatIdx = 0; 2643 return getUNDEF(VT); 2644 } 2645 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2646 } 2647 return V; 2648 } 2649 break; 2650 } 2651 case ISD::SPLAT_VECTOR: 2652 SplatIdx = 0; 2653 return V; 2654 case ISD::VECTOR_SHUFFLE: { 2655 if (VT.isScalableVector()) 2656 return SDValue(); 2657 2658 // Check if this is a shuffle node doing a splat. 2659 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2660 // getTargetVShiftNode currently struggles without the splat source. 2661 auto *SVN = cast<ShuffleVectorSDNode>(V); 2662 if (!SVN->isSplat()) 2663 break; 2664 int Idx = SVN->getSplatIndex(); 2665 int NumElts = V.getValueType().getVectorNumElements(); 2666 SplatIdx = Idx % NumElts; 2667 return V.getOperand(Idx / NumElts); 2668 } 2669 } 2670 2671 return SDValue(); 2672 } 2673 2674 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2675 int SplatIdx; 2676 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2677 EVT SVT = SrcVector.getValueType().getScalarType(); 2678 EVT LegalSVT = SVT; 2679 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2680 if (!SVT.isInteger()) 2681 return SDValue(); 2682 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2683 if (LegalSVT.bitsLT(SVT)) 2684 return SDValue(); 2685 } 2686 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2687 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2688 } 2689 return SDValue(); 2690 } 2691 2692 const APInt * 2693 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2694 const APInt &DemandedElts) const { 2695 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2696 V.getOpcode() == ISD::SRA) && 2697 "Unknown shift node"); 2698 unsigned BitWidth = V.getScalarValueSizeInBits(); 2699 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2700 // Shifting more than the bitwidth is not valid. 2701 const APInt &ShAmt = SA->getAPIntValue(); 2702 if (ShAmt.ult(BitWidth)) 2703 return &ShAmt; 2704 } 2705 return nullptr; 2706 } 2707 2708 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2709 SDValue V, const APInt &DemandedElts) const { 2710 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2711 V.getOpcode() == ISD::SRA) && 2712 "Unknown shift node"); 2713 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2714 return ValidAmt; 2715 unsigned BitWidth = V.getScalarValueSizeInBits(); 2716 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2717 if (!BV) 2718 return nullptr; 2719 const APInt *MinShAmt = nullptr; 2720 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2721 if (!DemandedElts[i]) 2722 continue; 2723 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2724 if (!SA) 2725 return nullptr; 2726 // Shifting more than the bitwidth is not valid. 2727 const APInt &ShAmt = SA->getAPIntValue(); 2728 if (ShAmt.uge(BitWidth)) 2729 return nullptr; 2730 if (MinShAmt && MinShAmt->ule(ShAmt)) 2731 continue; 2732 MinShAmt = &ShAmt; 2733 } 2734 return MinShAmt; 2735 } 2736 2737 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2738 SDValue V, const APInt &DemandedElts) const { 2739 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2740 V.getOpcode() == ISD::SRA) && 2741 "Unknown shift node"); 2742 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2743 return ValidAmt; 2744 unsigned BitWidth = V.getScalarValueSizeInBits(); 2745 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2746 if (!BV) 2747 return nullptr; 2748 const APInt *MaxShAmt = nullptr; 2749 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2750 if (!DemandedElts[i]) 2751 continue; 2752 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2753 if (!SA) 2754 return nullptr; 2755 // Shifting more than the bitwidth is not valid. 2756 const APInt &ShAmt = SA->getAPIntValue(); 2757 if (ShAmt.uge(BitWidth)) 2758 return nullptr; 2759 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2760 continue; 2761 MaxShAmt = &ShAmt; 2762 } 2763 return MaxShAmt; 2764 } 2765 2766 /// Determine which bits of Op are known to be either zero or one and return 2767 /// them in Known. For vectors, the known bits are those that are shared by 2768 /// every vector element. 2769 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2770 EVT VT = Op.getValueType(); 2771 2772 // TOOD: Until we have a plan for how to represent demanded elements for 2773 // scalable vectors, we can just bail out for now. 2774 if (Op.getValueType().isScalableVector()) { 2775 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2776 return KnownBits(BitWidth); 2777 } 2778 2779 APInt DemandedElts = VT.isVector() 2780 ? APInt::getAllOnes(VT.getVectorNumElements()) 2781 : APInt(1, 1); 2782 return computeKnownBits(Op, DemandedElts, Depth); 2783 } 2784 2785 /// Determine which bits of Op are known to be either zero or one and return 2786 /// them in Known. The DemandedElts argument allows us to only collect the known 2787 /// bits that are shared by the requested vector elements. 2788 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2789 unsigned Depth) const { 2790 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2791 2792 KnownBits Known(BitWidth); // Don't know anything. 2793 2794 // TOOD: Until we have a plan for how to represent demanded elements for 2795 // scalable vectors, we can just bail out for now. 2796 if (Op.getValueType().isScalableVector()) 2797 return Known; 2798 2799 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2800 // We know all of the bits for a constant! 2801 return KnownBits::makeConstant(C->getAPIntValue()); 2802 } 2803 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2804 // We know all of the bits for a constant fp! 2805 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2806 } 2807 2808 if (Depth >= MaxRecursionDepth) 2809 return Known; // Limit search depth. 2810 2811 KnownBits Known2; 2812 unsigned NumElts = DemandedElts.getBitWidth(); 2813 assert((!Op.getValueType().isVector() || 2814 NumElts == Op.getValueType().getVectorNumElements()) && 2815 "Unexpected vector size"); 2816 2817 if (!DemandedElts) 2818 return Known; // No demanded elts, better to assume we don't know anything. 2819 2820 unsigned Opcode = Op.getOpcode(); 2821 switch (Opcode) { 2822 case ISD::BUILD_VECTOR: 2823 // Collect the known bits that are shared by every demanded vector element. 2824 Known.Zero.setAllBits(); Known.One.setAllBits(); 2825 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2826 if (!DemandedElts[i]) 2827 continue; 2828 2829 SDValue SrcOp = Op.getOperand(i); 2830 Known2 = computeKnownBits(SrcOp, Depth + 1); 2831 2832 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2833 if (SrcOp.getValueSizeInBits() != BitWidth) { 2834 assert(SrcOp.getValueSizeInBits() > BitWidth && 2835 "Expected BUILD_VECTOR implicit truncation"); 2836 Known2 = Known2.trunc(BitWidth); 2837 } 2838 2839 // Known bits are the values that are shared by every demanded element. 2840 Known = KnownBits::commonBits(Known, Known2); 2841 2842 // If we don't know any bits, early out. 2843 if (Known.isUnknown()) 2844 break; 2845 } 2846 break; 2847 case ISD::VECTOR_SHUFFLE: { 2848 // Collect the known bits that are shared by every vector element referenced 2849 // by the shuffle. 2850 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2851 Known.Zero.setAllBits(); Known.One.setAllBits(); 2852 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2853 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2854 for (unsigned i = 0; i != NumElts; ++i) { 2855 if (!DemandedElts[i]) 2856 continue; 2857 2858 int M = SVN->getMaskElt(i); 2859 if (M < 0) { 2860 // For UNDEF elements, we don't know anything about the common state of 2861 // the shuffle result. 2862 Known.resetAll(); 2863 DemandedLHS.clearAllBits(); 2864 DemandedRHS.clearAllBits(); 2865 break; 2866 } 2867 2868 if ((unsigned)M < NumElts) 2869 DemandedLHS.setBit((unsigned)M % NumElts); 2870 else 2871 DemandedRHS.setBit((unsigned)M % NumElts); 2872 } 2873 // Known bits are the values that are shared by every demanded element. 2874 if (!!DemandedLHS) { 2875 SDValue LHS = Op.getOperand(0); 2876 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2877 Known = KnownBits::commonBits(Known, Known2); 2878 } 2879 // If we don't know any bits, early out. 2880 if (Known.isUnknown()) 2881 break; 2882 if (!!DemandedRHS) { 2883 SDValue RHS = Op.getOperand(1); 2884 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2885 Known = KnownBits::commonBits(Known, Known2); 2886 } 2887 break; 2888 } 2889 case ISD::CONCAT_VECTORS: { 2890 // Split DemandedElts and test each of the demanded subvectors. 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2893 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2894 unsigned NumSubVectors = Op.getNumOperands(); 2895 for (unsigned i = 0; i != NumSubVectors; ++i) { 2896 APInt DemandedSub = 2897 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2898 if (!!DemandedSub) { 2899 SDValue Sub = Op.getOperand(i); 2900 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2901 Known = KnownBits::commonBits(Known, Known2); 2902 } 2903 // If we don't know any bits, early out. 2904 if (Known.isUnknown()) 2905 break; 2906 } 2907 break; 2908 } 2909 case ISD::INSERT_SUBVECTOR: { 2910 // Demand any elements from the subvector and the remainder from the src its 2911 // inserted into. 2912 SDValue Src = Op.getOperand(0); 2913 SDValue Sub = Op.getOperand(1); 2914 uint64_t Idx = Op.getConstantOperandVal(2); 2915 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2916 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2917 APInt DemandedSrcElts = DemandedElts; 2918 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2919 2920 Known.One.setAllBits(); 2921 Known.Zero.setAllBits(); 2922 if (!!DemandedSubElts) { 2923 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2924 if (Known.isUnknown()) 2925 break; // early-out. 2926 } 2927 if (!!DemandedSrcElts) { 2928 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2929 Known = KnownBits::commonBits(Known, Known2); 2930 } 2931 break; 2932 } 2933 case ISD::EXTRACT_SUBVECTOR: { 2934 // Offset the demanded elts by the subvector index. 2935 SDValue Src = Op.getOperand(0); 2936 // Bail until we can represent demanded elements for scalable vectors. 2937 if (Src.getValueType().isScalableVector()) 2938 break; 2939 uint64_t Idx = Op.getConstantOperandVal(1); 2940 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2941 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2942 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2943 break; 2944 } 2945 case ISD::SCALAR_TO_VECTOR: { 2946 // We know about scalar_to_vector as much as we know about it source, 2947 // which becomes the first element of otherwise unknown vector. 2948 if (DemandedElts != 1) 2949 break; 2950 2951 SDValue N0 = Op.getOperand(0); 2952 Known = computeKnownBits(N0, Depth + 1); 2953 if (N0.getValueSizeInBits() != BitWidth) 2954 Known = Known.trunc(BitWidth); 2955 2956 break; 2957 } 2958 case ISD::BITCAST: { 2959 SDValue N0 = Op.getOperand(0); 2960 EVT SubVT = N0.getValueType(); 2961 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2962 2963 // Ignore bitcasts from unsupported types. 2964 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2965 break; 2966 2967 // Fast handling of 'identity' bitcasts. 2968 if (BitWidth == SubBitWidth) { 2969 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 bool IsLE = getDataLayout().isLittleEndian(); 2974 2975 // Bitcast 'small element' vector to 'large element' scalar/vector. 2976 if ((BitWidth % SubBitWidth) == 0) { 2977 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2978 2979 // Collect known bits for the (larger) output by collecting the known 2980 // bits from each set of sub elements and shift these into place. 2981 // We need to separately call computeKnownBits for each set of 2982 // sub elements as the knownbits for each is likely to be different. 2983 unsigned SubScale = BitWidth / SubBitWidth; 2984 APInt SubDemandedElts(NumElts * SubScale, 0); 2985 for (unsigned i = 0; i != NumElts; ++i) 2986 if (DemandedElts[i]) 2987 SubDemandedElts.setBit(i * SubScale); 2988 2989 for (unsigned i = 0; i != SubScale; ++i) { 2990 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2991 Depth + 1); 2992 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2993 Known.insertBits(Known2, SubBitWidth * Shifts); 2994 } 2995 } 2996 2997 // Bitcast 'large element' scalar/vector to 'small element' vector. 2998 if ((SubBitWidth % BitWidth) == 0) { 2999 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3000 3001 // Collect known bits for the (smaller) output by collecting the known 3002 // bits from the overlapping larger input elements and extracting the 3003 // sub sections we actually care about. 3004 unsigned SubScale = SubBitWidth / BitWidth; 3005 APInt SubDemandedElts = 3006 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3007 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3008 3009 Known.Zero.setAllBits(); Known.One.setAllBits(); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) { 3012 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3013 unsigned Offset = (Shifts % SubScale) * BitWidth; 3014 Known = KnownBits::commonBits(Known, 3015 Known2.extractBits(BitWidth, Offset)); 3016 // If we don't know any bits, early out. 3017 if (Known.isUnknown()) 3018 break; 3019 } 3020 } 3021 break; 3022 } 3023 case ISD::AND: 3024 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3025 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3026 3027 Known &= Known2; 3028 break; 3029 case ISD::OR: 3030 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3032 3033 Known |= Known2; 3034 break; 3035 case ISD::XOR: 3036 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3037 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3038 3039 Known ^= Known2; 3040 break; 3041 case ISD::MUL: { 3042 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3043 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3044 Known = KnownBits::mul(Known, Known2); 3045 break; 3046 } 3047 case ISD::MULHU: { 3048 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3049 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3050 Known = KnownBits::mulhu(Known, Known2); 3051 break; 3052 } 3053 case ISD::MULHS: { 3054 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3055 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3056 Known = KnownBits::mulhs(Known, Known2); 3057 break; 3058 } 3059 case ISD::UMUL_LOHI: { 3060 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 if (Op.getResNo() == 0) 3064 Known = KnownBits::mul(Known, Known2); 3065 else 3066 Known = KnownBits::mulhu(Known, Known2); 3067 break; 3068 } 3069 case ISD::SMUL_LOHI: { 3070 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3071 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3072 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3073 if (Op.getResNo() == 0) 3074 Known = KnownBits::mul(Known, Known2); 3075 else 3076 Known = KnownBits::mulhs(Known, Known2); 3077 break; 3078 } 3079 case ISD::UDIV: { 3080 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3082 Known = KnownBits::udiv(Known, Known2); 3083 break; 3084 } 3085 case ISD::SELECT: 3086 case ISD::VSELECT: 3087 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3088 // If we don't know any bits, early out. 3089 if (Known.isUnknown()) 3090 break; 3091 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3092 3093 // Only known if known in both the LHS and RHS. 3094 Known = KnownBits::commonBits(Known, Known2); 3095 break; 3096 case ISD::SELECT_CC: 3097 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3098 // If we don't know any bits, early out. 3099 if (Known.isUnknown()) 3100 break; 3101 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3102 3103 // Only known if known in both the LHS and RHS. 3104 Known = KnownBits::commonBits(Known, Known2); 3105 break; 3106 case ISD::SMULO: 3107 case ISD::UMULO: 3108 if (Op.getResNo() != 1) 3109 break; 3110 // The boolean result conforms to getBooleanContents. 3111 // If we know the result of a setcc has the top bits zero, use this info. 3112 // We know that we have an integer-based boolean since these operations 3113 // are only available for integer. 3114 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3115 TargetLowering::ZeroOrOneBooleanContent && 3116 BitWidth > 1) 3117 Known.Zero.setBitsFrom(1); 3118 break; 3119 case ISD::SETCC: 3120 case ISD::STRICT_FSETCC: 3121 case ISD::STRICT_FSETCCS: { 3122 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3123 // If we know the result of a setcc has the top bits zero, use this info. 3124 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3125 TargetLowering::ZeroOrOneBooleanContent && 3126 BitWidth > 1) 3127 Known.Zero.setBitsFrom(1); 3128 break; 3129 } 3130 case ISD::SHL: 3131 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3132 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3133 Known = KnownBits::shl(Known, Known2); 3134 3135 // Minimum shift low bits are known zero. 3136 if (const APInt *ShMinAmt = 3137 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3138 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3139 break; 3140 case ISD::SRL: 3141 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3142 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3143 Known = KnownBits::lshr(Known, Known2); 3144 3145 // Minimum shift high bits are known zero. 3146 if (const APInt *ShMinAmt = 3147 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3148 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3149 break; 3150 case ISD::SRA: 3151 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known = KnownBits::ashr(Known, Known2); 3154 // TODO: Add minimum shift high known sign bits. 3155 break; 3156 case ISD::FSHL: 3157 case ISD::FSHR: 3158 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3159 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3160 3161 // For fshl, 0-shift returns the 1st arg. 3162 // For fshr, 0-shift returns the 2nd arg. 3163 if (Amt == 0) { 3164 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3165 DemandedElts, Depth + 1); 3166 break; 3167 } 3168 3169 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3170 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3171 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3173 if (Opcode == ISD::FSHL) { 3174 Known.One <<= Amt; 3175 Known.Zero <<= Amt; 3176 Known2.One.lshrInPlace(BitWidth - Amt); 3177 Known2.Zero.lshrInPlace(BitWidth - Amt); 3178 } else { 3179 Known.One <<= BitWidth - Amt; 3180 Known.Zero <<= BitWidth - Amt; 3181 Known2.One.lshrInPlace(Amt); 3182 Known2.Zero.lshrInPlace(Amt); 3183 } 3184 Known.One |= Known2.One; 3185 Known.Zero |= Known2.Zero; 3186 } 3187 break; 3188 case ISD::SIGN_EXTEND_INREG: { 3189 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3190 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3191 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3192 break; 3193 } 3194 case ISD::CTTZ: 3195 case ISD::CTTZ_ZERO_UNDEF: { 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 // If we have a known 1, its position is our upper bound. 3198 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3199 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3200 Known.Zero.setBitsFrom(LowBits); 3201 break; 3202 } 3203 case ISD::CTLZ: 3204 case ISD::CTLZ_ZERO_UNDEF: { 3205 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3206 // If we have a known 1, its position is our upper bound. 3207 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3208 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3209 Known.Zero.setBitsFrom(LowBits); 3210 break; 3211 } 3212 case ISD::CTPOP: { 3213 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3214 // If we know some of the bits are zero, they can't be one. 3215 unsigned PossibleOnes = Known2.countMaxPopulation(); 3216 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3217 break; 3218 } 3219 case ISD::PARITY: { 3220 // Parity returns 0 everywhere but the LSB. 3221 Known.Zero.setBitsFrom(1); 3222 break; 3223 } 3224 case ISD::LOAD: { 3225 LoadSDNode *LD = cast<LoadSDNode>(Op); 3226 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3227 if (ISD::isNON_EXTLoad(LD) && Cst) { 3228 // Determine any common known bits from the loaded constant pool value. 3229 Type *CstTy = Cst->getType(); 3230 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3231 // If its a vector splat, then we can (quickly) reuse the scalar path. 3232 // NOTE: We assume all elements match and none are UNDEF. 3233 if (CstTy->isVectorTy()) { 3234 if (const Constant *Splat = Cst->getSplatValue()) { 3235 Cst = Splat; 3236 CstTy = Cst->getType(); 3237 } 3238 } 3239 // TODO - do we need to handle different bitwidths? 3240 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3241 // Iterate across all vector elements finding common known bits. 3242 Known.One.setAllBits(); 3243 Known.Zero.setAllBits(); 3244 for (unsigned i = 0; i != NumElts; ++i) { 3245 if (!DemandedElts[i]) 3246 continue; 3247 if (Constant *Elt = Cst->getAggregateElement(i)) { 3248 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3249 const APInt &Value = CInt->getValue(); 3250 Known.One &= Value; 3251 Known.Zero &= ~Value; 3252 continue; 3253 } 3254 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3255 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3256 Known.One &= Value; 3257 Known.Zero &= ~Value; 3258 continue; 3259 } 3260 } 3261 Known.One.clearAllBits(); 3262 Known.Zero.clearAllBits(); 3263 break; 3264 } 3265 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3266 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3267 Known = KnownBits::makeConstant(CInt->getValue()); 3268 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3269 Known = 3270 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3271 } 3272 } 3273 } 3274 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3275 // If this is a ZEXTLoad and we are looking at the loaded value. 3276 EVT VT = LD->getMemoryVT(); 3277 unsigned MemBits = VT.getScalarSizeInBits(); 3278 Known.Zero.setBitsFrom(MemBits); 3279 } else if (const MDNode *Ranges = LD->getRanges()) { 3280 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3281 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3282 } 3283 break; 3284 } 3285 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3286 EVT InVT = Op.getOperand(0).getValueType(); 3287 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3288 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3289 Known = Known.zext(BitWidth); 3290 break; 3291 } 3292 case ISD::ZERO_EXTEND: { 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 Known = Known.zext(BitWidth); 3295 break; 3296 } 3297 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3298 EVT InVT = Op.getOperand(0).getValueType(); 3299 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3300 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3301 // If the sign bit is known to be zero or one, then sext will extend 3302 // it to the top bits, else it will just zext. 3303 Known = Known.sext(BitWidth); 3304 break; 3305 } 3306 case ISD::SIGN_EXTEND: { 3307 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3308 // If the sign bit is known to be zero or one, then sext will extend 3309 // it to the top bits, else it will just zext. 3310 Known = Known.sext(BitWidth); 3311 break; 3312 } 3313 case ISD::ANY_EXTEND_VECTOR_INREG: { 3314 EVT InVT = Op.getOperand(0).getValueType(); 3315 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3316 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3317 Known = Known.anyext(BitWidth); 3318 break; 3319 } 3320 case ISD::ANY_EXTEND: { 3321 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3322 Known = Known.anyext(BitWidth); 3323 break; 3324 } 3325 case ISD::TRUNCATE: { 3326 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 Known = Known.trunc(BitWidth); 3328 break; 3329 } 3330 case ISD::AssertZext: { 3331 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3332 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3333 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3334 Known.Zero |= (~InMask); 3335 Known.One &= (~Known.Zero); 3336 break; 3337 } 3338 case ISD::AssertAlign: { 3339 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3340 assert(LogOfAlign != 0); 3341 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3342 // well as clearing one bits. 3343 Known.Zero.setLowBits(LogOfAlign); 3344 Known.One.clearLowBits(LogOfAlign); 3345 break; 3346 } 3347 case ISD::FGETSIGN: 3348 // All bits are zero except the low bit. 3349 Known.Zero.setBitsFrom(1); 3350 break; 3351 case ISD::USUBO: 3352 case ISD::SSUBO: 3353 if (Op.getResNo() == 1) { 3354 // If we know the result of a setcc has the top bits zero, use this info. 3355 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3356 TargetLowering::ZeroOrOneBooleanContent && 3357 BitWidth > 1) 3358 Known.Zero.setBitsFrom(1); 3359 break; 3360 } 3361 LLVM_FALLTHROUGH; 3362 case ISD::SUB: 3363 case ISD::SUBC: { 3364 assert(Op.getResNo() == 0 && 3365 "We only compute knownbits for the difference here."); 3366 3367 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3369 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3370 Known, Known2); 3371 break; 3372 } 3373 case ISD::UADDO: 3374 case ISD::SADDO: 3375 case ISD::ADDCARRY: 3376 if (Op.getResNo() == 1) { 3377 // If we know the result of a setcc has the top bits zero, use this info. 3378 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3379 TargetLowering::ZeroOrOneBooleanContent && 3380 BitWidth > 1) 3381 Known.Zero.setBitsFrom(1); 3382 break; 3383 } 3384 LLVM_FALLTHROUGH; 3385 case ISD::ADD: 3386 case ISD::ADDC: 3387 case ISD::ADDE: { 3388 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3389 3390 // With ADDE and ADDCARRY, a carry bit may be added in. 3391 KnownBits Carry(1); 3392 if (Opcode == ISD::ADDE) 3393 // Can't track carry from glue, set carry to unknown. 3394 Carry.resetAll(); 3395 else if (Opcode == ISD::ADDCARRY) 3396 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3397 // the trouble (how often will we find a known carry bit). And I haven't 3398 // tested this very much yet, but something like this might work: 3399 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3400 // Carry = Carry.zextOrTrunc(1, false); 3401 Carry.resetAll(); 3402 else 3403 Carry.setAllZero(); 3404 3405 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3406 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3407 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3408 break; 3409 } 3410 case ISD::SREM: { 3411 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3412 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3413 Known = KnownBits::srem(Known, Known2); 3414 break; 3415 } 3416 case ISD::UREM: { 3417 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3418 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3419 Known = KnownBits::urem(Known, Known2); 3420 break; 3421 } 3422 case ISD::EXTRACT_ELEMENT: { 3423 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3424 const unsigned Index = Op.getConstantOperandVal(1); 3425 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3426 3427 // Remove low part of known bits mask 3428 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3429 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3430 3431 // Remove high part of known bit mask 3432 Known = Known.trunc(EltBitWidth); 3433 break; 3434 } 3435 case ISD::EXTRACT_VECTOR_ELT: { 3436 SDValue InVec = Op.getOperand(0); 3437 SDValue EltNo = Op.getOperand(1); 3438 EVT VecVT = InVec.getValueType(); 3439 // computeKnownBits not yet implemented for scalable vectors. 3440 if (VecVT.isScalableVector()) 3441 break; 3442 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3443 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3444 3445 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3446 // anything about the extended bits. 3447 if (BitWidth > EltBitWidth) 3448 Known = Known.trunc(EltBitWidth); 3449 3450 // If we know the element index, just demand that vector element, else for 3451 // an unknown element index, ignore DemandedElts and demand them all. 3452 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3453 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3454 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3455 DemandedSrcElts = 3456 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3457 3458 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3459 if (BitWidth > EltBitWidth) 3460 Known = Known.anyext(BitWidth); 3461 break; 3462 } 3463 case ISD::INSERT_VECTOR_ELT: { 3464 // If we know the element index, split the demand between the 3465 // source vector and the inserted element, otherwise assume we need 3466 // the original demanded vector elements and the value. 3467 SDValue InVec = Op.getOperand(0); 3468 SDValue InVal = Op.getOperand(1); 3469 SDValue EltNo = Op.getOperand(2); 3470 bool DemandedVal = true; 3471 APInt DemandedVecElts = DemandedElts; 3472 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3473 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3474 unsigned EltIdx = CEltNo->getZExtValue(); 3475 DemandedVal = !!DemandedElts[EltIdx]; 3476 DemandedVecElts.clearBit(EltIdx); 3477 } 3478 Known.One.setAllBits(); 3479 Known.Zero.setAllBits(); 3480 if (DemandedVal) { 3481 Known2 = computeKnownBits(InVal, Depth + 1); 3482 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3483 } 3484 if (!!DemandedVecElts) { 3485 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3486 Known = KnownBits::commonBits(Known, Known2); 3487 } 3488 break; 3489 } 3490 case ISD::BITREVERSE: { 3491 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3492 Known = Known2.reverseBits(); 3493 break; 3494 } 3495 case ISD::BSWAP: { 3496 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3497 Known = Known2.byteSwap(); 3498 break; 3499 } 3500 case ISD::ABS: { 3501 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3502 Known = Known2.abs(); 3503 break; 3504 } 3505 case ISD::USUBSAT: { 3506 // The result of usubsat will never be larger than the LHS. 3507 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3508 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3509 break; 3510 } 3511 case ISD::UMIN: { 3512 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3513 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3514 Known = KnownBits::umin(Known, Known2); 3515 break; 3516 } 3517 case ISD::UMAX: { 3518 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3519 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3520 Known = KnownBits::umax(Known, Known2); 3521 break; 3522 } 3523 case ISD::SMIN: 3524 case ISD::SMAX: { 3525 // If we have a clamp pattern, we know that the number of sign bits will be 3526 // the minimum of the clamp min/max range. 3527 bool IsMax = (Opcode == ISD::SMAX); 3528 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3529 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3530 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3531 CstHigh = 3532 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3533 if (CstLow && CstHigh) { 3534 if (!IsMax) 3535 std::swap(CstLow, CstHigh); 3536 3537 const APInt &ValueLow = CstLow->getAPIntValue(); 3538 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3539 if (ValueLow.sle(ValueHigh)) { 3540 unsigned LowSignBits = ValueLow.getNumSignBits(); 3541 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3542 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3543 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3544 Known.One.setHighBits(MinSignBits); 3545 break; 3546 } 3547 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3548 Known.Zero.setHighBits(MinSignBits); 3549 break; 3550 } 3551 } 3552 } 3553 3554 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3555 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3556 if (IsMax) 3557 Known = KnownBits::smax(Known, Known2); 3558 else 3559 Known = KnownBits::smin(Known, Known2); 3560 break; 3561 } 3562 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3563 if (Op.getResNo() == 1) { 3564 // The boolean result conforms to getBooleanContents. 3565 // If we know the result of a setcc has the top bits zero, use this info. 3566 // We know that we have an integer-based boolean since these operations 3567 // are only available for integer. 3568 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3569 TargetLowering::ZeroOrOneBooleanContent && 3570 BitWidth > 1) 3571 Known.Zero.setBitsFrom(1); 3572 break; 3573 } 3574 LLVM_FALLTHROUGH; 3575 case ISD::ATOMIC_CMP_SWAP: 3576 case ISD::ATOMIC_SWAP: 3577 case ISD::ATOMIC_LOAD_ADD: 3578 case ISD::ATOMIC_LOAD_SUB: 3579 case ISD::ATOMIC_LOAD_AND: 3580 case ISD::ATOMIC_LOAD_CLR: 3581 case ISD::ATOMIC_LOAD_OR: 3582 case ISD::ATOMIC_LOAD_XOR: 3583 case ISD::ATOMIC_LOAD_NAND: 3584 case ISD::ATOMIC_LOAD_MIN: 3585 case ISD::ATOMIC_LOAD_MAX: 3586 case ISD::ATOMIC_LOAD_UMIN: 3587 case ISD::ATOMIC_LOAD_UMAX: 3588 case ISD::ATOMIC_LOAD: { 3589 unsigned MemBits = 3590 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3591 // If we are looking at the loaded value. 3592 if (Op.getResNo() == 0) { 3593 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3594 Known.Zero.setBitsFrom(MemBits); 3595 } 3596 break; 3597 } 3598 case ISD::FrameIndex: 3599 case ISD::TargetFrameIndex: 3600 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3601 Known, getMachineFunction()); 3602 break; 3603 3604 default: 3605 if (Opcode < ISD::BUILTIN_OP_END) 3606 break; 3607 LLVM_FALLTHROUGH; 3608 case ISD::INTRINSIC_WO_CHAIN: 3609 case ISD::INTRINSIC_W_CHAIN: 3610 case ISD::INTRINSIC_VOID: 3611 // Allow the target to implement this method for its nodes. 3612 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3613 break; 3614 } 3615 3616 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3617 return Known; 3618 } 3619 3620 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3621 SDValue N1) const { 3622 // X + 0 never overflow 3623 if (isNullConstant(N1)) 3624 return OFK_Never; 3625 3626 KnownBits N1Known = computeKnownBits(N1); 3627 if (N1Known.Zero.getBoolValue()) { 3628 KnownBits N0Known = computeKnownBits(N0); 3629 3630 bool overflow; 3631 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3632 if (!overflow) 3633 return OFK_Never; 3634 } 3635 3636 // mulhi + 1 never overflow 3637 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3638 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3639 return OFK_Never; 3640 3641 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3642 KnownBits N0Known = computeKnownBits(N0); 3643 3644 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3645 return OFK_Never; 3646 } 3647 3648 return OFK_Sometime; 3649 } 3650 3651 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3652 EVT OpVT = Val.getValueType(); 3653 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3654 3655 // Is the constant a known power of 2? 3656 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3657 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3658 3659 // A left-shift of a constant one will have exactly one bit set because 3660 // shifting the bit off the end is undefined. 3661 if (Val.getOpcode() == ISD::SHL) { 3662 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3663 if (C && C->getAPIntValue() == 1) 3664 return true; 3665 } 3666 3667 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3668 // one bit set. 3669 if (Val.getOpcode() == ISD::SRL) { 3670 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3671 if (C && C->getAPIntValue().isSignMask()) 3672 return true; 3673 } 3674 3675 // Are all operands of a build vector constant powers of two? 3676 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3677 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3678 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3679 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3680 return false; 3681 })) 3682 return true; 3683 3684 // Is the operand of a splat vector a constant power of two? 3685 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3686 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3687 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3688 return true; 3689 3690 // More could be done here, though the above checks are enough 3691 // to handle some common cases. 3692 3693 // Fall back to computeKnownBits to catch other known cases. 3694 KnownBits Known = computeKnownBits(Val); 3695 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3696 } 3697 3698 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3699 EVT VT = Op.getValueType(); 3700 3701 // TODO: Assume we don't know anything for now. 3702 if (VT.isScalableVector()) 3703 return 1; 3704 3705 APInt DemandedElts = VT.isVector() 3706 ? APInt::getAllOnes(VT.getVectorNumElements()) 3707 : APInt(1, 1); 3708 return ComputeNumSignBits(Op, DemandedElts, Depth); 3709 } 3710 3711 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3712 unsigned Depth) const { 3713 EVT VT = Op.getValueType(); 3714 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3715 unsigned VTBits = VT.getScalarSizeInBits(); 3716 unsigned NumElts = DemandedElts.getBitWidth(); 3717 unsigned Tmp, Tmp2; 3718 unsigned FirstAnswer = 1; 3719 3720 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3721 const APInt &Val = C->getAPIntValue(); 3722 return Val.getNumSignBits(); 3723 } 3724 3725 if (Depth >= MaxRecursionDepth) 3726 return 1; // Limit search depth. 3727 3728 if (!DemandedElts || VT.isScalableVector()) 3729 return 1; // No demanded elts, better to assume we don't know anything. 3730 3731 unsigned Opcode = Op.getOpcode(); 3732 switch (Opcode) { 3733 default: break; 3734 case ISD::AssertSext: 3735 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3736 return VTBits-Tmp+1; 3737 case ISD::AssertZext: 3738 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3739 return VTBits-Tmp; 3740 3741 case ISD::BUILD_VECTOR: 3742 Tmp = VTBits; 3743 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3744 if (!DemandedElts[i]) 3745 continue; 3746 3747 SDValue SrcOp = Op.getOperand(i); 3748 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3749 3750 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3751 if (SrcOp.getValueSizeInBits() != VTBits) { 3752 assert(SrcOp.getValueSizeInBits() > VTBits && 3753 "Expected BUILD_VECTOR implicit truncation"); 3754 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3755 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3756 } 3757 Tmp = std::min(Tmp, Tmp2); 3758 } 3759 return Tmp; 3760 3761 case ISD::VECTOR_SHUFFLE: { 3762 // Collect the minimum number of sign bits that are shared by every vector 3763 // element referenced by the shuffle. 3764 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3765 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3766 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3767 for (unsigned i = 0; i != NumElts; ++i) { 3768 int M = SVN->getMaskElt(i); 3769 if (!DemandedElts[i]) 3770 continue; 3771 // For UNDEF elements, we don't know anything about the common state of 3772 // the shuffle result. 3773 if (M < 0) 3774 return 1; 3775 if ((unsigned)M < NumElts) 3776 DemandedLHS.setBit((unsigned)M % NumElts); 3777 else 3778 DemandedRHS.setBit((unsigned)M % NumElts); 3779 } 3780 Tmp = std::numeric_limits<unsigned>::max(); 3781 if (!!DemandedLHS) 3782 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3783 if (!!DemandedRHS) { 3784 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3785 Tmp = std::min(Tmp, Tmp2); 3786 } 3787 // If we don't know anything, early out and try computeKnownBits fall-back. 3788 if (Tmp == 1) 3789 break; 3790 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3791 return Tmp; 3792 } 3793 3794 case ISD::BITCAST: { 3795 SDValue N0 = Op.getOperand(0); 3796 EVT SrcVT = N0.getValueType(); 3797 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3798 3799 // Ignore bitcasts from unsupported types.. 3800 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3801 break; 3802 3803 // Fast handling of 'identity' bitcasts. 3804 if (VTBits == SrcBits) 3805 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3806 3807 bool IsLE = getDataLayout().isLittleEndian(); 3808 3809 // Bitcast 'large element' scalar/vector to 'small element' vector. 3810 if ((SrcBits % VTBits) == 0) { 3811 assert(VT.isVector() && "Expected bitcast to vector"); 3812 3813 unsigned Scale = SrcBits / VTBits; 3814 APInt SrcDemandedElts = 3815 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3816 3817 // Fast case - sign splat can be simply split across the small elements. 3818 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3819 if (Tmp == SrcBits) 3820 return VTBits; 3821 3822 // Slow case - determine how far the sign extends into each sub-element. 3823 Tmp2 = VTBits; 3824 for (unsigned i = 0; i != NumElts; ++i) 3825 if (DemandedElts[i]) { 3826 unsigned SubOffset = i % Scale; 3827 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3828 SubOffset = SubOffset * VTBits; 3829 if (Tmp <= SubOffset) 3830 return 1; 3831 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3832 } 3833 return Tmp2; 3834 } 3835 break; 3836 } 3837 3838 case ISD::SIGN_EXTEND: 3839 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3840 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3841 case ISD::SIGN_EXTEND_INREG: 3842 // Max of the input and what this extends. 3843 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3844 Tmp = VTBits-Tmp+1; 3845 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3846 return std::max(Tmp, Tmp2); 3847 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3848 SDValue Src = Op.getOperand(0); 3849 EVT SrcVT = Src.getValueType(); 3850 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3851 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3852 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3853 } 3854 case ISD::SRA: 3855 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3856 // SRA X, C -> adds C sign bits. 3857 if (const APInt *ShAmt = 3858 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3859 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3860 return Tmp; 3861 case ISD::SHL: 3862 if (const APInt *ShAmt = 3863 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3864 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3865 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3866 if (ShAmt->ult(Tmp)) 3867 return Tmp - ShAmt->getZExtValue(); 3868 } 3869 break; 3870 case ISD::AND: 3871 case ISD::OR: 3872 case ISD::XOR: // NOT is handled here. 3873 // Logical binary ops preserve the number of sign bits at the worst. 3874 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3875 if (Tmp != 1) { 3876 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3877 FirstAnswer = std::min(Tmp, Tmp2); 3878 // We computed what we know about the sign bits as our first 3879 // answer. Now proceed to the generic code that uses 3880 // computeKnownBits, and pick whichever answer is better. 3881 } 3882 break; 3883 3884 case ISD::SELECT: 3885 case ISD::VSELECT: 3886 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3887 if (Tmp == 1) return 1; // Early out. 3888 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3889 return std::min(Tmp, Tmp2); 3890 case ISD::SELECT_CC: 3891 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3892 if (Tmp == 1) return 1; // Early out. 3893 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3894 return std::min(Tmp, Tmp2); 3895 3896 case ISD::SMIN: 3897 case ISD::SMAX: { 3898 // If we have a clamp pattern, we know that the number of sign bits will be 3899 // the minimum of the clamp min/max range. 3900 bool IsMax = (Opcode == ISD::SMAX); 3901 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3902 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3903 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3904 CstHigh = 3905 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3906 if (CstLow && CstHigh) { 3907 if (!IsMax) 3908 std::swap(CstLow, CstHigh); 3909 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3910 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3911 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3912 return std::min(Tmp, Tmp2); 3913 } 3914 } 3915 3916 // Fallback - just get the minimum number of sign bits of the operands. 3917 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3918 if (Tmp == 1) 3919 return 1; // Early out. 3920 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3921 return std::min(Tmp, Tmp2); 3922 } 3923 case ISD::UMIN: 3924 case ISD::UMAX: 3925 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3926 if (Tmp == 1) 3927 return 1; // Early out. 3928 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3929 return std::min(Tmp, Tmp2); 3930 case ISD::SADDO: 3931 case ISD::UADDO: 3932 case ISD::SSUBO: 3933 case ISD::USUBO: 3934 case ISD::SMULO: 3935 case ISD::UMULO: 3936 if (Op.getResNo() != 1) 3937 break; 3938 // The boolean result conforms to getBooleanContents. Fall through. 3939 // If setcc returns 0/-1, all bits are sign bits. 3940 // We know that we have an integer-based boolean since these operations 3941 // are only available for integer. 3942 if (TLI->getBooleanContents(VT.isVector(), false) == 3943 TargetLowering::ZeroOrNegativeOneBooleanContent) 3944 return VTBits; 3945 break; 3946 case ISD::SETCC: 3947 case ISD::STRICT_FSETCC: 3948 case ISD::STRICT_FSETCCS: { 3949 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3950 // If setcc returns 0/-1, all bits are sign bits. 3951 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3952 TargetLowering::ZeroOrNegativeOneBooleanContent) 3953 return VTBits; 3954 break; 3955 } 3956 case ISD::ROTL: 3957 case ISD::ROTR: 3958 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3959 3960 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3961 if (Tmp == VTBits) 3962 return VTBits; 3963 3964 if (ConstantSDNode *C = 3965 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3966 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3967 3968 // Handle rotate right by N like a rotate left by 32-N. 3969 if (Opcode == ISD::ROTR) 3970 RotAmt = (VTBits - RotAmt) % VTBits; 3971 3972 // If we aren't rotating out all of the known-in sign bits, return the 3973 // number that are left. This handles rotl(sext(x), 1) for example. 3974 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3975 } 3976 break; 3977 case ISD::ADD: 3978 case ISD::ADDC: 3979 // Add can have at most one carry bit. Thus we know that the output 3980 // is, at worst, one more bit than the inputs. 3981 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3982 if (Tmp == 1) return 1; // Early out. 3983 3984 // Special case decrementing a value (ADD X, -1): 3985 if (ConstantSDNode *CRHS = 3986 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3987 if (CRHS->isAllOnes()) { 3988 KnownBits Known = 3989 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3990 3991 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3992 // sign bits set. 3993 if ((Known.Zero | 1).isAllOnes()) 3994 return VTBits; 3995 3996 // If we are subtracting one from a positive number, there is no carry 3997 // out of the result. 3998 if (Known.isNonNegative()) 3999 return Tmp; 4000 } 4001 4002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4003 if (Tmp2 == 1) return 1; // Early out. 4004 return std::min(Tmp, Tmp2) - 1; 4005 case ISD::SUB: 4006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4007 if (Tmp2 == 1) return 1; // Early out. 4008 4009 // Handle NEG. 4010 if (ConstantSDNode *CLHS = 4011 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4012 if (CLHS->isZero()) { 4013 KnownBits Known = 4014 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4015 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4016 // sign bits set. 4017 if ((Known.Zero | 1).isAllOnes()) 4018 return VTBits; 4019 4020 // If the input is known to be positive (the sign bit is known clear), 4021 // the output of the NEG has the same number of sign bits as the input. 4022 if (Known.isNonNegative()) 4023 return Tmp2; 4024 4025 // Otherwise, we treat this like a SUB. 4026 } 4027 4028 // Sub can have at most one carry bit. Thus we know that the output 4029 // is, at worst, one more bit than the inputs. 4030 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4031 if (Tmp == 1) return 1; // Early out. 4032 return std::min(Tmp, Tmp2) - 1; 4033 case ISD::MUL: { 4034 // The output of the Mul can be at most twice the valid bits in the inputs. 4035 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4036 if (SignBitsOp0 == 1) 4037 break; 4038 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4039 if (SignBitsOp1 == 1) 4040 break; 4041 unsigned OutValidBits = 4042 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4043 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4044 } 4045 case ISD::SREM: 4046 // The sign bit is the LHS's sign bit, except when the result of the 4047 // remainder is zero. The magnitude of the result should be less than or 4048 // equal to the magnitude of the LHS. Therefore, the result should have 4049 // at least as many sign bits as the left hand side. 4050 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4051 case ISD::TRUNCATE: { 4052 // Check if the sign bits of source go down as far as the truncated value. 4053 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4054 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4055 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4056 return NumSrcSignBits - (NumSrcBits - VTBits); 4057 break; 4058 } 4059 case ISD::EXTRACT_ELEMENT: { 4060 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4061 const int BitWidth = Op.getValueSizeInBits(); 4062 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4063 4064 // Get reverse index (starting from 1), Op1 value indexes elements from 4065 // little end. Sign starts at big end. 4066 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4067 4068 // If the sign portion ends in our element the subtraction gives correct 4069 // result. Otherwise it gives either negative or > bitwidth result 4070 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4071 } 4072 case ISD::INSERT_VECTOR_ELT: { 4073 // If we know the element index, split the demand between the 4074 // source vector and the inserted element, otherwise assume we need 4075 // the original demanded vector elements and the value. 4076 SDValue InVec = Op.getOperand(0); 4077 SDValue InVal = Op.getOperand(1); 4078 SDValue EltNo = Op.getOperand(2); 4079 bool DemandedVal = true; 4080 APInt DemandedVecElts = DemandedElts; 4081 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4082 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4083 unsigned EltIdx = CEltNo->getZExtValue(); 4084 DemandedVal = !!DemandedElts[EltIdx]; 4085 DemandedVecElts.clearBit(EltIdx); 4086 } 4087 Tmp = std::numeric_limits<unsigned>::max(); 4088 if (DemandedVal) { 4089 // TODO - handle implicit truncation of inserted elements. 4090 if (InVal.getScalarValueSizeInBits() != VTBits) 4091 break; 4092 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4093 Tmp = std::min(Tmp, Tmp2); 4094 } 4095 if (!!DemandedVecElts) { 4096 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4097 Tmp = std::min(Tmp, Tmp2); 4098 } 4099 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4100 return Tmp; 4101 } 4102 case ISD::EXTRACT_VECTOR_ELT: { 4103 SDValue InVec = Op.getOperand(0); 4104 SDValue EltNo = Op.getOperand(1); 4105 EVT VecVT = InVec.getValueType(); 4106 // ComputeNumSignBits not yet implemented for scalable vectors. 4107 if (VecVT.isScalableVector()) 4108 break; 4109 const unsigned BitWidth = Op.getValueSizeInBits(); 4110 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4111 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4112 4113 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4114 // anything about sign bits. But if the sizes match we can derive knowledge 4115 // about sign bits from the vector operand. 4116 if (BitWidth != EltBitWidth) 4117 break; 4118 4119 // If we know the element index, just demand that vector element, else for 4120 // an unknown element index, ignore DemandedElts and demand them all. 4121 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4122 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4123 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4124 DemandedSrcElts = 4125 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4126 4127 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4128 } 4129 case ISD::EXTRACT_SUBVECTOR: { 4130 // Offset the demanded elts by the subvector index. 4131 SDValue Src = Op.getOperand(0); 4132 // Bail until we can represent demanded elements for scalable vectors. 4133 if (Src.getValueType().isScalableVector()) 4134 break; 4135 uint64_t Idx = Op.getConstantOperandVal(1); 4136 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4137 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4138 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4139 } 4140 case ISD::CONCAT_VECTORS: { 4141 // Determine the minimum number of sign bits across all demanded 4142 // elts of the input vectors. Early out if the result is already 1. 4143 Tmp = std::numeric_limits<unsigned>::max(); 4144 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4145 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4146 unsigned NumSubVectors = Op.getNumOperands(); 4147 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4148 APInt DemandedSub = 4149 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4150 if (!DemandedSub) 4151 continue; 4152 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4153 Tmp = std::min(Tmp, Tmp2); 4154 } 4155 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4156 return Tmp; 4157 } 4158 case ISD::INSERT_SUBVECTOR: { 4159 // Demand any elements from the subvector and the remainder from the src its 4160 // inserted into. 4161 SDValue Src = Op.getOperand(0); 4162 SDValue Sub = Op.getOperand(1); 4163 uint64_t Idx = Op.getConstantOperandVal(2); 4164 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4165 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4166 APInt DemandedSrcElts = DemandedElts; 4167 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4168 4169 Tmp = std::numeric_limits<unsigned>::max(); 4170 if (!!DemandedSubElts) { 4171 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4172 if (Tmp == 1) 4173 return 1; // early-out 4174 } 4175 if (!!DemandedSrcElts) { 4176 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4177 Tmp = std::min(Tmp, Tmp2); 4178 } 4179 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4180 return Tmp; 4181 } 4182 case ISD::ATOMIC_CMP_SWAP: 4183 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4184 case ISD::ATOMIC_SWAP: 4185 case ISD::ATOMIC_LOAD_ADD: 4186 case ISD::ATOMIC_LOAD_SUB: 4187 case ISD::ATOMIC_LOAD_AND: 4188 case ISD::ATOMIC_LOAD_CLR: 4189 case ISD::ATOMIC_LOAD_OR: 4190 case ISD::ATOMIC_LOAD_XOR: 4191 case ISD::ATOMIC_LOAD_NAND: 4192 case ISD::ATOMIC_LOAD_MIN: 4193 case ISD::ATOMIC_LOAD_MAX: 4194 case ISD::ATOMIC_LOAD_UMIN: 4195 case ISD::ATOMIC_LOAD_UMAX: 4196 case ISD::ATOMIC_LOAD: { 4197 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4198 // If we are looking at the loaded value. 4199 if (Op.getResNo() == 0) { 4200 if (Tmp == VTBits) 4201 return 1; // early-out 4202 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4203 return VTBits - Tmp + 1; 4204 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4205 return VTBits - Tmp; 4206 } 4207 break; 4208 } 4209 } 4210 4211 // If we are looking at the loaded value of the SDNode. 4212 if (Op.getResNo() == 0) { 4213 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4214 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4215 unsigned ExtType = LD->getExtensionType(); 4216 switch (ExtType) { 4217 default: break; 4218 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4219 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4220 return VTBits - Tmp + 1; 4221 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4222 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4223 return VTBits - Tmp; 4224 case ISD::NON_EXTLOAD: 4225 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4226 // We only need to handle vectors - computeKnownBits should handle 4227 // scalar cases. 4228 Type *CstTy = Cst->getType(); 4229 if (CstTy->isVectorTy() && 4230 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4231 Tmp = VTBits; 4232 for (unsigned i = 0; i != NumElts; ++i) { 4233 if (!DemandedElts[i]) 4234 continue; 4235 if (Constant *Elt = Cst->getAggregateElement(i)) { 4236 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4237 const APInt &Value = CInt->getValue(); 4238 Tmp = std::min(Tmp, Value.getNumSignBits()); 4239 continue; 4240 } 4241 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4242 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4243 Tmp = std::min(Tmp, Value.getNumSignBits()); 4244 continue; 4245 } 4246 } 4247 // Unknown type. Conservatively assume no bits match sign bit. 4248 return 1; 4249 } 4250 return Tmp; 4251 } 4252 } 4253 break; 4254 } 4255 } 4256 } 4257 4258 // Allow the target to implement this method for its nodes. 4259 if (Opcode >= ISD::BUILTIN_OP_END || 4260 Opcode == ISD::INTRINSIC_WO_CHAIN || 4261 Opcode == ISD::INTRINSIC_W_CHAIN || 4262 Opcode == ISD::INTRINSIC_VOID) { 4263 unsigned NumBits = 4264 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4265 if (NumBits > 1) 4266 FirstAnswer = std::max(FirstAnswer, NumBits); 4267 } 4268 4269 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4270 // use this information. 4271 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4272 4273 APInt Mask; 4274 if (Known.isNonNegative()) { // sign bit is 0 4275 Mask = Known.Zero; 4276 } else if (Known.isNegative()) { // sign bit is 1; 4277 Mask = Known.One; 4278 } else { 4279 // Nothing known. 4280 return FirstAnswer; 4281 } 4282 4283 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4284 // the number of identical bits in the top of the input value. 4285 Mask <<= Mask.getBitWidth()-VTBits; 4286 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4287 } 4288 4289 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4290 unsigned Depth) const { 4291 // Early out for FREEZE. 4292 if (Op.getOpcode() == ISD::FREEZE) 4293 return true; 4294 4295 // TODO: Assume we don't know anything for now. 4296 EVT VT = Op.getValueType(); 4297 if (VT.isScalableVector()) 4298 return false; 4299 4300 APInt DemandedElts = VT.isVector() 4301 ? APInt::getAllOnes(VT.getVectorNumElements()) 4302 : APInt(1, 1); 4303 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4304 } 4305 4306 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4307 const APInt &DemandedElts, 4308 bool PoisonOnly, 4309 unsigned Depth) const { 4310 unsigned Opcode = Op.getOpcode(); 4311 4312 // Early out for FREEZE. 4313 if (Opcode == ISD::FREEZE) 4314 return true; 4315 4316 if (Depth >= MaxRecursionDepth) 4317 return false; // Limit search depth. 4318 4319 if (isIntOrFPConstant(Op)) 4320 return true; 4321 4322 switch (Opcode) { 4323 case ISD::UNDEF: 4324 return PoisonOnly; 4325 4326 case ISD::BUILD_VECTOR: 4327 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4328 // this shouldn't affect the result. 4329 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4330 if (!DemandedElts[i]) 4331 continue; 4332 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4333 Depth + 1)) 4334 return false; 4335 } 4336 return true; 4337 4338 // TODO: Search for noundef attributes from library functions. 4339 4340 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4341 4342 default: 4343 // Allow the target to implement this method for its nodes. 4344 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4345 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4346 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4347 Op, DemandedElts, *this, PoisonOnly, Depth); 4348 break; 4349 } 4350 4351 return false; 4352 } 4353 4354 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4355 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4356 !isa<ConstantSDNode>(Op.getOperand(1))) 4357 return false; 4358 4359 if (Op.getOpcode() == ISD::OR && 4360 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4361 return false; 4362 4363 return true; 4364 } 4365 4366 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4367 // If we're told that NaNs won't happen, assume they won't. 4368 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4369 return true; 4370 4371 if (Depth >= MaxRecursionDepth) 4372 return false; // Limit search depth. 4373 4374 // TODO: Handle vectors. 4375 // If the value is a constant, we can obviously see if it is a NaN or not. 4376 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4377 return !C->getValueAPF().isNaN() || 4378 (SNaN && !C->getValueAPF().isSignaling()); 4379 } 4380 4381 unsigned Opcode = Op.getOpcode(); 4382 switch (Opcode) { 4383 case ISD::FADD: 4384 case ISD::FSUB: 4385 case ISD::FMUL: 4386 case ISD::FDIV: 4387 case ISD::FREM: 4388 case ISD::FSIN: 4389 case ISD::FCOS: { 4390 if (SNaN) 4391 return true; 4392 // TODO: Need isKnownNeverInfinity 4393 return false; 4394 } 4395 case ISD::FCANONICALIZE: 4396 case ISD::FEXP: 4397 case ISD::FEXP2: 4398 case ISD::FTRUNC: 4399 case ISD::FFLOOR: 4400 case ISD::FCEIL: 4401 case ISD::FROUND: 4402 case ISD::FROUNDEVEN: 4403 case ISD::FRINT: 4404 case ISD::FNEARBYINT: { 4405 if (SNaN) 4406 return true; 4407 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4408 } 4409 case ISD::FABS: 4410 case ISD::FNEG: 4411 case ISD::FCOPYSIGN: { 4412 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4413 } 4414 case ISD::SELECT: 4415 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4416 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4417 case ISD::FP_EXTEND: 4418 case ISD::FP_ROUND: { 4419 if (SNaN) 4420 return true; 4421 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4422 } 4423 case ISD::SINT_TO_FP: 4424 case ISD::UINT_TO_FP: 4425 return true; 4426 case ISD::FMA: 4427 case ISD::FMAD: { 4428 if (SNaN) 4429 return true; 4430 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4431 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4432 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4433 } 4434 case ISD::FSQRT: // Need is known positive 4435 case ISD::FLOG: 4436 case ISD::FLOG2: 4437 case ISD::FLOG10: 4438 case ISD::FPOWI: 4439 case ISD::FPOW: { 4440 if (SNaN) 4441 return true; 4442 // TODO: Refine on operand 4443 return false; 4444 } 4445 case ISD::FMINNUM: 4446 case ISD::FMAXNUM: { 4447 // Only one needs to be known not-nan, since it will be returned if the 4448 // other ends up being one. 4449 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4450 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4451 } 4452 case ISD::FMINNUM_IEEE: 4453 case ISD::FMAXNUM_IEEE: { 4454 if (SNaN) 4455 return true; 4456 // This can return a NaN if either operand is an sNaN, or if both operands 4457 // are NaN. 4458 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4459 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4460 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4461 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4462 } 4463 case ISD::FMINIMUM: 4464 case ISD::FMAXIMUM: { 4465 // TODO: Does this quiet or return the origina NaN as-is? 4466 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4467 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4468 } 4469 case ISD::EXTRACT_VECTOR_ELT: { 4470 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4471 } 4472 default: 4473 if (Opcode >= ISD::BUILTIN_OP_END || 4474 Opcode == ISD::INTRINSIC_WO_CHAIN || 4475 Opcode == ISD::INTRINSIC_W_CHAIN || 4476 Opcode == ISD::INTRINSIC_VOID) { 4477 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4478 } 4479 4480 return false; 4481 } 4482 } 4483 4484 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4485 assert(Op.getValueType().isFloatingPoint() && 4486 "Floating point type expected"); 4487 4488 // If the value is a constant, we can obviously see if it is a zero or not. 4489 // TODO: Add BuildVector support. 4490 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4491 return !C->isZero(); 4492 return false; 4493 } 4494 4495 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4496 assert(!Op.getValueType().isFloatingPoint() && 4497 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4498 4499 // If the value is a constant, we can obviously see if it is a zero or not. 4500 if (ISD::matchUnaryPredicate(Op, 4501 [](ConstantSDNode *C) { return !C->isZero(); })) 4502 return true; 4503 4504 // TODO: Recognize more cases here. 4505 switch (Op.getOpcode()) { 4506 default: break; 4507 case ISD::OR: 4508 if (isKnownNeverZero(Op.getOperand(1)) || 4509 isKnownNeverZero(Op.getOperand(0))) 4510 return true; 4511 break; 4512 } 4513 4514 return false; 4515 } 4516 4517 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4518 // Check the obvious case. 4519 if (A == B) return true; 4520 4521 // For for negative and positive zero. 4522 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4523 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4524 if (CA->isZero() && CB->isZero()) return true; 4525 4526 // Otherwise they may not be equal. 4527 return false; 4528 } 4529 4530 // FIXME: unify with llvm::haveNoCommonBitsSet. 4531 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4532 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4533 assert(A.getValueType() == B.getValueType() && 4534 "Values must have the same type"); 4535 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4536 computeKnownBits(B)); 4537 } 4538 4539 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4540 SelectionDAG &DAG) { 4541 if (cast<ConstantSDNode>(Step)->isZero()) 4542 return DAG.getConstant(0, DL, VT); 4543 4544 return SDValue(); 4545 } 4546 4547 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4548 ArrayRef<SDValue> Ops, 4549 SelectionDAG &DAG) { 4550 int NumOps = Ops.size(); 4551 assert(NumOps != 0 && "Can't build an empty vector!"); 4552 assert(!VT.isScalableVector() && 4553 "BUILD_VECTOR cannot be used with scalable types"); 4554 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4555 "Incorrect element count in BUILD_VECTOR!"); 4556 4557 // BUILD_VECTOR of UNDEFs is UNDEF. 4558 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4559 return DAG.getUNDEF(VT); 4560 4561 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4562 SDValue IdentitySrc; 4563 bool IsIdentity = true; 4564 for (int i = 0; i != NumOps; ++i) { 4565 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4566 Ops[i].getOperand(0).getValueType() != VT || 4567 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4568 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4569 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4570 IsIdentity = false; 4571 break; 4572 } 4573 IdentitySrc = Ops[i].getOperand(0); 4574 } 4575 if (IsIdentity) 4576 return IdentitySrc; 4577 4578 return SDValue(); 4579 } 4580 4581 /// Try to simplify vector concatenation to an input value, undef, or build 4582 /// vector. 4583 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4584 ArrayRef<SDValue> Ops, 4585 SelectionDAG &DAG) { 4586 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4587 assert(llvm::all_of(Ops, 4588 [Ops](SDValue Op) { 4589 return Ops[0].getValueType() == Op.getValueType(); 4590 }) && 4591 "Concatenation of vectors with inconsistent value types!"); 4592 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4593 VT.getVectorElementCount() && 4594 "Incorrect element count in vector concatenation!"); 4595 4596 if (Ops.size() == 1) 4597 return Ops[0]; 4598 4599 // Concat of UNDEFs is UNDEF. 4600 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4601 return DAG.getUNDEF(VT); 4602 4603 // Scan the operands and look for extract operations from a single source 4604 // that correspond to insertion at the same location via this concatenation: 4605 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4606 SDValue IdentitySrc; 4607 bool IsIdentity = true; 4608 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4609 SDValue Op = Ops[i]; 4610 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4611 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4612 Op.getOperand(0).getValueType() != VT || 4613 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4614 Op.getConstantOperandVal(1) != IdentityIndex) { 4615 IsIdentity = false; 4616 break; 4617 } 4618 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4619 "Unexpected identity source vector for concat of extracts"); 4620 IdentitySrc = Op.getOperand(0); 4621 } 4622 if (IsIdentity) { 4623 assert(IdentitySrc && "Failed to set source vector of extracts"); 4624 return IdentitySrc; 4625 } 4626 4627 // The code below this point is only designed to work for fixed width 4628 // vectors, so we bail out for now. 4629 if (VT.isScalableVector()) 4630 return SDValue(); 4631 4632 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4633 // simplified to one big BUILD_VECTOR. 4634 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4635 EVT SVT = VT.getScalarType(); 4636 SmallVector<SDValue, 16> Elts; 4637 for (SDValue Op : Ops) { 4638 EVT OpVT = Op.getValueType(); 4639 if (Op.isUndef()) 4640 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4641 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4642 Elts.append(Op->op_begin(), Op->op_end()); 4643 else 4644 return SDValue(); 4645 } 4646 4647 // BUILD_VECTOR requires all inputs to be of the same type, find the 4648 // maximum type and extend them all. 4649 for (SDValue Op : Elts) 4650 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4651 4652 if (SVT.bitsGT(VT.getScalarType())) { 4653 for (SDValue &Op : Elts) { 4654 if (Op.isUndef()) 4655 Op = DAG.getUNDEF(SVT); 4656 else 4657 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4658 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4659 : DAG.getSExtOrTrunc(Op, DL, SVT); 4660 } 4661 } 4662 4663 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4664 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4665 return V; 4666 } 4667 4668 /// Gets or creates the specified node. 4669 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4670 FoldingSetNodeID ID; 4671 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4672 void *IP = nullptr; 4673 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4674 return SDValue(E, 0); 4675 4676 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4677 getVTList(VT)); 4678 CSEMap.InsertNode(N, IP); 4679 4680 InsertNode(N); 4681 SDValue V = SDValue(N, 0); 4682 NewSDValueDbgMsg(V, "Creating new node: ", this); 4683 return V; 4684 } 4685 4686 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4687 SDValue Operand) { 4688 SDNodeFlags Flags; 4689 if (Inserter) 4690 Flags = Inserter->getFlags(); 4691 return getNode(Opcode, DL, VT, Operand, Flags); 4692 } 4693 4694 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4695 SDValue Operand, const SDNodeFlags Flags) { 4696 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4697 "Operand is DELETED_NODE!"); 4698 // Constant fold unary operations with an integer constant operand. Even 4699 // opaque constant will be folded, because the folding of unary operations 4700 // doesn't create new constants with different values. Nevertheless, the 4701 // opaque flag is preserved during folding to prevent future folding with 4702 // other constants. 4703 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4704 const APInt &Val = C->getAPIntValue(); 4705 switch (Opcode) { 4706 default: break; 4707 case ISD::SIGN_EXTEND: 4708 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4709 C->isTargetOpcode(), C->isOpaque()); 4710 case ISD::TRUNCATE: 4711 if (C->isOpaque()) 4712 break; 4713 LLVM_FALLTHROUGH; 4714 case ISD::ZERO_EXTEND: 4715 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4716 C->isTargetOpcode(), C->isOpaque()); 4717 case ISD::ANY_EXTEND: 4718 // Some targets like RISCV prefer to sign extend some types. 4719 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4720 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4721 C->isTargetOpcode(), C->isOpaque()); 4722 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4723 C->isTargetOpcode(), C->isOpaque()); 4724 case ISD::UINT_TO_FP: 4725 case ISD::SINT_TO_FP: { 4726 APFloat apf(EVTToAPFloatSemantics(VT), 4727 APInt::getZero(VT.getSizeInBits())); 4728 (void)apf.convertFromAPInt(Val, 4729 Opcode==ISD::SINT_TO_FP, 4730 APFloat::rmNearestTiesToEven); 4731 return getConstantFP(apf, DL, VT); 4732 } 4733 case ISD::BITCAST: 4734 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4735 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4736 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4737 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4738 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4739 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4740 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4741 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4742 break; 4743 case ISD::ABS: 4744 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4745 C->isOpaque()); 4746 case ISD::BITREVERSE: 4747 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4748 C->isOpaque()); 4749 case ISD::BSWAP: 4750 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4751 C->isOpaque()); 4752 case ISD::CTPOP: 4753 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4754 C->isOpaque()); 4755 case ISD::CTLZ: 4756 case ISD::CTLZ_ZERO_UNDEF: 4757 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4758 C->isOpaque()); 4759 case ISD::CTTZ: 4760 case ISD::CTTZ_ZERO_UNDEF: 4761 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4762 C->isOpaque()); 4763 case ISD::FP16_TO_FP: { 4764 bool Ignored; 4765 APFloat FPV(APFloat::IEEEhalf(), 4766 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4767 4768 // This can return overflow, underflow, or inexact; we don't care. 4769 // FIXME need to be more flexible about rounding mode. 4770 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4771 APFloat::rmNearestTiesToEven, &Ignored); 4772 return getConstantFP(FPV, DL, VT); 4773 } 4774 case ISD::STEP_VECTOR: { 4775 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4776 return V; 4777 break; 4778 } 4779 } 4780 } 4781 4782 // Constant fold unary operations with a floating point constant operand. 4783 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4784 APFloat V = C->getValueAPF(); // make copy 4785 switch (Opcode) { 4786 case ISD::FNEG: 4787 V.changeSign(); 4788 return getConstantFP(V, DL, VT); 4789 case ISD::FABS: 4790 V.clearSign(); 4791 return getConstantFP(V, DL, VT); 4792 case ISD::FCEIL: { 4793 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4794 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4795 return getConstantFP(V, DL, VT); 4796 break; 4797 } 4798 case ISD::FTRUNC: { 4799 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4800 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4801 return getConstantFP(V, DL, VT); 4802 break; 4803 } 4804 case ISD::FFLOOR: { 4805 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4806 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4807 return getConstantFP(V, DL, VT); 4808 break; 4809 } 4810 case ISD::FP_EXTEND: { 4811 bool ignored; 4812 // This can return overflow, underflow, or inexact; we don't care. 4813 // FIXME need to be more flexible about rounding mode. 4814 (void)V.convert(EVTToAPFloatSemantics(VT), 4815 APFloat::rmNearestTiesToEven, &ignored); 4816 return getConstantFP(V, DL, VT); 4817 } 4818 case ISD::FP_TO_SINT: 4819 case ISD::FP_TO_UINT: { 4820 bool ignored; 4821 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4822 // FIXME need to be more flexible about rounding mode. 4823 APFloat::opStatus s = 4824 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4825 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4826 break; 4827 return getConstant(IntVal, DL, VT); 4828 } 4829 case ISD::BITCAST: 4830 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4831 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4832 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4833 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4834 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4835 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4836 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4837 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4838 break; 4839 case ISD::FP_TO_FP16: { 4840 bool Ignored; 4841 // This can return overflow, underflow, or inexact; we don't care. 4842 // FIXME need to be more flexible about rounding mode. 4843 (void)V.convert(APFloat::IEEEhalf(), 4844 APFloat::rmNearestTiesToEven, &Ignored); 4845 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4846 } 4847 } 4848 } 4849 4850 // Constant fold unary operations with a vector integer or float operand. 4851 switch (Opcode) { 4852 default: 4853 // FIXME: Entirely reasonable to perform folding of other unary 4854 // operations here as the need arises. 4855 break; 4856 case ISD::FNEG: 4857 case ISD::FABS: 4858 case ISD::FCEIL: 4859 case ISD::FTRUNC: 4860 case ISD::FFLOOR: 4861 case ISD::FP_EXTEND: 4862 case ISD::FP_TO_SINT: 4863 case ISD::FP_TO_UINT: 4864 case ISD::TRUNCATE: 4865 case ISD::ANY_EXTEND: 4866 case ISD::ZERO_EXTEND: 4867 case ISD::SIGN_EXTEND: 4868 case ISD::UINT_TO_FP: 4869 case ISD::SINT_TO_FP: 4870 case ISD::ABS: 4871 case ISD::BITREVERSE: 4872 case ISD::BSWAP: 4873 case ISD::CTLZ: 4874 case ISD::CTLZ_ZERO_UNDEF: 4875 case ISD::CTTZ: 4876 case ISD::CTTZ_ZERO_UNDEF: 4877 case ISD::CTPOP: { 4878 SDValue Ops = {Operand}; 4879 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4880 return Fold; 4881 } 4882 } 4883 4884 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4885 switch (Opcode) { 4886 case ISD::STEP_VECTOR: 4887 assert(VT.isScalableVector() && 4888 "STEP_VECTOR can only be used with scalable types"); 4889 assert(OpOpcode == ISD::TargetConstant && 4890 VT.getVectorElementType() == Operand.getValueType() && 4891 "Unexpected step operand"); 4892 break; 4893 case ISD::FREEZE: 4894 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4895 break; 4896 case ISD::TokenFactor: 4897 case ISD::MERGE_VALUES: 4898 case ISD::CONCAT_VECTORS: 4899 return Operand; // Factor, merge or concat of one node? No need. 4900 case ISD::BUILD_VECTOR: { 4901 // Attempt to simplify BUILD_VECTOR. 4902 SDValue Ops[] = {Operand}; 4903 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4904 return V; 4905 break; 4906 } 4907 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4908 case ISD::FP_EXTEND: 4909 assert(VT.isFloatingPoint() && 4910 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4911 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4912 assert((!VT.isVector() || 4913 VT.getVectorElementCount() == 4914 Operand.getValueType().getVectorElementCount()) && 4915 "Vector element count mismatch!"); 4916 assert(Operand.getValueType().bitsLT(VT) && 4917 "Invalid fpext node, dst < src!"); 4918 if (Operand.isUndef()) 4919 return getUNDEF(VT); 4920 break; 4921 case ISD::FP_TO_SINT: 4922 case ISD::FP_TO_UINT: 4923 if (Operand.isUndef()) 4924 return getUNDEF(VT); 4925 break; 4926 case ISD::SINT_TO_FP: 4927 case ISD::UINT_TO_FP: 4928 // [us]itofp(undef) = 0, because the result value is bounded. 4929 if (Operand.isUndef()) 4930 return getConstantFP(0.0, DL, VT); 4931 break; 4932 case ISD::SIGN_EXTEND: 4933 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4934 "Invalid SIGN_EXTEND!"); 4935 assert(VT.isVector() == Operand.getValueType().isVector() && 4936 "SIGN_EXTEND result type type should be vector iff the operand " 4937 "type is vector!"); 4938 if (Operand.getValueType() == VT) return Operand; // noop extension 4939 assert((!VT.isVector() || 4940 VT.getVectorElementCount() == 4941 Operand.getValueType().getVectorElementCount()) && 4942 "Vector element count mismatch!"); 4943 assert(Operand.getValueType().bitsLT(VT) && 4944 "Invalid sext node, dst < src!"); 4945 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4946 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4947 if (OpOpcode == ISD::UNDEF) 4948 // sext(undef) = 0, because the top bits will all be the same. 4949 return getConstant(0, DL, VT); 4950 break; 4951 case ISD::ZERO_EXTEND: 4952 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4953 "Invalid ZERO_EXTEND!"); 4954 assert(VT.isVector() == Operand.getValueType().isVector() && 4955 "ZERO_EXTEND result type type should be vector iff the operand " 4956 "type is vector!"); 4957 if (Operand.getValueType() == VT) return Operand; // noop extension 4958 assert((!VT.isVector() || 4959 VT.getVectorElementCount() == 4960 Operand.getValueType().getVectorElementCount()) && 4961 "Vector element count mismatch!"); 4962 assert(Operand.getValueType().bitsLT(VT) && 4963 "Invalid zext node, dst < src!"); 4964 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4965 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4966 if (OpOpcode == ISD::UNDEF) 4967 // zext(undef) = 0, because the top bits will be zero. 4968 return getConstant(0, DL, VT); 4969 break; 4970 case ISD::ANY_EXTEND: 4971 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4972 "Invalid ANY_EXTEND!"); 4973 assert(VT.isVector() == Operand.getValueType().isVector() && 4974 "ANY_EXTEND result type type should be vector iff the operand " 4975 "type is vector!"); 4976 if (Operand.getValueType() == VT) return Operand; // noop extension 4977 assert((!VT.isVector() || 4978 VT.getVectorElementCount() == 4979 Operand.getValueType().getVectorElementCount()) && 4980 "Vector element count mismatch!"); 4981 assert(Operand.getValueType().bitsLT(VT) && 4982 "Invalid anyext node, dst < src!"); 4983 4984 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4985 OpOpcode == ISD::ANY_EXTEND) 4986 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4987 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4988 if (OpOpcode == ISD::UNDEF) 4989 return getUNDEF(VT); 4990 4991 // (ext (trunc x)) -> x 4992 if (OpOpcode == ISD::TRUNCATE) { 4993 SDValue OpOp = Operand.getOperand(0); 4994 if (OpOp.getValueType() == VT) { 4995 transferDbgValues(Operand, OpOp); 4996 return OpOp; 4997 } 4998 } 4999 break; 5000 case ISD::TRUNCATE: 5001 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5002 "Invalid TRUNCATE!"); 5003 assert(VT.isVector() == Operand.getValueType().isVector() && 5004 "TRUNCATE result type type should be vector iff the operand " 5005 "type is vector!"); 5006 if (Operand.getValueType() == VT) return Operand; // noop truncate 5007 assert((!VT.isVector() || 5008 VT.getVectorElementCount() == 5009 Operand.getValueType().getVectorElementCount()) && 5010 "Vector element count mismatch!"); 5011 assert(Operand.getValueType().bitsGT(VT) && 5012 "Invalid truncate node, src < dst!"); 5013 if (OpOpcode == ISD::TRUNCATE) 5014 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5015 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5016 OpOpcode == ISD::ANY_EXTEND) { 5017 // If the source is smaller than the dest, we still need an extend. 5018 if (Operand.getOperand(0).getValueType().getScalarType() 5019 .bitsLT(VT.getScalarType())) 5020 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5021 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5022 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5023 return Operand.getOperand(0); 5024 } 5025 if (OpOpcode == ISD::UNDEF) 5026 return getUNDEF(VT); 5027 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5028 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5029 break; 5030 case ISD::ANY_EXTEND_VECTOR_INREG: 5031 case ISD::ZERO_EXTEND_VECTOR_INREG: 5032 case ISD::SIGN_EXTEND_VECTOR_INREG: 5033 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5034 assert(Operand.getValueType().bitsLE(VT) && 5035 "The input must be the same size or smaller than the result."); 5036 assert(VT.getVectorMinNumElements() < 5037 Operand.getValueType().getVectorMinNumElements() && 5038 "The destination vector type must have fewer lanes than the input."); 5039 break; 5040 case ISD::ABS: 5041 assert(VT.isInteger() && VT == Operand.getValueType() && 5042 "Invalid ABS!"); 5043 if (OpOpcode == ISD::UNDEF) 5044 return getUNDEF(VT); 5045 break; 5046 case ISD::BSWAP: 5047 assert(VT.isInteger() && VT == Operand.getValueType() && 5048 "Invalid BSWAP!"); 5049 assert((VT.getScalarSizeInBits() % 16 == 0) && 5050 "BSWAP types must be a multiple of 16 bits!"); 5051 if (OpOpcode == ISD::UNDEF) 5052 return getUNDEF(VT); 5053 break; 5054 case ISD::BITREVERSE: 5055 assert(VT.isInteger() && VT == Operand.getValueType() && 5056 "Invalid BITREVERSE!"); 5057 if (OpOpcode == ISD::UNDEF) 5058 return getUNDEF(VT); 5059 break; 5060 case ISD::BITCAST: 5061 // Basic sanity checking. 5062 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5063 "Cannot BITCAST between types of different sizes!"); 5064 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5065 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5066 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5067 if (OpOpcode == ISD::UNDEF) 5068 return getUNDEF(VT); 5069 break; 5070 case ISD::SCALAR_TO_VECTOR: 5071 assert(VT.isVector() && !Operand.getValueType().isVector() && 5072 (VT.getVectorElementType() == Operand.getValueType() || 5073 (VT.getVectorElementType().isInteger() && 5074 Operand.getValueType().isInteger() && 5075 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5076 "Illegal SCALAR_TO_VECTOR node!"); 5077 if (OpOpcode == ISD::UNDEF) 5078 return getUNDEF(VT); 5079 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5080 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5081 isa<ConstantSDNode>(Operand.getOperand(1)) && 5082 Operand.getConstantOperandVal(1) == 0 && 5083 Operand.getOperand(0).getValueType() == VT) 5084 return Operand.getOperand(0); 5085 break; 5086 case ISD::FNEG: 5087 // Negation of an unknown bag of bits is still completely undefined. 5088 if (OpOpcode == ISD::UNDEF) 5089 return getUNDEF(VT); 5090 5091 if (OpOpcode == ISD::FNEG) // --X -> X 5092 return Operand.getOperand(0); 5093 break; 5094 case ISD::FABS: 5095 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5096 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5097 break; 5098 case ISD::VSCALE: 5099 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5100 break; 5101 case ISD::CTPOP: 5102 if (Operand.getValueType().getScalarType() == MVT::i1) 5103 return Operand; 5104 break; 5105 case ISD::CTLZ: 5106 case ISD::CTTZ: 5107 if (Operand.getValueType().getScalarType() == MVT::i1) 5108 return getNOT(DL, Operand, Operand.getValueType()); 5109 break; 5110 case ISD::VECREDUCE_SMIN: 5111 case ISD::VECREDUCE_UMAX: 5112 if (Operand.getValueType().getScalarType() == MVT::i1) 5113 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5114 break; 5115 case ISD::VECREDUCE_SMAX: 5116 case ISD::VECREDUCE_UMIN: 5117 if (Operand.getValueType().getScalarType() == MVT::i1) 5118 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5119 break; 5120 } 5121 5122 SDNode *N; 5123 SDVTList VTs = getVTList(VT); 5124 SDValue Ops[] = {Operand}; 5125 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5126 FoldingSetNodeID ID; 5127 AddNodeIDNode(ID, Opcode, VTs, Ops); 5128 void *IP = nullptr; 5129 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5130 E->intersectFlagsWith(Flags); 5131 return SDValue(E, 0); 5132 } 5133 5134 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5135 N->setFlags(Flags); 5136 createOperands(N, Ops); 5137 CSEMap.InsertNode(N, IP); 5138 } else { 5139 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5140 createOperands(N, Ops); 5141 } 5142 5143 InsertNode(N); 5144 SDValue V = SDValue(N, 0); 5145 NewSDValueDbgMsg(V, "Creating new node: ", this); 5146 return V; 5147 } 5148 5149 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5150 const APInt &C2) { 5151 switch (Opcode) { 5152 case ISD::ADD: return C1 + C2; 5153 case ISD::SUB: return C1 - C2; 5154 case ISD::MUL: return C1 * C2; 5155 case ISD::AND: return C1 & C2; 5156 case ISD::OR: return C1 | C2; 5157 case ISD::XOR: return C1 ^ C2; 5158 case ISD::SHL: return C1 << C2; 5159 case ISD::SRL: return C1.lshr(C2); 5160 case ISD::SRA: return C1.ashr(C2); 5161 case ISD::ROTL: return C1.rotl(C2); 5162 case ISD::ROTR: return C1.rotr(C2); 5163 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5164 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5165 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5166 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5167 case ISD::SADDSAT: return C1.sadd_sat(C2); 5168 case ISD::UADDSAT: return C1.uadd_sat(C2); 5169 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5170 case ISD::USUBSAT: return C1.usub_sat(C2); 5171 case ISD::UDIV: 5172 if (!C2.getBoolValue()) 5173 break; 5174 return C1.udiv(C2); 5175 case ISD::UREM: 5176 if (!C2.getBoolValue()) 5177 break; 5178 return C1.urem(C2); 5179 case ISD::SDIV: 5180 if (!C2.getBoolValue()) 5181 break; 5182 return C1.sdiv(C2); 5183 case ISD::SREM: 5184 if (!C2.getBoolValue()) 5185 break; 5186 return C1.srem(C2); 5187 case ISD::MULHS: { 5188 unsigned FullWidth = C1.getBitWidth() * 2; 5189 APInt C1Ext = C1.sext(FullWidth); 5190 APInt C2Ext = C2.sext(FullWidth); 5191 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5192 } 5193 case ISD::MULHU: { 5194 unsigned FullWidth = C1.getBitWidth() * 2; 5195 APInt C1Ext = C1.zext(FullWidth); 5196 APInt C2Ext = C2.zext(FullWidth); 5197 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5198 } 5199 } 5200 return llvm::None; 5201 } 5202 5203 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5204 const GlobalAddressSDNode *GA, 5205 const SDNode *N2) { 5206 if (GA->getOpcode() != ISD::GlobalAddress) 5207 return SDValue(); 5208 if (!TLI->isOffsetFoldingLegal(GA)) 5209 return SDValue(); 5210 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5211 if (!C2) 5212 return SDValue(); 5213 int64_t Offset = C2->getSExtValue(); 5214 switch (Opcode) { 5215 case ISD::ADD: break; 5216 case ISD::SUB: Offset = -uint64_t(Offset); break; 5217 default: return SDValue(); 5218 } 5219 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5220 GA->getOffset() + uint64_t(Offset)); 5221 } 5222 5223 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5224 switch (Opcode) { 5225 case ISD::SDIV: 5226 case ISD::UDIV: 5227 case ISD::SREM: 5228 case ISD::UREM: { 5229 // If a divisor is zero/undef or any element of a divisor vector is 5230 // zero/undef, the whole op is undef. 5231 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5232 SDValue Divisor = Ops[1]; 5233 if (Divisor.isUndef() || isNullConstant(Divisor)) 5234 return true; 5235 5236 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5237 llvm::any_of(Divisor->op_values(), 5238 [](SDValue V) { return V.isUndef() || 5239 isNullConstant(V); }); 5240 // TODO: Handle signed overflow. 5241 } 5242 // TODO: Handle oversized shifts. 5243 default: 5244 return false; 5245 } 5246 } 5247 5248 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5249 EVT VT, ArrayRef<SDValue> Ops) { 5250 // If the opcode is a target-specific ISD node, there's nothing we can 5251 // do here and the operand rules may not line up with the below, so 5252 // bail early. 5253 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5254 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5255 // foldCONCAT_VECTORS in getNode before this is called. 5256 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5257 return SDValue(); 5258 5259 // For now, the array Ops should only contain two values. 5260 // This enforcement will be removed once this function is merged with 5261 // FoldConstantVectorArithmetic 5262 if (Ops.size() != 2) 5263 return SDValue(); 5264 5265 if (isUndef(Opcode, Ops)) 5266 return getUNDEF(VT); 5267 5268 SDNode *N1 = Ops[0].getNode(); 5269 SDNode *N2 = Ops[1].getNode(); 5270 5271 // Handle the case of two scalars. 5272 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5273 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5274 if (C1->isOpaque() || C2->isOpaque()) 5275 return SDValue(); 5276 5277 Optional<APInt> FoldAttempt = 5278 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5279 if (!FoldAttempt) 5280 return SDValue(); 5281 5282 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5283 assert((!Folded || !VT.isVector()) && 5284 "Can't fold vectors ops with scalar operands"); 5285 return Folded; 5286 } 5287 } 5288 5289 // fold (add Sym, c) -> Sym+c 5290 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5291 return FoldSymbolOffset(Opcode, VT, GA, N2); 5292 if (TLI->isCommutativeBinOp(Opcode)) 5293 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5294 return FoldSymbolOffset(Opcode, VT, GA, N1); 5295 5296 // For fixed width vectors, extract each constant element and fold them 5297 // individually. Either input may be an undef value. 5298 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5299 N1->getOpcode() == ISD::SPLAT_VECTOR; 5300 if (!IsBVOrSV1 && !N1->isUndef()) 5301 return SDValue(); 5302 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5303 N2->getOpcode() == ISD::SPLAT_VECTOR; 5304 if (!IsBVOrSV2 && !N2->isUndef()) 5305 return SDValue(); 5306 // If both operands are undef, that's handled the same way as scalars. 5307 if (!IsBVOrSV1 && !IsBVOrSV2) 5308 return SDValue(); 5309 5310 EVT SVT = VT.getScalarType(); 5311 EVT LegalSVT = SVT; 5312 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5313 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5314 if (LegalSVT.bitsLT(SVT)) 5315 return SDValue(); 5316 } 5317 5318 SmallVector<SDValue, 4> Outputs; 5319 unsigned NumOps = 0; 5320 if (IsBVOrSV1) 5321 NumOps = std::max(NumOps, N1->getNumOperands()); 5322 if (IsBVOrSV2) 5323 NumOps = std::max(NumOps, N2->getNumOperands()); 5324 assert(NumOps != 0 && "Expected non-zero operands"); 5325 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5326 // one iteration for that. 5327 assert((!VT.isScalableVector() || NumOps == 1) && 5328 "Scalable vector should only have one scalar"); 5329 5330 for (unsigned I = 0; I != NumOps; ++I) { 5331 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5332 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5333 SDValue V1; 5334 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5335 V1 = N1->getOperand(I); 5336 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5337 V1 = N1->getOperand(0); 5338 else 5339 V1 = getUNDEF(SVT); 5340 5341 SDValue V2; 5342 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5343 V2 = N2->getOperand(I); 5344 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5345 V2 = N2->getOperand(0); 5346 else 5347 V2 = getUNDEF(SVT); 5348 5349 if (SVT.isInteger()) { 5350 if (V1.getValueType().bitsGT(SVT)) 5351 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5352 if (V2.getValueType().bitsGT(SVT)) 5353 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5354 } 5355 5356 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5357 return SDValue(); 5358 5359 // Fold one vector element. 5360 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5361 if (LegalSVT != SVT) 5362 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5363 5364 // Scalar folding only succeeded if the result is a constant or UNDEF. 5365 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5366 ScalarResult.getOpcode() != ISD::ConstantFP) 5367 return SDValue(); 5368 Outputs.push_back(ScalarResult); 5369 } 5370 5371 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5372 N2->getOpcode() == ISD::BUILD_VECTOR) { 5373 assert(VT.getVectorNumElements() == Outputs.size() && 5374 "Vector size mismatch!"); 5375 5376 // Build a big vector out of the scalar elements we generated. 5377 return getBuildVector(VT, SDLoc(), Outputs); 5378 } 5379 5380 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5381 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5382 "One operand should be a splat vector"); 5383 5384 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5385 return getSplatVector(VT, SDLoc(), Outputs[0]); 5386 } 5387 5388 // TODO: Merge with FoldConstantArithmetic 5389 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5390 const SDLoc &DL, EVT VT, 5391 ArrayRef<SDValue> Ops, 5392 const SDNodeFlags Flags) { 5393 // If the opcode is a target-specific ISD node, there's nothing we can 5394 // do here and the operand rules may not line up with the below, so 5395 // bail early. 5396 if (Opcode >= ISD::BUILTIN_OP_END) 5397 return SDValue(); 5398 5399 if (isUndef(Opcode, Ops)) 5400 return getUNDEF(VT); 5401 5402 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5403 if (!VT.isVector()) 5404 return SDValue(); 5405 5406 ElementCount NumElts = VT.getVectorElementCount(); 5407 5408 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5409 return !Op.getValueType().isVector() || 5410 Op.getValueType().getVectorElementCount() == NumElts; 5411 }; 5412 5413 auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5414 APInt SplatVal; 5415 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5416 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5417 (BV && BV->isConstant()) || 5418 (Op.getOpcode() == ISD::SPLAT_VECTOR && 5419 ISD::isConstantSplatVector(Op.getNode(), SplatVal)); 5420 }; 5421 5422 // All operands must be vector types with the same number of elements as 5423 // the result type and must be either UNDEF or a build vector of constant 5424 // or UNDEF scalars. 5425 if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) || 5426 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5427 return SDValue(); 5428 5429 // If we are comparing vectors, then the result needs to be a i1 boolean 5430 // that is then sign-extended back to the legal result type. 5431 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5432 5433 // Find legal integer scalar type for constant promotion and 5434 // ensure that its scalar size is at least as large as source. 5435 EVT LegalSVT = VT.getScalarType(); 5436 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5437 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5438 if (LegalSVT.bitsLT(VT.getScalarType())) 5439 return SDValue(); 5440 } 5441 5442 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5443 // only have one operand to check. For fixed-length vector types we may have 5444 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5445 unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5446 5447 // Constant fold each scalar lane separately. 5448 SmallVector<SDValue, 4> ScalarResults; 5449 for (unsigned I = 0; I != NumOperands; I++) { 5450 SmallVector<SDValue, 4> ScalarOps; 5451 for (SDValue Op : Ops) { 5452 EVT InSVT = Op.getValueType().getScalarType(); 5453 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5454 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5455 // We've checked that this is UNDEF or a constant of some kind. 5456 if (Op.isUndef()) 5457 ScalarOps.push_back(getUNDEF(InSVT)); 5458 else 5459 ScalarOps.push_back(Op); 5460 continue; 5461 } 5462 5463 SDValue ScalarOp = 5464 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5465 EVT ScalarVT = ScalarOp.getValueType(); 5466 5467 // Build vector (integer) scalar operands may need implicit 5468 // truncation - do this before constant folding. 5469 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5470 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5471 5472 ScalarOps.push_back(ScalarOp); 5473 } 5474 5475 // Constant fold the scalar operands. 5476 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5477 5478 // Legalize the (integer) scalar constant if necessary. 5479 if (LegalSVT != SVT) 5480 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5481 5482 // Scalar folding only succeeded if the result is a constant or UNDEF. 5483 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5484 ScalarResult.getOpcode() != ISD::ConstantFP) 5485 return SDValue(); 5486 ScalarResults.push_back(ScalarResult); 5487 } 5488 5489 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5490 : getBuildVector(VT, DL, ScalarResults); 5491 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5492 return V; 5493 } 5494 5495 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5496 EVT VT, SDValue N1, SDValue N2) { 5497 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5498 // should. That will require dealing with a potentially non-default 5499 // rounding mode, checking the "opStatus" return value from the APFloat 5500 // math calculations, and possibly other variations. 5501 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5502 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5503 if (N1CFP && N2CFP) { 5504 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5505 switch (Opcode) { 5506 case ISD::FADD: 5507 C1.add(C2, APFloat::rmNearestTiesToEven); 5508 return getConstantFP(C1, DL, VT); 5509 case ISD::FSUB: 5510 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5511 return getConstantFP(C1, DL, VT); 5512 case ISD::FMUL: 5513 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5514 return getConstantFP(C1, DL, VT); 5515 case ISD::FDIV: 5516 C1.divide(C2, APFloat::rmNearestTiesToEven); 5517 return getConstantFP(C1, DL, VT); 5518 case ISD::FREM: 5519 C1.mod(C2); 5520 return getConstantFP(C1, DL, VT); 5521 case ISD::FCOPYSIGN: 5522 C1.copySign(C2); 5523 return getConstantFP(C1, DL, VT); 5524 default: break; 5525 } 5526 } 5527 if (N1CFP && Opcode == ISD::FP_ROUND) { 5528 APFloat C1 = N1CFP->getValueAPF(); // make copy 5529 bool Unused; 5530 // This can return overflow, underflow, or inexact; we don't care. 5531 // FIXME need to be more flexible about rounding mode. 5532 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5533 &Unused); 5534 return getConstantFP(C1, DL, VT); 5535 } 5536 5537 switch (Opcode) { 5538 case ISD::FSUB: 5539 // -0.0 - undef --> undef (consistent with "fneg undef") 5540 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5541 return getUNDEF(VT); 5542 LLVM_FALLTHROUGH; 5543 5544 case ISD::FADD: 5545 case ISD::FMUL: 5546 case ISD::FDIV: 5547 case ISD::FREM: 5548 // If both operands are undef, the result is undef. If 1 operand is undef, 5549 // the result is NaN. This should match the behavior of the IR optimizer. 5550 if (N1.isUndef() && N2.isUndef()) 5551 return getUNDEF(VT); 5552 if (N1.isUndef() || N2.isUndef()) 5553 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5554 } 5555 return SDValue(); 5556 } 5557 5558 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5559 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5560 5561 // There's no need to assert on a byte-aligned pointer. All pointers are at 5562 // least byte aligned. 5563 if (A == Align(1)) 5564 return Val; 5565 5566 FoldingSetNodeID ID; 5567 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5568 ID.AddInteger(A.value()); 5569 5570 void *IP = nullptr; 5571 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5572 return SDValue(E, 0); 5573 5574 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5575 Val.getValueType(), A); 5576 createOperands(N, {Val}); 5577 5578 CSEMap.InsertNode(N, IP); 5579 InsertNode(N); 5580 5581 SDValue V(N, 0); 5582 NewSDValueDbgMsg(V, "Creating new node: ", this); 5583 return V; 5584 } 5585 5586 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5587 SDValue N1, SDValue N2) { 5588 SDNodeFlags Flags; 5589 if (Inserter) 5590 Flags = Inserter->getFlags(); 5591 return getNode(Opcode, DL, VT, N1, N2, Flags); 5592 } 5593 5594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5595 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5596 assert(N1.getOpcode() != ISD::DELETED_NODE && 5597 N2.getOpcode() != ISD::DELETED_NODE && 5598 "Operand is DELETED_NODE!"); 5599 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5600 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5601 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5602 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5603 5604 // Canonicalize constant to RHS if commutative. 5605 if (TLI->isCommutativeBinOp(Opcode)) { 5606 if (N1C && !N2C) { 5607 std::swap(N1C, N2C); 5608 std::swap(N1, N2); 5609 } else if (N1CFP && !N2CFP) { 5610 std::swap(N1CFP, N2CFP); 5611 std::swap(N1, N2); 5612 } 5613 } 5614 5615 switch (Opcode) { 5616 default: break; 5617 case ISD::TokenFactor: 5618 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5619 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5620 // Fold trivial token factors. 5621 if (N1.getOpcode() == ISD::EntryToken) return N2; 5622 if (N2.getOpcode() == ISD::EntryToken) return N1; 5623 if (N1 == N2) return N1; 5624 break; 5625 case ISD::BUILD_VECTOR: { 5626 // Attempt to simplify BUILD_VECTOR. 5627 SDValue Ops[] = {N1, N2}; 5628 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5629 return V; 5630 break; 5631 } 5632 case ISD::CONCAT_VECTORS: { 5633 SDValue Ops[] = {N1, N2}; 5634 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5635 return V; 5636 break; 5637 } 5638 case ISD::AND: 5639 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5640 assert(N1.getValueType() == N2.getValueType() && 5641 N1.getValueType() == VT && "Binary operator types must match!"); 5642 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5643 // worth handling here. 5644 if (N2C && N2C->isZero()) 5645 return N2; 5646 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5647 return N1; 5648 break; 5649 case ISD::OR: 5650 case ISD::XOR: 5651 case ISD::ADD: 5652 case ISD::SUB: 5653 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5654 assert(N1.getValueType() == N2.getValueType() && 5655 N1.getValueType() == VT && "Binary operator types must match!"); 5656 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5657 // it's worth handling here. 5658 if (N2C && N2C->isZero()) 5659 return N1; 5660 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5661 VT.getVectorElementType() == MVT::i1) 5662 return getNode(ISD::XOR, DL, VT, N1, N2); 5663 break; 5664 case ISD::MUL: 5665 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5666 assert(N1.getValueType() == N2.getValueType() && 5667 N1.getValueType() == VT && "Binary operator types must match!"); 5668 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5669 return getNode(ISD::AND, DL, VT, N1, N2); 5670 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5671 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5672 const APInt &N2CImm = N2C->getAPIntValue(); 5673 return getVScale(DL, VT, MulImm * N2CImm); 5674 } 5675 break; 5676 case ISD::UDIV: 5677 case ISD::UREM: 5678 case ISD::MULHU: 5679 case ISD::MULHS: 5680 case ISD::SDIV: 5681 case ISD::SREM: 5682 case ISD::SADDSAT: 5683 case ISD::SSUBSAT: 5684 case ISD::UADDSAT: 5685 case ISD::USUBSAT: 5686 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5687 assert(N1.getValueType() == N2.getValueType() && 5688 N1.getValueType() == VT && "Binary operator types must match!"); 5689 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5690 // fold (add_sat x, y) -> (or x, y) for bool types. 5691 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5692 return getNode(ISD::OR, DL, VT, N1, N2); 5693 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5694 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5695 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5696 } 5697 break; 5698 case ISD::SMIN: 5699 case ISD::UMAX: 5700 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5701 assert(N1.getValueType() == N2.getValueType() && 5702 N1.getValueType() == VT && "Binary operator types must match!"); 5703 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5704 return getNode(ISD::OR, DL, VT, N1, N2); 5705 break; 5706 case ISD::SMAX: 5707 case ISD::UMIN: 5708 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5709 assert(N1.getValueType() == N2.getValueType() && 5710 N1.getValueType() == VT && "Binary operator types must match!"); 5711 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5712 return getNode(ISD::AND, DL, VT, N1, N2); 5713 break; 5714 case ISD::FADD: 5715 case ISD::FSUB: 5716 case ISD::FMUL: 5717 case ISD::FDIV: 5718 case ISD::FREM: 5719 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5720 assert(N1.getValueType() == N2.getValueType() && 5721 N1.getValueType() == VT && "Binary operator types must match!"); 5722 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5723 return V; 5724 break; 5725 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5726 assert(N1.getValueType() == VT && 5727 N1.getValueType().isFloatingPoint() && 5728 N2.getValueType().isFloatingPoint() && 5729 "Invalid FCOPYSIGN!"); 5730 break; 5731 case ISD::SHL: 5732 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5733 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5734 const APInt &ShiftImm = N2C->getAPIntValue(); 5735 return getVScale(DL, VT, MulImm << ShiftImm); 5736 } 5737 LLVM_FALLTHROUGH; 5738 case ISD::SRA: 5739 case ISD::SRL: 5740 if (SDValue V = simplifyShift(N1, N2)) 5741 return V; 5742 LLVM_FALLTHROUGH; 5743 case ISD::ROTL: 5744 case ISD::ROTR: 5745 assert(VT == N1.getValueType() && 5746 "Shift operators return type must be the same as their first arg"); 5747 assert(VT.isInteger() && N2.getValueType().isInteger() && 5748 "Shifts only work on integers"); 5749 assert((!VT.isVector() || VT == N2.getValueType()) && 5750 "Vector shift amounts must be in the same as their first arg"); 5751 // Verify that the shift amount VT is big enough to hold valid shift 5752 // amounts. This catches things like trying to shift an i1024 value by an 5753 // i8, which is easy to fall into in generic code that uses 5754 // TLI.getShiftAmount(). 5755 assert(N2.getValueType().getScalarSizeInBits() >= 5756 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5757 "Invalid use of small shift amount with oversized value!"); 5758 5759 // Always fold shifts of i1 values so the code generator doesn't need to 5760 // handle them. Since we know the size of the shift has to be less than the 5761 // size of the value, the shift/rotate count is guaranteed to be zero. 5762 if (VT == MVT::i1) 5763 return N1; 5764 if (N2C && N2C->isZero()) 5765 return N1; 5766 break; 5767 case ISD::FP_ROUND: 5768 assert(VT.isFloatingPoint() && 5769 N1.getValueType().isFloatingPoint() && 5770 VT.bitsLE(N1.getValueType()) && 5771 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5772 "Invalid FP_ROUND!"); 5773 if (N1.getValueType() == VT) return N1; // noop conversion. 5774 break; 5775 case ISD::AssertSext: 5776 case ISD::AssertZext: { 5777 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5778 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5779 assert(VT.isInteger() && EVT.isInteger() && 5780 "Cannot *_EXTEND_INREG FP types"); 5781 assert(!EVT.isVector() && 5782 "AssertSExt/AssertZExt type should be the vector element type " 5783 "rather than the vector type!"); 5784 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5785 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5786 break; 5787 } 5788 case ISD::SIGN_EXTEND_INREG: { 5789 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5790 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5791 assert(VT.isInteger() && EVT.isInteger() && 5792 "Cannot *_EXTEND_INREG FP types"); 5793 assert(EVT.isVector() == VT.isVector() && 5794 "SIGN_EXTEND_INREG type should be vector iff the operand " 5795 "type is vector!"); 5796 assert((!EVT.isVector() || 5797 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5798 "Vector element counts must match in SIGN_EXTEND_INREG"); 5799 assert(EVT.bitsLE(VT) && "Not extending!"); 5800 if (EVT == VT) return N1; // Not actually extending 5801 5802 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5803 unsigned FromBits = EVT.getScalarSizeInBits(); 5804 Val <<= Val.getBitWidth() - FromBits; 5805 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5806 return getConstant(Val, DL, ConstantVT); 5807 }; 5808 5809 if (N1C) { 5810 const APInt &Val = N1C->getAPIntValue(); 5811 return SignExtendInReg(Val, VT); 5812 } 5813 5814 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5815 SmallVector<SDValue, 8> Ops; 5816 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5817 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5818 SDValue Op = N1.getOperand(i); 5819 if (Op.isUndef()) { 5820 Ops.push_back(getUNDEF(OpVT)); 5821 continue; 5822 } 5823 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5824 APInt Val = C->getAPIntValue(); 5825 Ops.push_back(SignExtendInReg(Val, OpVT)); 5826 } 5827 return getBuildVector(VT, DL, Ops); 5828 } 5829 break; 5830 } 5831 case ISD::FP_TO_SINT_SAT: 5832 case ISD::FP_TO_UINT_SAT: { 5833 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5834 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5835 assert(N1.getValueType().isVector() == VT.isVector() && 5836 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5837 "vector!"); 5838 assert((!VT.isVector() || VT.getVectorNumElements() == 5839 N1.getValueType().getVectorNumElements()) && 5840 "Vector element counts must match in FP_TO_*INT_SAT"); 5841 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5842 "Type to saturate to must be a scalar."); 5843 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5844 "Not extending!"); 5845 break; 5846 } 5847 case ISD::EXTRACT_VECTOR_ELT: 5848 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5849 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5850 element type of the vector."); 5851 5852 // Extract from an undefined value or using an undefined index is undefined. 5853 if (N1.isUndef() || N2.isUndef()) 5854 return getUNDEF(VT); 5855 5856 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5857 // vectors. For scalable vectors we will provide appropriate support for 5858 // dealing with arbitrary indices. 5859 if (N2C && N1.getValueType().isFixedLengthVector() && 5860 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5861 return getUNDEF(VT); 5862 5863 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5864 // expanding copies of large vectors from registers. This only works for 5865 // fixed length vectors, since we need to know the exact number of 5866 // elements. 5867 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5868 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5869 unsigned Factor = 5870 N1.getOperand(0).getValueType().getVectorNumElements(); 5871 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5872 N1.getOperand(N2C->getZExtValue() / Factor), 5873 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5874 } 5875 5876 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5877 // lowering is expanding large vector constants. 5878 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5879 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5880 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5881 N1.getValueType().isFixedLengthVector()) && 5882 "BUILD_VECTOR used for scalable vectors"); 5883 unsigned Index = 5884 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5885 SDValue Elt = N1.getOperand(Index); 5886 5887 if (VT != Elt.getValueType()) 5888 // If the vector element type is not legal, the BUILD_VECTOR operands 5889 // are promoted and implicitly truncated, and the result implicitly 5890 // extended. Make that explicit here. 5891 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5892 5893 return Elt; 5894 } 5895 5896 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5897 // operations are lowered to scalars. 5898 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5899 // If the indices are the same, return the inserted element else 5900 // if the indices are known different, extract the element from 5901 // the original vector. 5902 SDValue N1Op2 = N1.getOperand(2); 5903 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5904 5905 if (N1Op2C && N2C) { 5906 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5907 if (VT == N1.getOperand(1).getValueType()) 5908 return N1.getOperand(1); 5909 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5910 } 5911 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5912 } 5913 } 5914 5915 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5916 // when vector types are scalarized and v1iX is legal. 5917 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5918 // Here we are completely ignoring the extract element index (N2), 5919 // which is fine for fixed width vectors, since any index other than 0 5920 // is undefined anyway. However, this cannot be ignored for scalable 5921 // vectors - in theory we could support this, but we don't want to do this 5922 // without a profitability check. 5923 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5924 N1.getValueType().isFixedLengthVector() && 5925 N1.getValueType().getVectorNumElements() == 1) { 5926 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5927 N1.getOperand(1)); 5928 } 5929 break; 5930 case ISD::EXTRACT_ELEMENT: 5931 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5932 assert(!N1.getValueType().isVector() && !VT.isVector() && 5933 (N1.getValueType().isInteger() == VT.isInteger()) && 5934 N1.getValueType() != VT && 5935 "Wrong types for EXTRACT_ELEMENT!"); 5936 5937 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5938 // 64-bit integers into 32-bit parts. Instead of building the extract of 5939 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5940 if (N1.getOpcode() == ISD::BUILD_PAIR) 5941 return N1.getOperand(N2C->getZExtValue()); 5942 5943 // EXTRACT_ELEMENT of a constant int is also very common. 5944 if (N1C) { 5945 unsigned ElementSize = VT.getSizeInBits(); 5946 unsigned Shift = ElementSize * N2C->getZExtValue(); 5947 const APInt &Val = N1C->getAPIntValue(); 5948 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5949 } 5950 break; 5951 case ISD::EXTRACT_SUBVECTOR: { 5952 EVT N1VT = N1.getValueType(); 5953 assert(VT.isVector() && N1VT.isVector() && 5954 "Extract subvector VTs must be vectors!"); 5955 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5956 "Extract subvector VTs must have the same element type!"); 5957 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5958 "Cannot extract a scalable vector from a fixed length vector!"); 5959 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5960 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5961 "Extract subvector must be from larger vector to smaller vector!"); 5962 assert(N2C && "Extract subvector index must be a constant"); 5963 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5964 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5965 N1VT.getVectorMinNumElements()) && 5966 "Extract subvector overflow!"); 5967 assert(N2C->getAPIntValue().getBitWidth() == 5968 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5969 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5970 5971 // Trivial extraction. 5972 if (VT == N1VT) 5973 return N1; 5974 5975 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5976 if (N1.isUndef()) 5977 return getUNDEF(VT); 5978 5979 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5980 // the concat have the same type as the extract. 5981 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5982 VT == N1.getOperand(0).getValueType()) { 5983 unsigned Factor = VT.getVectorMinNumElements(); 5984 return N1.getOperand(N2C->getZExtValue() / Factor); 5985 } 5986 5987 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5988 // during shuffle legalization. 5989 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5990 VT == N1.getOperand(1).getValueType()) 5991 return N1.getOperand(1); 5992 break; 5993 } 5994 } 5995 5996 // Perform trivial constant folding. 5997 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5998 return SV; 5999 6000 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 6001 return V; 6002 6003 // Canonicalize an UNDEF to the RHS, even over a constant. 6004 if (N1.isUndef()) { 6005 if (TLI->isCommutativeBinOp(Opcode)) { 6006 std::swap(N1, N2); 6007 } else { 6008 switch (Opcode) { 6009 case ISD::SIGN_EXTEND_INREG: 6010 case ISD::SUB: 6011 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6012 case ISD::UDIV: 6013 case ISD::SDIV: 6014 case ISD::UREM: 6015 case ISD::SREM: 6016 case ISD::SSUBSAT: 6017 case ISD::USUBSAT: 6018 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6019 } 6020 } 6021 } 6022 6023 // Fold a bunch of operators when the RHS is undef. 6024 if (N2.isUndef()) { 6025 switch (Opcode) { 6026 case ISD::XOR: 6027 if (N1.isUndef()) 6028 // Handle undef ^ undef -> 0 special case. This is a common 6029 // idiom (misuse). 6030 return getConstant(0, DL, VT); 6031 LLVM_FALLTHROUGH; 6032 case ISD::ADD: 6033 case ISD::SUB: 6034 case ISD::UDIV: 6035 case ISD::SDIV: 6036 case ISD::UREM: 6037 case ISD::SREM: 6038 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6039 case ISD::MUL: 6040 case ISD::AND: 6041 case ISD::SSUBSAT: 6042 case ISD::USUBSAT: 6043 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6044 case ISD::OR: 6045 case ISD::SADDSAT: 6046 case ISD::UADDSAT: 6047 return getAllOnesConstant(DL, VT); 6048 } 6049 } 6050 6051 // Memoize this node if possible. 6052 SDNode *N; 6053 SDVTList VTs = getVTList(VT); 6054 SDValue Ops[] = {N1, N2}; 6055 if (VT != MVT::Glue) { 6056 FoldingSetNodeID ID; 6057 AddNodeIDNode(ID, Opcode, VTs, Ops); 6058 void *IP = nullptr; 6059 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6060 E->intersectFlagsWith(Flags); 6061 return SDValue(E, 0); 6062 } 6063 6064 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6065 N->setFlags(Flags); 6066 createOperands(N, Ops); 6067 CSEMap.InsertNode(N, IP); 6068 } else { 6069 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6070 createOperands(N, Ops); 6071 } 6072 6073 InsertNode(N); 6074 SDValue V = SDValue(N, 0); 6075 NewSDValueDbgMsg(V, "Creating new node: ", this); 6076 return V; 6077 } 6078 6079 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6080 SDValue N1, SDValue N2, SDValue N3) { 6081 SDNodeFlags Flags; 6082 if (Inserter) 6083 Flags = Inserter->getFlags(); 6084 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6085 } 6086 6087 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6088 SDValue N1, SDValue N2, SDValue N3, 6089 const SDNodeFlags Flags) { 6090 assert(N1.getOpcode() != ISD::DELETED_NODE && 6091 N2.getOpcode() != ISD::DELETED_NODE && 6092 N3.getOpcode() != ISD::DELETED_NODE && 6093 "Operand is DELETED_NODE!"); 6094 // Perform various simplifications. 6095 switch (Opcode) { 6096 case ISD::FMA: { 6097 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6098 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6099 N3.getValueType() == VT && "FMA types must match!"); 6100 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6101 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6102 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6103 if (N1CFP && N2CFP && N3CFP) { 6104 APFloat V1 = N1CFP->getValueAPF(); 6105 const APFloat &V2 = N2CFP->getValueAPF(); 6106 const APFloat &V3 = N3CFP->getValueAPF(); 6107 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6108 return getConstantFP(V1, DL, VT); 6109 } 6110 break; 6111 } 6112 case ISD::BUILD_VECTOR: { 6113 // Attempt to simplify BUILD_VECTOR. 6114 SDValue Ops[] = {N1, N2, N3}; 6115 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6116 return V; 6117 break; 6118 } 6119 case ISD::CONCAT_VECTORS: { 6120 SDValue Ops[] = {N1, N2, N3}; 6121 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6122 return V; 6123 break; 6124 } 6125 case ISD::SETCC: { 6126 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6127 assert(N1.getValueType() == N2.getValueType() && 6128 "SETCC operands must have the same type!"); 6129 assert(VT.isVector() == N1.getValueType().isVector() && 6130 "SETCC type should be vector iff the operand type is vector!"); 6131 assert((!VT.isVector() || VT.getVectorElementCount() == 6132 N1.getValueType().getVectorElementCount()) && 6133 "SETCC vector element counts must match!"); 6134 // Use FoldSetCC to simplify SETCC's. 6135 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6136 return V; 6137 // Vector constant folding. 6138 SDValue Ops[] = {N1, N2, N3}; 6139 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 6140 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6141 return V; 6142 } 6143 break; 6144 } 6145 case ISD::SELECT: 6146 case ISD::VSELECT: 6147 if (SDValue V = simplifySelect(N1, N2, N3)) 6148 return V; 6149 break; 6150 case ISD::VECTOR_SHUFFLE: 6151 llvm_unreachable("should use getVectorShuffle constructor!"); 6152 case ISD::VECTOR_SPLICE: { 6153 if (cast<ConstantSDNode>(N3)->isNullValue()) 6154 return N1; 6155 break; 6156 } 6157 case ISD::INSERT_VECTOR_ELT: { 6158 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6159 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6160 // for scalable vectors where we will generate appropriate code to 6161 // deal with out-of-bounds cases correctly. 6162 if (N3C && N1.getValueType().isFixedLengthVector() && 6163 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6164 return getUNDEF(VT); 6165 6166 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6167 if (N3.isUndef()) 6168 return getUNDEF(VT); 6169 6170 // If the inserted element is an UNDEF, just use the input vector. 6171 if (N2.isUndef()) 6172 return N1; 6173 6174 break; 6175 } 6176 case ISD::INSERT_SUBVECTOR: { 6177 // Inserting undef into undef is still undef. 6178 if (N1.isUndef() && N2.isUndef()) 6179 return getUNDEF(VT); 6180 6181 EVT N2VT = N2.getValueType(); 6182 assert(VT == N1.getValueType() && 6183 "Dest and insert subvector source types must match!"); 6184 assert(VT.isVector() && N2VT.isVector() && 6185 "Insert subvector VTs must be vectors!"); 6186 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6187 "Cannot insert a scalable vector into a fixed length vector!"); 6188 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6189 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6190 "Insert subvector must be from smaller vector to larger vector!"); 6191 assert(isa<ConstantSDNode>(N3) && 6192 "Insert subvector index must be constant"); 6193 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6194 (N2VT.getVectorMinNumElements() + 6195 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6196 VT.getVectorMinNumElements()) && 6197 "Insert subvector overflow!"); 6198 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6199 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6200 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6201 6202 // Trivial insertion. 6203 if (VT == N2VT) 6204 return N2; 6205 6206 // If this is an insert of an extracted vector into an undef vector, we 6207 // can just use the input to the extract. 6208 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6209 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6210 return N2.getOperand(0); 6211 break; 6212 } 6213 case ISD::BITCAST: 6214 // Fold bit_convert nodes from a type to themselves. 6215 if (N1.getValueType() == VT) 6216 return N1; 6217 break; 6218 } 6219 6220 // Memoize node if it doesn't produce a flag. 6221 SDNode *N; 6222 SDVTList VTs = getVTList(VT); 6223 SDValue Ops[] = {N1, N2, N3}; 6224 if (VT != MVT::Glue) { 6225 FoldingSetNodeID ID; 6226 AddNodeIDNode(ID, Opcode, VTs, Ops); 6227 void *IP = nullptr; 6228 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6229 E->intersectFlagsWith(Flags); 6230 return SDValue(E, 0); 6231 } 6232 6233 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6234 N->setFlags(Flags); 6235 createOperands(N, Ops); 6236 CSEMap.InsertNode(N, IP); 6237 } else { 6238 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6239 createOperands(N, Ops); 6240 } 6241 6242 InsertNode(N); 6243 SDValue V = SDValue(N, 0); 6244 NewSDValueDbgMsg(V, "Creating new node: ", this); 6245 return V; 6246 } 6247 6248 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6249 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6250 SDValue Ops[] = { N1, N2, N3, N4 }; 6251 return getNode(Opcode, DL, VT, Ops); 6252 } 6253 6254 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6255 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6256 SDValue N5) { 6257 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6258 return getNode(Opcode, DL, VT, Ops); 6259 } 6260 6261 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6262 /// the incoming stack arguments to be loaded from the stack. 6263 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6264 SmallVector<SDValue, 8> ArgChains; 6265 6266 // Include the original chain at the beginning of the list. When this is 6267 // used by target LowerCall hooks, this helps legalize find the 6268 // CALLSEQ_BEGIN node. 6269 ArgChains.push_back(Chain); 6270 6271 // Add a chain value for each stack argument. 6272 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6273 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6274 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6275 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6276 if (FI->getIndex() < 0) 6277 ArgChains.push_back(SDValue(L, 1)); 6278 6279 // Build a tokenfactor for all the chains. 6280 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6281 } 6282 6283 /// getMemsetValue - Vectorized representation of the memset value 6284 /// operand. 6285 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6286 const SDLoc &dl) { 6287 assert(!Value.isUndef()); 6288 6289 unsigned NumBits = VT.getScalarSizeInBits(); 6290 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6291 assert(C->getAPIntValue().getBitWidth() == 8); 6292 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6293 if (VT.isInteger()) { 6294 bool IsOpaque = VT.getSizeInBits() > 64 || 6295 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6296 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6297 } 6298 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6299 VT); 6300 } 6301 6302 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6303 EVT IntVT = VT.getScalarType(); 6304 if (!IntVT.isInteger()) 6305 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6306 6307 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6308 if (NumBits > 8) { 6309 // Use a multiplication with 0x010101... to extend the input to the 6310 // required length. 6311 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6312 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6313 DAG.getConstant(Magic, dl, IntVT)); 6314 } 6315 6316 if (VT != Value.getValueType() && !VT.isInteger()) 6317 Value = DAG.getBitcast(VT.getScalarType(), Value); 6318 if (VT != Value.getValueType()) 6319 Value = DAG.getSplatBuildVector(VT, dl, Value); 6320 6321 return Value; 6322 } 6323 6324 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6325 /// used when a memcpy is turned into a memset when the source is a constant 6326 /// string ptr. 6327 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6328 const TargetLowering &TLI, 6329 const ConstantDataArraySlice &Slice) { 6330 // Handle vector with all elements zero. 6331 if (Slice.Array == nullptr) { 6332 if (VT.isInteger()) 6333 return DAG.getConstant(0, dl, VT); 6334 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6335 return DAG.getConstantFP(0.0, dl, VT); 6336 if (VT.isVector()) { 6337 unsigned NumElts = VT.getVectorNumElements(); 6338 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6339 return DAG.getNode(ISD::BITCAST, dl, VT, 6340 DAG.getConstant(0, dl, 6341 EVT::getVectorVT(*DAG.getContext(), 6342 EltVT, NumElts))); 6343 } 6344 llvm_unreachable("Expected type!"); 6345 } 6346 6347 assert(!VT.isVector() && "Can't handle vector type here!"); 6348 unsigned NumVTBits = VT.getSizeInBits(); 6349 unsigned NumVTBytes = NumVTBits / 8; 6350 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6351 6352 APInt Val(NumVTBits, 0); 6353 if (DAG.getDataLayout().isLittleEndian()) { 6354 for (unsigned i = 0; i != NumBytes; ++i) 6355 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6356 } else { 6357 for (unsigned i = 0; i != NumBytes; ++i) 6358 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6359 } 6360 6361 // If the "cost" of materializing the integer immediate is less than the cost 6362 // of a load, then it is cost effective to turn the load into the immediate. 6363 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6364 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6365 return DAG.getConstant(Val, dl, VT); 6366 return SDValue(nullptr, 0); 6367 } 6368 6369 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6370 const SDLoc &DL, 6371 const SDNodeFlags Flags) { 6372 EVT VT = Base.getValueType(); 6373 SDValue Index; 6374 6375 if (Offset.isScalable()) 6376 Index = getVScale(DL, Base.getValueType(), 6377 APInt(Base.getValueSizeInBits().getFixedSize(), 6378 Offset.getKnownMinSize())); 6379 else 6380 Index = getConstant(Offset.getFixedSize(), DL, VT); 6381 6382 return getMemBasePlusOffset(Base, Index, DL, Flags); 6383 } 6384 6385 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6386 const SDLoc &DL, 6387 const SDNodeFlags Flags) { 6388 assert(Offset.getValueType().isInteger()); 6389 EVT BasePtrVT = Ptr.getValueType(); 6390 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6391 } 6392 6393 /// Returns true if memcpy source is constant data. 6394 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6395 uint64_t SrcDelta = 0; 6396 GlobalAddressSDNode *G = nullptr; 6397 if (Src.getOpcode() == ISD::GlobalAddress) 6398 G = cast<GlobalAddressSDNode>(Src); 6399 else if (Src.getOpcode() == ISD::ADD && 6400 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6401 Src.getOperand(1).getOpcode() == ISD::Constant) { 6402 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6403 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6404 } 6405 if (!G) 6406 return false; 6407 6408 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6409 SrcDelta + G->getOffset()); 6410 } 6411 6412 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6413 SelectionDAG &DAG) { 6414 // On Darwin, -Os means optimize for size without hurting performance, so 6415 // only really optimize for size when -Oz (MinSize) is used. 6416 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6417 return MF.getFunction().hasMinSize(); 6418 return DAG.shouldOptForSize(); 6419 } 6420 6421 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6422 SmallVector<SDValue, 32> &OutChains, unsigned From, 6423 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6424 SmallVector<SDValue, 16> &OutStoreChains) { 6425 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6426 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6427 SmallVector<SDValue, 16> GluedLoadChains; 6428 for (unsigned i = From; i < To; ++i) { 6429 OutChains.push_back(OutLoadChains[i]); 6430 GluedLoadChains.push_back(OutLoadChains[i]); 6431 } 6432 6433 // Chain for all loads. 6434 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6435 GluedLoadChains); 6436 6437 for (unsigned i = From; i < To; ++i) { 6438 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6439 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6440 ST->getBasePtr(), ST->getMemoryVT(), 6441 ST->getMemOperand()); 6442 OutChains.push_back(NewStore); 6443 } 6444 } 6445 6446 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6447 SDValue Chain, SDValue Dst, SDValue Src, 6448 uint64_t Size, Align Alignment, 6449 bool isVol, bool AlwaysInline, 6450 MachinePointerInfo DstPtrInfo, 6451 MachinePointerInfo SrcPtrInfo, 6452 const AAMDNodes &AAInfo) { 6453 // Turn a memcpy of undef to nop. 6454 // FIXME: We need to honor volatile even is Src is undef. 6455 if (Src.isUndef()) 6456 return Chain; 6457 6458 // Expand memcpy to a series of load and store ops if the size operand falls 6459 // below a certain threshold. 6460 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6461 // rather than maybe a humongous number of loads and stores. 6462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6463 const DataLayout &DL = DAG.getDataLayout(); 6464 LLVMContext &C = *DAG.getContext(); 6465 std::vector<EVT> MemOps; 6466 bool DstAlignCanChange = false; 6467 MachineFunction &MF = DAG.getMachineFunction(); 6468 MachineFrameInfo &MFI = MF.getFrameInfo(); 6469 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6470 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6471 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6472 DstAlignCanChange = true; 6473 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6474 if (!SrcAlign || Alignment > *SrcAlign) 6475 SrcAlign = Alignment; 6476 assert(SrcAlign && "SrcAlign must be set"); 6477 ConstantDataArraySlice Slice; 6478 // If marked as volatile, perform a copy even when marked as constant. 6479 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6480 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6481 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6482 const MemOp Op = isZeroConstant 6483 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6484 /*IsZeroMemset*/ true, isVol) 6485 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6486 *SrcAlign, isVol, CopyFromConstant); 6487 if (!TLI.findOptimalMemOpLowering( 6488 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6489 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6490 return SDValue(); 6491 6492 if (DstAlignCanChange) { 6493 Type *Ty = MemOps[0].getTypeForEVT(C); 6494 Align NewAlign = DL.getABITypeAlign(Ty); 6495 6496 // Don't promote to an alignment that would require dynamic stack 6497 // realignment. 6498 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6499 if (!TRI->hasStackRealignment(MF)) 6500 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6501 NewAlign = NewAlign / 2; 6502 6503 if (NewAlign > Alignment) { 6504 // Give the stack frame object a larger alignment if needed. 6505 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6506 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6507 Alignment = NewAlign; 6508 } 6509 } 6510 6511 // Prepare AAInfo for loads/stores after lowering this memcpy. 6512 AAMDNodes NewAAInfo = AAInfo; 6513 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6514 6515 MachineMemOperand::Flags MMOFlags = 6516 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6517 SmallVector<SDValue, 16> OutLoadChains; 6518 SmallVector<SDValue, 16> OutStoreChains; 6519 SmallVector<SDValue, 32> OutChains; 6520 unsigned NumMemOps = MemOps.size(); 6521 uint64_t SrcOff = 0, DstOff = 0; 6522 for (unsigned i = 0; i != NumMemOps; ++i) { 6523 EVT VT = MemOps[i]; 6524 unsigned VTSize = VT.getSizeInBits() / 8; 6525 SDValue Value, Store; 6526 6527 if (VTSize > Size) { 6528 // Issuing an unaligned load / store pair that overlaps with the previous 6529 // pair. Adjust the offset accordingly. 6530 assert(i == NumMemOps-1 && i != 0); 6531 SrcOff -= VTSize - Size; 6532 DstOff -= VTSize - Size; 6533 } 6534 6535 if (CopyFromConstant && 6536 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6537 // It's unlikely a store of a vector immediate can be done in a single 6538 // instruction. It would require a load from a constantpool first. 6539 // We only handle zero vectors here. 6540 // FIXME: Handle other cases where store of vector immediate is done in 6541 // a single instruction. 6542 ConstantDataArraySlice SubSlice; 6543 if (SrcOff < Slice.Length) { 6544 SubSlice = Slice; 6545 SubSlice.move(SrcOff); 6546 } else { 6547 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6548 SubSlice.Array = nullptr; 6549 SubSlice.Offset = 0; 6550 SubSlice.Length = VTSize; 6551 } 6552 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6553 if (Value.getNode()) { 6554 Store = DAG.getStore( 6555 Chain, dl, Value, 6556 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6557 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6558 OutChains.push_back(Store); 6559 } 6560 } 6561 6562 if (!Store.getNode()) { 6563 // The type might not be legal for the target. This should only happen 6564 // if the type is smaller than a legal type, as on PPC, so the right 6565 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6566 // to Load/Store if NVT==VT. 6567 // FIXME does the case above also need this? 6568 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6569 assert(NVT.bitsGE(VT)); 6570 6571 bool isDereferenceable = 6572 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6573 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6574 if (isDereferenceable) 6575 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6576 6577 Value = DAG.getExtLoad( 6578 ISD::EXTLOAD, dl, NVT, Chain, 6579 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6580 SrcPtrInfo.getWithOffset(SrcOff), VT, 6581 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6582 OutLoadChains.push_back(Value.getValue(1)); 6583 6584 Store = DAG.getTruncStore( 6585 Chain, dl, Value, 6586 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6587 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6588 OutStoreChains.push_back(Store); 6589 } 6590 SrcOff += VTSize; 6591 DstOff += VTSize; 6592 Size -= VTSize; 6593 } 6594 6595 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6596 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6597 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6598 6599 if (NumLdStInMemcpy) { 6600 // It may be that memcpy might be converted to memset if it's memcpy 6601 // of constants. In such a case, we won't have loads and stores, but 6602 // just stores. In the absence of loads, there is nothing to gang up. 6603 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6604 // If target does not care, just leave as it. 6605 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6606 OutChains.push_back(OutLoadChains[i]); 6607 OutChains.push_back(OutStoreChains[i]); 6608 } 6609 } else { 6610 // Ld/St less than/equal limit set by target. 6611 if (NumLdStInMemcpy <= GluedLdStLimit) { 6612 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6613 NumLdStInMemcpy, OutLoadChains, 6614 OutStoreChains); 6615 } else { 6616 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6617 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6618 unsigned GlueIter = 0; 6619 6620 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6621 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6622 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6623 6624 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6625 OutLoadChains, OutStoreChains); 6626 GlueIter += GluedLdStLimit; 6627 } 6628 6629 // Residual ld/st. 6630 if (RemainingLdStInMemcpy) { 6631 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6632 RemainingLdStInMemcpy, OutLoadChains, 6633 OutStoreChains); 6634 } 6635 } 6636 } 6637 } 6638 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6639 } 6640 6641 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6642 SDValue Chain, SDValue Dst, SDValue Src, 6643 uint64_t Size, Align Alignment, 6644 bool isVol, bool AlwaysInline, 6645 MachinePointerInfo DstPtrInfo, 6646 MachinePointerInfo SrcPtrInfo, 6647 const AAMDNodes &AAInfo) { 6648 // Turn a memmove of undef to nop. 6649 // FIXME: We need to honor volatile even is Src is undef. 6650 if (Src.isUndef()) 6651 return Chain; 6652 6653 // Expand memmove to a series of load and store ops if the size operand falls 6654 // below a certain threshold. 6655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6656 const DataLayout &DL = DAG.getDataLayout(); 6657 LLVMContext &C = *DAG.getContext(); 6658 std::vector<EVT> MemOps; 6659 bool DstAlignCanChange = false; 6660 MachineFunction &MF = DAG.getMachineFunction(); 6661 MachineFrameInfo &MFI = MF.getFrameInfo(); 6662 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6663 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6664 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6665 DstAlignCanChange = true; 6666 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6667 if (!SrcAlign || Alignment > *SrcAlign) 6668 SrcAlign = Alignment; 6669 assert(SrcAlign && "SrcAlign must be set"); 6670 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6671 if (!TLI.findOptimalMemOpLowering( 6672 MemOps, Limit, 6673 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6674 /*IsVolatile*/ true), 6675 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6676 MF.getFunction().getAttributes())) 6677 return SDValue(); 6678 6679 if (DstAlignCanChange) { 6680 Type *Ty = MemOps[0].getTypeForEVT(C); 6681 Align NewAlign = DL.getABITypeAlign(Ty); 6682 if (NewAlign > Alignment) { 6683 // Give the stack frame object a larger alignment if needed. 6684 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6685 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6686 Alignment = NewAlign; 6687 } 6688 } 6689 6690 // Prepare AAInfo for loads/stores after lowering this memmove. 6691 AAMDNodes NewAAInfo = AAInfo; 6692 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6693 6694 MachineMemOperand::Flags MMOFlags = 6695 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6696 uint64_t SrcOff = 0, DstOff = 0; 6697 SmallVector<SDValue, 8> LoadValues; 6698 SmallVector<SDValue, 8> LoadChains; 6699 SmallVector<SDValue, 8> OutChains; 6700 unsigned NumMemOps = MemOps.size(); 6701 for (unsigned i = 0; i < NumMemOps; i++) { 6702 EVT VT = MemOps[i]; 6703 unsigned VTSize = VT.getSizeInBits() / 8; 6704 SDValue Value; 6705 6706 bool isDereferenceable = 6707 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6708 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6709 if (isDereferenceable) 6710 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6711 6712 Value = DAG.getLoad( 6713 VT, dl, Chain, 6714 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6715 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6716 LoadValues.push_back(Value); 6717 LoadChains.push_back(Value.getValue(1)); 6718 SrcOff += VTSize; 6719 } 6720 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6721 OutChains.clear(); 6722 for (unsigned i = 0; i < NumMemOps; i++) { 6723 EVT VT = MemOps[i]; 6724 unsigned VTSize = VT.getSizeInBits() / 8; 6725 SDValue Store; 6726 6727 Store = DAG.getStore( 6728 Chain, dl, LoadValues[i], 6729 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6730 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6731 OutChains.push_back(Store); 6732 DstOff += VTSize; 6733 } 6734 6735 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6736 } 6737 6738 /// Lower the call to 'memset' intrinsic function into a series of store 6739 /// operations. 6740 /// 6741 /// \param DAG Selection DAG where lowered code is placed. 6742 /// \param dl Link to corresponding IR location. 6743 /// \param Chain Control flow dependency. 6744 /// \param Dst Pointer to destination memory location. 6745 /// \param Src Value of byte to write into the memory. 6746 /// \param Size Number of bytes to write. 6747 /// \param Alignment Alignment of the destination in bytes. 6748 /// \param isVol True if destination is volatile. 6749 /// \param DstPtrInfo IR information on the memory pointer. 6750 /// \returns New head in the control flow, if lowering was successful, empty 6751 /// SDValue otherwise. 6752 /// 6753 /// The function tries to replace 'llvm.memset' intrinsic with several store 6754 /// operations and value calculation code. This is usually profitable for small 6755 /// memory size. 6756 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6757 SDValue Chain, SDValue Dst, SDValue Src, 6758 uint64_t Size, Align Alignment, bool isVol, 6759 MachinePointerInfo DstPtrInfo, 6760 const AAMDNodes &AAInfo) { 6761 // Turn a memset of undef to nop. 6762 // FIXME: We need to honor volatile even is Src is undef. 6763 if (Src.isUndef()) 6764 return Chain; 6765 6766 // Expand memset to a series of load/store ops if the size operand 6767 // falls below a certain threshold. 6768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6769 std::vector<EVT> MemOps; 6770 bool DstAlignCanChange = false; 6771 MachineFunction &MF = DAG.getMachineFunction(); 6772 MachineFrameInfo &MFI = MF.getFrameInfo(); 6773 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6774 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6775 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6776 DstAlignCanChange = true; 6777 bool IsZeroVal = 6778 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6779 if (!TLI.findOptimalMemOpLowering( 6780 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6781 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6782 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6783 return SDValue(); 6784 6785 if (DstAlignCanChange) { 6786 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6787 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6788 if (NewAlign > Alignment) { 6789 // Give the stack frame object a larger alignment if needed. 6790 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6791 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6792 Alignment = NewAlign; 6793 } 6794 } 6795 6796 SmallVector<SDValue, 8> OutChains; 6797 uint64_t DstOff = 0; 6798 unsigned NumMemOps = MemOps.size(); 6799 6800 // Find the largest store and generate the bit pattern for it. 6801 EVT LargestVT = MemOps[0]; 6802 for (unsigned i = 1; i < NumMemOps; i++) 6803 if (MemOps[i].bitsGT(LargestVT)) 6804 LargestVT = MemOps[i]; 6805 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6806 6807 // Prepare AAInfo for loads/stores after lowering this memset. 6808 AAMDNodes NewAAInfo = AAInfo; 6809 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6810 6811 for (unsigned i = 0; i < NumMemOps; i++) { 6812 EVT VT = MemOps[i]; 6813 unsigned VTSize = VT.getSizeInBits() / 8; 6814 if (VTSize > Size) { 6815 // Issuing an unaligned load / store pair that overlaps with the previous 6816 // pair. Adjust the offset accordingly. 6817 assert(i == NumMemOps-1 && i != 0); 6818 DstOff -= VTSize - Size; 6819 } 6820 6821 // If this store is smaller than the largest store see whether we can get 6822 // the smaller value for free with a truncate. 6823 SDValue Value = MemSetValue; 6824 if (VT.bitsLT(LargestVT)) { 6825 if (!LargestVT.isVector() && !VT.isVector() && 6826 TLI.isTruncateFree(LargestVT, VT)) 6827 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6828 else 6829 Value = getMemsetValue(Src, VT, DAG, dl); 6830 } 6831 assert(Value.getValueType() == VT && "Value with wrong type."); 6832 SDValue Store = DAG.getStore( 6833 Chain, dl, Value, 6834 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6835 DstPtrInfo.getWithOffset(DstOff), Alignment, 6836 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6837 NewAAInfo); 6838 OutChains.push_back(Store); 6839 DstOff += VT.getSizeInBits() / 8; 6840 Size -= VTSize; 6841 } 6842 6843 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6844 } 6845 6846 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6847 unsigned AS) { 6848 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6849 // pointer operands can be losslessly bitcasted to pointers of address space 0 6850 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6851 report_fatal_error("cannot lower memory intrinsic in address space " + 6852 Twine(AS)); 6853 } 6854 } 6855 6856 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6857 SDValue Src, SDValue Size, Align Alignment, 6858 bool isVol, bool AlwaysInline, bool isTailCall, 6859 MachinePointerInfo DstPtrInfo, 6860 MachinePointerInfo SrcPtrInfo, 6861 const AAMDNodes &AAInfo) { 6862 // Check to see if we should lower the memcpy to loads and stores first. 6863 // For cases within the target-specified limits, this is the best choice. 6864 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6865 if (ConstantSize) { 6866 // Memcpy with size zero? Just return the original chain. 6867 if (ConstantSize->isZero()) 6868 return Chain; 6869 6870 SDValue Result = getMemcpyLoadsAndStores( 6871 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6872 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6873 if (Result.getNode()) 6874 return Result; 6875 } 6876 6877 // Then check to see if we should lower the memcpy with target-specific 6878 // code. If the target chooses to do this, this is the next best. 6879 if (TSI) { 6880 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6881 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6882 DstPtrInfo, SrcPtrInfo); 6883 if (Result.getNode()) 6884 return Result; 6885 } 6886 6887 // If we really need inline code and the target declined to provide it, 6888 // use a (potentially long) sequence of loads and stores. 6889 if (AlwaysInline) { 6890 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6891 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6892 ConstantSize->getZExtValue(), Alignment, 6893 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6894 } 6895 6896 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6897 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6898 6899 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6900 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6901 // respect volatile, so they may do things like read or write memory 6902 // beyond the given memory regions. But fixing this isn't easy, and most 6903 // people don't care. 6904 6905 // Emit a library call. 6906 TargetLowering::ArgListTy Args; 6907 TargetLowering::ArgListEntry Entry; 6908 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6909 Entry.Node = Dst; Args.push_back(Entry); 6910 Entry.Node = Src; Args.push_back(Entry); 6911 6912 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6913 Entry.Node = Size; Args.push_back(Entry); 6914 // FIXME: pass in SDLoc 6915 TargetLowering::CallLoweringInfo CLI(*this); 6916 CLI.setDebugLoc(dl) 6917 .setChain(Chain) 6918 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6919 Dst.getValueType().getTypeForEVT(*getContext()), 6920 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6921 TLI->getPointerTy(getDataLayout())), 6922 std::move(Args)) 6923 .setDiscardResult() 6924 .setTailCall(isTailCall); 6925 6926 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6927 return CallResult.second; 6928 } 6929 6930 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6931 SDValue Dst, unsigned DstAlign, 6932 SDValue Src, unsigned SrcAlign, 6933 SDValue Size, Type *SizeTy, 6934 unsigned ElemSz, bool isTailCall, 6935 MachinePointerInfo DstPtrInfo, 6936 MachinePointerInfo SrcPtrInfo) { 6937 // Emit a library call. 6938 TargetLowering::ArgListTy Args; 6939 TargetLowering::ArgListEntry Entry; 6940 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6941 Entry.Node = Dst; 6942 Args.push_back(Entry); 6943 6944 Entry.Node = Src; 6945 Args.push_back(Entry); 6946 6947 Entry.Ty = SizeTy; 6948 Entry.Node = Size; 6949 Args.push_back(Entry); 6950 6951 RTLIB::Libcall LibraryCall = 6952 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6953 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6954 report_fatal_error("Unsupported element size"); 6955 6956 TargetLowering::CallLoweringInfo CLI(*this); 6957 CLI.setDebugLoc(dl) 6958 .setChain(Chain) 6959 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6960 Type::getVoidTy(*getContext()), 6961 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6962 TLI->getPointerTy(getDataLayout())), 6963 std::move(Args)) 6964 .setDiscardResult() 6965 .setTailCall(isTailCall); 6966 6967 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6968 return CallResult.second; 6969 } 6970 6971 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6972 SDValue Src, SDValue Size, Align Alignment, 6973 bool isVol, bool isTailCall, 6974 MachinePointerInfo DstPtrInfo, 6975 MachinePointerInfo SrcPtrInfo, 6976 const AAMDNodes &AAInfo) { 6977 // Check to see if we should lower the memmove to loads and stores first. 6978 // For cases within the target-specified limits, this is the best choice. 6979 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6980 if (ConstantSize) { 6981 // Memmove with size zero? Just return the original chain. 6982 if (ConstantSize->isZero()) 6983 return Chain; 6984 6985 SDValue Result = getMemmoveLoadsAndStores( 6986 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6987 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6988 if (Result.getNode()) 6989 return Result; 6990 } 6991 6992 // Then check to see if we should lower the memmove with target-specific 6993 // code. If the target chooses to do this, this is the next best. 6994 if (TSI) { 6995 SDValue Result = 6996 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6997 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6998 if (Result.getNode()) 6999 return Result; 7000 } 7001 7002 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7003 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7004 7005 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7006 // not be safe. See memcpy above for more details. 7007 7008 // Emit a library call. 7009 TargetLowering::ArgListTy Args; 7010 TargetLowering::ArgListEntry Entry; 7011 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7012 Entry.Node = Dst; Args.push_back(Entry); 7013 Entry.Node = Src; Args.push_back(Entry); 7014 7015 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7016 Entry.Node = Size; Args.push_back(Entry); 7017 // FIXME: pass in SDLoc 7018 TargetLowering::CallLoweringInfo CLI(*this); 7019 CLI.setDebugLoc(dl) 7020 .setChain(Chain) 7021 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7022 Dst.getValueType().getTypeForEVT(*getContext()), 7023 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7024 TLI->getPointerTy(getDataLayout())), 7025 std::move(Args)) 7026 .setDiscardResult() 7027 .setTailCall(isTailCall); 7028 7029 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7030 return CallResult.second; 7031 } 7032 7033 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7034 SDValue Dst, unsigned DstAlign, 7035 SDValue Src, unsigned SrcAlign, 7036 SDValue Size, Type *SizeTy, 7037 unsigned ElemSz, bool isTailCall, 7038 MachinePointerInfo DstPtrInfo, 7039 MachinePointerInfo SrcPtrInfo) { 7040 // Emit a library call. 7041 TargetLowering::ArgListTy Args; 7042 TargetLowering::ArgListEntry Entry; 7043 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7044 Entry.Node = Dst; 7045 Args.push_back(Entry); 7046 7047 Entry.Node = Src; 7048 Args.push_back(Entry); 7049 7050 Entry.Ty = SizeTy; 7051 Entry.Node = Size; 7052 Args.push_back(Entry); 7053 7054 RTLIB::Libcall LibraryCall = 7055 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7056 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7057 report_fatal_error("Unsupported element size"); 7058 7059 TargetLowering::CallLoweringInfo CLI(*this); 7060 CLI.setDebugLoc(dl) 7061 .setChain(Chain) 7062 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7063 Type::getVoidTy(*getContext()), 7064 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7065 TLI->getPointerTy(getDataLayout())), 7066 std::move(Args)) 7067 .setDiscardResult() 7068 .setTailCall(isTailCall); 7069 7070 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7071 return CallResult.second; 7072 } 7073 7074 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7075 SDValue Src, SDValue Size, Align Alignment, 7076 bool isVol, bool isTailCall, 7077 MachinePointerInfo DstPtrInfo, 7078 const AAMDNodes &AAInfo) { 7079 // Check to see if we should lower the memset to stores first. 7080 // For cases within the target-specified limits, this is the best choice. 7081 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7082 if (ConstantSize) { 7083 // Memset with size zero? Just return the original chain. 7084 if (ConstantSize->isZero()) 7085 return Chain; 7086 7087 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7088 ConstantSize->getZExtValue(), Alignment, 7089 isVol, DstPtrInfo, AAInfo); 7090 7091 if (Result.getNode()) 7092 return Result; 7093 } 7094 7095 // Then check to see if we should lower the memset with target-specific 7096 // code. If the target chooses to do this, this is the next best. 7097 if (TSI) { 7098 SDValue Result = TSI->EmitTargetCodeForMemset( 7099 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7100 if (Result.getNode()) 7101 return Result; 7102 } 7103 7104 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7105 7106 // Emit a library call. 7107 TargetLowering::ArgListTy Args; 7108 TargetLowering::ArgListEntry Entry; 7109 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7110 Args.push_back(Entry); 7111 Entry.Node = Src; 7112 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7113 Args.push_back(Entry); 7114 Entry.Node = Size; 7115 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7116 Args.push_back(Entry); 7117 7118 // FIXME: pass in SDLoc 7119 TargetLowering::CallLoweringInfo CLI(*this); 7120 CLI.setDebugLoc(dl) 7121 .setChain(Chain) 7122 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7123 Dst.getValueType().getTypeForEVT(*getContext()), 7124 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7125 TLI->getPointerTy(getDataLayout())), 7126 std::move(Args)) 7127 .setDiscardResult() 7128 .setTailCall(isTailCall); 7129 7130 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7131 return CallResult.second; 7132 } 7133 7134 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7135 SDValue Dst, unsigned DstAlign, 7136 SDValue Value, SDValue Size, Type *SizeTy, 7137 unsigned ElemSz, bool isTailCall, 7138 MachinePointerInfo DstPtrInfo) { 7139 // Emit a library call. 7140 TargetLowering::ArgListTy Args; 7141 TargetLowering::ArgListEntry Entry; 7142 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7143 Entry.Node = Dst; 7144 Args.push_back(Entry); 7145 7146 Entry.Ty = Type::getInt8Ty(*getContext()); 7147 Entry.Node = Value; 7148 Args.push_back(Entry); 7149 7150 Entry.Ty = SizeTy; 7151 Entry.Node = Size; 7152 Args.push_back(Entry); 7153 7154 RTLIB::Libcall LibraryCall = 7155 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7156 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7157 report_fatal_error("Unsupported element size"); 7158 7159 TargetLowering::CallLoweringInfo CLI(*this); 7160 CLI.setDebugLoc(dl) 7161 .setChain(Chain) 7162 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7163 Type::getVoidTy(*getContext()), 7164 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7165 TLI->getPointerTy(getDataLayout())), 7166 std::move(Args)) 7167 .setDiscardResult() 7168 .setTailCall(isTailCall); 7169 7170 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7171 return CallResult.second; 7172 } 7173 7174 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7175 SDVTList VTList, ArrayRef<SDValue> Ops, 7176 MachineMemOperand *MMO) { 7177 FoldingSetNodeID ID; 7178 ID.AddInteger(MemVT.getRawBits()); 7179 AddNodeIDNode(ID, Opcode, VTList, Ops); 7180 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7181 void* IP = nullptr; 7182 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7183 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7184 return SDValue(E, 0); 7185 } 7186 7187 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7188 VTList, MemVT, MMO); 7189 createOperands(N, Ops); 7190 7191 CSEMap.InsertNode(N, IP); 7192 InsertNode(N); 7193 return SDValue(N, 0); 7194 } 7195 7196 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7197 EVT MemVT, SDVTList VTs, SDValue Chain, 7198 SDValue Ptr, SDValue Cmp, SDValue Swp, 7199 MachineMemOperand *MMO) { 7200 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7201 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7202 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7203 7204 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7205 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7206 } 7207 7208 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7209 SDValue Chain, SDValue Ptr, SDValue Val, 7210 MachineMemOperand *MMO) { 7211 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7212 Opcode == ISD::ATOMIC_LOAD_SUB || 7213 Opcode == ISD::ATOMIC_LOAD_AND || 7214 Opcode == ISD::ATOMIC_LOAD_CLR || 7215 Opcode == ISD::ATOMIC_LOAD_OR || 7216 Opcode == ISD::ATOMIC_LOAD_XOR || 7217 Opcode == ISD::ATOMIC_LOAD_NAND || 7218 Opcode == ISD::ATOMIC_LOAD_MIN || 7219 Opcode == ISD::ATOMIC_LOAD_MAX || 7220 Opcode == ISD::ATOMIC_LOAD_UMIN || 7221 Opcode == ISD::ATOMIC_LOAD_UMAX || 7222 Opcode == ISD::ATOMIC_LOAD_FADD || 7223 Opcode == ISD::ATOMIC_LOAD_FSUB || 7224 Opcode == ISD::ATOMIC_SWAP || 7225 Opcode == ISD::ATOMIC_STORE) && 7226 "Invalid Atomic Op"); 7227 7228 EVT VT = Val.getValueType(); 7229 7230 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7231 getVTList(VT, MVT::Other); 7232 SDValue Ops[] = {Chain, Ptr, Val}; 7233 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7234 } 7235 7236 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7237 EVT VT, SDValue Chain, SDValue Ptr, 7238 MachineMemOperand *MMO) { 7239 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7240 7241 SDVTList VTs = getVTList(VT, MVT::Other); 7242 SDValue Ops[] = {Chain, Ptr}; 7243 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7244 } 7245 7246 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7247 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7248 if (Ops.size() == 1) 7249 return Ops[0]; 7250 7251 SmallVector<EVT, 4> VTs; 7252 VTs.reserve(Ops.size()); 7253 for (const SDValue &Op : Ops) 7254 VTs.push_back(Op.getValueType()); 7255 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7256 } 7257 7258 SDValue SelectionDAG::getMemIntrinsicNode( 7259 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7260 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7261 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7262 if (!Size && MemVT.isScalableVector()) 7263 Size = MemoryLocation::UnknownSize; 7264 else if (!Size) 7265 Size = MemVT.getStoreSize(); 7266 7267 MachineFunction &MF = getMachineFunction(); 7268 MachineMemOperand *MMO = 7269 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7270 7271 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7272 } 7273 7274 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7275 SDVTList VTList, 7276 ArrayRef<SDValue> Ops, EVT MemVT, 7277 MachineMemOperand *MMO) { 7278 assert((Opcode == ISD::INTRINSIC_VOID || 7279 Opcode == ISD::INTRINSIC_W_CHAIN || 7280 Opcode == ISD::PREFETCH || 7281 ((int)Opcode <= std::numeric_limits<int>::max() && 7282 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7283 "Opcode is not a memory-accessing opcode!"); 7284 7285 // Memoize the node unless it returns a flag. 7286 MemIntrinsicSDNode *N; 7287 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7288 FoldingSetNodeID ID; 7289 AddNodeIDNode(ID, Opcode, VTList, Ops); 7290 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7291 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7292 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7293 void *IP = nullptr; 7294 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7295 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7296 return SDValue(E, 0); 7297 } 7298 7299 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7300 VTList, MemVT, MMO); 7301 createOperands(N, Ops); 7302 7303 CSEMap.InsertNode(N, IP); 7304 } else { 7305 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7306 VTList, MemVT, MMO); 7307 createOperands(N, Ops); 7308 } 7309 InsertNode(N); 7310 SDValue V(N, 0); 7311 NewSDValueDbgMsg(V, "Creating new node: ", this); 7312 return V; 7313 } 7314 7315 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7316 SDValue Chain, int FrameIndex, 7317 int64_t Size, int64_t Offset) { 7318 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7319 const auto VTs = getVTList(MVT::Other); 7320 SDValue Ops[2] = { 7321 Chain, 7322 getFrameIndex(FrameIndex, 7323 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7324 true)}; 7325 7326 FoldingSetNodeID ID; 7327 AddNodeIDNode(ID, Opcode, VTs, Ops); 7328 ID.AddInteger(FrameIndex); 7329 ID.AddInteger(Size); 7330 ID.AddInteger(Offset); 7331 void *IP = nullptr; 7332 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7333 return SDValue(E, 0); 7334 7335 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7336 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7337 createOperands(N, Ops); 7338 CSEMap.InsertNode(N, IP); 7339 InsertNode(N); 7340 SDValue V(N, 0); 7341 NewSDValueDbgMsg(V, "Creating new node: ", this); 7342 return V; 7343 } 7344 7345 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7346 uint64_t Guid, uint64_t Index, 7347 uint32_t Attr) { 7348 const unsigned Opcode = ISD::PSEUDO_PROBE; 7349 const auto VTs = getVTList(MVT::Other); 7350 SDValue Ops[] = {Chain}; 7351 FoldingSetNodeID ID; 7352 AddNodeIDNode(ID, Opcode, VTs, Ops); 7353 ID.AddInteger(Guid); 7354 ID.AddInteger(Index); 7355 void *IP = nullptr; 7356 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7357 return SDValue(E, 0); 7358 7359 auto *N = newSDNode<PseudoProbeSDNode>( 7360 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7361 createOperands(N, Ops); 7362 CSEMap.InsertNode(N, IP); 7363 InsertNode(N); 7364 SDValue V(N, 0); 7365 NewSDValueDbgMsg(V, "Creating new node: ", this); 7366 return V; 7367 } 7368 7369 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7370 /// MachinePointerInfo record from it. This is particularly useful because the 7371 /// code generator has many cases where it doesn't bother passing in a 7372 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7373 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7374 SelectionDAG &DAG, SDValue Ptr, 7375 int64_t Offset = 0) { 7376 // If this is FI+Offset, we can model it. 7377 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7378 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7379 FI->getIndex(), Offset); 7380 7381 // If this is (FI+Offset1)+Offset2, we can model it. 7382 if (Ptr.getOpcode() != ISD::ADD || 7383 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7384 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7385 return Info; 7386 7387 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7388 return MachinePointerInfo::getFixedStack( 7389 DAG.getMachineFunction(), FI, 7390 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7391 } 7392 7393 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7394 /// MachinePointerInfo record from it. This is particularly useful because the 7395 /// code generator has many cases where it doesn't bother passing in a 7396 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7397 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7398 SelectionDAG &DAG, SDValue Ptr, 7399 SDValue OffsetOp) { 7400 // If the 'Offset' value isn't a constant, we can't handle this. 7401 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7402 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7403 if (OffsetOp.isUndef()) 7404 return InferPointerInfo(Info, DAG, Ptr); 7405 return Info; 7406 } 7407 7408 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7409 EVT VT, const SDLoc &dl, SDValue Chain, 7410 SDValue Ptr, SDValue Offset, 7411 MachinePointerInfo PtrInfo, EVT MemVT, 7412 Align Alignment, 7413 MachineMemOperand::Flags MMOFlags, 7414 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7415 assert(Chain.getValueType() == MVT::Other && 7416 "Invalid chain type"); 7417 7418 MMOFlags |= MachineMemOperand::MOLoad; 7419 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7420 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7421 // clients. 7422 if (PtrInfo.V.isNull()) 7423 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7424 7425 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7426 MachineFunction &MF = getMachineFunction(); 7427 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7428 Alignment, AAInfo, Ranges); 7429 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7430 } 7431 7432 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7433 EVT VT, const SDLoc &dl, SDValue Chain, 7434 SDValue Ptr, SDValue Offset, EVT MemVT, 7435 MachineMemOperand *MMO) { 7436 if (VT == MemVT) { 7437 ExtType = ISD::NON_EXTLOAD; 7438 } else if (ExtType == ISD::NON_EXTLOAD) { 7439 assert(VT == MemVT && "Non-extending load from different memory type!"); 7440 } else { 7441 // Extending load. 7442 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7443 "Should only be an extending load, not truncating!"); 7444 assert(VT.isInteger() == MemVT.isInteger() && 7445 "Cannot convert from FP to Int or Int -> FP!"); 7446 assert(VT.isVector() == MemVT.isVector() && 7447 "Cannot use an ext load to convert to or from a vector!"); 7448 assert((!VT.isVector() || 7449 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7450 "Cannot use an ext load to change the number of vector elements!"); 7451 } 7452 7453 bool Indexed = AM != ISD::UNINDEXED; 7454 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7455 7456 SDVTList VTs = Indexed ? 7457 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7458 SDValue Ops[] = { Chain, Ptr, Offset }; 7459 FoldingSetNodeID ID; 7460 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7461 ID.AddInteger(MemVT.getRawBits()); 7462 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7463 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7464 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7465 void *IP = nullptr; 7466 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7467 cast<LoadSDNode>(E)->refineAlignment(MMO); 7468 return SDValue(E, 0); 7469 } 7470 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7471 ExtType, MemVT, MMO); 7472 createOperands(N, Ops); 7473 7474 CSEMap.InsertNode(N, IP); 7475 InsertNode(N); 7476 SDValue V(N, 0); 7477 NewSDValueDbgMsg(V, "Creating new node: ", this); 7478 return V; 7479 } 7480 7481 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7482 SDValue Ptr, MachinePointerInfo PtrInfo, 7483 MaybeAlign Alignment, 7484 MachineMemOperand::Flags MMOFlags, 7485 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7486 SDValue Undef = getUNDEF(Ptr.getValueType()); 7487 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7488 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7489 } 7490 7491 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7492 SDValue Ptr, MachineMemOperand *MMO) { 7493 SDValue Undef = getUNDEF(Ptr.getValueType()); 7494 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7495 VT, MMO); 7496 } 7497 7498 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7499 EVT VT, SDValue Chain, SDValue Ptr, 7500 MachinePointerInfo PtrInfo, EVT MemVT, 7501 MaybeAlign Alignment, 7502 MachineMemOperand::Flags MMOFlags, 7503 const AAMDNodes &AAInfo) { 7504 SDValue Undef = getUNDEF(Ptr.getValueType()); 7505 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7506 MemVT, Alignment, MMOFlags, AAInfo); 7507 } 7508 7509 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7510 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7511 MachineMemOperand *MMO) { 7512 SDValue Undef = getUNDEF(Ptr.getValueType()); 7513 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7514 MemVT, MMO); 7515 } 7516 7517 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7518 SDValue Base, SDValue Offset, 7519 ISD::MemIndexedMode AM) { 7520 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7521 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7522 // Don't propagate the invariant or dereferenceable flags. 7523 auto MMOFlags = 7524 LD->getMemOperand()->getFlags() & 7525 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7526 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7527 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7528 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7529 } 7530 7531 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7532 SDValue Ptr, MachinePointerInfo PtrInfo, 7533 Align Alignment, 7534 MachineMemOperand::Flags MMOFlags, 7535 const AAMDNodes &AAInfo) { 7536 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7537 7538 MMOFlags |= MachineMemOperand::MOStore; 7539 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7540 7541 if (PtrInfo.V.isNull()) 7542 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7543 7544 MachineFunction &MF = getMachineFunction(); 7545 uint64_t Size = 7546 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7547 MachineMemOperand *MMO = 7548 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7549 return getStore(Chain, dl, Val, Ptr, MMO); 7550 } 7551 7552 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7553 SDValue Ptr, MachineMemOperand *MMO) { 7554 assert(Chain.getValueType() == MVT::Other && 7555 "Invalid chain type"); 7556 EVT VT = Val.getValueType(); 7557 SDVTList VTs = getVTList(MVT::Other); 7558 SDValue Undef = getUNDEF(Ptr.getValueType()); 7559 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7560 FoldingSetNodeID ID; 7561 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7562 ID.AddInteger(VT.getRawBits()); 7563 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7564 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7565 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7566 void *IP = nullptr; 7567 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7568 cast<StoreSDNode>(E)->refineAlignment(MMO); 7569 return SDValue(E, 0); 7570 } 7571 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7572 ISD::UNINDEXED, false, VT, MMO); 7573 createOperands(N, Ops); 7574 7575 CSEMap.InsertNode(N, IP); 7576 InsertNode(N); 7577 SDValue V(N, 0); 7578 NewSDValueDbgMsg(V, "Creating new node: ", this); 7579 return V; 7580 } 7581 7582 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7583 SDValue Ptr, MachinePointerInfo PtrInfo, 7584 EVT SVT, Align Alignment, 7585 MachineMemOperand::Flags MMOFlags, 7586 const AAMDNodes &AAInfo) { 7587 assert(Chain.getValueType() == MVT::Other && 7588 "Invalid chain type"); 7589 7590 MMOFlags |= MachineMemOperand::MOStore; 7591 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7592 7593 if (PtrInfo.V.isNull()) 7594 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7595 7596 MachineFunction &MF = getMachineFunction(); 7597 MachineMemOperand *MMO = MF.getMachineMemOperand( 7598 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7599 Alignment, AAInfo); 7600 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7601 } 7602 7603 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7604 SDValue Ptr, EVT SVT, 7605 MachineMemOperand *MMO) { 7606 EVT VT = Val.getValueType(); 7607 7608 assert(Chain.getValueType() == MVT::Other && 7609 "Invalid chain type"); 7610 if (VT == SVT) 7611 return getStore(Chain, dl, Val, Ptr, MMO); 7612 7613 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7614 "Should only be a truncating store, not extending!"); 7615 assert(VT.isInteger() == SVT.isInteger() && 7616 "Can't do FP-INT conversion!"); 7617 assert(VT.isVector() == SVT.isVector() && 7618 "Cannot use trunc store to convert to or from a vector!"); 7619 assert((!VT.isVector() || 7620 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7621 "Cannot use trunc store to change the number of vector elements!"); 7622 7623 SDVTList VTs = getVTList(MVT::Other); 7624 SDValue Undef = getUNDEF(Ptr.getValueType()); 7625 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7626 FoldingSetNodeID ID; 7627 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7628 ID.AddInteger(SVT.getRawBits()); 7629 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7630 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7631 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7632 void *IP = nullptr; 7633 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7634 cast<StoreSDNode>(E)->refineAlignment(MMO); 7635 return SDValue(E, 0); 7636 } 7637 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7638 ISD::UNINDEXED, true, SVT, MMO); 7639 createOperands(N, Ops); 7640 7641 CSEMap.InsertNode(N, IP); 7642 InsertNode(N); 7643 SDValue V(N, 0); 7644 NewSDValueDbgMsg(V, "Creating new node: ", this); 7645 return V; 7646 } 7647 7648 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7649 SDValue Base, SDValue Offset, 7650 ISD::MemIndexedMode AM) { 7651 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7652 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7653 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7654 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7655 FoldingSetNodeID ID; 7656 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7657 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7658 ID.AddInteger(ST->getRawSubclassData()); 7659 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7660 void *IP = nullptr; 7661 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7662 return SDValue(E, 0); 7663 7664 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7665 ST->isTruncatingStore(), ST->getMemoryVT(), 7666 ST->getMemOperand()); 7667 createOperands(N, Ops); 7668 7669 CSEMap.InsertNode(N, IP); 7670 InsertNode(N); 7671 SDValue V(N, 0); 7672 NewSDValueDbgMsg(V, "Creating new node: ", this); 7673 return V; 7674 } 7675 7676 SDValue SelectionDAG::getLoadVP( 7677 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7678 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7679 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7680 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7681 const MDNode *Ranges, bool IsExpanding) { 7682 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7683 7684 MMOFlags |= MachineMemOperand::MOLoad; 7685 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7686 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7687 // clients. 7688 if (PtrInfo.V.isNull()) 7689 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7690 7691 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7692 MachineFunction &MF = getMachineFunction(); 7693 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7694 Alignment, AAInfo, Ranges); 7695 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7696 MMO, IsExpanding); 7697 } 7698 7699 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7700 ISD::LoadExtType ExtType, EVT VT, 7701 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7702 SDValue Offset, SDValue Mask, SDValue EVL, 7703 EVT MemVT, MachineMemOperand *MMO, 7704 bool IsExpanding) { 7705 if (VT == MemVT) { 7706 ExtType = ISD::NON_EXTLOAD; 7707 } else if (ExtType == ISD::NON_EXTLOAD) { 7708 assert(VT == MemVT && "Non-extending load from different memory type!"); 7709 } else { 7710 // Extending load. 7711 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7712 "Should only be an extending load, not truncating!"); 7713 assert(VT.isInteger() == MemVT.isInteger() && 7714 "Cannot convert from FP to Int or Int -> FP!"); 7715 assert(VT.isVector() == MemVT.isVector() && 7716 "Cannot use an ext load to convert to or from a vector!"); 7717 assert((!VT.isVector() || 7718 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7719 "Cannot use an ext load to change the number of vector elements!"); 7720 } 7721 7722 bool Indexed = AM != ISD::UNINDEXED; 7723 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7724 7725 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7726 : getVTList(VT, MVT::Other); 7727 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7728 FoldingSetNodeID ID; 7729 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7730 ID.AddInteger(VT.getRawBits()); 7731 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7732 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7733 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7734 void *IP = nullptr; 7735 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7736 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7737 return SDValue(E, 0); 7738 } 7739 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7740 ExtType, IsExpanding, MemVT, MMO); 7741 createOperands(N, Ops); 7742 7743 CSEMap.InsertNode(N, IP); 7744 InsertNode(N); 7745 SDValue V(N, 0); 7746 NewSDValueDbgMsg(V, "Creating new node: ", this); 7747 return V; 7748 } 7749 7750 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7751 SDValue Ptr, SDValue Mask, SDValue EVL, 7752 MachinePointerInfo PtrInfo, 7753 MaybeAlign Alignment, 7754 MachineMemOperand::Flags MMOFlags, 7755 const AAMDNodes &AAInfo, const MDNode *Ranges, 7756 bool IsExpanding) { 7757 SDValue Undef = getUNDEF(Ptr.getValueType()); 7758 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7759 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7760 IsExpanding); 7761 } 7762 7763 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7764 SDValue Ptr, SDValue Mask, SDValue EVL, 7765 MachineMemOperand *MMO, bool IsExpanding) { 7766 SDValue Undef = getUNDEF(Ptr.getValueType()); 7767 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7768 Mask, EVL, VT, MMO, IsExpanding); 7769 } 7770 7771 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7772 EVT VT, SDValue Chain, SDValue Ptr, 7773 SDValue Mask, SDValue EVL, 7774 MachinePointerInfo PtrInfo, EVT MemVT, 7775 MaybeAlign Alignment, 7776 MachineMemOperand::Flags MMOFlags, 7777 const AAMDNodes &AAInfo, bool IsExpanding) { 7778 SDValue Undef = getUNDEF(Ptr.getValueType()); 7779 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7780 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7781 IsExpanding); 7782 } 7783 7784 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7785 EVT VT, SDValue Chain, SDValue Ptr, 7786 SDValue Mask, SDValue EVL, EVT MemVT, 7787 MachineMemOperand *MMO, bool IsExpanding) { 7788 SDValue Undef = getUNDEF(Ptr.getValueType()); 7789 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7790 EVL, MemVT, MMO, IsExpanding); 7791 } 7792 7793 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7794 SDValue Base, SDValue Offset, 7795 ISD::MemIndexedMode AM) { 7796 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7797 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7798 // Don't propagate the invariant or dereferenceable flags. 7799 auto MMOFlags = 7800 LD->getMemOperand()->getFlags() & 7801 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7802 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7803 LD->getChain(), Base, Offset, LD->getMask(), 7804 LD->getVectorLength(), LD->getPointerInfo(), 7805 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7806 nullptr, LD->isExpandingLoad()); 7807 } 7808 7809 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7810 SDValue Ptr, SDValue Mask, SDValue EVL, 7811 MachinePointerInfo PtrInfo, Align Alignment, 7812 MachineMemOperand::Flags MMOFlags, 7813 const AAMDNodes &AAInfo, bool IsCompressing) { 7814 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7815 7816 MMOFlags |= MachineMemOperand::MOStore; 7817 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7818 7819 if (PtrInfo.V.isNull()) 7820 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7821 7822 MachineFunction &MF = getMachineFunction(); 7823 uint64_t Size = 7824 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7825 MachineMemOperand *MMO = 7826 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7827 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7828 } 7829 7830 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7831 SDValue Ptr, SDValue Mask, SDValue EVL, 7832 MachineMemOperand *MMO, bool IsCompressing) { 7833 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7834 EVT VT = Val.getValueType(); 7835 SDVTList VTs = getVTList(MVT::Other); 7836 SDValue Undef = getUNDEF(Ptr.getValueType()); 7837 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7838 FoldingSetNodeID ID; 7839 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7840 ID.AddInteger(VT.getRawBits()); 7841 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7842 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7843 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7844 void *IP = nullptr; 7845 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7846 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7847 return SDValue(E, 0); 7848 } 7849 auto *N = 7850 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7851 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7852 createOperands(N, Ops); 7853 7854 CSEMap.InsertNode(N, IP); 7855 InsertNode(N); 7856 SDValue V(N, 0); 7857 NewSDValueDbgMsg(V, "Creating new node: ", this); 7858 return V; 7859 } 7860 7861 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7862 SDValue Val, SDValue Ptr, SDValue Mask, 7863 SDValue EVL, MachinePointerInfo PtrInfo, 7864 EVT SVT, Align Alignment, 7865 MachineMemOperand::Flags MMOFlags, 7866 const AAMDNodes &AAInfo, 7867 bool IsCompressing) { 7868 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7869 7870 MMOFlags |= MachineMemOperand::MOStore; 7871 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7872 7873 if (PtrInfo.V.isNull()) 7874 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7875 7876 MachineFunction &MF = getMachineFunction(); 7877 MachineMemOperand *MMO = MF.getMachineMemOperand( 7878 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7879 Alignment, AAInfo); 7880 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7881 IsCompressing); 7882 } 7883 7884 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7885 SDValue Val, SDValue Ptr, SDValue Mask, 7886 SDValue EVL, EVT SVT, 7887 MachineMemOperand *MMO, 7888 bool IsCompressing) { 7889 EVT VT = Val.getValueType(); 7890 7891 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7892 if (VT == SVT) 7893 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7894 7895 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7896 "Should only be a truncating store, not extending!"); 7897 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7898 assert(VT.isVector() == SVT.isVector() && 7899 "Cannot use trunc store to convert to or from a vector!"); 7900 assert((!VT.isVector() || 7901 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7902 "Cannot use trunc store to change the number of vector elements!"); 7903 7904 SDVTList VTs = getVTList(MVT::Other); 7905 SDValue Undef = getUNDEF(Ptr.getValueType()); 7906 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7907 FoldingSetNodeID ID; 7908 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7909 ID.AddInteger(SVT.getRawBits()); 7910 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7911 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7912 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7913 void *IP = nullptr; 7914 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7915 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7916 return SDValue(E, 0); 7917 } 7918 auto *N = 7919 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7920 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7921 createOperands(N, Ops); 7922 7923 CSEMap.InsertNode(N, IP); 7924 InsertNode(N); 7925 SDValue V(N, 0); 7926 NewSDValueDbgMsg(V, "Creating new node: ", this); 7927 return V; 7928 } 7929 7930 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7931 SDValue Base, SDValue Offset, 7932 ISD::MemIndexedMode AM) { 7933 auto *ST = cast<VPStoreSDNode>(OrigStore); 7934 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7935 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7936 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7937 Offset, ST->getMask(), ST->getVectorLength()}; 7938 FoldingSetNodeID ID; 7939 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7940 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7941 ID.AddInteger(ST->getRawSubclassData()); 7942 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7943 void *IP = nullptr; 7944 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7945 return SDValue(E, 0); 7946 7947 auto *N = newSDNode<VPStoreSDNode>( 7948 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7949 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7950 createOperands(N, Ops); 7951 7952 CSEMap.InsertNode(N, IP); 7953 InsertNode(N); 7954 SDValue V(N, 0); 7955 NewSDValueDbgMsg(V, "Creating new node: ", this); 7956 return V; 7957 } 7958 7959 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7960 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7961 ISD::MemIndexType IndexType) { 7962 assert(Ops.size() == 6 && "Incompatible number of operands"); 7963 7964 FoldingSetNodeID ID; 7965 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7966 ID.AddInteger(VT.getRawBits()); 7967 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7968 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7969 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7970 void *IP = nullptr; 7971 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7972 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7973 return SDValue(E, 0); 7974 } 7975 7976 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7977 VT, MMO, IndexType); 7978 createOperands(N, Ops); 7979 7980 assert(N->getMask().getValueType().getVectorElementCount() == 7981 N->getValueType(0).getVectorElementCount() && 7982 "Vector width mismatch between mask and data"); 7983 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7984 N->getValueType(0).getVectorElementCount().isScalable() && 7985 "Scalable flags of index and data do not match"); 7986 assert(ElementCount::isKnownGE( 7987 N->getIndex().getValueType().getVectorElementCount(), 7988 N->getValueType(0).getVectorElementCount()) && 7989 "Vector width mismatch between index and data"); 7990 assert(isa<ConstantSDNode>(N->getScale()) && 7991 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7992 "Scale should be a constant power of 2"); 7993 7994 CSEMap.InsertNode(N, IP); 7995 InsertNode(N); 7996 SDValue V(N, 0); 7997 NewSDValueDbgMsg(V, "Creating new node: ", this); 7998 return V; 7999 } 8000 8001 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8002 ArrayRef<SDValue> Ops, 8003 MachineMemOperand *MMO, 8004 ISD::MemIndexType IndexType) { 8005 assert(Ops.size() == 7 && "Incompatible number of operands"); 8006 8007 FoldingSetNodeID ID; 8008 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8009 ID.AddInteger(VT.getRawBits()); 8010 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8011 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8012 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8013 void *IP = nullptr; 8014 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8015 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8016 return SDValue(E, 0); 8017 } 8018 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8019 VT, MMO, IndexType); 8020 createOperands(N, Ops); 8021 8022 assert(N->getMask().getValueType().getVectorElementCount() == 8023 N->getValue().getValueType().getVectorElementCount() && 8024 "Vector width mismatch between mask and data"); 8025 assert( 8026 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8027 N->getValue().getValueType().getVectorElementCount().isScalable() && 8028 "Scalable flags of index and data do not match"); 8029 assert(ElementCount::isKnownGE( 8030 N->getIndex().getValueType().getVectorElementCount(), 8031 N->getValue().getValueType().getVectorElementCount()) && 8032 "Vector width mismatch between index and data"); 8033 assert(isa<ConstantSDNode>(N->getScale()) && 8034 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8035 "Scale should be a constant power of 2"); 8036 8037 CSEMap.InsertNode(N, IP); 8038 InsertNode(N); 8039 SDValue V(N, 0); 8040 NewSDValueDbgMsg(V, "Creating new node: ", this); 8041 return V; 8042 } 8043 8044 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8045 SDValue Base, SDValue Offset, SDValue Mask, 8046 SDValue PassThru, EVT MemVT, 8047 MachineMemOperand *MMO, 8048 ISD::MemIndexedMode AM, 8049 ISD::LoadExtType ExtTy, bool isExpanding) { 8050 bool Indexed = AM != ISD::UNINDEXED; 8051 assert((Indexed || Offset.isUndef()) && 8052 "Unindexed masked load with an offset!"); 8053 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8054 : getVTList(VT, MVT::Other); 8055 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8056 FoldingSetNodeID ID; 8057 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8058 ID.AddInteger(MemVT.getRawBits()); 8059 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8060 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8061 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8062 void *IP = nullptr; 8063 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8064 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8065 return SDValue(E, 0); 8066 } 8067 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8068 AM, ExtTy, isExpanding, MemVT, MMO); 8069 createOperands(N, Ops); 8070 8071 CSEMap.InsertNode(N, IP); 8072 InsertNode(N); 8073 SDValue V(N, 0); 8074 NewSDValueDbgMsg(V, "Creating new node: ", this); 8075 return V; 8076 } 8077 8078 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8079 SDValue Base, SDValue Offset, 8080 ISD::MemIndexedMode AM) { 8081 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8082 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8083 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8084 Offset, LD->getMask(), LD->getPassThru(), 8085 LD->getMemoryVT(), LD->getMemOperand(), AM, 8086 LD->getExtensionType(), LD->isExpandingLoad()); 8087 } 8088 8089 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8090 SDValue Val, SDValue Base, SDValue Offset, 8091 SDValue Mask, EVT MemVT, 8092 MachineMemOperand *MMO, 8093 ISD::MemIndexedMode AM, bool IsTruncating, 8094 bool IsCompressing) { 8095 assert(Chain.getValueType() == MVT::Other && 8096 "Invalid chain type"); 8097 bool Indexed = AM != ISD::UNINDEXED; 8098 assert((Indexed || Offset.isUndef()) && 8099 "Unindexed masked store with an offset!"); 8100 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8101 : getVTList(MVT::Other); 8102 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8103 FoldingSetNodeID ID; 8104 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8105 ID.AddInteger(MemVT.getRawBits()); 8106 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8107 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8108 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8109 void *IP = nullptr; 8110 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8111 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8112 return SDValue(E, 0); 8113 } 8114 auto *N = 8115 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8116 IsTruncating, IsCompressing, MemVT, MMO); 8117 createOperands(N, Ops); 8118 8119 CSEMap.InsertNode(N, IP); 8120 InsertNode(N); 8121 SDValue V(N, 0); 8122 NewSDValueDbgMsg(V, "Creating new node: ", this); 8123 return V; 8124 } 8125 8126 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8127 SDValue Base, SDValue Offset, 8128 ISD::MemIndexedMode AM) { 8129 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8130 assert(ST->getOffset().isUndef() && 8131 "Masked store is already a indexed store!"); 8132 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8133 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8134 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8135 } 8136 8137 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8138 ArrayRef<SDValue> Ops, 8139 MachineMemOperand *MMO, 8140 ISD::MemIndexType IndexType, 8141 ISD::LoadExtType ExtTy) { 8142 assert(Ops.size() == 6 && "Incompatible number of operands"); 8143 8144 FoldingSetNodeID ID; 8145 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8146 ID.AddInteger(MemVT.getRawBits()); 8147 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8148 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8149 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8150 void *IP = nullptr; 8151 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8152 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8153 return SDValue(E, 0); 8154 } 8155 8156 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8157 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8158 VTs, MemVT, MMO, IndexType, ExtTy); 8159 createOperands(N, Ops); 8160 8161 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8162 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8163 assert(N->getMask().getValueType().getVectorElementCount() == 8164 N->getValueType(0).getVectorElementCount() && 8165 "Vector width mismatch between mask and data"); 8166 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8167 N->getValueType(0).getVectorElementCount().isScalable() && 8168 "Scalable flags of index and data do not match"); 8169 assert(ElementCount::isKnownGE( 8170 N->getIndex().getValueType().getVectorElementCount(), 8171 N->getValueType(0).getVectorElementCount()) && 8172 "Vector width mismatch between index and data"); 8173 assert(isa<ConstantSDNode>(N->getScale()) && 8174 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8175 "Scale should be a constant power of 2"); 8176 8177 CSEMap.InsertNode(N, IP); 8178 InsertNode(N); 8179 SDValue V(N, 0); 8180 NewSDValueDbgMsg(V, "Creating new node: ", this); 8181 return V; 8182 } 8183 8184 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8185 ArrayRef<SDValue> Ops, 8186 MachineMemOperand *MMO, 8187 ISD::MemIndexType IndexType, 8188 bool IsTrunc) { 8189 assert(Ops.size() == 6 && "Incompatible number of operands"); 8190 8191 FoldingSetNodeID ID; 8192 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8193 ID.AddInteger(MemVT.getRawBits()); 8194 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8195 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8196 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8197 void *IP = nullptr; 8198 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8199 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8200 return SDValue(E, 0); 8201 } 8202 8203 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8204 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8205 VTs, MemVT, MMO, IndexType, IsTrunc); 8206 createOperands(N, Ops); 8207 8208 assert(N->getMask().getValueType().getVectorElementCount() == 8209 N->getValue().getValueType().getVectorElementCount() && 8210 "Vector width mismatch between mask and data"); 8211 assert( 8212 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8213 N->getValue().getValueType().getVectorElementCount().isScalable() && 8214 "Scalable flags of index and data do not match"); 8215 assert(ElementCount::isKnownGE( 8216 N->getIndex().getValueType().getVectorElementCount(), 8217 N->getValue().getValueType().getVectorElementCount()) && 8218 "Vector width mismatch between index and data"); 8219 assert(isa<ConstantSDNode>(N->getScale()) && 8220 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8221 "Scale should be a constant power of 2"); 8222 8223 CSEMap.InsertNode(N, IP); 8224 InsertNode(N); 8225 SDValue V(N, 0); 8226 NewSDValueDbgMsg(V, "Creating new node: ", this); 8227 return V; 8228 } 8229 8230 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8231 // select undef, T, F --> T (if T is a constant), otherwise F 8232 // select, ?, undef, F --> F 8233 // select, ?, T, undef --> T 8234 if (Cond.isUndef()) 8235 return isConstantValueOfAnyType(T) ? T : F; 8236 if (T.isUndef()) 8237 return F; 8238 if (F.isUndef()) 8239 return T; 8240 8241 // select true, T, F --> T 8242 // select false, T, F --> F 8243 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8244 return CondC->isZero() ? F : T; 8245 8246 // TODO: This should simplify VSELECT with constant condition using something 8247 // like this (but check boolean contents to be complete?): 8248 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8249 // return T; 8250 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8251 // return F; 8252 8253 // select ?, T, T --> T 8254 if (T == F) 8255 return T; 8256 8257 return SDValue(); 8258 } 8259 8260 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8261 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8262 if (X.isUndef()) 8263 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8264 // shift X, undef --> undef (because it may shift by the bitwidth) 8265 if (Y.isUndef()) 8266 return getUNDEF(X.getValueType()); 8267 8268 // shift 0, Y --> 0 8269 // shift X, 0 --> X 8270 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8271 return X; 8272 8273 // shift X, C >= bitwidth(X) --> undef 8274 // All vector elements must be too big (or undef) to avoid partial undefs. 8275 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8276 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8277 }; 8278 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8279 return getUNDEF(X.getValueType()); 8280 8281 return SDValue(); 8282 } 8283 8284 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8285 SDNodeFlags Flags) { 8286 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8287 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8288 // operation is poison. That result can be relaxed to undef. 8289 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8290 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8291 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8292 (YC && YC->getValueAPF().isNaN()); 8293 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8294 (YC && YC->getValueAPF().isInfinity()); 8295 8296 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8297 return getUNDEF(X.getValueType()); 8298 8299 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8300 return getUNDEF(X.getValueType()); 8301 8302 if (!YC) 8303 return SDValue(); 8304 8305 // X + -0.0 --> X 8306 if (Opcode == ISD::FADD) 8307 if (YC->getValueAPF().isNegZero()) 8308 return X; 8309 8310 // X - +0.0 --> X 8311 if (Opcode == ISD::FSUB) 8312 if (YC->getValueAPF().isPosZero()) 8313 return X; 8314 8315 // X * 1.0 --> X 8316 // X / 1.0 --> X 8317 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8318 if (YC->getValueAPF().isExactlyValue(1.0)) 8319 return X; 8320 8321 // X * 0.0 --> 0.0 8322 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8323 if (YC->getValueAPF().isZero()) 8324 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8325 8326 return SDValue(); 8327 } 8328 8329 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8330 SDValue Ptr, SDValue SV, unsigned Align) { 8331 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8332 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8333 } 8334 8335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8336 ArrayRef<SDUse> Ops) { 8337 switch (Ops.size()) { 8338 case 0: return getNode(Opcode, DL, VT); 8339 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8340 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8341 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8342 default: break; 8343 } 8344 8345 // Copy from an SDUse array into an SDValue array for use with 8346 // the regular getNode logic. 8347 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8348 return getNode(Opcode, DL, VT, NewOps); 8349 } 8350 8351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8352 ArrayRef<SDValue> Ops) { 8353 SDNodeFlags Flags; 8354 if (Inserter) 8355 Flags = Inserter->getFlags(); 8356 return getNode(Opcode, DL, VT, Ops, Flags); 8357 } 8358 8359 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8360 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8361 unsigned NumOps = Ops.size(); 8362 switch (NumOps) { 8363 case 0: return getNode(Opcode, DL, VT); 8364 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8365 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8366 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8367 default: break; 8368 } 8369 8370 #ifndef NDEBUG 8371 for (auto &Op : Ops) 8372 assert(Op.getOpcode() != ISD::DELETED_NODE && 8373 "Operand is DELETED_NODE!"); 8374 #endif 8375 8376 switch (Opcode) { 8377 default: break; 8378 case ISD::BUILD_VECTOR: 8379 // Attempt to simplify BUILD_VECTOR. 8380 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8381 return V; 8382 break; 8383 case ISD::CONCAT_VECTORS: 8384 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8385 return V; 8386 break; 8387 case ISD::SELECT_CC: 8388 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8389 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8390 "LHS and RHS of condition must have same type!"); 8391 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8392 "True and False arms of SelectCC must have same type!"); 8393 assert(Ops[2].getValueType() == VT && 8394 "select_cc node must be of same type as true and false value!"); 8395 break; 8396 case ISD::BR_CC: 8397 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8398 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8399 "LHS/RHS of comparison should match types!"); 8400 break; 8401 } 8402 8403 // Memoize nodes. 8404 SDNode *N; 8405 SDVTList VTs = getVTList(VT); 8406 8407 if (VT != MVT::Glue) { 8408 FoldingSetNodeID ID; 8409 AddNodeIDNode(ID, Opcode, VTs, Ops); 8410 void *IP = nullptr; 8411 8412 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8413 return SDValue(E, 0); 8414 8415 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8416 createOperands(N, Ops); 8417 8418 CSEMap.InsertNode(N, IP); 8419 } else { 8420 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8421 createOperands(N, Ops); 8422 } 8423 8424 N->setFlags(Flags); 8425 InsertNode(N); 8426 SDValue V(N, 0); 8427 NewSDValueDbgMsg(V, "Creating new node: ", this); 8428 return V; 8429 } 8430 8431 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8432 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8433 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8434 } 8435 8436 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8437 ArrayRef<SDValue> Ops) { 8438 SDNodeFlags Flags; 8439 if (Inserter) 8440 Flags = Inserter->getFlags(); 8441 return getNode(Opcode, DL, VTList, Ops, Flags); 8442 } 8443 8444 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8445 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8446 if (VTList.NumVTs == 1) 8447 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8448 8449 #ifndef NDEBUG 8450 for (auto &Op : Ops) 8451 assert(Op.getOpcode() != ISD::DELETED_NODE && 8452 "Operand is DELETED_NODE!"); 8453 #endif 8454 8455 switch (Opcode) { 8456 case ISD::STRICT_FP_EXTEND: 8457 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8458 "Invalid STRICT_FP_EXTEND!"); 8459 assert(VTList.VTs[0].isFloatingPoint() && 8460 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8461 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8462 "STRICT_FP_EXTEND result type should be vector iff the operand " 8463 "type is vector!"); 8464 assert((!VTList.VTs[0].isVector() || 8465 VTList.VTs[0].getVectorNumElements() == 8466 Ops[1].getValueType().getVectorNumElements()) && 8467 "Vector element count mismatch!"); 8468 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8469 "Invalid fpext node, dst <= src!"); 8470 break; 8471 case ISD::STRICT_FP_ROUND: 8472 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8473 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8474 "STRICT_FP_ROUND result type should be vector iff the operand " 8475 "type is vector!"); 8476 assert((!VTList.VTs[0].isVector() || 8477 VTList.VTs[0].getVectorNumElements() == 8478 Ops[1].getValueType().getVectorNumElements()) && 8479 "Vector element count mismatch!"); 8480 assert(VTList.VTs[0].isFloatingPoint() && 8481 Ops[1].getValueType().isFloatingPoint() && 8482 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8483 isa<ConstantSDNode>(Ops[2]) && 8484 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8485 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8486 "Invalid STRICT_FP_ROUND!"); 8487 break; 8488 #if 0 8489 // FIXME: figure out how to safely handle things like 8490 // int foo(int x) { return 1 << (x & 255); } 8491 // int bar() { return foo(256); } 8492 case ISD::SRA_PARTS: 8493 case ISD::SRL_PARTS: 8494 case ISD::SHL_PARTS: 8495 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8496 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8497 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8498 else if (N3.getOpcode() == ISD::AND) 8499 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8500 // If the and is only masking out bits that cannot effect the shift, 8501 // eliminate the and. 8502 unsigned NumBits = VT.getScalarSizeInBits()*2; 8503 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8504 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8505 } 8506 break; 8507 #endif 8508 } 8509 8510 // Memoize the node unless it returns a flag. 8511 SDNode *N; 8512 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8513 FoldingSetNodeID ID; 8514 AddNodeIDNode(ID, Opcode, VTList, Ops); 8515 void *IP = nullptr; 8516 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8517 return SDValue(E, 0); 8518 8519 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8520 createOperands(N, Ops); 8521 CSEMap.InsertNode(N, IP); 8522 } else { 8523 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8524 createOperands(N, Ops); 8525 } 8526 8527 N->setFlags(Flags); 8528 InsertNode(N); 8529 SDValue V(N, 0); 8530 NewSDValueDbgMsg(V, "Creating new node: ", this); 8531 return V; 8532 } 8533 8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8535 SDVTList VTList) { 8536 return getNode(Opcode, DL, VTList, None); 8537 } 8538 8539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8540 SDValue N1) { 8541 SDValue Ops[] = { N1 }; 8542 return getNode(Opcode, DL, VTList, Ops); 8543 } 8544 8545 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8546 SDValue N1, SDValue N2) { 8547 SDValue Ops[] = { N1, N2 }; 8548 return getNode(Opcode, DL, VTList, Ops); 8549 } 8550 8551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8552 SDValue N1, SDValue N2, SDValue N3) { 8553 SDValue Ops[] = { N1, N2, N3 }; 8554 return getNode(Opcode, DL, VTList, Ops); 8555 } 8556 8557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8558 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8559 SDValue Ops[] = { N1, N2, N3, N4 }; 8560 return getNode(Opcode, DL, VTList, Ops); 8561 } 8562 8563 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8564 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8565 SDValue N5) { 8566 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8567 return getNode(Opcode, DL, VTList, Ops); 8568 } 8569 8570 SDVTList SelectionDAG::getVTList(EVT VT) { 8571 return makeVTList(SDNode::getValueTypeList(VT), 1); 8572 } 8573 8574 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8575 FoldingSetNodeID ID; 8576 ID.AddInteger(2U); 8577 ID.AddInteger(VT1.getRawBits()); 8578 ID.AddInteger(VT2.getRawBits()); 8579 8580 void *IP = nullptr; 8581 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8582 if (!Result) { 8583 EVT *Array = Allocator.Allocate<EVT>(2); 8584 Array[0] = VT1; 8585 Array[1] = VT2; 8586 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8587 VTListMap.InsertNode(Result, IP); 8588 } 8589 return Result->getSDVTList(); 8590 } 8591 8592 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8593 FoldingSetNodeID ID; 8594 ID.AddInteger(3U); 8595 ID.AddInteger(VT1.getRawBits()); 8596 ID.AddInteger(VT2.getRawBits()); 8597 ID.AddInteger(VT3.getRawBits()); 8598 8599 void *IP = nullptr; 8600 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8601 if (!Result) { 8602 EVT *Array = Allocator.Allocate<EVT>(3); 8603 Array[0] = VT1; 8604 Array[1] = VT2; 8605 Array[2] = VT3; 8606 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8607 VTListMap.InsertNode(Result, IP); 8608 } 8609 return Result->getSDVTList(); 8610 } 8611 8612 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8613 FoldingSetNodeID ID; 8614 ID.AddInteger(4U); 8615 ID.AddInteger(VT1.getRawBits()); 8616 ID.AddInteger(VT2.getRawBits()); 8617 ID.AddInteger(VT3.getRawBits()); 8618 ID.AddInteger(VT4.getRawBits()); 8619 8620 void *IP = nullptr; 8621 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8622 if (!Result) { 8623 EVT *Array = Allocator.Allocate<EVT>(4); 8624 Array[0] = VT1; 8625 Array[1] = VT2; 8626 Array[2] = VT3; 8627 Array[3] = VT4; 8628 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8629 VTListMap.InsertNode(Result, IP); 8630 } 8631 return Result->getSDVTList(); 8632 } 8633 8634 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8635 unsigned NumVTs = VTs.size(); 8636 FoldingSetNodeID ID; 8637 ID.AddInteger(NumVTs); 8638 for (unsigned index = 0; index < NumVTs; index++) { 8639 ID.AddInteger(VTs[index].getRawBits()); 8640 } 8641 8642 void *IP = nullptr; 8643 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8644 if (!Result) { 8645 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8646 llvm::copy(VTs, Array); 8647 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8648 VTListMap.InsertNode(Result, IP); 8649 } 8650 return Result->getSDVTList(); 8651 } 8652 8653 8654 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8655 /// specified operands. If the resultant node already exists in the DAG, 8656 /// this does not modify the specified node, instead it returns the node that 8657 /// already exists. If the resultant node does not exist in the DAG, the 8658 /// input node is returned. As a degenerate case, if you specify the same 8659 /// input operands as the node already has, the input node is returned. 8660 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8661 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8662 8663 // Check to see if there is no change. 8664 if (Op == N->getOperand(0)) return N; 8665 8666 // See if the modified node already exists. 8667 void *InsertPos = nullptr; 8668 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8669 return Existing; 8670 8671 // Nope it doesn't. Remove the node from its current place in the maps. 8672 if (InsertPos) 8673 if (!RemoveNodeFromCSEMaps(N)) 8674 InsertPos = nullptr; 8675 8676 // Now we update the operands. 8677 N->OperandList[0].set(Op); 8678 8679 updateDivergence(N); 8680 // If this gets put into a CSE map, add it. 8681 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8682 return N; 8683 } 8684 8685 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8686 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8687 8688 // Check to see if there is no change. 8689 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8690 return N; // No operands changed, just return the input node. 8691 8692 // See if the modified node already exists. 8693 void *InsertPos = nullptr; 8694 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8695 return Existing; 8696 8697 // Nope it doesn't. Remove the node from its current place in the maps. 8698 if (InsertPos) 8699 if (!RemoveNodeFromCSEMaps(N)) 8700 InsertPos = nullptr; 8701 8702 // Now we update the operands. 8703 if (N->OperandList[0] != Op1) 8704 N->OperandList[0].set(Op1); 8705 if (N->OperandList[1] != Op2) 8706 N->OperandList[1].set(Op2); 8707 8708 updateDivergence(N); 8709 // If this gets put into a CSE map, add it. 8710 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8711 return N; 8712 } 8713 8714 SDNode *SelectionDAG:: 8715 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8716 SDValue Ops[] = { Op1, Op2, Op3 }; 8717 return UpdateNodeOperands(N, Ops); 8718 } 8719 8720 SDNode *SelectionDAG:: 8721 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8722 SDValue Op3, SDValue Op4) { 8723 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8724 return UpdateNodeOperands(N, Ops); 8725 } 8726 8727 SDNode *SelectionDAG:: 8728 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8729 SDValue Op3, SDValue Op4, SDValue Op5) { 8730 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8731 return UpdateNodeOperands(N, Ops); 8732 } 8733 8734 SDNode *SelectionDAG:: 8735 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8736 unsigned NumOps = Ops.size(); 8737 assert(N->getNumOperands() == NumOps && 8738 "Update with wrong number of operands"); 8739 8740 // If no operands changed just return the input node. 8741 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8742 return N; 8743 8744 // See if the modified node already exists. 8745 void *InsertPos = nullptr; 8746 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8747 return Existing; 8748 8749 // Nope it doesn't. Remove the node from its current place in the maps. 8750 if (InsertPos) 8751 if (!RemoveNodeFromCSEMaps(N)) 8752 InsertPos = nullptr; 8753 8754 // Now we update the operands. 8755 for (unsigned i = 0; i != NumOps; ++i) 8756 if (N->OperandList[i] != Ops[i]) 8757 N->OperandList[i].set(Ops[i]); 8758 8759 updateDivergence(N); 8760 // If this gets put into a CSE map, add it. 8761 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8762 return N; 8763 } 8764 8765 /// DropOperands - Release the operands and set this node to have 8766 /// zero operands. 8767 void SDNode::DropOperands() { 8768 // Unlike the code in MorphNodeTo that does this, we don't need to 8769 // watch for dead nodes here. 8770 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8771 SDUse &Use = *I++; 8772 Use.set(SDValue()); 8773 } 8774 } 8775 8776 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8777 ArrayRef<MachineMemOperand *> NewMemRefs) { 8778 if (NewMemRefs.empty()) { 8779 N->clearMemRefs(); 8780 return; 8781 } 8782 8783 // Check if we can avoid allocating by storing a single reference directly. 8784 if (NewMemRefs.size() == 1) { 8785 N->MemRefs = NewMemRefs[0]; 8786 N->NumMemRefs = 1; 8787 return; 8788 } 8789 8790 MachineMemOperand **MemRefsBuffer = 8791 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8792 llvm::copy(NewMemRefs, MemRefsBuffer); 8793 N->MemRefs = MemRefsBuffer; 8794 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8795 } 8796 8797 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8798 /// machine opcode. 8799 /// 8800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8801 EVT VT) { 8802 SDVTList VTs = getVTList(VT); 8803 return SelectNodeTo(N, MachineOpc, VTs, None); 8804 } 8805 8806 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8807 EVT VT, SDValue Op1) { 8808 SDVTList VTs = getVTList(VT); 8809 SDValue Ops[] = { Op1 }; 8810 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8811 } 8812 8813 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8814 EVT VT, SDValue Op1, 8815 SDValue Op2) { 8816 SDVTList VTs = getVTList(VT); 8817 SDValue Ops[] = { Op1, Op2 }; 8818 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8819 } 8820 8821 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8822 EVT VT, SDValue Op1, 8823 SDValue Op2, SDValue Op3) { 8824 SDVTList VTs = getVTList(VT); 8825 SDValue Ops[] = { Op1, Op2, Op3 }; 8826 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8827 } 8828 8829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8830 EVT VT, ArrayRef<SDValue> Ops) { 8831 SDVTList VTs = getVTList(VT); 8832 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8833 } 8834 8835 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8836 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8837 SDVTList VTs = getVTList(VT1, VT2); 8838 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8839 } 8840 8841 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8842 EVT VT1, EVT VT2) { 8843 SDVTList VTs = getVTList(VT1, VT2); 8844 return SelectNodeTo(N, MachineOpc, VTs, None); 8845 } 8846 8847 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8848 EVT VT1, EVT VT2, EVT VT3, 8849 ArrayRef<SDValue> Ops) { 8850 SDVTList VTs = getVTList(VT1, VT2, VT3); 8851 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8852 } 8853 8854 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8855 EVT VT1, EVT VT2, 8856 SDValue Op1, SDValue Op2) { 8857 SDVTList VTs = getVTList(VT1, VT2); 8858 SDValue Ops[] = { Op1, Op2 }; 8859 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8860 } 8861 8862 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8863 SDVTList VTs,ArrayRef<SDValue> Ops) { 8864 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8865 // Reset the NodeID to -1. 8866 New->setNodeId(-1); 8867 if (New != N) { 8868 ReplaceAllUsesWith(N, New); 8869 RemoveDeadNode(N); 8870 } 8871 return New; 8872 } 8873 8874 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8875 /// the line number information on the merged node since it is not possible to 8876 /// preserve the information that operation is associated with multiple lines. 8877 /// This will make the debugger working better at -O0, were there is a higher 8878 /// probability having other instructions associated with that line. 8879 /// 8880 /// For IROrder, we keep the smaller of the two 8881 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8882 DebugLoc NLoc = N->getDebugLoc(); 8883 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8884 N->setDebugLoc(DebugLoc()); 8885 } 8886 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8887 N->setIROrder(Order); 8888 return N; 8889 } 8890 8891 /// MorphNodeTo - This *mutates* the specified node to have the specified 8892 /// return type, opcode, and operands. 8893 /// 8894 /// Note that MorphNodeTo returns the resultant node. If there is already a 8895 /// node of the specified opcode and operands, it returns that node instead of 8896 /// the current one. Note that the SDLoc need not be the same. 8897 /// 8898 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8899 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8900 /// node, and because it doesn't require CSE recalculation for any of 8901 /// the node's users. 8902 /// 8903 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8904 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8905 /// the legalizer which maintain worklists that would need to be updated when 8906 /// deleting things. 8907 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8908 SDVTList VTs, ArrayRef<SDValue> Ops) { 8909 // If an identical node already exists, use it. 8910 void *IP = nullptr; 8911 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8912 FoldingSetNodeID ID; 8913 AddNodeIDNode(ID, Opc, VTs, Ops); 8914 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8915 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8916 } 8917 8918 if (!RemoveNodeFromCSEMaps(N)) 8919 IP = nullptr; 8920 8921 // Start the morphing. 8922 N->NodeType = Opc; 8923 N->ValueList = VTs.VTs; 8924 N->NumValues = VTs.NumVTs; 8925 8926 // Clear the operands list, updating used nodes to remove this from their 8927 // use list. Keep track of any operands that become dead as a result. 8928 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8929 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8930 SDUse &Use = *I++; 8931 SDNode *Used = Use.getNode(); 8932 Use.set(SDValue()); 8933 if (Used->use_empty()) 8934 DeadNodeSet.insert(Used); 8935 } 8936 8937 // For MachineNode, initialize the memory references information. 8938 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8939 MN->clearMemRefs(); 8940 8941 // Swap for an appropriately sized array from the recycler. 8942 removeOperands(N); 8943 createOperands(N, Ops); 8944 8945 // Delete any nodes that are still dead after adding the uses for the 8946 // new operands. 8947 if (!DeadNodeSet.empty()) { 8948 SmallVector<SDNode *, 16> DeadNodes; 8949 for (SDNode *N : DeadNodeSet) 8950 if (N->use_empty()) 8951 DeadNodes.push_back(N); 8952 RemoveDeadNodes(DeadNodes); 8953 } 8954 8955 if (IP) 8956 CSEMap.InsertNode(N, IP); // Memoize the new node. 8957 return N; 8958 } 8959 8960 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8961 unsigned OrigOpc = Node->getOpcode(); 8962 unsigned NewOpc; 8963 switch (OrigOpc) { 8964 default: 8965 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8966 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8967 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8968 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8969 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8970 #include "llvm/IR/ConstrainedOps.def" 8971 } 8972 8973 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8974 8975 // We're taking this node out of the chain, so we need to re-link things. 8976 SDValue InputChain = Node->getOperand(0); 8977 SDValue OutputChain = SDValue(Node, 1); 8978 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8979 8980 SmallVector<SDValue, 3> Ops; 8981 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8982 Ops.push_back(Node->getOperand(i)); 8983 8984 SDVTList VTs = getVTList(Node->getValueType(0)); 8985 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8986 8987 // MorphNodeTo can operate in two ways: if an existing node with the 8988 // specified operands exists, it can just return it. Otherwise, it 8989 // updates the node in place to have the requested operands. 8990 if (Res == Node) { 8991 // If we updated the node in place, reset the node ID. To the isel, 8992 // this should be just like a newly allocated machine node. 8993 Res->setNodeId(-1); 8994 } else { 8995 ReplaceAllUsesWith(Node, Res); 8996 RemoveDeadNode(Node); 8997 } 8998 8999 return Res; 9000 } 9001 9002 /// getMachineNode - These are used for target selectors to create a new node 9003 /// with specified return type(s), MachineInstr opcode, and operands. 9004 /// 9005 /// Note that getMachineNode returns the resultant node. If there is already a 9006 /// node of the specified opcode and operands, it returns that node instead of 9007 /// the current one. 9008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9009 EVT VT) { 9010 SDVTList VTs = getVTList(VT); 9011 return getMachineNode(Opcode, dl, VTs, None); 9012 } 9013 9014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9015 EVT VT, SDValue Op1) { 9016 SDVTList VTs = getVTList(VT); 9017 SDValue Ops[] = { Op1 }; 9018 return getMachineNode(Opcode, dl, VTs, Ops); 9019 } 9020 9021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9022 EVT VT, SDValue Op1, SDValue Op2) { 9023 SDVTList VTs = getVTList(VT); 9024 SDValue Ops[] = { Op1, Op2 }; 9025 return getMachineNode(Opcode, dl, VTs, Ops); 9026 } 9027 9028 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9029 EVT VT, SDValue Op1, SDValue Op2, 9030 SDValue Op3) { 9031 SDVTList VTs = getVTList(VT); 9032 SDValue Ops[] = { Op1, Op2, Op3 }; 9033 return getMachineNode(Opcode, dl, VTs, Ops); 9034 } 9035 9036 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9037 EVT VT, ArrayRef<SDValue> Ops) { 9038 SDVTList VTs = getVTList(VT); 9039 return getMachineNode(Opcode, dl, VTs, Ops); 9040 } 9041 9042 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9043 EVT VT1, EVT VT2, SDValue Op1, 9044 SDValue Op2) { 9045 SDVTList VTs = getVTList(VT1, VT2); 9046 SDValue Ops[] = { Op1, Op2 }; 9047 return getMachineNode(Opcode, dl, VTs, Ops); 9048 } 9049 9050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9051 EVT VT1, EVT VT2, SDValue Op1, 9052 SDValue Op2, SDValue Op3) { 9053 SDVTList VTs = getVTList(VT1, VT2); 9054 SDValue Ops[] = { Op1, Op2, Op3 }; 9055 return getMachineNode(Opcode, dl, VTs, Ops); 9056 } 9057 9058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9059 EVT VT1, EVT VT2, 9060 ArrayRef<SDValue> Ops) { 9061 SDVTList VTs = getVTList(VT1, VT2); 9062 return getMachineNode(Opcode, dl, VTs, Ops); 9063 } 9064 9065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9066 EVT VT1, EVT VT2, EVT VT3, 9067 SDValue Op1, SDValue Op2) { 9068 SDVTList VTs = getVTList(VT1, VT2, VT3); 9069 SDValue Ops[] = { Op1, Op2 }; 9070 return getMachineNode(Opcode, dl, VTs, Ops); 9071 } 9072 9073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9074 EVT VT1, EVT VT2, EVT VT3, 9075 SDValue Op1, SDValue Op2, 9076 SDValue Op3) { 9077 SDVTList VTs = getVTList(VT1, VT2, VT3); 9078 SDValue Ops[] = { Op1, Op2, Op3 }; 9079 return getMachineNode(Opcode, dl, VTs, Ops); 9080 } 9081 9082 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9083 EVT VT1, EVT VT2, EVT VT3, 9084 ArrayRef<SDValue> Ops) { 9085 SDVTList VTs = getVTList(VT1, VT2, VT3); 9086 return getMachineNode(Opcode, dl, VTs, Ops); 9087 } 9088 9089 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9090 ArrayRef<EVT> ResultTys, 9091 ArrayRef<SDValue> Ops) { 9092 SDVTList VTs = getVTList(ResultTys); 9093 return getMachineNode(Opcode, dl, VTs, Ops); 9094 } 9095 9096 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9097 SDVTList VTs, 9098 ArrayRef<SDValue> Ops) { 9099 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9100 MachineSDNode *N; 9101 void *IP = nullptr; 9102 9103 if (DoCSE) { 9104 FoldingSetNodeID ID; 9105 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9106 IP = nullptr; 9107 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9108 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9109 } 9110 } 9111 9112 // Allocate a new MachineSDNode. 9113 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9114 createOperands(N, Ops); 9115 9116 if (DoCSE) 9117 CSEMap.InsertNode(N, IP); 9118 9119 InsertNode(N); 9120 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9121 return N; 9122 } 9123 9124 /// getTargetExtractSubreg - A convenience function for creating 9125 /// TargetOpcode::EXTRACT_SUBREG nodes. 9126 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9127 SDValue Operand) { 9128 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9129 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9130 VT, Operand, SRIdxVal); 9131 return SDValue(Subreg, 0); 9132 } 9133 9134 /// getTargetInsertSubreg - A convenience function for creating 9135 /// TargetOpcode::INSERT_SUBREG nodes. 9136 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9137 SDValue Operand, SDValue Subreg) { 9138 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9139 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9140 VT, Operand, Subreg, SRIdxVal); 9141 return SDValue(Result, 0); 9142 } 9143 9144 /// getNodeIfExists - Get the specified node if it's already available, or 9145 /// else return NULL. 9146 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9147 ArrayRef<SDValue> Ops) { 9148 SDNodeFlags Flags; 9149 if (Inserter) 9150 Flags = Inserter->getFlags(); 9151 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9152 } 9153 9154 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9155 ArrayRef<SDValue> Ops, 9156 const SDNodeFlags Flags) { 9157 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9158 FoldingSetNodeID ID; 9159 AddNodeIDNode(ID, Opcode, VTList, Ops); 9160 void *IP = nullptr; 9161 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9162 E->intersectFlagsWith(Flags); 9163 return E; 9164 } 9165 } 9166 return nullptr; 9167 } 9168 9169 /// doesNodeExist - Check if a node exists without modifying its flags. 9170 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9171 ArrayRef<SDValue> Ops) { 9172 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9173 FoldingSetNodeID ID; 9174 AddNodeIDNode(ID, Opcode, VTList, Ops); 9175 void *IP = nullptr; 9176 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9177 return true; 9178 } 9179 return false; 9180 } 9181 9182 /// getDbgValue - Creates a SDDbgValue node. 9183 /// 9184 /// SDNode 9185 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9186 SDNode *N, unsigned R, bool IsIndirect, 9187 const DebugLoc &DL, unsigned O) { 9188 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9189 "Expected inlined-at fields to agree"); 9190 return new (DbgInfo->getAlloc()) 9191 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9192 {}, IsIndirect, DL, O, 9193 /*IsVariadic=*/false); 9194 } 9195 9196 /// Constant 9197 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9198 DIExpression *Expr, 9199 const Value *C, 9200 const DebugLoc &DL, unsigned O) { 9201 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9202 "Expected inlined-at fields to agree"); 9203 return new (DbgInfo->getAlloc()) 9204 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9205 /*IsIndirect=*/false, DL, O, 9206 /*IsVariadic=*/false); 9207 } 9208 9209 /// FrameIndex 9210 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9211 DIExpression *Expr, unsigned FI, 9212 bool IsIndirect, 9213 const DebugLoc &DL, 9214 unsigned O) { 9215 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9216 "Expected inlined-at fields to agree"); 9217 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9218 } 9219 9220 /// FrameIndex with dependencies 9221 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9222 DIExpression *Expr, unsigned FI, 9223 ArrayRef<SDNode *> Dependencies, 9224 bool IsIndirect, 9225 const DebugLoc &DL, 9226 unsigned O) { 9227 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9228 "Expected inlined-at fields to agree"); 9229 return new (DbgInfo->getAlloc()) 9230 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9231 Dependencies, IsIndirect, DL, O, 9232 /*IsVariadic=*/false); 9233 } 9234 9235 /// VReg 9236 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9237 unsigned VReg, bool IsIndirect, 9238 const DebugLoc &DL, unsigned O) { 9239 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9240 "Expected inlined-at fields to agree"); 9241 return new (DbgInfo->getAlloc()) 9242 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9243 {}, IsIndirect, DL, O, 9244 /*IsVariadic=*/false); 9245 } 9246 9247 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9248 ArrayRef<SDDbgOperand> Locs, 9249 ArrayRef<SDNode *> Dependencies, 9250 bool IsIndirect, const DebugLoc &DL, 9251 unsigned O, bool IsVariadic) { 9252 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9253 "Expected inlined-at fields to agree"); 9254 return new (DbgInfo->getAlloc()) 9255 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9256 DL, O, IsVariadic); 9257 } 9258 9259 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9260 unsigned OffsetInBits, unsigned SizeInBits, 9261 bool InvalidateDbg) { 9262 SDNode *FromNode = From.getNode(); 9263 SDNode *ToNode = To.getNode(); 9264 assert(FromNode && ToNode && "Can't modify dbg values"); 9265 9266 // PR35338 9267 // TODO: assert(From != To && "Redundant dbg value transfer"); 9268 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9269 if (From == To || FromNode == ToNode) 9270 return; 9271 9272 if (!FromNode->getHasDebugValue()) 9273 return; 9274 9275 SDDbgOperand FromLocOp = 9276 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9277 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9278 9279 SmallVector<SDDbgValue *, 2> ClonedDVs; 9280 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9281 if (Dbg->isInvalidated()) 9282 continue; 9283 9284 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9285 9286 // Create a new location ops vector that is equal to the old vector, but 9287 // with each instance of FromLocOp replaced with ToLocOp. 9288 bool Changed = false; 9289 auto NewLocOps = Dbg->copyLocationOps(); 9290 std::replace_if( 9291 NewLocOps.begin(), NewLocOps.end(), 9292 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9293 bool Match = Op == FromLocOp; 9294 Changed |= Match; 9295 return Match; 9296 }, 9297 ToLocOp); 9298 // Ignore this SDDbgValue if we didn't find a matching location. 9299 if (!Changed) 9300 continue; 9301 9302 DIVariable *Var = Dbg->getVariable(); 9303 auto *Expr = Dbg->getExpression(); 9304 // If a fragment is requested, update the expression. 9305 if (SizeInBits) { 9306 // When splitting a larger (e.g., sign-extended) value whose 9307 // lower bits are described with an SDDbgValue, do not attempt 9308 // to transfer the SDDbgValue to the upper bits. 9309 if (auto FI = Expr->getFragmentInfo()) 9310 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9311 continue; 9312 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9313 SizeInBits); 9314 if (!Fragment) 9315 continue; 9316 Expr = *Fragment; 9317 } 9318 9319 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9320 // Clone the SDDbgValue and move it to To. 9321 SDDbgValue *Clone = getDbgValueList( 9322 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9323 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9324 Dbg->isVariadic()); 9325 ClonedDVs.push_back(Clone); 9326 9327 if (InvalidateDbg) { 9328 // Invalidate value and indicate the SDDbgValue should not be emitted. 9329 Dbg->setIsInvalidated(); 9330 Dbg->setIsEmitted(); 9331 } 9332 } 9333 9334 for (SDDbgValue *Dbg : ClonedDVs) { 9335 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9336 "Transferred DbgValues should depend on the new SDNode"); 9337 AddDbgValue(Dbg, false); 9338 } 9339 } 9340 9341 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9342 if (!N.getHasDebugValue()) 9343 return; 9344 9345 SmallVector<SDDbgValue *, 2> ClonedDVs; 9346 for (auto DV : GetDbgValues(&N)) { 9347 if (DV->isInvalidated()) 9348 continue; 9349 switch (N.getOpcode()) { 9350 default: 9351 break; 9352 case ISD::ADD: 9353 SDValue N0 = N.getOperand(0); 9354 SDValue N1 = N.getOperand(1); 9355 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9356 isConstantIntBuildVectorOrConstantInt(N1)) { 9357 uint64_t Offset = N.getConstantOperandVal(1); 9358 9359 // Rewrite an ADD constant node into a DIExpression. Since we are 9360 // performing arithmetic to compute the variable's *value* in the 9361 // DIExpression, we need to mark the expression with a 9362 // DW_OP_stack_value. 9363 auto *DIExpr = DV->getExpression(); 9364 auto NewLocOps = DV->copyLocationOps(); 9365 bool Changed = false; 9366 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9367 // We're not given a ResNo to compare against because the whole 9368 // node is going away. We know that any ISD::ADD only has one 9369 // result, so we can assume any node match is using the result. 9370 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9371 NewLocOps[i].getSDNode() != &N) 9372 continue; 9373 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9374 SmallVector<uint64_t, 3> ExprOps; 9375 DIExpression::appendOffset(ExprOps, Offset); 9376 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9377 Changed = true; 9378 } 9379 (void)Changed; 9380 assert(Changed && "Salvage target doesn't use N"); 9381 9382 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9383 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9384 NewLocOps, AdditionalDependencies, 9385 DV->isIndirect(), DV->getDebugLoc(), 9386 DV->getOrder(), DV->isVariadic()); 9387 ClonedDVs.push_back(Clone); 9388 DV->setIsInvalidated(); 9389 DV->setIsEmitted(); 9390 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9391 N0.getNode()->dumprFull(this); 9392 dbgs() << " into " << *DIExpr << '\n'); 9393 } 9394 } 9395 } 9396 9397 for (SDDbgValue *Dbg : ClonedDVs) { 9398 assert(!Dbg->getSDNodes().empty() && 9399 "Salvaged DbgValue should depend on a new SDNode"); 9400 AddDbgValue(Dbg, false); 9401 } 9402 } 9403 9404 /// Creates a SDDbgLabel node. 9405 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9406 const DebugLoc &DL, unsigned O) { 9407 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9408 "Expected inlined-at fields to agree"); 9409 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9410 } 9411 9412 namespace { 9413 9414 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9415 /// pointed to by a use iterator is deleted, increment the use iterator 9416 /// so that it doesn't dangle. 9417 /// 9418 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9419 SDNode::use_iterator &UI; 9420 SDNode::use_iterator &UE; 9421 9422 void NodeDeleted(SDNode *N, SDNode *E) override { 9423 // Increment the iterator as needed. 9424 while (UI != UE && N == *UI) 9425 ++UI; 9426 } 9427 9428 public: 9429 RAUWUpdateListener(SelectionDAG &d, 9430 SDNode::use_iterator &ui, 9431 SDNode::use_iterator &ue) 9432 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9433 }; 9434 9435 } // end anonymous namespace 9436 9437 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9438 /// This can cause recursive merging of nodes in the DAG. 9439 /// 9440 /// This version assumes From has a single result value. 9441 /// 9442 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9443 SDNode *From = FromN.getNode(); 9444 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9445 "Cannot replace with this method!"); 9446 assert(From != To.getNode() && "Cannot replace uses of with self"); 9447 9448 // Preserve Debug Values 9449 transferDbgValues(FromN, To); 9450 9451 // Iterate over all the existing uses of From. New uses will be added 9452 // to the beginning of the use list, which we avoid visiting. 9453 // This specifically avoids visiting uses of From that arise while the 9454 // replacement is happening, because any such uses would be the result 9455 // of CSE: If an existing node looks like From after one of its operands 9456 // is replaced by To, we don't want to replace of all its users with To 9457 // too. See PR3018 for more info. 9458 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9459 RAUWUpdateListener Listener(*this, UI, UE); 9460 while (UI != UE) { 9461 SDNode *User = *UI; 9462 9463 // This node is about to morph, remove its old self from the CSE maps. 9464 RemoveNodeFromCSEMaps(User); 9465 9466 // A user can appear in a use list multiple times, and when this 9467 // happens the uses are usually next to each other in the list. 9468 // To help reduce the number of CSE recomputations, process all 9469 // the uses of this user that we can find this way. 9470 do { 9471 SDUse &Use = UI.getUse(); 9472 ++UI; 9473 Use.set(To); 9474 if (To->isDivergent() != From->isDivergent()) 9475 updateDivergence(User); 9476 } while (UI != UE && *UI == User); 9477 // Now that we have modified User, add it back to the CSE maps. If it 9478 // already exists there, recursively merge the results together. 9479 AddModifiedNodeToCSEMaps(User); 9480 } 9481 9482 // If we just RAUW'd the root, take note. 9483 if (FromN == getRoot()) 9484 setRoot(To); 9485 } 9486 9487 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9488 /// This can cause recursive merging of nodes in the DAG. 9489 /// 9490 /// This version assumes that for each value of From, there is a 9491 /// corresponding value in To in the same position with the same type. 9492 /// 9493 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9494 #ifndef NDEBUG 9495 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9496 assert((!From->hasAnyUseOfValue(i) || 9497 From->getValueType(i) == To->getValueType(i)) && 9498 "Cannot use this version of ReplaceAllUsesWith!"); 9499 #endif 9500 9501 // Handle the trivial case. 9502 if (From == To) 9503 return; 9504 9505 // Preserve Debug Info. Only do this if there's a use. 9506 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9507 if (From->hasAnyUseOfValue(i)) { 9508 assert((i < To->getNumValues()) && "Invalid To location"); 9509 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9510 } 9511 9512 // Iterate over just the existing users of From. See the comments in 9513 // the ReplaceAllUsesWith above. 9514 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9515 RAUWUpdateListener Listener(*this, UI, UE); 9516 while (UI != UE) { 9517 SDNode *User = *UI; 9518 9519 // This node is about to morph, remove its old self from the CSE maps. 9520 RemoveNodeFromCSEMaps(User); 9521 9522 // A user can appear in a use list multiple times, and when this 9523 // happens the uses are usually next to each other in the list. 9524 // To help reduce the number of CSE recomputations, process all 9525 // the uses of this user that we can find this way. 9526 do { 9527 SDUse &Use = UI.getUse(); 9528 ++UI; 9529 Use.setNode(To); 9530 if (To->isDivergent() != From->isDivergent()) 9531 updateDivergence(User); 9532 } while (UI != UE && *UI == User); 9533 9534 // Now that we have modified User, add it back to the CSE maps. If it 9535 // already exists there, recursively merge the results together. 9536 AddModifiedNodeToCSEMaps(User); 9537 } 9538 9539 // If we just RAUW'd the root, take note. 9540 if (From == getRoot().getNode()) 9541 setRoot(SDValue(To, getRoot().getResNo())); 9542 } 9543 9544 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9545 /// This can cause recursive merging of nodes in the DAG. 9546 /// 9547 /// This version can replace From with any result values. To must match the 9548 /// number and types of values returned by From. 9549 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9550 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9551 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9552 9553 // Preserve Debug Info. 9554 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9555 transferDbgValues(SDValue(From, i), To[i]); 9556 9557 // Iterate over just the existing users of From. See the comments in 9558 // the ReplaceAllUsesWith above. 9559 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9560 RAUWUpdateListener Listener(*this, UI, UE); 9561 while (UI != UE) { 9562 SDNode *User = *UI; 9563 9564 // This node is about to morph, remove its old self from the CSE maps. 9565 RemoveNodeFromCSEMaps(User); 9566 9567 // A user can appear in a use list multiple times, and when this happens the 9568 // uses are usually next to each other in the list. To help reduce the 9569 // number of CSE and divergence recomputations, process all the uses of this 9570 // user that we can find this way. 9571 bool To_IsDivergent = false; 9572 do { 9573 SDUse &Use = UI.getUse(); 9574 const SDValue &ToOp = To[Use.getResNo()]; 9575 ++UI; 9576 Use.set(ToOp); 9577 To_IsDivergent |= ToOp->isDivergent(); 9578 } while (UI != UE && *UI == User); 9579 9580 if (To_IsDivergent != From->isDivergent()) 9581 updateDivergence(User); 9582 9583 // Now that we have modified User, add it back to the CSE maps. If it 9584 // already exists there, recursively merge the results together. 9585 AddModifiedNodeToCSEMaps(User); 9586 } 9587 9588 // If we just RAUW'd the root, take note. 9589 if (From == getRoot().getNode()) 9590 setRoot(SDValue(To[getRoot().getResNo()])); 9591 } 9592 9593 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9594 /// uses of other values produced by From.getNode() alone. The Deleted 9595 /// vector is handled the same way as for ReplaceAllUsesWith. 9596 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9597 // Handle the really simple, really trivial case efficiently. 9598 if (From == To) return; 9599 9600 // Handle the simple, trivial, case efficiently. 9601 if (From.getNode()->getNumValues() == 1) { 9602 ReplaceAllUsesWith(From, To); 9603 return; 9604 } 9605 9606 // Preserve Debug Info. 9607 transferDbgValues(From, To); 9608 9609 // Iterate over just the existing users of From. See the comments in 9610 // the ReplaceAllUsesWith above. 9611 SDNode::use_iterator UI = From.getNode()->use_begin(), 9612 UE = From.getNode()->use_end(); 9613 RAUWUpdateListener Listener(*this, UI, UE); 9614 while (UI != UE) { 9615 SDNode *User = *UI; 9616 bool UserRemovedFromCSEMaps = false; 9617 9618 // A user can appear in a use list multiple times, and when this 9619 // happens the uses are usually next to each other in the list. 9620 // To help reduce the number of CSE recomputations, process all 9621 // the uses of this user that we can find this way. 9622 do { 9623 SDUse &Use = UI.getUse(); 9624 9625 // Skip uses of different values from the same node. 9626 if (Use.getResNo() != From.getResNo()) { 9627 ++UI; 9628 continue; 9629 } 9630 9631 // If this node hasn't been modified yet, it's still in the CSE maps, 9632 // so remove its old self from the CSE maps. 9633 if (!UserRemovedFromCSEMaps) { 9634 RemoveNodeFromCSEMaps(User); 9635 UserRemovedFromCSEMaps = true; 9636 } 9637 9638 ++UI; 9639 Use.set(To); 9640 if (To->isDivergent() != From->isDivergent()) 9641 updateDivergence(User); 9642 } while (UI != UE && *UI == User); 9643 // We are iterating over all uses of the From node, so if a use 9644 // doesn't use the specific value, no changes are made. 9645 if (!UserRemovedFromCSEMaps) 9646 continue; 9647 9648 // Now that we have modified User, add it back to the CSE maps. If it 9649 // already exists there, recursively merge the results together. 9650 AddModifiedNodeToCSEMaps(User); 9651 } 9652 9653 // If we just RAUW'd the root, take note. 9654 if (From == getRoot()) 9655 setRoot(To); 9656 } 9657 9658 namespace { 9659 9660 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9661 /// to record information about a use. 9662 struct UseMemo { 9663 SDNode *User; 9664 unsigned Index; 9665 SDUse *Use; 9666 }; 9667 9668 /// operator< - Sort Memos by User. 9669 bool operator<(const UseMemo &L, const UseMemo &R) { 9670 return (intptr_t)L.User < (intptr_t)R.User; 9671 } 9672 9673 } // end anonymous namespace 9674 9675 bool SelectionDAG::calculateDivergence(SDNode *N) { 9676 if (TLI->isSDNodeAlwaysUniform(N)) { 9677 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9678 "Conflicting divergence information!"); 9679 return false; 9680 } 9681 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9682 return true; 9683 for (auto &Op : N->ops()) { 9684 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9685 return true; 9686 } 9687 return false; 9688 } 9689 9690 void SelectionDAG::updateDivergence(SDNode *N) { 9691 SmallVector<SDNode *, 16> Worklist(1, N); 9692 do { 9693 N = Worklist.pop_back_val(); 9694 bool IsDivergent = calculateDivergence(N); 9695 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9696 N->SDNodeBits.IsDivergent = IsDivergent; 9697 llvm::append_range(Worklist, N->uses()); 9698 } 9699 } while (!Worklist.empty()); 9700 } 9701 9702 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9703 DenseMap<SDNode *, unsigned> Degree; 9704 Order.reserve(AllNodes.size()); 9705 for (auto &N : allnodes()) { 9706 unsigned NOps = N.getNumOperands(); 9707 Degree[&N] = NOps; 9708 if (0 == NOps) 9709 Order.push_back(&N); 9710 } 9711 for (size_t I = 0; I != Order.size(); ++I) { 9712 SDNode *N = Order[I]; 9713 for (auto U : N->uses()) { 9714 unsigned &UnsortedOps = Degree[U]; 9715 if (0 == --UnsortedOps) 9716 Order.push_back(U); 9717 } 9718 } 9719 } 9720 9721 #ifndef NDEBUG 9722 void SelectionDAG::VerifyDAGDivergence() { 9723 std::vector<SDNode *> TopoOrder; 9724 CreateTopologicalOrder(TopoOrder); 9725 for (auto *N : TopoOrder) { 9726 assert(calculateDivergence(N) == N->isDivergent() && 9727 "Divergence bit inconsistency detected"); 9728 } 9729 } 9730 #endif 9731 9732 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9733 /// uses of other values produced by From.getNode() alone. The same value 9734 /// may appear in both the From and To list. The Deleted vector is 9735 /// handled the same way as for ReplaceAllUsesWith. 9736 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9737 const SDValue *To, 9738 unsigned Num){ 9739 // Handle the simple, trivial case efficiently. 9740 if (Num == 1) 9741 return ReplaceAllUsesOfValueWith(*From, *To); 9742 9743 transferDbgValues(*From, *To); 9744 9745 // Read up all the uses and make records of them. This helps 9746 // processing new uses that are introduced during the 9747 // replacement process. 9748 SmallVector<UseMemo, 4> Uses; 9749 for (unsigned i = 0; i != Num; ++i) { 9750 unsigned FromResNo = From[i].getResNo(); 9751 SDNode *FromNode = From[i].getNode(); 9752 for (SDNode::use_iterator UI = FromNode->use_begin(), 9753 E = FromNode->use_end(); UI != E; ++UI) { 9754 SDUse &Use = UI.getUse(); 9755 if (Use.getResNo() == FromResNo) { 9756 UseMemo Memo = { *UI, i, &Use }; 9757 Uses.push_back(Memo); 9758 } 9759 } 9760 } 9761 9762 // Sort the uses, so that all the uses from a given User are together. 9763 llvm::sort(Uses); 9764 9765 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9766 UseIndex != UseIndexEnd; ) { 9767 // We know that this user uses some value of From. If it is the right 9768 // value, update it. 9769 SDNode *User = Uses[UseIndex].User; 9770 9771 // This node is about to morph, remove its old self from the CSE maps. 9772 RemoveNodeFromCSEMaps(User); 9773 9774 // The Uses array is sorted, so all the uses for a given User 9775 // are next to each other in the list. 9776 // To help reduce the number of CSE recomputations, process all 9777 // the uses of this user that we can find this way. 9778 do { 9779 unsigned i = Uses[UseIndex].Index; 9780 SDUse &Use = *Uses[UseIndex].Use; 9781 ++UseIndex; 9782 9783 Use.set(To[i]); 9784 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9785 9786 // Now that we have modified User, add it back to the CSE maps. If it 9787 // already exists there, recursively merge the results together. 9788 AddModifiedNodeToCSEMaps(User); 9789 } 9790 } 9791 9792 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9793 /// based on their topological order. It returns the maximum id and a vector 9794 /// of the SDNodes* in assigned order by reference. 9795 unsigned SelectionDAG::AssignTopologicalOrder() { 9796 unsigned DAGSize = 0; 9797 9798 // SortedPos tracks the progress of the algorithm. Nodes before it are 9799 // sorted, nodes after it are unsorted. When the algorithm completes 9800 // it is at the end of the list. 9801 allnodes_iterator SortedPos = allnodes_begin(); 9802 9803 // Visit all the nodes. Move nodes with no operands to the front of 9804 // the list immediately. Annotate nodes that do have operands with their 9805 // operand count. Before we do this, the Node Id fields of the nodes 9806 // may contain arbitrary values. After, the Node Id fields for nodes 9807 // before SortedPos will contain the topological sort index, and the 9808 // Node Id fields for nodes At SortedPos and after will contain the 9809 // count of outstanding operands. 9810 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9811 SDNode *N = &*I++; 9812 checkForCycles(N, this); 9813 unsigned Degree = N->getNumOperands(); 9814 if (Degree == 0) { 9815 // A node with no uses, add it to the result array immediately. 9816 N->setNodeId(DAGSize++); 9817 allnodes_iterator Q(N); 9818 if (Q != SortedPos) 9819 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9820 assert(SortedPos != AllNodes.end() && "Overran node list"); 9821 ++SortedPos; 9822 } else { 9823 // Temporarily use the Node Id as scratch space for the degree count. 9824 N->setNodeId(Degree); 9825 } 9826 } 9827 9828 // Visit all the nodes. As we iterate, move nodes into sorted order, 9829 // such that by the time the end is reached all nodes will be sorted. 9830 for (SDNode &Node : allnodes()) { 9831 SDNode *N = &Node; 9832 checkForCycles(N, this); 9833 // N is in sorted position, so all its uses have one less operand 9834 // that needs to be sorted. 9835 for (SDNode *P : N->uses()) { 9836 unsigned Degree = P->getNodeId(); 9837 assert(Degree != 0 && "Invalid node degree"); 9838 --Degree; 9839 if (Degree == 0) { 9840 // All of P's operands are sorted, so P may sorted now. 9841 P->setNodeId(DAGSize++); 9842 if (P->getIterator() != SortedPos) 9843 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9844 assert(SortedPos != AllNodes.end() && "Overran node list"); 9845 ++SortedPos; 9846 } else { 9847 // Update P's outstanding operand count. 9848 P->setNodeId(Degree); 9849 } 9850 } 9851 if (Node.getIterator() == SortedPos) { 9852 #ifndef NDEBUG 9853 allnodes_iterator I(N); 9854 SDNode *S = &*++I; 9855 dbgs() << "Overran sorted position:\n"; 9856 S->dumprFull(this); dbgs() << "\n"; 9857 dbgs() << "Checking if this is due to cycles\n"; 9858 checkForCycles(this, true); 9859 #endif 9860 llvm_unreachable(nullptr); 9861 } 9862 } 9863 9864 assert(SortedPos == AllNodes.end() && 9865 "Topological sort incomplete!"); 9866 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9867 "First node in topological sort is not the entry token!"); 9868 assert(AllNodes.front().getNodeId() == 0 && 9869 "First node in topological sort has non-zero id!"); 9870 assert(AllNodes.front().getNumOperands() == 0 && 9871 "First node in topological sort has operands!"); 9872 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9873 "Last node in topologic sort has unexpected id!"); 9874 assert(AllNodes.back().use_empty() && 9875 "Last node in topologic sort has users!"); 9876 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9877 return DAGSize; 9878 } 9879 9880 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9881 /// value is produced by SD. 9882 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9883 for (SDNode *SD : DB->getSDNodes()) { 9884 if (!SD) 9885 continue; 9886 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9887 SD->setHasDebugValue(true); 9888 } 9889 DbgInfo->add(DB, isParameter); 9890 } 9891 9892 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9893 9894 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9895 SDValue NewMemOpChain) { 9896 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9897 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9898 // The new memory operation must have the same position as the old load in 9899 // terms of memory dependency. Create a TokenFactor for the old load and new 9900 // memory operation and update uses of the old load's output chain to use that 9901 // TokenFactor. 9902 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9903 return NewMemOpChain; 9904 9905 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9906 OldChain, NewMemOpChain); 9907 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9908 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9909 return TokenFactor; 9910 } 9911 9912 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9913 SDValue NewMemOp) { 9914 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9915 SDValue OldChain = SDValue(OldLoad, 1); 9916 SDValue NewMemOpChain = NewMemOp.getValue(1); 9917 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9918 } 9919 9920 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9921 Function **OutFunction) { 9922 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9923 9924 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9925 auto *Module = MF->getFunction().getParent(); 9926 auto *Function = Module->getFunction(Symbol); 9927 9928 if (OutFunction != nullptr) 9929 *OutFunction = Function; 9930 9931 if (Function != nullptr) { 9932 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9933 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9934 } 9935 9936 std::string ErrorStr; 9937 raw_string_ostream ErrorFormatter(ErrorStr); 9938 ErrorFormatter << "Undefined external symbol "; 9939 ErrorFormatter << '"' << Symbol << '"'; 9940 report_fatal_error(Twine(ErrorFormatter.str())); 9941 } 9942 9943 //===----------------------------------------------------------------------===// 9944 // SDNode Class 9945 //===----------------------------------------------------------------------===// 9946 9947 bool llvm::isNullConstant(SDValue V) { 9948 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9949 return Const != nullptr && Const->isZero(); 9950 } 9951 9952 bool llvm::isNullFPConstant(SDValue V) { 9953 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9954 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9955 } 9956 9957 bool llvm::isAllOnesConstant(SDValue V) { 9958 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9959 return Const != nullptr && Const->isAllOnes(); 9960 } 9961 9962 bool llvm::isOneConstant(SDValue V) { 9963 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9964 return Const != nullptr && Const->isOne(); 9965 } 9966 9967 SDValue llvm::peekThroughBitcasts(SDValue V) { 9968 while (V.getOpcode() == ISD::BITCAST) 9969 V = V.getOperand(0); 9970 return V; 9971 } 9972 9973 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9974 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9975 V = V.getOperand(0); 9976 return V; 9977 } 9978 9979 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9980 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9981 V = V.getOperand(0); 9982 return V; 9983 } 9984 9985 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9986 if (V.getOpcode() != ISD::XOR) 9987 return false; 9988 V = peekThroughBitcasts(V.getOperand(1)); 9989 unsigned NumBits = V.getScalarValueSizeInBits(); 9990 ConstantSDNode *C = 9991 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9992 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9993 } 9994 9995 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9996 bool AllowTruncation) { 9997 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9998 return CN; 9999 10000 // SplatVectors can truncate their operands. Ignore that case here unless 10001 // AllowTruncation is set. 10002 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10003 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10004 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10005 EVT CVT = CN->getValueType(0); 10006 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10007 if (AllowTruncation || CVT == VecEltVT) 10008 return CN; 10009 } 10010 } 10011 10012 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10013 BitVector UndefElements; 10014 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10015 10016 // BuildVectors can truncate their operands. Ignore that case here unless 10017 // AllowTruncation is set. 10018 if (CN && (UndefElements.none() || AllowUndefs)) { 10019 EVT CVT = CN->getValueType(0); 10020 EVT NSVT = N.getValueType().getScalarType(); 10021 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10022 if (AllowTruncation || (CVT == NSVT)) 10023 return CN; 10024 } 10025 } 10026 10027 return nullptr; 10028 } 10029 10030 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10031 bool AllowUndefs, 10032 bool AllowTruncation) { 10033 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10034 return CN; 10035 10036 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10037 BitVector UndefElements; 10038 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10039 10040 // BuildVectors can truncate their operands. Ignore that case here unless 10041 // AllowTruncation is set. 10042 if (CN && (UndefElements.none() || AllowUndefs)) { 10043 EVT CVT = CN->getValueType(0); 10044 EVT NSVT = N.getValueType().getScalarType(); 10045 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10046 if (AllowTruncation || (CVT == NSVT)) 10047 return CN; 10048 } 10049 } 10050 10051 return nullptr; 10052 } 10053 10054 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10055 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10056 return CN; 10057 10058 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10059 BitVector UndefElements; 10060 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10061 if (CN && (UndefElements.none() || AllowUndefs)) 10062 return CN; 10063 } 10064 10065 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10066 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10067 return CN; 10068 10069 return nullptr; 10070 } 10071 10072 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10073 const APInt &DemandedElts, 10074 bool AllowUndefs) { 10075 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10076 return CN; 10077 10078 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10079 BitVector UndefElements; 10080 ConstantFPSDNode *CN = 10081 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10082 if (CN && (UndefElements.none() || AllowUndefs)) 10083 return CN; 10084 } 10085 10086 return nullptr; 10087 } 10088 10089 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10090 // TODO: may want to use peekThroughBitcast() here. 10091 ConstantSDNode *C = 10092 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10093 return C && C->isZero(); 10094 } 10095 10096 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10097 // TODO: may want to use peekThroughBitcast() here. 10098 unsigned BitWidth = N.getScalarValueSizeInBits(); 10099 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10100 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10101 } 10102 10103 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10104 N = peekThroughBitcasts(N); 10105 unsigned BitWidth = N.getScalarValueSizeInBits(); 10106 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10107 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10108 } 10109 10110 HandleSDNode::~HandleSDNode() { 10111 DropOperands(); 10112 } 10113 10114 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10115 const DebugLoc &DL, 10116 const GlobalValue *GA, EVT VT, 10117 int64_t o, unsigned TF) 10118 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10119 TheGlobal = GA; 10120 } 10121 10122 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10123 EVT VT, unsigned SrcAS, 10124 unsigned DestAS) 10125 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10126 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10127 10128 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10129 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10130 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10131 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10132 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10133 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10134 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10135 10136 // We check here that the size of the memory operand fits within the size of 10137 // the MMO. This is because the MMO might indicate only a possible address 10138 // range instead of specifying the affected memory addresses precisely. 10139 // TODO: Make MachineMemOperands aware of scalable vectors. 10140 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10141 "Size mismatch!"); 10142 } 10143 10144 /// Profile - Gather unique data for the node. 10145 /// 10146 void SDNode::Profile(FoldingSetNodeID &ID) const { 10147 AddNodeIDNode(ID, this); 10148 } 10149 10150 namespace { 10151 10152 struct EVTArray { 10153 std::vector<EVT> VTs; 10154 10155 EVTArray() { 10156 VTs.reserve(MVT::VALUETYPE_SIZE); 10157 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10158 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10159 } 10160 }; 10161 10162 } // end anonymous namespace 10163 10164 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10165 static ManagedStatic<EVTArray> SimpleVTArray; 10166 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10167 10168 /// getValueTypeList - Return a pointer to the specified value type. 10169 /// 10170 const EVT *SDNode::getValueTypeList(EVT VT) { 10171 if (VT.isExtended()) { 10172 sys::SmartScopedLock<true> Lock(*VTMutex); 10173 return &(*EVTs->insert(VT).first); 10174 } 10175 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10176 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10177 } 10178 10179 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10180 /// indicated value. This method ignores uses of other values defined by this 10181 /// operation. 10182 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10183 assert(Value < getNumValues() && "Bad value!"); 10184 10185 // TODO: Only iterate over uses of a given value of the node 10186 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10187 if (UI.getUse().getResNo() == Value) { 10188 if (NUses == 0) 10189 return false; 10190 --NUses; 10191 } 10192 } 10193 10194 // Found exactly the right number of uses? 10195 return NUses == 0; 10196 } 10197 10198 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10199 /// value. This method ignores uses of other values defined by this operation. 10200 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10201 assert(Value < getNumValues() && "Bad value!"); 10202 10203 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10204 if (UI.getUse().getResNo() == Value) 10205 return true; 10206 10207 return false; 10208 } 10209 10210 /// isOnlyUserOf - Return true if this node is the only use of N. 10211 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10212 bool Seen = false; 10213 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10214 SDNode *User = *I; 10215 if (User == this) 10216 Seen = true; 10217 else 10218 return false; 10219 } 10220 10221 return Seen; 10222 } 10223 10224 /// Return true if the only users of N are contained in Nodes. 10225 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10226 bool Seen = false; 10227 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10228 SDNode *User = *I; 10229 if (llvm::is_contained(Nodes, User)) 10230 Seen = true; 10231 else 10232 return false; 10233 } 10234 10235 return Seen; 10236 } 10237 10238 /// isOperand - Return true if this node is an operand of N. 10239 bool SDValue::isOperandOf(const SDNode *N) const { 10240 return is_contained(N->op_values(), *this); 10241 } 10242 10243 bool SDNode::isOperandOf(const SDNode *N) const { 10244 return any_of(N->op_values(), 10245 [this](SDValue Op) { return this == Op.getNode(); }); 10246 } 10247 10248 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10249 /// be a chain) reaches the specified operand without crossing any 10250 /// side-effecting instructions on any chain path. In practice, this looks 10251 /// through token factors and non-volatile loads. In order to remain efficient, 10252 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10253 /// 10254 /// Note that we only need to examine chains when we're searching for 10255 /// side-effects; SelectionDAG requires that all side-effects are represented 10256 /// by chains, even if another operand would force a specific ordering. This 10257 /// constraint is necessary to allow transformations like splitting loads. 10258 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10259 unsigned Depth) const { 10260 if (*this == Dest) return true; 10261 10262 // Don't search too deeply, we just want to be able to see through 10263 // TokenFactor's etc. 10264 if (Depth == 0) return false; 10265 10266 // If this is a token factor, all inputs to the TF happen in parallel. 10267 if (getOpcode() == ISD::TokenFactor) { 10268 // First, try a shallow search. 10269 if (is_contained((*this)->ops(), Dest)) { 10270 // We found the chain we want as an operand of this TokenFactor. 10271 // Essentially, we reach the chain without side-effects if we could 10272 // serialize the TokenFactor into a simple chain of operations with 10273 // Dest as the last operation. This is automatically true if the 10274 // chain has one use: there are no other ordering constraints. 10275 // If the chain has more than one use, we give up: some other 10276 // use of Dest might force a side-effect between Dest and the current 10277 // node. 10278 if (Dest.hasOneUse()) 10279 return true; 10280 } 10281 // Next, try a deep search: check whether every operand of the TokenFactor 10282 // reaches Dest. 10283 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10284 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10285 }); 10286 } 10287 10288 // Loads don't have side effects, look through them. 10289 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10290 if (Ld->isUnordered()) 10291 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10292 } 10293 return false; 10294 } 10295 10296 bool SDNode::hasPredecessor(const SDNode *N) const { 10297 SmallPtrSet<const SDNode *, 32> Visited; 10298 SmallVector<const SDNode *, 16> Worklist; 10299 Worklist.push_back(this); 10300 return hasPredecessorHelper(N, Visited, Worklist); 10301 } 10302 10303 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10304 this->Flags.intersectWith(Flags); 10305 } 10306 10307 SDValue 10308 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10309 ArrayRef<ISD::NodeType> CandidateBinOps, 10310 bool AllowPartials) { 10311 // The pattern must end in an extract from index 0. 10312 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10313 !isNullConstant(Extract->getOperand(1))) 10314 return SDValue(); 10315 10316 // Match against one of the candidate binary ops. 10317 SDValue Op = Extract->getOperand(0); 10318 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10319 return Op.getOpcode() == unsigned(BinOp); 10320 })) 10321 return SDValue(); 10322 10323 // Floating-point reductions may require relaxed constraints on the final step 10324 // of the reduction because they may reorder intermediate operations. 10325 unsigned CandidateBinOp = Op.getOpcode(); 10326 if (Op.getValueType().isFloatingPoint()) { 10327 SDNodeFlags Flags = Op->getFlags(); 10328 switch (CandidateBinOp) { 10329 case ISD::FADD: 10330 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10331 return SDValue(); 10332 break; 10333 default: 10334 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10335 } 10336 } 10337 10338 // Matching failed - attempt to see if we did enough stages that a partial 10339 // reduction from a subvector is possible. 10340 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10341 if (!AllowPartials || !Op) 10342 return SDValue(); 10343 EVT OpVT = Op.getValueType(); 10344 EVT OpSVT = OpVT.getScalarType(); 10345 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10346 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10347 return SDValue(); 10348 BinOp = (ISD::NodeType)CandidateBinOp; 10349 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10350 getVectorIdxConstant(0, SDLoc(Op))); 10351 }; 10352 10353 // At each stage, we're looking for something that looks like: 10354 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10355 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10356 // i32 undef, i32 undef, i32 undef, i32 undef> 10357 // %a = binop <8 x i32> %op, %s 10358 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10359 // we expect something like: 10360 // <4,5,6,7,u,u,u,u> 10361 // <2,3,u,u,u,u,u,u> 10362 // <1,u,u,u,u,u,u,u> 10363 // While a partial reduction match would be: 10364 // <2,3,u,u,u,u,u,u> 10365 // <1,u,u,u,u,u,u,u> 10366 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10367 SDValue PrevOp; 10368 for (unsigned i = 0; i < Stages; ++i) { 10369 unsigned MaskEnd = (1 << i); 10370 10371 if (Op.getOpcode() != CandidateBinOp) 10372 return PartialReduction(PrevOp, MaskEnd); 10373 10374 SDValue Op0 = Op.getOperand(0); 10375 SDValue Op1 = Op.getOperand(1); 10376 10377 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10378 if (Shuffle) { 10379 Op = Op1; 10380 } else { 10381 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10382 Op = Op0; 10383 } 10384 10385 // The first operand of the shuffle should be the same as the other operand 10386 // of the binop. 10387 if (!Shuffle || Shuffle->getOperand(0) != Op) 10388 return PartialReduction(PrevOp, MaskEnd); 10389 10390 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10391 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10392 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10393 return PartialReduction(PrevOp, MaskEnd); 10394 10395 PrevOp = Op; 10396 } 10397 10398 // Handle subvector reductions, which tend to appear after the shuffle 10399 // reduction stages. 10400 while (Op.getOpcode() == CandidateBinOp) { 10401 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10402 SDValue Op0 = Op.getOperand(0); 10403 SDValue Op1 = Op.getOperand(1); 10404 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10405 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10406 Op0.getOperand(0) != Op1.getOperand(0)) 10407 break; 10408 SDValue Src = Op0.getOperand(0); 10409 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10410 if (NumSrcElts != (2 * NumElts)) 10411 break; 10412 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10413 Op1.getConstantOperandAPInt(1) == NumElts) && 10414 !(Op1.getConstantOperandAPInt(1) == 0 && 10415 Op0.getConstantOperandAPInt(1) == NumElts)) 10416 break; 10417 Op = Src; 10418 } 10419 10420 BinOp = (ISD::NodeType)CandidateBinOp; 10421 return Op; 10422 } 10423 10424 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10425 assert(N->getNumValues() == 1 && 10426 "Can't unroll a vector with multiple results!"); 10427 10428 EVT VT = N->getValueType(0); 10429 unsigned NE = VT.getVectorNumElements(); 10430 EVT EltVT = VT.getVectorElementType(); 10431 SDLoc dl(N); 10432 10433 SmallVector<SDValue, 8> Scalars; 10434 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10435 10436 // If ResNE is 0, fully unroll the vector op. 10437 if (ResNE == 0) 10438 ResNE = NE; 10439 else if (NE > ResNE) 10440 NE = ResNE; 10441 10442 unsigned i; 10443 for (i= 0; i != NE; ++i) { 10444 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10445 SDValue Operand = N->getOperand(j); 10446 EVT OperandVT = Operand.getValueType(); 10447 if (OperandVT.isVector()) { 10448 // A vector operand; extract a single element. 10449 EVT OperandEltVT = OperandVT.getVectorElementType(); 10450 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10451 Operand, getVectorIdxConstant(i, dl)); 10452 } else { 10453 // A scalar operand; just use it as is. 10454 Operands[j] = Operand; 10455 } 10456 } 10457 10458 switch (N->getOpcode()) { 10459 default: { 10460 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10461 N->getFlags())); 10462 break; 10463 } 10464 case ISD::VSELECT: 10465 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10466 break; 10467 case ISD::SHL: 10468 case ISD::SRA: 10469 case ISD::SRL: 10470 case ISD::ROTL: 10471 case ISD::ROTR: 10472 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10473 getShiftAmountOperand(Operands[0].getValueType(), 10474 Operands[1]))); 10475 break; 10476 case ISD::SIGN_EXTEND_INREG: { 10477 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10478 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10479 Operands[0], 10480 getValueType(ExtVT))); 10481 } 10482 } 10483 } 10484 10485 for (; i < ResNE; ++i) 10486 Scalars.push_back(getUNDEF(EltVT)); 10487 10488 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10489 return getBuildVector(VecVT, dl, Scalars); 10490 } 10491 10492 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10493 SDNode *N, unsigned ResNE) { 10494 unsigned Opcode = N->getOpcode(); 10495 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10496 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10497 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10498 "Expected an overflow opcode"); 10499 10500 EVT ResVT = N->getValueType(0); 10501 EVT OvVT = N->getValueType(1); 10502 EVT ResEltVT = ResVT.getVectorElementType(); 10503 EVT OvEltVT = OvVT.getVectorElementType(); 10504 SDLoc dl(N); 10505 10506 // If ResNE is 0, fully unroll the vector op. 10507 unsigned NE = ResVT.getVectorNumElements(); 10508 if (ResNE == 0) 10509 ResNE = NE; 10510 else if (NE > ResNE) 10511 NE = ResNE; 10512 10513 SmallVector<SDValue, 8> LHSScalars; 10514 SmallVector<SDValue, 8> RHSScalars; 10515 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10516 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10517 10518 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10519 SDVTList VTs = getVTList(ResEltVT, SVT); 10520 SmallVector<SDValue, 8> ResScalars; 10521 SmallVector<SDValue, 8> OvScalars; 10522 for (unsigned i = 0; i < NE; ++i) { 10523 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10524 SDValue Ov = 10525 getSelect(dl, OvEltVT, Res.getValue(1), 10526 getBoolConstant(true, dl, OvEltVT, ResVT), 10527 getConstant(0, dl, OvEltVT)); 10528 10529 ResScalars.push_back(Res); 10530 OvScalars.push_back(Ov); 10531 } 10532 10533 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10534 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10535 10536 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10537 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10538 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10539 getBuildVector(NewOvVT, dl, OvScalars)); 10540 } 10541 10542 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10543 LoadSDNode *Base, 10544 unsigned Bytes, 10545 int Dist) const { 10546 if (LD->isVolatile() || Base->isVolatile()) 10547 return false; 10548 // TODO: probably too restrictive for atomics, revisit 10549 if (!LD->isSimple()) 10550 return false; 10551 if (LD->isIndexed() || Base->isIndexed()) 10552 return false; 10553 if (LD->getChain() != Base->getChain()) 10554 return false; 10555 EVT VT = LD->getValueType(0); 10556 if (VT.getSizeInBits() / 8 != Bytes) 10557 return false; 10558 10559 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10560 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10561 10562 int64_t Offset = 0; 10563 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10564 return (Dist * Bytes == Offset); 10565 return false; 10566 } 10567 10568 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10569 /// if it cannot be inferred. 10570 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10571 // If this is a GlobalAddress + cst, return the alignment. 10572 const GlobalValue *GV = nullptr; 10573 int64_t GVOffset = 0; 10574 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10575 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10576 KnownBits Known(PtrWidth); 10577 llvm::computeKnownBits(GV, Known, getDataLayout()); 10578 unsigned AlignBits = Known.countMinTrailingZeros(); 10579 if (AlignBits) 10580 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10581 } 10582 10583 // If this is a direct reference to a stack slot, use information about the 10584 // stack slot's alignment. 10585 int FrameIdx = INT_MIN; 10586 int64_t FrameOffset = 0; 10587 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10588 FrameIdx = FI->getIndex(); 10589 } else if (isBaseWithConstantOffset(Ptr) && 10590 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10591 // Handle FI+Cst 10592 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10593 FrameOffset = Ptr.getConstantOperandVal(1); 10594 } 10595 10596 if (FrameIdx != INT_MIN) { 10597 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10598 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10599 } 10600 10601 return None; 10602 } 10603 10604 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10605 /// which is split (or expanded) into two not necessarily identical pieces. 10606 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10607 // Currently all types are split in half. 10608 EVT LoVT, HiVT; 10609 if (!VT.isVector()) 10610 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10611 else 10612 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10613 10614 return std::make_pair(LoVT, HiVT); 10615 } 10616 10617 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10618 /// type, dependent on an enveloping VT that has been split into two identical 10619 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10620 std::pair<EVT, EVT> 10621 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10622 bool *HiIsEmpty) const { 10623 EVT EltTp = VT.getVectorElementType(); 10624 // Examples: 10625 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10626 // custom VL=9 with enveloping VL=8/8 yields 8/1 10627 // custom VL=10 with enveloping VL=8/8 yields 8/2 10628 // etc. 10629 ElementCount VTNumElts = VT.getVectorElementCount(); 10630 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10631 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10632 "Mixing fixed width and scalable vectors when enveloping a type"); 10633 EVT LoVT, HiVT; 10634 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10635 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10636 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10637 *HiIsEmpty = false; 10638 } else { 10639 // Flag that hi type has zero storage size, but return split envelop type 10640 // (this would be easier if vector types with zero elements were allowed). 10641 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10642 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10643 *HiIsEmpty = true; 10644 } 10645 return std::make_pair(LoVT, HiVT); 10646 } 10647 10648 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10649 /// low/high part. 10650 std::pair<SDValue, SDValue> 10651 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10652 const EVT &HiVT) { 10653 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10654 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10655 "Splitting vector with an invalid mixture of fixed and scalable " 10656 "vector types"); 10657 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10658 N.getValueType().getVectorMinNumElements() && 10659 "More vector elements requested than available!"); 10660 SDValue Lo, Hi; 10661 Lo = 10662 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10663 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10664 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10665 // IDX with the runtime scaling factor of the result vector type. For 10666 // fixed-width result vectors, that runtime scaling factor is 1. 10667 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10668 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10669 return std::make_pair(Lo, Hi); 10670 } 10671 10672 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10673 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10674 EVT VT = N.getValueType(); 10675 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10676 NextPowerOf2(VT.getVectorNumElements())); 10677 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10678 getVectorIdxConstant(0, DL)); 10679 } 10680 10681 void SelectionDAG::ExtractVectorElements(SDValue Op, 10682 SmallVectorImpl<SDValue> &Args, 10683 unsigned Start, unsigned Count, 10684 EVT EltVT) { 10685 EVT VT = Op.getValueType(); 10686 if (Count == 0) 10687 Count = VT.getVectorNumElements(); 10688 if (EltVT == EVT()) 10689 EltVT = VT.getVectorElementType(); 10690 SDLoc SL(Op); 10691 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10692 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10693 getVectorIdxConstant(i, SL))); 10694 } 10695 } 10696 10697 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10698 unsigned GlobalAddressSDNode::getAddressSpace() const { 10699 return getGlobal()->getType()->getAddressSpace(); 10700 } 10701 10702 Type *ConstantPoolSDNode::getType() const { 10703 if (isMachineConstantPoolEntry()) 10704 return Val.MachineCPVal->getType(); 10705 return Val.ConstVal->getType(); 10706 } 10707 10708 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10709 unsigned &SplatBitSize, 10710 bool &HasAnyUndefs, 10711 unsigned MinSplatBits, 10712 bool IsBigEndian) const { 10713 EVT VT = getValueType(0); 10714 assert(VT.isVector() && "Expected a vector type"); 10715 unsigned VecWidth = VT.getSizeInBits(); 10716 if (MinSplatBits > VecWidth) 10717 return false; 10718 10719 // FIXME: The widths are based on this node's type, but build vectors can 10720 // truncate their operands. 10721 SplatValue = APInt(VecWidth, 0); 10722 SplatUndef = APInt(VecWidth, 0); 10723 10724 // Get the bits. Bits with undefined values (when the corresponding element 10725 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10726 // in SplatValue. If any of the values are not constant, give up and return 10727 // false. 10728 unsigned int NumOps = getNumOperands(); 10729 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10730 unsigned EltWidth = VT.getScalarSizeInBits(); 10731 10732 for (unsigned j = 0; j < NumOps; ++j) { 10733 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10734 SDValue OpVal = getOperand(i); 10735 unsigned BitPos = j * EltWidth; 10736 10737 if (OpVal.isUndef()) 10738 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10739 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10740 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10741 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10742 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10743 else 10744 return false; 10745 } 10746 10747 // The build_vector is all constants or undefs. Find the smallest element 10748 // size that splats the vector. 10749 HasAnyUndefs = (SplatUndef != 0); 10750 10751 // FIXME: This does not work for vectors with elements less than 8 bits. 10752 while (VecWidth > 8) { 10753 unsigned HalfSize = VecWidth / 2; 10754 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10755 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10756 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10757 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10758 10759 // If the two halves do not match (ignoring undef bits), stop here. 10760 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10761 MinSplatBits > HalfSize) 10762 break; 10763 10764 SplatValue = HighValue | LowValue; 10765 SplatUndef = HighUndef & LowUndef; 10766 10767 VecWidth = HalfSize; 10768 } 10769 10770 SplatBitSize = VecWidth; 10771 return true; 10772 } 10773 10774 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10775 BitVector *UndefElements) const { 10776 unsigned NumOps = getNumOperands(); 10777 if (UndefElements) { 10778 UndefElements->clear(); 10779 UndefElements->resize(NumOps); 10780 } 10781 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10782 if (!DemandedElts) 10783 return SDValue(); 10784 SDValue Splatted; 10785 for (unsigned i = 0; i != NumOps; ++i) { 10786 if (!DemandedElts[i]) 10787 continue; 10788 SDValue Op = getOperand(i); 10789 if (Op.isUndef()) { 10790 if (UndefElements) 10791 (*UndefElements)[i] = true; 10792 } else if (!Splatted) { 10793 Splatted = Op; 10794 } else if (Splatted != Op) { 10795 return SDValue(); 10796 } 10797 } 10798 10799 if (!Splatted) { 10800 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10801 assert(getOperand(FirstDemandedIdx).isUndef() && 10802 "Can only have a splat without a constant for all undefs."); 10803 return getOperand(FirstDemandedIdx); 10804 } 10805 10806 return Splatted; 10807 } 10808 10809 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10810 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10811 return getSplatValue(DemandedElts, UndefElements); 10812 } 10813 10814 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10815 SmallVectorImpl<SDValue> &Sequence, 10816 BitVector *UndefElements) const { 10817 unsigned NumOps = getNumOperands(); 10818 Sequence.clear(); 10819 if (UndefElements) { 10820 UndefElements->clear(); 10821 UndefElements->resize(NumOps); 10822 } 10823 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10824 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10825 return false; 10826 10827 // Set the undefs even if we don't find a sequence (like getSplatValue). 10828 if (UndefElements) 10829 for (unsigned I = 0; I != NumOps; ++I) 10830 if (DemandedElts[I] && getOperand(I).isUndef()) 10831 (*UndefElements)[I] = true; 10832 10833 // Iteratively widen the sequence length looking for repetitions. 10834 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10835 Sequence.append(SeqLen, SDValue()); 10836 for (unsigned I = 0; I != NumOps; ++I) { 10837 if (!DemandedElts[I]) 10838 continue; 10839 SDValue &SeqOp = Sequence[I % SeqLen]; 10840 SDValue Op = getOperand(I); 10841 if (Op.isUndef()) { 10842 if (!SeqOp) 10843 SeqOp = Op; 10844 continue; 10845 } 10846 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10847 Sequence.clear(); 10848 break; 10849 } 10850 SeqOp = Op; 10851 } 10852 if (!Sequence.empty()) 10853 return true; 10854 } 10855 10856 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10857 return false; 10858 } 10859 10860 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10861 BitVector *UndefElements) const { 10862 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10863 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10864 } 10865 10866 ConstantSDNode * 10867 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10868 BitVector *UndefElements) const { 10869 return dyn_cast_or_null<ConstantSDNode>( 10870 getSplatValue(DemandedElts, UndefElements)); 10871 } 10872 10873 ConstantSDNode * 10874 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10875 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10876 } 10877 10878 ConstantFPSDNode * 10879 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10880 BitVector *UndefElements) const { 10881 return dyn_cast_or_null<ConstantFPSDNode>( 10882 getSplatValue(DemandedElts, UndefElements)); 10883 } 10884 10885 ConstantFPSDNode * 10886 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10887 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10888 } 10889 10890 int32_t 10891 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10892 uint32_t BitWidth) const { 10893 if (ConstantFPSDNode *CN = 10894 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10895 bool IsExact; 10896 APSInt IntVal(BitWidth); 10897 const APFloat &APF = CN->getValueAPF(); 10898 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10899 APFloat::opOK || 10900 !IsExact) 10901 return -1; 10902 10903 return IntVal.exactLogBase2(); 10904 } 10905 return -1; 10906 } 10907 10908 bool BuildVectorSDNode::isConstant() const { 10909 for (const SDValue &Op : op_values()) { 10910 unsigned Opc = Op.getOpcode(); 10911 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10912 return false; 10913 } 10914 return true; 10915 } 10916 10917 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10918 // Find the first non-undef value in the shuffle mask. 10919 unsigned i, e; 10920 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10921 /* search */; 10922 10923 // If all elements are undefined, this shuffle can be considered a splat 10924 // (although it should eventually get simplified away completely). 10925 if (i == e) 10926 return true; 10927 10928 // Make sure all remaining elements are either undef or the same as the first 10929 // non-undef value. 10930 for (int Idx = Mask[i]; i != e; ++i) 10931 if (Mask[i] >= 0 && Mask[i] != Idx) 10932 return false; 10933 return true; 10934 } 10935 10936 // Returns the SDNode if it is a constant integer BuildVector 10937 // or constant integer. 10938 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10939 if (isa<ConstantSDNode>(N)) 10940 return N.getNode(); 10941 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10942 return N.getNode(); 10943 // Treat a GlobalAddress supporting constant offset folding as a 10944 // constant integer. 10945 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10946 if (GA->getOpcode() == ISD::GlobalAddress && 10947 TLI->isOffsetFoldingLegal(GA)) 10948 return GA; 10949 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10950 isa<ConstantSDNode>(N.getOperand(0))) 10951 return N.getNode(); 10952 return nullptr; 10953 } 10954 10955 // Returns the SDNode if it is a constant float BuildVector 10956 // or constant float. 10957 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10958 if (isa<ConstantFPSDNode>(N)) 10959 return N.getNode(); 10960 10961 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10962 return N.getNode(); 10963 10964 return nullptr; 10965 } 10966 10967 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10968 assert(!Node->OperandList && "Node already has operands"); 10969 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10970 "too many operands to fit into SDNode"); 10971 SDUse *Ops = OperandRecycler.allocate( 10972 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10973 10974 bool IsDivergent = false; 10975 for (unsigned I = 0; I != Vals.size(); ++I) { 10976 Ops[I].setUser(Node); 10977 Ops[I].setInitial(Vals[I]); 10978 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10979 IsDivergent |= Ops[I].getNode()->isDivergent(); 10980 } 10981 Node->NumOperands = Vals.size(); 10982 Node->OperandList = Ops; 10983 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10984 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10985 Node->SDNodeBits.IsDivergent = IsDivergent; 10986 } 10987 checkForCycles(Node); 10988 } 10989 10990 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10991 SmallVectorImpl<SDValue> &Vals) { 10992 size_t Limit = SDNode::getMaxNumOperands(); 10993 while (Vals.size() > Limit) { 10994 unsigned SliceIdx = Vals.size() - Limit; 10995 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10996 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10997 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10998 Vals.emplace_back(NewTF); 10999 } 11000 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11001 } 11002 11003 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11004 EVT VT, SDNodeFlags Flags) { 11005 switch (Opcode) { 11006 default: 11007 return SDValue(); 11008 case ISD::ADD: 11009 case ISD::OR: 11010 case ISD::XOR: 11011 case ISD::UMAX: 11012 return getConstant(0, DL, VT); 11013 case ISD::MUL: 11014 return getConstant(1, DL, VT); 11015 case ISD::AND: 11016 case ISD::UMIN: 11017 return getAllOnesConstant(DL, VT); 11018 case ISD::SMAX: 11019 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11020 case ISD::SMIN: 11021 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11022 case ISD::FADD: 11023 return getConstantFP(-0.0, DL, VT); 11024 case ISD::FMUL: 11025 return getConstantFP(1.0, DL, VT); 11026 case ISD::FMINNUM: 11027 case ISD::FMAXNUM: { 11028 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11029 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11030 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11031 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11032 APFloat::getLargest(Semantics); 11033 if (Opcode == ISD::FMAXNUM) 11034 NeutralAF.changeSign(); 11035 11036 return getConstantFP(NeutralAF, DL, VT); 11037 } 11038 } 11039 } 11040 11041 #ifndef NDEBUG 11042 static void checkForCyclesHelper(const SDNode *N, 11043 SmallPtrSetImpl<const SDNode*> &Visited, 11044 SmallPtrSetImpl<const SDNode*> &Checked, 11045 const llvm::SelectionDAG *DAG) { 11046 // If this node has already been checked, don't check it again. 11047 if (Checked.count(N)) 11048 return; 11049 11050 // If a node has already been visited on this depth-first walk, reject it as 11051 // a cycle. 11052 if (!Visited.insert(N).second) { 11053 errs() << "Detected cycle in SelectionDAG\n"; 11054 dbgs() << "Offending node:\n"; 11055 N->dumprFull(DAG); dbgs() << "\n"; 11056 abort(); 11057 } 11058 11059 for (const SDValue &Op : N->op_values()) 11060 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11061 11062 Checked.insert(N); 11063 Visited.erase(N); 11064 } 11065 #endif 11066 11067 void llvm::checkForCycles(const llvm::SDNode *N, 11068 const llvm::SelectionDAG *DAG, 11069 bool force) { 11070 #ifndef NDEBUG 11071 bool check = force; 11072 #ifdef EXPENSIVE_CHECKS 11073 check = true; 11074 #endif // EXPENSIVE_CHECKS 11075 if (check) { 11076 assert(N && "Checking nonexistent SDNode"); 11077 SmallPtrSet<const SDNode*, 32> visited; 11078 SmallPtrSet<const SDNode*, 32> checked; 11079 checkForCyclesHelper(N, visited, checked, DAG); 11080 } 11081 #endif // !NDEBUG 11082 } 11083 11084 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11085 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11086 } 11087