1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 auto *BV = dyn_cast<BuildVectorSDNode>(N); 143 if (!BV) 144 return false; 145 146 APInt SplatUndef; 147 unsigned SplatBitSize; 148 bool HasUndefs; 149 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 150 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 151 EltSize) && 152 EltSize == SplatBitSize; 153 } 154 155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 156 // specializations of the more general isConstantSplatVector()? 157 158 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 159 // Look through a bit convert. 160 while (N->getOpcode() == ISD::BITCAST) 161 N = N->getOperand(0).getNode(); 162 163 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 164 165 unsigned i = 0, e = N->getNumOperands(); 166 167 // Skip over all of the undef values. 168 while (i != e && N->getOperand(i).isUndef()) 169 ++i; 170 171 // Do not accept an all-undef vector. 172 if (i == e) return false; 173 174 // Do not accept build_vectors that aren't all constants or which have non-~0 175 // elements. We have to be a bit careful here, as the type of the constant 176 // may not be the same as the type of the vector elements due to type 177 // legalization (the elements are promoted to a legal type for the target and 178 // a vector of a type may be legal when the base element type is not). 179 // We only want to check enough bits to cover the vector elements, because 180 // we care if the resultant vector is all ones, not whether the individual 181 // constants are. 182 SDValue NotZero = N->getOperand(i); 183 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 184 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 185 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 186 return false; 187 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 188 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 189 return false; 190 } else 191 return false; 192 193 // Okay, we have at least one ~0 value, check to see if the rest match or are 194 // undefs. Even with the above element type twiddling, this should be OK, as 195 // the same type legalization should have applied to all the elements. 196 for (++i; i != e; ++i) 197 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 198 return false; 199 return true; 200 } 201 202 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 203 // Look through a bit convert. 204 while (N->getOpcode() == ISD::BITCAST) 205 N = N->getOperand(0).getNode(); 206 207 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 208 209 bool IsAllUndef = true; 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 IsAllUndef = false; 214 // Do not accept build_vectors that aren't all constants or which have non-0 215 // elements. We have to be a bit careful here, as the type of the constant 216 // may not be the same as the type of the vector elements due to type 217 // legalization (the elements are promoted to a legal type for the target 218 // and a vector of a type may be legal when the base element type is not). 219 // We only want to check enough bits to cover the vector elements, because 220 // we care if the resultant vector is all zeros, not whether the individual 221 // constants are. 222 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 223 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 224 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 225 return false; 226 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 227 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 228 return false; 229 } else 230 return false; 231 } 232 233 // Do not accept an all-undef vector. 234 if (IsAllUndef) 235 return false; 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 253 if (N->getOpcode() != ISD::BUILD_VECTOR) 254 return false; 255 256 for (const SDValue &Op : N->op_values()) { 257 if (Op.isUndef()) 258 continue; 259 if (!isa<ConstantFPSDNode>(Op)) 260 return false; 261 } 262 return true; 263 } 264 265 bool ISD::allOperandsUndef(const SDNode *N) { 266 // Return false if the node has no operands. 267 // This is "logically inconsistent" with the definition of "all" but 268 // is probably the desired behavior. 269 if (N->getNumOperands() == 0) 270 return false; 271 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 272 } 273 274 bool ISD::matchUnaryPredicate(SDValue Op, 275 std::function<bool(ConstantSDNode *)> Match, 276 bool AllowUndefs) { 277 // FIXME: Add support for scalar UNDEF cases? 278 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 279 return Match(Cst); 280 281 // FIXME: Add support for vector UNDEF cases? 282 if (ISD::BUILD_VECTOR != Op.getOpcode()) 283 return false; 284 285 EVT SVT = Op.getValueType().getScalarType(); 286 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 287 if (AllowUndefs && Op.getOperand(i).isUndef()) { 288 if (!Match(nullptr)) 289 return false; 290 continue; 291 } 292 293 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 294 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 295 return false; 296 } 297 return true; 298 } 299 300 bool ISD::matchBinaryPredicate( 301 SDValue LHS, SDValue RHS, 302 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 303 bool AllowUndefs, bool AllowTypeMismatch) { 304 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 305 return false; 306 307 // TODO: Add support for scalar UNDEF cases? 308 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 309 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 310 return Match(LHSCst, RHSCst); 311 312 // TODO: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 314 ISD::BUILD_VECTOR != RHS.getOpcode()) 315 return false; 316 317 EVT SVT = LHS.getValueType().getScalarType(); 318 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 319 SDValue LHSOp = LHS.getOperand(i); 320 SDValue RHSOp = RHS.getOperand(i); 321 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 322 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 323 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 324 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 325 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 326 return false; 327 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 328 LHSOp.getValueType() != RHSOp.getValueType())) 329 return false; 330 if (!Match(LHSCst, RHSCst)) 331 return false; 332 } 333 return true; 334 } 335 336 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 337 switch (ExtType) { 338 case ISD::EXTLOAD: 339 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 340 case ISD::SEXTLOAD: 341 return ISD::SIGN_EXTEND; 342 case ISD::ZEXTLOAD: 343 return ISD::ZERO_EXTEND; 344 default: 345 break; 346 } 347 348 llvm_unreachable("Invalid LoadExtType"); 349 } 350 351 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 352 // To perform this operation, we just need to swap the L and G bits of the 353 // operation. 354 unsigned OldL = (Operation >> 2) & 1; 355 unsigned OldG = (Operation >> 1) & 1; 356 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 357 (OldL << 1) | // New G bit 358 (OldG << 2)); // New L bit. 359 } 360 361 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 362 unsigned Operation = Op; 363 if (isIntegerLike) 364 Operation ^= 7; // Flip L, G, E bits, but not U. 365 else 366 Operation ^= 15; // Flip all of the condition bits. 367 368 if (Operation > ISD::SETTRUE2) 369 Operation &= ~8; // Don't let N and U bits get set. 370 371 return ISD::CondCode(Operation); 372 } 373 374 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 375 return getSetCCInverseImpl(Op, Type.isInteger()); 376 } 377 378 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 379 bool isIntegerLike) { 380 return getSetCCInverseImpl(Op, isIntegerLike); 381 } 382 383 /// For an integer comparison, return 1 if the comparison is a signed operation 384 /// and 2 if the result is an unsigned comparison. Return zero if the operation 385 /// does not depend on the sign of the input (setne and seteq). 386 static int isSignedOp(ISD::CondCode Opcode) { 387 switch (Opcode) { 388 default: llvm_unreachable("Illegal integer setcc operation!"); 389 case ISD::SETEQ: 390 case ISD::SETNE: return 0; 391 case ISD::SETLT: 392 case ISD::SETLE: 393 case ISD::SETGT: 394 case ISD::SETGE: return 1; 395 case ISD::SETULT: 396 case ISD::SETULE: 397 case ISD::SETUGT: 398 case ISD::SETUGE: return 2; 399 } 400 } 401 402 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 403 EVT Type) { 404 bool IsInteger = Type.isInteger(); 405 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 406 // Cannot fold a signed integer setcc with an unsigned integer setcc. 407 return ISD::SETCC_INVALID; 408 409 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 410 411 // If the N and U bits get set, then the resultant comparison DOES suddenly 412 // care about orderedness, and it is true when ordered. 413 if (Op > ISD::SETTRUE2) 414 Op &= ~16; // Clear the U bit if the N bit is set. 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 418 Op = ISD::SETNE; 419 420 return ISD::CondCode(Op); 421 } 422 423 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 424 EVT Type) { 425 bool IsInteger = Type.isInteger(); 426 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 427 // Cannot fold a signed setcc with an unsigned setcc. 428 return ISD::SETCC_INVALID; 429 430 // Combine all of the condition bits. 431 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 432 433 // Canonicalize illegal integer setcc's. 434 if (IsInteger) { 435 switch (Result) { 436 default: break; 437 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 438 case ISD::SETOEQ: // SETEQ & SETU[LG]E 439 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 440 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 441 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 442 } 443 } 444 445 return Result; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SDNode Profile Support 450 //===----------------------------------------------------------------------===// 451 452 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 453 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 454 ID.AddInteger(OpC); 455 } 456 457 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 458 /// solely with their pointer. 459 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 460 ID.AddPointer(VTList.VTs); 461 } 462 463 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 464 static void AddNodeIDOperands(FoldingSetNodeID &ID, 465 ArrayRef<SDValue> Ops) { 466 for (auto& Op : Ops) { 467 ID.AddPointer(Op.getNode()); 468 ID.AddInteger(Op.getResNo()); 469 } 470 } 471 472 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 473 static void AddNodeIDOperands(FoldingSetNodeID &ID, 474 ArrayRef<SDUse> Ops) { 475 for (auto& Op : Ops) { 476 ID.AddPointer(Op.getNode()); 477 ID.AddInteger(Op.getResNo()); 478 } 479 } 480 481 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 482 SDVTList VTList, ArrayRef<SDValue> OpList) { 483 AddNodeIDOpcode(ID, OpC); 484 AddNodeIDValueTypes(ID, VTList); 485 AddNodeIDOperands(ID, OpList); 486 } 487 488 /// If this is an SDNode with special info, add this info to the NodeID data. 489 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 490 switch (N->getOpcode()) { 491 case ISD::TargetExternalSymbol: 492 case ISD::ExternalSymbol: 493 case ISD::MCSymbol: 494 llvm_unreachable("Should only be used on nodes with operands"); 495 default: break; // Normal nodes don't need extra info. 496 case ISD::TargetConstant: 497 case ISD::Constant: { 498 const ConstantSDNode *C = cast<ConstantSDNode>(N); 499 ID.AddPointer(C->getConstantIntValue()); 500 ID.AddBoolean(C->isOpaque()); 501 break; 502 } 503 case ISD::TargetConstantFP: 504 case ISD::ConstantFP: 505 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 506 break; 507 case ISD::TargetGlobalAddress: 508 case ISD::GlobalAddress: 509 case ISD::TargetGlobalTLSAddress: 510 case ISD::GlobalTLSAddress: { 511 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 512 ID.AddPointer(GA->getGlobal()); 513 ID.AddInteger(GA->getOffset()); 514 ID.AddInteger(GA->getTargetFlags()); 515 break; 516 } 517 case ISD::BasicBlock: 518 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 519 break; 520 case ISD::Register: 521 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 522 break; 523 case ISD::RegisterMask: 524 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 525 break; 526 case ISD::SRCVALUE: 527 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 528 break; 529 case ISD::FrameIndex: 530 case ISD::TargetFrameIndex: 531 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 532 break; 533 case ISD::LIFETIME_START: 534 case ISD::LIFETIME_END: 535 if (cast<LifetimeSDNode>(N)->hasOffset()) { 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 537 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 538 } 539 break; 540 case ISD::JumpTable: 541 case ISD::TargetJumpTable: 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 543 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 544 break; 545 case ISD::ConstantPool: 546 case ISD::TargetConstantPool: { 547 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 548 ID.AddInteger(CP->getAlign().value()); 549 ID.AddInteger(CP->getOffset()); 550 if (CP->isMachineConstantPoolEntry()) 551 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 552 else 553 ID.AddPointer(CP->getConstVal()); 554 ID.AddInteger(CP->getTargetFlags()); 555 break; 556 } 557 case ISD::TargetIndex: { 558 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 559 ID.AddInteger(TI->getIndex()); 560 ID.AddInteger(TI->getOffset()); 561 ID.AddInteger(TI->getTargetFlags()); 562 break; 563 } 564 case ISD::LOAD: { 565 const LoadSDNode *LD = cast<LoadSDNode>(N); 566 ID.AddInteger(LD->getMemoryVT().getRawBits()); 567 ID.AddInteger(LD->getRawSubclassData()); 568 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 569 break; 570 } 571 case ISD::STORE: { 572 const StoreSDNode *ST = cast<StoreSDNode>(N); 573 ID.AddInteger(ST->getMemoryVT().getRawBits()); 574 ID.AddInteger(ST->getRawSubclassData()); 575 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 576 break; 577 } 578 case ISD::MLOAD: { 579 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 580 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 581 ID.AddInteger(MLD->getRawSubclassData()); 582 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 583 break; 584 } 585 case ISD::MSTORE: { 586 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 587 ID.AddInteger(MST->getMemoryVT().getRawBits()); 588 ID.AddInteger(MST->getRawSubclassData()); 589 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 590 break; 591 } 592 case ISD::MGATHER: { 593 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 594 ID.AddInteger(MG->getMemoryVT().getRawBits()); 595 ID.AddInteger(MG->getRawSubclassData()); 596 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 597 break; 598 } 599 case ISD::MSCATTER: { 600 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 601 ID.AddInteger(MS->getMemoryVT().getRawBits()); 602 ID.AddInteger(MS->getRawSubclassData()); 603 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 604 break; 605 } 606 case ISD::ATOMIC_CMP_SWAP: 607 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 608 case ISD::ATOMIC_SWAP: 609 case ISD::ATOMIC_LOAD_ADD: 610 case ISD::ATOMIC_LOAD_SUB: 611 case ISD::ATOMIC_LOAD_AND: 612 case ISD::ATOMIC_LOAD_CLR: 613 case ISD::ATOMIC_LOAD_OR: 614 case ISD::ATOMIC_LOAD_XOR: 615 case ISD::ATOMIC_LOAD_NAND: 616 case ISD::ATOMIC_LOAD_MIN: 617 case ISD::ATOMIC_LOAD_MAX: 618 case ISD::ATOMIC_LOAD_UMIN: 619 case ISD::ATOMIC_LOAD_UMAX: 620 case ISD::ATOMIC_LOAD: 621 case ISD::ATOMIC_STORE: { 622 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 623 ID.AddInteger(AT->getMemoryVT().getRawBits()); 624 ID.AddInteger(AT->getRawSubclassData()); 625 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 626 break; 627 } 628 case ISD::PREFETCH: { 629 const MemSDNode *PF = cast<MemSDNode>(N); 630 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 631 break; 632 } 633 case ISD::VECTOR_SHUFFLE: { 634 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 635 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 636 i != e; ++i) 637 ID.AddInteger(SVN->getMaskElt(i)); 638 break; 639 } 640 case ISD::TargetBlockAddress: 641 case ISD::BlockAddress: { 642 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 643 ID.AddPointer(BA->getBlockAddress()); 644 ID.AddInteger(BA->getOffset()); 645 ID.AddInteger(BA->getTargetFlags()); 646 break; 647 } 648 } // end switch (N->getOpcode()) 649 650 // Target specific memory nodes could also have address spaces to check. 651 if (N->isTargetMemoryOpcode()) 652 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 653 } 654 655 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 656 /// data. 657 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 658 AddNodeIDOpcode(ID, N->getOpcode()); 659 // Add the return value info. 660 AddNodeIDValueTypes(ID, N->getVTList()); 661 // Add the operand info. 662 AddNodeIDOperands(ID, N->ops()); 663 664 // Handle SDNode leafs with special info. 665 AddNodeIDCustom(ID, N); 666 } 667 668 //===----------------------------------------------------------------------===// 669 // SelectionDAG Class 670 //===----------------------------------------------------------------------===// 671 672 /// doNotCSE - Return true if CSE should not be performed for this node. 673 static bool doNotCSE(SDNode *N) { 674 if (N->getValueType(0) == MVT::Glue) 675 return true; // Never CSE anything that produces a flag. 676 677 switch (N->getOpcode()) { 678 default: break; 679 case ISD::HANDLENODE: 680 case ISD::EH_LABEL: 681 return true; // Never CSE these nodes. 682 } 683 684 // Check that remaining values produced are not flags. 685 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 686 if (N->getValueType(i) == MVT::Glue) 687 return true; // Never CSE anything that produces a flag. 688 689 return false; 690 } 691 692 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 693 /// SelectionDAG. 694 void SelectionDAG::RemoveDeadNodes() { 695 // Create a dummy node (which is not added to allnodes), that adds a reference 696 // to the root node, preventing it from being deleted. 697 HandleSDNode Dummy(getRoot()); 698 699 SmallVector<SDNode*, 128> DeadNodes; 700 701 // Add all obviously-dead nodes to the DeadNodes worklist. 702 for (SDNode &Node : allnodes()) 703 if (Node.use_empty()) 704 DeadNodes.push_back(&Node); 705 706 RemoveDeadNodes(DeadNodes); 707 708 // If the root changed (e.g. it was a dead load, update the root). 709 setRoot(Dummy.getValue()); 710 } 711 712 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 713 /// given list, and any nodes that become unreachable as a result. 714 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 715 716 // Process the worklist, deleting the nodes and adding their uses to the 717 // worklist. 718 while (!DeadNodes.empty()) { 719 SDNode *N = DeadNodes.pop_back_val(); 720 // Skip to next node if we've already managed to delete the node. This could 721 // happen if replacing a node causes a node previously added to the node to 722 // be deleted. 723 if (N->getOpcode() == ISD::DELETED_NODE) 724 continue; 725 726 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 727 DUL->NodeDeleted(N, nullptr); 728 729 // Take the node out of the appropriate CSE map. 730 RemoveNodeFromCSEMaps(N); 731 732 // Next, brutally remove the operand list. This is safe to do, as there are 733 // no cycles in the graph. 734 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 735 SDUse &Use = *I++; 736 SDNode *Operand = Use.getNode(); 737 Use.set(SDValue()); 738 739 // Now that we removed this operand, see if there are no uses of it left. 740 if (Operand->use_empty()) 741 DeadNodes.push_back(Operand); 742 } 743 744 DeallocateNode(N); 745 } 746 } 747 748 void SelectionDAG::RemoveDeadNode(SDNode *N){ 749 SmallVector<SDNode*, 16> DeadNodes(1, N); 750 751 // Create a dummy node that adds a reference to the root node, preventing 752 // it from being deleted. (This matters if the root is an operand of the 753 // dead node.) 754 HandleSDNode Dummy(getRoot()); 755 756 RemoveDeadNodes(DeadNodes); 757 } 758 759 void SelectionDAG::DeleteNode(SDNode *N) { 760 // First take this out of the appropriate CSE map. 761 RemoveNodeFromCSEMaps(N); 762 763 // Finally, remove uses due to operands of this node, remove from the 764 // AllNodes list, and delete the node. 765 DeleteNodeNotInCSEMaps(N); 766 } 767 768 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 769 assert(N->getIterator() != AllNodes.begin() && 770 "Cannot delete the entry node!"); 771 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 772 773 // Drop all of the operands and decrement used node's use counts. 774 N->DropOperands(); 775 776 DeallocateNode(N); 777 } 778 779 void SDDbgInfo::erase(const SDNode *Node) { 780 DbgValMapType::iterator I = DbgValMap.find(Node); 781 if (I == DbgValMap.end()) 782 return; 783 for (auto &Val: I->second) 784 Val->setIsInvalidated(); 785 DbgValMap.erase(I); 786 } 787 788 void SelectionDAG::DeallocateNode(SDNode *N) { 789 // If we have operands, deallocate them. 790 removeOperands(N); 791 792 NodeAllocator.Deallocate(AllNodes.remove(N)); 793 794 // Set the opcode to DELETED_NODE to help catch bugs when node 795 // memory is reallocated. 796 // FIXME: There are places in SDag that have grown a dependency on the opcode 797 // value in the released node. 798 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 799 N->NodeType = ISD::DELETED_NODE; 800 801 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 802 // them and forget about that node. 803 DbgInfo->erase(N); 804 } 805 806 #ifndef NDEBUG 807 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 808 static void VerifySDNode(SDNode *N) { 809 switch (N->getOpcode()) { 810 default: 811 break; 812 case ISD::BUILD_PAIR: { 813 EVT VT = N->getValueType(0); 814 assert(N->getNumValues() == 1 && "Too many results!"); 815 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 816 "Wrong return type!"); 817 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 818 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 819 "Mismatched operand types!"); 820 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 821 "Wrong operand type!"); 822 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 823 "Wrong return type size"); 824 break; 825 } 826 case ISD::BUILD_VECTOR: { 827 assert(N->getNumValues() == 1 && "Too many results!"); 828 assert(N->getValueType(0).isVector() && "Wrong return type!"); 829 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 830 "Wrong number of operands!"); 831 EVT EltVT = N->getValueType(0).getVectorElementType(); 832 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 833 assert((I->getValueType() == EltVT || 834 (EltVT.isInteger() && I->getValueType().isInteger() && 835 EltVT.bitsLE(I->getValueType()))) && 836 "Wrong operand type!"); 837 assert(I->getValueType() == N->getOperand(0).getValueType() && 838 "Operands must all have the same type"); 839 } 840 break; 841 } 842 } 843 } 844 #endif // NDEBUG 845 846 /// Insert a newly allocated node into the DAG. 847 /// 848 /// Handles insertion into the all nodes list and CSE map, as well as 849 /// verification and other common operations when a new node is allocated. 850 void SelectionDAG::InsertNode(SDNode *N) { 851 AllNodes.push_back(N); 852 #ifndef NDEBUG 853 N->PersistentId = NextPersistentId++; 854 VerifySDNode(N); 855 #endif 856 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 857 DUL->NodeInserted(N); 858 } 859 860 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 861 /// correspond to it. This is useful when we're about to delete or repurpose 862 /// the node. We don't want future request for structurally identical nodes 863 /// to return N anymore. 864 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 865 bool Erased = false; 866 switch (N->getOpcode()) { 867 case ISD::HANDLENODE: return false; // noop. 868 case ISD::CONDCODE: 869 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 870 "Cond code doesn't exist!"); 871 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 872 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 873 break; 874 case ISD::ExternalSymbol: 875 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 876 break; 877 case ISD::TargetExternalSymbol: { 878 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 879 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 880 ESN->getSymbol(), ESN->getTargetFlags())); 881 break; 882 } 883 case ISD::MCSymbol: { 884 auto *MCSN = cast<MCSymbolSDNode>(N); 885 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 886 break; 887 } 888 case ISD::VALUETYPE: { 889 EVT VT = cast<VTSDNode>(N)->getVT(); 890 if (VT.isExtended()) { 891 Erased = ExtendedValueTypeNodes.erase(VT); 892 } else { 893 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 894 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 895 } 896 break; 897 } 898 default: 899 // Remove it from the CSE Map. 900 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 901 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 902 Erased = CSEMap.RemoveNode(N); 903 break; 904 } 905 #ifndef NDEBUG 906 // Verify that the node was actually in one of the CSE maps, unless it has a 907 // flag result (which cannot be CSE'd) or is one of the special cases that are 908 // not subject to CSE. 909 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 910 !N->isMachineOpcode() && !doNotCSE(N)) { 911 N->dump(this); 912 dbgs() << "\n"; 913 llvm_unreachable("Node is not in map!"); 914 } 915 #endif 916 return Erased; 917 } 918 919 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 920 /// maps and modified in place. Add it back to the CSE maps, unless an identical 921 /// node already exists, in which case transfer all its users to the existing 922 /// node. This transfer can potentially trigger recursive merging. 923 void 924 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 925 // For node types that aren't CSE'd, just act as if no identical node 926 // already exists. 927 if (!doNotCSE(N)) { 928 SDNode *Existing = CSEMap.GetOrInsertNode(N); 929 if (Existing != N) { 930 // If there was already an existing matching node, use ReplaceAllUsesWith 931 // to replace the dead one with the existing one. This can cause 932 // recursive merging of other unrelated nodes down the line. 933 ReplaceAllUsesWith(N, Existing); 934 935 // N is now dead. Inform the listeners and delete it. 936 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 937 DUL->NodeDeleted(N, Existing); 938 DeleteNodeNotInCSEMaps(N); 939 return; 940 } 941 } 942 943 // If the node doesn't already exist, we updated it. Inform listeners. 944 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 945 DUL->NodeUpdated(N); 946 } 947 948 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 949 /// were replaced with those specified. If this node is never memoized, 950 /// return null, otherwise return a pointer to the slot it would take. If a 951 /// node already exists with these operands, the slot will be non-null. 952 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 953 void *&InsertPos) { 954 if (doNotCSE(N)) 955 return nullptr; 956 957 SDValue Ops[] = { Op }; 958 FoldingSetNodeID ID; 959 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 960 AddNodeIDCustom(ID, N); 961 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 962 if (Node) 963 Node->intersectFlagsWith(N->getFlags()); 964 return Node; 965 } 966 967 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 968 /// were replaced with those specified. If this node is never memoized, 969 /// return null, otherwise return a pointer to the slot it would take. If a 970 /// node already exists with these operands, the slot will be non-null. 971 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 972 SDValue Op1, SDValue Op2, 973 void *&InsertPos) { 974 if (doNotCSE(N)) 975 return nullptr; 976 977 SDValue Ops[] = { Op1, Op2 }; 978 FoldingSetNodeID ID; 979 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 980 AddNodeIDCustom(ID, N); 981 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 982 if (Node) 983 Node->intersectFlagsWith(N->getFlags()); 984 return Node; 985 } 986 987 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 988 /// were replaced with those specified. If this node is never memoized, 989 /// return null, otherwise return a pointer to the slot it would take. If a 990 /// node already exists with these operands, the slot will be non-null. 991 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 992 void *&InsertPos) { 993 if (doNotCSE(N)) 994 return nullptr; 995 996 FoldingSetNodeID ID; 997 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 998 AddNodeIDCustom(ID, N); 999 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1000 if (Node) 1001 Node->intersectFlagsWith(N->getFlags()); 1002 return Node; 1003 } 1004 1005 Align SelectionDAG::getEVTAlign(EVT VT) const { 1006 Type *Ty = VT == MVT::iPTR ? 1007 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1008 VT.getTypeForEVT(*getContext()); 1009 1010 return getDataLayout().getABITypeAlign(Ty); 1011 } 1012 1013 // EntryNode could meaningfully have debug info if we can find it... 1014 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1015 : TM(tm), OptLevel(OL), 1016 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1017 Root(getEntryNode()) { 1018 InsertNode(&EntryNode); 1019 DbgInfo = new SDDbgInfo(); 1020 } 1021 1022 void SelectionDAG::init(MachineFunction &NewMF, 1023 OptimizationRemarkEmitter &NewORE, 1024 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1025 LegacyDivergenceAnalysis * Divergence, 1026 ProfileSummaryInfo *PSIin, 1027 BlockFrequencyInfo *BFIin) { 1028 MF = &NewMF; 1029 SDAGISelPass = PassPtr; 1030 ORE = &NewORE; 1031 TLI = getSubtarget().getTargetLowering(); 1032 TSI = getSubtarget().getSelectionDAGInfo(); 1033 LibInfo = LibraryInfo; 1034 Context = &MF->getFunction().getContext(); 1035 DA = Divergence; 1036 PSI = PSIin; 1037 BFI = BFIin; 1038 } 1039 1040 SelectionDAG::~SelectionDAG() { 1041 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1042 allnodes_clear(); 1043 OperandRecycler.clear(OperandAllocator); 1044 delete DbgInfo; 1045 } 1046 1047 bool SelectionDAG::shouldOptForSize() const { 1048 return MF->getFunction().hasOptSize() || 1049 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1050 } 1051 1052 void SelectionDAG::allnodes_clear() { 1053 assert(&*AllNodes.begin() == &EntryNode); 1054 AllNodes.remove(AllNodes.begin()); 1055 while (!AllNodes.empty()) 1056 DeallocateNode(&AllNodes.front()); 1057 #ifndef NDEBUG 1058 NextPersistentId = 0; 1059 #endif 1060 } 1061 1062 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1063 void *&InsertPos) { 1064 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1065 if (N) { 1066 switch (N->getOpcode()) { 1067 default: break; 1068 case ISD::Constant: 1069 case ISD::ConstantFP: 1070 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1071 "debug location. Use another overload."); 1072 } 1073 } 1074 return N; 1075 } 1076 1077 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1078 const SDLoc &DL, void *&InsertPos) { 1079 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1080 if (N) { 1081 switch (N->getOpcode()) { 1082 case ISD::Constant: 1083 case ISD::ConstantFP: 1084 // Erase debug location from the node if the node is used at several 1085 // different places. Do not propagate one location to all uses as it 1086 // will cause a worse single stepping debugging experience. 1087 if (N->getDebugLoc() != DL.getDebugLoc()) 1088 N->setDebugLoc(DebugLoc()); 1089 break; 1090 default: 1091 // When the node's point of use is located earlier in the instruction 1092 // sequence than its prior point of use, update its debug info to the 1093 // earlier location. 1094 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1095 N->setDebugLoc(DL.getDebugLoc()); 1096 break; 1097 } 1098 } 1099 return N; 1100 } 1101 1102 void SelectionDAG::clear() { 1103 allnodes_clear(); 1104 OperandRecycler.clear(OperandAllocator); 1105 OperandAllocator.Reset(); 1106 CSEMap.clear(); 1107 1108 ExtendedValueTypeNodes.clear(); 1109 ExternalSymbols.clear(); 1110 TargetExternalSymbols.clear(); 1111 MCSymbols.clear(); 1112 SDCallSiteDbgInfo.clear(); 1113 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1114 static_cast<CondCodeSDNode*>(nullptr)); 1115 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1116 static_cast<SDNode*>(nullptr)); 1117 1118 EntryNode.UseList = nullptr; 1119 InsertNode(&EntryNode); 1120 Root = getEntryNode(); 1121 DbgInfo->clear(); 1122 } 1123 1124 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1125 return VT.bitsGT(Op.getValueType()) 1126 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1127 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1128 } 1129 1130 std::pair<SDValue, SDValue> 1131 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1132 const SDLoc &DL, EVT VT) { 1133 assert(!VT.bitsEq(Op.getValueType()) && 1134 "Strict no-op FP extend/round not allowed."); 1135 SDValue Res = 1136 VT.bitsGT(Op.getValueType()) 1137 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1138 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1139 {Chain, Op, getIntPtrConstant(0, DL)}); 1140 1141 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1142 } 1143 1144 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1145 return VT.bitsGT(Op.getValueType()) ? 1146 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1147 getNode(ISD::TRUNCATE, DL, VT, Op); 1148 } 1149 1150 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1151 return VT.bitsGT(Op.getValueType()) ? 1152 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1153 getNode(ISD::TRUNCATE, DL, VT, Op); 1154 } 1155 1156 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1157 return VT.bitsGT(Op.getValueType()) ? 1158 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1159 getNode(ISD::TRUNCATE, DL, VT, Op); 1160 } 1161 1162 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1163 EVT OpVT) { 1164 if (VT.bitsLE(Op.getValueType())) 1165 return getNode(ISD::TRUNCATE, SL, VT, Op); 1166 1167 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1168 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1169 } 1170 1171 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1172 EVT OpVT = Op.getValueType(); 1173 assert(VT.isInteger() && OpVT.isInteger() && 1174 "Cannot getZeroExtendInReg FP types"); 1175 assert(VT.isVector() == OpVT.isVector() && 1176 "getZeroExtendInReg type should be vector iff the operand " 1177 "type is vector!"); 1178 assert((!VT.isVector() || 1179 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1180 "Vector element counts must match in getZeroExtendInReg"); 1181 assert(VT.bitsLE(OpVT) && "Not extending!"); 1182 if (OpVT == VT) 1183 return Op; 1184 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1185 VT.getScalarSizeInBits()); 1186 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1187 } 1188 1189 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1190 // Only unsigned pointer semantics are supported right now. In the future this 1191 // might delegate to TLI to check pointer signedness. 1192 return getZExtOrTrunc(Op, DL, VT); 1193 } 1194 1195 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1196 // Only unsigned pointer semantics are supported right now. In the future this 1197 // might delegate to TLI to check pointer signedness. 1198 return getZeroExtendInReg(Op, DL, VT); 1199 } 1200 1201 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1202 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1203 EVT EltVT = VT.getScalarType(); 1204 SDValue NegOne = 1205 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1206 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1207 } 1208 1209 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1210 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1211 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1212 } 1213 1214 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1215 EVT OpVT) { 1216 if (!V) 1217 return getConstant(0, DL, VT); 1218 1219 switch (TLI->getBooleanContents(OpVT)) { 1220 case TargetLowering::ZeroOrOneBooleanContent: 1221 case TargetLowering::UndefinedBooleanContent: 1222 return getConstant(1, DL, VT); 1223 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1224 return getAllOnesConstant(DL, VT); 1225 } 1226 llvm_unreachable("Unexpected boolean content enum!"); 1227 } 1228 1229 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1230 bool isT, bool isO) { 1231 EVT EltVT = VT.getScalarType(); 1232 assert((EltVT.getSizeInBits() >= 64 || 1233 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1234 "getConstant with a uint64_t value that doesn't fit in the type!"); 1235 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1236 } 1237 1238 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1239 bool isT, bool isO) { 1240 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1241 } 1242 1243 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1244 EVT VT, bool isT, bool isO) { 1245 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1246 1247 EVT EltVT = VT.getScalarType(); 1248 const ConstantInt *Elt = &Val; 1249 1250 // In some cases the vector type is legal but the element type is illegal and 1251 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1252 // inserted value (the type does not need to match the vector element type). 1253 // Any extra bits introduced will be truncated away. 1254 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1255 TargetLowering::TypePromoteInteger) { 1256 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1257 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1258 Elt = ConstantInt::get(*getContext(), NewVal); 1259 } 1260 // In other cases the element type is illegal and needs to be expanded, for 1261 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1262 // the value into n parts and use a vector type with n-times the elements. 1263 // Then bitcast to the type requested. 1264 // Legalizing constants too early makes the DAGCombiner's job harder so we 1265 // only legalize if the DAG tells us we must produce legal types. 1266 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1267 TLI->getTypeAction(*getContext(), EltVT) == 1268 TargetLowering::TypeExpandInteger) { 1269 const APInt &NewVal = Elt->getValue(); 1270 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1271 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1272 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1273 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1274 1275 // Check the temporary vector is the correct size. If this fails then 1276 // getTypeToTransformTo() probably returned a type whose size (in bits) 1277 // isn't a power-of-2 factor of the requested type size. 1278 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1279 1280 SmallVector<SDValue, 2> EltParts; 1281 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1282 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1283 .zextOrTrunc(ViaEltSizeInBits), DL, 1284 ViaEltVT, isT, isO)); 1285 } 1286 1287 // EltParts is currently in little endian order. If we actually want 1288 // big-endian order then reverse it now. 1289 if (getDataLayout().isBigEndian()) 1290 std::reverse(EltParts.begin(), EltParts.end()); 1291 1292 // The elements must be reversed when the element order is different 1293 // to the endianness of the elements (because the BITCAST is itself a 1294 // vector shuffle in this situation). However, we do not need any code to 1295 // perform this reversal because getConstant() is producing a vector 1296 // splat. 1297 // This situation occurs in MIPS MSA. 1298 1299 SmallVector<SDValue, 8> Ops; 1300 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1301 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1302 1303 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1304 return V; 1305 } 1306 1307 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1308 "APInt size does not match type size!"); 1309 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1310 FoldingSetNodeID ID; 1311 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1312 ID.AddPointer(Elt); 1313 ID.AddBoolean(isO); 1314 void *IP = nullptr; 1315 SDNode *N = nullptr; 1316 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1317 if (!VT.isVector()) 1318 return SDValue(N, 0); 1319 1320 if (!N) { 1321 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1322 CSEMap.InsertNode(N, IP); 1323 InsertNode(N); 1324 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1325 } 1326 1327 SDValue Result(N, 0); 1328 if (VT.isScalableVector()) 1329 Result = getSplatVector(VT, DL, Result); 1330 else if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1337 bool isTarget) { 1338 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1339 } 1340 1341 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1342 const SDLoc &DL, bool LegalTypes) { 1343 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1344 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1345 return getConstant(Val, DL, ShiftVT); 1346 } 1347 1348 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1349 bool isTarget) { 1350 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1351 } 1352 1353 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1354 bool isTarget) { 1355 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1356 } 1357 1358 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1359 EVT VT, bool isTarget) { 1360 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1361 1362 EVT EltVT = VT.getScalarType(); 1363 1364 // Do the map lookup using the actual bit pattern for the floating point 1365 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1366 // we don't have issues with SNANs. 1367 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1368 FoldingSetNodeID ID; 1369 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1370 ID.AddPointer(&V); 1371 void *IP = nullptr; 1372 SDNode *N = nullptr; 1373 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1374 if (!VT.isVector()) 1375 return SDValue(N, 0); 1376 1377 if (!N) { 1378 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1379 CSEMap.InsertNode(N, IP); 1380 InsertNode(N); 1381 } 1382 1383 SDValue Result(N, 0); 1384 if (VT.isScalableVector()) 1385 Result = getSplatVector(VT, DL, Result); 1386 else if (VT.isVector()) 1387 Result = getSplatBuildVector(VT, DL, Result); 1388 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1389 return Result; 1390 } 1391 1392 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1393 bool isTarget) { 1394 EVT EltVT = VT.getScalarType(); 1395 if (EltVT == MVT::f32) 1396 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1397 else if (EltVT == MVT::f64) 1398 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1399 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1400 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1401 bool Ignored; 1402 APFloat APF = APFloat(Val); 1403 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1404 &Ignored); 1405 return getConstantFP(APF, DL, VT, isTarget); 1406 } else 1407 llvm_unreachable("Unsupported type in getConstantFP"); 1408 } 1409 1410 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1411 EVT VT, int64_t Offset, bool isTargetGA, 1412 unsigned TargetFlags) { 1413 assert((TargetFlags == 0 || isTargetGA) && 1414 "Cannot set target flags on target-independent globals"); 1415 1416 // Truncate (with sign-extension) the offset value to the pointer size. 1417 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1418 if (BitWidth < 64) 1419 Offset = SignExtend64(Offset, BitWidth); 1420 1421 unsigned Opc; 1422 if (GV->isThreadLocal()) 1423 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1424 else 1425 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1426 1427 FoldingSetNodeID ID; 1428 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1429 ID.AddPointer(GV); 1430 ID.AddInteger(Offset); 1431 ID.AddInteger(TargetFlags); 1432 void *IP = nullptr; 1433 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1434 return SDValue(E, 0); 1435 1436 auto *N = newSDNode<GlobalAddressSDNode>( 1437 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1438 CSEMap.InsertNode(N, IP); 1439 InsertNode(N); 1440 return SDValue(N, 0); 1441 } 1442 1443 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1444 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1445 FoldingSetNodeID ID; 1446 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1447 ID.AddInteger(FI); 1448 void *IP = nullptr; 1449 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1450 return SDValue(E, 0); 1451 1452 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1453 CSEMap.InsertNode(N, IP); 1454 InsertNode(N); 1455 return SDValue(N, 0); 1456 } 1457 1458 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1459 unsigned TargetFlags) { 1460 assert((TargetFlags == 0 || isTarget) && 1461 "Cannot set target flags on target-independent jump tables"); 1462 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1463 FoldingSetNodeID ID; 1464 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1465 ID.AddInteger(JTI); 1466 ID.AddInteger(TargetFlags); 1467 void *IP = nullptr; 1468 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1469 return SDValue(E, 0); 1470 1471 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1472 CSEMap.InsertNode(N, IP); 1473 InsertNode(N); 1474 return SDValue(N, 0); 1475 } 1476 1477 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1478 MaybeAlign Alignment, int Offset, 1479 bool isTarget, unsigned TargetFlags) { 1480 assert((TargetFlags == 0 || isTarget) && 1481 "Cannot set target flags on target-independent globals"); 1482 if (!Alignment) 1483 Alignment = shouldOptForSize() 1484 ? getDataLayout().getABITypeAlign(C->getType()) 1485 : getDataLayout().getPrefTypeAlign(C->getType()); 1486 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1487 FoldingSetNodeID ID; 1488 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1489 ID.AddInteger(Alignment->value()); 1490 ID.AddInteger(Offset); 1491 ID.AddPointer(C); 1492 ID.AddInteger(TargetFlags); 1493 void *IP = nullptr; 1494 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1495 return SDValue(E, 0); 1496 1497 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1498 TargetFlags); 1499 CSEMap.InsertNode(N, IP); 1500 InsertNode(N); 1501 SDValue V = SDValue(N, 0); 1502 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1503 return V; 1504 } 1505 1506 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1507 MaybeAlign Alignment, int Offset, 1508 bool isTarget, unsigned TargetFlags) { 1509 assert((TargetFlags == 0 || isTarget) && 1510 "Cannot set target flags on target-independent globals"); 1511 if (!Alignment) 1512 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1513 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1514 FoldingSetNodeID ID; 1515 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1516 ID.AddInteger(Alignment->value()); 1517 ID.AddInteger(Offset); 1518 C->addSelectionDAGCSEId(ID); 1519 ID.AddInteger(TargetFlags); 1520 void *IP = nullptr; 1521 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1522 return SDValue(E, 0); 1523 1524 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1525 TargetFlags); 1526 CSEMap.InsertNode(N, IP); 1527 InsertNode(N); 1528 return SDValue(N, 0); 1529 } 1530 1531 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1532 unsigned TargetFlags) { 1533 FoldingSetNodeID ID; 1534 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1535 ID.AddInteger(Index); 1536 ID.AddInteger(Offset); 1537 ID.AddInteger(TargetFlags); 1538 void *IP = nullptr; 1539 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1540 return SDValue(E, 0); 1541 1542 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1543 CSEMap.InsertNode(N, IP); 1544 InsertNode(N); 1545 return SDValue(N, 0); 1546 } 1547 1548 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1551 ID.AddPointer(MBB); 1552 void *IP = nullptr; 1553 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1554 return SDValue(E, 0); 1555 1556 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 return SDValue(N, 0); 1560 } 1561 1562 SDValue SelectionDAG::getValueType(EVT VT) { 1563 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1564 ValueTypeNodes.size()) 1565 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1566 1567 SDNode *&N = VT.isExtended() ? 1568 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1569 1570 if (N) return SDValue(N, 0); 1571 N = newSDNode<VTSDNode>(VT); 1572 InsertNode(N); 1573 return SDValue(N, 0); 1574 } 1575 1576 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1577 SDNode *&N = ExternalSymbols[Sym]; 1578 if (N) return SDValue(N, 0); 1579 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1580 InsertNode(N); 1581 return SDValue(N, 0); 1582 } 1583 1584 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1585 SDNode *&N = MCSymbols[Sym]; 1586 if (N) 1587 return SDValue(N, 0); 1588 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1594 unsigned TargetFlags) { 1595 SDNode *&N = 1596 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1597 if (N) return SDValue(N, 0); 1598 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1599 InsertNode(N); 1600 return SDValue(N, 0); 1601 } 1602 1603 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1604 if ((unsigned)Cond >= CondCodeNodes.size()) 1605 CondCodeNodes.resize(Cond+1); 1606 1607 if (!CondCodeNodes[Cond]) { 1608 auto *N = newSDNode<CondCodeSDNode>(Cond); 1609 CondCodeNodes[Cond] = N; 1610 InsertNode(N); 1611 } 1612 1613 return SDValue(CondCodeNodes[Cond], 0); 1614 } 1615 1616 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1617 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1618 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1619 std::swap(N1, N2); 1620 ShuffleVectorSDNode::commuteMask(M); 1621 } 1622 1623 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1624 SDValue N2, ArrayRef<int> Mask) { 1625 assert(VT.getVectorNumElements() == Mask.size() && 1626 "Must have the same number of vector elements as mask elements!"); 1627 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1628 "Invalid VECTOR_SHUFFLE"); 1629 1630 // Canonicalize shuffle undef, undef -> undef 1631 if (N1.isUndef() && N2.isUndef()) 1632 return getUNDEF(VT); 1633 1634 // Validate that all indices in Mask are within the range of the elements 1635 // input to the shuffle. 1636 int NElts = Mask.size(); 1637 assert(llvm::all_of(Mask, 1638 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1639 "Index out of range"); 1640 1641 // Copy the mask so we can do any needed cleanup. 1642 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1643 1644 // Canonicalize shuffle v, v -> v, undef 1645 if (N1 == N2) { 1646 N2 = getUNDEF(VT); 1647 for (int i = 0; i != NElts; ++i) 1648 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1649 } 1650 1651 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1652 if (N1.isUndef()) 1653 commuteShuffle(N1, N2, MaskVec); 1654 1655 if (TLI->hasVectorBlend()) { 1656 // If shuffling a splat, try to blend the splat instead. We do this here so 1657 // that even when this arises during lowering we don't have to re-handle it. 1658 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1659 BitVector UndefElements; 1660 SDValue Splat = BV->getSplatValue(&UndefElements); 1661 if (!Splat) 1662 return; 1663 1664 for (int i = 0; i < NElts; ++i) { 1665 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1666 continue; 1667 1668 // If this input comes from undef, mark it as such. 1669 if (UndefElements[MaskVec[i] - Offset]) { 1670 MaskVec[i] = -1; 1671 continue; 1672 } 1673 1674 // If we can blend a non-undef lane, use that instead. 1675 if (!UndefElements[i]) 1676 MaskVec[i] = i + Offset; 1677 } 1678 }; 1679 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1680 BlendSplat(N1BV, 0); 1681 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1682 BlendSplat(N2BV, NElts); 1683 } 1684 1685 // Canonicalize all index into lhs, -> shuffle lhs, undef 1686 // Canonicalize all index into rhs, -> shuffle rhs, undef 1687 bool AllLHS = true, AllRHS = true; 1688 bool N2Undef = N2.isUndef(); 1689 for (int i = 0; i != NElts; ++i) { 1690 if (MaskVec[i] >= NElts) { 1691 if (N2Undef) 1692 MaskVec[i] = -1; 1693 else 1694 AllLHS = false; 1695 } else if (MaskVec[i] >= 0) { 1696 AllRHS = false; 1697 } 1698 } 1699 if (AllLHS && AllRHS) 1700 return getUNDEF(VT); 1701 if (AllLHS && !N2Undef) 1702 N2 = getUNDEF(VT); 1703 if (AllRHS) { 1704 N1 = getUNDEF(VT); 1705 commuteShuffle(N1, N2, MaskVec); 1706 } 1707 // Reset our undef status after accounting for the mask. 1708 N2Undef = N2.isUndef(); 1709 // Re-check whether both sides ended up undef. 1710 if (N1.isUndef() && N2Undef) 1711 return getUNDEF(VT); 1712 1713 // If Identity shuffle return that node. 1714 bool Identity = true, AllSame = true; 1715 for (int i = 0; i != NElts; ++i) { 1716 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1717 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1718 } 1719 if (Identity && NElts) 1720 return N1; 1721 1722 // Shuffling a constant splat doesn't change the result. 1723 if (N2Undef) { 1724 SDValue V = N1; 1725 1726 // Look through any bitcasts. We check that these don't change the number 1727 // (and size) of elements and just changes their types. 1728 while (V.getOpcode() == ISD::BITCAST) 1729 V = V->getOperand(0); 1730 1731 // A splat should always show up as a build vector node. 1732 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1733 BitVector UndefElements; 1734 SDValue Splat = BV->getSplatValue(&UndefElements); 1735 // If this is a splat of an undef, shuffling it is also undef. 1736 if (Splat && Splat.isUndef()) 1737 return getUNDEF(VT); 1738 1739 bool SameNumElts = 1740 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1741 1742 // We only have a splat which can skip shuffles if there is a splatted 1743 // value and no undef lanes rearranged by the shuffle. 1744 if (Splat && UndefElements.none()) { 1745 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1746 // number of elements match or the value splatted is a zero constant. 1747 if (SameNumElts) 1748 return N1; 1749 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1750 if (C->isNullValue()) 1751 return N1; 1752 } 1753 1754 // If the shuffle itself creates a splat, build the vector directly. 1755 if (AllSame && SameNumElts) { 1756 EVT BuildVT = BV->getValueType(0); 1757 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1758 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1759 1760 // We may have jumped through bitcasts, so the type of the 1761 // BUILD_VECTOR may not match the type of the shuffle. 1762 if (BuildVT != VT) 1763 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1764 return NewBV; 1765 } 1766 } 1767 } 1768 1769 FoldingSetNodeID ID; 1770 SDValue Ops[2] = { N1, N2 }; 1771 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1772 for (int i = 0; i != NElts; ++i) 1773 ID.AddInteger(MaskVec[i]); 1774 1775 void* IP = nullptr; 1776 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1777 return SDValue(E, 0); 1778 1779 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1780 // SDNode doesn't have access to it. This memory will be "leaked" when 1781 // the node is deallocated, but recovered when the NodeAllocator is released. 1782 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1783 llvm::copy(MaskVec, MaskAlloc); 1784 1785 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1786 dl.getDebugLoc(), MaskAlloc); 1787 createOperands(N, Ops); 1788 1789 CSEMap.InsertNode(N, IP); 1790 InsertNode(N); 1791 SDValue V = SDValue(N, 0); 1792 NewSDValueDbgMsg(V, "Creating new node: ", this); 1793 return V; 1794 } 1795 1796 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1797 EVT VT = SV.getValueType(0); 1798 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1799 ShuffleVectorSDNode::commuteMask(MaskVec); 1800 1801 SDValue Op0 = SV.getOperand(0); 1802 SDValue Op1 = SV.getOperand(1); 1803 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1804 } 1805 1806 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1807 FoldingSetNodeID ID; 1808 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1809 ID.AddInteger(RegNo); 1810 void *IP = nullptr; 1811 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1812 return SDValue(E, 0); 1813 1814 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1815 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1816 CSEMap.InsertNode(N, IP); 1817 InsertNode(N); 1818 return SDValue(N, 0); 1819 } 1820 1821 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1822 FoldingSetNodeID ID; 1823 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1824 ID.AddPointer(RegMask); 1825 void *IP = nullptr; 1826 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1827 return SDValue(E, 0); 1828 1829 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1830 CSEMap.InsertNode(N, IP); 1831 InsertNode(N); 1832 return SDValue(N, 0); 1833 } 1834 1835 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1836 MCSymbol *Label) { 1837 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1838 } 1839 1840 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1841 SDValue Root, MCSymbol *Label) { 1842 FoldingSetNodeID ID; 1843 SDValue Ops[] = { Root }; 1844 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1845 ID.AddPointer(Label); 1846 void *IP = nullptr; 1847 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1848 return SDValue(E, 0); 1849 1850 auto *N = 1851 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1852 createOperands(N, Ops); 1853 1854 CSEMap.InsertNode(N, IP); 1855 InsertNode(N); 1856 return SDValue(N, 0); 1857 } 1858 1859 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1860 int64_t Offset, bool isTarget, 1861 unsigned TargetFlags) { 1862 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1863 1864 FoldingSetNodeID ID; 1865 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1866 ID.AddPointer(BA); 1867 ID.AddInteger(Offset); 1868 ID.AddInteger(TargetFlags); 1869 void *IP = nullptr; 1870 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1871 return SDValue(E, 0); 1872 1873 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1874 CSEMap.InsertNode(N, IP); 1875 InsertNode(N); 1876 return SDValue(N, 0); 1877 } 1878 1879 SDValue SelectionDAG::getSrcValue(const Value *V) { 1880 FoldingSetNodeID ID; 1881 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1882 ID.AddPointer(V); 1883 1884 void *IP = nullptr; 1885 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1886 return SDValue(E, 0); 1887 1888 auto *N = newSDNode<SrcValueSDNode>(V); 1889 CSEMap.InsertNode(N, IP); 1890 InsertNode(N); 1891 return SDValue(N, 0); 1892 } 1893 1894 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1895 FoldingSetNodeID ID; 1896 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1897 ID.AddPointer(MD); 1898 1899 void *IP = nullptr; 1900 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1901 return SDValue(E, 0); 1902 1903 auto *N = newSDNode<MDNodeSDNode>(MD); 1904 CSEMap.InsertNode(N, IP); 1905 InsertNode(N); 1906 return SDValue(N, 0); 1907 } 1908 1909 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1910 if (VT == V.getValueType()) 1911 return V; 1912 1913 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1914 } 1915 1916 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1917 unsigned SrcAS, unsigned DestAS) { 1918 SDValue Ops[] = {Ptr}; 1919 FoldingSetNodeID ID; 1920 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1921 ID.AddInteger(SrcAS); 1922 ID.AddInteger(DestAS); 1923 1924 void *IP = nullptr; 1925 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1926 return SDValue(E, 0); 1927 1928 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1929 VT, SrcAS, DestAS); 1930 createOperands(N, Ops); 1931 1932 CSEMap.InsertNode(N, IP); 1933 InsertNode(N); 1934 return SDValue(N, 0); 1935 } 1936 1937 SDValue SelectionDAG::getFreeze(SDValue V) { 1938 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1939 } 1940 1941 /// getShiftAmountOperand - Return the specified value casted to 1942 /// the target's desired shift amount type. 1943 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1944 EVT OpTy = Op.getValueType(); 1945 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1946 if (OpTy == ShTy || OpTy.isVector()) return Op; 1947 1948 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1949 } 1950 1951 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1952 SDLoc dl(Node); 1953 const TargetLowering &TLI = getTargetLoweringInfo(); 1954 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1955 EVT VT = Node->getValueType(0); 1956 SDValue Tmp1 = Node->getOperand(0); 1957 SDValue Tmp2 = Node->getOperand(1); 1958 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1959 1960 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1961 Tmp2, MachinePointerInfo(V)); 1962 SDValue VAList = VAListLoad; 1963 1964 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1965 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1966 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1967 1968 VAList = 1969 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1970 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1971 } 1972 1973 // Increment the pointer, VAList, to the next vaarg 1974 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1975 getConstant(getDataLayout().getTypeAllocSize( 1976 VT.getTypeForEVT(*getContext())), 1977 dl, VAList.getValueType())); 1978 // Store the incremented VAList to the legalized pointer 1979 Tmp1 = 1980 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1981 // Load the actual argument out of the pointer VAList 1982 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1983 } 1984 1985 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1986 SDLoc dl(Node); 1987 const TargetLowering &TLI = getTargetLoweringInfo(); 1988 // This defaults to loading a pointer from the input and storing it to the 1989 // output, returning the chain. 1990 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1991 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1992 SDValue Tmp1 = 1993 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1994 Node->getOperand(2), MachinePointerInfo(VS)); 1995 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1996 MachinePointerInfo(VD)); 1997 } 1998 1999 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2000 const DataLayout &DL = getDataLayout(); 2001 Type *Ty = VT.getTypeForEVT(*getContext()); 2002 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2003 2004 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2005 return RedAlign; 2006 2007 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2008 const Align StackAlign = TFI->getStackAlign(); 2009 2010 // See if we can choose a smaller ABI alignment in cases where it's an 2011 // illegal vector type that will get broken down. 2012 if (RedAlign > StackAlign) { 2013 EVT IntermediateVT; 2014 MVT RegisterVT; 2015 unsigned NumIntermediates; 2016 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2017 NumIntermediates, RegisterVT); 2018 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2019 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2020 if (RedAlign2 < RedAlign) 2021 RedAlign = RedAlign2; 2022 } 2023 2024 return RedAlign; 2025 } 2026 2027 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2028 MachineFrameInfo &MFI = MF->getFrameInfo(); 2029 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2030 int StackID = 0; 2031 if (Bytes.isScalable()) 2032 StackID = TFI->getStackIDForScalableVectors(); 2033 // The stack id gives an indication of whether the object is scalable or 2034 // not, so it's safe to pass in the minimum size here. 2035 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2036 false, nullptr, StackID); 2037 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2038 } 2039 2040 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2041 Type *Ty = VT.getTypeForEVT(*getContext()); 2042 Align StackAlign = 2043 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2044 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2045 } 2046 2047 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2048 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2049 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2050 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2051 const DataLayout &DL = getDataLayout(); 2052 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2053 return CreateStackTemporary(Bytes, Align); 2054 } 2055 2056 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2057 ISD::CondCode Cond, const SDLoc &dl) { 2058 EVT OpVT = N1.getValueType(); 2059 2060 // These setcc operations always fold. 2061 switch (Cond) { 2062 default: break; 2063 case ISD::SETFALSE: 2064 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2065 case ISD::SETTRUE: 2066 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2067 2068 case ISD::SETOEQ: 2069 case ISD::SETOGT: 2070 case ISD::SETOGE: 2071 case ISD::SETOLT: 2072 case ISD::SETOLE: 2073 case ISD::SETONE: 2074 case ISD::SETO: 2075 case ISD::SETUO: 2076 case ISD::SETUEQ: 2077 case ISD::SETUNE: 2078 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2079 break; 2080 } 2081 2082 if (OpVT.isInteger()) { 2083 // For EQ and NE, we can always pick a value for the undef to make the 2084 // predicate pass or fail, so we can return undef. 2085 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2086 // icmp eq/ne X, undef -> undef. 2087 if ((N1.isUndef() || N2.isUndef()) && 2088 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2089 return getUNDEF(VT); 2090 2091 // If both operands are undef, we can return undef for int comparison. 2092 // icmp undef, undef -> undef. 2093 if (N1.isUndef() && N2.isUndef()) 2094 return getUNDEF(VT); 2095 2096 // icmp X, X -> true/false 2097 // icmp X, undef -> true/false because undef could be X. 2098 if (N1 == N2) 2099 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2100 } 2101 2102 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2103 const APInt &C2 = N2C->getAPIntValue(); 2104 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2105 const APInt &C1 = N1C->getAPIntValue(); 2106 2107 switch (Cond) { 2108 default: llvm_unreachable("Unknown integer setcc!"); 2109 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2110 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2111 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2112 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2113 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2114 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2115 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2116 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2117 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2118 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2119 } 2120 } 2121 } 2122 2123 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2124 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2125 2126 if (N1CFP && N2CFP) { 2127 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2128 switch (Cond) { 2129 default: break; 2130 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2131 return getUNDEF(VT); 2132 LLVM_FALLTHROUGH; 2133 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2134 OpVT); 2135 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2136 return getUNDEF(VT); 2137 LLVM_FALLTHROUGH; 2138 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2139 R==APFloat::cmpLessThan, dl, VT, 2140 OpVT); 2141 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2142 return getUNDEF(VT); 2143 LLVM_FALLTHROUGH; 2144 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2145 OpVT); 2146 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2147 return getUNDEF(VT); 2148 LLVM_FALLTHROUGH; 2149 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2150 VT, OpVT); 2151 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2152 return getUNDEF(VT); 2153 LLVM_FALLTHROUGH; 2154 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2155 R==APFloat::cmpEqual, dl, VT, 2156 OpVT); 2157 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2158 return getUNDEF(VT); 2159 LLVM_FALLTHROUGH; 2160 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2161 R==APFloat::cmpEqual, dl, VT, OpVT); 2162 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2163 OpVT); 2164 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2165 OpVT); 2166 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2167 R==APFloat::cmpEqual, dl, VT, 2168 OpVT); 2169 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2170 OpVT); 2171 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2172 R==APFloat::cmpLessThan, dl, VT, 2173 OpVT); 2174 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2175 R==APFloat::cmpUnordered, dl, VT, 2176 OpVT); 2177 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2178 VT, OpVT); 2179 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2180 OpVT); 2181 } 2182 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2183 // Ensure that the constant occurs on the RHS. 2184 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2185 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2186 return SDValue(); 2187 return getSetCC(dl, VT, N2, N1, SwappedCond); 2188 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2189 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2190 // If an operand is known to be a nan (or undef that could be a nan), we can 2191 // fold it. 2192 // Choosing NaN for the undef will always make unordered comparison succeed 2193 // and ordered comparison fails. 2194 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2195 switch (ISD::getUnorderedFlavor(Cond)) { 2196 default: 2197 llvm_unreachable("Unknown flavor!"); 2198 case 0: // Known false. 2199 return getBoolConstant(false, dl, VT, OpVT); 2200 case 1: // Known true. 2201 return getBoolConstant(true, dl, VT, OpVT); 2202 case 2: // Undefined. 2203 return getUNDEF(VT); 2204 } 2205 } 2206 2207 // Could not fold it. 2208 return SDValue(); 2209 } 2210 2211 /// See if the specified operand can be simplified with the knowledge that only 2212 /// the bits specified by DemandedBits are used. 2213 /// TODO: really we should be making this into the DAG equivalent of 2214 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2215 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2216 EVT VT = V.getValueType(); 2217 2218 if (VT.isScalableVector()) 2219 return SDValue(); 2220 2221 APInt DemandedElts = VT.isVector() 2222 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2223 : APInt(1, 1); 2224 return GetDemandedBits(V, DemandedBits, DemandedElts); 2225 } 2226 2227 /// See if the specified operand can be simplified with the knowledge that only 2228 /// the bits specified by DemandedBits are used in the elements specified by 2229 /// DemandedElts. 2230 /// TODO: really we should be making this into the DAG equivalent of 2231 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2232 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2233 const APInt &DemandedElts) { 2234 switch (V.getOpcode()) { 2235 default: 2236 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2237 *this, 0); 2238 case ISD::Constant: { 2239 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2240 APInt NewVal = CVal & DemandedBits; 2241 if (NewVal != CVal) 2242 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2243 break; 2244 } 2245 case ISD::SRL: 2246 // Only look at single-use SRLs. 2247 if (!V.getNode()->hasOneUse()) 2248 break; 2249 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2250 // See if we can recursively simplify the LHS. 2251 unsigned Amt = RHSC->getZExtValue(); 2252 2253 // Watch out for shift count overflow though. 2254 if (Amt >= DemandedBits.getBitWidth()) 2255 break; 2256 APInt SrcDemandedBits = DemandedBits << Amt; 2257 if (SDValue SimplifyLHS = 2258 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2259 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2260 V.getOperand(1)); 2261 } 2262 break; 2263 } 2264 return SDValue(); 2265 } 2266 2267 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2268 /// use this predicate to simplify operations downstream. 2269 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2270 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2271 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2272 } 2273 2274 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2275 /// this predicate to simplify operations downstream. Mask is known to be zero 2276 /// for bits that V cannot have. 2277 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2278 unsigned Depth) const { 2279 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2280 } 2281 2282 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2283 /// DemandedElts. We use this predicate to simplify operations downstream. 2284 /// Mask is known to be zero for bits that V cannot have. 2285 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2286 const APInt &DemandedElts, 2287 unsigned Depth) const { 2288 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2289 } 2290 2291 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2292 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2293 unsigned Depth) const { 2294 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2295 } 2296 2297 /// isSplatValue - Return true if the vector V has the same value 2298 /// across all DemandedElts. For scalable vectors it does not make 2299 /// sense to specify which elements are demanded or undefined, therefore 2300 /// they are simply ignored. 2301 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2302 APInt &UndefElts) { 2303 EVT VT = V.getValueType(); 2304 assert(VT.isVector() && "Vector type expected"); 2305 2306 if (!VT.isScalableVector() && !DemandedElts) 2307 return false; // No demanded elts, better to assume we don't know anything. 2308 2309 // Deal with some common cases here that work for both fixed and scalable 2310 // vector types. 2311 switch (V.getOpcode()) { 2312 case ISD::SPLAT_VECTOR: 2313 UndefElts = V.getOperand(0).isUndef() 2314 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2315 : APInt(DemandedElts.getBitWidth(), 0); 2316 return true; 2317 case ISD::ADD: 2318 case ISD::SUB: 2319 case ISD::AND: { 2320 APInt UndefLHS, UndefRHS; 2321 SDValue LHS = V.getOperand(0); 2322 SDValue RHS = V.getOperand(1); 2323 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2324 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2325 UndefElts = UndefLHS | UndefRHS; 2326 return true; 2327 } 2328 break; 2329 } 2330 case ISD::TRUNCATE: 2331 case ISD::SIGN_EXTEND: 2332 case ISD::ZERO_EXTEND: 2333 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2334 } 2335 2336 // We don't support other cases than those above for scalable vectors at 2337 // the moment. 2338 if (VT.isScalableVector()) 2339 return false; 2340 2341 unsigned NumElts = VT.getVectorNumElements(); 2342 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2343 UndefElts = APInt::getNullValue(NumElts); 2344 2345 switch (V.getOpcode()) { 2346 case ISD::BUILD_VECTOR: { 2347 SDValue Scl; 2348 for (unsigned i = 0; i != NumElts; ++i) { 2349 SDValue Op = V.getOperand(i); 2350 if (Op.isUndef()) { 2351 UndefElts.setBit(i); 2352 continue; 2353 } 2354 if (!DemandedElts[i]) 2355 continue; 2356 if (Scl && Scl != Op) 2357 return false; 2358 Scl = Op; 2359 } 2360 return true; 2361 } 2362 case ISD::VECTOR_SHUFFLE: { 2363 // Check if this is a shuffle node doing a splat. 2364 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2365 int SplatIndex = -1; 2366 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2367 for (int i = 0; i != (int)NumElts; ++i) { 2368 int M = Mask[i]; 2369 if (M < 0) { 2370 UndefElts.setBit(i); 2371 continue; 2372 } 2373 if (!DemandedElts[i]) 2374 continue; 2375 if (0 <= SplatIndex && SplatIndex != M) 2376 return false; 2377 SplatIndex = M; 2378 } 2379 return true; 2380 } 2381 case ISD::EXTRACT_SUBVECTOR: { 2382 // Offset the demanded elts by the subvector index. 2383 SDValue Src = V.getOperand(0); 2384 uint64_t Idx = V.getConstantOperandVal(1); 2385 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2386 APInt UndefSrcElts; 2387 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2388 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2389 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2390 return true; 2391 } 2392 break; 2393 } 2394 } 2395 2396 return false; 2397 } 2398 2399 /// Helper wrapper to main isSplatValue function. 2400 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2401 EVT VT = V.getValueType(); 2402 assert(VT.isVector() && "Vector type expected"); 2403 2404 APInt UndefElts; 2405 APInt DemandedElts; 2406 2407 // For now we don't support this with scalable vectors. 2408 if (!VT.isScalableVector()) 2409 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2410 return isSplatValue(V, DemandedElts, UndefElts) && 2411 (AllowUndefs || !UndefElts); 2412 } 2413 2414 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2415 V = peekThroughExtractSubvectors(V); 2416 2417 EVT VT = V.getValueType(); 2418 unsigned Opcode = V.getOpcode(); 2419 switch (Opcode) { 2420 default: { 2421 APInt UndefElts; 2422 APInt DemandedElts; 2423 2424 if (!VT.isScalableVector()) 2425 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2426 2427 if (isSplatValue(V, DemandedElts, UndefElts)) { 2428 if (VT.isScalableVector()) { 2429 // DemandedElts and UndefElts are ignored for scalable vectors, since 2430 // the only supported cases are SPLAT_VECTOR nodes. 2431 SplatIdx = 0; 2432 } else { 2433 // Handle case where all demanded elements are UNDEF. 2434 if (DemandedElts.isSubsetOf(UndefElts)) { 2435 SplatIdx = 0; 2436 return getUNDEF(VT); 2437 } 2438 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2439 } 2440 return V; 2441 } 2442 break; 2443 } 2444 case ISD::SPLAT_VECTOR: 2445 SplatIdx = 0; 2446 return V; 2447 case ISD::VECTOR_SHUFFLE: { 2448 if (VT.isScalableVector()) 2449 return SDValue(); 2450 2451 // Check if this is a shuffle node doing a splat. 2452 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2453 // getTargetVShiftNode currently struggles without the splat source. 2454 auto *SVN = cast<ShuffleVectorSDNode>(V); 2455 if (!SVN->isSplat()) 2456 break; 2457 int Idx = SVN->getSplatIndex(); 2458 int NumElts = V.getValueType().getVectorNumElements(); 2459 SplatIdx = Idx % NumElts; 2460 return V.getOperand(Idx / NumElts); 2461 } 2462 } 2463 2464 return SDValue(); 2465 } 2466 2467 SDValue SelectionDAG::getSplatValue(SDValue V) { 2468 int SplatIdx; 2469 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2470 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2471 SrcVector.getValueType().getScalarType(), SrcVector, 2472 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2473 return SDValue(); 2474 } 2475 2476 const APInt * 2477 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2478 const APInt &DemandedElts) const { 2479 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2480 V.getOpcode() == ISD::SRA) && 2481 "Unknown shift node"); 2482 unsigned BitWidth = V.getScalarValueSizeInBits(); 2483 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2484 // Shifting more than the bitwidth is not valid. 2485 const APInt &ShAmt = SA->getAPIntValue(); 2486 if (ShAmt.ult(BitWidth)) 2487 return &ShAmt; 2488 } 2489 return nullptr; 2490 } 2491 2492 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2493 SDValue V, const APInt &DemandedElts) const { 2494 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2495 V.getOpcode() == ISD::SRA) && 2496 "Unknown shift node"); 2497 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2498 return ValidAmt; 2499 unsigned BitWidth = V.getScalarValueSizeInBits(); 2500 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2501 if (!BV) 2502 return nullptr; 2503 const APInt *MinShAmt = nullptr; 2504 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2505 if (!DemandedElts[i]) 2506 continue; 2507 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2508 if (!SA) 2509 return nullptr; 2510 // Shifting more than the bitwidth is not valid. 2511 const APInt &ShAmt = SA->getAPIntValue(); 2512 if (ShAmt.uge(BitWidth)) 2513 return nullptr; 2514 if (MinShAmt && MinShAmt->ule(ShAmt)) 2515 continue; 2516 MinShAmt = &ShAmt; 2517 } 2518 return MinShAmt; 2519 } 2520 2521 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2522 SDValue V, const APInt &DemandedElts) const { 2523 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2524 V.getOpcode() == ISD::SRA) && 2525 "Unknown shift node"); 2526 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2527 return ValidAmt; 2528 unsigned BitWidth = V.getScalarValueSizeInBits(); 2529 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2530 if (!BV) 2531 return nullptr; 2532 const APInt *MaxShAmt = nullptr; 2533 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2534 if (!DemandedElts[i]) 2535 continue; 2536 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2537 if (!SA) 2538 return nullptr; 2539 // Shifting more than the bitwidth is not valid. 2540 const APInt &ShAmt = SA->getAPIntValue(); 2541 if (ShAmt.uge(BitWidth)) 2542 return nullptr; 2543 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2544 continue; 2545 MaxShAmt = &ShAmt; 2546 } 2547 return MaxShAmt; 2548 } 2549 2550 /// Determine which bits of Op are known to be either zero or one and return 2551 /// them in Known. For vectors, the known bits are those that are shared by 2552 /// every vector element. 2553 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2554 EVT VT = Op.getValueType(); 2555 2556 // TOOD: Until we have a plan for how to represent demanded elements for 2557 // scalable vectors, we can just bail out for now. 2558 if (Op.getValueType().isScalableVector()) { 2559 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2560 return KnownBits(BitWidth); 2561 } 2562 2563 APInt DemandedElts = VT.isVector() 2564 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2565 : APInt(1, 1); 2566 return computeKnownBits(Op, DemandedElts, Depth); 2567 } 2568 2569 /// Determine which bits of Op are known to be either zero or one and return 2570 /// them in Known. The DemandedElts argument allows us to only collect the known 2571 /// bits that are shared by the requested vector elements. 2572 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2573 unsigned Depth) const { 2574 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2575 2576 KnownBits Known(BitWidth); // Don't know anything. 2577 2578 // TOOD: Until we have a plan for how to represent demanded elements for 2579 // scalable vectors, we can just bail out for now. 2580 if (Op.getValueType().isScalableVector()) 2581 return Known; 2582 2583 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2584 // We know all of the bits for a constant! 2585 Known.One = C->getAPIntValue(); 2586 Known.Zero = ~Known.One; 2587 return Known; 2588 } 2589 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2590 // We know all of the bits for a constant fp! 2591 Known.One = C->getValueAPF().bitcastToAPInt(); 2592 Known.Zero = ~Known.One; 2593 return Known; 2594 } 2595 2596 if (Depth >= MaxRecursionDepth) 2597 return Known; // Limit search depth. 2598 2599 KnownBits Known2; 2600 unsigned NumElts = DemandedElts.getBitWidth(); 2601 assert((!Op.getValueType().isVector() || 2602 NumElts == Op.getValueType().getVectorNumElements()) && 2603 "Unexpected vector size"); 2604 2605 if (!DemandedElts) 2606 return Known; // No demanded elts, better to assume we don't know anything. 2607 2608 unsigned Opcode = Op.getOpcode(); 2609 switch (Opcode) { 2610 case ISD::BUILD_VECTOR: 2611 // Collect the known bits that are shared by every demanded vector element. 2612 Known.Zero.setAllBits(); Known.One.setAllBits(); 2613 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2614 if (!DemandedElts[i]) 2615 continue; 2616 2617 SDValue SrcOp = Op.getOperand(i); 2618 Known2 = computeKnownBits(SrcOp, Depth + 1); 2619 2620 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2621 if (SrcOp.getValueSizeInBits() != BitWidth) { 2622 assert(SrcOp.getValueSizeInBits() > BitWidth && 2623 "Expected BUILD_VECTOR implicit truncation"); 2624 Known2 = Known2.trunc(BitWidth); 2625 } 2626 2627 // Known bits are the values that are shared by every demanded element. 2628 Known.One &= Known2.One; 2629 Known.Zero &= Known2.Zero; 2630 2631 // If we don't know any bits, early out. 2632 if (Known.isUnknown()) 2633 break; 2634 } 2635 break; 2636 case ISD::VECTOR_SHUFFLE: { 2637 // Collect the known bits that are shared by every vector element referenced 2638 // by the shuffle. 2639 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2640 Known.Zero.setAllBits(); Known.One.setAllBits(); 2641 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2642 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2643 for (unsigned i = 0; i != NumElts; ++i) { 2644 if (!DemandedElts[i]) 2645 continue; 2646 2647 int M = SVN->getMaskElt(i); 2648 if (M < 0) { 2649 // For UNDEF elements, we don't know anything about the common state of 2650 // the shuffle result. 2651 Known.resetAll(); 2652 DemandedLHS.clearAllBits(); 2653 DemandedRHS.clearAllBits(); 2654 break; 2655 } 2656 2657 if ((unsigned)M < NumElts) 2658 DemandedLHS.setBit((unsigned)M % NumElts); 2659 else 2660 DemandedRHS.setBit((unsigned)M % NumElts); 2661 } 2662 // Known bits are the values that are shared by every demanded element. 2663 if (!!DemandedLHS) { 2664 SDValue LHS = Op.getOperand(0); 2665 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2666 Known.One &= Known2.One; 2667 Known.Zero &= Known2.Zero; 2668 } 2669 // If we don't know any bits, early out. 2670 if (Known.isUnknown()) 2671 break; 2672 if (!!DemandedRHS) { 2673 SDValue RHS = Op.getOperand(1); 2674 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2675 Known.One &= Known2.One; 2676 Known.Zero &= Known2.Zero; 2677 } 2678 break; 2679 } 2680 case ISD::CONCAT_VECTORS: { 2681 // Split DemandedElts and test each of the demanded subvectors. 2682 Known.Zero.setAllBits(); Known.One.setAllBits(); 2683 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2684 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2685 unsigned NumSubVectors = Op.getNumOperands(); 2686 for (unsigned i = 0; i != NumSubVectors; ++i) { 2687 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2688 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2689 if (!!DemandedSub) { 2690 SDValue Sub = Op.getOperand(i); 2691 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2692 Known.One &= Known2.One; 2693 Known.Zero &= Known2.Zero; 2694 } 2695 // If we don't know any bits, early out. 2696 if (Known.isUnknown()) 2697 break; 2698 } 2699 break; 2700 } 2701 case ISD::INSERT_SUBVECTOR: { 2702 // Demand any elements from the subvector and the remainder from the src its 2703 // inserted into. 2704 SDValue Src = Op.getOperand(0); 2705 SDValue Sub = Op.getOperand(1); 2706 uint64_t Idx = Op.getConstantOperandVal(2); 2707 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2708 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2709 APInt DemandedSrcElts = DemandedElts; 2710 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2711 2712 Known.One.setAllBits(); 2713 Known.Zero.setAllBits(); 2714 if (!!DemandedSubElts) { 2715 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2716 if (Known.isUnknown()) 2717 break; // early-out. 2718 } 2719 if (!!DemandedSrcElts) { 2720 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2721 Known.One &= Known2.One; 2722 Known.Zero &= Known2.Zero; 2723 } 2724 break; 2725 } 2726 case ISD::EXTRACT_SUBVECTOR: { 2727 // Offset the demanded elts by the subvector index. 2728 SDValue Src = Op.getOperand(0); 2729 // Bail until we can represent demanded elements for scalable vectors. 2730 if (Src.getValueType().isScalableVector()) 2731 break; 2732 uint64_t Idx = Op.getConstantOperandVal(1); 2733 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2734 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2735 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2736 break; 2737 } 2738 case ISD::SCALAR_TO_VECTOR: { 2739 // We know about scalar_to_vector as much as we know about it source, 2740 // which becomes the first element of otherwise unknown vector. 2741 if (DemandedElts != 1) 2742 break; 2743 2744 SDValue N0 = Op.getOperand(0); 2745 Known = computeKnownBits(N0, Depth + 1); 2746 if (N0.getValueSizeInBits() != BitWidth) 2747 Known = Known.trunc(BitWidth); 2748 2749 break; 2750 } 2751 case ISD::BITCAST: { 2752 SDValue N0 = Op.getOperand(0); 2753 EVT SubVT = N0.getValueType(); 2754 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2755 2756 // Ignore bitcasts from unsupported types. 2757 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2758 break; 2759 2760 // Fast handling of 'identity' bitcasts. 2761 if (BitWidth == SubBitWidth) { 2762 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2763 break; 2764 } 2765 2766 bool IsLE = getDataLayout().isLittleEndian(); 2767 2768 // Bitcast 'small element' vector to 'large element' scalar/vector. 2769 if ((BitWidth % SubBitWidth) == 0) { 2770 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2771 2772 // Collect known bits for the (larger) output by collecting the known 2773 // bits from each set of sub elements and shift these into place. 2774 // We need to separately call computeKnownBits for each set of 2775 // sub elements as the knownbits for each is likely to be different. 2776 unsigned SubScale = BitWidth / SubBitWidth; 2777 APInt SubDemandedElts(NumElts * SubScale, 0); 2778 for (unsigned i = 0; i != NumElts; ++i) 2779 if (DemandedElts[i]) 2780 SubDemandedElts.setBit(i * SubScale); 2781 2782 for (unsigned i = 0; i != SubScale; ++i) { 2783 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2784 Depth + 1); 2785 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2786 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2787 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2788 } 2789 } 2790 2791 // Bitcast 'large element' scalar/vector to 'small element' vector. 2792 if ((SubBitWidth % BitWidth) == 0) { 2793 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2794 2795 // Collect known bits for the (smaller) output by collecting the known 2796 // bits from the overlapping larger input elements and extracting the 2797 // sub sections we actually care about. 2798 unsigned SubScale = SubBitWidth / BitWidth; 2799 APInt SubDemandedElts(NumElts / SubScale, 0); 2800 for (unsigned i = 0; i != NumElts; ++i) 2801 if (DemandedElts[i]) 2802 SubDemandedElts.setBit(i / SubScale); 2803 2804 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2805 2806 Known.Zero.setAllBits(); Known.One.setAllBits(); 2807 for (unsigned i = 0; i != NumElts; ++i) 2808 if (DemandedElts[i]) { 2809 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2810 unsigned Offset = (Shifts % SubScale) * BitWidth; 2811 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2812 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2813 // If we don't know any bits, early out. 2814 if (Known.isUnknown()) 2815 break; 2816 } 2817 } 2818 break; 2819 } 2820 case ISD::AND: 2821 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2822 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2823 2824 Known &= Known2; 2825 break; 2826 case ISD::OR: 2827 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2828 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2829 2830 Known |= Known2; 2831 break; 2832 case ISD::XOR: 2833 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2834 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2835 2836 Known ^= Known2; 2837 break; 2838 case ISD::MUL: { 2839 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2840 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2841 2842 // If low bits are zero in either operand, output low known-0 bits. 2843 // Also compute a conservative estimate for high known-0 bits. 2844 // More trickiness is possible, but this is sufficient for the 2845 // interesting case of alignment computation. 2846 unsigned TrailZ = Known.countMinTrailingZeros() + 2847 Known2.countMinTrailingZeros(); 2848 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2849 Known2.countMinLeadingZeros(), 2850 BitWidth) - BitWidth; 2851 2852 Known.resetAll(); 2853 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2854 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2855 break; 2856 } 2857 case ISD::UDIV: { 2858 // For the purposes of computing leading zeros we can conservatively 2859 // treat a udiv as a logical right shift by the power of 2 known to 2860 // be less than the denominator. 2861 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2862 unsigned LeadZ = Known2.countMinLeadingZeros(); 2863 2864 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2865 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2866 if (RHSMaxLeadingZeros != BitWidth) 2867 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2868 2869 Known.Zero.setHighBits(LeadZ); 2870 break; 2871 } 2872 case ISD::SELECT: 2873 case ISD::VSELECT: 2874 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2875 // If we don't know any bits, early out. 2876 if (Known.isUnknown()) 2877 break; 2878 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2879 2880 // Only known if known in both the LHS and RHS. 2881 Known.One &= Known2.One; 2882 Known.Zero &= Known2.Zero; 2883 break; 2884 case ISD::SELECT_CC: 2885 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2886 // If we don't know any bits, early out. 2887 if (Known.isUnknown()) 2888 break; 2889 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2890 2891 // Only known if known in both the LHS and RHS. 2892 Known.One &= Known2.One; 2893 Known.Zero &= Known2.Zero; 2894 break; 2895 case ISD::SMULO: 2896 case ISD::UMULO: 2897 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2898 if (Op.getResNo() != 1) 2899 break; 2900 // The boolean result conforms to getBooleanContents. 2901 // If we know the result of a setcc has the top bits zero, use this info. 2902 // We know that we have an integer-based boolean since these operations 2903 // are only available for integer. 2904 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2905 TargetLowering::ZeroOrOneBooleanContent && 2906 BitWidth > 1) 2907 Known.Zero.setBitsFrom(1); 2908 break; 2909 case ISD::SETCC: 2910 case ISD::STRICT_FSETCC: 2911 case ISD::STRICT_FSETCCS: { 2912 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2913 // If we know the result of a setcc has the top bits zero, use this info. 2914 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2915 TargetLowering::ZeroOrOneBooleanContent && 2916 BitWidth > 1) 2917 Known.Zero.setBitsFrom(1); 2918 break; 2919 } 2920 case ISD::SHL: 2921 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2922 2923 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2924 unsigned Shift = ShAmt->getZExtValue(); 2925 Known.Zero <<= Shift; 2926 Known.One <<= Shift; 2927 // Low bits are known zero. 2928 Known.Zero.setLowBits(Shift); 2929 break; 2930 } 2931 2932 // No matter the shift amount, the trailing zeros will stay zero. 2933 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2934 Known.One.clearAllBits(); 2935 2936 // Minimum shift low bits are known zero. 2937 if (const APInt *ShMinAmt = 2938 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2939 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2940 break; 2941 case ISD::SRL: 2942 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2943 2944 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2945 unsigned Shift = ShAmt->getZExtValue(); 2946 Known.Zero.lshrInPlace(Shift); 2947 Known.One.lshrInPlace(Shift); 2948 // High bits are known zero. 2949 Known.Zero.setHighBits(Shift); 2950 break; 2951 } 2952 2953 // No matter the shift amount, the leading zeros will stay zero. 2954 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2955 Known.One.clearAllBits(); 2956 2957 // Minimum shift high bits are known zero. 2958 if (const APInt *ShMinAmt = 2959 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2960 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2961 break; 2962 case ISD::SRA: 2963 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2964 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2965 unsigned Shift = ShAmt->getZExtValue(); 2966 // Sign extend known zero/one bit (else is unknown). 2967 Known.Zero.ashrInPlace(Shift); 2968 Known.One.ashrInPlace(Shift); 2969 } 2970 break; 2971 case ISD::FSHL: 2972 case ISD::FSHR: 2973 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2974 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2975 2976 // For fshl, 0-shift returns the 1st arg. 2977 // For fshr, 0-shift returns the 2nd arg. 2978 if (Amt == 0) { 2979 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2980 DemandedElts, Depth + 1); 2981 break; 2982 } 2983 2984 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2985 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2986 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2987 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2988 if (Opcode == ISD::FSHL) { 2989 Known.One <<= Amt; 2990 Known.Zero <<= Amt; 2991 Known2.One.lshrInPlace(BitWidth - Amt); 2992 Known2.Zero.lshrInPlace(BitWidth - Amt); 2993 } else { 2994 Known.One <<= BitWidth - Amt; 2995 Known.Zero <<= BitWidth - Amt; 2996 Known2.One.lshrInPlace(Amt); 2997 Known2.Zero.lshrInPlace(Amt); 2998 } 2999 Known.One |= Known2.One; 3000 Known.Zero |= Known2.Zero; 3001 } 3002 break; 3003 case ISD::SIGN_EXTEND_INREG: { 3004 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3005 unsigned EBits = EVT.getScalarSizeInBits(); 3006 3007 // Sign extension. Compute the demanded bits in the result that are not 3008 // present in the input. 3009 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3010 3011 APInt InSignMask = APInt::getSignMask(EBits); 3012 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3013 3014 // If the sign extended bits are demanded, we know that the sign 3015 // bit is demanded. 3016 InSignMask = InSignMask.zext(BitWidth); 3017 if (NewBits.getBoolValue()) 3018 InputDemandedBits |= InSignMask; 3019 3020 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3021 Known.One &= InputDemandedBits; 3022 Known.Zero &= InputDemandedBits; 3023 3024 // If the sign bit of the input is known set or clear, then we know the 3025 // top bits of the result. 3026 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3027 Known.Zero |= NewBits; 3028 Known.One &= ~NewBits; 3029 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3030 Known.One |= NewBits; 3031 Known.Zero &= ~NewBits; 3032 } else { // Input sign bit unknown 3033 Known.Zero &= ~NewBits; 3034 Known.One &= ~NewBits; 3035 } 3036 break; 3037 } 3038 case ISD::CTTZ: 3039 case ISD::CTTZ_ZERO_UNDEF: { 3040 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3041 // If we have a known 1, its position is our upper bound. 3042 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3043 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3044 Known.Zero.setBitsFrom(LowBits); 3045 break; 3046 } 3047 case ISD::CTLZ: 3048 case ISD::CTLZ_ZERO_UNDEF: { 3049 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3050 // If we have a known 1, its position is our upper bound. 3051 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3052 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3053 Known.Zero.setBitsFrom(LowBits); 3054 break; 3055 } 3056 case ISD::CTPOP: { 3057 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3058 // If we know some of the bits are zero, they can't be one. 3059 unsigned PossibleOnes = Known2.countMaxPopulation(); 3060 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3061 break; 3062 } 3063 case ISD::PARITY: { 3064 // Parity returns 0 everywhere but the LSB. 3065 Known.Zero.setBitsFrom(1); 3066 break; 3067 } 3068 case ISD::LOAD: { 3069 LoadSDNode *LD = cast<LoadSDNode>(Op); 3070 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3071 if (ISD::isNON_EXTLoad(LD) && Cst) { 3072 // Determine any common known bits from the loaded constant pool value. 3073 Type *CstTy = Cst->getType(); 3074 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3075 // If its a vector splat, then we can (quickly) reuse the scalar path. 3076 // NOTE: We assume all elements match and none are UNDEF. 3077 if (CstTy->isVectorTy()) { 3078 if (const Constant *Splat = Cst->getSplatValue()) { 3079 Cst = Splat; 3080 CstTy = Cst->getType(); 3081 } 3082 } 3083 // TODO - do we need to handle different bitwidths? 3084 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3085 // Iterate across all vector elements finding common known bits. 3086 Known.One.setAllBits(); 3087 Known.Zero.setAllBits(); 3088 for (unsigned i = 0; i != NumElts; ++i) { 3089 if (!DemandedElts[i]) 3090 continue; 3091 if (Constant *Elt = Cst->getAggregateElement(i)) { 3092 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3093 const APInt &Value = CInt->getValue(); 3094 Known.One &= Value; 3095 Known.Zero &= ~Value; 3096 continue; 3097 } 3098 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3099 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3100 Known.One &= Value; 3101 Known.Zero &= ~Value; 3102 continue; 3103 } 3104 } 3105 Known.One.clearAllBits(); 3106 Known.Zero.clearAllBits(); 3107 break; 3108 } 3109 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3110 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3111 const APInt &Value = CInt->getValue(); 3112 Known.One = Value; 3113 Known.Zero = ~Value; 3114 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3115 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3116 Known.One = Value; 3117 Known.Zero = ~Value; 3118 } 3119 } 3120 } 3121 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3122 // If this is a ZEXTLoad and we are looking at the loaded value. 3123 EVT VT = LD->getMemoryVT(); 3124 unsigned MemBits = VT.getScalarSizeInBits(); 3125 Known.Zero.setBitsFrom(MemBits); 3126 } else if (const MDNode *Ranges = LD->getRanges()) { 3127 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3128 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3129 } 3130 break; 3131 } 3132 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3133 EVT InVT = Op.getOperand(0).getValueType(); 3134 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3135 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3136 Known = Known.zext(BitWidth); 3137 break; 3138 } 3139 case ISD::ZERO_EXTEND: { 3140 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3141 Known = Known.zext(BitWidth); 3142 break; 3143 } 3144 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3145 EVT InVT = Op.getOperand(0).getValueType(); 3146 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3147 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3148 // If the sign bit is known to be zero or one, then sext will extend 3149 // it to the top bits, else it will just zext. 3150 Known = Known.sext(BitWidth); 3151 break; 3152 } 3153 case ISD::SIGN_EXTEND: { 3154 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3155 // If the sign bit is known to be zero or one, then sext will extend 3156 // it to the top bits, else it will just zext. 3157 Known = Known.sext(BitWidth); 3158 break; 3159 } 3160 case ISD::ANY_EXTEND_VECTOR_INREG: { 3161 EVT InVT = Op.getOperand(0).getValueType(); 3162 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3163 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3164 Known = Known.anyext(BitWidth); 3165 break; 3166 } 3167 case ISD::ANY_EXTEND: { 3168 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3169 Known = Known.anyext(BitWidth); 3170 break; 3171 } 3172 case ISD::TRUNCATE: { 3173 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3174 Known = Known.trunc(BitWidth); 3175 break; 3176 } 3177 case ISD::AssertZext: { 3178 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3179 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3180 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3181 Known.Zero |= (~InMask); 3182 Known.One &= (~Known.Zero); 3183 break; 3184 } 3185 case ISD::AssertAlign: { 3186 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3187 assert(LogOfAlign != 0); 3188 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3189 // well as clearing one bits. 3190 Known.Zero.setLowBits(LogOfAlign); 3191 Known.One.clearLowBits(LogOfAlign); 3192 break; 3193 } 3194 case ISD::FGETSIGN: 3195 // All bits are zero except the low bit. 3196 Known.Zero.setBitsFrom(1); 3197 break; 3198 case ISD::USUBO: 3199 case ISD::SSUBO: 3200 if (Op.getResNo() == 1) { 3201 // If we know the result of a setcc has the top bits zero, use this info. 3202 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3203 TargetLowering::ZeroOrOneBooleanContent && 3204 BitWidth > 1) 3205 Known.Zero.setBitsFrom(1); 3206 break; 3207 } 3208 LLVM_FALLTHROUGH; 3209 case ISD::SUB: 3210 case ISD::SUBC: { 3211 assert(Op.getResNo() == 0 && 3212 "We only compute knownbits for the difference here."); 3213 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3216 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3217 Known, Known2); 3218 break; 3219 } 3220 case ISD::UADDO: 3221 case ISD::SADDO: 3222 case ISD::ADDCARRY: 3223 if (Op.getResNo() == 1) { 3224 // If we know the result of a setcc has the top bits zero, use this info. 3225 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3226 TargetLowering::ZeroOrOneBooleanContent && 3227 BitWidth > 1) 3228 Known.Zero.setBitsFrom(1); 3229 break; 3230 } 3231 LLVM_FALLTHROUGH; 3232 case ISD::ADD: 3233 case ISD::ADDC: 3234 case ISD::ADDE: { 3235 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3236 3237 // With ADDE and ADDCARRY, a carry bit may be added in. 3238 KnownBits Carry(1); 3239 if (Opcode == ISD::ADDE) 3240 // Can't track carry from glue, set carry to unknown. 3241 Carry.resetAll(); 3242 else if (Opcode == ISD::ADDCARRY) 3243 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3244 // the trouble (how often will we find a known carry bit). And I haven't 3245 // tested this very much yet, but something like this might work: 3246 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3247 // Carry = Carry.zextOrTrunc(1, false); 3248 Carry.resetAll(); 3249 else 3250 Carry.setAllZero(); 3251 3252 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3253 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3254 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3255 break; 3256 } 3257 case ISD::SREM: 3258 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3259 const APInt &RA = Rem->getAPIntValue().abs(); 3260 if (RA.isPowerOf2()) { 3261 APInt LowBits = RA - 1; 3262 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3263 3264 // The low bits of the first operand are unchanged by the srem. 3265 Known.Zero = Known2.Zero & LowBits; 3266 Known.One = Known2.One & LowBits; 3267 3268 // If the first operand is non-negative or has all low bits zero, then 3269 // the upper bits are all zero. 3270 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3271 Known.Zero |= ~LowBits; 3272 3273 // If the first operand is negative and not all low bits are zero, then 3274 // the upper bits are all one. 3275 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3276 Known.One |= ~LowBits; 3277 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3278 } 3279 } 3280 break; 3281 case ISD::UREM: { 3282 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3283 const APInt &RA = Rem->getAPIntValue(); 3284 if (RA.isPowerOf2()) { 3285 APInt LowBits = (RA - 1); 3286 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3287 3288 // The upper bits are all zero, the lower ones are unchanged. 3289 Known.Zero = Known2.Zero | ~LowBits; 3290 Known.One = Known2.One & LowBits; 3291 break; 3292 } 3293 } 3294 3295 // Since the result is less than or equal to either operand, any leading 3296 // zero bits in either operand must also exist in the result. 3297 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3298 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3299 3300 uint32_t Leaders = 3301 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3302 Known.resetAll(); 3303 Known.Zero.setHighBits(Leaders); 3304 break; 3305 } 3306 case ISD::EXTRACT_ELEMENT: { 3307 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3308 const unsigned Index = Op.getConstantOperandVal(1); 3309 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3310 3311 // Remove low part of known bits mask 3312 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3313 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3314 3315 // Remove high part of known bit mask 3316 Known = Known.trunc(EltBitWidth); 3317 break; 3318 } 3319 case ISD::EXTRACT_VECTOR_ELT: { 3320 SDValue InVec = Op.getOperand(0); 3321 SDValue EltNo = Op.getOperand(1); 3322 EVT VecVT = InVec.getValueType(); 3323 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3324 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3325 3326 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3327 // anything about the extended bits. 3328 if (BitWidth > EltBitWidth) 3329 Known = Known.trunc(EltBitWidth); 3330 3331 // If we know the element index, just demand that vector element, else for 3332 // an unknown element index, ignore DemandedElts and demand them all. 3333 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3334 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3335 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3336 DemandedSrcElts = 3337 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3338 3339 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3340 if (BitWidth > EltBitWidth) 3341 Known = Known.anyext(BitWidth); 3342 break; 3343 } 3344 case ISD::INSERT_VECTOR_ELT: { 3345 // If we know the element index, split the demand between the 3346 // source vector and the inserted element, otherwise assume we need 3347 // the original demanded vector elements and the value. 3348 SDValue InVec = Op.getOperand(0); 3349 SDValue InVal = Op.getOperand(1); 3350 SDValue EltNo = Op.getOperand(2); 3351 bool DemandedVal = true; 3352 APInt DemandedVecElts = DemandedElts; 3353 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3354 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3355 unsigned EltIdx = CEltNo->getZExtValue(); 3356 DemandedVal = !!DemandedElts[EltIdx]; 3357 DemandedVecElts.clearBit(EltIdx); 3358 } 3359 Known.One.setAllBits(); 3360 Known.Zero.setAllBits(); 3361 if (DemandedVal) { 3362 Known2 = computeKnownBits(InVal, Depth + 1); 3363 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3364 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3365 } 3366 if (!!DemandedVecElts) { 3367 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3368 Known.One &= Known2.One; 3369 Known.Zero &= Known2.Zero; 3370 } 3371 break; 3372 } 3373 case ISD::BITREVERSE: { 3374 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3375 Known = Known2.reverseBits(); 3376 break; 3377 } 3378 case ISD::BSWAP: { 3379 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3380 Known = Known2.byteSwap(); 3381 break; 3382 } 3383 case ISD::ABS: { 3384 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3385 Known = Known2.abs(); 3386 break; 3387 } 3388 case ISD::UMIN: { 3389 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3390 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3391 Known = KnownBits::umin(Known, Known2); 3392 break; 3393 } 3394 case ISD::UMAX: { 3395 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3396 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3397 Known = KnownBits::umax(Known, Known2); 3398 break; 3399 } 3400 case ISD::SMIN: 3401 case ISD::SMAX: { 3402 // If we have a clamp pattern, we know that the number of sign bits will be 3403 // the minimum of the clamp min/max range. 3404 bool IsMax = (Opcode == ISD::SMAX); 3405 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3406 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3407 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3408 CstHigh = 3409 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3410 if (CstLow && CstHigh) { 3411 if (!IsMax) 3412 std::swap(CstLow, CstHigh); 3413 3414 const APInt &ValueLow = CstLow->getAPIntValue(); 3415 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3416 if (ValueLow.sle(ValueHigh)) { 3417 unsigned LowSignBits = ValueLow.getNumSignBits(); 3418 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3419 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3420 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3421 Known.One.setHighBits(MinSignBits); 3422 break; 3423 } 3424 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3425 Known.Zero.setHighBits(MinSignBits); 3426 break; 3427 } 3428 } 3429 } 3430 3431 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3432 if (Known.isUnknown()) break; // Early-out 3433 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3434 if (IsMax) 3435 Known = KnownBits::smax(Known, Known2); 3436 else 3437 Known = KnownBits::smin(Known, Known2); 3438 break; 3439 } 3440 case ISD::FrameIndex: 3441 case ISD::TargetFrameIndex: 3442 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3443 Known, getMachineFunction()); 3444 break; 3445 3446 default: 3447 if (Opcode < ISD::BUILTIN_OP_END) 3448 break; 3449 LLVM_FALLTHROUGH; 3450 case ISD::INTRINSIC_WO_CHAIN: 3451 case ISD::INTRINSIC_W_CHAIN: 3452 case ISD::INTRINSIC_VOID: 3453 // Allow the target to implement this method for its nodes. 3454 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3455 break; 3456 } 3457 3458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3459 return Known; 3460 } 3461 3462 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3463 SDValue N1) const { 3464 // X + 0 never overflow 3465 if (isNullConstant(N1)) 3466 return OFK_Never; 3467 3468 KnownBits N1Known = computeKnownBits(N1); 3469 if (N1Known.Zero.getBoolValue()) { 3470 KnownBits N0Known = computeKnownBits(N0); 3471 3472 bool overflow; 3473 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3474 if (!overflow) 3475 return OFK_Never; 3476 } 3477 3478 // mulhi + 1 never overflow 3479 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3480 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3481 return OFK_Never; 3482 3483 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3484 KnownBits N0Known = computeKnownBits(N0); 3485 3486 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3487 return OFK_Never; 3488 } 3489 3490 return OFK_Sometime; 3491 } 3492 3493 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3494 EVT OpVT = Val.getValueType(); 3495 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3496 3497 // Is the constant a known power of 2? 3498 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3499 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3500 3501 // A left-shift of a constant one will have exactly one bit set because 3502 // shifting the bit off the end is undefined. 3503 if (Val.getOpcode() == ISD::SHL) { 3504 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3505 if (C && C->getAPIntValue() == 1) 3506 return true; 3507 } 3508 3509 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3510 // one bit set. 3511 if (Val.getOpcode() == ISD::SRL) { 3512 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3513 if (C && C->getAPIntValue().isSignMask()) 3514 return true; 3515 } 3516 3517 // Are all operands of a build vector constant powers of two? 3518 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3519 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3520 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3521 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3522 return false; 3523 })) 3524 return true; 3525 3526 // More could be done here, though the above checks are enough 3527 // to handle some common cases. 3528 3529 // Fall back to computeKnownBits to catch other known cases. 3530 KnownBits Known = computeKnownBits(Val); 3531 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3532 } 3533 3534 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3535 EVT VT = Op.getValueType(); 3536 3537 // TODO: Assume we don't know anything for now. 3538 if (VT.isScalableVector()) 3539 return 1; 3540 3541 APInt DemandedElts = VT.isVector() 3542 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3543 : APInt(1, 1); 3544 return ComputeNumSignBits(Op, DemandedElts, Depth); 3545 } 3546 3547 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3548 unsigned Depth) const { 3549 EVT VT = Op.getValueType(); 3550 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3551 unsigned VTBits = VT.getScalarSizeInBits(); 3552 unsigned NumElts = DemandedElts.getBitWidth(); 3553 unsigned Tmp, Tmp2; 3554 unsigned FirstAnswer = 1; 3555 3556 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3557 const APInt &Val = C->getAPIntValue(); 3558 return Val.getNumSignBits(); 3559 } 3560 3561 if (Depth >= MaxRecursionDepth) 3562 return 1; // Limit search depth. 3563 3564 if (!DemandedElts || VT.isScalableVector()) 3565 return 1; // No demanded elts, better to assume we don't know anything. 3566 3567 unsigned Opcode = Op.getOpcode(); 3568 switch (Opcode) { 3569 default: break; 3570 case ISD::AssertSext: 3571 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3572 return VTBits-Tmp+1; 3573 case ISD::AssertZext: 3574 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3575 return VTBits-Tmp; 3576 3577 case ISD::BUILD_VECTOR: 3578 Tmp = VTBits; 3579 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3580 if (!DemandedElts[i]) 3581 continue; 3582 3583 SDValue SrcOp = Op.getOperand(i); 3584 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3585 3586 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3587 if (SrcOp.getValueSizeInBits() != VTBits) { 3588 assert(SrcOp.getValueSizeInBits() > VTBits && 3589 "Expected BUILD_VECTOR implicit truncation"); 3590 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3591 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3592 } 3593 Tmp = std::min(Tmp, Tmp2); 3594 } 3595 return Tmp; 3596 3597 case ISD::VECTOR_SHUFFLE: { 3598 // Collect the minimum number of sign bits that are shared by every vector 3599 // element referenced by the shuffle. 3600 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3601 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3602 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3603 for (unsigned i = 0; i != NumElts; ++i) { 3604 int M = SVN->getMaskElt(i); 3605 if (!DemandedElts[i]) 3606 continue; 3607 // For UNDEF elements, we don't know anything about the common state of 3608 // the shuffle result. 3609 if (M < 0) 3610 return 1; 3611 if ((unsigned)M < NumElts) 3612 DemandedLHS.setBit((unsigned)M % NumElts); 3613 else 3614 DemandedRHS.setBit((unsigned)M % NumElts); 3615 } 3616 Tmp = std::numeric_limits<unsigned>::max(); 3617 if (!!DemandedLHS) 3618 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3619 if (!!DemandedRHS) { 3620 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3621 Tmp = std::min(Tmp, Tmp2); 3622 } 3623 // If we don't know anything, early out and try computeKnownBits fall-back. 3624 if (Tmp == 1) 3625 break; 3626 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3627 return Tmp; 3628 } 3629 3630 case ISD::BITCAST: { 3631 SDValue N0 = Op.getOperand(0); 3632 EVT SrcVT = N0.getValueType(); 3633 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3634 3635 // Ignore bitcasts from unsupported types.. 3636 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3637 break; 3638 3639 // Fast handling of 'identity' bitcasts. 3640 if (VTBits == SrcBits) 3641 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3642 3643 bool IsLE = getDataLayout().isLittleEndian(); 3644 3645 // Bitcast 'large element' scalar/vector to 'small element' vector. 3646 if ((SrcBits % VTBits) == 0) { 3647 assert(VT.isVector() && "Expected bitcast to vector"); 3648 3649 unsigned Scale = SrcBits / VTBits; 3650 APInt SrcDemandedElts(NumElts / Scale, 0); 3651 for (unsigned i = 0; i != NumElts; ++i) 3652 if (DemandedElts[i]) 3653 SrcDemandedElts.setBit(i / Scale); 3654 3655 // Fast case - sign splat can be simply split across the small elements. 3656 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3657 if (Tmp == SrcBits) 3658 return VTBits; 3659 3660 // Slow case - determine how far the sign extends into each sub-element. 3661 Tmp2 = VTBits; 3662 for (unsigned i = 0; i != NumElts; ++i) 3663 if (DemandedElts[i]) { 3664 unsigned SubOffset = i % Scale; 3665 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3666 SubOffset = SubOffset * VTBits; 3667 if (Tmp <= SubOffset) 3668 return 1; 3669 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3670 } 3671 return Tmp2; 3672 } 3673 break; 3674 } 3675 3676 case ISD::SIGN_EXTEND: 3677 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3678 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3679 case ISD::SIGN_EXTEND_INREG: 3680 // Max of the input and what this extends. 3681 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3682 Tmp = VTBits-Tmp+1; 3683 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3684 return std::max(Tmp, Tmp2); 3685 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3686 SDValue Src = Op.getOperand(0); 3687 EVT SrcVT = Src.getValueType(); 3688 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3689 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3690 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3691 } 3692 case ISD::SRA: 3693 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3694 // SRA X, C -> adds C sign bits. 3695 if (const APInt *ShAmt = 3696 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3697 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3698 return Tmp; 3699 case ISD::SHL: 3700 if (const APInt *ShAmt = 3701 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3702 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3703 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3704 if (ShAmt->ult(Tmp)) 3705 return Tmp - ShAmt->getZExtValue(); 3706 } 3707 break; 3708 case ISD::AND: 3709 case ISD::OR: 3710 case ISD::XOR: // NOT is handled here. 3711 // Logical binary ops preserve the number of sign bits at the worst. 3712 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3713 if (Tmp != 1) { 3714 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3715 FirstAnswer = std::min(Tmp, Tmp2); 3716 // We computed what we know about the sign bits as our first 3717 // answer. Now proceed to the generic code that uses 3718 // computeKnownBits, and pick whichever answer is better. 3719 } 3720 break; 3721 3722 case ISD::SELECT: 3723 case ISD::VSELECT: 3724 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3725 if (Tmp == 1) return 1; // Early out. 3726 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3727 return std::min(Tmp, Tmp2); 3728 case ISD::SELECT_CC: 3729 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3730 if (Tmp == 1) return 1; // Early out. 3731 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3732 return std::min(Tmp, Tmp2); 3733 3734 case ISD::SMIN: 3735 case ISD::SMAX: { 3736 // If we have a clamp pattern, we know that the number of sign bits will be 3737 // the minimum of the clamp min/max range. 3738 bool IsMax = (Opcode == ISD::SMAX); 3739 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3740 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3741 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3742 CstHigh = 3743 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3744 if (CstLow && CstHigh) { 3745 if (!IsMax) 3746 std::swap(CstLow, CstHigh); 3747 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3748 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3749 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3750 return std::min(Tmp, Tmp2); 3751 } 3752 } 3753 3754 // Fallback - just get the minimum number of sign bits of the operands. 3755 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3756 if (Tmp == 1) 3757 return 1; // Early out. 3758 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3759 return std::min(Tmp, Tmp2); 3760 } 3761 case ISD::UMIN: 3762 case ISD::UMAX: 3763 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3764 if (Tmp == 1) 3765 return 1; // Early out. 3766 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3767 return std::min(Tmp, Tmp2); 3768 case ISD::SADDO: 3769 case ISD::UADDO: 3770 case ISD::SSUBO: 3771 case ISD::USUBO: 3772 case ISD::SMULO: 3773 case ISD::UMULO: 3774 if (Op.getResNo() != 1) 3775 break; 3776 // The boolean result conforms to getBooleanContents. Fall through. 3777 // If setcc returns 0/-1, all bits are sign bits. 3778 // We know that we have an integer-based boolean since these operations 3779 // are only available for integer. 3780 if (TLI->getBooleanContents(VT.isVector(), false) == 3781 TargetLowering::ZeroOrNegativeOneBooleanContent) 3782 return VTBits; 3783 break; 3784 case ISD::SETCC: 3785 case ISD::STRICT_FSETCC: 3786 case ISD::STRICT_FSETCCS: { 3787 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3788 // If setcc returns 0/-1, all bits are sign bits. 3789 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3790 TargetLowering::ZeroOrNegativeOneBooleanContent) 3791 return VTBits; 3792 break; 3793 } 3794 case ISD::ROTL: 3795 case ISD::ROTR: 3796 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3797 3798 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3799 if (Tmp == VTBits) 3800 return VTBits; 3801 3802 if (ConstantSDNode *C = 3803 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3804 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3805 3806 // Handle rotate right by N like a rotate left by 32-N. 3807 if (Opcode == ISD::ROTR) 3808 RotAmt = (VTBits - RotAmt) % VTBits; 3809 3810 // If we aren't rotating out all of the known-in sign bits, return the 3811 // number that are left. This handles rotl(sext(x), 1) for example. 3812 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3813 } 3814 break; 3815 case ISD::ADD: 3816 case ISD::ADDC: 3817 // Add can have at most one carry bit. Thus we know that the output 3818 // is, at worst, one more bit than the inputs. 3819 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3820 if (Tmp == 1) return 1; // Early out. 3821 3822 // Special case decrementing a value (ADD X, -1): 3823 if (ConstantSDNode *CRHS = 3824 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3825 if (CRHS->isAllOnesValue()) { 3826 KnownBits Known = 3827 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3828 3829 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3830 // sign bits set. 3831 if ((Known.Zero | 1).isAllOnesValue()) 3832 return VTBits; 3833 3834 // If we are subtracting one from a positive number, there is no carry 3835 // out of the result. 3836 if (Known.isNonNegative()) 3837 return Tmp; 3838 } 3839 3840 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3841 if (Tmp2 == 1) return 1; // Early out. 3842 return std::min(Tmp, Tmp2) - 1; 3843 case ISD::SUB: 3844 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3845 if (Tmp2 == 1) return 1; // Early out. 3846 3847 // Handle NEG. 3848 if (ConstantSDNode *CLHS = 3849 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3850 if (CLHS->isNullValue()) { 3851 KnownBits Known = 3852 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3853 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3854 // sign bits set. 3855 if ((Known.Zero | 1).isAllOnesValue()) 3856 return VTBits; 3857 3858 // If the input is known to be positive (the sign bit is known clear), 3859 // the output of the NEG has the same number of sign bits as the input. 3860 if (Known.isNonNegative()) 3861 return Tmp2; 3862 3863 // Otherwise, we treat this like a SUB. 3864 } 3865 3866 // Sub can have at most one carry bit. Thus we know that the output 3867 // is, at worst, one more bit than the inputs. 3868 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3869 if (Tmp == 1) return 1; // Early out. 3870 return std::min(Tmp, Tmp2) - 1; 3871 case ISD::MUL: { 3872 // The output of the Mul can be at most twice the valid bits in the inputs. 3873 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3874 if (SignBitsOp0 == 1) 3875 break; 3876 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3877 if (SignBitsOp1 == 1) 3878 break; 3879 unsigned OutValidBits = 3880 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3881 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3882 } 3883 case ISD::TRUNCATE: { 3884 // Check if the sign bits of source go down as far as the truncated value. 3885 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3886 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3887 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3888 return NumSrcSignBits - (NumSrcBits - VTBits); 3889 break; 3890 } 3891 case ISD::EXTRACT_ELEMENT: { 3892 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3893 const int BitWidth = Op.getValueSizeInBits(); 3894 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3895 3896 // Get reverse index (starting from 1), Op1 value indexes elements from 3897 // little end. Sign starts at big end. 3898 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3899 3900 // If the sign portion ends in our element the subtraction gives correct 3901 // result. Otherwise it gives either negative or > bitwidth result 3902 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3903 } 3904 case ISD::INSERT_VECTOR_ELT: { 3905 // If we know the element index, split the demand between the 3906 // source vector and the inserted element, otherwise assume we need 3907 // the original demanded vector elements and the value. 3908 SDValue InVec = Op.getOperand(0); 3909 SDValue InVal = Op.getOperand(1); 3910 SDValue EltNo = Op.getOperand(2); 3911 bool DemandedVal = true; 3912 APInt DemandedVecElts = DemandedElts; 3913 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3914 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3915 unsigned EltIdx = CEltNo->getZExtValue(); 3916 DemandedVal = !!DemandedElts[EltIdx]; 3917 DemandedVecElts.clearBit(EltIdx); 3918 } 3919 Tmp = std::numeric_limits<unsigned>::max(); 3920 if (DemandedVal) { 3921 // TODO - handle implicit truncation of inserted elements. 3922 if (InVal.getScalarValueSizeInBits() != VTBits) 3923 break; 3924 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3925 Tmp = std::min(Tmp, Tmp2); 3926 } 3927 if (!!DemandedVecElts) { 3928 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3929 Tmp = std::min(Tmp, Tmp2); 3930 } 3931 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3932 return Tmp; 3933 } 3934 case ISD::EXTRACT_VECTOR_ELT: { 3935 SDValue InVec = Op.getOperand(0); 3936 SDValue EltNo = Op.getOperand(1); 3937 EVT VecVT = InVec.getValueType(); 3938 const unsigned BitWidth = Op.getValueSizeInBits(); 3939 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3940 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3941 3942 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3943 // anything about sign bits. But if the sizes match we can derive knowledge 3944 // about sign bits from the vector operand. 3945 if (BitWidth != EltBitWidth) 3946 break; 3947 3948 // If we know the element index, just demand that vector element, else for 3949 // an unknown element index, ignore DemandedElts and demand them all. 3950 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3951 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3952 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3953 DemandedSrcElts = 3954 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3955 3956 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3957 } 3958 case ISD::EXTRACT_SUBVECTOR: { 3959 // Offset the demanded elts by the subvector index. 3960 SDValue Src = Op.getOperand(0); 3961 // Bail until we can represent demanded elements for scalable vectors. 3962 if (Src.getValueType().isScalableVector()) 3963 break; 3964 uint64_t Idx = Op.getConstantOperandVal(1); 3965 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3966 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3967 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3968 } 3969 case ISD::CONCAT_VECTORS: { 3970 // Determine the minimum number of sign bits across all demanded 3971 // elts of the input vectors. Early out if the result is already 1. 3972 Tmp = std::numeric_limits<unsigned>::max(); 3973 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3974 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3975 unsigned NumSubVectors = Op.getNumOperands(); 3976 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3977 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3978 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3979 if (!DemandedSub) 3980 continue; 3981 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3982 Tmp = std::min(Tmp, Tmp2); 3983 } 3984 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3985 return Tmp; 3986 } 3987 case ISD::INSERT_SUBVECTOR: { 3988 // Demand any elements from the subvector and the remainder from the src its 3989 // inserted into. 3990 SDValue Src = Op.getOperand(0); 3991 SDValue Sub = Op.getOperand(1); 3992 uint64_t Idx = Op.getConstantOperandVal(2); 3993 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3994 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3995 APInt DemandedSrcElts = DemandedElts; 3996 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3997 3998 Tmp = std::numeric_limits<unsigned>::max(); 3999 if (!!DemandedSubElts) { 4000 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4001 if (Tmp == 1) 4002 return 1; // early-out 4003 } 4004 if (!!DemandedSrcElts) { 4005 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4006 Tmp = std::min(Tmp, Tmp2); 4007 } 4008 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4009 return Tmp; 4010 } 4011 } 4012 4013 // If we are looking at the loaded value of the SDNode. 4014 if (Op.getResNo() == 0) { 4015 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4016 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4017 unsigned ExtType = LD->getExtensionType(); 4018 switch (ExtType) { 4019 default: break; 4020 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4021 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4022 return VTBits - Tmp + 1; 4023 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4024 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4025 return VTBits - Tmp; 4026 case ISD::NON_EXTLOAD: 4027 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4028 // We only need to handle vectors - computeKnownBits should handle 4029 // scalar cases. 4030 Type *CstTy = Cst->getType(); 4031 if (CstTy->isVectorTy() && 4032 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4033 Tmp = VTBits; 4034 for (unsigned i = 0; i != NumElts; ++i) { 4035 if (!DemandedElts[i]) 4036 continue; 4037 if (Constant *Elt = Cst->getAggregateElement(i)) { 4038 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4039 const APInt &Value = CInt->getValue(); 4040 Tmp = std::min(Tmp, Value.getNumSignBits()); 4041 continue; 4042 } 4043 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4044 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4045 Tmp = std::min(Tmp, Value.getNumSignBits()); 4046 continue; 4047 } 4048 } 4049 // Unknown type. Conservatively assume no bits match sign bit. 4050 return 1; 4051 } 4052 return Tmp; 4053 } 4054 } 4055 break; 4056 } 4057 } 4058 } 4059 4060 // Allow the target to implement this method for its nodes. 4061 if (Opcode >= ISD::BUILTIN_OP_END || 4062 Opcode == ISD::INTRINSIC_WO_CHAIN || 4063 Opcode == ISD::INTRINSIC_W_CHAIN || 4064 Opcode == ISD::INTRINSIC_VOID) { 4065 unsigned NumBits = 4066 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4067 if (NumBits > 1) 4068 FirstAnswer = std::max(FirstAnswer, NumBits); 4069 } 4070 4071 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4072 // use this information. 4073 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4074 4075 APInt Mask; 4076 if (Known.isNonNegative()) { // sign bit is 0 4077 Mask = Known.Zero; 4078 } else if (Known.isNegative()) { // sign bit is 1; 4079 Mask = Known.One; 4080 } else { 4081 // Nothing known. 4082 return FirstAnswer; 4083 } 4084 4085 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4086 // the number of identical bits in the top of the input value. 4087 Mask <<= Mask.getBitWidth()-VTBits; 4088 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4089 } 4090 4091 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4092 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4093 !isa<ConstantSDNode>(Op.getOperand(1))) 4094 return false; 4095 4096 if (Op.getOpcode() == ISD::OR && 4097 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4098 return false; 4099 4100 return true; 4101 } 4102 4103 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4104 // If we're told that NaNs won't happen, assume they won't. 4105 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4106 return true; 4107 4108 if (Depth >= MaxRecursionDepth) 4109 return false; // Limit search depth. 4110 4111 // TODO: Handle vectors. 4112 // If the value is a constant, we can obviously see if it is a NaN or not. 4113 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4114 return !C->getValueAPF().isNaN() || 4115 (SNaN && !C->getValueAPF().isSignaling()); 4116 } 4117 4118 unsigned Opcode = Op.getOpcode(); 4119 switch (Opcode) { 4120 case ISD::FADD: 4121 case ISD::FSUB: 4122 case ISD::FMUL: 4123 case ISD::FDIV: 4124 case ISD::FREM: 4125 case ISD::FSIN: 4126 case ISD::FCOS: { 4127 if (SNaN) 4128 return true; 4129 // TODO: Need isKnownNeverInfinity 4130 return false; 4131 } 4132 case ISD::FCANONICALIZE: 4133 case ISD::FEXP: 4134 case ISD::FEXP2: 4135 case ISD::FTRUNC: 4136 case ISD::FFLOOR: 4137 case ISD::FCEIL: 4138 case ISD::FROUND: 4139 case ISD::FROUNDEVEN: 4140 case ISD::FRINT: 4141 case ISD::FNEARBYINT: { 4142 if (SNaN) 4143 return true; 4144 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4145 } 4146 case ISD::FABS: 4147 case ISD::FNEG: 4148 case ISD::FCOPYSIGN: { 4149 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4150 } 4151 case ISD::SELECT: 4152 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4153 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4154 case ISD::FP_EXTEND: 4155 case ISD::FP_ROUND: { 4156 if (SNaN) 4157 return true; 4158 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4159 } 4160 case ISD::SINT_TO_FP: 4161 case ISD::UINT_TO_FP: 4162 return true; 4163 case ISD::FMA: 4164 case ISD::FMAD: { 4165 if (SNaN) 4166 return true; 4167 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4168 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4169 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4170 } 4171 case ISD::FSQRT: // Need is known positive 4172 case ISD::FLOG: 4173 case ISD::FLOG2: 4174 case ISD::FLOG10: 4175 case ISD::FPOWI: 4176 case ISD::FPOW: { 4177 if (SNaN) 4178 return true; 4179 // TODO: Refine on operand 4180 return false; 4181 } 4182 case ISD::FMINNUM: 4183 case ISD::FMAXNUM: { 4184 // Only one needs to be known not-nan, since it will be returned if the 4185 // other ends up being one. 4186 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4187 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4188 } 4189 case ISD::FMINNUM_IEEE: 4190 case ISD::FMAXNUM_IEEE: { 4191 if (SNaN) 4192 return true; 4193 // This can return a NaN if either operand is an sNaN, or if both operands 4194 // are NaN. 4195 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4196 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4197 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4198 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4199 } 4200 case ISD::FMINIMUM: 4201 case ISD::FMAXIMUM: { 4202 // TODO: Does this quiet or return the origina NaN as-is? 4203 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4204 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4205 } 4206 case ISD::EXTRACT_VECTOR_ELT: { 4207 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4208 } 4209 default: 4210 if (Opcode >= ISD::BUILTIN_OP_END || 4211 Opcode == ISD::INTRINSIC_WO_CHAIN || 4212 Opcode == ISD::INTRINSIC_W_CHAIN || 4213 Opcode == ISD::INTRINSIC_VOID) { 4214 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4215 } 4216 4217 return false; 4218 } 4219 } 4220 4221 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4222 assert(Op.getValueType().isFloatingPoint() && 4223 "Floating point type expected"); 4224 4225 // If the value is a constant, we can obviously see if it is a zero or not. 4226 // TODO: Add BuildVector support. 4227 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4228 return !C->isZero(); 4229 return false; 4230 } 4231 4232 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4233 assert(!Op.getValueType().isFloatingPoint() && 4234 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4235 4236 // If the value is a constant, we can obviously see if it is a zero or not. 4237 if (ISD::matchUnaryPredicate( 4238 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4239 return true; 4240 4241 // TODO: Recognize more cases here. 4242 switch (Op.getOpcode()) { 4243 default: break; 4244 case ISD::OR: 4245 if (isKnownNeverZero(Op.getOperand(1)) || 4246 isKnownNeverZero(Op.getOperand(0))) 4247 return true; 4248 break; 4249 } 4250 4251 return false; 4252 } 4253 4254 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4255 // Check the obvious case. 4256 if (A == B) return true; 4257 4258 // For for negative and positive zero. 4259 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4260 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4261 if (CA->isZero() && CB->isZero()) return true; 4262 4263 // Otherwise they may not be equal. 4264 return false; 4265 } 4266 4267 // FIXME: unify with llvm::haveNoCommonBitsSet. 4268 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4269 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4270 assert(A.getValueType() == B.getValueType() && 4271 "Values must have the same type"); 4272 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4273 } 4274 4275 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4276 ArrayRef<SDValue> Ops, 4277 SelectionDAG &DAG) { 4278 int NumOps = Ops.size(); 4279 assert(NumOps != 0 && "Can't build an empty vector!"); 4280 assert(!VT.isScalableVector() && 4281 "BUILD_VECTOR cannot be used with scalable types"); 4282 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4283 "Incorrect element count in BUILD_VECTOR!"); 4284 4285 // BUILD_VECTOR of UNDEFs is UNDEF. 4286 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4287 return DAG.getUNDEF(VT); 4288 4289 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4290 SDValue IdentitySrc; 4291 bool IsIdentity = true; 4292 for (int i = 0; i != NumOps; ++i) { 4293 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4294 Ops[i].getOperand(0).getValueType() != VT || 4295 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4296 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4297 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4298 IsIdentity = false; 4299 break; 4300 } 4301 IdentitySrc = Ops[i].getOperand(0); 4302 } 4303 if (IsIdentity) 4304 return IdentitySrc; 4305 4306 return SDValue(); 4307 } 4308 4309 /// Try to simplify vector concatenation to an input value, undef, or build 4310 /// vector. 4311 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4312 ArrayRef<SDValue> Ops, 4313 SelectionDAG &DAG) { 4314 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4315 assert(llvm::all_of(Ops, 4316 [Ops](SDValue Op) { 4317 return Ops[0].getValueType() == Op.getValueType(); 4318 }) && 4319 "Concatenation of vectors with inconsistent value types!"); 4320 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4321 VT.getVectorElementCount() && 4322 "Incorrect element count in vector concatenation!"); 4323 4324 if (Ops.size() == 1) 4325 return Ops[0]; 4326 4327 // Concat of UNDEFs is UNDEF. 4328 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4329 return DAG.getUNDEF(VT); 4330 4331 // Scan the operands and look for extract operations from a single source 4332 // that correspond to insertion at the same location via this concatenation: 4333 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4334 SDValue IdentitySrc; 4335 bool IsIdentity = true; 4336 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4337 SDValue Op = Ops[i]; 4338 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4339 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4340 Op.getOperand(0).getValueType() != VT || 4341 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4342 Op.getConstantOperandVal(1) != IdentityIndex) { 4343 IsIdentity = false; 4344 break; 4345 } 4346 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4347 "Unexpected identity source vector for concat of extracts"); 4348 IdentitySrc = Op.getOperand(0); 4349 } 4350 if (IsIdentity) { 4351 assert(IdentitySrc && "Failed to set source vector of extracts"); 4352 return IdentitySrc; 4353 } 4354 4355 // The code below this point is only designed to work for fixed width 4356 // vectors, so we bail out for now. 4357 if (VT.isScalableVector()) 4358 return SDValue(); 4359 4360 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4361 // simplified to one big BUILD_VECTOR. 4362 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4363 EVT SVT = VT.getScalarType(); 4364 SmallVector<SDValue, 16> Elts; 4365 for (SDValue Op : Ops) { 4366 EVT OpVT = Op.getValueType(); 4367 if (Op.isUndef()) 4368 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4369 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4370 Elts.append(Op->op_begin(), Op->op_end()); 4371 else 4372 return SDValue(); 4373 } 4374 4375 // BUILD_VECTOR requires all inputs to be of the same type, find the 4376 // maximum type and extend them all. 4377 for (SDValue Op : Elts) 4378 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4379 4380 if (SVT.bitsGT(VT.getScalarType())) { 4381 for (SDValue &Op : Elts) { 4382 if (Op.isUndef()) 4383 Op = DAG.getUNDEF(SVT); 4384 else 4385 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4386 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4387 : DAG.getSExtOrTrunc(Op, DL, SVT); 4388 } 4389 } 4390 4391 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4392 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4393 return V; 4394 } 4395 4396 /// Gets or creates the specified node. 4397 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4398 FoldingSetNodeID ID; 4399 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4400 void *IP = nullptr; 4401 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4402 return SDValue(E, 0); 4403 4404 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4405 getVTList(VT)); 4406 CSEMap.InsertNode(N, IP); 4407 4408 InsertNode(N); 4409 SDValue V = SDValue(N, 0); 4410 NewSDValueDbgMsg(V, "Creating new node: ", this); 4411 return V; 4412 } 4413 4414 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4415 SDValue Operand) { 4416 SDNodeFlags Flags; 4417 if (Inserter) 4418 Flags = Inserter->getFlags(); 4419 return getNode(Opcode, DL, VT, Operand, Flags); 4420 } 4421 4422 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4423 SDValue Operand, const SDNodeFlags Flags) { 4424 // Constant fold unary operations with an integer constant operand. Even 4425 // opaque constant will be folded, because the folding of unary operations 4426 // doesn't create new constants with different values. Nevertheless, the 4427 // opaque flag is preserved during folding to prevent future folding with 4428 // other constants. 4429 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4430 const APInt &Val = C->getAPIntValue(); 4431 switch (Opcode) { 4432 default: break; 4433 case ISD::SIGN_EXTEND: 4434 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4435 C->isTargetOpcode(), C->isOpaque()); 4436 case ISD::TRUNCATE: 4437 if (C->isOpaque()) 4438 break; 4439 LLVM_FALLTHROUGH; 4440 case ISD::ANY_EXTEND: 4441 case ISD::ZERO_EXTEND: 4442 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4443 C->isTargetOpcode(), C->isOpaque()); 4444 case ISD::UINT_TO_FP: 4445 case ISD::SINT_TO_FP: { 4446 APFloat apf(EVTToAPFloatSemantics(VT), 4447 APInt::getNullValue(VT.getSizeInBits())); 4448 (void)apf.convertFromAPInt(Val, 4449 Opcode==ISD::SINT_TO_FP, 4450 APFloat::rmNearestTiesToEven); 4451 return getConstantFP(apf, DL, VT); 4452 } 4453 case ISD::BITCAST: 4454 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4455 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4456 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4457 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4458 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4459 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4460 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4461 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4462 break; 4463 case ISD::ABS: 4464 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4465 C->isOpaque()); 4466 case ISD::BITREVERSE: 4467 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4468 C->isOpaque()); 4469 case ISD::BSWAP: 4470 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4471 C->isOpaque()); 4472 case ISD::CTPOP: 4473 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4474 C->isOpaque()); 4475 case ISD::CTLZ: 4476 case ISD::CTLZ_ZERO_UNDEF: 4477 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4478 C->isOpaque()); 4479 case ISD::CTTZ: 4480 case ISD::CTTZ_ZERO_UNDEF: 4481 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4482 C->isOpaque()); 4483 case ISD::FP16_TO_FP: { 4484 bool Ignored; 4485 APFloat FPV(APFloat::IEEEhalf(), 4486 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4487 4488 // This can return overflow, underflow, or inexact; we don't care. 4489 // FIXME need to be more flexible about rounding mode. 4490 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4491 APFloat::rmNearestTiesToEven, &Ignored); 4492 return getConstantFP(FPV, DL, VT); 4493 } 4494 } 4495 } 4496 4497 // Constant fold unary operations with a floating point constant operand. 4498 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4499 APFloat V = C->getValueAPF(); // make copy 4500 switch (Opcode) { 4501 case ISD::FNEG: 4502 V.changeSign(); 4503 return getConstantFP(V, DL, VT); 4504 case ISD::FABS: 4505 V.clearSign(); 4506 return getConstantFP(V, DL, VT); 4507 case ISD::FCEIL: { 4508 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4509 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4510 return getConstantFP(V, DL, VT); 4511 break; 4512 } 4513 case ISD::FTRUNC: { 4514 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4515 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4516 return getConstantFP(V, DL, VT); 4517 break; 4518 } 4519 case ISD::FFLOOR: { 4520 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4521 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4522 return getConstantFP(V, DL, VT); 4523 break; 4524 } 4525 case ISD::FP_EXTEND: { 4526 bool ignored; 4527 // This can return overflow, underflow, or inexact; we don't care. 4528 // FIXME need to be more flexible about rounding mode. 4529 (void)V.convert(EVTToAPFloatSemantics(VT), 4530 APFloat::rmNearestTiesToEven, &ignored); 4531 return getConstantFP(V, DL, VT); 4532 } 4533 case ISD::FP_TO_SINT: 4534 case ISD::FP_TO_UINT: { 4535 bool ignored; 4536 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4537 // FIXME need to be more flexible about rounding mode. 4538 APFloat::opStatus s = 4539 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4540 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4541 break; 4542 return getConstant(IntVal, DL, VT); 4543 } 4544 case ISD::BITCAST: 4545 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4546 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4547 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4548 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4549 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4550 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4551 break; 4552 case ISD::FP_TO_FP16: { 4553 bool Ignored; 4554 // This can return overflow, underflow, or inexact; we don't care. 4555 // FIXME need to be more flexible about rounding mode. 4556 (void)V.convert(APFloat::IEEEhalf(), 4557 APFloat::rmNearestTiesToEven, &Ignored); 4558 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4559 } 4560 } 4561 } 4562 4563 // Constant fold unary operations with a vector integer or float operand. 4564 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4565 if (BV->isConstant()) { 4566 switch (Opcode) { 4567 default: 4568 // FIXME: Entirely reasonable to perform folding of other unary 4569 // operations here as the need arises. 4570 break; 4571 case ISD::FNEG: 4572 case ISD::FABS: 4573 case ISD::FCEIL: 4574 case ISD::FTRUNC: 4575 case ISD::FFLOOR: 4576 case ISD::FP_EXTEND: 4577 case ISD::FP_TO_SINT: 4578 case ISD::FP_TO_UINT: 4579 case ISD::TRUNCATE: 4580 case ISD::ANY_EXTEND: 4581 case ISD::ZERO_EXTEND: 4582 case ISD::SIGN_EXTEND: 4583 case ISD::UINT_TO_FP: 4584 case ISD::SINT_TO_FP: 4585 case ISD::ABS: 4586 case ISD::BITREVERSE: 4587 case ISD::BSWAP: 4588 case ISD::CTLZ: 4589 case ISD::CTLZ_ZERO_UNDEF: 4590 case ISD::CTTZ: 4591 case ISD::CTTZ_ZERO_UNDEF: 4592 case ISD::CTPOP: { 4593 SDValue Ops = { Operand }; 4594 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4595 return Fold; 4596 } 4597 } 4598 } 4599 } 4600 4601 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4602 switch (Opcode) { 4603 case ISD::FREEZE: 4604 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4605 break; 4606 case ISD::TokenFactor: 4607 case ISD::MERGE_VALUES: 4608 case ISD::CONCAT_VECTORS: 4609 return Operand; // Factor, merge or concat of one node? No need. 4610 case ISD::BUILD_VECTOR: { 4611 // Attempt to simplify BUILD_VECTOR. 4612 SDValue Ops[] = {Operand}; 4613 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4614 return V; 4615 break; 4616 } 4617 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4618 case ISD::FP_EXTEND: 4619 assert(VT.isFloatingPoint() && 4620 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4621 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4622 assert((!VT.isVector() || 4623 VT.getVectorElementCount() == 4624 Operand.getValueType().getVectorElementCount()) && 4625 "Vector element count mismatch!"); 4626 assert(Operand.getValueType().bitsLT(VT) && 4627 "Invalid fpext node, dst < src!"); 4628 if (Operand.isUndef()) 4629 return getUNDEF(VT); 4630 break; 4631 case ISD::FP_TO_SINT: 4632 case ISD::FP_TO_UINT: 4633 if (Operand.isUndef()) 4634 return getUNDEF(VT); 4635 break; 4636 case ISD::SINT_TO_FP: 4637 case ISD::UINT_TO_FP: 4638 // [us]itofp(undef) = 0, because the result value is bounded. 4639 if (Operand.isUndef()) 4640 return getConstantFP(0.0, DL, VT); 4641 break; 4642 case ISD::SIGN_EXTEND: 4643 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4644 "Invalid SIGN_EXTEND!"); 4645 assert(VT.isVector() == Operand.getValueType().isVector() && 4646 "SIGN_EXTEND result type type should be vector iff the operand " 4647 "type is vector!"); 4648 if (Operand.getValueType() == VT) return Operand; // noop extension 4649 assert((!VT.isVector() || 4650 VT.getVectorElementCount() == 4651 Operand.getValueType().getVectorElementCount()) && 4652 "Vector element count mismatch!"); 4653 assert(Operand.getValueType().bitsLT(VT) && 4654 "Invalid sext node, dst < src!"); 4655 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4656 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4657 else if (OpOpcode == ISD::UNDEF) 4658 // sext(undef) = 0, because the top bits will all be the same. 4659 return getConstant(0, DL, VT); 4660 break; 4661 case ISD::ZERO_EXTEND: 4662 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4663 "Invalid ZERO_EXTEND!"); 4664 assert(VT.isVector() == Operand.getValueType().isVector() && 4665 "ZERO_EXTEND result type type should be vector iff the operand " 4666 "type is vector!"); 4667 if (Operand.getValueType() == VT) return Operand; // noop extension 4668 assert((!VT.isVector() || 4669 VT.getVectorElementCount() == 4670 Operand.getValueType().getVectorElementCount()) && 4671 "Vector element count mismatch!"); 4672 assert(Operand.getValueType().bitsLT(VT) && 4673 "Invalid zext node, dst < src!"); 4674 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4675 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4676 else if (OpOpcode == ISD::UNDEF) 4677 // zext(undef) = 0, because the top bits will be zero. 4678 return getConstant(0, DL, VT); 4679 break; 4680 case ISD::ANY_EXTEND: 4681 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4682 "Invalid ANY_EXTEND!"); 4683 assert(VT.isVector() == Operand.getValueType().isVector() && 4684 "ANY_EXTEND result type type should be vector iff the operand " 4685 "type is vector!"); 4686 if (Operand.getValueType() == VT) return Operand; // noop extension 4687 assert((!VT.isVector() || 4688 VT.getVectorElementCount() == 4689 Operand.getValueType().getVectorElementCount()) && 4690 "Vector element count mismatch!"); 4691 assert(Operand.getValueType().bitsLT(VT) && 4692 "Invalid anyext node, dst < src!"); 4693 4694 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4695 OpOpcode == ISD::ANY_EXTEND) 4696 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4697 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4698 else if (OpOpcode == ISD::UNDEF) 4699 return getUNDEF(VT); 4700 4701 // (ext (trunc x)) -> x 4702 if (OpOpcode == ISD::TRUNCATE) { 4703 SDValue OpOp = Operand.getOperand(0); 4704 if (OpOp.getValueType() == VT) { 4705 transferDbgValues(Operand, OpOp); 4706 return OpOp; 4707 } 4708 } 4709 break; 4710 case ISD::TRUNCATE: 4711 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4712 "Invalid TRUNCATE!"); 4713 assert(VT.isVector() == Operand.getValueType().isVector() && 4714 "TRUNCATE result type type should be vector iff the operand " 4715 "type is vector!"); 4716 if (Operand.getValueType() == VT) return Operand; // noop truncate 4717 assert((!VT.isVector() || 4718 VT.getVectorElementCount() == 4719 Operand.getValueType().getVectorElementCount()) && 4720 "Vector element count mismatch!"); 4721 assert(Operand.getValueType().bitsGT(VT) && 4722 "Invalid truncate node, src < dst!"); 4723 if (OpOpcode == ISD::TRUNCATE) 4724 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4725 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4726 OpOpcode == ISD::ANY_EXTEND) { 4727 // If the source is smaller than the dest, we still need an extend. 4728 if (Operand.getOperand(0).getValueType().getScalarType() 4729 .bitsLT(VT.getScalarType())) 4730 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4731 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4732 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4733 return Operand.getOperand(0); 4734 } 4735 if (OpOpcode == ISD::UNDEF) 4736 return getUNDEF(VT); 4737 break; 4738 case ISD::ANY_EXTEND_VECTOR_INREG: 4739 case ISD::ZERO_EXTEND_VECTOR_INREG: 4740 case ISD::SIGN_EXTEND_VECTOR_INREG: 4741 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4742 assert(Operand.getValueType().bitsLE(VT) && 4743 "The input must be the same size or smaller than the result."); 4744 assert(VT.getVectorNumElements() < 4745 Operand.getValueType().getVectorNumElements() && 4746 "The destination vector type must have fewer lanes than the input."); 4747 break; 4748 case ISD::ABS: 4749 assert(VT.isInteger() && VT == Operand.getValueType() && 4750 "Invalid ABS!"); 4751 if (OpOpcode == ISD::UNDEF) 4752 return getUNDEF(VT); 4753 break; 4754 case ISD::BSWAP: 4755 assert(VT.isInteger() && VT == Operand.getValueType() && 4756 "Invalid BSWAP!"); 4757 assert((VT.getScalarSizeInBits() % 16 == 0) && 4758 "BSWAP types must be a multiple of 16 bits!"); 4759 if (OpOpcode == ISD::UNDEF) 4760 return getUNDEF(VT); 4761 break; 4762 case ISD::BITREVERSE: 4763 assert(VT.isInteger() && VT == Operand.getValueType() && 4764 "Invalid BITREVERSE!"); 4765 if (OpOpcode == ISD::UNDEF) 4766 return getUNDEF(VT); 4767 break; 4768 case ISD::BITCAST: 4769 // Basic sanity checking. 4770 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4771 "Cannot BITCAST between types of different sizes!"); 4772 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4773 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4774 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4775 if (OpOpcode == ISD::UNDEF) 4776 return getUNDEF(VT); 4777 break; 4778 case ISD::SCALAR_TO_VECTOR: 4779 assert(VT.isVector() && !Operand.getValueType().isVector() && 4780 (VT.getVectorElementType() == Operand.getValueType() || 4781 (VT.getVectorElementType().isInteger() && 4782 Operand.getValueType().isInteger() && 4783 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4784 "Illegal SCALAR_TO_VECTOR node!"); 4785 if (OpOpcode == ISD::UNDEF) 4786 return getUNDEF(VT); 4787 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4788 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4789 isa<ConstantSDNode>(Operand.getOperand(1)) && 4790 Operand.getConstantOperandVal(1) == 0 && 4791 Operand.getOperand(0).getValueType() == VT) 4792 return Operand.getOperand(0); 4793 break; 4794 case ISD::FNEG: 4795 // Negation of an unknown bag of bits is still completely undefined. 4796 if (OpOpcode == ISD::UNDEF) 4797 return getUNDEF(VT); 4798 4799 if (OpOpcode == ISD::FNEG) // --X -> X 4800 return Operand.getOperand(0); 4801 break; 4802 case ISD::FABS: 4803 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4804 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4805 break; 4806 case ISD::VSCALE: 4807 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4808 break; 4809 } 4810 4811 SDNode *N; 4812 SDVTList VTs = getVTList(VT); 4813 SDValue Ops[] = {Operand}; 4814 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4815 FoldingSetNodeID ID; 4816 AddNodeIDNode(ID, Opcode, VTs, Ops); 4817 void *IP = nullptr; 4818 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4819 E->intersectFlagsWith(Flags); 4820 return SDValue(E, 0); 4821 } 4822 4823 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4824 N->setFlags(Flags); 4825 createOperands(N, Ops); 4826 CSEMap.InsertNode(N, IP); 4827 } else { 4828 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4829 createOperands(N, Ops); 4830 } 4831 4832 InsertNode(N); 4833 SDValue V = SDValue(N, 0); 4834 NewSDValueDbgMsg(V, "Creating new node: ", this); 4835 return V; 4836 } 4837 4838 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4839 const APInt &C2) { 4840 switch (Opcode) { 4841 case ISD::ADD: return C1 + C2; 4842 case ISD::SUB: return C1 - C2; 4843 case ISD::MUL: return C1 * C2; 4844 case ISD::AND: return C1 & C2; 4845 case ISD::OR: return C1 | C2; 4846 case ISD::XOR: return C1 ^ C2; 4847 case ISD::SHL: return C1 << C2; 4848 case ISD::SRL: return C1.lshr(C2); 4849 case ISD::SRA: return C1.ashr(C2); 4850 case ISD::ROTL: return C1.rotl(C2); 4851 case ISD::ROTR: return C1.rotr(C2); 4852 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4853 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4854 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4855 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4856 case ISD::SADDSAT: return C1.sadd_sat(C2); 4857 case ISD::UADDSAT: return C1.uadd_sat(C2); 4858 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4859 case ISD::USUBSAT: return C1.usub_sat(C2); 4860 case ISD::UDIV: 4861 if (!C2.getBoolValue()) 4862 break; 4863 return C1.udiv(C2); 4864 case ISD::UREM: 4865 if (!C2.getBoolValue()) 4866 break; 4867 return C1.urem(C2); 4868 case ISD::SDIV: 4869 if (!C2.getBoolValue()) 4870 break; 4871 return C1.sdiv(C2); 4872 case ISD::SREM: 4873 if (!C2.getBoolValue()) 4874 break; 4875 return C1.srem(C2); 4876 } 4877 return llvm::None; 4878 } 4879 4880 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4881 const GlobalAddressSDNode *GA, 4882 const SDNode *N2) { 4883 if (GA->getOpcode() != ISD::GlobalAddress) 4884 return SDValue(); 4885 if (!TLI->isOffsetFoldingLegal(GA)) 4886 return SDValue(); 4887 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4888 if (!C2) 4889 return SDValue(); 4890 int64_t Offset = C2->getSExtValue(); 4891 switch (Opcode) { 4892 case ISD::ADD: break; 4893 case ISD::SUB: Offset = -uint64_t(Offset); break; 4894 default: return SDValue(); 4895 } 4896 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4897 GA->getOffset() + uint64_t(Offset)); 4898 } 4899 4900 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4901 switch (Opcode) { 4902 case ISD::SDIV: 4903 case ISD::UDIV: 4904 case ISD::SREM: 4905 case ISD::UREM: { 4906 // If a divisor is zero/undef or any element of a divisor vector is 4907 // zero/undef, the whole op is undef. 4908 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4909 SDValue Divisor = Ops[1]; 4910 if (Divisor.isUndef() || isNullConstant(Divisor)) 4911 return true; 4912 4913 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4914 llvm::any_of(Divisor->op_values(), 4915 [](SDValue V) { return V.isUndef() || 4916 isNullConstant(V); }); 4917 // TODO: Handle signed overflow. 4918 } 4919 // TODO: Handle oversized shifts. 4920 default: 4921 return false; 4922 } 4923 } 4924 4925 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4926 EVT VT, ArrayRef<SDValue> Ops) { 4927 // If the opcode is a target-specific ISD node, there's nothing we can 4928 // do here and the operand rules may not line up with the below, so 4929 // bail early. 4930 if (Opcode >= ISD::BUILTIN_OP_END) 4931 return SDValue(); 4932 4933 // For now, the array Ops should only contain two values. 4934 // This enforcement will be removed once this function is merged with 4935 // FoldConstantVectorArithmetic 4936 if (Ops.size() != 2) 4937 return SDValue(); 4938 4939 if (isUndef(Opcode, Ops)) 4940 return getUNDEF(VT); 4941 4942 SDNode *N1 = Ops[0].getNode(); 4943 SDNode *N2 = Ops[1].getNode(); 4944 4945 // Handle the case of two scalars. 4946 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4947 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4948 if (C1->isOpaque() || C2->isOpaque()) 4949 return SDValue(); 4950 4951 Optional<APInt> FoldAttempt = 4952 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4953 if (!FoldAttempt) 4954 return SDValue(); 4955 4956 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4957 assert((!Folded || !VT.isVector()) && 4958 "Can't fold vectors ops with scalar operands"); 4959 return Folded; 4960 } 4961 } 4962 4963 // fold (add Sym, c) -> Sym+c 4964 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4965 return FoldSymbolOffset(Opcode, VT, GA, N2); 4966 if (TLI->isCommutativeBinOp(Opcode)) 4967 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4968 return FoldSymbolOffset(Opcode, VT, GA, N1); 4969 4970 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4971 // vector width, however we should be able to do constant folds involving 4972 // splat vector nodes too. 4973 if (VT.isScalableVector()) 4974 return SDValue(); 4975 4976 // For fixed width vectors, extract each constant element and fold them 4977 // individually. Either input may be an undef value. 4978 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4979 if (!BV1 && !N1->isUndef()) 4980 return SDValue(); 4981 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4982 if (!BV2 && !N2->isUndef()) 4983 return SDValue(); 4984 // If both operands are undef, that's handled the same way as scalars. 4985 if (!BV1 && !BV2) 4986 return SDValue(); 4987 4988 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4989 "Vector binop with different number of elements in operands?"); 4990 4991 EVT SVT = VT.getScalarType(); 4992 EVT LegalSVT = SVT; 4993 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4994 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4995 if (LegalSVT.bitsLT(SVT)) 4996 return SDValue(); 4997 } 4998 SmallVector<SDValue, 4> Outputs; 4999 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5000 for (unsigned I = 0; I != NumOps; ++I) { 5001 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5002 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5003 if (SVT.isInteger()) { 5004 if (V1->getValueType(0).bitsGT(SVT)) 5005 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5006 if (V2->getValueType(0).bitsGT(SVT)) 5007 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5008 } 5009 5010 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5011 return SDValue(); 5012 5013 // Fold one vector element. 5014 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5015 if (LegalSVT != SVT) 5016 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5017 5018 // Scalar folding only succeeded if the result is a constant or UNDEF. 5019 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5020 ScalarResult.getOpcode() != ISD::ConstantFP) 5021 return SDValue(); 5022 Outputs.push_back(ScalarResult); 5023 } 5024 5025 assert(VT.getVectorNumElements() == Outputs.size() && 5026 "Vector size mismatch!"); 5027 5028 // We may have a vector type but a scalar result. Create a splat. 5029 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5030 5031 // Build a big vector out of the scalar elements we generated. 5032 return getBuildVector(VT, SDLoc(), Outputs); 5033 } 5034 5035 // TODO: Merge with FoldConstantArithmetic 5036 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5037 const SDLoc &DL, EVT VT, 5038 ArrayRef<SDValue> Ops, 5039 const SDNodeFlags Flags) { 5040 // If the opcode is a target-specific ISD node, there's nothing we can 5041 // do here and the operand rules may not line up with the below, so 5042 // bail early. 5043 if (Opcode >= ISD::BUILTIN_OP_END) 5044 return SDValue(); 5045 5046 if (isUndef(Opcode, Ops)) 5047 return getUNDEF(VT); 5048 5049 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5050 if (!VT.isVector()) 5051 return SDValue(); 5052 5053 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5054 // vector width, however we should be able to do constant folds involving 5055 // splat vector nodes too. 5056 if (VT.isScalableVector()) 5057 return SDValue(); 5058 5059 // From this point onwards all vectors are assumed to be fixed width. 5060 unsigned NumElts = VT.getVectorNumElements(); 5061 5062 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5063 return !Op.getValueType().isVector() || 5064 Op.getValueType().getVectorNumElements() == NumElts; 5065 }; 5066 5067 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5068 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5069 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5070 (BV && BV->isConstant()); 5071 }; 5072 5073 // All operands must be vector types with the same number of elements as 5074 // the result type and must be either UNDEF or a build vector of constant 5075 // or UNDEF scalars. 5076 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5077 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5078 return SDValue(); 5079 5080 // If we are comparing vectors, then the result needs to be a i1 boolean 5081 // that is then sign-extended back to the legal result type. 5082 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5083 5084 // Find legal integer scalar type for constant promotion and 5085 // ensure that its scalar size is at least as large as source. 5086 EVT LegalSVT = VT.getScalarType(); 5087 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5088 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5089 if (LegalSVT.bitsLT(VT.getScalarType())) 5090 return SDValue(); 5091 } 5092 5093 // Constant fold each scalar lane separately. 5094 SmallVector<SDValue, 4> ScalarResults; 5095 for (unsigned i = 0; i != NumElts; i++) { 5096 SmallVector<SDValue, 4> ScalarOps; 5097 for (SDValue Op : Ops) { 5098 EVT InSVT = Op.getValueType().getScalarType(); 5099 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5100 if (!InBV) { 5101 // We've checked that this is UNDEF or a constant of some kind. 5102 if (Op.isUndef()) 5103 ScalarOps.push_back(getUNDEF(InSVT)); 5104 else 5105 ScalarOps.push_back(Op); 5106 continue; 5107 } 5108 5109 SDValue ScalarOp = InBV->getOperand(i); 5110 EVT ScalarVT = ScalarOp.getValueType(); 5111 5112 // Build vector (integer) scalar operands may need implicit 5113 // truncation - do this before constant folding. 5114 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5115 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5116 5117 ScalarOps.push_back(ScalarOp); 5118 } 5119 5120 // Constant fold the scalar operands. 5121 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5122 5123 // Legalize the (integer) scalar constant if necessary. 5124 if (LegalSVT != SVT) 5125 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5126 5127 // Scalar folding only succeeded if the result is a constant or UNDEF. 5128 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5129 ScalarResult.getOpcode() != ISD::ConstantFP) 5130 return SDValue(); 5131 ScalarResults.push_back(ScalarResult); 5132 } 5133 5134 SDValue V = getBuildVector(VT, DL, ScalarResults); 5135 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5136 return V; 5137 } 5138 5139 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5140 EVT VT, SDValue N1, SDValue N2) { 5141 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5142 // should. That will require dealing with a potentially non-default 5143 // rounding mode, checking the "opStatus" return value from the APFloat 5144 // math calculations, and possibly other variations. 5145 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5146 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5147 if (N1CFP && N2CFP) { 5148 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5149 switch (Opcode) { 5150 case ISD::FADD: 5151 C1.add(C2, APFloat::rmNearestTiesToEven); 5152 return getConstantFP(C1, DL, VT); 5153 case ISD::FSUB: 5154 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5155 return getConstantFP(C1, DL, VT); 5156 case ISD::FMUL: 5157 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5158 return getConstantFP(C1, DL, VT); 5159 case ISD::FDIV: 5160 C1.divide(C2, APFloat::rmNearestTiesToEven); 5161 return getConstantFP(C1, DL, VT); 5162 case ISD::FREM: 5163 C1.mod(C2); 5164 return getConstantFP(C1, DL, VT); 5165 case ISD::FCOPYSIGN: 5166 C1.copySign(C2); 5167 return getConstantFP(C1, DL, VT); 5168 default: break; 5169 } 5170 } 5171 if (N1CFP && Opcode == ISD::FP_ROUND) { 5172 APFloat C1 = N1CFP->getValueAPF(); // make copy 5173 bool Unused; 5174 // This can return overflow, underflow, or inexact; we don't care. 5175 // FIXME need to be more flexible about rounding mode. 5176 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5177 &Unused); 5178 return getConstantFP(C1, DL, VT); 5179 } 5180 5181 switch (Opcode) { 5182 case ISD::FSUB: 5183 // -0.0 - undef --> undef (consistent with "fneg undef") 5184 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5185 return getUNDEF(VT); 5186 LLVM_FALLTHROUGH; 5187 5188 case ISD::FADD: 5189 case ISD::FMUL: 5190 case ISD::FDIV: 5191 case ISD::FREM: 5192 // If both operands are undef, the result is undef. If 1 operand is undef, 5193 // the result is NaN. This should match the behavior of the IR optimizer. 5194 if (N1.isUndef() && N2.isUndef()) 5195 return getUNDEF(VT); 5196 if (N1.isUndef() || N2.isUndef()) 5197 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5198 } 5199 return SDValue(); 5200 } 5201 5202 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5203 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5204 5205 // There's no need to assert on a byte-aligned pointer. All pointers are at 5206 // least byte aligned. 5207 if (A == Align(1)) 5208 return Val; 5209 5210 FoldingSetNodeID ID; 5211 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5212 ID.AddInteger(A.value()); 5213 5214 void *IP = nullptr; 5215 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5216 return SDValue(E, 0); 5217 5218 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5219 Val.getValueType(), A); 5220 createOperands(N, {Val}); 5221 5222 CSEMap.InsertNode(N, IP); 5223 InsertNode(N); 5224 5225 SDValue V(N, 0); 5226 NewSDValueDbgMsg(V, "Creating new node: ", this); 5227 return V; 5228 } 5229 5230 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5231 SDValue N1, SDValue N2) { 5232 SDNodeFlags Flags; 5233 if (Inserter) 5234 Flags = Inserter->getFlags(); 5235 return getNode(Opcode, DL, VT, N1, N2, Flags); 5236 } 5237 5238 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5239 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5240 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5241 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5242 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5243 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5244 5245 // Canonicalize constant to RHS if commutative. 5246 if (TLI->isCommutativeBinOp(Opcode)) { 5247 if (N1C && !N2C) { 5248 std::swap(N1C, N2C); 5249 std::swap(N1, N2); 5250 } else if (N1CFP && !N2CFP) { 5251 std::swap(N1CFP, N2CFP); 5252 std::swap(N1, N2); 5253 } 5254 } 5255 5256 switch (Opcode) { 5257 default: break; 5258 case ISD::TokenFactor: 5259 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5260 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5261 // Fold trivial token factors. 5262 if (N1.getOpcode() == ISD::EntryToken) return N2; 5263 if (N2.getOpcode() == ISD::EntryToken) return N1; 5264 if (N1 == N2) return N1; 5265 break; 5266 case ISD::BUILD_VECTOR: { 5267 // Attempt to simplify BUILD_VECTOR. 5268 SDValue Ops[] = {N1, N2}; 5269 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5270 return V; 5271 break; 5272 } 5273 case ISD::CONCAT_VECTORS: { 5274 SDValue Ops[] = {N1, N2}; 5275 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5276 return V; 5277 break; 5278 } 5279 case ISD::AND: 5280 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5281 assert(N1.getValueType() == N2.getValueType() && 5282 N1.getValueType() == VT && "Binary operator types must match!"); 5283 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5284 // worth handling here. 5285 if (N2C && N2C->isNullValue()) 5286 return N2; 5287 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5288 return N1; 5289 break; 5290 case ISD::OR: 5291 case ISD::XOR: 5292 case ISD::ADD: 5293 case ISD::SUB: 5294 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5295 assert(N1.getValueType() == N2.getValueType() && 5296 N1.getValueType() == VT && "Binary operator types must match!"); 5297 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5298 // it's worth handling here. 5299 if (N2C && N2C->isNullValue()) 5300 return N1; 5301 break; 5302 case ISD::MUL: 5303 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5304 assert(N1.getValueType() == N2.getValueType() && 5305 N1.getValueType() == VT && "Binary operator types must match!"); 5306 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5307 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5308 APInt N2CImm = N2C->getAPIntValue(); 5309 return getVScale(DL, VT, MulImm * N2CImm); 5310 } 5311 break; 5312 case ISD::UDIV: 5313 case ISD::UREM: 5314 case ISD::MULHU: 5315 case ISD::MULHS: 5316 case ISD::SDIV: 5317 case ISD::SREM: 5318 case ISD::SMIN: 5319 case ISD::SMAX: 5320 case ISD::UMIN: 5321 case ISD::UMAX: 5322 case ISD::SADDSAT: 5323 case ISD::SSUBSAT: 5324 case ISD::UADDSAT: 5325 case ISD::USUBSAT: 5326 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5327 assert(N1.getValueType() == N2.getValueType() && 5328 N1.getValueType() == VT && "Binary operator types must match!"); 5329 break; 5330 case ISD::FADD: 5331 case ISD::FSUB: 5332 case ISD::FMUL: 5333 case ISD::FDIV: 5334 case ISD::FREM: 5335 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5336 assert(N1.getValueType() == N2.getValueType() && 5337 N1.getValueType() == VT && "Binary operator types must match!"); 5338 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5339 return V; 5340 break; 5341 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5342 assert(N1.getValueType() == VT && 5343 N1.getValueType().isFloatingPoint() && 5344 N2.getValueType().isFloatingPoint() && 5345 "Invalid FCOPYSIGN!"); 5346 break; 5347 case ISD::SHL: 5348 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5349 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5350 APInt ShiftImm = N2C->getAPIntValue(); 5351 return getVScale(DL, VT, MulImm << ShiftImm); 5352 } 5353 LLVM_FALLTHROUGH; 5354 case ISD::SRA: 5355 case ISD::SRL: 5356 if (SDValue V = simplifyShift(N1, N2)) 5357 return V; 5358 LLVM_FALLTHROUGH; 5359 case ISD::ROTL: 5360 case ISD::ROTR: 5361 assert(VT == N1.getValueType() && 5362 "Shift operators return type must be the same as their first arg"); 5363 assert(VT.isInteger() && N2.getValueType().isInteger() && 5364 "Shifts only work on integers"); 5365 assert((!VT.isVector() || VT == N2.getValueType()) && 5366 "Vector shift amounts must be in the same as their first arg"); 5367 // Verify that the shift amount VT is big enough to hold valid shift 5368 // amounts. This catches things like trying to shift an i1024 value by an 5369 // i8, which is easy to fall into in generic code that uses 5370 // TLI.getShiftAmount(). 5371 assert(N2.getValueType().getScalarSizeInBits() >= 5372 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5373 "Invalid use of small shift amount with oversized value!"); 5374 5375 // Always fold shifts of i1 values so the code generator doesn't need to 5376 // handle them. Since we know the size of the shift has to be less than the 5377 // size of the value, the shift/rotate count is guaranteed to be zero. 5378 if (VT == MVT::i1) 5379 return N1; 5380 if (N2C && N2C->isNullValue()) 5381 return N1; 5382 break; 5383 case ISD::FP_ROUND: 5384 assert(VT.isFloatingPoint() && 5385 N1.getValueType().isFloatingPoint() && 5386 VT.bitsLE(N1.getValueType()) && 5387 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5388 "Invalid FP_ROUND!"); 5389 if (N1.getValueType() == VT) return N1; // noop conversion. 5390 break; 5391 case ISD::AssertSext: 5392 case ISD::AssertZext: { 5393 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5394 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5395 assert(VT.isInteger() && EVT.isInteger() && 5396 "Cannot *_EXTEND_INREG FP types"); 5397 assert(!EVT.isVector() && 5398 "AssertSExt/AssertZExt type should be the vector element type " 5399 "rather than the vector type!"); 5400 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5401 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5402 break; 5403 } 5404 case ISD::SIGN_EXTEND_INREG: { 5405 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5406 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5407 assert(VT.isInteger() && EVT.isInteger() && 5408 "Cannot *_EXTEND_INREG FP types"); 5409 assert(EVT.isVector() == VT.isVector() && 5410 "SIGN_EXTEND_INREG type should be vector iff the operand " 5411 "type is vector!"); 5412 assert((!EVT.isVector() || 5413 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5414 "Vector element counts must match in SIGN_EXTEND_INREG"); 5415 assert(EVT.bitsLE(VT) && "Not extending!"); 5416 if (EVT == VT) return N1; // Not actually extending 5417 5418 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5419 unsigned FromBits = EVT.getScalarSizeInBits(); 5420 Val <<= Val.getBitWidth() - FromBits; 5421 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5422 return getConstant(Val, DL, ConstantVT); 5423 }; 5424 5425 if (N1C) { 5426 const APInt &Val = N1C->getAPIntValue(); 5427 return SignExtendInReg(Val, VT); 5428 } 5429 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5430 SmallVector<SDValue, 8> Ops; 5431 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5432 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5433 SDValue Op = N1.getOperand(i); 5434 if (Op.isUndef()) { 5435 Ops.push_back(getUNDEF(OpVT)); 5436 continue; 5437 } 5438 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5439 APInt Val = C->getAPIntValue(); 5440 Ops.push_back(SignExtendInReg(Val, OpVT)); 5441 } 5442 return getBuildVector(VT, DL, Ops); 5443 } 5444 break; 5445 } 5446 case ISD::EXTRACT_VECTOR_ELT: 5447 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5448 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5449 element type of the vector."); 5450 5451 // Extract from an undefined value or using an undefined index is undefined. 5452 if (N1.isUndef() || N2.isUndef()) 5453 return getUNDEF(VT); 5454 5455 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5456 // vectors. For scalable vectors we will provide appropriate support for 5457 // dealing with arbitrary indices. 5458 if (N2C && N1.getValueType().isFixedLengthVector() && 5459 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5460 return getUNDEF(VT); 5461 5462 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5463 // expanding copies of large vectors from registers. This only works for 5464 // fixed length vectors, since we need to know the exact number of 5465 // elements. 5466 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5467 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5468 unsigned Factor = 5469 N1.getOperand(0).getValueType().getVectorNumElements(); 5470 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5471 N1.getOperand(N2C->getZExtValue() / Factor), 5472 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5473 } 5474 5475 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5476 // lowering is expanding large vector constants. 5477 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5478 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5479 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5480 N1.getValueType().isFixedLengthVector()) && 5481 "BUILD_VECTOR used for scalable vectors"); 5482 unsigned Index = 5483 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5484 SDValue Elt = N1.getOperand(Index); 5485 5486 if (VT != Elt.getValueType()) 5487 // If the vector element type is not legal, the BUILD_VECTOR operands 5488 // are promoted and implicitly truncated, and the result implicitly 5489 // extended. Make that explicit here. 5490 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5491 5492 return Elt; 5493 } 5494 5495 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5496 // operations are lowered to scalars. 5497 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5498 // If the indices are the same, return the inserted element else 5499 // if the indices are known different, extract the element from 5500 // the original vector. 5501 SDValue N1Op2 = N1.getOperand(2); 5502 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5503 5504 if (N1Op2C && N2C) { 5505 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5506 if (VT == N1.getOperand(1).getValueType()) 5507 return N1.getOperand(1); 5508 else 5509 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5510 } 5511 5512 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5513 } 5514 } 5515 5516 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5517 // when vector types are scalarized and v1iX is legal. 5518 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5519 // Here we are completely ignoring the extract element index (N2), 5520 // which is fine for fixed width vectors, since any index other than 0 5521 // is undefined anyway. However, this cannot be ignored for scalable 5522 // vectors - in theory we could support this, but we don't want to do this 5523 // without a profitability check. 5524 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5525 N1.getValueType().isFixedLengthVector() && 5526 N1.getValueType().getVectorNumElements() == 1) { 5527 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5528 N1.getOperand(1)); 5529 } 5530 break; 5531 case ISD::EXTRACT_ELEMENT: 5532 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5533 assert(!N1.getValueType().isVector() && !VT.isVector() && 5534 (N1.getValueType().isInteger() == VT.isInteger()) && 5535 N1.getValueType() != VT && 5536 "Wrong types for EXTRACT_ELEMENT!"); 5537 5538 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5539 // 64-bit integers into 32-bit parts. Instead of building the extract of 5540 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5541 if (N1.getOpcode() == ISD::BUILD_PAIR) 5542 return N1.getOperand(N2C->getZExtValue()); 5543 5544 // EXTRACT_ELEMENT of a constant int is also very common. 5545 if (N1C) { 5546 unsigned ElementSize = VT.getSizeInBits(); 5547 unsigned Shift = ElementSize * N2C->getZExtValue(); 5548 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5549 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5550 } 5551 break; 5552 case ISD::EXTRACT_SUBVECTOR: 5553 EVT N1VT = N1.getValueType(); 5554 assert(VT.isVector() && N1VT.isVector() && 5555 "Extract subvector VTs must be vectors!"); 5556 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5557 "Extract subvector VTs must have the same element type!"); 5558 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5559 "Cannot extract a scalable vector from a fixed length vector!"); 5560 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5561 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5562 "Extract subvector must be from larger vector to smaller vector!"); 5563 assert(N2C && "Extract subvector index must be a constant"); 5564 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5565 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5566 N1VT.getVectorMinNumElements()) && 5567 "Extract subvector overflow!"); 5568 assert(N2C->getAPIntValue().getBitWidth() == 5569 TLI->getVectorIdxTy(getDataLayout()) 5570 .getSizeInBits() 5571 .getFixedSize() && 5572 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5573 5574 // Trivial extraction. 5575 if (VT == N1VT) 5576 return N1; 5577 5578 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5579 if (N1.isUndef()) 5580 return getUNDEF(VT); 5581 5582 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5583 // the concat have the same type as the extract. 5584 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5585 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5586 unsigned Factor = VT.getVectorMinNumElements(); 5587 return N1.getOperand(N2C->getZExtValue() / Factor); 5588 } 5589 5590 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5591 // during shuffle legalization. 5592 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5593 VT == N1.getOperand(1).getValueType()) 5594 return N1.getOperand(1); 5595 break; 5596 } 5597 5598 // Perform trivial constant folding. 5599 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5600 return SV; 5601 5602 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5603 return V; 5604 5605 // Canonicalize an UNDEF to the RHS, even over a constant. 5606 if (N1.isUndef()) { 5607 if (TLI->isCommutativeBinOp(Opcode)) { 5608 std::swap(N1, N2); 5609 } else { 5610 switch (Opcode) { 5611 case ISD::SIGN_EXTEND_INREG: 5612 case ISD::SUB: 5613 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5614 case ISD::UDIV: 5615 case ISD::SDIV: 5616 case ISD::UREM: 5617 case ISD::SREM: 5618 case ISD::SSUBSAT: 5619 case ISD::USUBSAT: 5620 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5621 } 5622 } 5623 } 5624 5625 // Fold a bunch of operators when the RHS is undef. 5626 if (N2.isUndef()) { 5627 switch (Opcode) { 5628 case ISD::XOR: 5629 if (N1.isUndef()) 5630 // Handle undef ^ undef -> 0 special case. This is a common 5631 // idiom (misuse). 5632 return getConstant(0, DL, VT); 5633 LLVM_FALLTHROUGH; 5634 case ISD::ADD: 5635 case ISD::SUB: 5636 case ISD::UDIV: 5637 case ISD::SDIV: 5638 case ISD::UREM: 5639 case ISD::SREM: 5640 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5641 case ISD::MUL: 5642 case ISD::AND: 5643 case ISD::SSUBSAT: 5644 case ISD::USUBSAT: 5645 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5646 case ISD::OR: 5647 case ISD::SADDSAT: 5648 case ISD::UADDSAT: 5649 return getAllOnesConstant(DL, VT); 5650 } 5651 } 5652 5653 // Memoize this node if possible. 5654 SDNode *N; 5655 SDVTList VTs = getVTList(VT); 5656 SDValue Ops[] = {N1, N2}; 5657 if (VT != MVT::Glue) { 5658 FoldingSetNodeID ID; 5659 AddNodeIDNode(ID, Opcode, VTs, Ops); 5660 void *IP = nullptr; 5661 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5662 E->intersectFlagsWith(Flags); 5663 return SDValue(E, 0); 5664 } 5665 5666 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5667 N->setFlags(Flags); 5668 createOperands(N, Ops); 5669 CSEMap.InsertNode(N, IP); 5670 } else { 5671 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5672 createOperands(N, Ops); 5673 } 5674 5675 InsertNode(N); 5676 SDValue V = SDValue(N, 0); 5677 NewSDValueDbgMsg(V, "Creating new node: ", this); 5678 return V; 5679 } 5680 5681 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5682 SDValue N1, SDValue N2, SDValue N3) { 5683 SDNodeFlags Flags; 5684 if (Inserter) 5685 Flags = Inserter->getFlags(); 5686 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5687 } 5688 5689 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5690 SDValue N1, SDValue N2, SDValue N3, 5691 const SDNodeFlags Flags) { 5692 // Perform various simplifications. 5693 switch (Opcode) { 5694 case ISD::FMA: { 5695 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5696 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5697 N3.getValueType() == VT && "FMA types must match!"); 5698 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5699 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5700 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5701 if (N1CFP && N2CFP && N3CFP) { 5702 APFloat V1 = N1CFP->getValueAPF(); 5703 const APFloat &V2 = N2CFP->getValueAPF(); 5704 const APFloat &V3 = N3CFP->getValueAPF(); 5705 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5706 return getConstantFP(V1, DL, VT); 5707 } 5708 break; 5709 } 5710 case ISD::BUILD_VECTOR: { 5711 // Attempt to simplify BUILD_VECTOR. 5712 SDValue Ops[] = {N1, N2, N3}; 5713 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5714 return V; 5715 break; 5716 } 5717 case ISD::CONCAT_VECTORS: { 5718 SDValue Ops[] = {N1, N2, N3}; 5719 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5720 return V; 5721 break; 5722 } 5723 case ISD::SETCC: { 5724 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5725 assert(N1.getValueType() == N2.getValueType() && 5726 "SETCC operands must have the same type!"); 5727 assert(VT.isVector() == N1.getValueType().isVector() && 5728 "SETCC type should be vector iff the operand type is vector!"); 5729 assert((!VT.isVector() || VT.getVectorElementCount() == 5730 N1.getValueType().getVectorElementCount()) && 5731 "SETCC vector element counts must match!"); 5732 // Use FoldSetCC to simplify SETCC's. 5733 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5734 return V; 5735 // Vector constant folding. 5736 SDValue Ops[] = {N1, N2, N3}; 5737 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5738 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5739 return V; 5740 } 5741 break; 5742 } 5743 case ISD::SELECT: 5744 case ISD::VSELECT: 5745 if (SDValue V = simplifySelect(N1, N2, N3)) 5746 return V; 5747 break; 5748 case ISD::VECTOR_SHUFFLE: 5749 llvm_unreachable("should use getVectorShuffle constructor!"); 5750 case ISD::INSERT_VECTOR_ELT: { 5751 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5752 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5753 // for scalable vectors where we will generate appropriate code to 5754 // deal with out-of-bounds cases correctly. 5755 if (N3C && N1.getValueType().isFixedLengthVector() && 5756 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5757 return getUNDEF(VT); 5758 5759 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5760 if (N3.isUndef()) 5761 return getUNDEF(VT); 5762 5763 // If the inserted element is an UNDEF, just use the input vector. 5764 if (N2.isUndef()) 5765 return N1; 5766 5767 break; 5768 } 5769 case ISD::INSERT_SUBVECTOR: { 5770 // Inserting undef into undef is still undef. 5771 if (N1.isUndef() && N2.isUndef()) 5772 return getUNDEF(VT); 5773 5774 EVT N2VT = N2.getValueType(); 5775 assert(VT == N1.getValueType() && 5776 "Dest and insert subvector source types must match!"); 5777 assert(VT.isVector() && N2VT.isVector() && 5778 "Insert subvector VTs must be vectors!"); 5779 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5780 "Cannot insert a scalable vector into a fixed length vector!"); 5781 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5782 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5783 "Insert subvector must be from smaller vector to larger vector!"); 5784 assert(isa<ConstantSDNode>(N3) && 5785 "Insert subvector index must be constant"); 5786 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5787 (N2VT.getVectorMinNumElements() + 5788 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5789 VT.getVectorMinNumElements()) && 5790 "Insert subvector overflow!"); 5791 5792 // Trivial insertion. 5793 if (VT == N2VT) 5794 return N2; 5795 5796 // If this is an insert of an extracted vector into an undef vector, we 5797 // can just use the input to the extract. 5798 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5799 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5800 return N2.getOperand(0); 5801 break; 5802 } 5803 case ISD::BITCAST: 5804 // Fold bit_convert nodes from a type to themselves. 5805 if (N1.getValueType() == VT) 5806 return N1; 5807 break; 5808 } 5809 5810 // Memoize node if it doesn't produce a flag. 5811 SDNode *N; 5812 SDVTList VTs = getVTList(VT); 5813 SDValue Ops[] = {N1, N2, N3}; 5814 if (VT != MVT::Glue) { 5815 FoldingSetNodeID ID; 5816 AddNodeIDNode(ID, Opcode, VTs, Ops); 5817 void *IP = nullptr; 5818 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5819 E->intersectFlagsWith(Flags); 5820 return SDValue(E, 0); 5821 } 5822 5823 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5824 N->setFlags(Flags); 5825 createOperands(N, Ops); 5826 CSEMap.InsertNode(N, IP); 5827 } else { 5828 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5829 createOperands(N, Ops); 5830 } 5831 5832 InsertNode(N); 5833 SDValue V = SDValue(N, 0); 5834 NewSDValueDbgMsg(V, "Creating new node: ", this); 5835 return V; 5836 } 5837 5838 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5839 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5840 SDValue Ops[] = { N1, N2, N3, N4 }; 5841 return getNode(Opcode, DL, VT, Ops); 5842 } 5843 5844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5845 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5846 SDValue N5) { 5847 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5848 return getNode(Opcode, DL, VT, Ops); 5849 } 5850 5851 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5852 /// the incoming stack arguments to be loaded from the stack. 5853 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5854 SmallVector<SDValue, 8> ArgChains; 5855 5856 // Include the original chain at the beginning of the list. When this is 5857 // used by target LowerCall hooks, this helps legalize find the 5858 // CALLSEQ_BEGIN node. 5859 ArgChains.push_back(Chain); 5860 5861 // Add a chain value for each stack argument. 5862 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5863 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5864 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5865 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5866 if (FI->getIndex() < 0) 5867 ArgChains.push_back(SDValue(L, 1)); 5868 5869 // Build a tokenfactor for all the chains. 5870 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5871 } 5872 5873 /// getMemsetValue - Vectorized representation of the memset value 5874 /// operand. 5875 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5876 const SDLoc &dl) { 5877 assert(!Value.isUndef()); 5878 5879 unsigned NumBits = VT.getScalarSizeInBits(); 5880 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5881 assert(C->getAPIntValue().getBitWidth() == 8); 5882 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5883 if (VT.isInteger()) { 5884 bool IsOpaque = VT.getSizeInBits() > 64 || 5885 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5886 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5887 } 5888 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5889 VT); 5890 } 5891 5892 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5893 EVT IntVT = VT.getScalarType(); 5894 if (!IntVT.isInteger()) 5895 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5896 5897 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5898 if (NumBits > 8) { 5899 // Use a multiplication with 0x010101... to extend the input to the 5900 // required length. 5901 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5902 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5903 DAG.getConstant(Magic, dl, IntVT)); 5904 } 5905 5906 if (VT != Value.getValueType() && !VT.isInteger()) 5907 Value = DAG.getBitcast(VT.getScalarType(), Value); 5908 if (VT != Value.getValueType()) 5909 Value = DAG.getSplatBuildVector(VT, dl, Value); 5910 5911 return Value; 5912 } 5913 5914 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5915 /// used when a memcpy is turned into a memset when the source is a constant 5916 /// string ptr. 5917 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5918 const TargetLowering &TLI, 5919 const ConstantDataArraySlice &Slice) { 5920 // Handle vector with all elements zero. 5921 if (Slice.Array == nullptr) { 5922 if (VT.isInteger()) 5923 return DAG.getConstant(0, dl, VT); 5924 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5925 return DAG.getConstantFP(0.0, dl, VT); 5926 else if (VT.isVector()) { 5927 unsigned NumElts = VT.getVectorNumElements(); 5928 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5929 return DAG.getNode(ISD::BITCAST, dl, VT, 5930 DAG.getConstant(0, dl, 5931 EVT::getVectorVT(*DAG.getContext(), 5932 EltVT, NumElts))); 5933 } else 5934 llvm_unreachable("Expected type!"); 5935 } 5936 5937 assert(!VT.isVector() && "Can't handle vector type here!"); 5938 unsigned NumVTBits = VT.getSizeInBits(); 5939 unsigned NumVTBytes = NumVTBits / 8; 5940 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5941 5942 APInt Val(NumVTBits, 0); 5943 if (DAG.getDataLayout().isLittleEndian()) { 5944 for (unsigned i = 0; i != NumBytes; ++i) 5945 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5946 } else { 5947 for (unsigned i = 0; i != NumBytes; ++i) 5948 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5949 } 5950 5951 // If the "cost" of materializing the integer immediate is less than the cost 5952 // of a load, then it is cost effective to turn the load into the immediate. 5953 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5954 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5955 return DAG.getConstant(Val, dl, VT); 5956 return SDValue(nullptr, 0); 5957 } 5958 5959 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5960 const SDLoc &DL, 5961 const SDNodeFlags Flags) { 5962 EVT VT = Base.getValueType(); 5963 SDValue Index; 5964 5965 if (Offset.isScalable()) 5966 Index = getVScale(DL, Base.getValueType(), 5967 APInt(Base.getValueSizeInBits().getFixedSize(), 5968 Offset.getKnownMinSize())); 5969 else 5970 Index = getConstant(Offset.getFixedSize(), DL, VT); 5971 5972 return getMemBasePlusOffset(Base, Index, DL, Flags); 5973 } 5974 5975 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5976 const SDLoc &DL, 5977 const SDNodeFlags Flags) { 5978 assert(Offset.getValueType().isInteger()); 5979 EVT BasePtrVT = Ptr.getValueType(); 5980 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5981 } 5982 5983 /// Returns true if memcpy source is constant data. 5984 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5985 uint64_t SrcDelta = 0; 5986 GlobalAddressSDNode *G = nullptr; 5987 if (Src.getOpcode() == ISD::GlobalAddress) 5988 G = cast<GlobalAddressSDNode>(Src); 5989 else if (Src.getOpcode() == ISD::ADD && 5990 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5991 Src.getOperand(1).getOpcode() == ISD::Constant) { 5992 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5993 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5994 } 5995 if (!G) 5996 return false; 5997 5998 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5999 SrcDelta + G->getOffset()); 6000 } 6001 6002 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6003 SelectionDAG &DAG) { 6004 // On Darwin, -Os means optimize for size without hurting performance, so 6005 // only really optimize for size when -Oz (MinSize) is used. 6006 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6007 return MF.getFunction().hasMinSize(); 6008 return DAG.shouldOptForSize(); 6009 } 6010 6011 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6012 SmallVector<SDValue, 32> &OutChains, unsigned From, 6013 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6014 SmallVector<SDValue, 16> &OutStoreChains) { 6015 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6016 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6017 SmallVector<SDValue, 16> GluedLoadChains; 6018 for (unsigned i = From; i < To; ++i) { 6019 OutChains.push_back(OutLoadChains[i]); 6020 GluedLoadChains.push_back(OutLoadChains[i]); 6021 } 6022 6023 // Chain for all loads. 6024 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6025 GluedLoadChains); 6026 6027 for (unsigned i = From; i < To; ++i) { 6028 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6029 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6030 ST->getBasePtr(), ST->getMemoryVT(), 6031 ST->getMemOperand()); 6032 OutChains.push_back(NewStore); 6033 } 6034 } 6035 6036 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6037 SDValue Chain, SDValue Dst, SDValue Src, 6038 uint64_t Size, Align Alignment, 6039 bool isVol, bool AlwaysInline, 6040 MachinePointerInfo DstPtrInfo, 6041 MachinePointerInfo SrcPtrInfo) { 6042 // Turn a memcpy of undef to nop. 6043 // FIXME: We need to honor volatile even is Src is undef. 6044 if (Src.isUndef()) 6045 return Chain; 6046 6047 // Expand memcpy to a series of load and store ops if the size operand falls 6048 // below a certain threshold. 6049 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6050 // rather than maybe a humongous number of loads and stores. 6051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6052 const DataLayout &DL = DAG.getDataLayout(); 6053 LLVMContext &C = *DAG.getContext(); 6054 std::vector<EVT> MemOps; 6055 bool DstAlignCanChange = false; 6056 MachineFunction &MF = DAG.getMachineFunction(); 6057 MachineFrameInfo &MFI = MF.getFrameInfo(); 6058 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6059 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6060 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6061 DstAlignCanChange = true; 6062 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6063 if (!SrcAlign || Alignment > *SrcAlign) 6064 SrcAlign = Alignment; 6065 assert(SrcAlign && "SrcAlign must be set"); 6066 ConstantDataArraySlice Slice; 6067 // If marked as volatile, perform a copy even when marked as constant. 6068 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6069 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6070 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6071 const MemOp Op = isZeroConstant 6072 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6073 /*IsZeroMemset*/ true, isVol) 6074 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6075 *SrcAlign, isVol, CopyFromConstant); 6076 if (!TLI.findOptimalMemOpLowering( 6077 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6078 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6079 return SDValue(); 6080 6081 if (DstAlignCanChange) { 6082 Type *Ty = MemOps[0].getTypeForEVT(C); 6083 Align NewAlign = DL.getABITypeAlign(Ty); 6084 6085 // Don't promote to an alignment that would require dynamic stack 6086 // realignment. 6087 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6088 if (!TRI->needsStackRealignment(MF)) 6089 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6090 NewAlign = NewAlign / 2; 6091 6092 if (NewAlign > Alignment) { 6093 // Give the stack frame object a larger alignment if needed. 6094 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6095 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6096 Alignment = NewAlign; 6097 } 6098 } 6099 6100 MachineMemOperand::Flags MMOFlags = 6101 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6102 SmallVector<SDValue, 16> OutLoadChains; 6103 SmallVector<SDValue, 16> OutStoreChains; 6104 SmallVector<SDValue, 32> OutChains; 6105 unsigned NumMemOps = MemOps.size(); 6106 uint64_t SrcOff = 0, DstOff = 0; 6107 for (unsigned i = 0; i != NumMemOps; ++i) { 6108 EVT VT = MemOps[i]; 6109 unsigned VTSize = VT.getSizeInBits() / 8; 6110 SDValue Value, Store; 6111 6112 if (VTSize > Size) { 6113 // Issuing an unaligned load / store pair that overlaps with the previous 6114 // pair. Adjust the offset accordingly. 6115 assert(i == NumMemOps-1 && i != 0); 6116 SrcOff -= VTSize - Size; 6117 DstOff -= VTSize - Size; 6118 } 6119 6120 if (CopyFromConstant && 6121 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6122 // It's unlikely a store of a vector immediate can be done in a single 6123 // instruction. It would require a load from a constantpool first. 6124 // We only handle zero vectors here. 6125 // FIXME: Handle other cases where store of vector immediate is done in 6126 // a single instruction. 6127 ConstantDataArraySlice SubSlice; 6128 if (SrcOff < Slice.Length) { 6129 SubSlice = Slice; 6130 SubSlice.move(SrcOff); 6131 } else { 6132 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6133 SubSlice.Array = nullptr; 6134 SubSlice.Offset = 0; 6135 SubSlice.Length = VTSize; 6136 } 6137 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6138 if (Value.getNode()) { 6139 Store = DAG.getStore( 6140 Chain, dl, Value, 6141 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6142 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6143 OutChains.push_back(Store); 6144 } 6145 } 6146 6147 if (!Store.getNode()) { 6148 // The type might not be legal for the target. This should only happen 6149 // if the type is smaller than a legal type, as on PPC, so the right 6150 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6151 // to Load/Store if NVT==VT. 6152 // FIXME does the case above also need this? 6153 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6154 assert(NVT.bitsGE(VT)); 6155 6156 bool isDereferenceable = 6157 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6158 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6159 if (isDereferenceable) 6160 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6161 6162 Value = DAG.getExtLoad( 6163 ISD::EXTLOAD, dl, NVT, Chain, 6164 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6165 SrcPtrInfo.getWithOffset(SrcOff), VT, 6166 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6167 OutLoadChains.push_back(Value.getValue(1)); 6168 6169 Store = DAG.getTruncStore( 6170 Chain, dl, Value, 6171 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6172 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6173 OutStoreChains.push_back(Store); 6174 } 6175 SrcOff += VTSize; 6176 DstOff += VTSize; 6177 Size -= VTSize; 6178 } 6179 6180 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6181 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6182 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6183 6184 if (NumLdStInMemcpy) { 6185 // It may be that memcpy might be converted to memset if it's memcpy 6186 // of constants. In such a case, we won't have loads and stores, but 6187 // just stores. In the absence of loads, there is nothing to gang up. 6188 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6189 // If target does not care, just leave as it. 6190 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6191 OutChains.push_back(OutLoadChains[i]); 6192 OutChains.push_back(OutStoreChains[i]); 6193 } 6194 } else { 6195 // Ld/St less than/equal limit set by target. 6196 if (NumLdStInMemcpy <= GluedLdStLimit) { 6197 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6198 NumLdStInMemcpy, OutLoadChains, 6199 OutStoreChains); 6200 } else { 6201 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6202 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6203 unsigned GlueIter = 0; 6204 6205 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6206 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6207 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6208 6209 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6210 OutLoadChains, OutStoreChains); 6211 GlueIter += GluedLdStLimit; 6212 } 6213 6214 // Residual ld/st. 6215 if (RemainingLdStInMemcpy) { 6216 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6217 RemainingLdStInMemcpy, OutLoadChains, 6218 OutStoreChains); 6219 } 6220 } 6221 } 6222 } 6223 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6224 } 6225 6226 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6227 SDValue Chain, SDValue Dst, SDValue Src, 6228 uint64_t Size, Align Alignment, 6229 bool isVol, bool AlwaysInline, 6230 MachinePointerInfo DstPtrInfo, 6231 MachinePointerInfo SrcPtrInfo) { 6232 // Turn a memmove of undef to nop. 6233 // FIXME: We need to honor volatile even is Src is undef. 6234 if (Src.isUndef()) 6235 return Chain; 6236 6237 // Expand memmove to a series of load and store ops if the size operand falls 6238 // below a certain threshold. 6239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6240 const DataLayout &DL = DAG.getDataLayout(); 6241 LLVMContext &C = *DAG.getContext(); 6242 std::vector<EVT> MemOps; 6243 bool DstAlignCanChange = false; 6244 MachineFunction &MF = DAG.getMachineFunction(); 6245 MachineFrameInfo &MFI = MF.getFrameInfo(); 6246 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6247 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6248 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6249 DstAlignCanChange = true; 6250 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6251 if (!SrcAlign || Alignment > *SrcAlign) 6252 SrcAlign = Alignment; 6253 assert(SrcAlign && "SrcAlign must be set"); 6254 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6255 if (!TLI.findOptimalMemOpLowering( 6256 MemOps, Limit, 6257 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6258 /*IsVolatile*/ true), 6259 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6260 MF.getFunction().getAttributes())) 6261 return SDValue(); 6262 6263 if (DstAlignCanChange) { 6264 Type *Ty = MemOps[0].getTypeForEVT(C); 6265 Align NewAlign = DL.getABITypeAlign(Ty); 6266 if (NewAlign > Alignment) { 6267 // Give the stack frame object a larger alignment if needed. 6268 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6269 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6270 Alignment = NewAlign; 6271 } 6272 } 6273 6274 MachineMemOperand::Flags MMOFlags = 6275 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6276 uint64_t SrcOff = 0, DstOff = 0; 6277 SmallVector<SDValue, 8> LoadValues; 6278 SmallVector<SDValue, 8> LoadChains; 6279 SmallVector<SDValue, 8> OutChains; 6280 unsigned NumMemOps = MemOps.size(); 6281 for (unsigned i = 0; i < NumMemOps; i++) { 6282 EVT VT = MemOps[i]; 6283 unsigned VTSize = VT.getSizeInBits() / 8; 6284 SDValue Value; 6285 6286 bool isDereferenceable = 6287 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6288 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6289 if (isDereferenceable) 6290 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6291 6292 Value = 6293 DAG.getLoad(VT, dl, Chain, 6294 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6295 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6296 LoadValues.push_back(Value); 6297 LoadChains.push_back(Value.getValue(1)); 6298 SrcOff += VTSize; 6299 } 6300 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6301 OutChains.clear(); 6302 for (unsigned i = 0; i < NumMemOps; i++) { 6303 EVT VT = MemOps[i]; 6304 unsigned VTSize = VT.getSizeInBits() / 8; 6305 SDValue Store; 6306 6307 Store = 6308 DAG.getStore(Chain, dl, LoadValues[i], 6309 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6310 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6311 OutChains.push_back(Store); 6312 DstOff += VTSize; 6313 } 6314 6315 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6316 } 6317 6318 /// Lower the call to 'memset' intrinsic function into a series of store 6319 /// operations. 6320 /// 6321 /// \param DAG Selection DAG where lowered code is placed. 6322 /// \param dl Link to corresponding IR location. 6323 /// \param Chain Control flow dependency. 6324 /// \param Dst Pointer to destination memory location. 6325 /// \param Src Value of byte to write into the memory. 6326 /// \param Size Number of bytes to write. 6327 /// \param Alignment Alignment of the destination in bytes. 6328 /// \param isVol True if destination is volatile. 6329 /// \param DstPtrInfo IR information on the memory pointer. 6330 /// \returns New head in the control flow, if lowering was successful, empty 6331 /// SDValue otherwise. 6332 /// 6333 /// The function tries to replace 'llvm.memset' intrinsic with several store 6334 /// operations and value calculation code. This is usually profitable for small 6335 /// memory size. 6336 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6337 SDValue Chain, SDValue Dst, SDValue Src, 6338 uint64_t Size, Align Alignment, bool isVol, 6339 MachinePointerInfo DstPtrInfo) { 6340 // Turn a memset of undef to nop. 6341 // FIXME: We need to honor volatile even is Src is undef. 6342 if (Src.isUndef()) 6343 return Chain; 6344 6345 // Expand memset to a series of load/store ops if the size operand 6346 // falls below a certain threshold. 6347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6348 std::vector<EVT> MemOps; 6349 bool DstAlignCanChange = false; 6350 MachineFunction &MF = DAG.getMachineFunction(); 6351 MachineFrameInfo &MFI = MF.getFrameInfo(); 6352 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6353 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6354 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6355 DstAlignCanChange = true; 6356 bool IsZeroVal = 6357 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6358 if (!TLI.findOptimalMemOpLowering( 6359 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6360 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6361 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6362 return SDValue(); 6363 6364 if (DstAlignCanChange) { 6365 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6366 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6367 if (NewAlign > Alignment) { 6368 // Give the stack frame object a larger alignment if needed. 6369 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6370 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6371 Alignment = NewAlign; 6372 } 6373 } 6374 6375 SmallVector<SDValue, 8> OutChains; 6376 uint64_t DstOff = 0; 6377 unsigned NumMemOps = MemOps.size(); 6378 6379 // Find the largest store and generate the bit pattern for it. 6380 EVT LargestVT = MemOps[0]; 6381 for (unsigned i = 1; i < NumMemOps; i++) 6382 if (MemOps[i].bitsGT(LargestVT)) 6383 LargestVT = MemOps[i]; 6384 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6385 6386 for (unsigned i = 0; i < NumMemOps; i++) { 6387 EVT VT = MemOps[i]; 6388 unsigned VTSize = VT.getSizeInBits() / 8; 6389 if (VTSize > Size) { 6390 // Issuing an unaligned load / store pair that overlaps with the previous 6391 // pair. Adjust the offset accordingly. 6392 assert(i == NumMemOps-1 && i != 0); 6393 DstOff -= VTSize - Size; 6394 } 6395 6396 // If this store is smaller than the largest store see whether we can get 6397 // the smaller value for free with a truncate. 6398 SDValue Value = MemSetValue; 6399 if (VT.bitsLT(LargestVT)) { 6400 if (!LargestVT.isVector() && !VT.isVector() && 6401 TLI.isTruncateFree(LargestVT, VT)) 6402 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6403 else 6404 Value = getMemsetValue(Src, VT, DAG, dl); 6405 } 6406 assert(Value.getValueType() == VT && "Value with wrong type."); 6407 SDValue Store = DAG.getStore( 6408 Chain, dl, Value, 6409 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6410 DstPtrInfo.getWithOffset(DstOff), Alignment, 6411 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6412 OutChains.push_back(Store); 6413 DstOff += VT.getSizeInBits() / 8; 6414 Size -= VTSize; 6415 } 6416 6417 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6418 } 6419 6420 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6421 unsigned AS) { 6422 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6423 // pointer operands can be losslessly bitcasted to pointers of address space 0 6424 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6425 report_fatal_error("cannot lower memory intrinsic in address space " + 6426 Twine(AS)); 6427 } 6428 } 6429 6430 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6431 SDValue Src, SDValue Size, Align Alignment, 6432 bool isVol, bool AlwaysInline, bool isTailCall, 6433 MachinePointerInfo DstPtrInfo, 6434 MachinePointerInfo SrcPtrInfo) { 6435 // Check to see if we should lower the memcpy to loads and stores first. 6436 // For cases within the target-specified limits, this is the best choice. 6437 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6438 if (ConstantSize) { 6439 // Memcpy with size zero? Just return the original chain. 6440 if (ConstantSize->isNullValue()) 6441 return Chain; 6442 6443 SDValue Result = getMemcpyLoadsAndStores( 6444 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6445 isVol, false, DstPtrInfo, SrcPtrInfo); 6446 if (Result.getNode()) 6447 return Result; 6448 } 6449 6450 // Then check to see if we should lower the memcpy with target-specific 6451 // code. If the target chooses to do this, this is the next best. 6452 if (TSI) { 6453 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6454 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6455 DstPtrInfo, SrcPtrInfo); 6456 if (Result.getNode()) 6457 return Result; 6458 } 6459 6460 // If we really need inline code and the target declined to provide it, 6461 // use a (potentially long) sequence of loads and stores. 6462 if (AlwaysInline) { 6463 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6464 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6465 ConstantSize->getZExtValue(), Alignment, 6466 isVol, true, DstPtrInfo, SrcPtrInfo); 6467 } 6468 6469 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6470 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6471 6472 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6473 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6474 // respect volatile, so they may do things like read or write memory 6475 // beyond the given memory regions. But fixing this isn't easy, and most 6476 // people don't care. 6477 6478 // Emit a library call. 6479 TargetLowering::ArgListTy Args; 6480 TargetLowering::ArgListEntry Entry; 6481 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6482 Entry.Node = Dst; Args.push_back(Entry); 6483 Entry.Node = Src; Args.push_back(Entry); 6484 6485 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6486 Entry.Node = Size; Args.push_back(Entry); 6487 // FIXME: pass in SDLoc 6488 TargetLowering::CallLoweringInfo CLI(*this); 6489 CLI.setDebugLoc(dl) 6490 .setChain(Chain) 6491 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6492 Dst.getValueType().getTypeForEVT(*getContext()), 6493 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6494 TLI->getPointerTy(getDataLayout())), 6495 std::move(Args)) 6496 .setDiscardResult() 6497 .setTailCall(isTailCall); 6498 6499 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6500 return CallResult.second; 6501 } 6502 6503 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6504 SDValue Dst, unsigned DstAlign, 6505 SDValue Src, unsigned SrcAlign, 6506 SDValue Size, Type *SizeTy, 6507 unsigned ElemSz, bool isTailCall, 6508 MachinePointerInfo DstPtrInfo, 6509 MachinePointerInfo SrcPtrInfo) { 6510 // Emit a library call. 6511 TargetLowering::ArgListTy Args; 6512 TargetLowering::ArgListEntry Entry; 6513 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6514 Entry.Node = Dst; 6515 Args.push_back(Entry); 6516 6517 Entry.Node = Src; 6518 Args.push_back(Entry); 6519 6520 Entry.Ty = SizeTy; 6521 Entry.Node = Size; 6522 Args.push_back(Entry); 6523 6524 RTLIB::Libcall LibraryCall = 6525 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6526 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6527 report_fatal_error("Unsupported element size"); 6528 6529 TargetLowering::CallLoweringInfo CLI(*this); 6530 CLI.setDebugLoc(dl) 6531 .setChain(Chain) 6532 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6533 Type::getVoidTy(*getContext()), 6534 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6535 TLI->getPointerTy(getDataLayout())), 6536 std::move(Args)) 6537 .setDiscardResult() 6538 .setTailCall(isTailCall); 6539 6540 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6541 return CallResult.second; 6542 } 6543 6544 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6545 SDValue Src, SDValue Size, Align Alignment, 6546 bool isVol, bool isTailCall, 6547 MachinePointerInfo DstPtrInfo, 6548 MachinePointerInfo SrcPtrInfo) { 6549 // Check to see if we should lower the memmove to loads and stores first. 6550 // For cases within the target-specified limits, this is the best choice. 6551 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6552 if (ConstantSize) { 6553 // Memmove with size zero? Just return the original chain. 6554 if (ConstantSize->isNullValue()) 6555 return Chain; 6556 6557 SDValue Result = getMemmoveLoadsAndStores( 6558 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6559 isVol, false, DstPtrInfo, SrcPtrInfo); 6560 if (Result.getNode()) 6561 return Result; 6562 } 6563 6564 // Then check to see if we should lower the memmove with target-specific 6565 // code. If the target chooses to do this, this is the next best. 6566 if (TSI) { 6567 SDValue Result = 6568 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6569 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6570 if (Result.getNode()) 6571 return Result; 6572 } 6573 6574 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6575 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6576 6577 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6578 // not be safe. See memcpy above for more details. 6579 6580 // Emit a library call. 6581 TargetLowering::ArgListTy Args; 6582 TargetLowering::ArgListEntry Entry; 6583 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6584 Entry.Node = Dst; Args.push_back(Entry); 6585 Entry.Node = Src; Args.push_back(Entry); 6586 6587 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6588 Entry.Node = Size; Args.push_back(Entry); 6589 // FIXME: pass in SDLoc 6590 TargetLowering::CallLoweringInfo CLI(*this); 6591 CLI.setDebugLoc(dl) 6592 .setChain(Chain) 6593 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6594 Dst.getValueType().getTypeForEVT(*getContext()), 6595 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6596 TLI->getPointerTy(getDataLayout())), 6597 std::move(Args)) 6598 .setDiscardResult() 6599 .setTailCall(isTailCall); 6600 6601 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6602 return CallResult.second; 6603 } 6604 6605 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6606 SDValue Dst, unsigned DstAlign, 6607 SDValue Src, unsigned SrcAlign, 6608 SDValue Size, Type *SizeTy, 6609 unsigned ElemSz, bool isTailCall, 6610 MachinePointerInfo DstPtrInfo, 6611 MachinePointerInfo SrcPtrInfo) { 6612 // Emit a library call. 6613 TargetLowering::ArgListTy Args; 6614 TargetLowering::ArgListEntry Entry; 6615 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6616 Entry.Node = Dst; 6617 Args.push_back(Entry); 6618 6619 Entry.Node = Src; 6620 Args.push_back(Entry); 6621 6622 Entry.Ty = SizeTy; 6623 Entry.Node = Size; 6624 Args.push_back(Entry); 6625 6626 RTLIB::Libcall LibraryCall = 6627 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6628 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6629 report_fatal_error("Unsupported element size"); 6630 6631 TargetLowering::CallLoweringInfo CLI(*this); 6632 CLI.setDebugLoc(dl) 6633 .setChain(Chain) 6634 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6635 Type::getVoidTy(*getContext()), 6636 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6637 TLI->getPointerTy(getDataLayout())), 6638 std::move(Args)) 6639 .setDiscardResult() 6640 .setTailCall(isTailCall); 6641 6642 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6643 return CallResult.second; 6644 } 6645 6646 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6647 SDValue Src, SDValue Size, Align Alignment, 6648 bool isVol, bool isTailCall, 6649 MachinePointerInfo DstPtrInfo) { 6650 // Check to see if we should lower the memset to stores first. 6651 // For cases within the target-specified limits, this is the best choice. 6652 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6653 if (ConstantSize) { 6654 // Memset with size zero? Just return the original chain. 6655 if (ConstantSize->isNullValue()) 6656 return Chain; 6657 6658 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6659 ConstantSize->getZExtValue(), Alignment, 6660 isVol, DstPtrInfo); 6661 6662 if (Result.getNode()) 6663 return Result; 6664 } 6665 6666 // Then check to see if we should lower the memset with target-specific 6667 // code. If the target chooses to do this, this is the next best. 6668 if (TSI) { 6669 SDValue Result = TSI->EmitTargetCodeForMemset( 6670 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6671 if (Result.getNode()) 6672 return Result; 6673 } 6674 6675 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6676 6677 // Emit a library call. 6678 TargetLowering::ArgListTy Args; 6679 TargetLowering::ArgListEntry Entry; 6680 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6681 Args.push_back(Entry); 6682 Entry.Node = Src; 6683 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6684 Args.push_back(Entry); 6685 Entry.Node = Size; 6686 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6687 Args.push_back(Entry); 6688 6689 // FIXME: pass in SDLoc 6690 TargetLowering::CallLoweringInfo CLI(*this); 6691 CLI.setDebugLoc(dl) 6692 .setChain(Chain) 6693 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6694 Dst.getValueType().getTypeForEVT(*getContext()), 6695 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6696 TLI->getPointerTy(getDataLayout())), 6697 std::move(Args)) 6698 .setDiscardResult() 6699 .setTailCall(isTailCall); 6700 6701 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6702 return CallResult.second; 6703 } 6704 6705 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6706 SDValue Dst, unsigned DstAlign, 6707 SDValue Value, SDValue Size, Type *SizeTy, 6708 unsigned ElemSz, bool isTailCall, 6709 MachinePointerInfo DstPtrInfo) { 6710 // Emit a library call. 6711 TargetLowering::ArgListTy Args; 6712 TargetLowering::ArgListEntry Entry; 6713 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6714 Entry.Node = Dst; 6715 Args.push_back(Entry); 6716 6717 Entry.Ty = Type::getInt8Ty(*getContext()); 6718 Entry.Node = Value; 6719 Args.push_back(Entry); 6720 6721 Entry.Ty = SizeTy; 6722 Entry.Node = Size; 6723 Args.push_back(Entry); 6724 6725 RTLIB::Libcall LibraryCall = 6726 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6727 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6728 report_fatal_error("Unsupported element size"); 6729 6730 TargetLowering::CallLoweringInfo CLI(*this); 6731 CLI.setDebugLoc(dl) 6732 .setChain(Chain) 6733 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6734 Type::getVoidTy(*getContext()), 6735 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6736 TLI->getPointerTy(getDataLayout())), 6737 std::move(Args)) 6738 .setDiscardResult() 6739 .setTailCall(isTailCall); 6740 6741 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6742 return CallResult.second; 6743 } 6744 6745 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6746 SDVTList VTList, ArrayRef<SDValue> Ops, 6747 MachineMemOperand *MMO) { 6748 FoldingSetNodeID ID; 6749 ID.AddInteger(MemVT.getRawBits()); 6750 AddNodeIDNode(ID, Opcode, VTList, Ops); 6751 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6752 void* IP = nullptr; 6753 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6754 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6755 return SDValue(E, 0); 6756 } 6757 6758 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6759 VTList, MemVT, MMO); 6760 createOperands(N, Ops); 6761 6762 CSEMap.InsertNode(N, IP); 6763 InsertNode(N); 6764 return SDValue(N, 0); 6765 } 6766 6767 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6768 EVT MemVT, SDVTList VTs, SDValue Chain, 6769 SDValue Ptr, SDValue Cmp, SDValue Swp, 6770 MachineMemOperand *MMO) { 6771 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6772 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6773 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6774 6775 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6776 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6777 } 6778 6779 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6780 SDValue Chain, SDValue Ptr, SDValue Val, 6781 MachineMemOperand *MMO) { 6782 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6783 Opcode == ISD::ATOMIC_LOAD_SUB || 6784 Opcode == ISD::ATOMIC_LOAD_AND || 6785 Opcode == ISD::ATOMIC_LOAD_CLR || 6786 Opcode == ISD::ATOMIC_LOAD_OR || 6787 Opcode == ISD::ATOMIC_LOAD_XOR || 6788 Opcode == ISD::ATOMIC_LOAD_NAND || 6789 Opcode == ISD::ATOMIC_LOAD_MIN || 6790 Opcode == ISD::ATOMIC_LOAD_MAX || 6791 Opcode == ISD::ATOMIC_LOAD_UMIN || 6792 Opcode == ISD::ATOMIC_LOAD_UMAX || 6793 Opcode == ISD::ATOMIC_LOAD_FADD || 6794 Opcode == ISD::ATOMIC_LOAD_FSUB || 6795 Opcode == ISD::ATOMIC_SWAP || 6796 Opcode == ISD::ATOMIC_STORE) && 6797 "Invalid Atomic Op"); 6798 6799 EVT VT = Val.getValueType(); 6800 6801 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6802 getVTList(VT, MVT::Other); 6803 SDValue Ops[] = {Chain, Ptr, Val}; 6804 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6805 } 6806 6807 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6808 EVT VT, SDValue Chain, SDValue Ptr, 6809 MachineMemOperand *MMO) { 6810 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6811 6812 SDVTList VTs = getVTList(VT, MVT::Other); 6813 SDValue Ops[] = {Chain, Ptr}; 6814 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6815 } 6816 6817 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6818 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6819 if (Ops.size() == 1) 6820 return Ops[0]; 6821 6822 SmallVector<EVT, 4> VTs; 6823 VTs.reserve(Ops.size()); 6824 for (unsigned i = 0; i < Ops.size(); ++i) 6825 VTs.push_back(Ops[i].getValueType()); 6826 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6827 } 6828 6829 SDValue SelectionDAG::getMemIntrinsicNode( 6830 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6831 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6832 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6833 if (!Size && MemVT.isScalableVector()) 6834 Size = MemoryLocation::UnknownSize; 6835 else if (!Size) 6836 Size = MemVT.getStoreSize(); 6837 6838 MachineFunction &MF = getMachineFunction(); 6839 MachineMemOperand *MMO = 6840 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6841 6842 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6843 } 6844 6845 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6846 SDVTList VTList, 6847 ArrayRef<SDValue> Ops, EVT MemVT, 6848 MachineMemOperand *MMO) { 6849 assert((Opcode == ISD::INTRINSIC_VOID || 6850 Opcode == ISD::INTRINSIC_W_CHAIN || 6851 Opcode == ISD::PREFETCH || 6852 ((int)Opcode <= std::numeric_limits<int>::max() && 6853 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6854 "Opcode is not a memory-accessing opcode!"); 6855 6856 // Memoize the node unless it returns a flag. 6857 MemIntrinsicSDNode *N; 6858 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6859 FoldingSetNodeID ID; 6860 AddNodeIDNode(ID, Opcode, VTList, Ops); 6861 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6862 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6863 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6864 void *IP = nullptr; 6865 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6866 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6867 return SDValue(E, 0); 6868 } 6869 6870 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6871 VTList, MemVT, MMO); 6872 createOperands(N, Ops); 6873 6874 CSEMap.InsertNode(N, IP); 6875 } else { 6876 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6877 VTList, MemVT, MMO); 6878 createOperands(N, Ops); 6879 } 6880 InsertNode(N); 6881 SDValue V(N, 0); 6882 NewSDValueDbgMsg(V, "Creating new node: ", this); 6883 return V; 6884 } 6885 6886 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6887 SDValue Chain, int FrameIndex, 6888 int64_t Size, int64_t Offset) { 6889 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6890 const auto VTs = getVTList(MVT::Other); 6891 SDValue Ops[2] = { 6892 Chain, 6893 getFrameIndex(FrameIndex, 6894 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6895 true)}; 6896 6897 FoldingSetNodeID ID; 6898 AddNodeIDNode(ID, Opcode, VTs, Ops); 6899 ID.AddInteger(FrameIndex); 6900 ID.AddInteger(Size); 6901 ID.AddInteger(Offset); 6902 void *IP = nullptr; 6903 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6904 return SDValue(E, 0); 6905 6906 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6907 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6908 createOperands(N, Ops); 6909 CSEMap.InsertNode(N, IP); 6910 InsertNode(N); 6911 SDValue V(N, 0); 6912 NewSDValueDbgMsg(V, "Creating new node: ", this); 6913 return V; 6914 } 6915 6916 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6917 /// MachinePointerInfo record from it. This is particularly useful because the 6918 /// code generator has many cases where it doesn't bother passing in a 6919 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6920 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6921 SelectionDAG &DAG, SDValue Ptr, 6922 int64_t Offset = 0) { 6923 // If this is FI+Offset, we can model it. 6924 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6925 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6926 FI->getIndex(), Offset); 6927 6928 // If this is (FI+Offset1)+Offset2, we can model it. 6929 if (Ptr.getOpcode() != ISD::ADD || 6930 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6931 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6932 return Info; 6933 6934 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6935 return MachinePointerInfo::getFixedStack( 6936 DAG.getMachineFunction(), FI, 6937 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6938 } 6939 6940 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6941 /// MachinePointerInfo record from it. This is particularly useful because the 6942 /// code generator has many cases where it doesn't bother passing in a 6943 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6944 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6945 SelectionDAG &DAG, SDValue Ptr, 6946 SDValue OffsetOp) { 6947 // If the 'Offset' value isn't a constant, we can't handle this. 6948 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6949 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6950 if (OffsetOp.isUndef()) 6951 return InferPointerInfo(Info, DAG, Ptr); 6952 return Info; 6953 } 6954 6955 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6956 EVT VT, const SDLoc &dl, SDValue Chain, 6957 SDValue Ptr, SDValue Offset, 6958 MachinePointerInfo PtrInfo, EVT MemVT, 6959 Align Alignment, 6960 MachineMemOperand::Flags MMOFlags, 6961 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6962 assert(Chain.getValueType() == MVT::Other && 6963 "Invalid chain type"); 6964 6965 MMOFlags |= MachineMemOperand::MOLoad; 6966 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6967 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6968 // clients. 6969 if (PtrInfo.V.isNull()) 6970 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6971 6972 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6973 MachineFunction &MF = getMachineFunction(); 6974 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6975 Alignment, AAInfo, Ranges); 6976 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6977 } 6978 6979 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6980 EVT VT, const SDLoc &dl, SDValue Chain, 6981 SDValue Ptr, SDValue Offset, EVT MemVT, 6982 MachineMemOperand *MMO) { 6983 if (VT == MemVT) { 6984 ExtType = ISD::NON_EXTLOAD; 6985 } else if (ExtType == ISD::NON_EXTLOAD) { 6986 assert(VT == MemVT && "Non-extending load from different memory type!"); 6987 } else { 6988 // Extending load. 6989 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6990 "Should only be an extending load, not truncating!"); 6991 assert(VT.isInteger() == MemVT.isInteger() && 6992 "Cannot convert from FP to Int or Int -> FP!"); 6993 assert(VT.isVector() == MemVT.isVector() && 6994 "Cannot use an ext load to convert to or from a vector!"); 6995 assert((!VT.isVector() || 6996 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6997 "Cannot use an ext load to change the number of vector elements!"); 6998 } 6999 7000 bool Indexed = AM != ISD::UNINDEXED; 7001 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7002 7003 SDVTList VTs = Indexed ? 7004 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7005 SDValue Ops[] = { Chain, Ptr, Offset }; 7006 FoldingSetNodeID ID; 7007 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7008 ID.AddInteger(MemVT.getRawBits()); 7009 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7010 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7011 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7012 void *IP = nullptr; 7013 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7014 cast<LoadSDNode>(E)->refineAlignment(MMO); 7015 return SDValue(E, 0); 7016 } 7017 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7018 ExtType, MemVT, MMO); 7019 createOperands(N, Ops); 7020 7021 CSEMap.InsertNode(N, IP); 7022 InsertNode(N); 7023 SDValue V(N, 0); 7024 NewSDValueDbgMsg(V, "Creating new node: ", this); 7025 return V; 7026 } 7027 7028 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7029 SDValue Ptr, MachinePointerInfo PtrInfo, 7030 MaybeAlign Alignment, 7031 MachineMemOperand::Flags MMOFlags, 7032 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7033 SDValue Undef = getUNDEF(Ptr.getValueType()); 7034 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7035 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7036 } 7037 7038 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7039 SDValue Ptr, MachineMemOperand *MMO) { 7040 SDValue Undef = getUNDEF(Ptr.getValueType()); 7041 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7042 VT, MMO); 7043 } 7044 7045 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7046 EVT VT, SDValue Chain, SDValue Ptr, 7047 MachinePointerInfo PtrInfo, EVT MemVT, 7048 MaybeAlign Alignment, 7049 MachineMemOperand::Flags MMOFlags, 7050 const AAMDNodes &AAInfo) { 7051 SDValue Undef = getUNDEF(Ptr.getValueType()); 7052 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7053 MemVT, Alignment, MMOFlags, AAInfo); 7054 } 7055 7056 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7057 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7058 MachineMemOperand *MMO) { 7059 SDValue Undef = getUNDEF(Ptr.getValueType()); 7060 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7061 MemVT, MMO); 7062 } 7063 7064 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7065 SDValue Base, SDValue Offset, 7066 ISD::MemIndexedMode AM) { 7067 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7068 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7069 // Don't propagate the invariant or dereferenceable flags. 7070 auto MMOFlags = 7071 LD->getMemOperand()->getFlags() & 7072 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7073 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7074 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7075 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7076 } 7077 7078 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7079 SDValue Ptr, MachinePointerInfo PtrInfo, 7080 Align Alignment, 7081 MachineMemOperand::Flags MMOFlags, 7082 const AAMDNodes &AAInfo) { 7083 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7084 7085 MMOFlags |= MachineMemOperand::MOStore; 7086 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7087 7088 if (PtrInfo.V.isNull()) 7089 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7090 7091 MachineFunction &MF = getMachineFunction(); 7092 uint64_t Size = 7093 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7094 MachineMemOperand *MMO = 7095 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7096 return getStore(Chain, dl, Val, Ptr, MMO); 7097 } 7098 7099 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7100 SDValue Ptr, MachineMemOperand *MMO) { 7101 assert(Chain.getValueType() == MVT::Other && 7102 "Invalid chain type"); 7103 EVT VT = Val.getValueType(); 7104 SDVTList VTs = getVTList(MVT::Other); 7105 SDValue Undef = getUNDEF(Ptr.getValueType()); 7106 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7107 FoldingSetNodeID ID; 7108 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7109 ID.AddInteger(VT.getRawBits()); 7110 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7111 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7112 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7113 void *IP = nullptr; 7114 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7115 cast<StoreSDNode>(E)->refineAlignment(MMO); 7116 return SDValue(E, 0); 7117 } 7118 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7119 ISD::UNINDEXED, false, VT, MMO); 7120 createOperands(N, Ops); 7121 7122 CSEMap.InsertNode(N, IP); 7123 InsertNode(N); 7124 SDValue V(N, 0); 7125 NewSDValueDbgMsg(V, "Creating new node: ", this); 7126 return V; 7127 } 7128 7129 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7130 SDValue Ptr, MachinePointerInfo PtrInfo, 7131 EVT SVT, Align Alignment, 7132 MachineMemOperand::Flags MMOFlags, 7133 const AAMDNodes &AAInfo) { 7134 assert(Chain.getValueType() == MVT::Other && 7135 "Invalid chain type"); 7136 7137 MMOFlags |= MachineMemOperand::MOStore; 7138 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7139 7140 if (PtrInfo.V.isNull()) 7141 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7142 7143 MachineFunction &MF = getMachineFunction(); 7144 MachineMemOperand *MMO = MF.getMachineMemOperand( 7145 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7146 Alignment, AAInfo); 7147 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7148 } 7149 7150 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7151 SDValue Ptr, EVT SVT, 7152 MachineMemOperand *MMO) { 7153 EVT VT = Val.getValueType(); 7154 7155 assert(Chain.getValueType() == MVT::Other && 7156 "Invalid chain type"); 7157 if (VT == SVT) 7158 return getStore(Chain, dl, Val, Ptr, MMO); 7159 7160 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7161 "Should only be a truncating store, not extending!"); 7162 assert(VT.isInteger() == SVT.isInteger() && 7163 "Can't do FP-INT conversion!"); 7164 assert(VT.isVector() == SVT.isVector() && 7165 "Cannot use trunc store to convert to or from a vector!"); 7166 assert((!VT.isVector() || 7167 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7168 "Cannot use trunc store to change the number of vector elements!"); 7169 7170 SDVTList VTs = getVTList(MVT::Other); 7171 SDValue Undef = getUNDEF(Ptr.getValueType()); 7172 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7173 FoldingSetNodeID ID; 7174 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7175 ID.AddInteger(SVT.getRawBits()); 7176 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7177 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7178 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7179 void *IP = nullptr; 7180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7181 cast<StoreSDNode>(E)->refineAlignment(MMO); 7182 return SDValue(E, 0); 7183 } 7184 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7185 ISD::UNINDEXED, true, SVT, MMO); 7186 createOperands(N, Ops); 7187 7188 CSEMap.InsertNode(N, IP); 7189 InsertNode(N); 7190 SDValue V(N, 0); 7191 NewSDValueDbgMsg(V, "Creating new node: ", this); 7192 return V; 7193 } 7194 7195 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7196 SDValue Base, SDValue Offset, 7197 ISD::MemIndexedMode AM) { 7198 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7199 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7200 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7201 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7202 FoldingSetNodeID ID; 7203 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7204 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7205 ID.AddInteger(ST->getRawSubclassData()); 7206 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7207 void *IP = nullptr; 7208 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7209 return SDValue(E, 0); 7210 7211 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7212 ST->isTruncatingStore(), ST->getMemoryVT(), 7213 ST->getMemOperand()); 7214 createOperands(N, Ops); 7215 7216 CSEMap.InsertNode(N, IP); 7217 InsertNode(N); 7218 SDValue V(N, 0); 7219 NewSDValueDbgMsg(V, "Creating new node: ", this); 7220 return V; 7221 } 7222 7223 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7224 SDValue Base, SDValue Offset, SDValue Mask, 7225 SDValue PassThru, EVT MemVT, 7226 MachineMemOperand *MMO, 7227 ISD::MemIndexedMode AM, 7228 ISD::LoadExtType ExtTy, bool isExpanding) { 7229 bool Indexed = AM != ISD::UNINDEXED; 7230 assert((Indexed || Offset.isUndef()) && 7231 "Unindexed masked load with an offset!"); 7232 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7233 : getVTList(VT, MVT::Other); 7234 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7235 FoldingSetNodeID ID; 7236 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7237 ID.AddInteger(MemVT.getRawBits()); 7238 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7239 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7240 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7241 void *IP = nullptr; 7242 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7243 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7244 return SDValue(E, 0); 7245 } 7246 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7247 AM, ExtTy, isExpanding, MemVT, MMO); 7248 createOperands(N, Ops); 7249 7250 CSEMap.InsertNode(N, IP); 7251 InsertNode(N); 7252 SDValue V(N, 0); 7253 NewSDValueDbgMsg(V, "Creating new node: ", this); 7254 return V; 7255 } 7256 7257 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7258 SDValue Base, SDValue Offset, 7259 ISD::MemIndexedMode AM) { 7260 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7261 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7262 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7263 Offset, LD->getMask(), LD->getPassThru(), 7264 LD->getMemoryVT(), LD->getMemOperand(), AM, 7265 LD->getExtensionType(), LD->isExpandingLoad()); 7266 } 7267 7268 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7269 SDValue Val, SDValue Base, SDValue Offset, 7270 SDValue Mask, EVT MemVT, 7271 MachineMemOperand *MMO, 7272 ISD::MemIndexedMode AM, bool IsTruncating, 7273 bool IsCompressing) { 7274 assert(Chain.getValueType() == MVT::Other && 7275 "Invalid chain type"); 7276 bool Indexed = AM != ISD::UNINDEXED; 7277 assert((Indexed || Offset.isUndef()) && 7278 "Unindexed masked store with an offset!"); 7279 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7280 : getVTList(MVT::Other); 7281 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7282 FoldingSetNodeID ID; 7283 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7284 ID.AddInteger(MemVT.getRawBits()); 7285 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7286 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7287 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7288 void *IP = nullptr; 7289 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7290 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7291 return SDValue(E, 0); 7292 } 7293 auto *N = 7294 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7295 IsTruncating, IsCompressing, MemVT, MMO); 7296 createOperands(N, Ops); 7297 7298 CSEMap.InsertNode(N, IP); 7299 InsertNode(N); 7300 SDValue V(N, 0); 7301 NewSDValueDbgMsg(V, "Creating new node: ", this); 7302 return V; 7303 } 7304 7305 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7306 SDValue Base, SDValue Offset, 7307 ISD::MemIndexedMode AM) { 7308 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7309 assert(ST->getOffset().isUndef() && 7310 "Masked store is already a indexed store!"); 7311 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7312 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7313 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7314 } 7315 7316 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7317 ArrayRef<SDValue> Ops, 7318 MachineMemOperand *MMO, 7319 ISD::MemIndexType IndexType) { 7320 assert(Ops.size() == 6 && "Incompatible number of operands"); 7321 7322 FoldingSetNodeID ID; 7323 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7324 ID.AddInteger(VT.getRawBits()); 7325 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7326 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7327 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7328 void *IP = nullptr; 7329 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7330 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7331 return SDValue(E, 0); 7332 } 7333 7334 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7335 VTs, VT, MMO, IndexType); 7336 createOperands(N, Ops); 7337 7338 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7339 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7340 assert(N->getMask().getValueType().getVectorNumElements() == 7341 N->getValueType(0).getVectorNumElements() && 7342 "Vector width mismatch between mask and data"); 7343 assert(N->getIndex().getValueType().getVectorNumElements() >= 7344 N->getValueType(0).getVectorNumElements() && 7345 "Vector width mismatch between index and data"); 7346 assert(isa<ConstantSDNode>(N->getScale()) && 7347 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7348 "Scale should be a constant power of 2"); 7349 7350 CSEMap.InsertNode(N, IP); 7351 InsertNode(N); 7352 SDValue V(N, 0); 7353 NewSDValueDbgMsg(V, "Creating new node: ", this); 7354 return V; 7355 } 7356 7357 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7358 ArrayRef<SDValue> Ops, 7359 MachineMemOperand *MMO, 7360 ISD::MemIndexType IndexType) { 7361 assert(Ops.size() == 6 && "Incompatible number of operands"); 7362 7363 FoldingSetNodeID ID; 7364 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7365 ID.AddInteger(VT.getRawBits()); 7366 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7367 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7368 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7369 void *IP = nullptr; 7370 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7371 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7372 return SDValue(E, 0); 7373 } 7374 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7375 VTs, VT, MMO, IndexType); 7376 createOperands(N, Ops); 7377 7378 assert(N->getMask().getValueType().getVectorNumElements() == 7379 N->getValue().getValueType().getVectorNumElements() && 7380 "Vector width mismatch between mask and data"); 7381 assert(N->getIndex().getValueType().getVectorNumElements() >= 7382 N->getValue().getValueType().getVectorNumElements() && 7383 "Vector width mismatch between index and data"); 7384 assert(isa<ConstantSDNode>(N->getScale()) && 7385 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7386 "Scale should be a constant power of 2"); 7387 7388 CSEMap.InsertNode(N, IP); 7389 InsertNode(N); 7390 SDValue V(N, 0); 7391 NewSDValueDbgMsg(V, "Creating new node: ", this); 7392 return V; 7393 } 7394 7395 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7396 // select undef, T, F --> T (if T is a constant), otherwise F 7397 // select, ?, undef, F --> F 7398 // select, ?, T, undef --> T 7399 if (Cond.isUndef()) 7400 return isConstantValueOfAnyType(T) ? T : F; 7401 if (T.isUndef()) 7402 return F; 7403 if (F.isUndef()) 7404 return T; 7405 7406 // select true, T, F --> T 7407 // select false, T, F --> F 7408 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7409 return CondC->isNullValue() ? F : T; 7410 7411 // TODO: This should simplify VSELECT with constant condition using something 7412 // like this (but check boolean contents to be complete?): 7413 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7414 // return T; 7415 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7416 // return F; 7417 7418 // select ?, T, T --> T 7419 if (T == F) 7420 return T; 7421 7422 return SDValue(); 7423 } 7424 7425 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7426 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7427 if (X.isUndef()) 7428 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7429 // shift X, undef --> undef (because it may shift by the bitwidth) 7430 if (Y.isUndef()) 7431 return getUNDEF(X.getValueType()); 7432 7433 // shift 0, Y --> 0 7434 // shift X, 0 --> X 7435 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7436 return X; 7437 7438 // shift X, C >= bitwidth(X) --> undef 7439 // All vector elements must be too big (or undef) to avoid partial undefs. 7440 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7441 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7442 }; 7443 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7444 return getUNDEF(X.getValueType()); 7445 7446 return SDValue(); 7447 } 7448 7449 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7450 SDNodeFlags Flags) { 7451 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7452 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7453 // operation is poison. That result can be relaxed to undef. 7454 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7455 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7456 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7457 (YC && YC->getValueAPF().isNaN()); 7458 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7459 (YC && YC->getValueAPF().isInfinity()); 7460 7461 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7462 return getUNDEF(X.getValueType()); 7463 7464 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7465 return getUNDEF(X.getValueType()); 7466 7467 if (!YC) 7468 return SDValue(); 7469 7470 // X + -0.0 --> X 7471 if (Opcode == ISD::FADD) 7472 if (YC->getValueAPF().isNegZero()) 7473 return X; 7474 7475 // X - +0.0 --> X 7476 if (Opcode == ISD::FSUB) 7477 if (YC->getValueAPF().isPosZero()) 7478 return X; 7479 7480 // X * 1.0 --> X 7481 // X / 1.0 --> X 7482 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7483 if (YC->getValueAPF().isExactlyValue(1.0)) 7484 return X; 7485 7486 // X * 0.0 --> 0.0 7487 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7488 if (YC->getValueAPF().isZero()) 7489 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7490 7491 return SDValue(); 7492 } 7493 7494 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7495 SDValue Ptr, SDValue SV, unsigned Align) { 7496 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7497 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7498 } 7499 7500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7501 ArrayRef<SDUse> Ops) { 7502 switch (Ops.size()) { 7503 case 0: return getNode(Opcode, DL, VT); 7504 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7505 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7506 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7507 default: break; 7508 } 7509 7510 // Copy from an SDUse array into an SDValue array for use with 7511 // the regular getNode logic. 7512 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7513 return getNode(Opcode, DL, VT, NewOps); 7514 } 7515 7516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7517 ArrayRef<SDValue> Ops) { 7518 SDNodeFlags Flags; 7519 if (Inserter) 7520 Flags = Inserter->getFlags(); 7521 return getNode(Opcode, DL, VT, Ops, Flags); 7522 } 7523 7524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7525 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7526 unsigned NumOps = Ops.size(); 7527 switch (NumOps) { 7528 case 0: return getNode(Opcode, DL, VT); 7529 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7530 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7531 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7532 default: break; 7533 } 7534 7535 switch (Opcode) { 7536 default: break; 7537 case ISD::BUILD_VECTOR: 7538 // Attempt to simplify BUILD_VECTOR. 7539 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7540 return V; 7541 break; 7542 case ISD::CONCAT_VECTORS: 7543 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7544 return V; 7545 break; 7546 case ISD::SELECT_CC: 7547 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7548 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7549 "LHS and RHS of condition must have same type!"); 7550 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7551 "True and False arms of SelectCC must have same type!"); 7552 assert(Ops[2].getValueType() == VT && 7553 "select_cc node must be of same type as true and false value!"); 7554 break; 7555 case ISD::BR_CC: 7556 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7557 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7558 "LHS/RHS of comparison should match types!"); 7559 break; 7560 } 7561 7562 // Memoize nodes. 7563 SDNode *N; 7564 SDVTList VTs = getVTList(VT); 7565 7566 if (VT != MVT::Glue) { 7567 FoldingSetNodeID ID; 7568 AddNodeIDNode(ID, Opcode, VTs, Ops); 7569 void *IP = nullptr; 7570 7571 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7572 return SDValue(E, 0); 7573 7574 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7575 createOperands(N, Ops); 7576 7577 CSEMap.InsertNode(N, IP); 7578 } else { 7579 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7580 createOperands(N, Ops); 7581 } 7582 7583 N->setFlags(Flags); 7584 InsertNode(N); 7585 SDValue V(N, 0); 7586 NewSDValueDbgMsg(V, "Creating new node: ", this); 7587 return V; 7588 } 7589 7590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7591 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7592 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7593 } 7594 7595 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7596 ArrayRef<SDValue> Ops) { 7597 SDNodeFlags Flags; 7598 if (Inserter) 7599 Flags = Inserter->getFlags(); 7600 return getNode(Opcode, DL, VTList, Ops, Flags); 7601 } 7602 7603 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7604 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7605 if (VTList.NumVTs == 1) 7606 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7607 7608 switch (Opcode) { 7609 case ISD::STRICT_FP_EXTEND: 7610 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7611 "Invalid STRICT_FP_EXTEND!"); 7612 assert(VTList.VTs[0].isFloatingPoint() && 7613 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7614 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7615 "STRICT_FP_EXTEND result type should be vector iff the operand " 7616 "type is vector!"); 7617 assert((!VTList.VTs[0].isVector() || 7618 VTList.VTs[0].getVectorNumElements() == 7619 Ops[1].getValueType().getVectorNumElements()) && 7620 "Vector element count mismatch!"); 7621 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7622 "Invalid fpext node, dst <= src!"); 7623 break; 7624 case ISD::STRICT_FP_ROUND: 7625 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7626 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7627 "STRICT_FP_ROUND result type should be vector iff the operand " 7628 "type is vector!"); 7629 assert((!VTList.VTs[0].isVector() || 7630 VTList.VTs[0].getVectorNumElements() == 7631 Ops[1].getValueType().getVectorNumElements()) && 7632 "Vector element count mismatch!"); 7633 assert(VTList.VTs[0].isFloatingPoint() && 7634 Ops[1].getValueType().isFloatingPoint() && 7635 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7636 isa<ConstantSDNode>(Ops[2]) && 7637 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7638 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7639 "Invalid STRICT_FP_ROUND!"); 7640 break; 7641 #if 0 7642 // FIXME: figure out how to safely handle things like 7643 // int foo(int x) { return 1 << (x & 255); } 7644 // int bar() { return foo(256); } 7645 case ISD::SRA_PARTS: 7646 case ISD::SRL_PARTS: 7647 case ISD::SHL_PARTS: 7648 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7649 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7650 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7651 else if (N3.getOpcode() == ISD::AND) 7652 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7653 // If the and is only masking out bits that cannot effect the shift, 7654 // eliminate the and. 7655 unsigned NumBits = VT.getScalarSizeInBits()*2; 7656 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7657 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7658 } 7659 break; 7660 #endif 7661 } 7662 7663 // Memoize the node unless it returns a flag. 7664 SDNode *N; 7665 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7666 FoldingSetNodeID ID; 7667 AddNodeIDNode(ID, Opcode, VTList, Ops); 7668 void *IP = nullptr; 7669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7670 return SDValue(E, 0); 7671 7672 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7673 createOperands(N, Ops); 7674 CSEMap.InsertNode(N, IP); 7675 } else { 7676 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7677 createOperands(N, Ops); 7678 } 7679 7680 N->setFlags(Flags); 7681 InsertNode(N); 7682 SDValue V(N, 0); 7683 NewSDValueDbgMsg(V, "Creating new node: ", this); 7684 return V; 7685 } 7686 7687 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7688 SDVTList VTList) { 7689 return getNode(Opcode, DL, VTList, None); 7690 } 7691 7692 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7693 SDValue N1) { 7694 SDValue Ops[] = { N1 }; 7695 return getNode(Opcode, DL, VTList, Ops); 7696 } 7697 7698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7699 SDValue N1, SDValue N2) { 7700 SDValue Ops[] = { N1, N2 }; 7701 return getNode(Opcode, DL, VTList, Ops); 7702 } 7703 7704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7705 SDValue N1, SDValue N2, SDValue N3) { 7706 SDValue Ops[] = { N1, N2, N3 }; 7707 return getNode(Opcode, DL, VTList, Ops); 7708 } 7709 7710 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7711 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7712 SDValue Ops[] = { N1, N2, N3, N4 }; 7713 return getNode(Opcode, DL, VTList, Ops); 7714 } 7715 7716 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7717 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7718 SDValue N5) { 7719 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7720 return getNode(Opcode, DL, VTList, Ops); 7721 } 7722 7723 SDVTList SelectionDAG::getVTList(EVT VT) { 7724 return makeVTList(SDNode::getValueTypeList(VT), 1); 7725 } 7726 7727 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7728 FoldingSetNodeID ID; 7729 ID.AddInteger(2U); 7730 ID.AddInteger(VT1.getRawBits()); 7731 ID.AddInteger(VT2.getRawBits()); 7732 7733 void *IP = nullptr; 7734 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7735 if (!Result) { 7736 EVT *Array = Allocator.Allocate<EVT>(2); 7737 Array[0] = VT1; 7738 Array[1] = VT2; 7739 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7740 VTListMap.InsertNode(Result, IP); 7741 } 7742 return Result->getSDVTList(); 7743 } 7744 7745 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7746 FoldingSetNodeID ID; 7747 ID.AddInteger(3U); 7748 ID.AddInteger(VT1.getRawBits()); 7749 ID.AddInteger(VT2.getRawBits()); 7750 ID.AddInteger(VT3.getRawBits()); 7751 7752 void *IP = nullptr; 7753 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7754 if (!Result) { 7755 EVT *Array = Allocator.Allocate<EVT>(3); 7756 Array[0] = VT1; 7757 Array[1] = VT2; 7758 Array[2] = VT3; 7759 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7760 VTListMap.InsertNode(Result, IP); 7761 } 7762 return Result->getSDVTList(); 7763 } 7764 7765 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7766 FoldingSetNodeID ID; 7767 ID.AddInteger(4U); 7768 ID.AddInteger(VT1.getRawBits()); 7769 ID.AddInteger(VT2.getRawBits()); 7770 ID.AddInteger(VT3.getRawBits()); 7771 ID.AddInteger(VT4.getRawBits()); 7772 7773 void *IP = nullptr; 7774 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7775 if (!Result) { 7776 EVT *Array = Allocator.Allocate<EVT>(4); 7777 Array[0] = VT1; 7778 Array[1] = VT2; 7779 Array[2] = VT3; 7780 Array[3] = VT4; 7781 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7782 VTListMap.InsertNode(Result, IP); 7783 } 7784 return Result->getSDVTList(); 7785 } 7786 7787 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7788 unsigned NumVTs = VTs.size(); 7789 FoldingSetNodeID ID; 7790 ID.AddInteger(NumVTs); 7791 for (unsigned index = 0; index < NumVTs; index++) { 7792 ID.AddInteger(VTs[index].getRawBits()); 7793 } 7794 7795 void *IP = nullptr; 7796 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7797 if (!Result) { 7798 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7799 llvm::copy(VTs, Array); 7800 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7801 VTListMap.InsertNode(Result, IP); 7802 } 7803 return Result->getSDVTList(); 7804 } 7805 7806 7807 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7808 /// specified operands. If the resultant node already exists in the DAG, 7809 /// this does not modify the specified node, instead it returns the node that 7810 /// already exists. If the resultant node does not exist in the DAG, the 7811 /// input node is returned. As a degenerate case, if you specify the same 7812 /// input operands as the node already has, the input node is returned. 7813 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7814 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7815 7816 // Check to see if there is no change. 7817 if (Op == N->getOperand(0)) return N; 7818 7819 // See if the modified node already exists. 7820 void *InsertPos = nullptr; 7821 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7822 return Existing; 7823 7824 // Nope it doesn't. Remove the node from its current place in the maps. 7825 if (InsertPos) 7826 if (!RemoveNodeFromCSEMaps(N)) 7827 InsertPos = nullptr; 7828 7829 // Now we update the operands. 7830 N->OperandList[0].set(Op); 7831 7832 updateDivergence(N); 7833 // If this gets put into a CSE map, add it. 7834 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7835 return N; 7836 } 7837 7838 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7839 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7840 7841 // Check to see if there is no change. 7842 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7843 return N; // No operands changed, just return the input node. 7844 7845 // See if the modified node already exists. 7846 void *InsertPos = nullptr; 7847 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7848 return Existing; 7849 7850 // Nope it doesn't. Remove the node from its current place in the maps. 7851 if (InsertPos) 7852 if (!RemoveNodeFromCSEMaps(N)) 7853 InsertPos = nullptr; 7854 7855 // Now we update the operands. 7856 if (N->OperandList[0] != Op1) 7857 N->OperandList[0].set(Op1); 7858 if (N->OperandList[1] != Op2) 7859 N->OperandList[1].set(Op2); 7860 7861 updateDivergence(N); 7862 // If this gets put into a CSE map, add it. 7863 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7864 return N; 7865 } 7866 7867 SDNode *SelectionDAG:: 7868 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7869 SDValue Ops[] = { Op1, Op2, Op3 }; 7870 return UpdateNodeOperands(N, Ops); 7871 } 7872 7873 SDNode *SelectionDAG:: 7874 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7875 SDValue Op3, SDValue Op4) { 7876 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7877 return UpdateNodeOperands(N, Ops); 7878 } 7879 7880 SDNode *SelectionDAG:: 7881 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7882 SDValue Op3, SDValue Op4, SDValue Op5) { 7883 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7884 return UpdateNodeOperands(N, Ops); 7885 } 7886 7887 SDNode *SelectionDAG:: 7888 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7889 unsigned NumOps = Ops.size(); 7890 assert(N->getNumOperands() == NumOps && 7891 "Update with wrong number of operands"); 7892 7893 // If no operands changed just return the input node. 7894 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7895 return N; 7896 7897 // See if the modified node already exists. 7898 void *InsertPos = nullptr; 7899 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7900 return Existing; 7901 7902 // Nope it doesn't. Remove the node from its current place in the maps. 7903 if (InsertPos) 7904 if (!RemoveNodeFromCSEMaps(N)) 7905 InsertPos = nullptr; 7906 7907 // Now we update the operands. 7908 for (unsigned i = 0; i != NumOps; ++i) 7909 if (N->OperandList[i] != Ops[i]) 7910 N->OperandList[i].set(Ops[i]); 7911 7912 updateDivergence(N); 7913 // If this gets put into a CSE map, add it. 7914 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7915 return N; 7916 } 7917 7918 /// DropOperands - Release the operands and set this node to have 7919 /// zero operands. 7920 void SDNode::DropOperands() { 7921 // Unlike the code in MorphNodeTo that does this, we don't need to 7922 // watch for dead nodes here. 7923 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7924 SDUse &Use = *I++; 7925 Use.set(SDValue()); 7926 } 7927 } 7928 7929 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7930 ArrayRef<MachineMemOperand *> NewMemRefs) { 7931 if (NewMemRefs.empty()) { 7932 N->clearMemRefs(); 7933 return; 7934 } 7935 7936 // Check if we can avoid allocating by storing a single reference directly. 7937 if (NewMemRefs.size() == 1) { 7938 N->MemRefs = NewMemRefs[0]; 7939 N->NumMemRefs = 1; 7940 return; 7941 } 7942 7943 MachineMemOperand **MemRefsBuffer = 7944 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7945 llvm::copy(NewMemRefs, MemRefsBuffer); 7946 N->MemRefs = MemRefsBuffer; 7947 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7948 } 7949 7950 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7951 /// machine opcode. 7952 /// 7953 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7954 EVT VT) { 7955 SDVTList VTs = getVTList(VT); 7956 return SelectNodeTo(N, MachineOpc, VTs, None); 7957 } 7958 7959 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7960 EVT VT, SDValue Op1) { 7961 SDVTList VTs = getVTList(VT); 7962 SDValue Ops[] = { Op1 }; 7963 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7964 } 7965 7966 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7967 EVT VT, SDValue Op1, 7968 SDValue Op2) { 7969 SDVTList VTs = getVTList(VT); 7970 SDValue Ops[] = { Op1, Op2 }; 7971 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7972 } 7973 7974 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7975 EVT VT, SDValue Op1, 7976 SDValue Op2, SDValue Op3) { 7977 SDVTList VTs = getVTList(VT); 7978 SDValue Ops[] = { Op1, Op2, Op3 }; 7979 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7980 } 7981 7982 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7983 EVT VT, ArrayRef<SDValue> Ops) { 7984 SDVTList VTs = getVTList(VT); 7985 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7986 } 7987 7988 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7989 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7990 SDVTList VTs = getVTList(VT1, VT2); 7991 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7992 } 7993 7994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7995 EVT VT1, EVT VT2) { 7996 SDVTList VTs = getVTList(VT1, VT2); 7997 return SelectNodeTo(N, MachineOpc, VTs, None); 7998 } 7999 8000 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8001 EVT VT1, EVT VT2, EVT VT3, 8002 ArrayRef<SDValue> Ops) { 8003 SDVTList VTs = getVTList(VT1, VT2, VT3); 8004 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8005 } 8006 8007 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8008 EVT VT1, EVT VT2, 8009 SDValue Op1, SDValue Op2) { 8010 SDVTList VTs = getVTList(VT1, VT2); 8011 SDValue Ops[] = { Op1, Op2 }; 8012 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8013 } 8014 8015 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8016 SDVTList VTs,ArrayRef<SDValue> Ops) { 8017 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8018 // Reset the NodeID to -1. 8019 New->setNodeId(-1); 8020 if (New != N) { 8021 ReplaceAllUsesWith(N, New); 8022 RemoveDeadNode(N); 8023 } 8024 return New; 8025 } 8026 8027 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8028 /// the line number information on the merged node since it is not possible to 8029 /// preserve the information that operation is associated with multiple lines. 8030 /// This will make the debugger working better at -O0, were there is a higher 8031 /// probability having other instructions associated with that line. 8032 /// 8033 /// For IROrder, we keep the smaller of the two 8034 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8035 DebugLoc NLoc = N->getDebugLoc(); 8036 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8037 N->setDebugLoc(DebugLoc()); 8038 } 8039 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8040 N->setIROrder(Order); 8041 return N; 8042 } 8043 8044 /// MorphNodeTo - This *mutates* the specified node to have the specified 8045 /// return type, opcode, and operands. 8046 /// 8047 /// Note that MorphNodeTo returns the resultant node. If there is already a 8048 /// node of the specified opcode and operands, it returns that node instead of 8049 /// the current one. Note that the SDLoc need not be the same. 8050 /// 8051 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8052 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8053 /// node, and because it doesn't require CSE recalculation for any of 8054 /// the node's users. 8055 /// 8056 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8057 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8058 /// the legalizer which maintain worklists that would need to be updated when 8059 /// deleting things. 8060 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8061 SDVTList VTs, ArrayRef<SDValue> Ops) { 8062 // If an identical node already exists, use it. 8063 void *IP = nullptr; 8064 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8065 FoldingSetNodeID ID; 8066 AddNodeIDNode(ID, Opc, VTs, Ops); 8067 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8068 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8069 } 8070 8071 if (!RemoveNodeFromCSEMaps(N)) 8072 IP = nullptr; 8073 8074 // Start the morphing. 8075 N->NodeType = Opc; 8076 N->ValueList = VTs.VTs; 8077 N->NumValues = VTs.NumVTs; 8078 8079 // Clear the operands list, updating used nodes to remove this from their 8080 // use list. Keep track of any operands that become dead as a result. 8081 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8082 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8083 SDUse &Use = *I++; 8084 SDNode *Used = Use.getNode(); 8085 Use.set(SDValue()); 8086 if (Used->use_empty()) 8087 DeadNodeSet.insert(Used); 8088 } 8089 8090 // For MachineNode, initialize the memory references information. 8091 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8092 MN->clearMemRefs(); 8093 8094 // Swap for an appropriately sized array from the recycler. 8095 removeOperands(N); 8096 createOperands(N, Ops); 8097 8098 // Delete any nodes that are still dead after adding the uses for the 8099 // new operands. 8100 if (!DeadNodeSet.empty()) { 8101 SmallVector<SDNode *, 16> DeadNodes; 8102 for (SDNode *N : DeadNodeSet) 8103 if (N->use_empty()) 8104 DeadNodes.push_back(N); 8105 RemoveDeadNodes(DeadNodes); 8106 } 8107 8108 if (IP) 8109 CSEMap.InsertNode(N, IP); // Memoize the new node. 8110 return N; 8111 } 8112 8113 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8114 unsigned OrigOpc = Node->getOpcode(); 8115 unsigned NewOpc; 8116 switch (OrigOpc) { 8117 default: 8118 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8119 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8120 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8121 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8122 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8123 #include "llvm/IR/ConstrainedOps.def" 8124 } 8125 8126 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8127 8128 // We're taking this node out of the chain, so we need to re-link things. 8129 SDValue InputChain = Node->getOperand(0); 8130 SDValue OutputChain = SDValue(Node, 1); 8131 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8132 8133 SmallVector<SDValue, 3> Ops; 8134 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8135 Ops.push_back(Node->getOperand(i)); 8136 8137 SDVTList VTs = getVTList(Node->getValueType(0)); 8138 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8139 8140 // MorphNodeTo can operate in two ways: if an existing node with the 8141 // specified operands exists, it can just return it. Otherwise, it 8142 // updates the node in place to have the requested operands. 8143 if (Res == Node) { 8144 // If we updated the node in place, reset the node ID. To the isel, 8145 // this should be just like a newly allocated machine node. 8146 Res->setNodeId(-1); 8147 } else { 8148 ReplaceAllUsesWith(Node, Res); 8149 RemoveDeadNode(Node); 8150 } 8151 8152 return Res; 8153 } 8154 8155 /// getMachineNode - These are used for target selectors to create a new node 8156 /// with specified return type(s), MachineInstr opcode, and operands. 8157 /// 8158 /// Note that getMachineNode returns the resultant node. If there is already a 8159 /// node of the specified opcode and operands, it returns that node instead of 8160 /// the current one. 8161 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8162 EVT VT) { 8163 SDVTList VTs = getVTList(VT); 8164 return getMachineNode(Opcode, dl, VTs, None); 8165 } 8166 8167 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8168 EVT VT, SDValue Op1) { 8169 SDVTList VTs = getVTList(VT); 8170 SDValue Ops[] = { Op1 }; 8171 return getMachineNode(Opcode, dl, VTs, Ops); 8172 } 8173 8174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8175 EVT VT, SDValue Op1, SDValue Op2) { 8176 SDVTList VTs = getVTList(VT); 8177 SDValue Ops[] = { Op1, Op2 }; 8178 return getMachineNode(Opcode, dl, VTs, Ops); 8179 } 8180 8181 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8182 EVT VT, SDValue Op1, SDValue Op2, 8183 SDValue Op3) { 8184 SDVTList VTs = getVTList(VT); 8185 SDValue Ops[] = { Op1, Op2, Op3 }; 8186 return getMachineNode(Opcode, dl, VTs, Ops); 8187 } 8188 8189 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8190 EVT VT, ArrayRef<SDValue> Ops) { 8191 SDVTList VTs = getVTList(VT); 8192 return getMachineNode(Opcode, dl, VTs, Ops); 8193 } 8194 8195 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8196 EVT VT1, EVT VT2, SDValue Op1, 8197 SDValue Op2) { 8198 SDVTList VTs = getVTList(VT1, VT2); 8199 SDValue Ops[] = { Op1, Op2 }; 8200 return getMachineNode(Opcode, dl, VTs, Ops); 8201 } 8202 8203 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8204 EVT VT1, EVT VT2, SDValue Op1, 8205 SDValue Op2, SDValue Op3) { 8206 SDVTList VTs = getVTList(VT1, VT2); 8207 SDValue Ops[] = { Op1, Op2, Op3 }; 8208 return getMachineNode(Opcode, dl, VTs, Ops); 8209 } 8210 8211 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8212 EVT VT1, EVT VT2, 8213 ArrayRef<SDValue> Ops) { 8214 SDVTList VTs = getVTList(VT1, VT2); 8215 return getMachineNode(Opcode, dl, VTs, Ops); 8216 } 8217 8218 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8219 EVT VT1, EVT VT2, EVT VT3, 8220 SDValue Op1, SDValue Op2) { 8221 SDVTList VTs = getVTList(VT1, VT2, VT3); 8222 SDValue Ops[] = { Op1, Op2 }; 8223 return getMachineNode(Opcode, dl, VTs, Ops); 8224 } 8225 8226 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8227 EVT VT1, EVT VT2, EVT VT3, 8228 SDValue Op1, SDValue Op2, 8229 SDValue Op3) { 8230 SDVTList VTs = getVTList(VT1, VT2, VT3); 8231 SDValue Ops[] = { Op1, Op2, Op3 }; 8232 return getMachineNode(Opcode, dl, VTs, Ops); 8233 } 8234 8235 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8236 EVT VT1, EVT VT2, EVT VT3, 8237 ArrayRef<SDValue> Ops) { 8238 SDVTList VTs = getVTList(VT1, VT2, VT3); 8239 return getMachineNode(Opcode, dl, VTs, Ops); 8240 } 8241 8242 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8243 ArrayRef<EVT> ResultTys, 8244 ArrayRef<SDValue> Ops) { 8245 SDVTList VTs = getVTList(ResultTys); 8246 return getMachineNode(Opcode, dl, VTs, Ops); 8247 } 8248 8249 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8250 SDVTList VTs, 8251 ArrayRef<SDValue> Ops) { 8252 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8253 MachineSDNode *N; 8254 void *IP = nullptr; 8255 8256 if (DoCSE) { 8257 FoldingSetNodeID ID; 8258 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8259 IP = nullptr; 8260 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8261 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8262 } 8263 } 8264 8265 // Allocate a new MachineSDNode. 8266 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8267 createOperands(N, Ops); 8268 8269 if (DoCSE) 8270 CSEMap.InsertNode(N, IP); 8271 8272 InsertNode(N); 8273 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8274 return N; 8275 } 8276 8277 /// getTargetExtractSubreg - A convenience function for creating 8278 /// TargetOpcode::EXTRACT_SUBREG nodes. 8279 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8280 SDValue Operand) { 8281 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8282 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8283 VT, Operand, SRIdxVal); 8284 return SDValue(Subreg, 0); 8285 } 8286 8287 /// getTargetInsertSubreg - A convenience function for creating 8288 /// TargetOpcode::INSERT_SUBREG nodes. 8289 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8290 SDValue Operand, SDValue Subreg) { 8291 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8292 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8293 VT, Operand, Subreg, SRIdxVal); 8294 return SDValue(Result, 0); 8295 } 8296 8297 /// getNodeIfExists - Get the specified node if it's already available, or 8298 /// else return NULL. 8299 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8300 ArrayRef<SDValue> Ops) { 8301 SDNodeFlags Flags; 8302 if (Inserter) 8303 Flags = Inserter->getFlags(); 8304 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8305 } 8306 8307 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8308 ArrayRef<SDValue> Ops, 8309 const SDNodeFlags Flags) { 8310 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8311 FoldingSetNodeID ID; 8312 AddNodeIDNode(ID, Opcode, VTList, Ops); 8313 void *IP = nullptr; 8314 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8315 E->intersectFlagsWith(Flags); 8316 return E; 8317 } 8318 } 8319 return nullptr; 8320 } 8321 8322 /// getDbgValue - Creates a SDDbgValue node. 8323 /// 8324 /// SDNode 8325 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8326 SDNode *N, unsigned R, bool IsIndirect, 8327 const DebugLoc &DL, unsigned O) { 8328 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8329 "Expected inlined-at fields to agree"); 8330 return new (DbgInfo->getAlloc()) 8331 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8332 } 8333 8334 /// Constant 8335 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8336 DIExpression *Expr, 8337 const Value *C, 8338 const DebugLoc &DL, unsigned O) { 8339 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8340 "Expected inlined-at fields to agree"); 8341 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8342 } 8343 8344 /// FrameIndex 8345 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8346 DIExpression *Expr, unsigned FI, 8347 bool IsIndirect, 8348 const DebugLoc &DL, 8349 unsigned O) { 8350 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8351 "Expected inlined-at fields to agree"); 8352 return new (DbgInfo->getAlloc()) 8353 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8354 } 8355 8356 /// VReg 8357 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8358 DIExpression *Expr, 8359 unsigned VReg, bool IsIndirect, 8360 const DebugLoc &DL, unsigned O) { 8361 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8362 "Expected inlined-at fields to agree"); 8363 return new (DbgInfo->getAlloc()) 8364 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8365 } 8366 8367 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8368 unsigned OffsetInBits, unsigned SizeInBits, 8369 bool InvalidateDbg) { 8370 SDNode *FromNode = From.getNode(); 8371 SDNode *ToNode = To.getNode(); 8372 assert(FromNode && ToNode && "Can't modify dbg values"); 8373 8374 // PR35338 8375 // TODO: assert(From != To && "Redundant dbg value transfer"); 8376 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8377 if (From == To || FromNode == ToNode) 8378 return; 8379 8380 if (!FromNode->getHasDebugValue()) 8381 return; 8382 8383 SmallVector<SDDbgValue *, 2> ClonedDVs; 8384 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8385 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8386 continue; 8387 8388 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8389 8390 // Just transfer the dbg value attached to From. 8391 if (Dbg->getResNo() != From.getResNo()) 8392 continue; 8393 8394 DIVariable *Var = Dbg->getVariable(); 8395 auto *Expr = Dbg->getExpression(); 8396 // If a fragment is requested, update the expression. 8397 if (SizeInBits) { 8398 // When splitting a larger (e.g., sign-extended) value whose 8399 // lower bits are described with an SDDbgValue, do not attempt 8400 // to transfer the SDDbgValue to the upper bits. 8401 if (auto FI = Expr->getFragmentInfo()) 8402 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8403 continue; 8404 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8405 SizeInBits); 8406 if (!Fragment) 8407 continue; 8408 Expr = *Fragment; 8409 } 8410 // Clone the SDDbgValue and move it to To. 8411 SDDbgValue *Clone = getDbgValue( 8412 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8413 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8414 ClonedDVs.push_back(Clone); 8415 8416 if (InvalidateDbg) { 8417 // Invalidate value and indicate the SDDbgValue should not be emitted. 8418 Dbg->setIsInvalidated(); 8419 Dbg->setIsEmitted(); 8420 } 8421 } 8422 8423 for (SDDbgValue *Dbg : ClonedDVs) 8424 AddDbgValue(Dbg, ToNode, false); 8425 } 8426 8427 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8428 if (!N.getHasDebugValue()) 8429 return; 8430 8431 SmallVector<SDDbgValue *, 2> ClonedDVs; 8432 for (auto DV : GetDbgValues(&N)) { 8433 if (DV->isInvalidated()) 8434 continue; 8435 switch (N.getOpcode()) { 8436 default: 8437 break; 8438 case ISD::ADD: 8439 SDValue N0 = N.getOperand(0); 8440 SDValue N1 = N.getOperand(1); 8441 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8442 isConstantIntBuildVectorOrConstantInt(N1)) { 8443 uint64_t Offset = N.getConstantOperandVal(1); 8444 // Rewrite an ADD constant node into a DIExpression. Since we are 8445 // performing arithmetic to compute the variable's *value* in the 8446 // DIExpression, we need to mark the expression with a 8447 // DW_OP_stack_value. 8448 auto *DIExpr = DV->getExpression(); 8449 DIExpr = 8450 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8451 SDDbgValue *Clone = 8452 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8453 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8454 ClonedDVs.push_back(Clone); 8455 DV->setIsInvalidated(); 8456 DV->setIsEmitted(); 8457 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8458 N0.getNode()->dumprFull(this); 8459 dbgs() << " into " << *DIExpr << '\n'); 8460 } 8461 } 8462 } 8463 8464 for (SDDbgValue *Dbg : ClonedDVs) 8465 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8466 } 8467 8468 /// Creates a SDDbgLabel node. 8469 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8470 const DebugLoc &DL, unsigned O) { 8471 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8472 "Expected inlined-at fields to agree"); 8473 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8474 } 8475 8476 namespace { 8477 8478 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8479 /// pointed to by a use iterator is deleted, increment the use iterator 8480 /// so that it doesn't dangle. 8481 /// 8482 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8483 SDNode::use_iterator &UI; 8484 SDNode::use_iterator &UE; 8485 8486 void NodeDeleted(SDNode *N, SDNode *E) override { 8487 // Increment the iterator as needed. 8488 while (UI != UE && N == *UI) 8489 ++UI; 8490 } 8491 8492 public: 8493 RAUWUpdateListener(SelectionDAG &d, 8494 SDNode::use_iterator &ui, 8495 SDNode::use_iterator &ue) 8496 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8497 }; 8498 8499 } // end anonymous namespace 8500 8501 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8502 /// This can cause recursive merging of nodes in the DAG. 8503 /// 8504 /// This version assumes From has a single result value. 8505 /// 8506 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8507 SDNode *From = FromN.getNode(); 8508 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8509 "Cannot replace with this method!"); 8510 assert(From != To.getNode() && "Cannot replace uses of with self"); 8511 8512 // Preserve Debug Values 8513 transferDbgValues(FromN, To); 8514 8515 // Iterate over all the existing uses of From. New uses will be added 8516 // to the beginning of the use list, which we avoid visiting. 8517 // This specifically avoids visiting uses of From that arise while the 8518 // replacement is happening, because any such uses would be the result 8519 // of CSE: If an existing node looks like From after one of its operands 8520 // is replaced by To, we don't want to replace of all its users with To 8521 // too. See PR3018 for more info. 8522 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8523 RAUWUpdateListener Listener(*this, UI, UE); 8524 while (UI != UE) { 8525 SDNode *User = *UI; 8526 8527 // This node is about to morph, remove its old self from the CSE maps. 8528 RemoveNodeFromCSEMaps(User); 8529 8530 // A user can appear in a use list multiple times, and when this 8531 // happens the uses are usually next to each other in the list. 8532 // To help reduce the number of CSE recomputations, process all 8533 // the uses of this user that we can find this way. 8534 do { 8535 SDUse &Use = UI.getUse(); 8536 ++UI; 8537 Use.set(To); 8538 if (To->isDivergent() != From->isDivergent()) 8539 updateDivergence(User); 8540 } while (UI != UE && *UI == User); 8541 // Now that we have modified User, add it back to the CSE maps. If it 8542 // already exists there, recursively merge the results together. 8543 AddModifiedNodeToCSEMaps(User); 8544 } 8545 8546 // If we just RAUW'd the root, take note. 8547 if (FromN == getRoot()) 8548 setRoot(To); 8549 } 8550 8551 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8552 /// This can cause recursive merging of nodes in the DAG. 8553 /// 8554 /// This version assumes that for each value of From, there is a 8555 /// corresponding value in To in the same position with the same type. 8556 /// 8557 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8558 #ifndef NDEBUG 8559 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8560 assert((!From->hasAnyUseOfValue(i) || 8561 From->getValueType(i) == To->getValueType(i)) && 8562 "Cannot use this version of ReplaceAllUsesWith!"); 8563 #endif 8564 8565 // Handle the trivial case. 8566 if (From == To) 8567 return; 8568 8569 // Preserve Debug Info. Only do this if there's a use. 8570 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8571 if (From->hasAnyUseOfValue(i)) { 8572 assert((i < To->getNumValues()) && "Invalid To location"); 8573 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8574 } 8575 8576 // Iterate over just the existing users of From. See the comments in 8577 // the ReplaceAllUsesWith above. 8578 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8579 RAUWUpdateListener Listener(*this, UI, UE); 8580 while (UI != UE) { 8581 SDNode *User = *UI; 8582 8583 // This node is about to morph, remove its old self from the CSE maps. 8584 RemoveNodeFromCSEMaps(User); 8585 8586 // A user can appear in a use list multiple times, and when this 8587 // happens the uses are usually next to each other in the list. 8588 // To help reduce the number of CSE recomputations, process all 8589 // the uses of this user that we can find this way. 8590 do { 8591 SDUse &Use = UI.getUse(); 8592 ++UI; 8593 Use.setNode(To); 8594 if (To->isDivergent() != From->isDivergent()) 8595 updateDivergence(User); 8596 } while (UI != UE && *UI == User); 8597 8598 // Now that we have modified User, add it back to the CSE maps. If it 8599 // already exists there, recursively merge the results together. 8600 AddModifiedNodeToCSEMaps(User); 8601 } 8602 8603 // If we just RAUW'd the root, take note. 8604 if (From == getRoot().getNode()) 8605 setRoot(SDValue(To, getRoot().getResNo())); 8606 } 8607 8608 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8609 /// This can cause recursive merging of nodes in the DAG. 8610 /// 8611 /// This version can replace From with any result values. To must match the 8612 /// number and types of values returned by From. 8613 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8614 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8615 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8616 8617 // Preserve Debug Info. 8618 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8619 transferDbgValues(SDValue(From, i), To[i]); 8620 8621 // Iterate over just the existing users of From. See the comments in 8622 // the ReplaceAllUsesWith above. 8623 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8624 RAUWUpdateListener Listener(*this, UI, UE); 8625 while (UI != UE) { 8626 SDNode *User = *UI; 8627 8628 // This node is about to morph, remove its old self from the CSE maps. 8629 RemoveNodeFromCSEMaps(User); 8630 8631 // A user can appear in a use list multiple times, and when this happens the 8632 // uses are usually next to each other in the list. To help reduce the 8633 // number of CSE and divergence recomputations, process all the uses of this 8634 // user that we can find this way. 8635 bool To_IsDivergent = false; 8636 do { 8637 SDUse &Use = UI.getUse(); 8638 const SDValue &ToOp = To[Use.getResNo()]; 8639 ++UI; 8640 Use.set(ToOp); 8641 To_IsDivergent |= ToOp->isDivergent(); 8642 } while (UI != UE && *UI == User); 8643 8644 if (To_IsDivergent != From->isDivergent()) 8645 updateDivergence(User); 8646 8647 // Now that we have modified User, add it back to the CSE maps. If it 8648 // already exists there, recursively merge the results together. 8649 AddModifiedNodeToCSEMaps(User); 8650 } 8651 8652 // If we just RAUW'd the root, take note. 8653 if (From == getRoot().getNode()) 8654 setRoot(SDValue(To[getRoot().getResNo()])); 8655 } 8656 8657 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8658 /// uses of other values produced by From.getNode() alone. The Deleted 8659 /// vector is handled the same way as for ReplaceAllUsesWith. 8660 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8661 // Handle the really simple, really trivial case efficiently. 8662 if (From == To) return; 8663 8664 // Handle the simple, trivial, case efficiently. 8665 if (From.getNode()->getNumValues() == 1) { 8666 ReplaceAllUsesWith(From, To); 8667 return; 8668 } 8669 8670 // Preserve Debug Info. 8671 transferDbgValues(From, To); 8672 8673 // Iterate over just the existing users of From. See the comments in 8674 // the ReplaceAllUsesWith above. 8675 SDNode::use_iterator UI = From.getNode()->use_begin(), 8676 UE = From.getNode()->use_end(); 8677 RAUWUpdateListener Listener(*this, UI, UE); 8678 while (UI != UE) { 8679 SDNode *User = *UI; 8680 bool UserRemovedFromCSEMaps = false; 8681 8682 // A user can appear in a use list multiple times, and when this 8683 // happens the uses are usually next to each other in the list. 8684 // To help reduce the number of CSE recomputations, process all 8685 // the uses of this user that we can find this way. 8686 do { 8687 SDUse &Use = UI.getUse(); 8688 8689 // Skip uses of different values from the same node. 8690 if (Use.getResNo() != From.getResNo()) { 8691 ++UI; 8692 continue; 8693 } 8694 8695 // If this node hasn't been modified yet, it's still in the CSE maps, 8696 // so remove its old self from the CSE maps. 8697 if (!UserRemovedFromCSEMaps) { 8698 RemoveNodeFromCSEMaps(User); 8699 UserRemovedFromCSEMaps = true; 8700 } 8701 8702 ++UI; 8703 Use.set(To); 8704 if (To->isDivergent() != From->isDivergent()) 8705 updateDivergence(User); 8706 } while (UI != UE && *UI == User); 8707 // We are iterating over all uses of the From node, so if a use 8708 // doesn't use the specific value, no changes are made. 8709 if (!UserRemovedFromCSEMaps) 8710 continue; 8711 8712 // Now that we have modified User, add it back to the CSE maps. If it 8713 // already exists there, recursively merge the results together. 8714 AddModifiedNodeToCSEMaps(User); 8715 } 8716 8717 // If we just RAUW'd the root, take note. 8718 if (From == getRoot()) 8719 setRoot(To); 8720 } 8721 8722 namespace { 8723 8724 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8725 /// to record information about a use. 8726 struct UseMemo { 8727 SDNode *User; 8728 unsigned Index; 8729 SDUse *Use; 8730 }; 8731 8732 /// operator< - Sort Memos by User. 8733 bool operator<(const UseMemo &L, const UseMemo &R) { 8734 return (intptr_t)L.User < (intptr_t)R.User; 8735 } 8736 8737 } // end anonymous namespace 8738 8739 bool SelectionDAG::calculateDivergence(SDNode *N) { 8740 if (TLI->isSDNodeAlwaysUniform(N)) { 8741 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8742 "Conflicting divergence information!"); 8743 return false; 8744 } 8745 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8746 return true; 8747 for (auto &Op : N->ops()) { 8748 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8749 return true; 8750 } 8751 return false; 8752 } 8753 8754 void SelectionDAG::updateDivergence(SDNode *N) { 8755 SmallVector<SDNode *, 16> Worklist(1, N); 8756 do { 8757 N = Worklist.pop_back_val(); 8758 bool IsDivergent = calculateDivergence(N); 8759 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8760 N->SDNodeBits.IsDivergent = IsDivergent; 8761 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8762 } 8763 } while (!Worklist.empty()); 8764 } 8765 8766 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8767 DenseMap<SDNode *, unsigned> Degree; 8768 Order.reserve(AllNodes.size()); 8769 for (auto &N : allnodes()) { 8770 unsigned NOps = N.getNumOperands(); 8771 Degree[&N] = NOps; 8772 if (0 == NOps) 8773 Order.push_back(&N); 8774 } 8775 for (size_t I = 0; I != Order.size(); ++I) { 8776 SDNode *N = Order[I]; 8777 for (auto U : N->uses()) { 8778 unsigned &UnsortedOps = Degree[U]; 8779 if (0 == --UnsortedOps) 8780 Order.push_back(U); 8781 } 8782 } 8783 } 8784 8785 #ifndef NDEBUG 8786 void SelectionDAG::VerifyDAGDiverence() { 8787 std::vector<SDNode *> TopoOrder; 8788 CreateTopologicalOrder(TopoOrder); 8789 for (auto *N : TopoOrder) { 8790 assert(calculateDivergence(N) == N->isDivergent() && 8791 "Divergence bit inconsistency detected"); 8792 } 8793 } 8794 #endif 8795 8796 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8797 /// uses of other values produced by From.getNode() alone. The same value 8798 /// may appear in both the From and To list. The Deleted vector is 8799 /// handled the same way as for ReplaceAllUsesWith. 8800 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8801 const SDValue *To, 8802 unsigned Num){ 8803 // Handle the simple, trivial case efficiently. 8804 if (Num == 1) 8805 return ReplaceAllUsesOfValueWith(*From, *To); 8806 8807 transferDbgValues(*From, *To); 8808 8809 // Read up all the uses and make records of them. This helps 8810 // processing new uses that are introduced during the 8811 // replacement process. 8812 SmallVector<UseMemo, 4> Uses; 8813 for (unsigned i = 0; i != Num; ++i) { 8814 unsigned FromResNo = From[i].getResNo(); 8815 SDNode *FromNode = From[i].getNode(); 8816 for (SDNode::use_iterator UI = FromNode->use_begin(), 8817 E = FromNode->use_end(); UI != E; ++UI) { 8818 SDUse &Use = UI.getUse(); 8819 if (Use.getResNo() == FromResNo) { 8820 UseMemo Memo = { *UI, i, &Use }; 8821 Uses.push_back(Memo); 8822 } 8823 } 8824 } 8825 8826 // Sort the uses, so that all the uses from a given User are together. 8827 llvm::sort(Uses); 8828 8829 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8830 UseIndex != UseIndexEnd; ) { 8831 // We know that this user uses some value of From. If it is the right 8832 // value, update it. 8833 SDNode *User = Uses[UseIndex].User; 8834 8835 // This node is about to morph, remove its old self from the CSE maps. 8836 RemoveNodeFromCSEMaps(User); 8837 8838 // The Uses array is sorted, so all the uses for a given User 8839 // are next to each other in the list. 8840 // To help reduce the number of CSE recomputations, process all 8841 // the uses of this user that we can find this way. 8842 do { 8843 unsigned i = Uses[UseIndex].Index; 8844 SDUse &Use = *Uses[UseIndex].Use; 8845 ++UseIndex; 8846 8847 Use.set(To[i]); 8848 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8849 8850 // Now that we have modified User, add it back to the CSE maps. If it 8851 // already exists there, recursively merge the results together. 8852 AddModifiedNodeToCSEMaps(User); 8853 } 8854 } 8855 8856 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8857 /// based on their topological order. It returns the maximum id and a vector 8858 /// of the SDNodes* in assigned order by reference. 8859 unsigned SelectionDAG::AssignTopologicalOrder() { 8860 unsigned DAGSize = 0; 8861 8862 // SortedPos tracks the progress of the algorithm. Nodes before it are 8863 // sorted, nodes after it are unsorted. When the algorithm completes 8864 // it is at the end of the list. 8865 allnodes_iterator SortedPos = allnodes_begin(); 8866 8867 // Visit all the nodes. Move nodes with no operands to the front of 8868 // the list immediately. Annotate nodes that do have operands with their 8869 // operand count. Before we do this, the Node Id fields of the nodes 8870 // may contain arbitrary values. After, the Node Id fields for nodes 8871 // before SortedPos will contain the topological sort index, and the 8872 // Node Id fields for nodes At SortedPos and after will contain the 8873 // count of outstanding operands. 8874 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8875 SDNode *N = &*I++; 8876 checkForCycles(N, this); 8877 unsigned Degree = N->getNumOperands(); 8878 if (Degree == 0) { 8879 // A node with no uses, add it to the result array immediately. 8880 N->setNodeId(DAGSize++); 8881 allnodes_iterator Q(N); 8882 if (Q != SortedPos) 8883 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8884 assert(SortedPos != AllNodes.end() && "Overran node list"); 8885 ++SortedPos; 8886 } else { 8887 // Temporarily use the Node Id as scratch space for the degree count. 8888 N->setNodeId(Degree); 8889 } 8890 } 8891 8892 // Visit all the nodes. As we iterate, move nodes into sorted order, 8893 // such that by the time the end is reached all nodes will be sorted. 8894 for (SDNode &Node : allnodes()) { 8895 SDNode *N = &Node; 8896 checkForCycles(N, this); 8897 // N is in sorted position, so all its uses have one less operand 8898 // that needs to be sorted. 8899 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8900 UI != UE; ++UI) { 8901 SDNode *P = *UI; 8902 unsigned Degree = P->getNodeId(); 8903 assert(Degree != 0 && "Invalid node degree"); 8904 --Degree; 8905 if (Degree == 0) { 8906 // All of P's operands are sorted, so P may sorted now. 8907 P->setNodeId(DAGSize++); 8908 if (P->getIterator() != SortedPos) 8909 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8910 assert(SortedPos != AllNodes.end() && "Overran node list"); 8911 ++SortedPos; 8912 } else { 8913 // Update P's outstanding operand count. 8914 P->setNodeId(Degree); 8915 } 8916 } 8917 if (Node.getIterator() == SortedPos) { 8918 #ifndef NDEBUG 8919 allnodes_iterator I(N); 8920 SDNode *S = &*++I; 8921 dbgs() << "Overran sorted position:\n"; 8922 S->dumprFull(this); dbgs() << "\n"; 8923 dbgs() << "Checking if this is due to cycles\n"; 8924 checkForCycles(this, true); 8925 #endif 8926 llvm_unreachable(nullptr); 8927 } 8928 } 8929 8930 assert(SortedPos == AllNodes.end() && 8931 "Topological sort incomplete!"); 8932 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8933 "First node in topological sort is not the entry token!"); 8934 assert(AllNodes.front().getNodeId() == 0 && 8935 "First node in topological sort has non-zero id!"); 8936 assert(AllNodes.front().getNumOperands() == 0 && 8937 "First node in topological sort has operands!"); 8938 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8939 "Last node in topologic sort has unexpected id!"); 8940 assert(AllNodes.back().use_empty() && 8941 "Last node in topologic sort has users!"); 8942 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8943 return DAGSize; 8944 } 8945 8946 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8947 /// value is produced by SD. 8948 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8949 if (SD) { 8950 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8951 SD->setHasDebugValue(true); 8952 } 8953 DbgInfo->add(DB, SD, isParameter); 8954 } 8955 8956 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8957 DbgInfo->add(DB); 8958 } 8959 8960 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8961 SDValue NewMemOp) { 8962 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8963 // The new memory operation must have the same position as the old load in 8964 // terms of memory dependency. Create a TokenFactor for the old load and new 8965 // memory operation and update uses of the old load's output chain to use that 8966 // TokenFactor. 8967 SDValue OldChain = SDValue(OldLoad, 1); 8968 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8969 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8970 return NewChain; 8971 8972 SDValue TokenFactor = 8973 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8974 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8975 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8976 return TokenFactor; 8977 } 8978 8979 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8980 Function **OutFunction) { 8981 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8982 8983 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8984 auto *Module = MF->getFunction().getParent(); 8985 auto *Function = Module->getFunction(Symbol); 8986 8987 if (OutFunction != nullptr) 8988 *OutFunction = Function; 8989 8990 if (Function != nullptr) { 8991 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8992 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8993 } 8994 8995 std::string ErrorStr; 8996 raw_string_ostream ErrorFormatter(ErrorStr); 8997 8998 ErrorFormatter << "Undefined external symbol "; 8999 ErrorFormatter << '"' << Symbol << '"'; 9000 ErrorFormatter.flush(); 9001 9002 report_fatal_error(ErrorStr); 9003 } 9004 9005 //===----------------------------------------------------------------------===// 9006 // SDNode Class 9007 //===----------------------------------------------------------------------===// 9008 9009 bool llvm::isNullConstant(SDValue V) { 9010 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9011 return Const != nullptr && Const->isNullValue(); 9012 } 9013 9014 bool llvm::isNullFPConstant(SDValue V) { 9015 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9016 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9017 } 9018 9019 bool llvm::isAllOnesConstant(SDValue V) { 9020 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9021 return Const != nullptr && Const->isAllOnesValue(); 9022 } 9023 9024 bool llvm::isOneConstant(SDValue V) { 9025 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9026 return Const != nullptr && Const->isOne(); 9027 } 9028 9029 SDValue llvm::peekThroughBitcasts(SDValue V) { 9030 while (V.getOpcode() == ISD::BITCAST) 9031 V = V.getOperand(0); 9032 return V; 9033 } 9034 9035 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9036 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9037 V = V.getOperand(0); 9038 return V; 9039 } 9040 9041 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9042 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9043 V = V.getOperand(0); 9044 return V; 9045 } 9046 9047 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9048 if (V.getOpcode() != ISD::XOR) 9049 return false; 9050 V = peekThroughBitcasts(V.getOperand(1)); 9051 unsigned NumBits = V.getScalarValueSizeInBits(); 9052 ConstantSDNode *C = 9053 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9054 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9055 } 9056 9057 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9058 bool AllowTruncation) { 9059 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9060 return CN; 9061 9062 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9063 BitVector UndefElements; 9064 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9065 9066 // BuildVectors can truncate their operands. Ignore that case here unless 9067 // AllowTruncation is set. 9068 if (CN && (UndefElements.none() || AllowUndefs)) { 9069 EVT CVT = CN->getValueType(0); 9070 EVT NSVT = N.getValueType().getScalarType(); 9071 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9072 if (AllowTruncation || (CVT == NSVT)) 9073 return CN; 9074 } 9075 } 9076 9077 return nullptr; 9078 } 9079 9080 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9081 bool AllowUndefs, 9082 bool AllowTruncation) { 9083 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9084 return CN; 9085 9086 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9087 BitVector UndefElements; 9088 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9089 9090 // BuildVectors can truncate their operands. Ignore that case here unless 9091 // AllowTruncation is set. 9092 if (CN && (UndefElements.none() || AllowUndefs)) { 9093 EVT CVT = CN->getValueType(0); 9094 EVT NSVT = N.getValueType().getScalarType(); 9095 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9096 if (AllowTruncation || (CVT == NSVT)) 9097 return CN; 9098 } 9099 } 9100 9101 return nullptr; 9102 } 9103 9104 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9105 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9106 return CN; 9107 9108 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9109 BitVector UndefElements; 9110 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9111 if (CN && (UndefElements.none() || AllowUndefs)) 9112 return CN; 9113 } 9114 9115 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9116 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9117 return CN; 9118 9119 return nullptr; 9120 } 9121 9122 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9123 const APInt &DemandedElts, 9124 bool AllowUndefs) { 9125 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9126 return CN; 9127 9128 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9129 BitVector UndefElements; 9130 ConstantFPSDNode *CN = 9131 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9132 if (CN && (UndefElements.none() || AllowUndefs)) 9133 return CN; 9134 } 9135 9136 return nullptr; 9137 } 9138 9139 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9140 // TODO: may want to use peekThroughBitcast() here. 9141 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9142 return C && C->isNullValue(); 9143 } 9144 9145 bool llvm::isOneOrOneSplat(SDValue N) { 9146 // TODO: may want to use peekThroughBitcast() here. 9147 unsigned BitWidth = N.getScalarValueSizeInBits(); 9148 ConstantSDNode *C = isConstOrConstSplat(N); 9149 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9150 } 9151 9152 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9153 N = peekThroughBitcasts(N); 9154 unsigned BitWidth = N.getScalarValueSizeInBits(); 9155 ConstantSDNode *C = isConstOrConstSplat(N); 9156 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9157 } 9158 9159 HandleSDNode::~HandleSDNode() { 9160 DropOperands(); 9161 } 9162 9163 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9164 const DebugLoc &DL, 9165 const GlobalValue *GA, EVT VT, 9166 int64_t o, unsigned TF) 9167 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9168 TheGlobal = GA; 9169 } 9170 9171 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9172 EVT VT, unsigned SrcAS, 9173 unsigned DestAS) 9174 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9175 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9176 9177 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9178 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9179 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9180 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9181 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9182 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9183 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9184 9185 // We check here that the size of the memory operand fits within the size of 9186 // the MMO. This is because the MMO might indicate only a possible address 9187 // range instead of specifying the affected memory addresses precisely. 9188 // TODO: Make MachineMemOperands aware of scalable vectors. 9189 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9190 "Size mismatch!"); 9191 } 9192 9193 /// Profile - Gather unique data for the node. 9194 /// 9195 void SDNode::Profile(FoldingSetNodeID &ID) const { 9196 AddNodeIDNode(ID, this); 9197 } 9198 9199 namespace { 9200 9201 struct EVTArray { 9202 std::vector<EVT> VTs; 9203 9204 EVTArray() { 9205 VTs.reserve(MVT::LAST_VALUETYPE); 9206 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9207 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9208 } 9209 }; 9210 9211 } // end anonymous namespace 9212 9213 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9214 static ManagedStatic<EVTArray> SimpleVTArray; 9215 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9216 9217 /// getValueTypeList - Return a pointer to the specified value type. 9218 /// 9219 const EVT *SDNode::getValueTypeList(EVT VT) { 9220 if (VT.isExtended()) { 9221 sys::SmartScopedLock<true> Lock(*VTMutex); 9222 return &(*EVTs->insert(VT).first); 9223 } else { 9224 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9225 "Value type out of range!"); 9226 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9227 } 9228 } 9229 9230 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9231 /// indicated value. This method ignores uses of other values defined by this 9232 /// operation. 9233 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9234 assert(Value < getNumValues() && "Bad value!"); 9235 9236 // TODO: Only iterate over uses of a given value of the node 9237 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9238 if (UI.getUse().getResNo() == Value) { 9239 if (NUses == 0) 9240 return false; 9241 --NUses; 9242 } 9243 } 9244 9245 // Found exactly the right number of uses? 9246 return NUses == 0; 9247 } 9248 9249 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9250 /// value. This method ignores uses of other values defined by this operation. 9251 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9252 assert(Value < getNumValues() && "Bad value!"); 9253 9254 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9255 if (UI.getUse().getResNo() == Value) 9256 return true; 9257 9258 return false; 9259 } 9260 9261 /// isOnlyUserOf - Return true if this node is the only use of N. 9262 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9263 bool Seen = false; 9264 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9265 SDNode *User = *I; 9266 if (User == this) 9267 Seen = true; 9268 else 9269 return false; 9270 } 9271 9272 return Seen; 9273 } 9274 9275 /// Return true if the only users of N are contained in Nodes. 9276 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9277 bool Seen = false; 9278 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9279 SDNode *User = *I; 9280 if (llvm::any_of(Nodes, 9281 [&User](const SDNode *Node) { return User == Node; })) 9282 Seen = true; 9283 else 9284 return false; 9285 } 9286 9287 return Seen; 9288 } 9289 9290 /// isOperand - Return true if this node is an operand of N. 9291 bool SDValue::isOperandOf(const SDNode *N) const { 9292 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9293 } 9294 9295 bool SDNode::isOperandOf(const SDNode *N) const { 9296 return any_of(N->op_values(), 9297 [this](SDValue Op) { return this == Op.getNode(); }); 9298 } 9299 9300 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9301 /// be a chain) reaches the specified operand without crossing any 9302 /// side-effecting instructions on any chain path. In practice, this looks 9303 /// through token factors and non-volatile loads. In order to remain efficient, 9304 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9305 /// 9306 /// Note that we only need to examine chains when we're searching for 9307 /// side-effects; SelectionDAG requires that all side-effects are represented 9308 /// by chains, even if another operand would force a specific ordering. This 9309 /// constraint is necessary to allow transformations like splitting loads. 9310 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9311 unsigned Depth) const { 9312 if (*this == Dest) return true; 9313 9314 // Don't search too deeply, we just want to be able to see through 9315 // TokenFactor's etc. 9316 if (Depth == 0) return false; 9317 9318 // If this is a token factor, all inputs to the TF happen in parallel. 9319 if (getOpcode() == ISD::TokenFactor) { 9320 // First, try a shallow search. 9321 if (is_contained((*this)->ops(), Dest)) { 9322 // We found the chain we want as an operand of this TokenFactor. 9323 // Essentially, we reach the chain without side-effects if we could 9324 // serialize the TokenFactor into a simple chain of operations with 9325 // Dest as the last operation. This is automatically true if the 9326 // chain has one use: there are no other ordering constraints. 9327 // If the chain has more than one use, we give up: some other 9328 // use of Dest might force a side-effect between Dest and the current 9329 // node. 9330 if (Dest.hasOneUse()) 9331 return true; 9332 } 9333 // Next, try a deep search: check whether every operand of the TokenFactor 9334 // reaches Dest. 9335 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9336 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9337 }); 9338 } 9339 9340 // Loads don't have side effects, look through them. 9341 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9342 if (Ld->isUnordered()) 9343 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9344 } 9345 return false; 9346 } 9347 9348 bool SDNode::hasPredecessor(const SDNode *N) const { 9349 SmallPtrSet<const SDNode *, 32> Visited; 9350 SmallVector<const SDNode *, 16> Worklist; 9351 Worklist.push_back(this); 9352 return hasPredecessorHelper(N, Visited, Worklist); 9353 } 9354 9355 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9356 this->Flags.intersectWith(Flags); 9357 } 9358 9359 SDValue 9360 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9361 ArrayRef<ISD::NodeType> CandidateBinOps, 9362 bool AllowPartials) { 9363 // The pattern must end in an extract from index 0. 9364 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9365 !isNullConstant(Extract->getOperand(1))) 9366 return SDValue(); 9367 9368 // Match against one of the candidate binary ops. 9369 SDValue Op = Extract->getOperand(0); 9370 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9371 return Op.getOpcode() == unsigned(BinOp); 9372 })) 9373 return SDValue(); 9374 9375 // Floating-point reductions may require relaxed constraints on the final step 9376 // of the reduction because they may reorder intermediate operations. 9377 unsigned CandidateBinOp = Op.getOpcode(); 9378 if (Op.getValueType().isFloatingPoint()) { 9379 SDNodeFlags Flags = Op->getFlags(); 9380 switch (CandidateBinOp) { 9381 case ISD::FADD: 9382 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9383 return SDValue(); 9384 break; 9385 default: 9386 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9387 } 9388 } 9389 9390 // Matching failed - attempt to see if we did enough stages that a partial 9391 // reduction from a subvector is possible. 9392 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9393 if (!AllowPartials || !Op) 9394 return SDValue(); 9395 EVT OpVT = Op.getValueType(); 9396 EVT OpSVT = OpVT.getScalarType(); 9397 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9398 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9399 return SDValue(); 9400 BinOp = (ISD::NodeType)CandidateBinOp; 9401 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9402 getVectorIdxConstant(0, SDLoc(Op))); 9403 }; 9404 9405 // At each stage, we're looking for something that looks like: 9406 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9407 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9408 // i32 undef, i32 undef, i32 undef, i32 undef> 9409 // %a = binop <8 x i32> %op, %s 9410 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9411 // we expect something like: 9412 // <4,5,6,7,u,u,u,u> 9413 // <2,3,u,u,u,u,u,u> 9414 // <1,u,u,u,u,u,u,u> 9415 // While a partial reduction match would be: 9416 // <2,3,u,u,u,u,u,u> 9417 // <1,u,u,u,u,u,u,u> 9418 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9419 SDValue PrevOp; 9420 for (unsigned i = 0; i < Stages; ++i) { 9421 unsigned MaskEnd = (1 << i); 9422 9423 if (Op.getOpcode() != CandidateBinOp) 9424 return PartialReduction(PrevOp, MaskEnd); 9425 9426 SDValue Op0 = Op.getOperand(0); 9427 SDValue Op1 = Op.getOperand(1); 9428 9429 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9430 if (Shuffle) { 9431 Op = Op1; 9432 } else { 9433 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9434 Op = Op0; 9435 } 9436 9437 // The first operand of the shuffle should be the same as the other operand 9438 // of the binop. 9439 if (!Shuffle || Shuffle->getOperand(0) != Op) 9440 return PartialReduction(PrevOp, MaskEnd); 9441 9442 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9443 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9444 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9445 return PartialReduction(PrevOp, MaskEnd); 9446 9447 PrevOp = Op; 9448 } 9449 9450 // Handle subvector reductions, which tend to appear after the shuffle 9451 // reduction stages. 9452 while (Op.getOpcode() == CandidateBinOp) { 9453 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9454 SDValue Op0 = Op.getOperand(0); 9455 SDValue Op1 = Op.getOperand(1); 9456 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9457 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9458 Op0.getOperand(0) != Op1.getOperand(0)) 9459 break; 9460 SDValue Src = Op0.getOperand(0); 9461 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9462 if (NumSrcElts != (2 * NumElts)) 9463 break; 9464 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9465 Op1.getConstantOperandAPInt(1) == NumElts) && 9466 !(Op1.getConstantOperandAPInt(1) == 0 && 9467 Op0.getConstantOperandAPInt(1) == NumElts)) 9468 break; 9469 Op = Src; 9470 } 9471 9472 BinOp = (ISD::NodeType)CandidateBinOp; 9473 return Op; 9474 } 9475 9476 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9477 assert(N->getNumValues() == 1 && 9478 "Can't unroll a vector with multiple results!"); 9479 9480 EVT VT = N->getValueType(0); 9481 unsigned NE = VT.getVectorNumElements(); 9482 EVT EltVT = VT.getVectorElementType(); 9483 SDLoc dl(N); 9484 9485 SmallVector<SDValue, 8> Scalars; 9486 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9487 9488 // If ResNE is 0, fully unroll the vector op. 9489 if (ResNE == 0) 9490 ResNE = NE; 9491 else if (NE > ResNE) 9492 NE = ResNE; 9493 9494 unsigned i; 9495 for (i= 0; i != NE; ++i) { 9496 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9497 SDValue Operand = N->getOperand(j); 9498 EVT OperandVT = Operand.getValueType(); 9499 if (OperandVT.isVector()) { 9500 // A vector operand; extract a single element. 9501 EVT OperandEltVT = OperandVT.getVectorElementType(); 9502 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9503 Operand, getVectorIdxConstant(i, dl)); 9504 } else { 9505 // A scalar operand; just use it as is. 9506 Operands[j] = Operand; 9507 } 9508 } 9509 9510 switch (N->getOpcode()) { 9511 default: { 9512 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9513 N->getFlags())); 9514 break; 9515 } 9516 case ISD::VSELECT: 9517 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9518 break; 9519 case ISD::SHL: 9520 case ISD::SRA: 9521 case ISD::SRL: 9522 case ISD::ROTL: 9523 case ISD::ROTR: 9524 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9525 getShiftAmountOperand(Operands[0].getValueType(), 9526 Operands[1]))); 9527 break; 9528 case ISD::SIGN_EXTEND_INREG: { 9529 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9530 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9531 Operands[0], 9532 getValueType(ExtVT))); 9533 } 9534 } 9535 } 9536 9537 for (; i < ResNE; ++i) 9538 Scalars.push_back(getUNDEF(EltVT)); 9539 9540 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9541 return getBuildVector(VecVT, dl, Scalars); 9542 } 9543 9544 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9545 SDNode *N, unsigned ResNE) { 9546 unsigned Opcode = N->getOpcode(); 9547 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9548 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9549 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9550 "Expected an overflow opcode"); 9551 9552 EVT ResVT = N->getValueType(0); 9553 EVT OvVT = N->getValueType(1); 9554 EVT ResEltVT = ResVT.getVectorElementType(); 9555 EVT OvEltVT = OvVT.getVectorElementType(); 9556 SDLoc dl(N); 9557 9558 // If ResNE is 0, fully unroll the vector op. 9559 unsigned NE = ResVT.getVectorNumElements(); 9560 if (ResNE == 0) 9561 ResNE = NE; 9562 else if (NE > ResNE) 9563 NE = ResNE; 9564 9565 SmallVector<SDValue, 8> LHSScalars; 9566 SmallVector<SDValue, 8> RHSScalars; 9567 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9568 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9569 9570 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9571 SDVTList VTs = getVTList(ResEltVT, SVT); 9572 SmallVector<SDValue, 8> ResScalars; 9573 SmallVector<SDValue, 8> OvScalars; 9574 for (unsigned i = 0; i < NE; ++i) { 9575 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9576 SDValue Ov = 9577 getSelect(dl, OvEltVT, Res.getValue(1), 9578 getBoolConstant(true, dl, OvEltVT, ResVT), 9579 getConstant(0, dl, OvEltVT)); 9580 9581 ResScalars.push_back(Res); 9582 OvScalars.push_back(Ov); 9583 } 9584 9585 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9586 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9587 9588 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9589 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9590 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9591 getBuildVector(NewOvVT, dl, OvScalars)); 9592 } 9593 9594 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9595 LoadSDNode *Base, 9596 unsigned Bytes, 9597 int Dist) const { 9598 if (LD->isVolatile() || Base->isVolatile()) 9599 return false; 9600 // TODO: probably too restrictive for atomics, revisit 9601 if (!LD->isSimple()) 9602 return false; 9603 if (LD->isIndexed() || Base->isIndexed()) 9604 return false; 9605 if (LD->getChain() != Base->getChain()) 9606 return false; 9607 EVT VT = LD->getValueType(0); 9608 if (VT.getSizeInBits() / 8 != Bytes) 9609 return false; 9610 9611 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9612 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9613 9614 int64_t Offset = 0; 9615 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9616 return (Dist * Bytes == Offset); 9617 return false; 9618 } 9619 9620 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9621 /// if it cannot be inferred. 9622 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9623 // If this is a GlobalAddress + cst, return the alignment. 9624 const GlobalValue *GV = nullptr; 9625 int64_t GVOffset = 0; 9626 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9627 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9628 KnownBits Known(PtrWidth); 9629 llvm::computeKnownBits(GV, Known, getDataLayout()); 9630 unsigned AlignBits = Known.countMinTrailingZeros(); 9631 if (AlignBits) 9632 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9633 } 9634 9635 // If this is a direct reference to a stack slot, use information about the 9636 // stack slot's alignment. 9637 int FrameIdx = INT_MIN; 9638 int64_t FrameOffset = 0; 9639 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9640 FrameIdx = FI->getIndex(); 9641 } else if (isBaseWithConstantOffset(Ptr) && 9642 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9643 // Handle FI+Cst 9644 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9645 FrameOffset = Ptr.getConstantOperandVal(1); 9646 } 9647 9648 if (FrameIdx != INT_MIN) { 9649 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9650 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9651 } 9652 9653 return None; 9654 } 9655 9656 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9657 /// which is split (or expanded) into two not necessarily identical pieces. 9658 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9659 // Currently all types are split in half. 9660 EVT LoVT, HiVT; 9661 if (!VT.isVector()) 9662 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9663 else 9664 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9665 9666 return std::make_pair(LoVT, HiVT); 9667 } 9668 9669 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9670 /// type, dependent on an enveloping VT that has been split into two identical 9671 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9672 std::pair<EVT, EVT> 9673 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9674 bool *HiIsEmpty) const { 9675 EVT EltTp = VT.getVectorElementType(); 9676 // Examples: 9677 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9678 // custom VL=9 with enveloping VL=8/8 yields 8/1 9679 // custom VL=10 with enveloping VL=8/8 yields 8/2 9680 // etc. 9681 ElementCount VTNumElts = VT.getVectorElementCount(); 9682 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9683 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9684 "Mixing fixed width and scalable vectors when enveloping a type"); 9685 EVT LoVT, HiVT; 9686 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9687 LoVT = EnvVT; 9688 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9689 *HiIsEmpty = false; 9690 } else { 9691 // Flag that hi type has zero storage size, but return split envelop type 9692 // (this would be easier if vector types with zero elements were allowed). 9693 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9694 HiVT = EnvVT; 9695 *HiIsEmpty = true; 9696 } 9697 return std::make_pair(LoVT, HiVT); 9698 } 9699 9700 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9701 /// low/high part. 9702 std::pair<SDValue, SDValue> 9703 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9704 const EVT &HiVT) { 9705 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9706 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9707 "Splitting vector with an invalid mixture of fixed and scalable " 9708 "vector types"); 9709 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9710 N.getValueType().getVectorMinNumElements() && 9711 "More vector elements requested than available!"); 9712 SDValue Lo, Hi; 9713 Lo = 9714 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9715 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9716 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9717 // IDX with the runtime scaling factor of the result vector type. For 9718 // fixed-width result vectors, that runtime scaling factor is 1. 9719 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9720 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9721 return std::make_pair(Lo, Hi); 9722 } 9723 9724 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9725 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9726 EVT VT = N.getValueType(); 9727 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9728 NextPowerOf2(VT.getVectorNumElements())); 9729 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9730 getVectorIdxConstant(0, DL)); 9731 } 9732 9733 void SelectionDAG::ExtractVectorElements(SDValue Op, 9734 SmallVectorImpl<SDValue> &Args, 9735 unsigned Start, unsigned Count, 9736 EVT EltVT) { 9737 EVT VT = Op.getValueType(); 9738 if (Count == 0) 9739 Count = VT.getVectorNumElements(); 9740 if (EltVT == EVT()) 9741 EltVT = VT.getVectorElementType(); 9742 SDLoc SL(Op); 9743 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9744 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9745 getVectorIdxConstant(i, SL))); 9746 } 9747 } 9748 9749 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9750 unsigned GlobalAddressSDNode::getAddressSpace() const { 9751 return getGlobal()->getType()->getAddressSpace(); 9752 } 9753 9754 Type *ConstantPoolSDNode::getType() const { 9755 if (isMachineConstantPoolEntry()) 9756 return Val.MachineCPVal->getType(); 9757 return Val.ConstVal->getType(); 9758 } 9759 9760 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9761 unsigned &SplatBitSize, 9762 bool &HasAnyUndefs, 9763 unsigned MinSplatBits, 9764 bool IsBigEndian) const { 9765 EVT VT = getValueType(0); 9766 assert(VT.isVector() && "Expected a vector type"); 9767 unsigned VecWidth = VT.getSizeInBits(); 9768 if (MinSplatBits > VecWidth) 9769 return false; 9770 9771 // FIXME: The widths are based on this node's type, but build vectors can 9772 // truncate their operands. 9773 SplatValue = APInt(VecWidth, 0); 9774 SplatUndef = APInt(VecWidth, 0); 9775 9776 // Get the bits. Bits with undefined values (when the corresponding element 9777 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9778 // in SplatValue. If any of the values are not constant, give up and return 9779 // false. 9780 unsigned int NumOps = getNumOperands(); 9781 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9782 unsigned EltWidth = VT.getScalarSizeInBits(); 9783 9784 for (unsigned j = 0; j < NumOps; ++j) { 9785 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9786 SDValue OpVal = getOperand(i); 9787 unsigned BitPos = j * EltWidth; 9788 9789 if (OpVal.isUndef()) 9790 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9791 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9792 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9793 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9794 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9795 else 9796 return false; 9797 } 9798 9799 // The build_vector is all constants or undefs. Find the smallest element 9800 // size that splats the vector. 9801 HasAnyUndefs = (SplatUndef != 0); 9802 9803 // FIXME: This does not work for vectors with elements less than 8 bits. 9804 while (VecWidth > 8) { 9805 unsigned HalfSize = VecWidth / 2; 9806 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9807 APInt LowValue = SplatValue.trunc(HalfSize); 9808 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9809 APInt LowUndef = SplatUndef.trunc(HalfSize); 9810 9811 // If the two halves do not match (ignoring undef bits), stop here. 9812 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9813 MinSplatBits > HalfSize) 9814 break; 9815 9816 SplatValue = HighValue | LowValue; 9817 SplatUndef = HighUndef & LowUndef; 9818 9819 VecWidth = HalfSize; 9820 } 9821 9822 SplatBitSize = VecWidth; 9823 return true; 9824 } 9825 9826 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9827 BitVector *UndefElements) const { 9828 unsigned NumOps = getNumOperands(); 9829 if (UndefElements) { 9830 UndefElements->clear(); 9831 UndefElements->resize(NumOps); 9832 } 9833 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9834 if (!DemandedElts) 9835 return SDValue(); 9836 SDValue Splatted; 9837 for (unsigned i = 0; i != NumOps; ++i) { 9838 if (!DemandedElts[i]) 9839 continue; 9840 SDValue Op = getOperand(i); 9841 if (Op.isUndef()) { 9842 if (UndefElements) 9843 (*UndefElements)[i] = true; 9844 } else if (!Splatted) { 9845 Splatted = Op; 9846 } else if (Splatted != Op) { 9847 return SDValue(); 9848 } 9849 } 9850 9851 if (!Splatted) { 9852 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9853 assert(getOperand(FirstDemandedIdx).isUndef() && 9854 "Can only have a splat without a constant for all undefs."); 9855 return getOperand(FirstDemandedIdx); 9856 } 9857 9858 return Splatted; 9859 } 9860 9861 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9862 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9863 return getSplatValue(DemandedElts, UndefElements); 9864 } 9865 9866 ConstantSDNode * 9867 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9868 BitVector *UndefElements) const { 9869 return dyn_cast_or_null<ConstantSDNode>( 9870 getSplatValue(DemandedElts, UndefElements)); 9871 } 9872 9873 ConstantSDNode * 9874 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9875 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9876 } 9877 9878 ConstantFPSDNode * 9879 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9880 BitVector *UndefElements) const { 9881 return dyn_cast_or_null<ConstantFPSDNode>( 9882 getSplatValue(DemandedElts, UndefElements)); 9883 } 9884 9885 ConstantFPSDNode * 9886 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9887 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9888 } 9889 9890 int32_t 9891 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9892 uint32_t BitWidth) const { 9893 if (ConstantFPSDNode *CN = 9894 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9895 bool IsExact; 9896 APSInt IntVal(BitWidth); 9897 const APFloat &APF = CN->getValueAPF(); 9898 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9899 APFloat::opOK || 9900 !IsExact) 9901 return -1; 9902 9903 return IntVal.exactLogBase2(); 9904 } 9905 return -1; 9906 } 9907 9908 bool BuildVectorSDNode::isConstant() const { 9909 for (const SDValue &Op : op_values()) { 9910 unsigned Opc = Op.getOpcode(); 9911 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9912 return false; 9913 } 9914 return true; 9915 } 9916 9917 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9918 // Find the first non-undef value in the shuffle mask. 9919 unsigned i, e; 9920 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9921 /* search */; 9922 9923 // If all elements are undefined, this shuffle can be considered a splat 9924 // (although it should eventually get simplified away completely). 9925 if (i == e) 9926 return true; 9927 9928 // Make sure all remaining elements are either undef or the same as the first 9929 // non-undef value. 9930 for (int Idx = Mask[i]; i != e; ++i) 9931 if (Mask[i] >= 0 && Mask[i] != Idx) 9932 return false; 9933 return true; 9934 } 9935 9936 // Returns the SDNode if it is a constant integer BuildVector 9937 // or constant integer. 9938 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9939 if (isa<ConstantSDNode>(N)) 9940 return N.getNode(); 9941 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9942 return N.getNode(); 9943 // Treat a GlobalAddress supporting constant offset folding as a 9944 // constant integer. 9945 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9946 if (GA->getOpcode() == ISD::GlobalAddress && 9947 TLI->isOffsetFoldingLegal(GA)) 9948 return GA; 9949 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9950 isa<ConstantSDNode>(N.getOperand(0))) 9951 return N.getNode(); 9952 return nullptr; 9953 } 9954 9955 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9956 if (isa<ConstantFPSDNode>(N)) 9957 return N.getNode(); 9958 9959 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9960 return N.getNode(); 9961 9962 return nullptr; 9963 } 9964 9965 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9966 assert(!Node->OperandList && "Node already has operands"); 9967 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9968 "too many operands to fit into SDNode"); 9969 SDUse *Ops = OperandRecycler.allocate( 9970 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9971 9972 bool IsDivergent = false; 9973 for (unsigned I = 0; I != Vals.size(); ++I) { 9974 Ops[I].setUser(Node); 9975 Ops[I].setInitial(Vals[I]); 9976 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9977 IsDivergent |= Ops[I].getNode()->isDivergent(); 9978 } 9979 Node->NumOperands = Vals.size(); 9980 Node->OperandList = Ops; 9981 if (!TLI->isSDNodeAlwaysUniform(Node)) { 9982 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9983 Node->SDNodeBits.IsDivergent = IsDivergent; 9984 } 9985 checkForCycles(Node); 9986 } 9987 9988 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9989 SmallVectorImpl<SDValue> &Vals) { 9990 size_t Limit = SDNode::getMaxNumOperands(); 9991 while (Vals.size() > Limit) { 9992 unsigned SliceIdx = Vals.size() - Limit; 9993 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9994 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9995 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9996 Vals.emplace_back(NewTF); 9997 } 9998 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9999 } 10000 10001 #ifndef NDEBUG 10002 static void checkForCyclesHelper(const SDNode *N, 10003 SmallPtrSetImpl<const SDNode*> &Visited, 10004 SmallPtrSetImpl<const SDNode*> &Checked, 10005 const llvm::SelectionDAG *DAG) { 10006 // If this node has already been checked, don't check it again. 10007 if (Checked.count(N)) 10008 return; 10009 10010 // If a node has already been visited on this depth-first walk, reject it as 10011 // a cycle. 10012 if (!Visited.insert(N).second) { 10013 errs() << "Detected cycle in SelectionDAG\n"; 10014 dbgs() << "Offending node:\n"; 10015 N->dumprFull(DAG); dbgs() << "\n"; 10016 abort(); 10017 } 10018 10019 for (const SDValue &Op : N->op_values()) 10020 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10021 10022 Checked.insert(N); 10023 Visited.erase(N); 10024 } 10025 #endif 10026 10027 void llvm::checkForCycles(const llvm::SDNode *N, 10028 const llvm::SelectionDAG *DAG, 10029 bool force) { 10030 #ifndef NDEBUG 10031 bool check = force; 10032 #ifdef EXPENSIVE_CHECKS 10033 check = true; 10034 #endif // EXPENSIVE_CHECKS 10035 if (check) { 10036 assert(N && "Checking nonexistent SDNode"); 10037 SmallPtrSet<const SDNode*, 32> visited; 10038 SmallPtrSet<const SDNode*, 32> checked; 10039 checkForCyclesHelper(N, visited, checked, DAG); 10040 } 10041 #endif // !NDEBUG 10042 } 10043 10044 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10045 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10046 } 10047