1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (LHS.getOpcode() != RHS.getOpcode() ||
346       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
347        LHS.getOpcode() != ISD::SPLAT_VECTOR))
348     return false;
349 
350   EVT SVT = LHS.getValueType().getScalarType();
351   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
352     SDValue LHSOp = LHS.getOperand(i);
353     SDValue RHSOp = RHS.getOperand(i);
354     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
355     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
356     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
357     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
358     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
359       return false;
360     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
361                                LHSOp.getValueType() != RHSOp.getValueType()))
362       return false;
363     if (!Match(LHSCst, RHSCst))
364       return false;
365   }
366   return true;
367 }
368 
369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
370   switch (VecReduceOpcode) {
371   default:
372     llvm_unreachable("Expected VECREDUCE opcode");
373   case ISD::VECREDUCE_FADD:
374   case ISD::VECREDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378     return ISD::FMUL;
379   case ISD::VECREDUCE_ADD:
380     return ISD::ADD;
381   case ISD::VECREDUCE_MUL:
382     return ISD::MUL;
383   case ISD::VECREDUCE_AND:
384     return ISD::AND;
385   case ISD::VECREDUCE_OR:
386     return ISD::OR;
387   case ISD::VECREDUCE_XOR:
388     return ISD::XOR;
389   case ISD::VECREDUCE_SMAX:
390     return ISD::SMAX;
391   case ISD::VECREDUCE_SMIN:
392     return ISD::SMIN;
393   case ISD::VECREDUCE_UMAX:
394     return ISD::UMAX;
395   case ISD::VECREDUCE_UMIN:
396     return ISD::UMIN;
397   case ISD::VECREDUCE_FMAX:
398     return ISD::FMAXNUM;
399   case ISD::VECREDUCE_FMIN:
400     return ISD::FMINNUM;
401   }
402 }
403 
404 bool ISD::isVPOpcode(unsigned Opcode) {
405   switch (Opcode) {
406   default:
407     return false;
408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
409   case ISD::SDOPC:                                                             \
410     return true;
411 #include "llvm/IR/VPIntrinsics.def"
412   }
413 }
414 
415 bool ISD::isVPBinaryOp(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return false;
419 #define PROPERTY_VP_BINARYOP_SDNODE(SDOPC)                                     \
420   case ISD::SDOPC:                                                             \
421     return true;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 bool ISD::isVPReduction(unsigned Opcode) {
427   switch (Opcode) {
428   default:
429     return false;
430 #define PROPERTY_VP_REDUCTION_SDNODE(SDOPC)                                    \
431   case ISD::SDOPC:                                                             \
432     return true;
433 #include "llvm/IR/VPIntrinsics.def"
434   }
435 }
436 
437 /// The operand position of the vector mask.
438 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
439   switch (Opcode) {
440   default:
441     return None;
442 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
443   case ISD::SDOPC:                                                             \
444     return MASKPOS;
445 #include "llvm/IR/VPIntrinsics.def"
446   }
447 }
448 
449 /// The operand position of the explicit vector length parameter.
450 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
451   switch (Opcode) {
452   default:
453     return None;
454 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
455   case ISD::SDOPC:                                                             \
456     return EVLPOS;
457 #include "llvm/IR/VPIntrinsics.def"
458   }
459 }
460 
461 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
462   switch (ExtType) {
463   case ISD::EXTLOAD:
464     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
465   case ISD::SEXTLOAD:
466     return ISD::SIGN_EXTEND;
467   case ISD::ZEXTLOAD:
468     return ISD::ZERO_EXTEND;
469   default:
470     break;
471   }
472 
473   llvm_unreachable("Invalid LoadExtType");
474 }
475 
476 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
477   // To perform this operation, we just need to swap the L and G bits of the
478   // operation.
479   unsigned OldL = (Operation >> 2) & 1;
480   unsigned OldG = (Operation >> 1) & 1;
481   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
482                        (OldL << 1) |       // New G bit
483                        (OldG << 2));       // New L bit.
484 }
485 
486 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
487   unsigned Operation = Op;
488   if (isIntegerLike)
489     Operation ^= 7;   // Flip L, G, E bits, but not U.
490   else
491     Operation ^= 15;  // Flip all of the condition bits.
492 
493   if (Operation > ISD::SETTRUE2)
494     Operation &= ~8;  // Don't let N and U bits get set.
495 
496   return ISD::CondCode(Operation);
497 }
498 
499 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
500   return getSetCCInverseImpl(Op, Type.isInteger());
501 }
502 
503 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
504                                                bool isIntegerLike) {
505   return getSetCCInverseImpl(Op, isIntegerLike);
506 }
507 
508 /// For an integer comparison, return 1 if the comparison is a signed operation
509 /// and 2 if the result is an unsigned comparison. Return zero if the operation
510 /// does not depend on the sign of the input (setne and seteq).
511 static int isSignedOp(ISD::CondCode Opcode) {
512   switch (Opcode) {
513   default: llvm_unreachable("Illegal integer setcc operation!");
514   case ISD::SETEQ:
515   case ISD::SETNE: return 0;
516   case ISD::SETLT:
517   case ISD::SETLE:
518   case ISD::SETGT:
519   case ISD::SETGE: return 1;
520   case ISD::SETULT:
521   case ISD::SETULE:
522   case ISD::SETUGT:
523   case ISD::SETUGE: return 2;
524   }
525 }
526 
527 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
528                                        EVT Type) {
529   bool IsInteger = Type.isInteger();
530   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
531     // Cannot fold a signed integer setcc with an unsigned integer setcc.
532     return ISD::SETCC_INVALID;
533 
534   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
535 
536   // If the N and U bits get set, then the resultant comparison DOES suddenly
537   // care about orderedness, and it is true when ordered.
538   if (Op > ISD::SETTRUE2)
539     Op &= ~16;     // Clear the U bit if the N bit is set.
540 
541   // Canonicalize illegal integer setcc's.
542   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
543     Op = ISD::SETNE;
544 
545   return ISD::CondCode(Op);
546 }
547 
548 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
549                                         EVT Type) {
550   bool IsInteger = Type.isInteger();
551   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
552     // Cannot fold a signed setcc with an unsigned setcc.
553     return ISD::SETCC_INVALID;
554 
555   // Combine all of the condition bits.
556   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
557 
558   // Canonicalize illegal integer setcc's.
559   if (IsInteger) {
560     switch (Result) {
561     default: break;
562     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
563     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
564     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
565     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
566     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
567     }
568   }
569 
570   return Result;
571 }
572 
573 //===----------------------------------------------------------------------===//
574 //                           SDNode Profile Support
575 //===----------------------------------------------------------------------===//
576 
577 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
578 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
579   ID.AddInteger(OpC);
580 }
581 
582 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
583 /// solely with their pointer.
584 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
585   ID.AddPointer(VTList.VTs);
586 }
587 
588 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
589 static void AddNodeIDOperands(FoldingSetNodeID &ID,
590                               ArrayRef<SDValue> Ops) {
591   for (auto& Op : Ops) {
592     ID.AddPointer(Op.getNode());
593     ID.AddInteger(Op.getResNo());
594   }
595 }
596 
597 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
598 static void AddNodeIDOperands(FoldingSetNodeID &ID,
599                               ArrayRef<SDUse> Ops) {
600   for (auto& Op : Ops) {
601     ID.AddPointer(Op.getNode());
602     ID.AddInteger(Op.getResNo());
603   }
604 }
605 
606 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
607                           SDVTList VTList, ArrayRef<SDValue> OpList) {
608   AddNodeIDOpcode(ID, OpC);
609   AddNodeIDValueTypes(ID, VTList);
610   AddNodeIDOperands(ID, OpList);
611 }
612 
613 /// If this is an SDNode with special info, add this info to the NodeID data.
614 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
615   switch (N->getOpcode()) {
616   case ISD::TargetExternalSymbol:
617   case ISD::ExternalSymbol:
618   case ISD::MCSymbol:
619     llvm_unreachable("Should only be used on nodes with operands");
620   default: break;  // Normal nodes don't need extra info.
621   case ISD::TargetConstant:
622   case ISD::Constant: {
623     const ConstantSDNode *C = cast<ConstantSDNode>(N);
624     ID.AddPointer(C->getConstantIntValue());
625     ID.AddBoolean(C->isOpaque());
626     break;
627   }
628   case ISD::TargetConstantFP:
629   case ISD::ConstantFP:
630     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
631     break;
632   case ISD::TargetGlobalAddress:
633   case ISD::GlobalAddress:
634   case ISD::TargetGlobalTLSAddress:
635   case ISD::GlobalTLSAddress: {
636     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
637     ID.AddPointer(GA->getGlobal());
638     ID.AddInteger(GA->getOffset());
639     ID.AddInteger(GA->getTargetFlags());
640     break;
641   }
642   case ISD::BasicBlock:
643     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
644     break;
645   case ISD::Register:
646     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
647     break;
648   case ISD::RegisterMask:
649     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
650     break;
651   case ISD::SRCVALUE:
652     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
653     break;
654   case ISD::FrameIndex:
655   case ISD::TargetFrameIndex:
656     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
657     break;
658   case ISD::LIFETIME_START:
659   case ISD::LIFETIME_END:
660     if (cast<LifetimeSDNode>(N)->hasOffset()) {
661       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
662       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
663     }
664     break;
665   case ISD::PSEUDO_PROBE:
666     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
667     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
668     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
669     break;
670   case ISD::JumpTable:
671   case ISD::TargetJumpTable:
672     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
673     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
674     break;
675   case ISD::ConstantPool:
676   case ISD::TargetConstantPool: {
677     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
678     ID.AddInteger(CP->getAlign().value());
679     ID.AddInteger(CP->getOffset());
680     if (CP->isMachineConstantPoolEntry())
681       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
682     else
683       ID.AddPointer(CP->getConstVal());
684     ID.AddInteger(CP->getTargetFlags());
685     break;
686   }
687   case ISD::TargetIndex: {
688     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
689     ID.AddInteger(TI->getIndex());
690     ID.AddInteger(TI->getOffset());
691     ID.AddInteger(TI->getTargetFlags());
692     break;
693   }
694   case ISD::LOAD: {
695     const LoadSDNode *LD = cast<LoadSDNode>(N);
696     ID.AddInteger(LD->getMemoryVT().getRawBits());
697     ID.AddInteger(LD->getRawSubclassData());
698     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
699     break;
700   }
701   case ISD::STORE: {
702     const StoreSDNode *ST = cast<StoreSDNode>(N);
703     ID.AddInteger(ST->getMemoryVT().getRawBits());
704     ID.AddInteger(ST->getRawSubclassData());
705     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
706     break;
707   }
708   case ISD::VP_LOAD: {
709     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
710     ID.AddInteger(ELD->getMemoryVT().getRawBits());
711     ID.AddInteger(ELD->getRawSubclassData());
712     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
713     break;
714   }
715   case ISD::VP_STORE: {
716     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
717     ID.AddInteger(EST->getMemoryVT().getRawBits());
718     ID.AddInteger(EST->getRawSubclassData());
719     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
720     break;
721   }
722   case ISD::VP_GATHER: {
723     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
724     ID.AddInteger(EG->getMemoryVT().getRawBits());
725     ID.AddInteger(EG->getRawSubclassData());
726     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
727     break;
728   }
729   case ISD::VP_SCATTER: {
730     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
731     ID.AddInteger(ES->getMemoryVT().getRawBits());
732     ID.AddInteger(ES->getRawSubclassData());
733     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::MLOAD: {
737     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
738     ID.AddInteger(MLD->getMemoryVT().getRawBits());
739     ID.AddInteger(MLD->getRawSubclassData());
740     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
741     break;
742   }
743   case ISD::MSTORE: {
744     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
745     ID.AddInteger(MST->getMemoryVT().getRawBits());
746     ID.AddInteger(MST->getRawSubclassData());
747     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
748     break;
749   }
750   case ISD::MGATHER: {
751     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
752     ID.AddInteger(MG->getMemoryVT().getRawBits());
753     ID.AddInteger(MG->getRawSubclassData());
754     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
755     break;
756   }
757   case ISD::MSCATTER: {
758     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
759     ID.AddInteger(MS->getMemoryVT().getRawBits());
760     ID.AddInteger(MS->getRawSubclassData());
761     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
762     break;
763   }
764   case ISD::ATOMIC_CMP_SWAP:
765   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
766   case ISD::ATOMIC_SWAP:
767   case ISD::ATOMIC_LOAD_ADD:
768   case ISD::ATOMIC_LOAD_SUB:
769   case ISD::ATOMIC_LOAD_AND:
770   case ISD::ATOMIC_LOAD_CLR:
771   case ISD::ATOMIC_LOAD_OR:
772   case ISD::ATOMIC_LOAD_XOR:
773   case ISD::ATOMIC_LOAD_NAND:
774   case ISD::ATOMIC_LOAD_MIN:
775   case ISD::ATOMIC_LOAD_MAX:
776   case ISD::ATOMIC_LOAD_UMIN:
777   case ISD::ATOMIC_LOAD_UMAX:
778   case ISD::ATOMIC_LOAD:
779   case ISD::ATOMIC_STORE: {
780     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
781     ID.AddInteger(AT->getMemoryVT().getRawBits());
782     ID.AddInteger(AT->getRawSubclassData());
783     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
784     break;
785   }
786   case ISD::PREFETCH: {
787     const MemSDNode *PF = cast<MemSDNode>(N);
788     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
789     break;
790   }
791   case ISD::VECTOR_SHUFFLE: {
792     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
793     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
794          i != e; ++i)
795       ID.AddInteger(SVN->getMaskElt(i));
796     break;
797   }
798   case ISD::TargetBlockAddress:
799   case ISD::BlockAddress: {
800     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
801     ID.AddPointer(BA->getBlockAddress());
802     ID.AddInteger(BA->getOffset());
803     ID.AddInteger(BA->getTargetFlags());
804     break;
805   }
806   } // end switch (N->getOpcode())
807 
808   // Target specific memory nodes could also have address spaces to check.
809   if (N->isTargetMemoryOpcode())
810     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
811 }
812 
813 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
814 /// data.
815 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
816   AddNodeIDOpcode(ID, N->getOpcode());
817   // Add the return value info.
818   AddNodeIDValueTypes(ID, N->getVTList());
819   // Add the operand info.
820   AddNodeIDOperands(ID, N->ops());
821 
822   // Handle SDNode leafs with special info.
823   AddNodeIDCustom(ID, N);
824 }
825 
826 //===----------------------------------------------------------------------===//
827 //                              SelectionDAG Class
828 //===----------------------------------------------------------------------===//
829 
830 /// doNotCSE - Return true if CSE should not be performed for this node.
831 static bool doNotCSE(SDNode *N) {
832   if (N->getValueType(0) == MVT::Glue)
833     return true; // Never CSE anything that produces a flag.
834 
835   switch (N->getOpcode()) {
836   default: break;
837   case ISD::HANDLENODE:
838   case ISD::EH_LABEL:
839     return true;   // Never CSE these nodes.
840   }
841 
842   // Check that remaining values produced are not flags.
843   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
844     if (N->getValueType(i) == MVT::Glue)
845       return true; // Never CSE anything that produces a flag.
846 
847   return false;
848 }
849 
850 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
851 /// SelectionDAG.
852 void SelectionDAG::RemoveDeadNodes() {
853   // Create a dummy node (which is not added to allnodes), that adds a reference
854   // to the root node, preventing it from being deleted.
855   HandleSDNode Dummy(getRoot());
856 
857   SmallVector<SDNode*, 128> DeadNodes;
858 
859   // Add all obviously-dead nodes to the DeadNodes worklist.
860   for (SDNode &Node : allnodes())
861     if (Node.use_empty())
862       DeadNodes.push_back(&Node);
863 
864   RemoveDeadNodes(DeadNodes);
865 
866   // If the root changed (e.g. it was a dead load, update the root).
867   setRoot(Dummy.getValue());
868 }
869 
870 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
871 /// given list, and any nodes that become unreachable as a result.
872 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
873 
874   // Process the worklist, deleting the nodes and adding their uses to the
875   // worklist.
876   while (!DeadNodes.empty()) {
877     SDNode *N = DeadNodes.pop_back_val();
878     // Skip to next node if we've already managed to delete the node. This could
879     // happen if replacing a node causes a node previously added to the node to
880     // be deleted.
881     if (N->getOpcode() == ISD::DELETED_NODE)
882       continue;
883 
884     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
885       DUL->NodeDeleted(N, nullptr);
886 
887     // Take the node out of the appropriate CSE map.
888     RemoveNodeFromCSEMaps(N);
889 
890     // Next, brutally remove the operand list.  This is safe to do, as there are
891     // no cycles in the graph.
892     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
893       SDUse &Use = *I++;
894       SDNode *Operand = Use.getNode();
895       Use.set(SDValue());
896 
897       // Now that we removed this operand, see if there are no uses of it left.
898       if (Operand->use_empty())
899         DeadNodes.push_back(Operand);
900     }
901 
902     DeallocateNode(N);
903   }
904 }
905 
906 void SelectionDAG::RemoveDeadNode(SDNode *N){
907   SmallVector<SDNode*, 16> DeadNodes(1, N);
908 
909   // Create a dummy node that adds a reference to the root node, preventing
910   // it from being deleted.  (This matters if the root is an operand of the
911   // dead node.)
912   HandleSDNode Dummy(getRoot());
913 
914   RemoveDeadNodes(DeadNodes);
915 }
916 
917 void SelectionDAG::DeleteNode(SDNode *N) {
918   // First take this out of the appropriate CSE map.
919   RemoveNodeFromCSEMaps(N);
920 
921   // Finally, remove uses due to operands of this node, remove from the
922   // AllNodes list, and delete the node.
923   DeleteNodeNotInCSEMaps(N);
924 }
925 
926 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
927   assert(N->getIterator() != AllNodes.begin() &&
928          "Cannot delete the entry node!");
929   assert(N->use_empty() && "Cannot delete a node that is not dead!");
930 
931   // Drop all of the operands and decrement used node's use counts.
932   N->DropOperands();
933 
934   DeallocateNode(N);
935 }
936 
937 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
938   assert(!(V->isVariadic() && isParameter));
939   if (isParameter)
940     ByvalParmDbgValues.push_back(V);
941   else
942     DbgValues.push_back(V);
943   for (const SDNode *Node : V->getSDNodes())
944     if (Node)
945       DbgValMap[Node].push_back(V);
946 }
947 
948 void SDDbgInfo::erase(const SDNode *Node) {
949   DbgValMapType::iterator I = DbgValMap.find(Node);
950   if (I == DbgValMap.end())
951     return;
952   for (auto &Val: I->second)
953     Val->setIsInvalidated();
954   DbgValMap.erase(I);
955 }
956 
957 void SelectionDAG::DeallocateNode(SDNode *N) {
958   // If we have operands, deallocate them.
959   removeOperands(N);
960 
961   NodeAllocator.Deallocate(AllNodes.remove(N));
962 
963   // Set the opcode to DELETED_NODE to help catch bugs when node
964   // memory is reallocated.
965   // FIXME: There are places in SDag that have grown a dependency on the opcode
966   // value in the released node.
967   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
968   N->NodeType = ISD::DELETED_NODE;
969 
970   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
971   // them and forget about that node.
972   DbgInfo->erase(N);
973 }
974 
975 #ifndef NDEBUG
976 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
977 static void VerifySDNode(SDNode *N) {
978   switch (N->getOpcode()) {
979   default:
980     break;
981   case ISD::BUILD_PAIR: {
982     EVT VT = N->getValueType(0);
983     assert(N->getNumValues() == 1 && "Too many results!");
984     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
985            "Wrong return type!");
986     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
987     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
988            "Mismatched operand types!");
989     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
990            "Wrong operand type!");
991     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
992            "Wrong return type size");
993     break;
994   }
995   case ISD::BUILD_VECTOR: {
996     assert(N->getNumValues() == 1 && "Too many results!");
997     assert(N->getValueType(0).isVector() && "Wrong return type!");
998     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
999            "Wrong number of operands!");
1000     EVT EltVT = N->getValueType(0).getVectorElementType();
1001     for (const SDUse &Op : N->ops()) {
1002       assert((Op.getValueType() == EltVT ||
1003               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1004                EltVT.bitsLE(Op.getValueType()))) &&
1005              "Wrong operand type!");
1006       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1007              "Operands must all have the same type");
1008     }
1009     break;
1010   }
1011   }
1012 }
1013 #endif // NDEBUG
1014 
1015 /// Insert a newly allocated node into the DAG.
1016 ///
1017 /// Handles insertion into the all nodes list and CSE map, as well as
1018 /// verification and other common operations when a new node is allocated.
1019 void SelectionDAG::InsertNode(SDNode *N) {
1020   AllNodes.push_back(N);
1021 #ifndef NDEBUG
1022   N->PersistentId = NextPersistentId++;
1023   VerifySDNode(N);
1024 #endif
1025   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1026     DUL->NodeInserted(N);
1027 }
1028 
1029 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1030 /// correspond to it.  This is useful when we're about to delete or repurpose
1031 /// the node.  We don't want future request for structurally identical nodes
1032 /// to return N anymore.
1033 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1034   bool Erased = false;
1035   switch (N->getOpcode()) {
1036   case ISD::HANDLENODE: return false;  // noop.
1037   case ISD::CONDCODE:
1038     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1039            "Cond code doesn't exist!");
1040     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1041     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1042     break;
1043   case ISD::ExternalSymbol:
1044     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1045     break;
1046   case ISD::TargetExternalSymbol: {
1047     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1048     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1049         ESN->getSymbol(), ESN->getTargetFlags()));
1050     break;
1051   }
1052   case ISD::MCSymbol: {
1053     auto *MCSN = cast<MCSymbolSDNode>(N);
1054     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1055     break;
1056   }
1057   case ISD::VALUETYPE: {
1058     EVT VT = cast<VTSDNode>(N)->getVT();
1059     if (VT.isExtended()) {
1060       Erased = ExtendedValueTypeNodes.erase(VT);
1061     } else {
1062       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1063       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1064     }
1065     break;
1066   }
1067   default:
1068     // Remove it from the CSE Map.
1069     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1070     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1071     Erased = CSEMap.RemoveNode(N);
1072     break;
1073   }
1074 #ifndef NDEBUG
1075   // Verify that the node was actually in one of the CSE maps, unless it has a
1076   // flag result (which cannot be CSE'd) or is one of the special cases that are
1077   // not subject to CSE.
1078   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1079       !N->isMachineOpcode() && !doNotCSE(N)) {
1080     N->dump(this);
1081     dbgs() << "\n";
1082     llvm_unreachable("Node is not in map!");
1083   }
1084 #endif
1085   return Erased;
1086 }
1087 
1088 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1089 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1090 /// node already exists, in which case transfer all its users to the existing
1091 /// node. This transfer can potentially trigger recursive merging.
1092 void
1093 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1094   // For node types that aren't CSE'd, just act as if no identical node
1095   // already exists.
1096   if (!doNotCSE(N)) {
1097     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1098     if (Existing != N) {
1099       // If there was already an existing matching node, use ReplaceAllUsesWith
1100       // to replace the dead one with the existing one.  This can cause
1101       // recursive merging of other unrelated nodes down the line.
1102       ReplaceAllUsesWith(N, Existing);
1103 
1104       // N is now dead. Inform the listeners and delete it.
1105       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1106         DUL->NodeDeleted(N, Existing);
1107       DeleteNodeNotInCSEMaps(N);
1108       return;
1109     }
1110   }
1111 
1112   // If the node doesn't already exist, we updated it.  Inform listeners.
1113   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1114     DUL->NodeUpdated(N);
1115 }
1116 
1117 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1118 /// were replaced with those specified.  If this node is never memoized,
1119 /// return null, otherwise return a pointer to the slot it would take.  If a
1120 /// node already exists with these operands, the slot will be non-null.
1121 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1122                                            void *&InsertPos) {
1123   if (doNotCSE(N))
1124     return nullptr;
1125 
1126   SDValue Ops[] = { Op };
1127   FoldingSetNodeID ID;
1128   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1129   AddNodeIDCustom(ID, N);
1130   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1131   if (Node)
1132     Node->intersectFlagsWith(N->getFlags());
1133   return Node;
1134 }
1135 
1136 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1137 /// were replaced with those specified.  If this node is never memoized,
1138 /// return null, otherwise return a pointer to the slot it would take.  If a
1139 /// node already exists with these operands, the slot will be non-null.
1140 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1141                                            SDValue Op1, SDValue Op2,
1142                                            void *&InsertPos) {
1143   if (doNotCSE(N))
1144     return nullptr;
1145 
1146   SDValue Ops[] = { Op1, Op2 };
1147   FoldingSetNodeID ID;
1148   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1149   AddNodeIDCustom(ID, N);
1150   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1151   if (Node)
1152     Node->intersectFlagsWith(N->getFlags());
1153   return Node;
1154 }
1155 
1156 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1157 /// were replaced with those specified.  If this node is never memoized,
1158 /// return null, otherwise return a pointer to the slot it would take.  If a
1159 /// node already exists with these operands, the slot will be non-null.
1160 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1161                                            void *&InsertPos) {
1162   if (doNotCSE(N))
1163     return nullptr;
1164 
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 Align SelectionDAG::getEVTAlign(EVT VT) const {
1175   Type *Ty = VT == MVT::iPTR ?
1176                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1177                    VT.getTypeForEVT(*getContext());
1178 
1179   return getDataLayout().getABITypeAlign(Ty);
1180 }
1181 
1182 // EntryNode could meaningfully have debug info if we can find it...
1183 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1184     : TM(tm), OptLevel(OL),
1185       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1186       Root(getEntryNode()) {
1187   InsertNode(&EntryNode);
1188   DbgInfo = new SDDbgInfo();
1189 }
1190 
1191 void SelectionDAG::init(MachineFunction &NewMF,
1192                         OptimizationRemarkEmitter &NewORE,
1193                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1194                         LegacyDivergenceAnalysis * Divergence,
1195                         ProfileSummaryInfo *PSIin,
1196                         BlockFrequencyInfo *BFIin) {
1197   MF = &NewMF;
1198   SDAGISelPass = PassPtr;
1199   ORE = &NewORE;
1200   TLI = getSubtarget().getTargetLowering();
1201   TSI = getSubtarget().getSelectionDAGInfo();
1202   LibInfo = LibraryInfo;
1203   Context = &MF->getFunction().getContext();
1204   DA = Divergence;
1205   PSI = PSIin;
1206   BFI = BFIin;
1207 }
1208 
1209 SelectionDAG::~SelectionDAG() {
1210   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1211   allnodes_clear();
1212   OperandRecycler.clear(OperandAllocator);
1213   delete DbgInfo;
1214 }
1215 
1216 bool SelectionDAG::shouldOptForSize() const {
1217   return MF->getFunction().hasOptSize() ||
1218       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1219 }
1220 
1221 void SelectionDAG::allnodes_clear() {
1222   assert(&*AllNodes.begin() == &EntryNode);
1223   AllNodes.remove(AllNodes.begin());
1224   while (!AllNodes.empty())
1225     DeallocateNode(&AllNodes.front());
1226 #ifndef NDEBUG
1227   NextPersistentId = 0;
1228 #endif
1229 }
1230 
1231 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1232                                           void *&InsertPos) {
1233   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1234   if (N) {
1235     switch (N->getOpcode()) {
1236     default: break;
1237     case ISD::Constant:
1238     case ISD::ConstantFP:
1239       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1240                        "debug location.  Use another overload.");
1241     }
1242   }
1243   return N;
1244 }
1245 
1246 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1247                                           const SDLoc &DL, void *&InsertPos) {
1248   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1249   if (N) {
1250     switch (N->getOpcode()) {
1251     case ISD::Constant:
1252     case ISD::ConstantFP:
1253       // Erase debug location from the node if the node is used at several
1254       // different places. Do not propagate one location to all uses as it
1255       // will cause a worse single stepping debugging experience.
1256       if (N->getDebugLoc() != DL.getDebugLoc())
1257         N->setDebugLoc(DebugLoc());
1258       break;
1259     default:
1260       // When the node's point of use is located earlier in the instruction
1261       // sequence than its prior point of use, update its debug info to the
1262       // earlier location.
1263       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1264         N->setDebugLoc(DL.getDebugLoc());
1265       break;
1266     }
1267   }
1268   return N;
1269 }
1270 
1271 void SelectionDAG::clear() {
1272   allnodes_clear();
1273   OperandRecycler.clear(OperandAllocator);
1274   OperandAllocator.Reset();
1275   CSEMap.clear();
1276 
1277   ExtendedValueTypeNodes.clear();
1278   ExternalSymbols.clear();
1279   TargetExternalSymbols.clear();
1280   MCSymbols.clear();
1281   SDCallSiteDbgInfo.clear();
1282   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1283             static_cast<CondCodeSDNode*>(nullptr));
1284   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1285             static_cast<SDNode*>(nullptr));
1286 
1287   EntryNode.UseList = nullptr;
1288   InsertNode(&EntryNode);
1289   Root = getEntryNode();
1290   DbgInfo->clear();
1291 }
1292 
1293 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1294   return VT.bitsGT(Op.getValueType())
1295              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1296              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1297 }
1298 
1299 std::pair<SDValue, SDValue>
1300 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1301                                        const SDLoc &DL, EVT VT) {
1302   assert(!VT.bitsEq(Op.getValueType()) &&
1303          "Strict no-op FP extend/round not allowed.");
1304   SDValue Res =
1305       VT.bitsGT(Op.getValueType())
1306           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1307           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1308                     {Chain, Op, getIntPtrConstant(0, DL)});
1309 
1310   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1311 }
1312 
1313 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1314   return VT.bitsGT(Op.getValueType()) ?
1315     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1316     getNode(ISD::TRUNCATE, DL, VT, Op);
1317 }
1318 
1319 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1320   return VT.bitsGT(Op.getValueType()) ?
1321     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1322     getNode(ISD::TRUNCATE, DL, VT, Op);
1323 }
1324 
1325 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1326   return VT.bitsGT(Op.getValueType()) ?
1327     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1328     getNode(ISD::TRUNCATE, DL, VT, Op);
1329 }
1330 
1331 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1332                                         EVT OpVT) {
1333   if (VT.bitsLE(Op.getValueType()))
1334     return getNode(ISD::TRUNCATE, SL, VT, Op);
1335 
1336   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1337   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1338 }
1339 
1340 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1341   EVT OpVT = Op.getValueType();
1342   assert(VT.isInteger() && OpVT.isInteger() &&
1343          "Cannot getZeroExtendInReg FP types");
1344   assert(VT.isVector() == OpVT.isVector() &&
1345          "getZeroExtendInReg type should be vector iff the operand "
1346          "type is vector!");
1347   assert((!VT.isVector() ||
1348           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1349          "Vector element counts must match in getZeroExtendInReg");
1350   assert(VT.bitsLE(OpVT) && "Not extending!");
1351   if (OpVT == VT)
1352     return Op;
1353   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1354                                    VT.getScalarSizeInBits());
1355   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1356 }
1357 
1358 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1359   // Only unsigned pointer semantics are supported right now. In the future this
1360   // might delegate to TLI to check pointer signedness.
1361   return getZExtOrTrunc(Op, DL, VT);
1362 }
1363 
1364 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1365   // Only unsigned pointer semantics are supported right now. In the future this
1366   // might delegate to TLI to check pointer signedness.
1367   return getZeroExtendInReg(Op, DL, VT);
1368 }
1369 
1370 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1371 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1372   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1373 }
1374 
1375 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1376   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1377   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1378 }
1379 
1380 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1381                                       EVT OpVT) {
1382   if (!V)
1383     return getConstant(0, DL, VT);
1384 
1385   switch (TLI->getBooleanContents(OpVT)) {
1386   case TargetLowering::ZeroOrOneBooleanContent:
1387   case TargetLowering::UndefinedBooleanContent:
1388     return getConstant(1, DL, VT);
1389   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1390     return getAllOnesConstant(DL, VT);
1391   }
1392   llvm_unreachable("Unexpected boolean content enum!");
1393 }
1394 
1395 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1396                                   bool isT, bool isO) {
1397   EVT EltVT = VT.getScalarType();
1398   assert((EltVT.getSizeInBits() >= 64 ||
1399           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1400          "getConstant with a uint64_t value that doesn't fit in the type!");
1401   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1402 }
1403 
1404 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1405                                   bool isT, bool isO) {
1406   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1407 }
1408 
1409 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1410                                   EVT VT, bool isT, bool isO) {
1411   assert(VT.isInteger() && "Cannot create FP integer constant!");
1412 
1413   EVT EltVT = VT.getScalarType();
1414   const ConstantInt *Elt = &Val;
1415 
1416   // In some cases the vector type is legal but the element type is illegal and
1417   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1418   // inserted value (the type does not need to match the vector element type).
1419   // Any extra bits introduced will be truncated away.
1420   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1421                            TargetLowering::TypePromoteInteger) {
1422     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1423     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1424     Elt = ConstantInt::get(*getContext(), NewVal);
1425   }
1426   // In other cases the element type is illegal and needs to be expanded, for
1427   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1428   // the value into n parts and use a vector type with n-times the elements.
1429   // Then bitcast to the type requested.
1430   // Legalizing constants too early makes the DAGCombiner's job harder so we
1431   // only legalize if the DAG tells us we must produce legal types.
1432   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1433            TLI->getTypeAction(*getContext(), EltVT) ==
1434                TargetLowering::TypeExpandInteger) {
1435     const APInt &NewVal = Elt->getValue();
1436     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1437     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1438 
1439     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1440     if (VT.isScalableVector()) {
1441       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1442              "Can only handle an even split!");
1443       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1444 
1445       SmallVector<SDValue, 2> ScalarParts;
1446       for (unsigned i = 0; i != Parts; ++i)
1447         ScalarParts.push_back(getConstant(
1448             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1449             ViaEltVT, isT, isO));
1450 
1451       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1452     }
1453 
1454     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1455     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1456 
1457     // Check the temporary vector is the correct size. If this fails then
1458     // getTypeToTransformTo() probably returned a type whose size (in bits)
1459     // isn't a power-of-2 factor of the requested type size.
1460     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1461 
1462     SmallVector<SDValue, 2> EltParts;
1463     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1464       EltParts.push_back(getConstant(
1465           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1466           ViaEltVT, isT, isO));
1467 
1468     // EltParts is currently in little endian order. If we actually want
1469     // big-endian order then reverse it now.
1470     if (getDataLayout().isBigEndian())
1471       std::reverse(EltParts.begin(), EltParts.end());
1472 
1473     // The elements must be reversed when the element order is different
1474     // to the endianness of the elements (because the BITCAST is itself a
1475     // vector shuffle in this situation). However, we do not need any code to
1476     // perform this reversal because getConstant() is producing a vector
1477     // splat.
1478     // This situation occurs in MIPS MSA.
1479 
1480     SmallVector<SDValue, 8> Ops;
1481     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1482       llvm::append_range(Ops, EltParts);
1483 
1484     SDValue V =
1485         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1486     return V;
1487   }
1488 
1489   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1490          "APInt size does not match type size!");
1491   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1492   FoldingSetNodeID ID;
1493   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1494   ID.AddPointer(Elt);
1495   ID.AddBoolean(isO);
1496   void *IP = nullptr;
1497   SDNode *N = nullptr;
1498   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1499     if (!VT.isVector())
1500       return SDValue(N, 0);
1501 
1502   if (!N) {
1503     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1504     CSEMap.InsertNode(N, IP);
1505     InsertNode(N);
1506     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1507   }
1508 
1509   SDValue Result(N, 0);
1510   if (VT.isScalableVector())
1511     Result = getSplatVector(VT, DL, Result);
1512   else if (VT.isVector())
1513     Result = getSplatBuildVector(VT, DL, Result);
1514 
1515   return Result;
1516 }
1517 
1518 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1519                                         bool isTarget) {
1520   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1521 }
1522 
1523 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1524                                              const SDLoc &DL, bool LegalTypes) {
1525   assert(VT.isInteger() && "Shift amount is not an integer type!");
1526   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1527   return getConstant(Val, DL, ShiftVT);
1528 }
1529 
1530 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1531                                            bool isTarget) {
1532   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1533 }
1534 
1535 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1536                                     bool isTarget) {
1537   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1538 }
1539 
1540 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1541                                     EVT VT, bool isTarget) {
1542   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1543 
1544   EVT EltVT = VT.getScalarType();
1545 
1546   // Do the map lookup using the actual bit pattern for the floating point
1547   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1548   // we don't have issues with SNANs.
1549   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1550   FoldingSetNodeID ID;
1551   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1552   ID.AddPointer(&V);
1553   void *IP = nullptr;
1554   SDNode *N = nullptr;
1555   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1556     if (!VT.isVector())
1557       return SDValue(N, 0);
1558 
1559   if (!N) {
1560     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1561     CSEMap.InsertNode(N, IP);
1562     InsertNode(N);
1563   }
1564 
1565   SDValue Result(N, 0);
1566   if (VT.isScalableVector())
1567     Result = getSplatVector(VT, DL, Result);
1568   else if (VT.isVector())
1569     Result = getSplatBuildVector(VT, DL, Result);
1570   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1571   return Result;
1572 }
1573 
1574 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1575                                     bool isTarget) {
1576   EVT EltVT = VT.getScalarType();
1577   if (EltVT == MVT::f32)
1578     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1579   if (EltVT == MVT::f64)
1580     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1581   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1582       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1583     bool Ignored;
1584     APFloat APF = APFloat(Val);
1585     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1586                 &Ignored);
1587     return getConstantFP(APF, DL, VT, isTarget);
1588   }
1589   llvm_unreachable("Unsupported type in getConstantFP");
1590 }
1591 
1592 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1593                                        EVT VT, int64_t Offset, bool isTargetGA,
1594                                        unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTargetGA) &&
1596          "Cannot set target flags on target-independent globals");
1597 
1598   // Truncate (with sign-extension) the offset value to the pointer size.
1599   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1600   if (BitWidth < 64)
1601     Offset = SignExtend64(Offset, BitWidth);
1602 
1603   unsigned Opc;
1604   if (GV->isThreadLocal())
1605     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1606   else
1607     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1608 
1609   FoldingSetNodeID ID;
1610   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1611   ID.AddPointer(GV);
1612   ID.AddInteger(Offset);
1613   ID.AddInteger(TargetFlags);
1614   void *IP = nullptr;
1615   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1616     return SDValue(E, 0);
1617 
1618   auto *N = newSDNode<GlobalAddressSDNode>(
1619       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1620   CSEMap.InsertNode(N, IP);
1621     InsertNode(N);
1622   return SDValue(N, 0);
1623 }
1624 
1625 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1626   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddInteger(FI);
1630   void *IP = nullptr;
1631   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1632     return SDValue(E, 0);
1633 
1634   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1635   CSEMap.InsertNode(N, IP);
1636   InsertNode(N);
1637   return SDValue(N, 0);
1638 }
1639 
1640 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1641                                    unsigned TargetFlags) {
1642   assert((TargetFlags == 0 || isTarget) &&
1643          "Cannot set target flags on target-independent jump tables");
1644   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(JTI);
1648   ID.AddInteger(TargetFlags);
1649   void *IP = nullptr;
1650   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1651     return SDValue(E, 0);
1652 
1653   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1654   CSEMap.InsertNode(N, IP);
1655   InsertNode(N);
1656   return SDValue(N, 0);
1657 }
1658 
1659 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1660                                       MaybeAlign Alignment, int Offset,
1661                                       bool isTarget, unsigned TargetFlags) {
1662   assert((TargetFlags == 0 || isTarget) &&
1663          "Cannot set target flags on target-independent globals");
1664   if (!Alignment)
1665     Alignment = shouldOptForSize()
1666                     ? getDataLayout().getABITypeAlign(C->getType())
1667                     : getDataLayout().getPrefTypeAlign(C->getType());
1668   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1669   FoldingSetNodeID ID;
1670   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1671   ID.AddInteger(Alignment->value());
1672   ID.AddInteger(Offset);
1673   ID.AddPointer(C);
1674   ID.AddInteger(TargetFlags);
1675   void *IP = nullptr;
1676   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1677     return SDValue(E, 0);
1678 
1679   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1680                                           TargetFlags);
1681   CSEMap.InsertNode(N, IP);
1682   InsertNode(N);
1683   SDValue V = SDValue(N, 0);
1684   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1685   return V;
1686 }
1687 
1688 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1689                                       MaybeAlign Alignment, int Offset,
1690                                       bool isTarget, unsigned TargetFlags) {
1691   assert((TargetFlags == 0 || isTarget) &&
1692          "Cannot set target flags on target-independent globals");
1693   if (!Alignment)
1694     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1695   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1696   FoldingSetNodeID ID;
1697   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1698   ID.AddInteger(Alignment->value());
1699   ID.AddInteger(Offset);
1700   C->addSelectionDAGCSEId(ID);
1701   ID.AddInteger(TargetFlags);
1702   void *IP = nullptr;
1703   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1704     return SDValue(E, 0);
1705 
1706   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1707                                           TargetFlags);
1708   CSEMap.InsertNode(N, IP);
1709   InsertNode(N);
1710   return SDValue(N, 0);
1711 }
1712 
1713 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1714                                      unsigned TargetFlags) {
1715   FoldingSetNodeID ID;
1716   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1717   ID.AddInteger(Index);
1718   ID.AddInteger(Offset);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1725   CSEMap.InsertNode(N, IP);
1726   InsertNode(N);
1727   return SDValue(N, 0);
1728 }
1729 
1730 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1731   FoldingSetNodeID ID;
1732   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1733   ID.AddPointer(MBB);
1734   void *IP = nullptr;
1735   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1736     return SDValue(E, 0);
1737 
1738   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1739   CSEMap.InsertNode(N, IP);
1740   InsertNode(N);
1741   return SDValue(N, 0);
1742 }
1743 
1744 SDValue SelectionDAG::getValueType(EVT VT) {
1745   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1746       ValueTypeNodes.size())
1747     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1748 
1749   SDNode *&N = VT.isExtended() ?
1750     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1751 
1752   if (N) return SDValue(N, 0);
1753   N = newSDNode<VTSDNode>(VT);
1754   InsertNode(N);
1755   return SDValue(N, 0);
1756 }
1757 
1758 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1759   SDNode *&N = ExternalSymbols[Sym];
1760   if (N) return SDValue(N, 0);
1761   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1762   InsertNode(N);
1763   return SDValue(N, 0);
1764 }
1765 
1766 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1767   SDNode *&N = MCSymbols[Sym];
1768   if (N)
1769     return SDValue(N, 0);
1770   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1771   InsertNode(N);
1772   return SDValue(N, 0);
1773 }
1774 
1775 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1776                                               unsigned TargetFlags) {
1777   SDNode *&N =
1778       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1779   if (N) return SDValue(N, 0);
1780   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1781   InsertNode(N);
1782   return SDValue(N, 0);
1783 }
1784 
1785 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1786   if ((unsigned)Cond >= CondCodeNodes.size())
1787     CondCodeNodes.resize(Cond+1);
1788 
1789   if (!CondCodeNodes[Cond]) {
1790     auto *N = newSDNode<CondCodeSDNode>(Cond);
1791     CondCodeNodes[Cond] = N;
1792     InsertNode(N);
1793   }
1794 
1795   return SDValue(CondCodeNodes[Cond], 0);
1796 }
1797 
1798 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1799   APInt One(ResVT.getScalarSizeInBits(), 1);
1800   return getStepVector(DL, ResVT, One);
1801 }
1802 
1803 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1804   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1805   if (ResVT.isScalableVector())
1806     return getNode(
1807         ISD::STEP_VECTOR, DL, ResVT,
1808         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1809 
1810   SmallVector<SDValue, 16> OpsStepConstants;
1811   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1812     OpsStepConstants.push_back(
1813         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1814   return getBuildVector(ResVT, DL, OpsStepConstants);
1815 }
1816 
1817 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1818 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1819 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1820   std::swap(N1, N2);
1821   ShuffleVectorSDNode::commuteMask(M);
1822 }
1823 
1824 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1825                                        SDValue N2, ArrayRef<int> Mask) {
1826   assert(VT.getVectorNumElements() == Mask.size() &&
1827          "Must have the same number of vector elements as mask elements!");
1828   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1829          "Invalid VECTOR_SHUFFLE");
1830 
1831   // Canonicalize shuffle undef, undef -> undef
1832   if (N1.isUndef() && N2.isUndef())
1833     return getUNDEF(VT);
1834 
1835   // Validate that all indices in Mask are within the range of the elements
1836   // input to the shuffle.
1837   int NElts = Mask.size();
1838   assert(llvm::all_of(Mask,
1839                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1840          "Index out of range");
1841 
1842   // Copy the mask so we can do any needed cleanup.
1843   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1844 
1845   // Canonicalize shuffle v, v -> v, undef
1846   if (N1 == N2) {
1847     N2 = getUNDEF(VT);
1848     for (int i = 0; i != NElts; ++i)
1849       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1850   }
1851 
1852   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1853   if (N1.isUndef())
1854     commuteShuffle(N1, N2, MaskVec);
1855 
1856   if (TLI->hasVectorBlend()) {
1857     // If shuffling a splat, try to blend the splat instead. We do this here so
1858     // that even when this arises during lowering we don't have to re-handle it.
1859     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1860       BitVector UndefElements;
1861       SDValue Splat = BV->getSplatValue(&UndefElements);
1862       if (!Splat)
1863         return;
1864 
1865       for (int i = 0; i < NElts; ++i) {
1866         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1867           continue;
1868 
1869         // If this input comes from undef, mark it as such.
1870         if (UndefElements[MaskVec[i] - Offset]) {
1871           MaskVec[i] = -1;
1872           continue;
1873         }
1874 
1875         // If we can blend a non-undef lane, use that instead.
1876         if (!UndefElements[i])
1877           MaskVec[i] = i + Offset;
1878       }
1879     };
1880     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1881       BlendSplat(N1BV, 0);
1882     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1883       BlendSplat(N2BV, NElts);
1884   }
1885 
1886   // Canonicalize all index into lhs, -> shuffle lhs, undef
1887   // Canonicalize all index into rhs, -> shuffle rhs, undef
1888   bool AllLHS = true, AllRHS = true;
1889   bool N2Undef = N2.isUndef();
1890   for (int i = 0; i != NElts; ++i) {
1891     if (MaskVec[i] >= NElts) {
1892       if (N2Undef)
1893         MaskVec[i] = -1;
1894       else
1895         AllLHS = false;
1896     } else if (MaskVec[i] >= 0) {
1897       AllRHS = false;
1898     }
1899   }
1900   if (AllLHS && AllRHS)
1901     return getUNDEF(VT);
1902   if (AllLHS && !N2Undef)
1903     N2 = getUNDEF(VT);
1904   if (AllRHS) {
1905     N1 = getUNDEF(VT);
1906     commuteShuffle(N1, N2, MaskVec);
1907   }
1908   // Reset our undef status after accounting for the mask.
1909   N2Undef = N2.isUndef();
1910   // Re-check whether both sides ended up undef.
1911   if (N1.isUndef() && N2Undef)
1912     return getUNDEF(VT);
1913 
1914   // If Identity shuffle return that node.
1915   bool Identity = true, AllSame = true;
1916   for (int i = 0; i != NElts; ++i) {
1917     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1918     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1919   }
1920   if (Identity && NElts)
1921     return N1;
1922 
1923   // Shuffling a constant splat doesn't change the result.
1924   if (N2Undef) {
1925     SDValue V = N1;
1926 
1927     // Look through any bitcasts. We check that these don't change the number
1928     // (and size) of elements and just changes their types.
1929     while (V.getOpcode() == ISD::BITCAST)
1930       V = V->getOperand(0);
1931 
1932     // A splat should always show up as a build vector node.
1933     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1934       BitVector UndefElements;
1935       SDValue Splat = BV->getSplatValue(&UndefElements);
1936       // If this is a splat of an undef, shuffling it is also undef.
1937       if (Splat && Splat.isUndef())
1938         return getUNDEF(VT);
1939 
1940       bool SameNumElts =
1941           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1942 
1943       // We only have a splat which can skip shuffles if there is a splatted
1944       // value and no undef lanes rearranged by the shuffle.
1945       if (Splat && UndefElements.none()) {
1946         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1947         // number of elements match or the value splatted is a zero constant.
1948         if (SameNumElts)
1949           return N1;
1950         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1951           if (C->isZero())
1952             return N1;
1953       }
1954 
1955       // If the shuffle itself creates a splat, build the vector directly.
1956       if (AllSame && SameNumElts) {
1957         EVT BuildVT = BV->getValueType(0);
1958         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1959         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1960 
1961         // We may have jumped through bitcasts, so the type of the
1962         // BUILD_VECTOR may not match the type of the shuffle.
1963         if (BuildVT != VT)
1964           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1965         return NewBV;
1966       }
1967     }
1968   }
1969 
1970   FoldingSetNodeID ID;
1971   SDValue Ops[2] = { N1, N2 };
1972   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1973   for (int i = 0; i != NElts; ++i)
1974     ID.AddInteger(MaskVec[i]);
1975 
1976   void* IP = nullptr;
1977   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1978     return SDValue(E, 0);
1979 
1980   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1981   // SDNode doesn't have access to it.  This memory will be "leaked" when
1982   // the node is deallocated, but recovered when the NodeAllocator is released.
1983   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1984   llvm::copy(MaskVec, MaskAlloc);
1985 
1986   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1987                                            dl.getDebugLoc(), MaskAlloc);
1988   createOperands(N, Ops);
1989 
1990   CSEMap.InsertNode(N, IP);
1991   InsertNode(N);
1992   SDValue V = SDValue(N, 0);
1993   NewSDValueDbgMsg(V, "Creating new node: ", this);
1994   return V;
1995 }
1996 
1997 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1998   EVT VT = SV.getValueType(0);
1999   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2000   ShuffleVectorSDNode::commuteMask(MaskVec);
2001 
2002   SDValue Op0 = SV.getOperand(0);
2003   SDValue Op1 = SV.getOperand(1);
2004   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2005 }
2006 
2007 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2008   FoldingSetNodeID ID;
2009   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2010   ID.AddInteger(RegNo);
2011   void *IP = nullptr;
2012   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2013     return SDValue(E, 0);
2014 
2015   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2016   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2017   CSEMap.InsertNode(N, IP);
2018   InsertNode(N);
2019   return SDValue(N, 0);
2020 }
2021 
2022 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2023   FoldingSetNodeID ID;
2024   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2025   ID.AddPointer(RegMask);
2026   void *IP = nullptr;
2027   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2028     return SDValue(E, 0);
2029 
2030   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2031   CSEMap.InsertNode(N, IP);
2032   InsertNode(N);
2033   return SDValue(N, 0);
2034 }
2035 
2036 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2037                                  MCSymbol *Label) {
2038   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2039 }
2040 
2041 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2042                                    SDValue Root, MCSymbol *Label) {
2043   FoldingSetNodeID ID;
2044   SDValue Ops[] = { Root };
2045   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2046   ID.AddPointer(Label);
2047   void *IP = nullptr;
2048   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2049     return SDValue(E, 0);
2050 
2051   auto *N =
2052       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2053   createOperands(N, Ops);
2054 
2055   CSEMap.InsertNode(N, IP);
2056   InsertNode(N);
2057   return SDValue(N, 0);
2058 }
2059 
2060 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2061                                       int64_t Offset, bool isTarget,
2062                                       unsigned TargetFlags) {
2063   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2064 
2065   FoldingSetNodeID ID;
2066   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2067   ID.AddPointer(BA);
2068   ID.AddInteger(Offset);
2069   ID.AddInteger(TargetFlags);
2070   void *IP = nullptr;
2071   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2072     return SDValue(E, 0);
2073 
2074   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2075   CSEMap.InsertNode(N, IP);
2076   InsertNode(N);
2077   return SDValue(N, 0);
2078 }
2079 
2080 SDValue SelectionDAG::getSrcValue(const Value *V) {
2081   FoldingSetNodeID ID;
2082   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2083   ID.AddPointer(V);
2084 
2085   void *IP = nullptr;
2086   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2087     return SDValue(E, 0);
2088 
2089   auto *N = newSDNode<SrcValueSDNode>(V);
2090   CSEMap.InsertNode(N, IP);
2091   InsertNode(N);
2092   return SDValue(N, 0);
2093 }
2094 
2095 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2096   FoldingSetNodeID ID;
2097   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2098   ID.AddPointer(MD);
2099 
2100   void *IP = nullptr;
2101   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2102     return SDValue(E, 0);
2103 
2104   auto *N = newSDNode<MDNodeSDNode>(MD);
2105   CSEMap.InsertNode(N, IP);
2106   InsertNode(N);
2107   return SDValue(N, 0);
2108 }
2109 
2110 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2111   if (VT == V.getValueType())
2112     return V;
2113 
2114   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2115 }
2116 
2117 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2118                                        unsigned SrcAS, unsigned DestAS) {
2119   SDValue Ops[] = {Ptr};
2120   FoldingSetNodeID ID;
2121   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2122   ID.AddInteger(SrcAS);
2123   ID.AddInteger(DestAS);
2124 
2125   void *IP = nullptr;
2126   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2127     return SDValue(E, 0);
2128 
2129   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2130                                            VT, SrcAS, DestAS);
2131   createOperands(N, Ops);
2132 
2133   CSEMap.InsertNode(N, IP);
2134   InsertNode(N);
2135   return SDValue(N, 0);
2136 }
2137 
2138 SDValue SelectionDAG::getFreeze(SDValue V) {
2139   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2140 }
2141 
2142 /// getShiftAmountOperand - Return the specified value casted to
2143 /// the target's desired shift amount type.
2144 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2145   EVT OpTy = Op.getValueType();
2146   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2147   if (OpTy == ShTy || OpTy.isVector()) return Op;
2148 
2149   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2150 }
2151 
2152 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2153   SDLoc dl(Node);
2154   const TargetLowering &TLI = getTargetLoweringInfo();
2155   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2156   EVT VT = Node->getValueType(0);
2157   SDValue Tmp1 = Node->getOperand(0);
2158   SDValue Tmp2 = Node->getOperand(1);
2159   const MaybeAlign MA(Node->getConstantOperandVal(3));
2160 
2161   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2162                                Tmp2, MachinePointerInfo(V));
2163   SDValue VAList = VAListLoad;
2164 
2165   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2166     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2167                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2168 
2169     VAList =
2170         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2171                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2172   }
2173 
2174   // Increment the pointer, VAList, to the next vaarg
2175   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2176                  getConstant(getDataLayout().getTypeAllocSize(
2177                                                VT.getTypeForEVT(*getContext())),
2178                              dl, VAList.getValueType()));
2179   // Store the incremented VAList to the legalized pointer
2180   Tmp1 =
2181       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2182   // Load the actual argument out of the pointer VAList
2183   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2184 }
2185 
2186 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2187   SDLoc dl(Node);
2188   const TargetLowering &TLI = getTargetLoweringInfo();
2189   // This defaults to loading a pointer from the input and storing it to the
2190   // output, returning the chain.
2191   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2192   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2193   SDValue Tmp1 =
2194       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2195               Node->getOperand(2), MachinePointerInfo(VS));
2196   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2197                   MachinePointerInfo(VD));
2198 }
2199 
2200 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2201   const DataLayout &DL = getDataLayout();
2202   Type *Ty = VT.getTypeForEVT(*getContext());
2203   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2204 
2205   if (TLI->isTypeLegal(VT) || !VT.isVector())
2206     return RedAlign;
2207 
2208   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2209   const Align StackAlign = TFI->getStackAlign();
2210 
2211   // See if we can choose a smaller ABI alignment in cases where it's an
2212   // illegal vector type that will get broken down.
2213   if (RedAlign > StackAlign) {
2214     EVT IntermediateVT;
2215     MVT RegisterVT;
2216     unsigned NumIntermediates;
2217     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2218                                 NumIntermediates, RegisterVT);
2219     Ty = IntermediateVT.getTypeForEVT(*getContext());
2220     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2221     if (RedAlign2 < RedAlign)
2222       RedAlign = RedAlign2;
2223   }
2224 
2225   return RedAlign;
2226 }
2227 
2228 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2229   MachineFrameInfo &MFI = MF->getFrameInfo();
2230   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2231   int StackID = 0;
2232   if (Bytes.isScalable())
2233     StackID = TFI->getStackIDForScalableVectors();
2234   // The stack id gives an indication of whether the object is scalable or
2235   // not, so it's safe to pass in the minimum size here.
2236   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2237                                        false, nullptr, StackID);
2238   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2239 }
2240 
2241 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2242   Type *Ty = VT.getTypeForEVT(*getContext());
2243   Align StackAlign =
2244       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2245   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2246 }
2247 
2248 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2249   TypeSize VT1Size = VT1.getStoreSize();
2250   TypeSize VT2Size = VT2.getStoreSize();
2251   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2252          "Don't know how to choose the maximum size when creating a stack "
2253          "temporary");
2254   TypeSize Bytes =
2255       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2256 
2257   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2258   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2259   const DataLayout &DL = getDataLayout();
2260   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2261   return CreateStackTemporary(Bytes, Align);
2262 }
2263 
2264 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2265                                 ISD::CondCode Cond, const SDLoc &dl) {
2266   EVT OpVT = N1.getValueType();
2267 
2268   // These setcc operations always fold.
2269   switch (Cond) {
2270   default: break;
2271   case ISD::SETFALSE:
2272   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2273   case ISD::SETTRUE:
2274   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2275 
2276   case ISD::SETOEQ:
2277   case ISD::SETOGT:
2278   case ISD::SETOGE:
2279   case ISD::SETOLT:
2280   case ISD::SETOLE:
2281   case ISD::SETONE:
2282   case ISD::SETO:
2283   case ISD::SETUO:
2284   case ISD::SETUEQ:
2285   case ISD::SETUNE:
2286     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2287     break;
2288   }
2289 
2290   if (OpVT.isInteger()) {
2291     // For EQ and NE, we can always pick a value for the undef to make the
2292     // predicate pass or fail, so we can return undef.
2293     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2294     // icmp eq/ne X, undef -> undef.
2295     if ((N1.isUndef() || N2.isUndef()) &&
2296         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2297       return getUNDEF(VT);
2298 
2299     // If both operands are undef, we can return undef for int comparison.
2300     // icmp undef, undef -> undef.
2301     if (N1.isUndef() && N2.isUndef())
2302       return getUNDEF(VT);
2303 
2304     // icmp X, X -> true/false
2305     // icmp X, undef -> true/false because undef could be X.
2306     if (N1 == N2)
2307       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2308   }
2309 
2310   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2311     const APInt &C2 = N2C->getAPIntValue();
2312     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2313       const APInt &C1 = N1C->getAPIntValue();
2314 
2315       switch (Cond) {
2316       default: llvm_unreachable("Unknown integer setcc!");
2317       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2318       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2319       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2320       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2321       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2322       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2323       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2324       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2325       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2326       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2327       }
2328     }
2329   }
2330 
2331   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2332   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2333 
2334   if (N1CFP && N2CFP) {
2335     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2336     switch (Cond) {
2337     default: break;
2338     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2339                         return getUNDEF(VT);
2340                       LLVM_FALLTHROUGH;
2341     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2342                                              OpVT);
2343     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2344                         return getUNDEF(VT);
2345                       LLVM_FALLTHROUGH;
2346     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2347                                              R==APFloat::cmpLessThan, dl, VT,
2348                                              OpVT);
2349     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2350                         return getUNDEF(VT);
2351                       LLVM_FALLTHROUGH;
2352     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2353                                              OpVT);
2354     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2355                         return getUNDEF(VT);
2356                       LLVM_FALLTHROUGH;
2357     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2358                                              VT, OpVT);
2359     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2360                         return getUNDEF(VT);
2361                       LLVM_FALLTHROUGH;
2362     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2363                                              R==APFloat::cmpEqual, dl, VT,
2364                                              OpVT);
2365     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2366                         return getUNDEF(VT);
2367                       LLVM_FALLTHROUGH;
2368     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2369                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2370     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2371                                              OpVT);
2372     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2373                                              OpVT);
2374     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2375                                              R==APFloat::cmpEqual, dl, VT,
2376                                              OpVT);
2377     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2378                                              OpVT);
2379     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2380                                              R==APFloat::cmpLessThan, dl, VT,
2381                                              OpVT);
2382     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2383                                              R==APFloat::cmpUnordered, dl, VT,
2384                                              OpVT);
2385     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2386                                              VT, OpVT);
2387     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     }
2390   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2391     // Ensure that the constant occurs on the RHS.
2392     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2393     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2394       return SDValue();
2395     return getSetCC(dl, VT, N2, N1, SwappedCond);
2396   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2397              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2398     // If an operand is known to be a nan (or undef that could be a nan), we can
2399     // fold it.
2400     // Choosing NaN for the undef will always make unordered comparison succeed
2401     // and ordered comparison fails.
2402     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2403     switch (ISD::getUnorderedFlavor(Cond)) {
2404     default:
2405       llvm_unreachable("Unknown flavor!");
2406     case 0: // Known false.
2407       return getBoolConstant(false, dl, VT, OpVT);
2408     case 1: // Known true.
2409       return getBoolConstant(true, dl, VT, OpVT);
2410     case 2: // Undefined.
2411       return getUNDEF(VT);
2412     }
2413   }
2414 
2415   // Could not fold it.
2416   return SDValue();
2417 }
2418 
2419 /// See if the specified operand can be simplified with the knowledge that only
2420 /// the bits specified by DemandedBits are used.
2421 /// TODO: really we should be making this into the DAG equivalent of
2422 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2423 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2424   EVT VT = V.getValueType();
2425 
2426   if (VT.isScalableVector())
2427     return SDValue();
2428 
2429   APInt DemandedElts = VT.isVector()
2430                            ? APInt::getAllOnes(VT.getVectorNumElements())
2431                            : APInt(1, 1);
2432   return GetDemandedBits(V, DemandedBits, DemandedElts);
2433 }
2434 
2435 /// See if the specified operand can be simplified with the knowledge that only
2436 /// the bits specified by DemandedBits are used in the elements specified by
2437 /// DemandedElts.
2438 /// TODO: really we should be making this into the DAG equivalent of
2439 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2440 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2441                                       const APInt &DemandedElts) {
2442   switch (V.getOpcode()) {
2443   default:
2444     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2445                                                 *this, 0);
2446   case ISD::Constant: {
2447     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2448     APInt NewVal = CVal & DemandedBits;
2449     if (NewVal != CVal)
2450       return getConstant(NewVal, SDLoc(V), V.getValueType());
2451     break;
2452   }
2453   case ISD::SRL:
2454     // Only look at single-use SRLs.
2455     if (!V.getNode()->hasOneUse())
2456       break;
2457     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2458       // See if we can recursively simplify the LHS.
2459       unsigned Amt = RHSC->getZExtValue();
2460 
2461       // Watch out for shift count overflow though.
2462       if (Amt >= DemandedBits.getBitWidth())
2463         break;
2464       APInt SrcDemandedBits = DemandedBits << Amt;
2465       if (SDValue SimplifyLHS =
2466               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2467         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2468                        V.getOperand(1));
2469     }
2470     break;
2471   }
2472   return SDValue();
2473 }
2474 
2475 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2476 /// use this predicate to simplify operations downstream.
2477 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2478   unsigned BitWidth = Op.getScalarValueSizeInBits();
2479   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2480 }
2481 
2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2483 /// this predicate to simplify operations downstream.  Mask is known to be zero
2484 /// for bits that V cannot have.
2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2486                                      unsigned Depth) const {
2487   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2488 }
2489 
2490 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2491 /// DemandedElts.  We use this predicate to simplify operations downstream.
2492 /// Mask is known to be zero for bits that V cannot have.
2493 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2494                                      const APInt &DemandedElts,
2495                                      unsigned Depth) const {
2496   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2497 }
2498 
2499 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2500 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2501                                         unsigned Depth) const {
2502   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2503 }
2504 
2505 /// isSplatValue - Return true if the vector V has the same value
2506 /// across all DemandedElts. For scalable vectors it does not make
2507 /// sense to specify which elements are demanded or undefined, therefore
2508 /// they are simply ignored.
2509 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2510                                 APInt &UndefElts, unsigned Depth) {
2511   EVT VT = V.getValueType();
2512   assert(VT.isVector() && "Vector type expected");
2513 
2514   if (!VT.isScalableVector() && !DemandedElts)
2515     return false; // No demanded elts, better to assume we don't know anything.
2516 
2517   if (Depth >= MaxRecursionDepth)
2518     return false; // Limit search depth.
2519 
2520   // Deal with some common cases here that work for both fixed and scalable
2521   // vector types.
2522   switch (V.getOpcode()) {
2523   case ISD::SPLAT_VECTOR:
2524     UndefElts = V.getOperand(0).isUndef()
2525                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2526                     : APInt(DemandedElts.getBitWidth(), 0);
2527     return true;
2528   case ISD::ADD:
2529   case ISD::SUB:
2530   case ISD::AND:
2531   case ISD::XOR:
2532   case ISD::OR: {
2533     APInt UndefLHS, UndefRHS;
2534     SDValue LHS = V.getOperand(0);
2535     SDValue RHS = V.getOperand(1);
2536     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2537         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2538       UndefElts = UndefLHS | UndefRHS;
2539       return true;
2540     }
2541     return false;
2542   }
2543   case ISD::ABS:
2544   case ISD::TRUNCATE:
2545   case ISD::SIGN_EXTEND:
2546   case ISD::ZERO_EXTEND:
2547     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2548   }
2549 
2550   // We don't support other cases than those above for scalable vectors at
2551   // the moment.
2552   if (VT.isScalableVector())
2553     return false;
2554 
2555   unsigned NumElts = VT.getVectorNumElements();
2556   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2557   UndefElts = APInt::getZero(NumElts);
2558 
2559   switch (V.getOpcode()) {
2560   case ISD::BUILD_VECTOR: {
2561     SDValue Scl;
2562     for (unsigned i = 0; i != NumElts; ++i) {
2563       SDValue Op = V.getOperand(i);
2564       if (Op.isUndef()) {
2565         UndefElts.setBit(i);
2566         continue;
2567       }
2568       if (!DemandedElts[i])
2569         continue;
2570       if (Scl && Scl != Op)
2571         return false;
2572       Scl = Op;
2573     }
2574     return true;
2575   }
2576   case ISD::VECTOR_SHUFFLE: {
2577     // Check if this is a shuffle node doing a splat.
2578     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2579     int SplatIndex = -1;
2580     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2581     for (int i = 0; i != (int)NumElts; ++i) {
2582       int M = Mask[i];
2583       if (M < 0) {
2584         UndefElts.setBit(i);
2585         continue;
2586       }
2587       if (!DemandedElts[i])
2588         continue;
2589       if (0 <= SplatIndex && SplatIndex != M)
2590         return false;
2591       SplatIndex = M;
2592     }
2593     return true;
2594   }
2595   case ISD::EXTRACT_SUBVECTOR: {
2596     // Offset the demanded elts by the subvector index.
2597     SDValue Src = V.getOperand(0);
2598     // We don't support scalable vectors at the moment.
2599     if (Src.getValueType().isScalableVector())
2600       return false;
2601     uint64_t Idx = V.getConstantOperandVal(1);
2602     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2603     APInt UndefSrcElts;
2604     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2605     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2606       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2607       return true;
2608     }
2609     break;
2610   }
2611   }
2612 
2613   return false;
2614 }
2615 
2616 /// Helper wrapper to main isSplatValue function.
2617 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2618   EVT VT = V.getValueType();
2619   assert(VT.isVector() && "Vector type expected");
2620 
2621   APInt UndefElts;
2622   APInt DemandedElts;
2623 
2624   // For now we don't support this with scalable vectors.
2625   if (!VT.isScalableVector())
2626     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2627   return isSplatValue(V, DemandedElts, UndefElts) &&
2628          (AllowUndefs || !UndefElts);
2629 }
2630 
2631 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2632   V = peekThroughExtractSubvectors(V);
2633 
2634   EVT VT = V.getValueType();
2635   unsigned Opcode = V.getOpcode();
2636   switch (Opcode) {
2637   default: {
2638     APInt UndefElts;
2639     APInt DemandedElts;
2640 
2641     if (!VT.isScalableVector())
2642       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2643 
2644     if (isSplatValue(V, DemandedElts, UndefElts)) {
2645       if (VT.isScalableVector()) {
2646         // DemandedElts and UndefElts are ignored for scalable vectors, since
2647         // the only supported cases are SPLAT_VECTOR nodes.
2648         SplatIdx = 0;
2649       } else {
2650         // Handle case where all demanded elements are UNDEF.
2651         if (DemandedElts.isSubsetOf(UndefElts)) {
2652           SplatIdx = 0;
2653           return getUNDEF(VT);
2654         }
2655         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2656       }
2657       return V;
2658     }
2659     break;
2660   }
2661   case ISD::SPLAT_VECTOR:
2662     SplatIdx = 0;
2663     return V;
2664   case ISD::VECTOR_SHUFFLE: {
2665     if (VT.isScalableVector())
2666       return SDValue();
2667 
2668     // Check if this is a shuffle node doing a splat.
2669     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2670     // getTargetVShiftNode currently struggles without the splat source.
2671     auto *SVN = cast<ShuffleVectorSDNode>(V);
2672     if (!SVN->isSplat())
2673       break;
2674     int Idx = SVN->getSplatIndex();
2675     int NumElts = V.getValueType().getVectorNumElements();
2676     SplatIdx = Idx % NumElts;
2677     return V.getOperand(Idx / NumElts);
2678   }
2679   }
2680 
2681   return SDValue();
2682 }
2683 
2684 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2685   int SplatIdx;
2686   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2687     EVT SVT = SrcVector.getValueType().getScalarType();
2688     EVT LegalSVT = SVT;
2689     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2690       if (!SVT.isInteger())
2691         return SDValue();
2692       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2693       if (LegalSVT.bitsLT(SVT))
2694         return SDValue();
2695     }
2696     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2697                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2698   }
2699   return SDValue();
2700 }
2701 
2702 const APInt *
2703 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2704                                           const APInt &DemandedElts) const {
2705   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2706           V.getOpcode() == ISD::SRA) &&
2707          "Unknown shift node");
2708   unsigned BitWidth = V.getScalarValueSizeInBits();
2709   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2710     // Shifting more than the bitwidth is not valid.
2711     const APInt &ShAmt = SA->getAPIntValue();
2712     if (ShAmt.ult(BitWidth))
2713       return &ShAmt;
2714   }
2715   return nullptr;
2716 }
2717 
2718 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2719     SDValue V, const APInt &DemandedElts) const {
2720   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2721           V.getOpcode() == ISD::SRA) &&
2722          "Unknown shift node");
2723   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2724     return ValidAmt;
2725   unsigned BitWidth = V.getScalarValueSizeInBits();
2726   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2727   if (!BV)
2728     return nullptr;
2729   const APInt *MinShAmt = nullptr;
2730   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2731     if (!DemandedElts[i])
2732       continue;
2733     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2734     if (!SA)
2735       return nullptr;
2736     // Shifting more than the bitwidth is not valid.
2737     const APInt &ShAmt = SA->getAPIntValue();
2738     if (ShAmt.uge(BitWidth))
2739       return nullptr;
2740     if (MinShAmt && MinShAmt->ule(ShAmt))
2741       continue;
2742     MinShAmt = &ShAmt;
2743   }
2744   return MinShAmt;
2745 }
2746 
2747 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2748     SDValue V, const APInt &DemandedElts) const {
2749   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2750           V.getOpcode() == ISD::SRA) &&
2751          "Unknown shift node");
2752   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2753     return ValidAmt;
2754   unsigned BitWidth = V.getScalarValueSizeInBits();
2755   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2756   if (!BV)
2757     return nullptr;
2758   const APInt *MaxShAmt = nullptr;
2759   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2760     if (!DemandedElts[i])
2761       continue;
2762     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2763     if (!SA)
2764       return nullptr;
2765     // Shifting more than the bitwidth is not valid.
2766     const APInt &ShAmt = SA->getAPIntValue();
2767     if (ShAmt.uge(BitWidth))
2768       return nullptr;
2769     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2770       continue;
2771     MaxShAmt = &ShAmt;
2772   }
2773   return MaxShAmt;
2774 }
2775 
2776 /// Determine which bits of Op are known to be either zero or one and return
2777 /// them in Known. For vectors, the known bits are those that are shared by
2778 /// every vector element.
2779 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2780   EVT VT = Op.getValueType();
2781 
2782   // TOOD: Until we have a plan for how to represent demanded elements for
2783   // scalable vectors, we can just bail out for now.
2784   if (Op.getValueType().isScalableVector()) {
2785     unsigned BitWidth = Op.getScalarValueSizeInBits();
2786     return KnownBits(BitWidth);
2787   }
2788 
2789   APInt DemandedElts = VT.isVector()
2790                            ? APInt::getAllOnes(VT.getVectorNumElements())
2791                            : APInt(1, 1);
2792   return computeKnownBits(Op, DemandedElts, Depth);
2793 }
2794 
2795 /// Determine which bits of Op are known to be either zero or one and return
2796 /// them in Known. The DemandedElts argument allows us to only collect the known
2797 /// bits that are shared by the requested vector elements.
2798 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2799                                          unsigned Depth) const {
2800   unsigned BitWidth = Op.getScalarValueSizeInBits();
2801 
2802   KnownBits Known(BitWidth);   // Don't know anything.
2803 
2804   // TOOD: Until we have a plan for how to represent demanded elements for
2805   // scalable vectors, we can just bail out for now.
2806   if (Op.getValueType().isScalableVector())
2807     return Known;
2808 
2809   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2810     // We know all of the bits for a constant!
2811     return KnownBits::makeConstant(C->getAPIntValue());
2812   }
2813   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2814     // We know all of the bits for a constant fp!
2815     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2816   }
2817 
2818   if (Depth >= MaxRecursionDepth)
2819     return Known;  // Limit search depth.
2820 
2821   KnownBits Known2;
2822   unsigned NumElts = DemandedElts.getBitWidth();
2823   assert((!Op.getValueType().isVector() ||
2824           NumElts == Op.getValueType().getVectorNumElements()) &&
2825          "Unexpected vector size");
2826 
2827   if (!DemandedElts)
2828     return Known;  // No demanded elts, better to assume we don't know anything.
2829 
2830   unsigned Opcode = Op.getOpcode();
2831   switch (Opcode) {
2832   case ISD::BUILD_VECTOR:
2833     // Collect the known bits that are shared by every demanded vector element.
2834     Known.Zero.setAllBits(); Known.One.setAllBits();
2835     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2836       if (!DemandedElts[i])
2837         continue;
2838 
2839       SDValue SrcOp = Op.getOperand(i);
2840       Known2 = computeKnownBits(SrcOp, Depth + 1);
2841 
2842       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2843       if (SrcOp.getValueSizeInBits() != BitWidth) {
2844         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2845                "Expected BUILD_VECTOR implicit truncation");
2846         Known2 = Known2.trunc(BitWidth);
2847       }
2848 
2849       // Known bits are the values that are shared by every demanded element.
2850       Known = KnownBits::commonBits(Known, Known2);
2851 
2852       // If we don't know any bits, early out.
2853       if (Known.isUnknown())
2854         break;
2855     }
2856     break;
2857   case ISD::VECTOR_SHUFFLE: {
2858     // Collect the known bits that are shared by every vector element referenced
2859     // by the shuffle.
2860     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2861     Known.Zero.setAllBits(); Known.One.setAllBits();
2862     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2863     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2864     for (unsigned i = 0; i != NumElts; ++i) {
2865       if (!DemandedElts[i])
2866         continue;
2867 
2868       int M = SVN->getMaskElt(i);
2869       if (M < 0) {
2870         // For UNDEF elements, we don't know anything about the common state of
2871         // the shuffle result.
2872         Known.resetAll();
2873         DemandedLHS.clearAllBits();
2874         DemandedRHS.clearAllBits();
2875         break;
2876       }
2877 
2878       if ((unsigned)M < NumElts)
2879         DemandedLHS.setBit((unsigned)M % NumElts);
2880       else
2881         DemandedRHS.setBit((unsigned)M % NumElts);
2882     }
2883     // Known bits are the values that are shared by every demanded element.
2884     if (!!DemandedLHS) {
2885       SDValue LHS = Op.getOperand(0);
2886       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2887       Known = KnownBits::commonBits(Known, Known2);
2888     }
2889     // If we don't know any bits, early out.
2890     if (Known.isUnknown())
2891       break;
2892     if (!!DemandedRHS) {
2893       SDValue RHS = Op.getOperand(1);
2894       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2895       Known = KnownBits::commonBits(Known, Known2);
2896     }
2897     break;
2898   }
2899   case ISD::CONCAT_VECTORS: {
2900     // Split DemandedElts and test each of the demanded subvectors.
2901     Known.Zero.setAllBits(); Known.One.setAllBits();
2902     EVT SubVectorVT = Op.getOperand(0).getValueType();
2903     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2904     unsigned NumSubVectors = Op.getNumOperands();
2905     for (unsigned i = 0; i != NumSubVectors; ++i) {
2906       APInt DemandedSub =
2907           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2908       if (!!DemandedSub) {
2909         SDValue Sub = Op.getOperand(i);
2910         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2911         Known = KnownBits::commonBits(Known, Known2);
2912       }
2913       // If we don't know any bits, early out.
2914       if (Known.isUnknown())
2915         break;
2916     }
2917     break;
2918   }
2919   case ISD::INSERT_SUBVECTOR: {
2920     // Demand any elements from the subvector and the remainder from the src its
2921     // inserted into.
2922     SDValue Src = Op.getOperand(0);
2923     SDValue Sub = Op.getOperand(1);
2924     uint64_t Idx = Op.getConstantOperandVal(2);
2925     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2926     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2927     APInt DemandedSrcElts = DemandedElts;
2928     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2929 
2930     Known.One.setAllBits();
2931     Known.Zero.setAllBits();
2932     if (!!DemandedSubElts) {
2933       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2934       if (Known.isUnknown())
2935         break; // early-out.
2936     }
2937     if (!!DemandedSrcElts) {
2938       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2939       Known = KnownBits::commonBits(Known, Known2);
2940     }
2941     break;
2942   }
2943   case ISD::EXTRACT_SUBVECTOR: {
2944     // Offset the demanded elts by the subvector index.
2945     SDValue Src = Op.getOperand(0);
2946     // Bail until we can represent demanded elements for scalable vectors.
2947     if (Src.getValueType().isScalableVector())
2948       break;
2949     uint64_t Idx = Op.getConstantOperandVal(1);
2950     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2951     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2952     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2953     break;
2954   }
2955   case ISD::SCALAR_TO_VECTOR: {
2956     // We know about scalar_to_vector as much as we know about it source,
2957     // which becomes the first element of otherwise unknown vector.
2958     if (DemandedElts != 1)
2959       break;
2960 
2961     SDValue N0 = Op.getOperand(0);
2962     Known = computeKnownBits(N0, Depth + 1);
2963     if (N0.getValueSizeInBits() != BitWidth)
2964       Known = Known.trunc(BitWidth);
2965 
2966     break;
2967   }
2968   case ISD::BITCAST: {
2969     SDValue N0 = Op.getOperand(0);
2970     EVT SubVT = N0.getValueType();
2971     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2972 
2973     // Ignore bitcasts from unsupported types.
2974     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2975       break;
2976 
2977     // Fast handling of 'identity' bitcasts.
2978     if (BitWidth == SubBitWidth) {
2979       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2980       break;
2981     }
2982 
2983     bool IsLE = getDataLayout().isLittleEndian();
2984 
2985     // Bitcast 'small element' vector to 'large element' scalar/vector.
2986     if ((BitWidth % SubBitWidth) == 0) {
2987       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2988 
2989       // Collect known bits for the (larger) output by collecting the known
2990       // bits from each set of sub elements and shift these into place.
2991       // We need to separately call computeKnownBits for each set of
2992       // sub elements as the knownbits for each is likely to be different.
2993       unsigned SubScale = BitWidth / SubBitWidth;
2994       APInt SubDemandedElts(NumElts * SubScale, 0);
2995       for (unsigned i = 0; i != NumElts; ++i)
2996         if (DemandedElts[i])
2997           SubDemandedElts.setBit(i * SubScale);
2998 
2999       for (unsigned i = 0; i != SubScale; ++i) {
3000         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3001                          Depth + 1);
3002         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3003         Known.insertBits(Known2, SubBitWidth * Shifts);
3004       }
3005     }
3006 
3007     // Bitcast 'large element' scalar/vector to 'small element' vector.
3008     if ((SubBitWidth % BitWidth) == 0) {
3009       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3010 
3011       // Collect known bits for the (smaller) output by collecting the known
3012       // bits from the overlapping larger input elements and extracting the
3013       // sub sections we actually care about.
3014       unsigned SubScale = SubBitWidth / BitWidth;
3015       APInt SubDemandedElts =
3016           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3017       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3018 
3019       Known.Zero.setAllBits(); Known.One.setAllBits();
3020       for (unsigned i = 0; i != NumElts; ++i)
3021         if (DemandedElts[i]) {
3022           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3023           unsigned Offset = (Shifts % SubScale) * BitWidth;
3024           Known = KnownBits::commonBits(Known,
3025                                         Known2.extractBits(BitWidth, Offset));
3026           // If we don't know any bits, early out.
3027           if (Known.isUnknown())
3028             break;
3029         }
3030     }
3031     break;
3032   }
3033   case ISD::AND:
3034     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3035     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3036 
3037     Known &= Known2;
3038     break;
3039   case ISD::OR:
3040     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3042 
3043     Known |= Known2;
3044     break;
3045   case ISD::XOR:
3046     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3047     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3048 
3049     Known ^= Known2;
3050     break;
3051   case ISD::MUL: {
3052     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3053     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3054     Known = KnownBits::mul(Known, Known2);
3055     break;
3056   }
3057   case ISD::MULHU: {
3058     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3059     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3060     Known = KnownBits::mulhu(Known, Known2);
3061     break;
3062   }
3063   case ISD::MULHS: {
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066     Known = KnownBits::mulhs(Known, Known2);
3067     break;
3068   }
3069   case ISD::UMUL_LOHI: {
3070     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3071     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3072     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3073     if (Op.getResNo() == 0)
3074       Known = KnownBits::mul(Known, Known2);
3075     else
3076       Known = KnownBits::mulhu(Known, Known2);
3077     break;
3078   }
3079   case ISD::SMUL_LOHI: {
3080     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3081     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3082     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     if (Op.getResNo() == 0)
3084       Known = KnownBits::mul(Known, Known2);
3085     else
3086       Known = KnownBits::mulhs(Known, Known2);
3087     break;
3088   }
3089   case ISD::UDIV: {
3090     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3092     Known = KnownBits::udiv(Known, Known2);
3093     break;
3094   }
3095   case ISD::SELECT:
3096   case ISD::VSELECT:
3097     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3098     // If we don't know any bits, early out.
3099     if (Known.isUnknown())
3100       break;
3101     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3102 
3103     // Only known if known in both the LHS and RHS.
3104     Known = KnownBits::commonBits(Known, Known2);
3105     break;
3106   case ISD::SELECT_CC:
3107     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3108     // If we don't know any bits, early out.
3109     if (Known.isUnknown())
3110       break;
3111     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3112 
3113     // Only known if known in both the LHS and RHS.
3114     Known = KnownBits::commonBits(Known, Known2);
3115     break;
3116   case ISD::SMULO:
3117   case ISD::UMULO:
3118     if (Op.getResNo() != 1)
3119       break;
3120     // The boolean result conforms to getBooleanContents.
3121     // If we know the result of a setcc has the top bits zero, use this info.
3122     // We know that we have an integer-based boolean since these operations
3123     // are only available for integer.
3124     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3125             TargetLowering::ZeroOrOneBooleanContent &&
3126         BitWidth > 1)
3127       Known.Zero.setBitsFrom(1);
3128     break;
3129   case ISD::SETCC:
3130   case ISD::STRICT_FSETCC:
3131   case ISD::STRICT_FSETCCS: {
3132     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3133     // If we know the result of a setcc has the top bits zero, use this info.
3134     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3135             TargetLowering::ZeroOrOneBooleanContent &&
3136         BitWidth > 1)
3137       Known.Zero.setBitsFrom(1);
3138     break;
3139   }
3140   case ISD::SHL:
3141     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3143     Known = KnownBits::shl(Known, Known2);
3144 
3145     // Minimum shift low bits are known zero.
3146     if (const APInt *ShMinAmt =
3147             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3148       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3149     break;
3150   case ISD::SRL:
3151     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3152     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3153     Known = KnownBits::lshr(Known, Known2);
3154 
3155     // Minimum shift high bits are known zero.
3156     if (const APInt *ShMinAmt =
3157             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3158       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3159     break;
3160   case ISD::SRA:
3161     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3162     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3163     Known = KnownBits::ashr(Known, Known2);
3164     // TODO: Add minimum shift high known sign bits.
3165     break;
3166   case ISD::FSHL:
3167   case ISD::FSHR:
3168     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3169       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3170 
3171       // For fshl, 0-shift returns the 1st arg.
3172       // For fshr, 0-shift returns the 2nd arg.
3173       if (Amt == 0) {
3174         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3175                                  DemandedElts, Depth + 1);
3176         break;
3177       }
3178 
3179       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3180       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3181       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3182       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3183       if (Opcode == ISD::FSHL) {
3184         Known.One <<= Amt;
3185         Known.Zero <<= Amt;
3186         Known2.One.lshrInPlace(BitWidth - Amt);
3187         Known2.Zero.lshrInPlace(BitWidth - Amt);
3188       } else {
3189         Known.One <<= BitWidth - Amt;
3190         Known.Zero <<= BitWidth - Amt;
3191         Known2.One.lshrInPlace(Amt);
3192         Known2.Zero.lshrInPlace(Amt);
3193       }
3194       Known.One |= Known2.One;
3195       Known.Zero |= Known2.Zero;
3196     }
3197     break;
3198   case ISD::SIGN_EXTEND_INREG: {
3199     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3200     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3201     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3202     break;
3203   }
3204   case ISD::CTTZ:
3205   case ISD::CTTZ_ZERO_UNDEF: {
3206     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3207     // If we have a known 1, its position is our upper bound.
3208     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3209     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3210     Known.Zero.setBitsFrom(LowBits);
3211     break;
3212   }
3213   case ISD::CTLZ:
3214   case ISD::CTLZ_ZERO_UNDEF: {
3215     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     // If we have a known 1, its position is our upper bound.
3217     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3218     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3219     Known.Zero.setBitsFrom(LowBits);
3220     break;
3221   }
3222   case ISD::CTPOP: {
3223     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3224     // If we know some of the bits are zero, they can't be one.
3225     unsigned PossibleOnes = Known2.countMaxPopulation();
3226     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3227     break;
3228   }
3229   case ISD::PARITY: {
3230     // Parity returns 0 everywhere but the LSB.
3231     Known.Zero.setBitsFrom(1);
3232     break;
3233   }
3234   case ISD::LOAD: {
3235     LoadSDNode *LD = cast<LoadSDNode>(Op);
3236     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3237     if (ISD::isNON_EXTLoad(LD) && Cst) {
3238       // Determine any common known bits from the loaded constant pool value.
3239       Type *CstTy = Cst->getType();
3240       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3241         // If its a vector splat, then we can (quickly) reuse the scalar path.
3242         // NOTE: We assume all elements match and none are UNDEF.
3243         if (CstTy->isVectorTy()) {
3244           if (const Constant *Splat = Cst->getSplatValue()) {
3245             Cst = Splat;
3246             CstTy = Cst->getType();
3247           }
3248         }
3249         // TODO - do we need to handle different bitwidths?
3250         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3251           // Iterate across all vector elements finding common known bits.
3252           Known.One.setAllBits();
3253           Known.Zero.setAllBits();
3254           for (unsigned i = 0; i != NumElts; ++i) {
3255             if (!DemandedElts[i])
3256               continue;
3257             if (Constant *Elt = Cst->getAggregateElement(i)) {
3258               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3259                 const APInt &Value = CInt->getValue();
3260                 Known.One &= Value;
3261                 Known.Zero &= ~Value;
3262                 continue;
3263               }
3264               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3265                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3266                 Known.One &= Value;
3267                 Known.Zero &= ~Value;
3268                 continue;
3269               }
3270             }
3271             Known.One.clearAllBits();
3272             Known.Zero.clearAllBits();
3273             break;
3274           }
3275         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3276           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3277             Known = KnownBits::makeConstant(CInt->getValue());
3278           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3279             Known =
3280                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3281           }
3282         }
3283       }
3284     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3285       // If this is a ZEXTLoad and we are looking at the loaded value.
3286       EVT VT = LD->getMemoryVT();
3287       unsigned MemBits = VT.getScalarSizeInBits();
3288       Known.Zero.setBitsFrom(MemBits);
3289     } else if (const MDNode *Ranges = LD->getRanges()) {
3290       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3291         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3292     }
3293     break;
3294   }
3295   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3296     EVT InVT = Op.getOperand(0).getValueType();
3297     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3298     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3299     Known = Known.zext(BitWidth);
3300     break;
3301   }
3302   case ISD::ZERO_EXTEND: {
3303     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3304     Known = Known.zext(BitWidth);
3305     break;
3306   }
3307   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3308     EVT InVT = Op.getOperand(0).getValueType();
3309     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3310     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3311     // If the sign bit is known to be zero or one, then sext will extend
3312     // it to the top bits, else it will just zext.
3313     Known = Known.sext(BitWidth);
3314     break;
3315   }
3316   case ISD::SIGN_EXTEND: {
3317     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3318     // If the sign bit is known to be zero or one, then sext will extend
3319     // it to the top bits, else it will just zext.
3320     Known = Known.sext(BitWidth);
3321     break;
3322   }
3323   case ISD::ANY_EXTEND_VECTOR_INREG: {
3324     EVT InVT = Op.getOperand(0).getValueType();
3325     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3326     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3327     Known = Known.anyext(BitWidth);
3328     break;
3329   }
3330   case ISD::ANY_EXTEND: {
3331     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3332     Known = Known.anyext(BitWidth);
3333     break;
3334   }
3335   case ISD::TRUNCATE: {
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known.trunc(BitWidth);
3338     break;
3339   }
3340   case ISD::AssertZext: {
3341     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3342     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3343     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3344     Known.Zero |= (~InMask);
3345     Known.One  &= (~Known.Zero);
3346     break;
3347   }
3348   case ISD::AssertAlign: {
3349     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3350     assert(LogOfAlign != 0);
3351     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3352     // well as clearing one bits.
3353     Known.Zero.setLowBits(LogOfAlign);
3354     Known.One.clearLowBits(LogOfAlign);
3355     break;
3356   }
3357   case ISD::FGETSIGN:
3358     // All bits are zero except the low bit.
3359     Known.Zero.setBitsFrom(1);
3360     break;
3361   case ISD::USUBO:
3362   case ISD::SSUBO:
3363     if (Op.getResNo() == 1) {
3364       // If we know the result of a setcc has the top bits zero, use this info.
3365       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3366               TargetLowering::ZeroOrOneBooleanContent &&
3367           BitWidth > 1)
3368         Known.Zero.setBitsFrom(1);
3369       break;
3370     }
3371     LLVM_FALLTHROUGH;
3372   case ISD::SUB:
3373   case ISD::SUBC: {
3374     assert(Op.getResNo() == 0 &&
3375            "We only compute knownbits for the difference here.");
3376 
3377     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3379     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3380                                         Known, Known2);
3381     break;
3382   }
3383   case ISD::UADDO:
3384   case ISD::SADDO:
3385   case ISD::ADDCARRY:
3386     if (Op.getResNo() == 1) {
3387       // If we know the result of a setcc has the top bits zero, use this info.
3388       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3389               TargetLowering::ZeroOrOneBooleanContent &&
3390           BitWidth > 1)
3391         Known.Zero.setBitsFrom(1);
3392       break;
3393     }
3394     LLVM_FALLTHROUGH;
3395   case ISD::ADD:
3396   case ISD::ADDC:
3397   case ISD::ADDE: {
3398     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3399 
3400     // With ADDE and ADDCARRY, a carry bit may be added in.
3401     KnownBits Carry(1);
3402     if (Opcode == ISD::ADDE)
3403       // Can't track carry from glue, set carry to unknown.
3404       Carry.resetAll();
3405     else if (Opcode == ISD::ADDCARRY)
3406       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3407       // the trouble (how often will we find a known carry bit). And I haven't
3408       // tested this very much yet, but something like this might work:
3409       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3410       //   Carry = Carry.zextOrTrunc(1, false);
3411       Carry.resetAll();
3412     else
3413       Carry.setAllZero();
3414 
3415     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3416     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3417     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3418     break;
3419   }
3420   case ISD::SREM: {
3421     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3422     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3423     Known = KnownBits::srem(Known, Known2);
3424     break;
3425   }
3426   case ISD::UREM: {
3427     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3428     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3429     Known = KnownBits::urem(Known, Known2);
3430     break;
3431   }
3432   case ISD::EXTRACT_ELEMENT: {
3433     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3434     const unsigned Index = Op.getConstantOperandVal(1);
3435     const unsigned EltBitWidth = Op.getValueSizeInBits();
3436 
3437     // Remove low part of known bits mask
3438     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3439     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3440 
3441     // Remove high part of known bit mask
3442     Known = Known.trunc(EltBitWidth);
3443     break;
3444   }
3445   case ISD::EXTRACT_VECTOR_ELT: {
3446     SDValue InVec = Op.getOperand(0);
3447     SDValue EltNo = Op.getOperand(1);
3448     EVT VecVT = InVec.getValueType();
3449     // computeKnownBits not yet implemented for scalable vectors.
3450     if (VecVT.isScalableVector())
3451       break;
3452     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3453     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3454 
3455     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3456     // anything about the extended bits.
3457     if (BitWidth > EltBitWidth)
3458       Known = Known.trunc(EltBitWidth);
3459 
3460     // If we know the element index, just demand that vector element, else for
3461     // an unknown element index, ignore DemandedElts and demand them all.
3462     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3463     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3464     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3465       DemandedSrcElts =
3466           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3467 
3468     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3469     if (BitWidth > EltBitWidth)
3470       Known = Known.anyext(BitWidth);
3471     break;
3472   }
3473   case ISD::INSERT_VECTOR_ELT: {
3474     // If we know the element index, split the demand between the
3475     // source vector and the inserted element, otherwise assume we need
3476     // the original demanded vector elements and the value.
3477     SDValue InVec = Op.getOperand(0);
3478     SDValue InVal = Op.getOperand(1);
3479     SDValue EltNo = Op.getOperand(2);
3480     bool DemandedVal = true;
3481     APInt DemandedVecElts = DemandedElts;
3482     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3483     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3484       unsigned EltIdx = CEltNo->getZExtValue();
3485       DemandedVal = !!DemandedElts[EltIdx];
3486       DemandedVecElts.clearBit(EltIdx);
3487     }
3488     Known.One.setAllBits();
3489     Known.Zero.setAllBits();
3490     if (DemandedVal) {
3491       Known2 = computeKnownBits(InVal, Depth + 1);
3492       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3493     }
3494     if (!!DemandedVecElts) {
3495       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3496       Known = KnownBits::commonBits(Known, Known2);
3497     }
3498     break;
3499   }
3500   case ISD::BITREVERSE: {
3501     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3502     Known = Known2.reverseBits();
3503     break;
3504   }
3505   case ISD::BSWAP: {
3506     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3507     Known = Known2.byteSwap();
3508     break;
3509   }
3510   case ISD::ABS: {
3511     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3512     Known = Known2.abs();
3513     break;
3514   }
3515   case ISD::USUBSAT: {
3516     // The result of usubsat will never be larger than the LHS.
3517     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3518     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3519     break;
3520   }
3521   case ISD::UMIN: {
3522     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3523     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3524     Known = KnownBits::umin(Known, Known2);
3525     break;
3526   }
3527   case ISD::UMAX: {
3528     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3529     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3530     Known = KnownBits::umax(Known, Known2);
3531     break;
3532   }
3533   case ISD::SMIN:
3534   case ISD::SMAX: {
3535     // If we have a clamp pattern, we know that the number of sign bits will be
3536     // the minimum of the clamp min/max range.
3537     bool IsMax = (Opcode == ISD::SMAX);
3538     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3539     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3540       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3541         CstHigh =
3542             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3543     if (CstLow && CstHigh) {
3544       if (!IsMax)
3545         std::swap(CstLow, CstHigh);
3546 
3547       const APInt &ValueLow = CstLow->getAPIntValue();
3548       const APInt &ValueHigh = CstHigh->getAPIntValue();
3549       if (ValueLow.sle(ValueHigh)) {
3550         unsigned LowSignBits = ValueLow.getNumSignBits();
3551         unsigned HighSignBits = ValueHigh.getNumSignBits();
3552         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3553         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3554           Known.One.setHighBits(MinSignBits);
3555           break;
3556         }
3557         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3558           Known.Zero.setHighBits(MinSignBits);
3559           break;
3560         }
3561       }
3562     }
3563 
3564     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3565     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3566     if (IsMax)
3567       Known = KnownBits::smax(Known, Known2);
3568     else
3569       Known = KnownBits::smin(Known, Known2);
3570     break;
3571   }
3572   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3573     if (Op.getResNo() == 1) {
3574       // The boolean result conforms to getBooleanContents.
3575       // If we know the result of a setcc has the top bits zero, use this info.
3576       // We know that we have an integer-based boolean since these operations
3577       // are only available for integer.
3578       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3579               TargetLowering::ZeroOrOneBooleanContent &&
3580           BitWidth > 1)
3581         Known.Zero.setBitsFrom(1);
3582       break;
3583     }
3584     LLVM_FALLTHROUGH;
3585   case ISD::ATOMIC_CMP_SWAP:
3586   case ISD::ATOMIC_SWAP:
3587   case ISD::ATOMIC_LOAD_ADD:
3588   case ISD::ATOMIC_LOAD_SUB:
3589   case ISD::ATOMIC_LOAD_AND:
3590   case ISD::ATOMIC_LOAD_CLR:
3591   case ISD::ATOMIC_LOAD_OR:
3592   case ISD::ATOMIC_LOAD_XOR:
3593   case ISD::ATOMIC_LOAD_NAND:
3594   case ISD::ATOMIC_LOAD_MIN:
3595   case ISD::ATOMIC_LOAD_MAX:
3596   case ISD::ATOMIC_LOAD_UMIN:
3597   case ISD::ATOMIC_LOAD_UMAX:
3598   case ISD::ATOMIC_LOAD: {
3599     unsigned MemBits =
3600         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3601     // If we are looking at the loaded value.
3602     if (Op.getResNo() == 0) {
3603       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3604         Known.Zero.setBitsFrom(MemBits);
3605     }
3606     break;
3607   }
3608   case ISD::FrameIndex:
3609   case ISD::TargetFrameIndex:
3610     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3611                                        Known, getMachineFunction());
3612     break;
3613 
3614   default:
3615     if (Opcode < ISD::BUILTIN_OP_END)
3616       break;
3617     LLVM_FALLTHROUGH;
3618   case ISD::INTRINSIC_WO_CHAIN:
3619   case ISD::INTRINSIC_W_CHAIN:
3620   case ISD::INTRINSIC_VOID:
3621     // Allow the target to implement this method for its nodes.
3622     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3623     break;
3624   }
3625 
3626   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3627   return Known;
3628 }
3629 
3630 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3631                                                              SDValue N1) const {
3632   // X + 0 never overflow
3633   if (isNullConstant(N1))
3634     return OFK_Never;
3635 
3636   KnownBits N1Known = computeKnownBits(N1);
3637   if (N1Known.Zero.getBoolValue()) {
3638     KnownBits N0Known = computeKnownBits(N0);
3639 
3640     bool overflow;
3641     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3642     if (!overflow)
3643       return OFK_Never;
3644   }
3645 
3646   // mulhi + 1 never overflow
3647   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3648       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3649     return OFK_Never;
3650 
3651   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3652     KnownBits N0Known = computeKnownBits(N0);
3653 
3654     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3655       return OFK_Never;
3656   }
3657 
3658   return OFK_Sometime;
3659 }
3660 
3661 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3662   EVT OpVT = Val.getValueType();
3663   unsigned BitWidth = OpVT.getScalarSizeInBits();
3664 
3665   // Is the constant a known power of 2?
3666   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3667     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3668 
3669   // A left-shift of a constant one will have exactly one bit set because
3670   // shifting the bit off the end is undefined.
3671   if (Val.getOpcode() == ISD::SHL) {
3672     auto *C = isConstOrConstSplat(Val.getOperand(0));
3673     if (C && C->getAPIntValue() == 1)
3674       return true;
3675   }
3676 
3677   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3678   // one bit set.
3679   if (Val.getOpcode() == ISD::SRL) {
3680     auto *C = isConstOrConstSplat(Val.getOperand(0));
3681     if (C && C->getAPIntValue().isSignMask())
3682       return true;
3683   }
3684 
3685   // Are all operands of a build vector constant powers of two?
3686   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3687     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3688           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3689             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3690           return false;
3691         }))
3692       return true;
3693 
3694   // Is the operand of a splat vector a constant power of two?
3695   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3696     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3697       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3698         return true;
3699 
3700   // More could be done here, though the above checks are enough
3701   // to handle some common cases.
3702 
3703   // Fall back to computeKnownBits to catch other known cases.
3704   KnownBits Known = computeKnownBits(Val);
3705   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3706 }
3707 
3708 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3709   EVT VT = Op.getValueType();
3710 
3711   // TODO: Assume we don't know anything for now.
3712   if (VT.isScalableVector())
3713     return 1;
3714 
3715   APInt DemandedElts = VT.isVector()
3716                            ? APInt::getAllOnes(VT.getVectorNumElements())
3717                            : APInt(1, 1);
3718   return ComputeNumSignBits(Op, DemandedElts, Depth);
3719 }
3720 
3721 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3722                                           unsigned Depth) const {
3723   EVT VT = Op.getValueType();
3724   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3725   unsigned VTBits = VT.getScalarSizeInBits();
3726   unsigned NumElts = DemandedElts.getBitWidth();
3727   unsigned Tmp, Tmp2;
3728   unsigned FirstAnswer = 1;
3729 
3730   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3731     const APInt &Val = C->getAPIntValue();
3732     return Val.getNumSignBits();
3733   }
3734 
3735   if (Depth >= MaxRecursionDepth)
3736     return 1;  // Limit search depth.
3737 
3738   if (!DemandedElts || VT.isScalableVector())
3739     return 1;  // No demanded elts, better to assume we don't know anything.
3740 
3741   unsigned Opcode = Op.getOpcode();
3742   switch (Opcode) {
3743   default: break;
3744   case ISD::AssertSext:
3745     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3746     return VTBits-Tmp+1;
3747   case ISD::AssertZext:
3748     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3749     return VTBits-Tmp;
3750 
3751   case ISD::BUILD_VECTOR:
3752     Tmp = VTBits;
3753     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3754       if (!DemandedElts[i])
3755         continue;
3756 
3757       SDValue SrcOp = Op.getOperand(i);
3758       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3759 
3760       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3761       if (SrcOp.getValueSizeInBits() != VTBits) {
3762         assert(SrcOp.getValueSizeInBits() > VTBits &&
3763                "Expected BUILD_VECTOR implicit truncation");
3764         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3765         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3766       }
3767       Tmp = std::min(Tmp, Tmp2);
3768     }
3769     return Tmp;
3770 
3771   case ISD::VECTOR_SHUFFLE: {
3772     // Collect the minimum number of sign bits that are shared by every vector
3773     // element referenced by the shuffle.
3774     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3775     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3776     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3777     for (unsigned i = 0; i != NumElts; ++i) {
3778       int M = SVN->getMaskElt(i);
3779       if (!DemandedElts[i])
3780         continue;
3781       // For UNDEF elements, we don't know anything about the common state of
3782       // the shuffle result.
3783       if (M < 0)
3784         return 1;
3785       if ((unsigned)M < NumElts)
3786         DemandedLHS.setBit((unsigned)M % NumElts);
3787       else
3788         DemandedRHS.setBit((unsigned)M % NumElts);
3789     }
3790     Tmp = std::numeric_limits<unsigned>::max();
3791     if (!!DemandedLHS)
3792       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3793     if (!!DemandedRHS) {
3794       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3795       Tmp = std::min(Tmp, Tmp2);
3796     }
3797     // If we don't know anything, early out and try computeKnownBits fall-back.
3798     if (Tmp == 1)
3799       break;
3800     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3801     return Tmp;
3802   }
3803 
3804   case ISD::BITCAST: {
3805     SDValue N0 = Op.getOperand(0);
3806     EVT SrcVT = N0.getValueType();
3807     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3808 
3809     // Ignore bitcasts from unsupported types..
3810     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3811       break;
3812 
3813     // Fast handling of 'identity' bitcasts.
3814     if (VTBits == SrcBits)
3815       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3816 
3817     bool IsLE = getDataLayout().isLittleEndian();
3818 
3819     // Bitcast 'large element' scalar/vector to 'small element' vector.
3820     if ((SrcBits % VTBits) == 0) {
3821       assert(VT.isVector() && "Expected bitcast to vector");
3822 
3823       unsigned Scale = SrcBits / VTBits;
3824       APInt SrcDemandedElts =
3825           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3826 
3827       // Fast case - sign splat can be simply split across the small elements.
3828       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3829       if (Tmp == SrcBits)
3830         return VTBits;
3831 
3832       // Slow case - determine how far the sign extends into each sub-element.
3833       Tmp2 = VTBits;
3834       for (unsigned i = 0; i != NumElts; ++i)
3835         if (DemandedElts[i]) {
3836           unsigned SubOffset = i % Scale;
3837           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3838           SubOffset = SubOffset * VTBits;
3839           if (Tmp <= SubOffset)
3840             return 1;
3841           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3842         }
3843       return Tmp2;
3844     }
3845     break;
3846   }
3847 
3848   case ISD::SIGN_EXTEND:
3849     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3850     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3851   case ISD::SIGN_EXTEND_INREG:
3852     // Max of the input and what this extends.
3853     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3854     Tmp = VTBits-Tmp+1;
3855     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3856     return std::max(Tmp, Tmp2);
3857   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3858     SDValue Src = Op.getOperand(0);
3859     EVT SrcVT = Src.getValueType();
3860     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3861     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3862     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3863   }
3864   case ISD::SRA:
3865     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3866     // SRA X, C -> adds C sign bits.
3867     if (const APInt *ShAmt =
3868             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3869       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3870     return Tmp;
3871   case ISD::SHL:
3872     if (const APInt *ShAmt =
3873             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3874       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3875       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3876       if (ShAmt->ult(Tmp))
3877         return Tmp - ShAmt->getZExtValue();
3878     }
3879     break;
3880   case ISD::AND:
3881   case ISD::OR:
3882   case ISD::XOR:    // NOT is handled here.
3883     // Logical binary ops preserve the number of sign bits at the worst.
3884     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3885     if (Tmp != 1) {
3886       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3887       FirstAnswer = std::min(Tmp, Tmp2);
3888       // We computed what we know about the sign bits as our first
3889       // answer. Now proceed to the generic code that uses
3890       // computeKnownBits, and pick whichever answer is better.
3891     }
3892     break;
3893 
3894   case ISD::SELECT:
3895   case ISD::VSELECT:
3896     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3897     if (Tmp == 1) return 1;  // Early out.
3898     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3899     return std::min(Tmp, Tmp2);
3900   case ISD::SELECT_CC:
3901     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3902     if (Tmp == 1) return 1;  // Early out.
3903     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3904     return std::min(Tmp, Tmp2);
3905 
3906   case ISD::SMIN:
3907   case ISD::SMAX: {
3908     // If we have a clamp pattern, we know that the number of sign bits will be
3909     // the minimum of the clamp min/max range.
3910     bool IsMax = (Opcode == ISD::SMAX);
3911     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3912     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3913       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3914         CstHigh =
3915             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3916     if (CstLow && CstHigh) {
3917       if (!IsMax)
3918         std::swap(CstLow, CstHigh);
3919       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3920         Tmp = CstLow->getAPIntValue().getNumSignBits();
3921         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3922         return std::min(Tmp, Tmp2);
3923       }
3924     }
3925 
3926     // Fallback - just get the minimum number of sign bits of the operands.
3927     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3928     if (Tmp == 1)
3929       return 1;  // Early out.
3930     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3931     return std::min(Tmp, Tmp2);
3932   }
3933   case ISD::UMIN:
3934   case ISD::UMAX:
3935     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3936     if (Tmp == 1)
3937       return 1;  // Early out.
3938     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3939     return std::min(Tmp, Tmp2);
3940   case ISD::SADDO:
3941   case ISD::UADDO:
3942   case ISD::SSUBO:
3943   case ISD::USUBO:
3944   case ISD::SMULO:
3945   case ISD::UMULO:
3946     if (Op.getResNo() != 1)
3947       break;
3948     // The boolean result conforms to getBooleanContents.  Fall through.
3949     // If setcc returns 0/-1, all bits are sign bits.
3950     // We know that we have an integer-based boolean since these operations
3951     // are only available for integer.
3952     if (TLI->getBooleanContents(VT.isVector(), false) ==
3953         TargetLowering::ZeroOrNegativeOneBooleanContent)
3954       return VTBits;
3955     break;
3956   case ISD::SETCC:
3957   case ISD::STRICT_FSETCC:
3958   case ISD::STRICT_FSETCCS: {
3959     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3960     // If setcc returns 0/-1, all bits are sign bits.
3961     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3962         TargetLowering::ZeroOrNegativeOneBooleanContent)
3963       return VTBits;
3964     break;
3965   }
3966   case ISD::ROTL:
3967   case ISD::ROTR:
3968     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3969 
3970     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3971     if (Tmp == VTBits)
3972       return VTBits;
3973 
3974     if (ConstantSDNode *C =
3975             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3976       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3977 
3978       // Handle rotate right by N like a rotate left by 32-N.
3979       if (Opcode == ISD::ROTR)
3980         RotAmt = (VTBits - RotAmt) % VTBits;
3981 
3982       // If we aren't rotating out all of the known-in sign bits, return the
3983       // number that are left.  This handles rotl(sext(x), 1) for example.
3984       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3985     }
3986     break;
3987   case ISD::ADD:
3988   case ISD::ADDC:
3989     // Add can have at most one carry bit.  Thus we know that the output
3990     // is, at worst, one more bit than the inputs.
3991     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3992     if (Tmp == 1) return 1; // Early out.
3993 
3994     // Special case decrementing a value (ADD X, -1):
3995     if (ConstantSDNode *CRHS =
3996             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3997       if (CRHS->isAllOnes()) {
3998         KnownBits Known =
3999             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4000 
4001         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4002         // sign bits set.
4003         if ((Known.Zero | 1).isAllOnes())
4004           return VTBits;
4005 
4006         // If we are subtracting one from a positive number, there is no carry
4007         // out of the result.
4008         if (Known.isNonNegative())
4009           return Tmp;
4010       }
4011 
4012     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4013     if (Tmp2 == 1) return 1; // Early out.
4014     return std::min(Tmp, Tmp2) - 1;
4015   case ISD::SUB:
4016     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4017     if (Tmp2 == 1) return 1; // Early out.
4018 
4019     // Handle NEG.
4020     if (ConstantSDNode *CLHS =
4021             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4022       if (CLHS->isZero()) {
4023         KnownBits Known =
4024             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4025         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4026         // sign bits set.
4027         if ((Known.Zero | 1).isAllOnes())
4028           return VTBits;
4029 
4030         // If the input is known to be positive (the sign bit is known clear),
4031         // the output of the NEG has the same number of sign bits as the input.
4032         if (Known.isNonNegative())
4033           return Tmp2;
4034 
4035         // Otherwise, we treat this like a SUB.
4036       }
4037 
4038     // Sub can have at most one carry bit.  Thus we know that the output
4039     // is, at worst, one more bit than the inputs.
4040     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4041     if (Tmp == 1) return 1; // Early out.
4042     return std::min(Tmp, Tmp2) - 1;
4043   case ISD::MUL: {
4044     // The output of the Mul can be at most twice the valid bits in the inputs.
4045     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4046     if (SignBitsOp0 == 1)
4047       break;
4048     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4049     if (SignBitsOp1 == 1)
4050       break;
4051     unsigned OutValidBits =
4052         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4053     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4054   }
4055   case ISD::SREM:
4056     // The sign bit is the LHS's sign bit, except when the result of the
4057     // remainder is zero. The magnitude of the result should be less than or
4058     // equal to the magnitude of the LHS. Therefore, the result should have
4059     // at least as many sign bits as the left hand side.
4060     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4061   case ISD::TRUNCATE: {
4062     // Check if the sign bits of source go down as far as the truncated value.
4063     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4064     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4065     if (NumSrcSignBits > (NumSrcBits - VTBits))
4066       return NumSrcSignBits - (NumSrcBits - VTBits);
4067     break;
4068   }
4069   case ISD::EXTRACT_ELEMENT: {
4070     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4071     const int BitWidth = Op.getValueSizeInBits();
4072     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4073 
4074     // Get reverse index (starting from 1), Op1 value indexes elements from
4075     // little end. Sign starts at big end.
4076     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4077 
4078     // If the sign portion ends in our element the subtraction gives correct
4079     // result. Otherwise it gives either negative or > bitwidth result
4080     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4081   }
4082   case ISD::INSERT_VECTOR_ELT: {
4083     // If we know the element index, split the demand between the
4084     // source vector and the inserted element, otherwise assume we need
4085     // the original demanded vector elements and the value.
4086     SDValue InVec = Op.getOperand(0);
4087     SDValue InVal = Op.getOperand(1);
4088     SDValue EltNo = Op.getOperand(2);
4089     bool DemandedVal = true;
4090     APInt DemandedVecElts = DemandedElts;
4091     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4092     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4093       unsigned EltIdx = CEltNo->getZExtValue();
4094       DemandedVal = !!DemandedElts[EltIdx];
4095       DemandedVecElts.clearBit(EltIdx);
4096     }
4097     Tmp = std::numeric_limits<unsigned>::max();
4098     if (DemandedVal) {
4099       // TODO - handle implicit truncation of inserted elements.
4100       if (InVal.getScalarValueSizeInBits() != VTBits)
4101         break;
4102       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4103       Tmp = std::min(Tmp, Tmp2);
4104     }
4105     if (!!DemandedVecElts) {
4106       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4107       Tmp = std::min(Tmp, Tmp2);
4108     }
4109     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4110     return Tmp;
4111   }
4112   case ISD::EXTRACT_VECTOR_ELT: {
4113     SDValue InVec = Op.getOperand(0);
4114     SDValue EltNo = Op.getOperand(1);
4115     EVT VecVT = InVec.getValueType();
4116     // ComputeNumSignBits not yet implemented for scalable vectors.
4117     if (VecVT.isScalableVector())
4118       break;
4119     const unsigned BitWidth = Op.getValueSizeInBits();
4120     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4121     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4122 
4123     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4124     // anything about sign bits. But if the sizes match we can derive knowledge
4125     // about sign bits from the vector operand.
4126     if (BitWidth != EltBitWidth)
4127       break;
4128 
4129     // If we know the element index, just demand that vector element, else for
4130     // an unknown element index, ignore DemandedElts and demand them all.
4131     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4132     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4133     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4134       DemandedSrcElts =
4135           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4136 
4137     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4138   }
4139   case ISD::EXTRACT_SUBVECTOR: {
4140     // Offset the demanded elts by the subvector index.
4141     SDValue Src = Op.getOperand(0);
4142     // Bail until we can represent demanded elements for scalable vectors.
4143     if (Src.getValueType().isScalableVector())
4144       break;
4145     uint64_t Idx = Op.getConstantOperandVal(1);
4146     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4147     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4148     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4149   }
4150   case ISD::CONCAT_VECTORS: {
4151     // Determine the minimum number of sign bits across all demanded
4152     // elts of the input vectors. Early out if the result is already 1.
4153     Tmp = std::numeric_limits<unsigned>::max();
4154     EVT SubVectorVT = Op.getOperand(0).getValueType();
4155     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4156     unsigned NumSubVectors = Op.getNumOperands();
4157     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4158       APInt DemandedSub =
4159           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4160       if (!DemandedSub)
4161         continue;
4162       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4163       Tmp = std::min(Tmp, Tmp2);
4164     }
4165     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4166     return Tmp;
4167   }
4168   case ISD::INSERT_SUBVECTOR: {
4169     // Demand any elements from the subvector and the remainder from the src its
4170     // inserted into.
4171     SDValue Src = Op.getOperand(0);
4172     SDValue Sub = Op.getOperand(1);
4173     uint64_t Idx = Op.getConstantOperandVal(2);
4174     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4175     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4176     APInt DemandedSrcElts = DemandedElts;
4177     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4178 
4179     Tmp = std::numeric_limits<unsigned>::max();
4180     if (!!DemandedSubElts) {
4181       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4182       if (Tmp == 1)
4183         return 1; // early-out
4184     }
4185     if (!!DemandedSrcElts) {
4186       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4187       Tmp = std::min(Tmp, Tmp2);
4188     }
4189     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4190     return Tmp;
4191   }
4192   case ISD::ATOMIC_CMP_SWAP:
4193   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4194   case ISD::ATOMIC_SWAP:
4195   case ISD::ATOMIC_LOAD_ADD:
4196   case ISD::ATOMIC_LOAD_SUB:
4197   case ISD::ATOMIC_LOAD_AND:
4198   case ISD::ATOMIC_LOAD_CLR:
4199   case ISD::ATOMIC_LOAD_OR:
4200   case ISD::ATOMIC_LOAD_XOR:
4201   case ISD::ATOMIC_LOAD_NAND:
4202   case ISD::ATOMIC_LOAD_MIN:
4203   case ISD::ATOMIC_LOAD_MAX:
4204   case ISD::ATOMIC_LOAD_UMIN:
4205   case ISD::ATOMIC_LOAD_UMAX:
4206   case ISD::ATOMIC_LOAD: {
4207     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4208     // If we are looking at the loaded value.
4209     if (Op.getResNo() == 0) {
4210       if (Tmp == VTBits)
4211         return 1; // early-out
4212       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4213         return VTBits - Tmp + 1;
4214       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4215         return VTBits - Tmp;
4216     }
4217     break;
4218   }
4219   }
4220 
4221   // If we are looking at the loaded value of the SDNode.
4222   if (Op.getResNo() == 0) {
4223     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4224     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4225       unsigned ExtType = LD->getExtensionType();
4226       switch (ExtType) {
4227       default: break;
4228       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4229         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4230         return VTBits - Tmp + 1;
4231       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4232         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4233         return VTBits - Tmp;
4234       case ISD::NON_EXTLOAD:
4235         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4236           // We only need to handle vectors - computeKnownBits should handle
4237           // scalar cases.
4238           Type *CstTy = Cst->getType();
4239           if (CstTy->isVectorTy() &&
4240               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4241             Tmp = VTBits;
4242             for (unsigned i = 0; i != NumElts; ++i) {
4243               if (!DemandedElts[i])
4244                 continue;
4245               if (Constant *Elt = Cst->getAggregateElement(i)) {
4246                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4247                   const APInt &Value = CInt->getValue();
4248                   Tmp = std::min(Tmp, Value.getNumSignBits());
4249                   continue;
4250                 }
4251                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4252                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4253                   Tmp = std::min(Tmp, Value.getNumSignBits());
4254                   continue;
4255                 }
4256               }
4257               // Unknown type. Conservatively assume no bits match sign bit.
4258               return 1;
4259             }
4260             return Tmp;
4261           }
4262         }
4263         break;
4264       }
4265     }
4266   }
4267 
4268   // Allow the target to implement this method for its nodes.
4269   if (Opcode >= ISD::BUILTIN_OP_END ||
4270       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4271       Opcode == ISD::INTRINSIC_W_CHAIN ||
4272       Opcode == ISD::INTRINSIC_VOID) {
4273     unsigned NumBits =
4274         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4275     if (NumBits > 1)
4276       FirstAnswer = std::max(FirstAnswer, NumBits);
4277   }
4278 
4279   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4280   // use this information.
4281   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4282 
4283   APInt Mask;
4284   if (Known.isNonNegative()) {        // sign bit is 0
4285     Mask = Known.Zero;
4286   } else if (Known.isNegative()) {  // sign bit is 1;
4287     Mask = Known.One;
4288   } else {
4289     // Nothing known.
4290     return FirstAnswer;
4291   }
4292 
4293   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4294   // the number of identical bits in the top of the input value.
4295   Mask <<= Mask.getBitWidth()-VTBits;
4296   return std::max(FirstAnswer, Mask.countLeadingOnes());
4297 }
4298 
4299 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4300                                                     unsigned Depth) const {
4301   // Early out for FREEZE.
4302   if (Op.getOpcode() == ISD::FREEZE)
4303     return true;
4304 
4305   // TODO: Assume we don't know anything for now.
4306   EVT VT = Op.getValueType();
4307   if (VT.isScalableVector())
4308     return false;
4309 
4310   APInt DemandedElts = VT.isVector()
4311                            ? APInt::getAllOnes(VT.getVectorNumElements())
4312                            : APInt(1, 1);
4313   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4314 }
4315 
4316 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4317                                                     const APInt &DemandedElts,
4318                                                     bool PoisonOnly,
4319                                                     unsigned Depth) const {
4320   unsigned Opcode = Op.getOpcode();
4321 
4322   // Early out for FREEZE.
4323   if (Opcode == ISD::FREEZE)
4324     return true;
4325 
4326   if (Depth >= MaxRecursionDepth)
4327     return false; // Limit search depth.
4328 
4329   if (isIntOrFPConstant(Op))
4330     return true;
4331 
4332   switch (Opcode) {
4333   case ISD::UNDEF:
4334     return PoisonOnly;
4335 
4336   case ISD::BUILD_VECTOR:
4337     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4338     // this shouldn't affect the result.
4339     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4340       if (!DemandedElts[i])
4341         continue;
4342       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4343                                             Depth + 1))
4344         return false;
4345     }
4346     return true;
4347 
4348   // TODO: Search for noundef attributes from library functions.
4349 
4350   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4351 
4352   default:
4353     // Allow the target to implement this method for its nodes.
4354     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4355         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4356       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4357           Op, DemandedElts, *this, PoisonOnly, Depth);
4358     break;
4359   }
4360 
4361   return false;
4362 }
4363 
4364 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4365   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4366       !isa<ConstantSDNode>(Op.getOperand(1)))
4367     return false;
4368 
4369   if (Op.getOpcode() == ISD::OR &&
4370       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4371     return false;
4372 
4373   return true;
4374 }
4375 
4376 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4377   // If we're told that NaNs won't happen, assume they won't.
4378   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4379     return true;
4380 
4381   if (Depth >= MaxRecursionDepth)
4382     return false; // Limit search depth.
4383 
4384   // TODO: Handle vectors.
4385   // If the value is a constant, we can obviously see if it is a NaN or not.
4386   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4387     return !C->getValueAPF().isNaN() ||
4388            (SNaN && !C->getValueAPF().isSignaling());
4389   }
4390 
4391   unsigned Opcode = Op.getOpcode();
4392   switch (Opcode) {
4393   case ISD::FADD:
4394   case ISD::FSUB:
4395   case ISD::FMUL:
4396   case ISD::FDIV:
4397   case ISD::FREM:
4398   case ISD::FSIN:
4399   case ISD::FCOS: {
4400     if (SNaN)
4401       return true;
4402     // TODO: Need isKnownNeverInfinity
4403     return false;
4404   }
4405   case ISD::FCANONICALIZE:
4406   case ISD::FEXP:
4407   case ISD::FEXP2:
4408   case ISD::FTRUNC:
4409   case ISD::FFLOOR:
4410   case ISD::FCEIL:
4411   case ISD::FROUND:
4412   case ISD::FROUNDEVEN:
4413   case ISD::FRINT:
4414   case ISD::FNEARBYINT: {
4415     if (SNaN)
4416       return true;
4417     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4418   }
4419   case ISD::FABS:
4420   case ISD::FNEG:
4421   case ISD::FCOPYSIGN: {
4422     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4423   }
4424   case ISD::SELECT:
4425     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4426            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4427   case ISD::FP_EXTEND:
4428   case ISD::FP_ROUND: {
4429     if (SNaN)
4430       return true;
4431     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4432   }
4433   case ISD::SINT_TO_FP:
4434   case ISD::UINT_TO_FP:
4435     return true;
4436   case ISD::FMA:
4437   case ISD::FMAD: {
4438     if (SNaN)
4439       return true;
4440     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4441            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4442            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4443   }
4444   case ISD::FSQRT: // Need is known positive
4445   case ISD::FLOG:
4446   case ISD::FLOG2:
4447   case ISD::FLOG10:
4448   case ISD::FPOWI:
4449   case ISD::FPOW: {
4450     if (SNaN)
4451       return true;
4452     // TODO: Refine on operand
4453     return false;
4454   }
4455   case ISD::FMINNUM:
4456   case ISD::FMAXNUM: {
4457     // Only one needs to be known not-nan, since it will be returned if the
4458     // other ends up being one.
4459     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4460            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4461   }
4462   case ISD::FMINNUM_IEEE:
4463   case ISD::FMAXNUM_IEEE: {
4464     if (SNaN)
4465       return true;
4466     // This can return a NaN if either operand is an sNaN, or if both operands
4467     // are NaN.
4468     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4469             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4470            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4471             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4472   }
4473   case ISD::FMINIMUM:
4474   case ISD::FMAXIMUM: {
4475     // TODO: Does this quiet or return the origina NaN as-is?
4476     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4477            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4478   }
4479   case ISD::EXTRACT_VECTOR_ELT: {
4480     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4481   }
4482   default:
4483     if (Opcode >= ISD::BUILTIN_OP_END ||
4484         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4485         Opcode == ISD::INTRINSIC_W_CHAIN ||
4486         Opcode == ISD::INTRINSIC_VOID) {
4487       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4488     }
4489 
4490     return false;
4491   }
4492 }
4493 
4494 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4495   assert(Op.getValueType().isFloatingPoint() &&
4496          "Floating point type expected");
4497 
4498   // If the value is a constant, we can obviously see if it is a zero or not.
4499   // TODO: Add BuildVector support.
4500   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4501     return !C->isZero();
4502   return false;
4503 }
4504 
4505 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4506   assert(!Op.getValueType().isFloatingPoint() &&
4507          "Floating point types unsupported - use isKnownNeverZeroFloat");
4508 
4509   // If the value is a constant, we can obviously see if it is a zero or not.
4510   if (ISD::matchUnaryPredicate(Op,
4511                                [](ConstantSDNode *C) { return !C->isZero(); }))
4512     return true;
4513 
4514   // TODO: Recognize more cases here.
4515   switch (Op.getOpcode()) {
4516   default: break;
4517   case ISD::OR:
4518     if (isKnownNeverZero(Op.getOperand(1)) ||
4519         isKnownNeverZero(Op.getOperand(0)))
4520       return true;
4521     break;
4522   }
4523 
4524   return false;
4525 }
4526 
4527 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4528   // Check the obvious case.
4529   if (A == B) return true;
4530 
4531   // For for negative and positive zero.
4532   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4533     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4534       if (CA->isZero() && CB->isZero()) return true;
4535 
4536   // Otherwise they may not be equal.
4537   return false;
4538 }
4539 
4540 // FIXME: unify with llvm::haveNoCommonBitsSet.
4541 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4542 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4543   assert(A.getValueType() == B.getValueType() &&
4544          "Values must have the same type");
4545   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4546                                         computeKnownBits(B));
4547 }
4548 
4549 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4550                                SelectionDAG &DAG) {
4551   if (cast<ConstantSDNode>(Step)->isZero())
4552     return DAG.getConstant(0, DL, VT);
4553 
4554   return SDValue();
4555 }
4556 
4557 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4558                                 ArrayRef<SDValue> Ops,
4559                                 SelectionDAG &DAG) {
4560   int NumOps = Ops.size();
4561   assert(NumOps != 0 && "Can't build an empty vector!");
4562   assert(!VT.isScalableVector() &&
4563          "BUILD_VECTOR cannot be used with scalable types");
4564   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4565          "Incorrect element count in BUILD_VECTOR!");
4566 
4567   // BUILD_VECTOR of UNDEFs is UNDEF.
4568   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4569     return DAG.getUNDEF(VT);
4570 
4571   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4572   SDValue IdentitySrc;
4573   bool IsIdentity = true;
4574   for (int i = 0; i != NumOps; ++i) {
4575     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4576         Ops[i].getOperand(0).getValueType() != VT ||
4577         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4578         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4579         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4580       IsIdentity = false;
4581       break;
4582     }
4583     IdentitySrc = Ops[i].getOperand(0);
4584   }
4585   if (IsIdentity)
4586     return IdentitySrc;
4587 
4588   return SDValue();
4589 }
4590 
4591 /// Try to simplify vector concatenation to an input value, undef, or build
4592 /// vector.
4593 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4594                                   ArrayRef<SDValue> Ops,
4595                                   SelectionDAG &DAG) {
4596   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4597   assert(llvm::all_of(Ops,
4598                       [Ops](SDValue Op) {
4599                         return Ops[0].getValueType() == Op.getValueType();
4600                       }) &&
4601          "Concatenation of vectors with inconsistent value types!");
4602   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4603              VT.getVectorElementCount() &&
4604          "Incorrect element count in vector concatenation!");
4605 
4606   if (Ops.size() == 1)
4607     return Ops[0];
4608 
4609   // Concat of UNDEFs is UNDEF.
4610   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4611     return DAG.getUNDEF(VT);
4612 
4613   // Scan the operands and look for extract operations from a single source
4614   // that correspond to insertion at the same location via this concatenation:
4615   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4616   SDValue IdentitySrc;
4617   bool IsIdentity = true;
4618   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4619     SDValue Op = Ops[i];
4620     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4621     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4622         Op.getOperand(0).getValueType() != VT ||
4623         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4624         Op.getConstantOperandVal(1) != IdentityIndex) {
4625       IsIdentity = false;
4626       break;
4627     }
4628     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4629            "Unexpected identity source vector for concat of extracts");
4630     IdentitySrc = Op.getOperand(0);
4631   }
4632   if (IsIdentity) {
4633     assert(IdentitySrc && "Failed to set source vector of extracts");
4634     return IdentitySrc;
4635   }
4636 
4637   // The code below this point is only designed to work for fixed width
4638   // vectors, so we bail out for now.
4639   if (VT.isScalableVector())
4640     return SDValue();
4641 
4642   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4643   // simplified to one big BUILD_VECTOR.
4644   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4645   EVT SVT = VT.getScalarType();
4646   SmallVector<SDValue, 16> Elts;
4647   for (SDValue Op : Ops) {
4648     EVT OpVT = Op.getValueType();
4649     if (Op.isUndef())
4650       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4651     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4652       Elts.append(Op->op_begin(), Op->op_end());
4653     else
4654       return SDValue();
4655   }
4656 
4657   // BUILD_VECTOR requires all inputs to be of the same type, find the
4658   // maximum type and extend them all.
4659   for (SDValue Op : Elts)
4660     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4661 
4662   if (SVT.bitsGT(VT.getScalarType())) {
4663     for (SDValue &Op : Elts) {
4664       if (Op.isUndef())
4665         Op = DAG.getUNDEF(SVT);
4666       else
4667         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4668                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4669                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4670     }
4671   }
4672 
4673   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4674   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4675   return V;
4676 }
4677 
4678 /// Gets or creates the specified node.
4679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4680   FoldingSetNodeID ID;
4681   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4682   void *IP = nullptr;
4683   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4684     return SDValue(E, 0);
4685 
4686   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4687                               getVTList(VT));
4688   CSEMap.InsertNode(N, IP);
4689 
4690   InsertNode(N);
4691   SDValue V = SDValue(N, 0);
4692   NewSDValueDbgMsg(V, "Creating new node: ", this);
4693   return V;
4694 }
4695 
4696 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4697                               SDValue Operand) {
4698   SDNodeFlags Flags;
4699   if (Inserter)
4700     Flags = Inserter->getFlags();
4701   return getNode(Opcode, DL, VT, Operand, Flags);
4702 }
4703 
4704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4705                               SDValue Operand, const SDNodeFlags Flags) {
4706   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4707          "Operand is DELETED_NODE!");
4708   // Constant fold unary operations with an integer constant operand. Even
4709   // opaque constant will be folded, because the folding of unary operations
4710   // doesn't create new constants with different values. Nevertheless, the
4711   // opaque flag is preserved during folding to prevent future folding with
4712   // other constants.
4713   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4714     const APInt &Val = C->getAPIntValue();
4715     switch (Opcode) {
4716     default: break;
4717     case ISD::SIGN_EXTEND:
4718       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4719                          C->isTargetOpcode(), C->isOpaque());
4720     case ISD::TRUNCATE:
4721       if (C->isOpaque())
4722         break;
4723       LLVM_FALLTHROUGH;
4724     case ISD::ZERO_EXTEND:
4725       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4726                          C->isTargetOpcode(), C->isOpaque());
4727     case ISD::ANY_EXTEND:
4728       // Some targets like RISCV prefer to sign extend some types.
4729       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4730         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4731                            C->isTargetOpcode(), C->isOpaque());
4732       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4733                          C->isTargetOpcode(), C->isOpaque());
4734     case ISD::UINT_TO_FP:
4735     case ISD::SINT_TO_FP: {
4736       APFloat apf(EVTToAPFloatSemantics(VT),
4737                   APInt::getZero(VT.getSizeInBits()));
4738       (void)apf.convertFromAPInt(Val,
4739                                  Opcode==ISD::SINT_TO_FP,
4740                                  APFloat::rmNearestTiesToEven);
4741       return getConstantFP(apf, DL, VT);
4742     }
4743     case ISD::BITCAST:
4744       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4745         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4746       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4747         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4748       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4749         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4750       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4751         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4752       break;
4753     case ISD::ABS:
4754       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4755                          C->isOpaque());
4756     case ISD::BITREVERSE:
4757       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4758                          C->isOpaque());
4759     case ISD::BSWAP:
4760       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4761                          C->isOpaque());
4762     case ISD::CTPOP:
4763       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4764                          C->isOpaque());
4765     case ISD::CTLZ:
4766     case ISD::CTLZ_ZERO_UNDEF:
4767       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4768                          C->isOpaque());
4769     case ISD::CTTZ:
4770     case ISD::CTTZ_ZERO_UNDEF:
4771       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4772                          C->isOpaque());
4773     case ISD::FP16_TO_FP: {
4774       bool Ignored;
4775       APFloat FPV(APFloat::IEEEhalf(),
4776                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4777 
4778       // This can return overflow, underflow, or inexact; we don't care.
4779       // FIXME need to be more flexible about rounding mode.
4780       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4781                         APFloat::rmNearestTiesToEven, &Ignored);
4782       return getConstantFP(FPV, DL, VT);
4783     }
4784     case ISD::STEP_VECTOR: {
4785       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4786         return V;
4787       break;
4788     }
4789     }
4790   }
4791 
4792   // Constant fold unary operations with a floating point constant operand.
4793   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4794     APFloat V = C->getValueAPF();    // make copy
4795     switch (Opcode) {
4796     case ISD::FNEG:
4797       V.changeSign();
4798       return getConstantFP(V, DL, VT);
4799     case ISD::FABS:
4800       V.clearSign();
4801       return getConstantFP(V, DL, VT);
4802     case ISD::FCEIL: {
4803       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4804       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4805         return getConstantFP(V, DL, VT);
4806       break;
4807     }
4808     case ISD::FTRUNC: {
4809       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4810       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4811         return getConstantFP(V, DL, VT);
4812       break;
4813     }
4814     case ISD::FFLOOR: {
4815       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4816       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4817         return getConstantFP(V, DL, VT);
4818       break;
4819     }
4820     case ISD::FP_EXTEND: {
4821       bool ignored;
4822       // This can return overflow, underflow, or inexact; we don't care.
4823       // FIXME need to be more flexible about rounding mode.
4824       (void)V.convert(EVTToAPFloatSemantics(VT),
4825                       APFloat::rmNearestTiesToEven, &ignored);
4826       return getConstantFP(V, DL, VT);
4827     }
4828     case ISD::FP_TO_SINT:
4829     case ISD::FP_TO_UINT: {
4830       bool ignored;
4831       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4832       // FIXME need to be more flexible about rounding mode.
4833       APFloat::opStatus s =
4834           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4835       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4836         break;
4837       return getConstant(IntVal, DL, VT);
4838     }
4839     case ISD::BITCAST:
4840       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4841         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4842       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4843         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4844       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4845         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4846       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4847         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4848       break;
4849     case ISD::FP_TO_FP16: {
4850       bool Ignored;
4851       // This can return overflow, underflow, or inexact; we don't care.
4852       // FIXME need to be more flexible about rounding mode.
4853       (void)V.convert(APFloat::IEEEhalf(),
4854                       APFloat::rmNearestTiesToEven, &Ignored);
4855       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4856     }
4857     }
4858   }
4859 
4860   // Constant fold unary operations with a vector integer or float operand.
4861   switch (Opcode) {
4862   default:
4863     // FIXME: Entirely reasonable to perform folding of other unary
4864     // operations here as the need arises.
4865     break;
4866   case ISD::FNEG:
4867   case ISD::FABS:
4868   case ISD::FCEIL:
4869   case ISD::FTRUNC:
4870   case ISD::FFLOOR:
4871   case ISD::FP_EXTEND:
4872   case ISD::FP_TO_SINT:
4873   case ISD::FP_TO_UINT:
4874   case ISD::TRUNCATE:
4875   case ISD::ANY_EXTEND:
4876   case ISD::ZERO_EXTEND:
4877   case ISD::SIGN_EXTEND:
4878   case ISD::UINT_TO_FP:
4879   case ISD::SINT_TO_FP:
4880   case ISD::ABS:
4881   case ISD::BITREVERSE:
4882   case ISD::BSWAP:
4883   case ISD::CTLZ:
4884   case ISD::CTLZ_ZERO_UNDEF:
4885   case ISD::CTTZ:
4886   case ISD::CTTZ_ZERO_UNDEF:
4887   case ISD::CTPOP: {
4888     SDValue Ops = {Operand};
4889     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4890       return Fold;
4891   }
4892   }
4893 
4894   unsigned OpOpcode = Operand.getNode()->getOpcode();
4895   switch (Opcode) {
4896   case ISD::STEP_VECTOR:
4897     assert(VT.isScalableVector() &&
4898            "STEP_VECTOR can only be used with scalable types");
4899     assert(OpOpcode == ISD::TargetConstant &&
4900            VT.getVectorElementType() == Operand.getValueType() &&
4901            "Unexpected step operand");
4902     break;
4903   case ISD::FREEZE:
4904     assert(VT == Operand.getValueType() && "Unexpected VT!");
4905     break;
4906   case ISD::TokenFactor:
4907   case ISD::MERGE_VALUES:
4908   case ISD::CONCAT_VECTORS:
4909     return Operand;         // Factor, merge or concat of one node?  No need.
4910   case ISD::BUILD_VECTOR: {
4911     // Attempt to simplify BUILD_VECTOR.
4912     SDValue Ops[] = {Operand};
4913     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4914       return V;
4915     break;
4916   }
4917   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4918   case ISD::FP_EXTEND:
4919     assert(VT.isFloatingPoint() &&
4920            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4921     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4922     assert((!VT.isVector() ||
4923             VT.getVectorElementCount() ==
4924             Operand.getValueType().getVectorElementCount()) &&
4925            "Vector element count mismatch!");
4926     assert(Operand.getValueType().bitsLT(VT) &&
4927            "Invalid fpext node, dst < src!");
4928     if (Operand.isUndef())
4929       return getUNDEF(VT);
4930     break;
4931   case ISD::FP_TO_SINT:
4932   case ISD::FP_TO_UINT:
4933     if (Operand.isUndef())
4934       return getUNDEF(VT);
4935     break;
4936   case ISD::SINT_TO_FP:
4937   case ISD::UINT_TO_FP:
4938     // [us]itofp(undef) = 0, because the result value is bounded.
4939     if (Operand.isUndef())
4940       return getConstantFP(0.0, DL, VT);
4941     break;
4942   case ISD::SIGN_EXTEND:
4943     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4944            "Invalid SIGN_EXTEND!");
4945     assert(VT.isVector() == Operand.getValueType().isVector() &&
4946            "SIGN_EXTEND result type type should be vector iff the operand "
4947            "type is vector!");
4948     if (Operand.getValueType() == VT) return Operand;   // noop extension
4949     assert((!VT.isVector() ||
4950             VT.getVectorElementCount() ==
4951                 Operand.getValueType().getVectorElementCount()) &&
4952            "Vector element count mismatch!");
4953     assert(Operand.getValueType().bitsLT(VT) &&
4954            "Invalid sext node, dst < src!");
4955     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4956       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4957     if (OpOpcode == ISD::UNDEF)
4958       // sext(undef) = 0, because the top bits will all be the same.
4959       return getConstant(0, DL, VT);
4960     break;
4961   case ISD::ZERO_EXTEND:
4962     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4963            "Invalid ZERO_EXTEND!");
4964     assert(VT.isVector() == Operand.getValueType().isVector() &&
4965            "ZERO_EXTEND result type type should be vector iff the operand "
4966            "type is vector!");
4967     if (Operand.getValueType() == VT) return Operand;   // noop extension
4968     assert((!VT.isVector() ||
4969             VT.getVectorElementCount() ==
4970                 Operand.getValueType().getVectorElementCount()) &&
4971            "Vector element count mismatch!");
4972     assert(Operand.getValueType().bitsLT(VT) &&
4973            "Invalid zext node, dst < src!");
4974     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4975       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4976     if (OpOpcode == ISD::UNDEF)
4977       // zext(undef) = 0, because the top bits will be zero.
4978       return getConstant(0, DL, VT);
4979     break;
4980   case ISD::ANY_EXTEND:
4981     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4982            "Invalid ANY_EXTEND!");
4983     assert(VT.isVector() == Operand.getValueType().isVector() &&
4984            "ANY_EXTEND result type type should be vector iff the operand "
4985            "type is vector!");
4986     if (Operand.getValueType() == VT) return Operand;   // noop extension
4987     assert((!VT.isVector() ||
4988             VT.getVectorElementCount() ==
4989                 Operand.getValueType().getVectorElementCount()) &&
4990            "Vector element count mismatch!");
4991     assert(Operand.getValueType().bitsLT(VT) &&
4992            "Invalid anyext node, dst < src!");
4993 
4994     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4995         OpOpcode == ISD::ANY_EXTEND)
4996       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4997       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4998     if (OpOpcode == ISD::UNDEF)
4999       return getUNDEF(VT);
5000 
5001     // (ext (trunc x)) -> x
5002     if (OpOpcode == ISD::TRUNCATE) {
5003       SDValue OpOp = Operand.getOperand(0);
5004       if (OpOp.getValueType() == VT) {
5005         transferDbgValues(Operand, OpOp);
5006         return OpOp;
5007       }
5008     }
5009     break;
5010   case ISD::TRUNCATE:
5011     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5012            "Invalid TRUNCATE!");
5013     assert(VT.isVector() == Operand.getValueType().isVector() &&
5014            "TRUNCATE result type type should be vector iff the operand "
5015            "type is vector!");
5016     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5017     assert((!VT.isVector() ||
5018             VT.getVectorElementCount() ==
5019                 Operand.getValueType().getVectorElementCount()) &&
5020            "Vector element count mismatch!");
5021     assert(Operand.getValueType().bitsGT(VT) &&
5022            "Invalid truncate node, src < dst!");
5023     if (OpOpcode == ISD::TRUNCATE)
5024       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5025     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5026         OpOpcode == ISD::ANY_EXTEND) {
5027       // If the source is smaller than the dest, we still need an extend.
5028       if (Operand.getOperand(0).getValueType().getScalarType()
5029             .bitsLT(VT.getScalarType()))
5030         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5031       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5032         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5033       return Operand.getOperand(0);
5034     }
5035     if (OpOpcode == ISD::UNDEF)
5036       return getUNDEF(VT);
5037     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5038       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5039     break;
5040   case ISD::ANY_EXTEND_VECTOR_INREG:
5041   case ISD::ZERO_EXTEND_VECTOR_INREG:
5042   case ISD::SIGN_EXTEND_VECTOR_INREG:
5043     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5044     assert(Operand.getValueType().bitsLE(VT) &&
5045            "The input must be the same size or smaller than the result.");
5046     assert(VT.getVectorMinNumElements() <
5047                Operand.getValueType().getVectorMinNumElements() &&
5048            "The destination vector type must have fewer lanes than the input.");
5049     break;
5050   case ISD::ABS:
5051     assert(VT.isInteger() && VT == Operand.getValueType() &&
5052            "Invalid ABS!");
5053     if (OpOpcode == ISD::UNDEF)
5054       return getUNDEF(VT);
5055     break;
5056   case ISD::BSWAP:
5057     assert(VT.isInteger() && VT == Operand.getValueType() &&
5058            "Invalid BSWAP!");
5059     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5060            "BSWAP types must be a multiple of 16 bits!");
5061     if (OpOpcode == ISD::UNDEF)
5062       return getUNDEF(VT);
5063     break;
5064   case ISD::BITREVERSE:
5065     assert(VT.isInteger() && VT == Operand.getValueType() &&
5066            "Invalid BITREVERSE!");
5067     if (OpOpcode == ISD::UNDEF)
5068       return getUNDEF(VT);
5069     break;
5070   case ISD::BITCAST:
5071     // Basic sanity checking.
5072     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5073            "Cannot BITCAST between types of different sizes!");
5074     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5075     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5076       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5077     if (OpOpcode == ISD::UNDEF)
5078       return getUNDEF(VT);
5079     break;
5080   case ISD::SCALAR_TO_VECTOR:
5081     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5082            (VT.getVectorElementType() == Operand.getValueType() ||
5083             (VT.getVectorElementType().isInteger() &&
5084              Operand.getValueType().isInteger() &&
5085              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5086            "Illegal SCALAR_TO_VECTOR node!");
5087     if (OpOpcode == ISD::UNDEF)
5088       return getUNDEF(VT);
5089     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5090     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5091         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5092         Operand.getConstantOperandVal(1) == 0 &&
5093         Operand.getOperand(0).getValueType() == VT)
5094       return Operand.getOperand(0);
5095     break;
5096   case ISD::FNEG:
5097     // Negation of an unknown bag of bits is still completely undefined.
5098     if (OpOpcode == ISD::UNDEF)
5099       return getUNDEF(VT);
5100 
5101     if (OpOpcode == ISD::FNEG)  // --X -> X
5102       return Operand.getOperand(0);
5103     break;
5104   case ISD::FABS:
5105     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5106       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5107     break;
5108   case ISD::VSCALE:
5109     assert(VT == Operand.getValueType() && "Unexpected VT!");
5110     break;
5111   case ISD::CTPOP:
5112     if (Operand.getValueType().getScalarType() == MVT::i1)
5113       return Operand;
5114     break;
5115   case ISD::CTLZ:
5116   case ISD::CTTZ:
5117     if (Operand.getValueType().getScalarType() == MVT::i1)
5118       return getNOT(DL, Operand, Operand.getValueType());
5119     break;
5120   case ISD::VECREDUCE_SMIN:
5121   case ISD::VECREDUCE_UMAX:
5122     if (Operand.getValueType().getScalarType() == MVT::i1)
5123       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5124     break;
5125   case ISD::VECREDUCE_SMAX:
5126   case ISD::VECREDUCE_UMIN:
5127     if (Operand.getValueType().getScalarType() == MVT::i1)
5128       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5129     break;
5130   }
5131 
5132   SDNode *N;
5133   SDVTList VTs = getVTList(VT);
5134   SDValue Ops[] = {Operand};
5135   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5136     FoldingSetNodeID ID;
5137     AddNodeIDNode(ID, Opcode, VTs, Ops);
5138     void *IP = nullptr;
5139     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5140       E->intersectFlagsWith(Flags);
5141       return SDValue(E, 0);
5142     }
5143 
5144     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5145     N->setFlags(Flags);
5146     createOperands(N, Ops);
5147     CSEMap.InsertNode(N, IP);
5148   } else {
5149     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5150     createOperands(N, Ops);
5151   }
5152 
5153   InsertNode(N);
5154   SDValue V = SDValue(N, 0);
5155   NewSDValueDbgMsg(V, "Creating new node: ", this);
5156   return V;
5157 }
5158 
5159 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5160                                        const APInt &C2) {
5161   switch (Opcode) {
5162   case ISD::ADD:  return C1 + C2;
5163   case ISD::SUB:  return C1 - C2;
5164   case ISD::MUL:  return C1 * C2;
5165   case ISD::AND:  return C1 & C2;
5166   case ISD::OR:   return C1 | C2;
5167   case ISD::XOR:  return C1 ^ C2;
5168   case ISD::SHL:  return C1 << C2;
5169   case ISD::SRL:  return C1.lshr(C2);
5170   case ISD::SRA:  return C1.ashr(C2);
5171   case ISD::ROTL: return C1.rotl(C2);
5172   case ISD::ROTR: return C1.rotr(C2);
5173   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5174   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5175   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5176   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5177   case ISD::SADDSAT: return C1.sadd_sat(C2);
5178   case ISD::UADDSAT: return C1.uadd_sat(C2);
5179   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5180   case ISD::USUBSAT: return C1.usub_sat(C2);
5181   case ISD::UDIV:
5182     if (!C2.getBoolValue())
5183       break;
5184     return C1.udiv(C2);
5185   case ISD::UREM:
5186     if (!C2.getBoolValue())
5187       break;
5188     return C1.urem(C2);
5189   case ISD::SDIV:
5190     if (!C2.getBoolValue())
5191       break;
5192     return C1.sdiv(C2);
5193   case ISD::SREM:
5194     if (!C2.getBoolValue())
5195       break;
5196     return C1.srem(C2);
5197   case ISD::MULHS: {
5198     unsigned FullWidth = C1.getBitWidth() * 2;
5199     APInt C1Ext = C1.sext(FullWidth);
5200     APInt C2Ext = C2.sext(FullWidth);
5201     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5202   }
5203   case ISD::MULHU: {
5204     unsigned FullWidth = C1.getBitWidth() * 2;
5205     APInt C1Ext = C1.zext(FullWidth);
5206     APInt C2Ext = C2.zext(FullWidth);
5207     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5208   }
5209   }
5210   return llvm::None;
5211 }
5212 
5213 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5214                                        const GlobalAddressSDNode *GA,
5215                                        const SDNode *N2) {
5216   if (GA->getOpcode() != ISD::GlobalAddress)
5217     return SDValue();
5218   if (!TLI->isOffsetFoldingLegal(GA))
5219     return SDValue();
5220   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5221   if (!C2)
5222     return SDValue();
5223   int64_t Offset = C2->getSExtValue();
5224   switch (Opcode) {
5225   case ISD::ADD: break;
5226   case ISD::SUB: Offset = -uint64_t(Offset); break;
5227   default: return SDValue();
5228   }
5229   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5230                           GA->getOffset() + uint64_t(Offset));
5231 }
5232 
5233 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5234   switch (Opcode) {
5235   case ISD::SDIV:
5236   case ISD::UDIV:
5237   case ISD::SREM:
5238   case ISD::UREM: {
5239     // If a divisor is zero/undef or any element of a divisor vector is
5240     // zero/undef, the whole op is undef.
5241     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5242     SDValue Divisor = Ops[1];
5243     if (Divisor.isUndef() || isNullConstant(Divisor))
5244       return true;
5245 
5246     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5247            llvm::any_of(Divisor->op_values(),
5248                         [](SDValue V) { return V.isUndef() ||
5249                                         isNullConstant(V); });
5250     // TODO: Handle signed overflow.
5251   }
5252   // TODO: Handle oversized shifts.
5253   default:
5254     return false;
5255   }
5256 }
5257 
5258 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5259                                              EVT VT, ArrayRef<SDValue> Ops) {
5260   // If the opcode is a target-specific ISD node, there's nothing we can
5261   // do here and the operand rules may not line up with the below, so
5262   // bail early.
5263   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5264   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5265   // foldCONCAT_VECTORS in getNode before this is called.
5266   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5267     return SDValue();
5268 
5269   // For now, the array Ops should only contain two values.
5270   // This enforcement will be removed once this function is merged with
5271   // FoldConstantVectorArithmetic
5272   if (Ops.size() != 2)
5273     return SDValue();
5274 
5275   if (isUndef(Opcode, Ops))
5276     return getUNDEF(VT);
5277 
5278   SDNode *N1 = Ops[0].getNode();
5279   SDNode *N2 = Ops[1].getNode();
5280 
5281   // Handle the case of two scalars.
5282   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5283     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5284       if (C1->isOpaque() || C2->isOpaque())
5285         return SDValue();
5286 
5287       Optional<APInt> FoldAttempt =
5288           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5289       if (!FoldAttempt)
5290         return SDValue();
5291 
5292       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5293       assert((!Folded || !VT.isVector()) &&
5294              "Can't fold vectors ops with scalar operands");
5295       return Folded;
5296     }
5297   }
5298 
5299   // fold (add Sym, c) -> Sym+c
5300   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5301     return FoldSymbolOffset(Opcode, VT, GA, N2);
5302   if (TLI->isCommutativeBinOp(Opcode))
5303     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5304       return FoldSymbolOffset(Opcode, VT, GA, N1);
5305 
5306   // For fixed width vectors, extract each constant element and fold them
5307   // individually. Either input may be an undef value.
5308   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5309                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5310   if (!IsBVOrSV1 && !N1->isUndef())
5311     return SDValue();
5312   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5313                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5314   if (!IsBVOrSV2 && !N2->isUndef())
5315     return SDValue();
5316   // If both operands are undef, that's handled the same way as scalars.
5317   if (!IsBVOrSV1 && !IsBVOrSV2)
5318     return SDValue();
5319 
5320   EVT SVT = VT.getScalarType();
5321   EVT LegalSVT = SVT;
5322   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5323     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5324     if (LegalSVT.bitsLT(SVT))
5325       return SDValue();
5326   }
5327 
5328   SmallVector<SDValue, 4> Outputs;
5329   unsigned NumOps = 0;
5330   if (IsBVOrSV1)
5331     NumOps = std::max(NumOps, N1->getNumOperands());
5332   if (IsBVOrSV2)
5333     NumOps = std::max(NumOps, N2->getNumOperands());
5334   assert(NumOps != 0 && "Expected non-zero operands");
5335   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5336   // one iteration for that.
5337   assert((!VT.isScalableVector() || NumOps == 1) &&
5338          "Scalable vector should only have one scalar");
5339 
5340   for (unsigned I = 0; I != NumOps; ++I) {
5341     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5342     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5343     SDValue V1;
5344     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5345       V1 = N1->getOperand(I);
5346     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5347       V1 = N1->getOperand(0);
5348     else
5349       V1 = getUNDEF(SVT);
5350 
5351     SDValue V2;
5352     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5353       V2 = N2->getOperand(I);
5354     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5355       V2 = N2->getOperand(0);
5356     else
5357       V2 = getUNDEF(SVT);
5358 
5359     if (SVT.isInteger()) {
5360       if (V1.getValueType().bitsGT(SVT))
5361         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5362       if (V2.getValueType().bitsGT(SVT))
5363         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5364     }
5365 
5366     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5367       return SDValue();
5368 
5369     // Fold one vector element.
5370     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5371     if (LegalSVT != SVT)
5372       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5373 
5374     // Scalar folding only succeeded if the result is a constant or UNDEF.
5375     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5376         ScalarResult.getOpcode() != ISD::ConstantFP)
5377       return SDValue();
5378     Outputs.push_back(ScalarResult);
5379   }
5380 
5381   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5382       N2->getOpcode() == ISD::BUILD_VECTOR) {
5383     assert(VT.getVectorNumElements() == Outputs.size() &&
5384            "Vector size mismatch!");
5385 
5386     // Build a big vector out of the scalar elements we generated.
5387     return getBuildVector(VT, SDLoc(), Outputs);
5388   }
5389 
5390   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5391           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5392          "One operand should be a splat vector");
5393 
5394   assert(Outputs.size() == 1 && "Vector size mismatch!");
5395   return getSplatVector(VT, SDLoc(), Outputs[0]);
5396 }
5397 
5398 // TODO: Merge with FoldConstantArithmetic
5399 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5400                                                    const SDLoc &DL, EVT VT,
5401                                                    ArrayRef<SDValue> Ops,
5402                                                    const SDNodeFlags Flags) {
5403   // If the opcode is a target-specific ISD node, there's nothing we can
5404   // do here and the operand rules may not line up with the below, so
5405   // bail early.
5406   if (Opcode >= ISD::BUILTIN_OP_END)
5407     return SDValue();
5408 
5409   if (isUndef(Opcode, Ops))
5410     return getUNDEF(VT);
5411 
5412   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5413   if (!VT.isVector())
5414     return SDValue();
5415 
5416   ElementCount NumElts = VT.getVectorElementCount();
5417 
5418   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5419     return !Op.getValueType().isVector() ||
5420            Op.getValueType().getVectorElementCount() == NumElts;
5421   };
5422 
5423   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5424     APInt SplatVal;
5425     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5426     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5427            (BV && BV->isConstant()) ||
5428            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5429             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5430   };
5431 
5432   // All operands must be vector types with the same number of elements as
5433   // the result type and must be either UNDEF or a build vector of constant
5434   // or UNDEF scalars.
5435   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5436       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5437     return SDValue();
5438 
5439   // If we are comparing vectors, then the result needs to be a i1 boolean
5440   // that is then sign-extended back to the legal result type.
5441   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5442 
5443   // Find legal integer scalar type for constant promotion and
5444   // ensure that its scalar size is at least as large as source.
5445   EVT LegalSVT = VT.getScalarType();
5446   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5447     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5448     if (LegalSVT.bitsLT(VT.getScalarType()))
5449       return SDValue();
5450   }
5451 
5452   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5453   // only have one operand to check. For fixed-length vector types we may have
5454   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5455   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5456 
5457   // Constant fold each scalar lane separately.
5458   SmallVector<SDValue, 4> ScalarResults;
5459   for (unsigned I = 0; I != NumOperands; I++) {
5460     SmallVector<SDValue, 4> ScalarOps;
5461     for (SDValue Op : Ops) {
5462       EVT InSVT = Op.getValueType().getScalarType();
5463       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5464           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5465         // We've checked that this is UNDEF or a constant of some kind.
5466         if (Op.isUndef())
5467           ScalarOps.push_back(getUNDEF(InSVT));
5468         else
5469           ScalarOps.push_back(Op);
5470         continue;
5471       }
5472 
5473       SDValue ScalarOp =
5474           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5475       EVT ScalarVT = ScalarOp.getValueType();
5476 
5477       // Build vector (integer) scalar operands may need implicit
5478       // truncation - do this before constant folding.
5479       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5480         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5481 
5482       ScalarOps.push_back(ScalarOp);
5483     }
5484 
5485     // Constant fold the scalar operands.
5486     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5487 
5488     // Legalize the (integer) scalar constant if necessary.
5489     if (LegalSVT != SVT)
5490       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5491 
5492     // Scalar folding only succeeded if the result is a constant or UNDEF.
5493     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5494         ScalarResult.getOpcode() != ISD::ConstantFP)
5495       return SDValue();
5496     ScalarResults.push_back(ScalarResult);
5497   }
5498 
5499   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5500                                    : getBuildVector(VT, DL, ScalarResults);
5501   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5502   return V;
5503 }
5504 
5505 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5506                                          EVT VT, SDValue N1, SDValue N2) {
5507   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5508   //       should. That will require dealing with a potentially non-default
5509   //       rounding mode, checking the "opStatus" return value from the APFloat
5510   //       math calculations, and possibly other variations.
5511   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5512   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5513   if (N1CFP && N2CFP) {
5514     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5515     switch (Opcode) {
5516     case ISD::FADD:
5517       C1.add(C2, APFloat::rmNearestTiesToEven);
5518       return getConstantFP(C1, DL, VT);
5519     case ISD::FSUB:
5520       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5521       return getConstantFP(C1, DL, VT);
5522     case ISD::FMUL:
5523       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5524       return getConstantFP(C1, DL, VT);
5525     case ISD::FDIV:
5526       C1.divide(C2, APFloat::rmNearestTiesToEven);
5527       return getConstantFP(C1, DL, VT);
5528     case ISD::FREM:
5529       C1.mod(C2);
5530       return getConstantFP(C1, DL, VT);
5531     case ISD::FCOPYSIGN:
5532       C1.copySign(C2);
5533       return getConstantFP(C1, DL, VT);
5534     default: break;
5535     }
5536   }
5537   if (N1CFP && Opcode == ISD::FP_ROUND) {
5538     APFloat C1 = N1CFP->getValueAPF();    // make copy
5539     bool Unused;
5540     // This can return overflow, underflow, or inexact; we don't care.
5541     // FIXME need to be more flexible about rounding mode.
5542     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5543                       &Unused);
5544     return getConstantFP(C1, DL, VT);
5545   }
5546 
5547   switch (Opcode) {
5548   case ISD::FSUB:
5549     // -0.0 - undef --> undef (consistent with "fneg undef")
5550     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5551       return getUNDEF(VT);
5552     LLVM_FALLTHROUGH;
5553 
5554   case ISD::FADD:
5555   case ISD::FMUL:
5556   case ISD::FDIV:
5557   case ISD::FREM:
5558     // If both operands are undef, the result is undef. If 1 operand is undef,
5559     // the result is NaN. This should match the behavior of the IR optimizer.
5560     if (N1.isUndef() && N2.isUndef())
5561       return getUNDEF(VT);
5562     if (N1.isUndef() || N2.isUndef())
5563       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5564   }
5565   return SDValue();
5566 }
5567 
5568 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5569   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5570 
5571   // There's no need to assert on a byte-aligned pointer. All pointers are at
5572   // least byte aligned.
5573   if (A == Align(1))
5574     return Val;
5575 
5576   FoldingSetNodeID ID;
5577   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5578   ID.AddInteger(A.value());
5579 
5580   void *IP = nullptr;
5581   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5582     return SDValue(E, 0);
5583 
5584   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5585                                          Val.getValueType(), A);
5586   createOperands(N, {Val});
5587 
5588   CSEMap.InsertNode(N, IP);
5589   InsertNode(N);
5590 
5591   SDValue V(N, 0);
5592   NewSDValueDbgMsg(V, "Creating new node: ", this);
5593   return V;
5594 }
5595 
5596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5597                               SDValue N1, SDValue N2) {
5598   SDNodeFlags Flags;
5599   if (Inserter)
5600     Flags = Inserter->getFlags();
5601   return getNode(Opcode, DL, VT, N1, N2, Flags);
5602 }
5603 
5604 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5605                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5606   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5607          N2.getOpcode() != ISD::DELETED_NODE &&
5608          "Operand is DELETED_NODE!");
5609   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5610   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5611   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5612   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5613 
5614   // Canonicalize constant to RHS if commutative.
5615   if (TLI->isCommutativeBinOp(Opcode)) {
5616     if (N1C && !N2C) {
5617       std::swap(N1C, N2C);
5618       std::swap(N1, N2);
5619     } else if (N1CFP && !N2CFP) {
5620       std::swap(N1CFP, N2CFP);
5621       std::swap(N1, N2);
5622     }
5623   }
5624 
5625   switch (Opcode) {
5626   default: break;
5627   case ISD::TokenFactor:
5628     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5629            N2.getValueType() == MVT::Other && "Invalid token factor!");
5630     // Fold trivial token factors.
5631     if (N1.getOpcode() == ISD::EntryToken) return N2;
5632     if (N2.getOpcode() == ISD::EntryToken) return N1;
5633     if (N1 == N2) return N1;
5634     break;
5635   case ISD::BUILD_VECTOR: {
5636     // Attempt to simplify BUILD_VECTOR.
5637     SDValue Ops[] = {N1, N2};
5638     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5639       return V;
5640     break;
5641   }
5642   case ISD::CONCAT_VECTORS: {
5643     SDValue Ops[] = {N1, N2};
5644     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5645       return V;
5646     break;
5647   }
5648   case ISD::AND:
5649     assert(VT.isInteger() && "This operator does not apply to FP types!");
5650     assert(N1.getValueType() == N2.getValueType() &&
5651            N1.getValueType() == VT && "Binary operator types must match!");
5652     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5653     // worth handling here.
5654     if (N2C && N2C->isZero())
5655       return N2;
5656     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5657       return N1;
5658     break;
5659   case ISD::OR:
5660   case ISD::XOR:
5661   case ISD::ADD:
5662   case ISD::SUB:
5663     assert(VT.isInteger() && "This operator does not apply to FP types!");
5664     assert(N1.getValueType() == N2.getValueType() &&
5665            N1.getValueType() == VT && "Binary operator types must match!");
5666     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5667     // it's worth handling here.
5668     if (N2C && N2C->isZero())
5669       return N1;
5670     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5671         VT.getVectorElementType() == MVT::i1)
5672       return getNode(ISD::XOR, DL, VT, N1, N2);
5673     break;
5674   case ISD::MUL:
5675     assert(VT.isInteger() && "This operator does not apply to FP types!");
5676     assert(N1.getValueType() == N2.getValueType() &&
5677            N1.getValueType() == VT && "Binary operator types must match!");
5678     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5679       return getNode(ISD::AND, DL, VT, N1, N2);
5680     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5681       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5682       const APInt &N2CImm = N2C->getAPIntValue();
5683       return getVScale(DL, VT, MulImm * N2CImm);
5684     }
5685     break;
5686   case ISD::UDIV:
5687   case ISD::UREM:
5688   case ISD::MULHU:
5689   case ISD::MULHS:
5690   case ISD::SDIV:
5691   case ISD::SREM:
5692   case ISD::SADDSAT:
5693   case ISD::SSUBSAT:
5694   case ISD::UADDSAT:
5695   case ISD::USUBSAT:
5696     assert(VT.isInteger() && "This operator does not apply to FP types!");
5697     assert(N1.getValueType() == N2.getValueType() &&
5698            N1.getValueType() == VT && "Binary operator types must match!");
5699     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5700       // fold (add_sat x, y) -> (or x, y) for bool types.
5701       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5702         return getNode(ISD::OR, DL, VT, N1, N2);
5703       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5704       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5705         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5706     }
5707     break;
5708   case ISD::SMIN:
5709   case ISD::UMAX:
5710     assert(VT.isInteger() && "This operator does not apply to FP types!");
5711     assert(N1.getValueType() == N2.getValueType() &&
5712            N1.getValueType() == VT && "Binary operator types must match!");
5713     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5714       return getNode(ISD::OR, DL, VT, N1, N2);
5715     break;
5716   case ISD::SMAX:
5717   case ISD::UMIN:
5718     assert(VT.isInteger() && "This operator does not apply to FP types!");
5719     assert(N1.getValueType() == N2.getValueType() &&
5720            N1.getValueType() == VT && "Binary operator types must match!");
5721     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5722       return getNode(ISD::AND, DL, VT, N1, N2);
5723     break;
5724   case ISD::FADD:
5725   case ISD::FSUB:
5726   case ISD::FMUL:
5727   case ISD::FDIV:
5728   case ISD::FREM:
5729     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5730     assert(N1.getValueType() == N2.getValueType() &&
5731            N1.getValueType() == VT && "Binary operator types must match!");
5732     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5733       return V;
5734     break;
5735   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5736     assert(N1.getValueType() == VT &&
5737            N1.getValueType().isFloatingPoint() &&
5738            N2.getValueType().isFloatingPoint() &&
5739            "Invalid FCOPYSIGN!");
5740     break;
5741   case ISD::SHL:
5742     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5743       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5744       const APInt &ShiftImm = N2C->getAPIntValue();
5745       return getVScale(DL, VT, MulImm << ShiftImm);
5746     }
5747     LLVM_FALLTHROUGH;
5748   case ISD::SRA:
5749   case ISD::SRL:
5750     if (SDValue V = simplifyShift(N1, N2))
5751       return V;
5752     LLVM_FALLTHROUGH;
5753   case ISD::ROTL:
5754   case ISD::ROTR:
5755     assert(VT == N1.getValueType() &&
5756            "Shift operators return type must be the same as their first arg");
5757     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5758            "Shifts only work on integers");
5759     assert((!VT.isVector() || VT == N2.getValueType()) &&
5760            "Vector shift amounts must be in the same as their first arg");
5761     // Verify that the shift amount VT is big enough to hold valid shift
5762     // amounts.  This catches things like trying to shift an i1024 value by an
5763     // i8, which is easy to fall into in generic code that uses
5764     // TLI.getShiftAmount().
5765     assert(N2.getValueType().getScalarSizeInBits() >=
5766                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5767            "Invalid use of small shift amount with oversized value!");
5768 
5769     // Always fold shifts of i1 values so the code generator doesn't need to
5770     // handle them.  Since we know the size of the shift has to be less than the
5771     // size of the value, the shift/rotate count is guaranteed to be zero.
5772     if (VT == MVT::i1)
5773       return N1;
5774     if (N2C && N2C->isZero())
5775       return N1;
5776     break;
5777   case ISD::FP_ROUND:
5778     assert(VT.isFloatingPoint() &&
5779            N1.getValueType().isFloatingPoint() &&
5780            VT.bitsLE(N1.getValueType()) &&
5781            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5782            "Invalid FP_ROUND!");
5783     if (N1.getValueType() == VT) return N1;  // noop conversion.
5784     break;
5785   case ISD::AssertSext:
5786   case ISD::AssertZext: {
5787     EVT EVT = cast<VTSDNode>(N2)->getVT();
5788     assert(VT == N1.getValueType() && "Not an inreg extend!");
5789     assert(VT.isInteger() && EVT.isInteger() &&
5790            "Cannot *_EXTEND_INREG FP types");
5791     assert(!EVT.isVector() &&
5792            "AssertSExt/AssertZExt type should be the vector element type "
5793            "rather than the vector type!");
5794     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5795     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5796     break;
5797   }
5798   case ISD::SIGN_EXTEND_INREG: {
5799     EVT EVT = cast<VTSDNode>(N2)->getVT();
5800     assert(VT == N1.getValueType() && "Not an inreg extend!");
5801     assert(VT.isInteger() && EVT.isInteger() &&
5802            "Cannot *_EXTEND_INREG FP types");
5803     assert(EVT.isVector() == VT.isVector() &&
5804            "SIGN_EXTEND_INREG type should be vector iff the operand "
5805            "type is vector!");
5806     assert((!EVT.isVector() ||
5807             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5808            "Vector element counts must match in SIGN_EXTEND_INREG");
5809     assert(EVT.bitsLE(VT) && "Not extending!");
5810     if (EVT == VT) return N1;  // Not actually extending
5811 
5812     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5813       unsigned FromBits = EVT.getScalarSizeInBits();
5814       Val <<= Val.getBitWidth() - FromBits;
5815       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5816       return getConstant(Val, DL, ConstantVT);
5817     };
5818 
5819     if (N1C) {
5820       const APInt &Val = N1C->getAPIntValue();
5821       return SignExtendInReg(Val, VT);
5822     }
5823 
5824     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5825       SmallVector<SDValue, 8> Ops;
5826       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5827       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5828         SDValue Op = N1.getOperand(i);
5829         if (Op.isUndef()) {
5830           Ops.push_back(getUNDEF(OpVT));
5831           continue;
5832         }
5833         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5834         APInt Val = C->getAPIntValue();
5835         Ops.push_back(SignExtendInReg(Val, OpVT));
5836       }
5837       return getBuildVector(VT, DL, Ops);
5838     }
5839     break;
5840   }
5841   case ISD::FP_TO_SINT_SAT:
5842   case ISD::FP_TO_UINT_SAT: {
5843     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5844            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5845     assert(N1.getValueType().isVector() == VT.isVector() &&
5846            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5847            "vector!");
5848     assert((!VT.isVector() || VT.getVectorNumElements() ==
5849                                   N1.getValueType().getVectorNumElements()) &&
5850            "Vector element counts must match in FP_TO_*INT_SAT");
5851     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5852            "Type to saturate to must be a scalar.");
5853     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5854            "Not extending!");
5855     break;
5856   }
5857   case ISD::EXTRACT_VECTOR_ELT:
5858     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5859            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5860              element type of the vector.");
5861 
5862     // Extract from an undefined value or using an undefined index is undefined.
5863     if (N1.isUndef() || N2.isUndef())
5864       return getUNDEF(VT);
5865 
5866     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5867     // vectors. For scalable vectors we will provide appropriate support for
5868     // dealing with arbitrary indices.
5869     if (N2C && N1.getValueType().isFixedLengthVector() &&
5870         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5871       return getUNDEF(VT);
5872 
5873     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5874     // expanding copies of large vectors from registers. This only works for
5875     // fixed length vectors, since we need to know the exact number of
5876     // elements.
5877     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5878         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5879       unsigned Factor =
5880         N1.getOperand(0).getValueType().getVectorNumElements();
5881       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5882                      N1.getOperand(N2C->getZExtValue() / Factor),
5883                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5884     }
5885 
5886     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5887     // lowering is expanding large vector constants.
5888     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5889                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5890       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5891               N1.getValueType().isFixedLengthVector()) &&
5892              "BUILD_VECTOR used for scalable vectors");
5893       unsigned Index =
5894           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5895       SDValue Elt = N1.getOperand(Index);
5896 
5897       if (VT != Elt.getValueType())
5898         // If the vector element type is not legal, the BUILD_VECTOR operands
5899         // are promoted and implicitly truncated, and the result implicitly
5900         // extended. Make that explicit here.
5901         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5902 
5903       return Elt;
5904     }
5905 
5906     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5907     // operations are lowered to scalars.
5908     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5909       // If the indices are the same, return the inserted element else
5910       // if the indices are known different, extract the element from
5911       // the original vector.
5912       SDValue N1Op2 = N1.getOperand(2);
5913       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5914 
5915       if (N1Op2C && N2C) {
5916         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5917           if (VT == N1.getOperand(1).getValueType())
5918             return N1.getOperand(1);
5919           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5920         }
5921         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5922       }
5923     }
5924 
5925     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5926     // when vector types are scalarized and v1iX is legal.
5927     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5928     // Here we are completely ignoring the extract element index (N2),
5929     // which is fine for fixed width vectors, since any index other than 0
5930     // is undefined anyway. However, this cannot be ignored for scalable
5931     // vectors - in theory we could support this, but we don't want to do this
5932     // without a profitability check.
5933     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5934         N1.getValueType().isFixedLengthVector() &&
5935         N1.getValueType().getVectorNumElements() == 1) {
5936       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5937                      N1.getOperand(1));
5938     }
5939     break;
5940   case ISD::EXTRACT_ELEMENT:
5941     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5942     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5943            (N1.getValueType().isInteger() == VT.isInteger()) &&
5944            N1.getValueType() != VT &&
5945            "Wrong types for EXTRACT_ELEMENT!");
5946 
5947     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5948     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5949     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5950     if (N1.getOpcode() == ISD::BUILD_PAIR)
5951       return N1.getOperand(N2C->getZExtValue());
5952 
5953     // EXTRACT_ELEMENT of a constant int is also very common.
5954     if (N1C) {
5955       unsigned ElementSize = VT.getSizeInBits();
5956       unsigned Shift = ElementSize * N2C->getZExtValue();
5957       const APInt &Val = N1C->getAPIntValue();
5958       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5959     }
5960     break;
5961   case ISD::EXTRACT_SUBVECTOR: {
5962     EVT N1VT = N1.getValueType();
5963     assert(VT.isVector() && N1VT.isVector() &&
5964            "Extract subvector VTs must be vectors!");
5965     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5966            "Extract subvector VTs must have the same element type!");
5967     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5968            "Cannot extract a scalable vector from a fixed length vector!");
5969     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5970             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5971            "Extract subvector must be from larger vector to smaller vector!");
5972     assert(N2C && "Extract subvector index must be a constant");
5973     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5974             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5975                 N1VT.getVectorMinNumElements()) &&
5976            "Extract subvector overflow!");
5977     assert(N2C->getAPIntValue().getBitWidth() ==
5978                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5979            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5980 
5981     // Trivial extraction.
5982     if (VT == N1VT)
5983       return N1;
5984 
5985     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5986     if (N1.isUndef())
5987       return getUNDEF(VT);
5988 
5989     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5990     // the concat have the same type as the extract.
5991     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5992         VT == N1.getOperand(0).getValueType()) {
5993       unsigned Factor = VT.getVectorMinNumElements();
5994       return N1.getOperand(N2C->getZExtValue() / Factor);
5995     }
5996 
5997     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5998     // during shuffle legalization.
5999     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6000         VT == N1.getOperand(1).getValueType())
6001       return N1.getOperand(1);
6002     break;
6003   }
6004   }
6005 
6006   // Perform trivial constant folding.
6007   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6008     return SV;
6009 
6010   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
6011     return V;
6012 
6013   // Canonicalize an UNDEF to the RHS, even over a constant.
6014   if (N1.isUndef()) {
6015     if (TLI->isCommutativeBinOp(Opcode)) {
6016       std::swap(N1, N2);
6017     } else {
6018       switch (Opcode) {
6019       case ISD::SIGN_EXTEND_INREG:
6020       case ISD::SUB:
6021         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6022       case ISD::UDIV:
6023       case ISD::SDIV:
6024       case ISD::UREM:
6025       case ISD::SREM:
6026       case ISD::SSUBSAT:
6027       case ISD::USUBSAT:
6028         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6029       }
6030     }
6031   }
6032 
6033   // Fold a bunch of operators when the RHS is undef.
6034   if (N2.isUndef()) {
6035     switch (Opcode) {
6036     case ISD::XOR:
6037       if (N1.isUndef())
6038         // Handle undef ^ undef -> 0 special case. This is a common
6039         // idiom (misuse).
6040         return getConstant(0, DL, VT);
6041       LLVM_FALLTHROUGH;
6042     case ISD::ADD:
6043     case ISD::SUB:
6044     case ISD::UDIV:
6045     case ISD::SDIV:
6046     case ISD::UREM:
6047     case ISD::SREM:
6048       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6049     case ISD::MUL:
6050     case ISD::AND:
6051     case ISD::SSUBSAT:
6052     case ISD::USUBSAT:
6053       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6054     case ISD::OR:
6055     case ISD::SADDSAT:
6056     case ISD::UADDSAT:
6057       return getAllOnesConstant(DL, VT);
6058     }
6059   }
6060 
6061   // Memoize this node if possible.
6062   SDNode *N;
6063   SDVTList VTs = getVTList(VT);
6064   SDValue Ops[] = {N1, N2};
6065   if (VT != MVT::Glue) {
6066     FoldingSetNodeID ID;
6067     AddNodeIDNode(ID, Opcode, VTs, Ops);
6068     void *IP = nullptr;
6069     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6070       E->intersectFlagsWith(Flags);
6071       return SDValue(E, 0);
6072     }
6073 
6074     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6075     N->setFlags(Flags);
6076     createOperands(N, Ops);
6077     CSEMap.InsertNode(N, IP);
6078   } else {
6079     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6080     createOperands(N, Ops);
6081   }
6082 
6083   InsertNode(N);
6084   SDValue V = SDValue(N, 0);
6085   NewSDValueDbgMsg(V, "Creating new node: ", this);
6086   return V;
6087 }
6088 
6089 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6090                               SDValue N1, SDValue N2, SDValue N3) {
6091   SDNodeFlags Flags;
6092   if (Inserter)
6093     Flags = Inserter->getFlags();
6094   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6095 }
6096 
6097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6098                               SDValue N1, SDValue N2, SDValue N3,
6099                               const SDNodeFlags Flags) {
6100   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6101          N2.getOpcode() != ISD::DELETED_NODE &&
6102          N3.getOpcode() != ISD::DELETED_NODE &&
6103          "Operand is DELETED_NODE!");
6104   // Perform various simplifications.
6105   switch (Opcode) {
6106   case ISD::FMA: {
6107     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6108     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6109            N3.getValueType() == VT && "FMA types must match!");
6110     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6111     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6112     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6113     if (N1CFP && N2CFP && N3CFP) {
6114       APFloat  V1 = N1CFP->getValueAPF();
6115       const APFloat &V2 = N2CFP->getValueAPF();
6116       const APFloat &V3 = N3CFP->getValueAPF();
6117       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6118       return getConstantFP(V1, DL, VT);
6119     }
6120     break;
6121   }
6122   case ISD::BUILD_VECTOR: {
6123     // Attempt to simplify BUILD_VECTOR.
6124     SDValue Ops[] = {N1, N2, N3};
6125     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6126       return V;
6127     break;
6128   }
6129   case ISD::CONCAT_VECTORS: {
6130     SDValue Ops[] = {N1, N2, N3};
6131     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6132       return V;
6133     break;
6134   }
6135   case ISD::SETCC: {
6136     assert(VT.isInteger() && "SETCC result type must be an integer!");
6137     assert(N1.getValueType() == N2.getValueType() &&
6138            "SETCC operands must have the same type!");
6139     assert(VT.isVector() == N1.getValueType().isVector() &&
6140            "SETCC type should be vector iff the operand type is vector!");
6141     assert((!VT.isVector() || VT.getVectorElementCount() ==
6142                                   N1.getValueType().getVectorElementCount()) &&
6143            "SETCC vector element counts must match!");
6144     // Use FoldSetCC to simplify SETCC's.
6145     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6146       return V;
6147     // Vector constant folding.
6148     SDValue Ops[] = {N1, N2, N3};
6149     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6150       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6151       return V;
6152     }
6153     break;
6154   }
6155   case ISD::SELECT:
6156   case ISD::VSELECT:
6157     if (SDValue V = simplifySelect(N1, N2, N3))
6158       return V;
6159     break;
6160   case ISD::VECTOR_SHUFFLE:
6161     llvm_unreachable("should use getVectorShuffle constructor!");
6162   case ISD::VECTOR_SPLICE: {
6163     if (cast<ConstantSDNode>(N3)->isNullValue())
6164       return N1;
6165     break;
6166   }
6167   case ISD::INSERT_VECTOR_ELT: {
6168     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6169     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6170     // for scalable vectors where we will generate appropriate code to
6171     // deal with out-of-bounds cases correctly.
6172     if (N3C && N1.getValueType().isFixedLengthVector() &&
6173         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6174       return getUNDEF(VT);
6175 
6176     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6177     if (N3.isUndef())
6178       return getUNDEF(VT);
6179 
6180     // If the inserted element is an UNDEF, just use the input vector.
6181     if (N2.isUndef())
6182       return N1;
6183 
6184     break;
6185   }
6186   case ISD::INSERT_SUBVECTOR: {
6187     // Inserting undef into undef is still undef.
6188     if (N1.isUndef() && N2.isUndef())
6189       return getUNDEF(VT);
6190 
6191     EVT N2VT = N2.getValueType();
6192     assert(VT == N1.getValueType() &&
6193            "Dest and insert subvector source types must match!");
6194     assert(VT.isVector() && N2VT.isVector() &&
6195            "Insert subvector VTs must be vectors!");
6196     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6197            "Cannot insert a scalable vector into a fixed length vector!");
6198     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6199             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6200            "Insert subvector must be from smaller vector to larger vector!");
6201     assert(isa<ConstantSDNode>(N3) &&
6202            "Insert subvector index must be constant");
6203     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6204             (N2VT.getVectorMinNumElements() +
6205              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6206                 VT.getVectorMinNumElements()) &&
6207            "Insert subvector overflow!");
6208     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6209                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6210            "Constant index for INSERT_SUBVECTOR has an invalid size");
6211 
6212     // Trivial insertion.
6213     if (VT == N2VT)
6214       return N2;
6215 
6216     // If this is an insert of an extracted vector into an undef vector, we
6217     // can just use the input to the extract.
6218     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6219         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6220       return N2.getOperand(0);
6221     break;
6222   }
6223   case ISD::BITCAST:
6224     // Fold bit_convert nodes from a type to themselves.
6225     if (N1.getValueType() == VT)
6226       return N1;
6227     break;
6228   }
6229 
6230   // Memoize node if it doesn't produce a flag.
6231   SDNode *N;
6232   SDVTList VTs = getVTList(VT);
6233   SDValue Ops[] = {N1, N2, N3};
6234   if (VT != MVT::Glue) {
6235     FoldingSetNodeID ID;
6236     AddNodeIDNode(ID, Opcode, VTs, Ops);
6237     void *IP = nullptr;
6238     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6239       E->intersectFlagsWith(Flags);
6240       return SDValue(E, 0);
6241     }
6242 
6243     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6244     N->setFlags(Flags);
6245     createOperands(N, Ops);
6246     CSEMap.InsertNode(N, IP);
6247   } else {
6248     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6249     createOperands(N, Ops);
6250   }
6251 
6252   InsertNode(N);
6253   SDValue V = SDValue(N, 0);
6254   NewSDValueDbgMsg(V, "Creating new node: ", this);
6255   return V;
6256 }
6257 
6258 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6259                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6260   SDValue Ops[] = { N1, N2, N3, N4 };
6261   return getNode(Opcode, DL, VT, Ops);
6262 }
6263 
6264 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6265                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6266                               SDValue N5) {
6267   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6268   return getNode(Opcode, DL, VT, Ops);
6269 }
6270 
6271 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6272 /// the incoming stack arguments to be loaded from the stack.
6273 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6274   SmallVector<SDValue, 8> ArgChains;
6275 
6276   // Include the original chain at the beginning of the list. When this is
6277   // used by target LowerCall hooks, this helps legalize find the
6278   // CALLSEQ_BEGIN node.
6279   ArgChains.push_back(Chain);
6280 
6281   // Add a chain value for each stack argument.
6282   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6283        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6284     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6285       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6286         if (FI->getIndex() < 0)
6287           ArgChains.push_back(SDValue(L, 1));
6288 
6289   // Build a tokenfactor for all the chains.
6290   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6291 }
6292 
6293 /// getMemsetValue - Vectorized representation of the memset value
6294 /// operand.
6295 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6296                               const SDLoc &dl) {
6297   assert(!Value.isUndef());
6298 
6299   unsigned NumBits = VT.getScalarSizeInBits();
6300   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6301     assert(C->getAPIntValue().getBitWidth() == 8);
6302     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6303     if (VT.isInteger()) {
6304       bool IsOpaque = VT.getSizeInBits() > 64 ||
6305           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6306       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6307     }
6308     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6309                              VT);
6310   }
6311 
6312   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6313   EVT IntVT = VT.getScalarType();
6314   if (!IntVT.isInteger())
6315     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6316 
6317   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6318   if (NumBits > 8) {
6319     // Use a multiplication with 0x010101... to extend the input to the
6320     // required length.
6321     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6322     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6323                         DAG.getConstant(Magic, dl, IntVT));
6324   }
6325 
6326   if (VT != Value.getValueType() && !VT.isInteger())
6327     Value = DAG.getBitcast(VT.getScalarType(), Value);
6328   if (VT != Value.getValueType())
6329     Value = DAG.getSplatBuildVector(VT, dl, Value);
6330 
6331   return Value;
6332 }
6333 
6334 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6335 /// used when a memcpy is turned into a memset when the source is a constant
6336 /// string ptr.
6337 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6338                                   const TargetLowering &TLI,
6339                                   const ConstantDataArraySlice &Slice) {
6340   // Handle vector with all elements zero.
6341   if (Slice.Array == nullptr) {
6342     if (VT.isInteger())
6343       return DAG.getConstant(0, dl, VT);
6344     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6345       return DAG.getConstantFP(0.0, dl, VT);
6346     if (VT.isVector()) {
6347       unsigned NumElts = VT.getVectorNumElements();
6348       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6349       return DAG.getNode(ISD::BITCAST, dl, VT,
6350                          DAG.getConstant(0, dl,
6351                                          EVT::getVectorVT(*DAG.getContext(),
6352                                                           EltVT, NumElts)));
6353     }
6354     llvm_unreachable("Expected type!");
6355   }
6356 
6357   assert(!VT.isVector() && "Can't handle vector type here!");
6358   unsigned NumVTBits = VT.getSizeInBits();
6359   unsigned NumVTBytes = NumVTBits / 8;
6360   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6361 
6362   APInt Val(NumVTBits, 0);
6363   if (DAG.getDataLayout().isLittleEndian()) {
6364     for (unsigned i = 0; i != NumBytes; ++i)
6365       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6366   } else {
6367     for (unsigned i = 0; i != NumBytes; ++i)
6368       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6369   }
6370 
6371   // If the "cost" of materializing the integer immediate is less than the cost
6372   // of a load, then it is cost effective to turn the load into the immediate.
6373   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6374   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6375     return DAG.getConstant(Val, dl, VT);
6376   return SDValue(nullptr, 0);
6377 }
6378 
6379 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6380                                            const SDLoc &DL,
6381                                            const SDNodeFlags Flags) {
6382   EVT VT = Base.getValueType();
6383   SDValue Index;
6384 
6385   if (Offset.isScalable())
6386     Index = getVScale(DL, Base.getValueType(),
6387                       APInt(Base.getValueSizeInBits().getFixedSize(),
6388                             Offset.getKnownMinSize()));
6389   else
6390     Index = getConstant(Offset.getFixedSize(), DL, VT);
6391 
6392   return getMemBasePlusOffset(Base, Index, DL, Flags);
6393 }
6394 
6395 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6396                                            const SDLoc &DL,
6397                                            const SDNodeFlags Flags) {
6398   assert(Offset.getValueType().isInteger());
6399   EVT BasePtrVT = Ptr.getValueType();
6400   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6401 }
6402 
6403 /// Returns true if memcpy source is constant data.
6404 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6405   uint64_t SrcDelta = 0;
6406   GlobalAddressSDNode *G = nullptr;
6407   if (Src.getOpcode() == ISD::GlobalAddress)
6408     G = cast<GlobalAddressSDNode>(Src);
6409   else if (Src.getOpcode() == ISD::ADD &&
6410            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6411            Src.getOperand(1).getOpcode() == ISD::Constant) {
6412     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6413     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6414   }
6415   if (!G)
6416     return false;
6417 
6418   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6419                                   SrcDelta + G->getOffset());
6420 }
6421 
6422 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6423                                       SelectionDAG &DAG) {
6424   // On Darwin, -Os means optimize for size without hurting performance, so
6425   // only really optimize for size when -Oz (MinSize) is used.
6426   if (MF.getTarget().getTargetTriple().isOSDarwin())
6427     return MF.getFunction().hasMinSize();
6428   return DAG.shouldOptForSize();
6429 }
6430 
6431 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6432                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6433                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6434                           SmallVector<SDValue, 16> &OutStoreChains) {
6435   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6436   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6437   SmallVector<SDValue, 16> GluedLoadChains;
6438   for (unsigned i = From; i < To; ++i) {
6439     OutChains.push_back(OutLoadChains[i]);
6440     GluedLoadChains.push_back(OutLoadChains[i]);
6441   }
6442 
6443   // Chain for all loads.
6444   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6445                                   GluedLoadChains);
6446 
6447   for (unsigned i = From; i < To; ++i) {
6448     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6449     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6450                                   ST->getBasePtr(), ST->getMemoryVT(),
6451                                   ST->getMemOperand());
6452     OutChains.push_back(NewStore);
6453   }
6454 }
6455 
6456 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6457                                        SDValue Chain, SDValue Dst, SDValue Src,
6458                                        uint64_t Size, Align Alignment,
6459                                        bool isVol, bool AlwaysInline,
6460                                        MachinePointerInfo DstPtrInfo,
6461                                        MachinePointerInfo SrcPtrInfo,
6462                                        const AAMDNodes &AAInfo) {
6463   // Turn a memcpy of undef to nop.
6464   // FIXME: We need to honor volatile even is Src is undef.
6465   if (Src.isUndef())
6466     return Chain;
6467 
6468   // Expand memcpy to a series of load and store ops if the size operand falls
6469   // below a certain threshold.
6470   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6471   // rather than maybe a humongous number of loads and stores.
6472   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6473   const DataLayout &DL = DAG.getDataLayout();
6474   LLVMContext &C = *DAG.getContext();
6475   std::vector<EVT> MemOps;
6476   bool DstAlignCanChange = false;
6477   MachineFunction &MF = DAG.getMachineFunction();
6478   MachineFrameInfo &MFI = MF.getFrameInfo();
6479   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6480   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6481   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6482     DstAlignCanChange = true;
6483   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6484   if (!SrcAlign || Alignment > *SrcAlign)
6485     SrcAlign = Alignment;
6486   assert(SrcAlign && "SrcAlign must be set");
6487   ConstantDataArraySlice Slice;
6488   // If marked as volatile, perform a copy even when marked as constant.
6489   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6490   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6491   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6492   const MemOp Op = isZeroConstant
6493                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6494                                     /*IsZeroMemset*/ true, isVol)
6495                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6496                                      *SrcAlign, isVol, CopyFromConstant);
6497   if (!TLI.findOptimalMemOpLowering(
6498           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6499           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6500     return SDValue();
6501 
6502   if (DstAlignCanChange) {
6503     Type *Ty = MemOps[0].getTypeForEVT(C);
6504     Align NewAlign = DL.getABITypeAlign(Ty);
6505 
6506     // Don't promote to an alignment that would require dynamic stack
6507     // realignment.
6508     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6509     if (!TRI->hasStackRealignment(MF))
6510       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6511         NewAlign = NewAlign / 2;
6512 
6513     if (NewAlign > Alignment) {
6514       // Give the stack frame object a larger alignment if needed.
6515       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6516         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6517       Alignment = NewAlign;
6518     }
6519   }
6520 
6521   // Prepare AAInfo for loads/stores after lowering this memcpy.
6522   AAMDNodes NewAAInfo = AAInfo;
6523   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6524 
6525   MachineMemOperand::Flags MMOFlags =
6526       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6527   SmallVector<SDValue, 16> OutLoadChains;
6528   SmallVector<SDValue, 16> OutStoreChains;
6529   SmallVector<SDValue, 32> OutChains;
6530   unsigned NumMemOps = MemOps.size();
6531   uint64_t SrcOff = 0, DstOff = 0;
6532   for (unsigned i = 0; i != NumMemOps; ++i) {
6533     EVT VT = MemOps[i];
6534     unsigned VTSize = VT.getSizeInBits() / 8;
6535     SDValue Value, Store;
6536 
6537     if (VTSize > Size) {
6538       // Issuing an unaligned load / store pair  that overlaps with the previous
6539       // pair. Adjust the offset accordingly.
6540       assert(i == NumMemOps-1 && i != 0);
6541       SrcOff -= VTSize - Size;
6542       DstOff -= VTSize - Size;
6543     }
6544 
6545     if (CopyFromConstant &&
6546         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6547       // It's unlikely a store of a vector immediate can be done in a single
6548       // instruction. It would require a load from a constantpool first.
6549       // We only handle zero vectors here.
6550       // FIXME: Handle other cases where store of vector immediate is done in
6551       // a single instruction.
6552       ConstantDataArraySlice SubSlice;
6553       if (SrcOff < Slice.Length) {
6554         SubSlice = Slice;
6555         SubSlice.move(SrcOff);
6556       } else {
6557         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6558         SubSlice.Array = nullptr;
6559         SubSlice.Offset = 0;
6560         SubSlice.Length = VTSize;
6561       }
6562       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6563       if (Value.getNode()) {
6564         Store = DAG.getStore(
6565             Chain, dl, Value,
6566             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6567             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6568         OutChains.push_back(Store);
6569       }
6570     }
6571 
6572     if (!Store.getNode()) {
6573       // The type might not be legal for the target.  This should only happen
6574       // if the type is smaller than a legal type, as on PPC, so the right
6575       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6576       // to Load/Store if NVT==VT.
6577       // FIXME does the case above also need this?
6578       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6579       assert(NVT.bitsGE(VT));
6580 
6581       bool isDereferenceable =
6582         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6583       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6584       if (isDereferenceable)
6585         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6586 
6587       Value = DAG.getExtLoad(
6588           ISD::EXTLOAD, dl, NVT, Chain,
6589           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6590           SrcPtrInfo.getWithOffset(SrcOff), VT,
6591           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6592       OutLoadChains.push_back(Value.getValue(1));
6593 
6594       Store = DAG.getTruncStore(
6595           Chain, dl, Value,
6596           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6597           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6598       OutStoreChains.push_back(Store);
6599     }
6600     SrcOff += VTSize;
6601     DstOff += VTSize;
6602     Size -= VTSize;
6603   }
6604 
6605   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6606                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6607   unsigned NumLdStInMemcpy = OutStoreChains.size();
6608 
6609   if (NumLdStInMemcpy) {
6610     // It may be that memcpy might be converted to memset if it's memcpy
6611     // of constants. In such a case, we won't have loads and stores, but
6612     // just stores. In the absence of loads, there is nothing to gang up.
6613     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6614       // If target does not care, just leave as it.
6615       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6616         OutChains.push_back(OutLoadChains[i]);
6617         OutChains.push_back(OutStoreChains[i]);
6618       }
6619     } else {
6620       // Ld/St less than/equal limit set by target.
6621       if (NumLdStInMemcpy <= GluedLdStLimit) {
6622           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6623                                         NumLdStInMemcpy, OutLoadChains,
6624                                         OutStoreChains);
6625       } else {
6626         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6627         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6628         unsigned GlueIter = 0;
6629 
6630         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6631           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6632           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6633 
6634           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6635                                        OutLoadChains, OutStoreChains);
6636           GlueIter += GluedLdStLimit;
6637         }
6638 
6639         // Residual ld/st.
6640         if (RemainingLdStInMemcpy) {
6641           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6642                                         RemainingLdStInMemcpy, OutLoadChains,
6643                                         OutStoreChains);
6644         }
6645       }
6646     }
6647   }
6648   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6649 }
6650 
6651 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6652                                         SDValue Chain, SDValue Dst, SDValue Src,
6653                                         uint64_t Size, Align Alignment,
6654                                         bool isVol, bool AlwaysInline,
6655                                         MachinePointerInfo DstPtrInfo,
6656                                         MachinePointerInfo SrcPtrInfo,
6657                                         const AAMDNodes &AAInfo) {
6658   // Turn a memmove of undef to nop.
6659   // FIXME: We need to honor volatile even is Src is undef.
6660   if (Src.isUndef())
6661     return Chain;
6662 
6663   // Expand memmove to a series of load and store ops if the size operand falls
6664   // below a certain threshold.
6665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6666   const DataLayout &DL = DAG.getDataLayout();
6667   LLVMContext &C = *DAG.getContext();
6668   std::vector<EVT> MemOps;
6669   bool DstAlignCanChange = false;
6670   MachineFunction &MF = DAG.getMachineFunction();
6671   MachineFrameInfo &MFI = MF.getFrameInfo();
6672   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6673   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6674   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6675     DstAlignCanChange = true;
6676   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6677   if (!SrcAlign || Alignment > *SrcAlign)
6678     SrcAlign = Alignment;
6679   assert(SrcAlign && "SrcAlign must be set");
6680   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6681   if (!TLI.findOptimalMemOpLowering(
6682           MemOps, Limit,
6683           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6684                       /*IsVolatile*/ true),
6685           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6686           MF.getFunction().getAttributes()))
6687     return SDValue();
6688 
6689   if (DstAlignCanChange) {
6690     Type *Ty = MemOps[0].getTypeForEVT(C);
6691     Align NewAlign = DL.getABITypeAlign(Ty);
6692     if (NewAlign > Alignment) {
6693       // Give the stack frame object a larger alignment if needed.
6694       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6695         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6696       Alignment = NewAlign;
6697     }
6698   }
6699 
6700   // Prepare AAInfo for loads/stores after lowering this memmove.
6701   AAMDNodes NewAAInfo = AAInfo;
6702   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6703 
6704   MachineMemOperand::Flags MMOFlags =
6705       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6706   uint64_t SrcOff = 0, DstOff = 0;
6707   SmallVector<SDValue, 8> LoadValues;
6708   SmallVector<SDValue, 8> LoadChains;
6709   SmallVector<SDValue, 8> OutChains;
6710   unsigned NumMemOps = MemOps.size();
6711   for (unsigned i = 0; i < NumMemOps; i++) {
6712     EVT VT = MemOps[i];
6713     unsigned VTSize = VT.getSizeInBits() / 8;
6714     SDValue Value;
6715 
6716     bool isDereferenceable =
6717       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6718     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6719     if (isDereferenceable)
6720       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6721 
6722     Value = DAG.getLoad(
6723         VT, dl, Chain,
6724         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6725         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6726     LoadValues.push_back(Value);
6727     LoadChains.push_back(Value.getValue(1));
6728     SrcOff += VTSize;
6729   }
6730   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6731   OutChains.clear();
6732   for (unsigned i = 0; i < NumMemOps; i++) {
6733     EVT VT = MemOps[i];
6734     unsigned VTSize = VT.getSizeInBits() / 8;
6735     SDValue Store;
6736 
6737     Store = DAG.getStore(
6738         Chain, dl, LoadValues[i],
6739         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6740         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6741     OutChains.push_back(Store);
6742     DstOff += VTSize;
6743   }
6744 
6745   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6746 }
6747 
6748 /// Lower the call to 'memset' intrinsic function into a series of store
6749 /// operations.
6750 ///
6751 /// \param DAG Selection DAG where lowered code is placed.
6752 /// \param dl Link to corresponding IR location.
6753 /// \param Chain Control flow dependency.
6754 /// \param Dst Pointer to destination memory location.
6755 /// \param Src Value of byte to write into the memory.
6756 /// \param Size Number of bytes to write.
6757 /// \param Alignment Alignment of the destination in bytes.
6758 /// \param isVol True if destination is volatile.
6759 /// \param DstPtrInfo IR information on the memory pointer.
6760 /// \returns New head in the control flow, if lowering was successful, empty
6761 /// SDValue otherwise.
6762 ///
6763 /// The function tries to replace 'llvm.memset' intrinsic with several store
6764 /// operations and value calculation code. This is usually profitable for small
6765 /// memory size.
6766 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6767                                SDValue Chain, SDValue Dst, SDValue Src,
6768                                uint64_t Size, Align Alignment, bool isVol,
6769                                MachinePointerInfo DstPtrInfo,
6770                                const AAMDNodes &AAInfo) {
6771   // Turn a memset of undef to nop.
6772   // FIXME: We need to honor volatile even is Src is undef.
6773   if (Src.isUndef())
6774     return Chain;
6775 
6776   // Expand memset to a series of load/store ops if the size operand
6777   // falls below a certain threshold.
6778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6779   std::vector<EVT> MemOps;
6780   bool DstAlignCanChange = false;
6781   MachineFunction &MF = DAG.getMachineFunction();
6782   MachineFrameInfo &MFI = MF.getFrameInfo();
6783   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6784   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6785   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6786     DstAlignCanChange = true;
6787   bool IsZeroVal =
6788       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6789   if (!TLI.findOptimalMemOpLowering(
6790           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6791           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6792           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6793     return SDValue();
6794 
6795   if (DstAlignCanChange) {
6796     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6797     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6798     if (NewAlign > Alignment) {
6799       // Give the stack frame object a larger alignment if needed.
6800       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6801         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6802       Alignment = NewAlign;
6803     }
6804   }
6805 
6806   SmallVector<SDValue, 8> OutChains;
6807   uint64_t DstOff = 0;
6808   unsigned NumMemOps = MemOps.size();
6809 
6810   // Find the largest store and generate the bit pattern for it.
6811   EVT LargestVT = MemOps[0];
6812   for (unsigned i = 1; i < NumMemOps; i++)
6813     if (MemOps[i].bitsGT(LargestVT))
6814       LargestVT = MemOps[i];
6815   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6816 
6817   // Prepare AAInfo for loads/stores after lowering this memset.
6818   AAMDNodes NewAAInfo = AAInfo;
6819   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6820 
6821   for (unsigned i = 0; i < NumMemOps; i++) {
6822     EVT VT = MemOps[i];
6823     unsigned VTSize = VT.getSizeInBits() / 8;
6824     if (VTSize > Size) {
6825       // Issuing an unaligned load / store pair  that overlaps with the previous
6826       // pair. Adjust the offset accordingly.
6827       assert(i == NumMemOps-1 && i != 0);
6828       DstOff -= VTSize - Size;
6829     }
6830 
6831     // If this store is smaller than the largest store see whether we can get
6832     // the smaller value for free with a truncate.
6833     SDValue Value = MemSetValue;
6834     if (VT.bitsLT(LargestVT)) {
6835       if (!LargestVT.isVector() && !VT.isVector() &&
6836           TLI.isTruncateFree(LargestVT, VT))
6837         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6838       else
6839         Value = getMemsetValue(Src, VT, DAG, dl);
6840     }
6841     assert(Value.getValueType() == VT && "Value with wrong type.");
6842     SDValue Store = DAG.getStore(
6843         Chain, dl, Value,
6844         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6845         DstPtrInfo.getWithOffset(DstOff), Alignment,
6846         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6847         NewAAInfo);
6848     OutChains.push_back(Store);
6849     DstOff += VT.getSizeInBits() / 8;
6850     Size -= VTSize;
6851   }
6852 
6853   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6854 }
6855 
6856 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6857                                             unsigned AS) {
6858   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6859   // pointer operands can be losslessly bitcasted to pointers of address space 0
6860   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6861     report_fatal_error("cannot lower memory intrinsic in address space " +
6862                        Twine(AS));
6863   }
6864 }
6865 
6866 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6867                                 SDValue Src, SDValue Size, Align Alignment,
6868                                 bool isVol, bool AlwaysInline, bool isTailCall,
6869                                 MachinePointerInfo DstPtrInfo,
6870                                 MachinePointerInfo SrcPtrInfo,
6871                                 const AAMDNodes &AAInfo) {
6872   // Check to see if we should lower the memcpy to loads and stores first.
6873   // For cases within the target-specified limits, this is the best choice.
6874   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6875   if (ConstantSize) {
6876     // Memcpy with size zero? Just return the original chain.
6877     if (ConstantSize->isZero())
6878       return Chain;
6879 
6880     SDValue Result = getMemcpyLoadsAndStores(
6881         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6882         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6883     if (Result.getNode())
6884       return Result;
6885   }
6886 
6887   // Then check to see if we should lower the memcpy with target-specific
6888   // code. If the target chooses to do this, this is the next best.
6889   if (TSI) {
6890     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6891         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6892         DstPtrInfo, SrcPtrInfo);
6893     if (Result.getNode())
6894       return Result;
6895   }
6896 
6897   // If we really need inline code and the target declined to provide it,
6898   // use a (potentially long) sequence of loads and stores.
6899   if (AlwaysInline) {
6900     assert(ConstantSize && "AlwaysInline requires a constant size!");
6901     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6902                                    ConstantSize->getZExtValue(), Alignment,
6903                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6904   }
6905 
6906   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6907   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6908 
6909   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6910   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6911   // respect volatile, so they may do things like read or write memory
6912   // beyond the given memory regions. But fixing this isn't easy, and most
6913   // people don't care.
6914 
6915   // Emit a library call.
6916   TargetLowering::ArgListTy Args;
6917   TargetLowering::ArgListEntry Entry;
6918   Entry.Ty = Type::getInt8PtrTy(*getContext());
6919   Entry.Node = Dst; Args.push_back(Entry);
6920   Entry.Node = Src; Args.push_back(Entry);
6921 
6922   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6923   Entry.Node = Size; Args.push_back(Entry);
6924   // FIXME: pass in SDLoc
6925   TargetLowering::CallLoweringInfo CLI(*this);
6926   CLI.setDebugLoc(dl)
6927       .setChain(Chain)
6928       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6929                     Dst.getValueType().getTypeForEVT(*getContext()),
6930                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6931                                       TLI->getPointerTy(getDataLayout())),
6932                     std::move(Args))
6933       .setDiscardResult()
6934       .setTailCall(isTailCall);
6935 
6936   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6937   return CallResult.second;
6938 }
6939 
6940 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6941                                       SDValue Dst, unsigned DstAlign,
6942                                       SDValue Src, unsigned SrcAlign,
6943                                       SDValue Size, Type *SizeTy,
6944                                       unsigned ElemSz, bool isTailCall,
6945                                       MachinePointerInfo DstPtrInfo,
6946                                       MachinePointerInfo SrcPtrInfo) {
6947   // Emit a library call.
6948   TargetLowering::ArgListTy Args;
6949   TargetLowering::ArgListEntry Entry;
6950   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6951   Entry.Node = Dst;
6952   Args.push_back(Entry);
6953 
6954   Entry.Node = Src;
6955   Args.push_back(Entry);
6956 
6957   Entry.Ty = SizeTy;
6958   Entry.Node = Size;
6959   Args.push_back(Entry);
6960 
6961   RTLIB::Libcall LibraryCall =
6962       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6963   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6964     report_fatal_error("Unsupported element size");
6965 
6966   TargetLowering::CallLoweringInfo CLI(*this);
6967   CLI.setDebugLoc(dl)
6968       .setChain(Chain)
6969       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6970                     Type::getVoidTy(*getContext()),
6971                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6972                                       TLI->getPointerTy(getDataLayout())),
6973                     std::move(Args))
6974       .setDiscardResult()
6975       .setTailCall(isTailCall);
6976 
6977   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6978   return CallResult.second;
6979 }
6980 
6981 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6982                                  SDValue Src, SDValue Size, Align Alignment,
6983                                  bool isVol, bool isTailCall,
6984                                  MachinePointerInfo DstPtrInfo,
6985                                  MachinePointerInfo SrcPtrInfo,
6986                                  const AAMDNodes &AAInfo) {
6987   // Check to see if we should lower the memmove to loads and stores first.
6988   // For cases within the target-specified limits, this is the best choice.
6989   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6990   if (ConstantSize) {
6991     // Memmove with size zero? Just return the original chain.
6992     if (ConstantSize->isZero())
6993       return Chain;
6994 
6995     SDValue Result = getMemmoveLoadsAndStores(
6996         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6997         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6998     if (Result.getNode())
6999       return Result;
7000   }
7001 
7002   // Then check to see if we should lower the memmove with target-specific
7003   // code. If the target chooses to do this, this is the next best.
7004   if (TSI) {
7005     SDValue Result =
7006         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7007                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7008     if (Result.getNode())
7009       return Result;
7010   }
7011 
7012   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7013   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7014 
7015   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7016   // not be safe.  See memcpy above for more details.
7017 
7018   // Emit a library call.
7019   TargetLowering::ArgListTy Args;
7020   TargetLowering::ArgListEntry Entry;
7021   Entry.Ty = Type::getInt8PtrTy(*getContext());
7022   Entry.Node = Dst; Args.push_back(Entry);
7023   Entry.Node = Src; Args.push_back(Entry);
7024 
7025   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7026   Entry.Node = Size; Args.push_back(Entry);
7027   // FIXME:  pass in SDLoc
7028   TargetLowering::CallLoweringInfo CLI(*this);
7029   CLI.setDebugLoc(dl)
7030       .setChain(Chain)
7031       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7032                     Dst.getValueType().getTypeForEVT(*getContext()),
7033                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7034                                       TLI->getPointerTy(getDataLayout())),
7035                     std::move(Args))
7036       .setDiscardResult()
7037       .setTailCall(isTailCall);
7038 
7039   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7040   return CallResult.second;
7041 }
7042 
7043 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7044                                        SDValue Dst, unsigned DstAlign,
7045                                        SDValue Src, unsigned SrcAlign,
7046                                        SDValue Size, Type *SizeTy,
7047                                        unsigned ElemSz, bool isTailCall,
7048                                        MachinePointerInfo DstPtrInfo,
7049                                        MachinePointerInfo SrcPtrInfo) {
7050   // Emit a library call.
7051   TargetLowering::ArgListTy Args;
7052   TargetLowering::ArgListEntry Entry;
7053   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7054   Entry.Node = Dst;
7055   Args.push_back(Entry);
7056 
7057   Entry.Node = Src;
7058   Args.push_back(Entry);
7059 
7060   Entry.Ty = SizeTy;
7061   Entry.Node = Size;
7062   Args.push_back(Entry);
7063 
7064   RTLIB::Libcall LibraryCall =
7065       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7066   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7067     report_fatal_error("Unsupported element size");
7068 
7069   TargetLowering::CallLoweringInfo CLI(*this);
7070   CLI.setDebugLoc(dl)
7071       .setChain(Chain)
7072       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7073                     Type::getVoidTy(*getContext()),
7074                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7075                                       TLI->getPointerTy(getDataLayout())),
7076                     std::move(Args))
7077       .setDiscardResult()
7078       .setTailCall(isTailCall);
7079 
7080   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7081   return CallResult.second;
7082 }
7083 
7084 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7085                                 SDValue Src, SDValue Size, Align Alignment,
7086                                 bool isVol, bool isTailCall,
7087                                 MachinePointerInfo DstPtrInfo,
7088                                 const AAMDNodes &AAInfo) {
7089   // Check to see if we should lower the memset to stores first.
7090   // For cases within the target-specified limits, this is the best choice.
7091   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7092   if (ConstantSize) {
7093     // Memset with size zero? Just return the original chain.
7094     if (ConstantSize->isZero())
7095       return Chain;
7096 
7097     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7098                                      ConstantSize->getZExtValue(), Alignment,
7099                                      isVol, DstPtrInfo, AAInfo);
7100 
7101     if (Result.getNode())
7102       return Result;
7103   }
7104 
7105   // Then check to see if we should lower the memset with target-specific
7106   // code. If the target chooses to do this, this is the next best.
7107   if (TSI) {
7108     SDValue Result = TSI->EmitTargetCodeForMemset(
7109         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7110     if (Result.getNode())
7111       return Result;
7112   }
7113 
7114   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7115 
7116   // Emit a library call.
7117   TargetLowering::ArgListTy Args;
7118   TargetLowering::ArgListEntry Entry;
7119   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7120   Args.push_back(Entry);
7121   Entry.Node = Src;
7122   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7123   Args.push_back(Entry);
7124   Entry.Node = Size;
7125   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7126   Args.push_back(Entry);
7127 
7128   // FIXME: pass in SDLoc
7129   TargetLowering::CallLoweringInfo CLI(*this);
7130   CLI.setDebugLoc(dl)
7131       .setChain(Chain)
7132       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7133                     Dst.getValueType().getTypeForEVT(*getContext()),
7134                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7135                                       TLI->getPointerTy(getDataLayout())),
7136                     std::move(Args))
7137       .setDiscardResult()
7138       .setTailCall(isTailCall);
7139 
7140   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7141   return CallResult.second;
7142 }
7143 
7144 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7145                                       SDValue Dst, unsigned DstAlign,
7146                                       SDValue Value, SDValue Size, Type *SizeTy,
7147                                       unsigned ElemSz, bool isTailCall,
7148                                       MachinePointerInfo DstPtrInfo) {
7149   // Emit a library call.
7150   TargetLowering::ArgListTy Args;
7151   TargetLowering::ArgListEntry Entry;
7152   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7153   Entry.Node = Dst;
7154   Args.push_back(Entry);
7155 
7156   Entry.Ty = Type::getInt8Ty(*getContext());
7157   Entry.Node = Value;
7158   Args.push_back(Entry);
7159 
7160   Entry.Ty = SizeTy;
7161   Entry.Node = Size;
7162   Args.push_back(Entry);
7163 
7164   RTLIB::Libcall LibraryCall =
7165       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7166   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7167     report_fatal_error("Unsupported element size");
7168 
7169   TargetLowering::CallLoweringInfo CLI(*this);
7170   CLI.setDebugLoc(dl)
7171       .setChain(Chain)
7172       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7173                     Type::getVoidTy(*getContext()),
7174                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7175                                       TLI->getPointerTy(getDataLayout())),
7176                     std::move(Args))
7177       .setDiscardResult()
7178       .setTailCall(isTailCall);
7179 
7180   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7181   return CallResult.second;
7182 }
7183 
7184 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7185                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7186                                 MachineMemOperand *MMO) {
7187   FoldingSetNodeID ID;
7188   ID.AddInteger(MemVT.getRawBits());
7189   AddNodeIDNode(ID, Opcode, VTList, Ops);
7190   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7191   void* IP = nullptr;
7192   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7193     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7194     return SDValue(E, 0);
7195   }
7196 
7197   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7198                                     VTList, MemVT, MMO);
7199   createOperands(N, Ops);
7200 
7201   CSEMap.InsertNode(N, IP);
7202   InsertNode(N);
7203   return SDValue(N, 0);
7204 }
7205 
7206 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7207                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7208                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7209                                        MachineMemOperand *MMO) {
7210   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7211          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7212   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7213 
7214   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7215   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7216 }
7217 
7218 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7219                                 SDValue Chain, SDValue Ptr, SDValue Val,
7220                                 MachineMemOperand *MMO) {
7221   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7222           Opcode == ISD::ATOMIC_LOAD_SUB ||
7223           Opcode == ISD::ATOMIC_LOAD_AND ||
7224           Opcode == ISD::ATOMIC_LOAD_CLR ||
7225           Opcode == ISD::ATOMIC_LOAD_OR ||
7226           Opcode == ISD::ATOMIC_LOAD_XOR ||
7227           Opcode == ISD::ATOMIC_LOAD_NAND ||
7228           Opcode == ISD::ATOMIC_LOAD_MIN ||
7229           Opcode == ISD::ATOMIC_LOAD_MAX ||
7230           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7231           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7232           Opcode == ISD::ATOMIC_LOAD_FADD ||
7233           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7234           Opcode == ISD::ATOMIC_SWAP ||
7235           Opcode == ISD::ATOMIC_STORE) &&
7236          "Invalid Atomic Op");
7237 
7238   EVT VT = Val.getValueType();
7239 
7240   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7241                                                getVTList(VT, MVT::Other);
7242   SDValue Ops[] = {Chain, Ptr, Val};
7243   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7244 }
7245 
7246 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7247                                 EVT VT, SDValue Chain, SDValue Ptr,
7248                                 MachineMemOperand *MMO) {
7249   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7250 
7251   SDVTList VTs = getVTList(VT, MVT::Other);
7252   SDValue Ops[] = {Chain, Ptr};
7253   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7254 }
7255 
7256 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7257 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7258   if (Ops.size() == 1)
7259     return Ops[0];
7260 
7261   SmallVector<EVT, 4> VTs;
7262   VTs.reserve(Ops.size());
7263   for (const SDValue &Op : Ops)
7264     VTs.push_back(Op.getValueType());
7265   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7266 }
7267 
7268 SDValue SelectionDAG::getMemIntrinsicNode(
7269     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7270     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7271     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7272   if (!Size && MemVT.isScalableVector())
7273     Size = MemoryLocation::UnknownSize;
7274   else if (!Size)
7275     Size = MemVT.getStoreSize();
7276 
7277   MachineFunction &MF = getMachineFunction();
7278   MachineMemOperand *MMO =
7279       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7280 
7281   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7282 }
7283 
7284 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7285                                           SDVTList VTList,
7286                                           ArrayRef<SDValue> Ops, EVT MemVT,
7287                                           MachineMemOperand *MMO) {
7288   assert((Opcode == ISD::INTRINSIC_VOID ||
7289           Opcode == ISD::INTRINSIC_W_CHAIN ||
7290           Opcode == ISD::PREFETCH ||
7291           ((int)Opcode <= std::numeric_limits<int>::max() &&
7292            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7293          "Opcode is not a memory-accessing opcode!");
7294 
7295   // Memoize the node unless it returns a flag.
7296   MemIntrinsicSDNode *N;
7297   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7298     FoldingSetNodeID ID;
7299     AddNodeIDNode(ID, Opcode, VTList, Ops);
7300     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7301         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7302     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7303     void *IP = nullptr;
7304     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7305       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7306       return SDValue(E, 0);
7307     }
7308 
7309     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7310                                       VTList, MemVT, MMO);
7311     createOperands(N, Ops);
7312 
7313   CSEMap.InsertNode(N, IP);
7314   } else {
7315     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7316                                       VTList, MemVT, MMO);
7317     createOperands(N, Ops);
7318   }
7319   InsertNode(N);
7320   SDValue V(N, 0);
7321   NewSDValueDbgMsg(V, "Creating new node: ", this);
7322   return V;
7323 }
7324 
7325 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7326                                       SDValue Chain, int FrameIndex,
7327                                       int64_t Size, int64_t Offset) {
7328   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7329   const auto VTs = getVTList(MVT::Other);
7330   SDValue Ops[2] = {
7331       Chain,
7332       getFrameIndex(FrameIndex,
7333                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7334                     true)};
7335 
7336   FoldingSetNodeID ID;
7337   AddNodeIDNode(ID, Opcode, VTs, Ops);
7338   ID.AddInteger(FrameIndex);
7339   ID.AddInteger(Size);
7340   ID.AddInteger(Offset);
7341   void *IP = nullptr;
7342   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7343     return SDValue(E, 0);
7344 
7345   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7346       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7347   createOperands(N, Ops);
7348   CSEMap.InsertNode(N, IP);
7349   InsertNode(N);
7350   SDValue V(N, 0);
7351   NewSDValueDbgMsg(V, "Creating new node: ", this);
7352   return V;
7353 }
7354 
7355 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7356                                          uint64_t Guid, uint64_t Index,
7357                                          uint32_t Attr) {
7358   const unsigned Opcode = ISD::PSEUDO_PROBE;
7359   const auto VTs = getVTList(MVT::Other);
7360   SDValue Ops[] = {Chain};
7361   FoldingSetNodeID ID;
7362   AddNodeIDNode(ID, Opcode, VTs, Ops);
7363   ID.AddInteger(Guid);
7364   ID.AddInteger(Index);
7365   void *IP = nullptr;
7366   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7367     return SDValue(E, 0);
7368 
7369   auto *N = newSDNode<PseudoProbeSDNode>(
7370       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7371   createOperands(N, Ops);
7372   CSEMap.InsertNode(N, IP);
7373   InsertNode(N);
7374   SDValue V(N, 0);
7375   NewSDValueDbgMsg(V, "Creating new node: ", this);
7376   return V;
7377 }
7378 
7379 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7380 /// MachinePointerInfo record from it.  This is particularly useful because the
7381 /// code generator has many cases where it doesn't bother passing in a
7382 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7383 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7384                                            SelectionDAG &DAG, SDValue Ptr,
7385                                            int64_t Offset = 0) {
7386   // If this is FI+Offset, we can model it.
7387   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7388     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7389                                              FI->getIndex(), Offset);
7390 
7391   // If this is (FI+Offset1)+Offset2, we can model it.
7392   if (Ptr.getOpcode() != ISD::ADD ||
7393       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7394       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7395     return Info;
7396 
7397   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7398   return MachinePointerInfo::getFixedStack(
7399       DAG.getMachineFunction(), FI,
7400       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7401 }
7402 
7403 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7404 /// MachinePointerInfo record from it.  This is particularly useful because the
7405 /// code generator has many cases where it doesn't bother passing in a
7406 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7407 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7408                                            SelectionDAG &DAG, SDValue Ptr,
7409                                            SDValue OffsetOp) {
7410   // If the 'Offset' value isn't a constant, we can't handle this.
7411   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7412     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7413   if (OffsetOp.isUndef())
7414     return InferPointerInfo(Info, DAG, Ptr);
7415   return Info;
7416 }
7417 
7418 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7419                               EVT VT, const SDLoc &dl, SDValue Chain,
7420                               SDValue Ptr, SDValue Offset,
7421                               MachinePointerInfo PtrInfo, EVT MemVT,
7422                               Align Alignment,
7423                               MachineMemOperand::Flags MMOFlags,
7424                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7425   assert(Chain.getValueType() == MVT::Other &&
7426         "Invalid chain type");
7427 
7428   MMOFlags |= MachineMemOperand::MOLoad;
7429   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7430   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7431   // clients.
7432   if (PtrInfo.V.isNull())
7433     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7434 
7435   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7436   MachineFunction &MF = getMachineFunction();
7437   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7438                                                    Alignment, AAInfo, Ranges);
7439   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7440 }
7441 
7442 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7443                               EVT VT, const SDLoc &dl, SDValue Chain,
7444                               SDValue Ptr, SDValue Offset, EVT MemVT,
7445                               MachineMemOperand *MMO) {
7446   if (VT == MemVT) {
7447     ExtType = ISD::NON_EXTLOAD;
7448   } else if (ExtType == ISD::NON_EXTLOAD) {
7449     assert(VT == MemVT && "Non-extending load from different memory type!");
7450   } else {
7451     // Extending load.
7452     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7453            "Should only be an extending load, not truncating!");
7454     assert(VT.isInteger() == MemVT.isInteger() &&
7455            "Cannot convert from FP to Int or Int -> FP!");
7456     assert(VT.isVector() == MemVT.isVector() &&
7457            "Cannot use an ext load to convert to or from a vector!");
7458     assert((!VT.isVector() ||
7459             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7460            "Cannot use an ext load to change the number of vector elements!");
7461   }
7462 
7463   bool Indexed = AM != ISD::UNINDEXED;
7464   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7465 
7466   SDVTList VTs = Indexed ?
7467     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7468   SDValue Ops[] = { Chain, Ptr, Offset };
7469   FoldingSetNodeID ID;
7470   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7471   ID.AddInteger(MemVT.getRawBits());
7472   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7473       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7474   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7475   void *IP = nullptr;
7476   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7477     cast<LoadSDNode>(E)->refineAlignment(MMO);
7478     return SDValue(E, 0);
7479   }
7480   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7481                                   ExtType, MemVT, MMO);
7482   createOperands(N, Ops);
7483 
7484   CSEMap.InsertNode(N, IP);
7485   InsertNode(N);
7486   SDValue V(N, 0);
7487   NewSDValueDbgMsg(V, "Creating new node: ", this);
7488   return V;
7489 }
7490 
7491 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7492                               SDValue Ptr, MachinePointerInfo PtrInfo,
7493                               MaybeAlign Alignment,
7494                               MachineMemOperand::Flags MMOFlags,
7495                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7496   SDValue Undef = getUNDEF(Ptr.getValueType());
7497   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7498                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7499 }
7500 
7501 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7502                               SDValue Ptr, MachineMemOperand *MMO) {
7503   SDValue Undef = getUNDEF(Ptr.getValueType());
7504   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7505                  VT, MMO);
7506 }
7507 
7508 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7509                                  EVT VT, SDValue Chain, SDValue Ptr,
7510                                  MachinePointerInfo PtrInfo, EVT MemVT,
7511                                  MaybeAlign Alignment,
7512                                  MachineMemOperand::Flags MMOFlags,
7513                                  const AAMDNodes &AAInfo) {
7514   SDValue Undef = getUNDEF(Ptr.getValueType());
7515   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7516                  MemVT, Alignment, MMOFlags, AAInfo);
7517 }
7518 
7519 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7520                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7521                                  MachineMemOperand *MMO) {
7522   SDValue Undef = getUNDEF(Ptr.getValueType());
7523   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7524                  MemVT, MMO);
7525 }
7526 
7527 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7528                                      SDValue Base, SDValue Offset,
7529                                      ISD::MemIndexedMode AM) {
7530   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7531   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7532   // Don't propagate the invariant or dereferenceable flags.
7533   auto MMOFlags =
7534       LD->getMemOperand()->getFlags() &
7535       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7536   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7537                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7538                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7539 }
7540 
7541 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7542                                SDValue Ptr, MachinePointerInfo PtrInfo,
7543                                Align Alignment,
7544                                MachineMemOperand::Flags MMOFlags,
7545                                const AAMDNodes &AAInfo) {
7546   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7547 
7548   MMOFlags |= MachineMemOperand::MOStore;
7549   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7550 
7551   if (PtrInfo.V.isNull())
7552     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7553 
7554   MachineFunction &MF = getMachineFunction();
7555   uint64_t Size =
7556       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7557   MachineMemOperand *MMO =
7558       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7559   return getStore(Chain, dl, Val, Ptr, MMO);
7560 }
7561 
7562 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7563                                SDValue Ptr, MachineMemOperand *MMO) {
7564   assert(Chain.getValueType() == MVT::Other &&
7565         "Invalid chain type");
7566   EVT VT = Val.getValueType();
7567   SDVTList VTs = getVTList(MVT::Other);
7568   SDValue Undef = getUNDEF(Ptr.getValueType());
7569   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7570   FoldingSetNodeID ID;
7571   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7572   ID.AddInteger(VT.getRawBits());
7573   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7574       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7575   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7576   void *IP = nullptr;
7577   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7578     cast<StoreSDNode>(E)->refineAlignment(MMO);
7579     return SDValue(E, 0);
7580   }
7581   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7582                                    ISD::UNINDEXED, false, VT, MMO);
7583   createOperands(N, Ops);
7584 
7585   CSEMap.InsertNode(N, IP);
7586   InsertNode(N);
7587   SDValue V(N, 0);
7588   NewSDValueDbgMsg(V, "Creating new node: ", this);
7589   return V;
7590 }
7591 
7592 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7593                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7594                                     EVT SVT, Align Alignment,
7595                                     MachineMemOperand::Flags MMOFlags,
7596                                     const AAMDNodes &AAInfo) {
7597   assert(Chain.getValueType() == MVT::Other &&
7598         "Invalid chain type");
7599 
7600   MMOFlags |= MachineMemOperand::MOStore;
7601   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7602 
7603   if (PtrInfo.V.isNull())
7604     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7605 
7606   MachineFunction &MF = getMachineFunction();
7607   MachineMemOperand *MMO = MF.getMachineMemOperand(
7608       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7609       Alignment, AAInfo);
7610   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7611 }
7612 
7613 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7614                                     SDValue Ptr, EVT SVT,
7615                                     MachineMemOperand *MMO) {
7616   EVT VT = Val.getValueType();
7617 
7618   assert(Chain.getValueType() == MVT::Other &&
7619         "Invalid chain type");
7620   if (VT == SVT)
7621     return getStore(Chain, dl, Val, Ptr, MMO);
7622 
7623   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7624          "Should only be a truncating store, not extending!");
7625   assert(VT.isInteger() == SVT.isInteger() &&
7626          "Can't do FP-INT conversion!");
7627   assert(VT.isVector() == SVT.isVector() &&
7628          "Cannot use trunc store to convert to or from a vector!");
7629   assert((!VT.isVector() ||
7630           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7631          "Cannot use trunc store to change the number of vector elements!");
7632 
7633   SDVTList VTs = getVTList(MVT::Other);
7634   SDValue Undef = getUNDEF(Ptr.getValueType());
7635   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7636   FoldingSetNodeID ID;
7637   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7638   ID.AddInteger(SVT.getRawBits());
7639   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7640       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7641   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7642   void *IP = nullptr;
7643   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7644     cast<StoreSDNode>(E)->refineAlignment(MMO);
7645     return SDValue(E, 0);
7646   }
7647   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7648                                    ISD::UNINDEXED, true, SVT, MMO);
7649   createOperands(N, Ops);
7650 
7651   CSEMap.InsertNode(N, IP);
7652   InsertNode(N);
7653   SDValue V(N, 0);
7654   NewSDValueDbgMsg(V, "Creating new node: ", this);
7655   return V;
7656 }
7657 
7658 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7659                                       SDValue Base, SDValue Offset,
7660                                       ISD::MemIndexedMode AM) {
7661   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7662   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7663   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7664   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7665   FoldingSetNodeID ID;
7666   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7667   ID.AddInteger(ST->getMemoryVT().getRawBits());
7668   ID.AddInteger(ST->getRawSubclassData());
7669   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7670   void *IP = nullptr;
7671   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7672     return SDValue(E, 0);
7673 
7674   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7675                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7676                                    ST->getMemOperand());
7677   createOperands(N, Ops);
7678 
7679   CSEMap.InsertNode(N, IP);
7680   InsertNode(N);
7681   SDValue V(N, 0);
7682   NewSDValueDbgMsg(V, "Creating new node: ", this);
7683   return V;
7684 }
7685 
7686 SDValue SelectionDAG::getLoadVP(
7687     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7688     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7689     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7690     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7691     const MDNode *Ranges, bool IsExpanding) {
7692   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7693 
7694   MMOFlags |= MachineMemOperand::MOLoad;
7695   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7696   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7697   // clients.
7698   if (PtrInfo.V.isNull())
7699     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7700 
7701   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7702   MachineFunction &MF = getMachineFunction();
7703   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7704                                                    Alignment, AAInfo, Ranges);
7705   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7706                    MMO, IsExpanding);
7707 }
7708 
7709 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7710                                 ISD::LoadExtType ExtType, EVT VT,
7711                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7712                                 SDValue Offset, SDValue Mask, SDValue EVL,
7713                                 EVT MemVT, MachineMemOperand *MMO,
7714                                 bool IsExpanding) {
7715   if (VT == MemVT) {
7716     ExtType = ISD::NON_EXTLOAD;
7717   } else if (ExtType == ISD::NON_EXTLOAD) {
7718     assert(VT == MemVT && "Non-extending load from different memory type!");
7719   } else {
7720     // Extending load.
7721     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7722            "Should only be an extending load, not truncating!");
7723     assert(VT.isInteger() == MemVT.isInteger() &&
7724            "Cannot convert from FP to Int or Int -> FP!");
7725     assert(VT.isVector() == MemVT.isVector() &&
7726            "Cannot use an ext load to convert to or from a vector!");
7727     assert((!VT.isVector() ||
7728             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7729            "Cannot use an ext load to change the number of vector elements!");
7730   }
7731 
7732   bool Indexed = AM != ISD::UNINDEXED;
7733   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7734 
7735   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7736                          : getVTList(VT, MVT::Other);
7737   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7738   FoldingSetNodeID ID;
7739   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7740   ID.AddInteger(VT.getRawBits());
7741   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7742       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7743   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7744   void *IP = nullptr;
7745   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7746     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7747     return SDValue(E, 0);
7748   }
7749   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7750                                     ExtType, IsExpanding, MemVT, MMO);
7751   createOperands(N, Ops);
7752 
7753   CSEMap.InsertNode(N, IP);
7754   InsertNode(N);
7755   SDValue V(N, 0);
7756   NewSDValueDbgMsg(V, "Creating new node: ", this);
7757   return V;
7758 }
7759 
7760 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7761                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7762                                 MachinePointerInfo PtrInfo,
7763                                 MaybeAlign Alignment,
7764                                 MachineMemOperand::Flags MMOFlags,
7765                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7766                                 bool IsExpanding) {
7767   SDValue Undef = getUNDEF(Ptr.getValueType());
7768   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7769                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7770                    IsExpanding);
7771 }
7772 
7773 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7774                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7775                                 MachineMemOperand *MMO, bool IsExpanding) {
7776   SDValue Undef = getUNDEF(Ptr.getValueType());
7777   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7778                    Mask, EVL, VT, MMO, IsExpanding);
7779 }
7780 
7781 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7782                                    EVT VT, SDValue Chain, SDValue Ptr,
7783                                    SDValue Mask, SDValue EVL,
7784                                    MachinePointerInfo PtrInfo, EVT MemVT,
7785                                    MaybeAlign Alignment,
7786                                    MachineMemOperand::Flags MMOFlags,
7787                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7788   SDValue Undef = getUNDEF(Ptr.getValueType());
7789   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7790                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7791                    IsExpanding);
7792 }
7793 
7794 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7795                                    EVT VT, SDValue Chain, SDValue Ptr,
7796                                    SDValue Mask, SDValue EVL, EVT MemVT,
7797                                    MachineMemOperand *MMO, bool IsExpanding) {
7798   SDValue Undef = getUNDEF(Ptr.getValueType());
7799   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7800                    EVL, MemVT, MMO, IsExpanding);
7801 }
7802 
7803 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7804                                        SDValue Base, SDValue Offset,
7805                                        ISD::MemIndexedMode AM) {
7806   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7807   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7808   // Don't propagate the invariant or dereferenceable flags.
7809   auto MMOFlags =
7810       LD->getMemOperand()->getFlags() &
7811       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7812   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7813                    LD->getChain(), Base, Offset, LD->getMask(),
7814                    LD->getVectorLength(), LD->getPointerInfo(),
7815                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7816                    nullptr, LD->isExpandingLoad());
7817 }
7818 
7819 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7820                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7821                                  MachinePointerInfo PtrInfo, Align Alignment,
7822                                  MachineMemOperand::Flags MMOFlags,
7823                                  const AAMDNodes &AAInfo, bool IsCompressing) {
7824   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7825 
7826   MMOFlags |= MachineMemOperand::MOStore;
7827   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7828 
7829   if (PtrInfo.V.isNull())
7830     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7831 
7832   MachineFunction &MF = getMachineFunction();
7833   uint64_t Size =
7834       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7835   MachineMemOperand *MMO =
7836       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7837   return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7838 }
7839 
7840 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7841                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7842                                  MachineMemOperand *MMO, bool IsCompressing) {
7843   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7844   EVT VT = Val.getValueType();
7845   SDVTList VTs = getVTList(MVT::Other);
7846   SDValue Undef = getUNDEF(Ptr.getValueType());
7847   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7848   FoldingSetNodeID ID;
7849   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7850   ID.AddInteger(VT.getRawBits());
7851   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7852       dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO));
7853   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7854   void *IP = nullptr;
7855   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7856     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7857     return SDValue(E, 0);
7858   }
7859   auto *N =
7860       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7861                                ISD::UNINDEXED, false, IsCompressing, VT, MMO);
7862   createOperands(N, Ops);
7863 
7864   CSEMap.InsertNode(N, IP);
7865   InsertNode(N);
7866   SDValue V(N, 0);
7867   NewSDValueDbgMsg(V, "Creating new node: ", this);
7868   return V;
7869 }
7870 
7871 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7872                                       SDValue Val, SDValue Ptr, SDValue Mask,
7873                                       SDValue EVL, MachinePointerInfo PtrInfo,
7874                                       EVT SVT, Align Alignment,
7875                                       MachineMemOperand::Flags MMOFlags,
7876                                       const AAMDNodes &AAInfo,
7877                                       bool IsCompressing) {
7878   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7879 
7880   MMOFlags |= MachineMemOperand::MOStore;
7881   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7882 
7883   if (PtrInfo.V.isNull())
7884     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7885 
7886   MachineFunction &MF = getMachineFunction();
7887   MachineMemOperand *MMO = MF.getMachineMemOperand(
7888       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7889       Alignment, AAInfo);
7890   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7891                          IsCompressing);
7892 }
7893 
7894 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7895                                       SDValue Val, SDValue Ptr, SDValue Mask,
7896                                       SDValue EVL, EVT SVT,
7897                                       MachineMemOperand *MMO,
7898                                       bool IsCompressing) {
7899   EVT VT = Val.getValueType();
7900 
7901   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7902   if (VT == SVT)
7903     return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7904 
7905   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7906          "Should only be a truncating store, not extending!");
7907   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7908   assert(VT.isVector() == SVT.isVector() &&
7909          "Cannot use trunc store to convert to or from a vector!");
7910   assert((!VT.isVector() ||
7911           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7912          "Cannot use trunc store to change the number of vector elements!");
7913 
7914   SDVTList VTs = getVTList(MVT::Other);
7915   SDValue Undef = getUNDEF(Ptr.getValueType());
7916   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7917   FoldingSetNodeID ID;
7918   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7919   ID.AddInteger(SVT.getRawBits());
7920   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7921       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7922   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7923   void *IP = nullptr;
7924   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7925     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7926     return SDValue(E, 0);
7927   }
7928   auto *N =
7929       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7930                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7931   createOperands(N, Ops);
7932 
7933   CSEMap.InsertNode(N, IP);
7934   InsertNode(N);
7935   SDValue V(N, 0);
7936   NewSDValueDbgMsg(V, "Creating new node: ", this);
7937   return V;
7938 }
7939 
7940 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7941                                         SDValue Base, SDValue Offset,
7942                                         ISD::MemIndexedMode AM) {
7943   auto *ST = cast<VPStoreSDNode>(OrigStore);
7944   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7945   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7946   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7947                    Offset,         ST->getMask(),  ST->getVectorLength()};
7948   FoldingSetNodeID ID;
7949   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7950   ID.AddInteger(ST->getMemoryVT().getRawBits());
7951   ID.AddInteger(ST->getRawSubclassData());
7952   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7953   void *IP = nullptr;
7954   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7955     return SDValue(E, 0);
7956 
7957   auto *N = newSDNode<VPStoreSDNode>(
7958       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7959       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7960   createOperands(N, Ops);
7961 
7962   CSEMap.InsertNode(N, IP);
7963   InsertNode(N);
7964   SDValue V(N, 0);
7965   NewSDValueDbgMsg(V, "Creating new node: ", this);
7966   return V;
7967 }
7968 
7969 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7970                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7971                                   ISD::MemIndexType IndexType) {
7972   assert(Ops.size() == 6 && "Incompatible number of operands");
7973 
7974   FoldingSetNodeID ID;
7975   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7976   ID.AddInteger(VT.getRawBits());
7977   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7978       dl.getIROrder(), VTs, VT, MMO, IndexType));
7979   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7980   void *IP = nullptr;
7981   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7982     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7983     return SDValue(E, 0);
7984   }
7985 
7986   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7987                                       VT, MMO, IndexType);
7988   createOperands(N, Ops);
7989 
7990   assert(N->getMask().getValueType().getVectorElementCount() ==
7991              N->getValueType(0).getVectorElementCount() &&
7992          "Vector width mismatch between mask and data");
7993   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7994              N->getValueType(0).getVectorElementCount().isScalable() &&
7995          "Scalable flags of index and data do not match");
7996   assert(ElementCount::isKnownGE(
7997              N->getIndex().getValueType().getVectorElementCount(),
7998              N->getValueType(0).getVectorElementCount()) &&
7999          "Vector width mismatch between index and data");
8000   assert(isa<ConstantSDNode>(N->getScale()) &&
8001          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8002          "Scale should be a constant power of 2");
8003 
8004   CSEMap.InsertNode(N, IP);
8005   InsertNode(N);
8006   SDValue V(N, 0);
8007   NewSDValueDbgMsg(V, "Creating new node: ", this);
8008   return V;
8009 }
8010 
8011 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8012                                    ArrayRef<SDValue> Ops,
8013                                    MachineMemOperand *MMO,
8014                                    ISD::MemIndexType IndexType) {
8015   assert(Ops.size() == 7 && "Incompatible number of operands");
8016 
8017   FoldingSetNodeID ID;
8018   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8019   ID.AddInteger(VT.getRawBits());
8020   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8021       dl.getIROrder(), VTs, VT, MMO, IndexType));
8022   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8023   void *IP = nullptr;
8024   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8025     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8026     return SDValue(E, 0);
8027   }
8028   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8029                                        VT, MMO, IndexType);
8030   createOperands(N, Ops);
8031 
8032   assert(N->getMask().getValueType().getVectorElementCount() ==
8033              N->getValue().getValueType().getVectorElementCount() &&
8034          "Vector width mismatch between mask and data");
8035   assert(
8036       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8037           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8038       "Scalable flags of index and data do not match");
8039   assert(ElementCount::isKnownGE(
8040              N->getIndex().getValueType().getVectorElementCount(),
8041              N->getValue().getValueType().getVectorElementCount()) &&
8042          "Vector width mismatch between index and data");
8043   assert(isa<ConstantSDNode>(N->getScale()) &&
8044          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8045          "Scale should be a constant power of 2");
8046 
8047   CSEMap.InsertNode(N, IP);
8048   InsertNode(N);
8049   SDValue V(N, 0);
8050   NewSDValueDbgMsg(V, "Creating new node: ", this);
8051   return V;
8052 }
8053 
8054 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8055                                     SDValue Base, SDValue Offset, SDValue Mask,
8056                                     SDValue PassThru, EVT MemVT,
8057                                     MachineMemOperand *MMO,
8058                                     ISD::MemIndexedMode AM,
8059                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8060   bool Indexed = AM != ISD::UNINDEXED;
8061   assert((Indexed || Offset.isUndef()) &&
8062          "Unindexed masked load with an offset!");
8063   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8064                          : getVTList(VT, MVT::Other);
8065   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8066   FoldingSetNodeID ID;
8067   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8068   ID.AddInteger(MemVT.getRawBits());
8069   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8070       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8071   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8072   void *IP = nullptr;
8073   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8074     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8075     return SDValue(E, 0);
8076   }
8077   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8078                                         AM, ExtTy, isExpanding, MemVT, MMO);
8079   createOperands(N, Ops);
8080 
8081   CSEMap.InsertNode(N, IP);
8082   InsertNode(N);
8083   SDValue V(N, 0);
8084   NewSDValueDbgMsg(V, "Creating new node: ", this);
8085   return V;
8086 }
8087 
8088 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8089                                            SDValue Base, SDValue Offset,
8090                                            ISD::MemIndexedMode AM) {
8091   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8092   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8093   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8094                        Offset, LD->getMask(), LD->getPassThru(),
8095                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8096                        LD->getExtensionType(), LD->isExpandingLoad());
8097 }
8098 
8099 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8100                                      SDValue Val, SDValue Base, SDValue Offset,
8101                                      SDValue Mask, EVT MemVT,
8102                                      MachineMemOperand *MMO,
8103                                      ISD::MemIndexedMode AM, bool IsTruncating,
8104                                      bool IsCompressing) {
8105   assert(Chain.getValueType() == MVT::Other &&
8106         "Invalid chain type");
8107   bool Indexed = AM != ISD::UNINDEXED;
8108   assert((Indexed || Offset.isUndef()) &&
8109          "Unindexed masked store with an offset!");
8110   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8111                          : getVTList(MVT::Other);
8112   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8113   FoldingSetNodeID ID;
8114   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8115   ID.AddInteger(MemVT.getRawBits());
8116   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8117       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8118   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8119   void *IP = nullptr;
8120   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8121     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8122     return SDValue(E, 0);
8123   }
8124   auto *N =
8125       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8126                                    IsTruncating, IsCompressing, MemVT, MMO);
8127   createOperands(N, Ops);
8128 
8129   CSEMap.InsertNode(N, IP);
8130   InsertNode(N);
8131   SDValue V(N, 0);
8132   NewSDValueDbgMsg(V, "Creating new node: ", this);
8133   return V;
8134 }
8135 
8136 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8137                                             SDValue Base, SDValue Offset,
8138                                             ISD::MemIndexedMode AM) {
8139   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8140   assert(ST->getOffset().isUndef() &&
8141          "Masked store is already a indexed store!");
8142   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8143                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8144                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8145 }
8146 
8147 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8148                                       ArrayRef<SDValue> Ops,
8149                                       MachineMemOperand *MMO,
8150                                       ISD::MemIndexType IndexType,
8151                                       ISD::LoadExtType ExtTy) {
8152   assert(Ops.size() == 6 && "Incompatible number of operands");
8153 
8154   FoldingSetNodeID ID;
8155   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8156   ID.AddInteger(MemVT.getRawBits());
8157   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8158       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8159   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8160   void *IP = nullptr;
8161   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8162     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8163     return SDValue(E, 0);
8164   }
8165 
8166   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8167   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8168                                           VTs, MemVT, MMO, IndexType, ExtTy);
8169   createOperands(N, Ops);
8170 
8171   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8172          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8173   assert(N->getMask().getValueType().getVectorElementCount() ==
8174              N->getValueType(0).getVectorElementCount() &&
8175          "Vector width mismatch between mask and data");
8176   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8177              N->getValueType(0).getVectorElementCount().isScalable() &&
8178          "Scalable flags of index and data do not match");
8179   assert(ElementCount::isKnownGE(
8180              N->getIndex().getValueType().getVectorElementCount(),
8181              N->getValueType(0).getVectorElementCount()) &&
8182          "Vector width mismatch between index and data");
8183   assert(isa<ConstantSDNode>(N->getScale()) &&
8184          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8185          "Scale should be a constant power of 2");
8186 
8187   CSEMap.InsertNode(N, IP);
8188   InsertNode(N);
8189   SDValue V(N, 0);
8190   NewSDValueDbgMsg(V, "Creating new node: ", this);
8191   return V;
8192 }
8193 
8194 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8195                                        ArrayRef<SDValue> Ops,
8196                                        MachineMemOperand *MMO,
8197                                        ISD::MemIndexType IndexType,
8198                                        bool IsTrunc) {
8199   assert(Ops.size() == 6 && "Incompatible number of operands");
8200 
8201   FoldingSetNodeID ID;
8202   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8203   ID.AddInteger(MemVT.getRawBits());
8204   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8205       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8206   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8207   void *IP = nullptr;
8208   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8209     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8210     return SDValue(E, 0);
8211   }
8212 
8213   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8214   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8215                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8216   createOperands(N, Ops);
8217 
8218   assert(N->getMask().getValueType().getVectorElementCount() ==
8219              N->getValue().getValueType().getVectorElementCount() &&
8220          "Vector width mismatch between mask and data");
8221   assert(
8222       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8223           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8224       "Scalable flags of index and data do not match");
8225   assert(ElementCount::isKnownGE(
8226              N->getIndex().getValueType().getVectorElementCount(),
8227              N->getValue().getValueType().getVectorElementCount()) &&
8228          "Vector width mismatch between index and data");
8229   assert(isa<ConstantSDNode>(N->getScale()) &&
8230          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8231          "Scale should be a constant power of 2");
8232 
8233   CSEMap.InsertNode(N, IP);
8234   InsertNode(N);
8235   SDValue V(N, 0);
8236   NewSDValueDbgMsg(V, "Creating new node: ", this);
8237   return V;
8238 }
8239 
8240 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8241   // select undef, T, F --> T (if T is a constant), otherwise F
8242   // select, ?, undef, F --> F
8243   // select, ?, T, undef --> T
8244   if (Cond.isUndef())
8245     return isConstantValueOfAnyType(T) ? T : F;
8246   if (T.isUndef())
8247     return F;
8248   if (F.isUndef())
8249     return T;
8250 
8251   // select true, T, F --> T
8252   // select false, T, F --> F
8253   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8254     return CondC->isZero() ? F : T;
8255 
8256   // TODO: This should simplify VSELECT with constant condition using something
8257   // like this (but check boolean contents to be complete?):
8258   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8259   //    return T;
8260   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8261   //    return F;
8262 
8263   // select ?, T, T --> T
8264   if (T == F)
8265     return T;
8266 
8267   return SDValue();
8268 }
8269 
8270 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8271   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8272   if (X.isUndef())
8273     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8274   // shift X, undef --> undef (because it may shift by the bitwidth)
8275   if (Y.isUndef())
8276     return getUNDEF(X.getValueType());
8277 
8278   // shift 0, Y --> 0
8279   // shift X, 0 --> X
8280   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8281     return X;
8282 
8283   // shift X, C >= bitwidth(X) --> undef
8284   // All vector elements must be too big (or undef) to avoid partial undefs.
8285   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8286     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8287   };
8288   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8289     return getUNDEF(X.getValueType());
8290 
8291   return SDValue();
8292 }
8293 
8294 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8295                                       SDNodeFlags Flags) {
8296   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8297   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8298   // operation is poison. That result can be relaxed to undef.
8299   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8300   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8301   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8302                 (YC && YC->getValueAPF().isNaN());
8303   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8304                 (YC && YC->getValueAPF().isInfinity());
8305 
8306   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8307     return getUNDEF(X.getValueType());
8308 
8309   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8310     return getUNDEF(X.getValueType());
8311 
8312   if (!YC)
8313     return SDValue();
8314 
8315   // X + -0.0 --> X
8316   if (Opcode == ISD::FADD)
8317     if (YC->getValueAPF().isNegZero())
8318       return X;
8319 
8320   // X - +0.0 --> X
8321   if (Opcode == ISD::FSUB)
8322     if (YC->getValueAPF().isPosZero())
8323       return X;
8324 
8325   // X * 1.0 --> X
8326   // X / 1.0 --> X
8327   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8328     if (YC->getValueAPF().isExactlyValue(1.0))
8329       return X;
8330 
8331   // X * 0.0 --> 0.0
8332   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8333     if (YC->getValueAPF().isZero())
8334       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8335 
8336   return SDValue();
8337 }
8338 
8339 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8340                                SDValue Ptr, SDValue SV, unsigned Align) {
8341   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8342   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8343 }
8344 
8345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8346                               ArrayRef<SDUse> Ops) {
8347   switch (Ops.size()) {
8348   case 0: return getNode(Opcode, DL, VT);
8349   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8350   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8351   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8352   default: break;
8353   }
8354 
8355   // Copy from an SDUse array into an SDValue array for use with
8356   // the regular getNode logic.
8357   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8358   return getNode(Opcode, DL, VT, NewOps);
8359 }
8360 
8361 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8362                               ArrayRef<SDValue> Ops) {
8363   SDNodeFlags Flags;
8364   if (Inserter)
8365     Flags = Inserter->getFlags();
8366   return getNode(Opcode, DL, VT, Ops, Flags);
8367 }
8368 
8369 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8370                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8371   unsigned NumOps = Ops.size();
8372   switch (NumOps) {
8373   case 0: return getNode(Opcode, DL, VT);
8374   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8375   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8376   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8377   default: break;
8378   }
8379 
8380 #ifndef NDEBUG
8381   for (auto &Op : Ops)
8382     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8383            "Operand is DELETED_NODE!");
8384 #endif
8385 
8386   switch (Opcode) {
8387   default: break;
8388   case ISD::BUILD_VECTOR:
8389     // Attempt to simplify BUILD_VECTOR.
8390     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8391       return V;
8392     break;
8393   case ISD::CONCAT_VECTORS:
8394     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8395       return V;
8396     break;
8397   case ISD::SELECT_CC:
8398     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8399     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8400            "LHS and RHS of condition must have same type!");
8401     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8402            "True and False arms of SelectCC must have same type!");
8403     assert(Ops[2].getValueType() == VT &&
8404            "select_cc node must be of same type as true and false value!");
8405     break;
8406   case ISD::BR_CC:
8407     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8408     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8409            "LHS/RHS of comparison should match types!");
8410     break;
8411   }
8412 
8413   // Memoize nodes.
8414   SDNode *N;
8415   SDVTList VTs = getVTList(VT);
8416 
8417   if (VT != MVT::Glue) {
8418     FoldingSetNodeID ID;
8419     AddNodeIDNode(ID, Opcode, VTs, Ops);
8420     void *IP = nullptr;
8421 
8422     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8423       return SDValue(E, 0);
8424 
8425     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8426     createOperands(N, Ops);
8427 
8428     CSEMap.InsertNode(N, IP);
8429   } else {
8430     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8431     createOperands(N, Ops);
8432   }
8433 
8434   N->setFlags(Flags);
8435   InsertNode(N);
8436   SDValue V(N, 0);
8437   NewSDValueDbgMsg(V, "Creating new node: ", this);
8438   return V;
8439 }
8440 
8441 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8442                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8443   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8444 }
8445 
8446 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8447                               ArrayRef<SDValue> Ops) {
8448   SDNodeFlags Flags;
8449   if (Inserter)
8450     Flags = Inserter->getFlags();
8451   return getNode(Opcode, DL, VTList, Ops, Flags);
8452 }
8453 
8454 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8455                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8456   if (VTList.NumVTs == 1)
8457     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8458 
8459 #ifndef NDEBUG
8460   for (auto &Op : Ops)
8461     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8462            "Operand is DELETED_NODE!");
8463 #endif
8464 
8465   switch (Opcode) {
8466   case ISD::STRICT_FP_EXTEND:
8467     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8468            "Invalid STRICT_FP_EXTEND!");
8469     assert(VTList.VTs[0].isFloatingPoint() &&
8470            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8471     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8472            "STRICT_FP_EXTEND result type should be vector iff the operand "
8473            "type is vector!");
8474     assert((!VTList.VTs[0].isVector() ||
8475             VTList.VTs[0].getVectorNumElements() ==
8476             Ops[1].getValueType().getVectorNumElements()) &&
8477            "Vector element count mismatch!");
8478     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8479            "Invalid fpext node, dst <= src!");
8480     break;
8481   case ISD::STRICT_FP_ROUND:
8482     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8483     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8484            "STRICT_FP_ROUND result type should be vector iff the operand "
8485            "type is vector!");
8486     assert((!VTList.VTs[0].isVector() ||
8487             VTList.VTs[0].getVectorNumElements() ==
8488             Ops[1].getValueType().getVectorNumElements()) &&
8489            "Vector element count mismatch!");
8490     assert(VTList.VTs[0].isFloatingPoint() &&
8491            Ops[1].getValueType().isFloatingPoint() &&
8492            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8493            isa<ConstantSDNode>(Ops[2]) &&
8494            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8495             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8496            "Invalid STRICT_FP_ROUND!");
8497     break;
8498 #if 0
8499   // FIXME: figure out how to safely handle things like
8500   // int foo(int x) { return 1 << (x & 255); }
8501   // int bar() { return foo(256); }
8502   case ISD::SRA_PARTS:
8503   case ISD::SRL_PARTS:
8504   case ISD::SHL_PARTS:
8505     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8506         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8507       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8508     else if (N3.getOpcode() == ISD::AND)
8509       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8510         // If the and is only masking out bits that cannot effect the shift,
8511         // eliminate the and.
8512         unsigned NumBits = VT.getScalarSizeInBits()*2;
8513         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8514           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8515       }
8516     break;
8517 #endif
8518   }
8519 
8520   // Memoize the node unless it returns a flag.
8521   SDNode *N;
8522   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8523     FoldingSetNodeID ID;
8524     AddNodeIDNode(ID, Opcode, VTList, Ops);
8525     void *IP = nullptr;
8526     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8527       return SDValue(E, 0);
8528 
8529     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8530     createOperands(N, Ops);
8531     CSEMap.InsertNode(N, IP);
8532   } else {
8533     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8534     createOperands(N, Ops);
8535   }
8536 
8537   N->setFlags(Flags);
8538   InsertNode(N);
8539   SDValue V(N, 0);
8540   NewSDValueDbgMsg(V, "Creating new node: ", this);
8541   return V;
8542 }
8543 
8544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8545                               SDVTList VTList) {
8546   return getNode(Opcode, DL, VTList, None);
8547 }
8548 
8549 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8550                               SDValue N1) {
8551   SDValue Ops[] = { N1 };
8552   return getNode(Opcode, DL, VTList, Ops);
8553 }
8554 
8555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8556                               SDValue N1, SDValue N2) {
8557   SDValue Ops[] = { N1, N2 };
8558   return getNode(Opcode, DL, VTList, Ops);
8559 }
8560 
8561 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8562                               SDValue N1, SDValue N2, SDValue N3) {
8563   SDValue Ops[] = { N1, N2, N3 };
8564   return getNode(Opcode, DL, VTList, Ops);
8565 }
8566 
8567 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8568                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8569   SDValue Ops[] = { N1, N2, N3, N4 };
8570   return getNode(Opcode, DL, VTList, Ops);
8571 }
8572 
8573 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8574                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8575                               SDValue N5) {
8576   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8577   return getNode(Opcode, DL, VTList, Ops);
8578 }
8579 
8580 SDVTList SelectionDAG::getVTList(EVT VT) {
8581   return makeVTList(SDNode::getValueTypeList(VT), 1);
8582 }
8583 
8584 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8585   FoldingSetNodeID ID;
8586   ID.AddInteger(2U);
8587   ID.AddInteger(VT1.getRawBits());
8588   ID.AddInteger(VT2.getRawBits());
8589 
8590   void *IP = nullptr;
8591   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8592   if (!Result) {
8593     EVT *Array = Allocator.Allocate<EVT>(2);
8594     Array[0] = VT1;
8595     Array[1] = VT2;
8596     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8597     VTListMap.InsertNode(Result, IP);
8598   }
8599   return Result->getSDVTList();
8600 }
8601 
8602 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8603   FoldingSetNodeID ID;
8604   ID.AddInteger(3U);
8605   ID.AddInteger(VT1.getRawBits());
8606   ID.AddInteger(VT2.getRawBits());
8607   ID.AddInteger(VT3.getRawBits());
8608 
8609   void *IP = nullptr;
8610   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8611   if (!Result) {
8612     EVT *Array = Allocator.Allocate<EVT>(3);
8613     Array[0] = VT1;
8614     Array[1] = VT2;
8615     Array[2] = VT3;
8616     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8617     VTListMap.InsertNode(Result, IP);
8618   }
8619   return Result->getSDVTList();
8620 }
8621 
8622 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8623   FoldingSetNodeID ID;
8624   ID.AddInteger(4U);
8625   ID.AddInteger(VT1.getRawBits());
8626   ID.AddInteger(VT2.getRawBits());
8627   ID.AddInteger(VT3.getRawBits());
8628   ID.AddInteger(VT4.getRawBits());
8629 
8630   void *IP = nullptr;
8631   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8632   if (!Result) {
8633     EVT *Array = Allocator.Allocate<EVT>(4);
8634     Array[0] = VT1;
8635     Array[1] = VT2;
8636     Array[2] = VT3;
8637     Array[3] = VT4;
8638     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8639     VTListMap.InsertNode(Result, IP);
8640   }
8641   return Result->getSDVTList();
8642 }
8643 
8644 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8645   unsigned NumVTs = VTs.size();
8646   FoldingSetNodeID ID;
8647   ID.AddInteger(NumVTs);
8648   for (unsigned index = 0; index < NumVTs; index++) {
8649     ID.AddInteger(VTs[index].getRawBits());
8650   }
8651 
8652   void *IP = nullptr;
8653   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8654   if (!Result) {
8655     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8656     llvm::copy(VTs, Array);
8657     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8658     VTListMap.InsertNode(Result, IP);
8659   }
8660   return Result->getSDVTList();
8661 }
8662 
8663 
8664 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8665 /// specified operands.  If the resultant node already exists in the DAG,
8666 /// this does not modify the specified node, instead it returns the node that
8667 /// already exists.  If the resultant node does not exist in the DAG, the
8668 /// input node is returned.  As a degenerate case, if you specify the same
8669 /// input operands as the node already has, the input node is returned.
8670 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8671   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8672 
8673   // Check to see if there is no change.
8674   if (Op == N->getOperand(0)) return N;
8675 
8676   // See if the modified node already exists.
8677   void *InsertPos = nullptr;
8678   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8679     return Existing;
8680 
8681   // Nope it doesn't.  Remove the node from its current place in the maps.
8682   if (InsertPos)
8683     if (!RemoveNodeFromCSEMaps(N))
8684       InsertPos = nullptr;
8685 
8686   // Now we update the operands.
8687   N->OperandList[0].set(Op);
8688 
8689   updateDivergence(N);
8690   // If this gets put into a CSE map, add it.
8691   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8692   return N;
8693 }
8694 
8695 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8696   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8697 
8698   // Check to see if there is no change.
8699   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8700     return N;   // No operands changed, just return the input node.
8701 
8702   // See if the modified node already exists.
8703   void *InsertPos = nullptr;
8704   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8705     return Existing;
8706 
8707   // Nope it doesn't.  Remove the node from its current place in the maps.
8708   if (InsertPos)
8709     if (!RemoveNodeFromCSEMaps(N))
8710       InsertPos = nullptr;
8711 
8712   // Now we update the operands.
8713   if (N->OperandList[0] != Op1)
8714     N->OperandList[0].set(Op1);
8715   if (N->OperandList[1] != Op2)
8716     N->OperandList[1].set(Op2);
8717 
8718   updateDivergence(N);
8719   // If this gets put into a CSE map, add it.
8720   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8721   return N;
8722 }
8723 
8724 SDNode *SelectionDAG::
8725 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8726   SDValue Ops[] = { Op1, Op2, Op3 };
8727   return UpdateNodeOperands(N, Ops);
8728 }
8729 
8730 SDNode *SelectionDAG::
8731 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8732                    SDValue Op3, SDValue Op4) {
8733   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8734   return UpdateNodeOperands(N, Ops);
8735 }
8736 
8737 SDNode *SelectionDAG::
8738 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8739                    SDValue Op3, SDValue Op4, SDValue Op5) {
8740   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8741   return UpdateNodeOperands(N, Ops);
8742 }
8743 
8744 SDNode *SelectionDAG::
8745 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8746   unsigned NumOps = Ops.size();
8747   assert(N->getNumOperands() == NumOps &&
8748          "Update with wrong number of operands");
8749 
8750   // If no operands changed just return the input node.
8751   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8752     return N;
8753 
8754   // See if the modified node already exists.
8755   void *InsertPos = nullptr;
8756   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8757     return Existing;
8758 
8759   // Nope it doesn't.  Remove the node from its current place in the maps.
8760   if (InsertPos)
8761     if (!RemoveNodeFromCSEMaps(N))
8762       InsertPos = nullptr;
8763 
8764   // Now we update the operands.
8765   for (unsigned i = 0; i != NumOps; ++i)
8766     if (N->OperandList[i] != Ops[i])
8767       N->OperandList[i].set(Ops[i]);
8768 
8769   updateDivergence(N);
8770   // If this gets put into a CSE map, add it.
8771   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8772   return N;
8773 }
8774 
8775 /// DropOperands - Release the operands and set this node to have
8776 /// zero operands.
8777 void SDNode::DropOperands() {
8778   // Unlike the code in MorphNodeTo that does this, we don't need to
8779   // watch for dead nodes here.
8780   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8781     SDUse &Use = *I++;
8782     Use.set(SDValue());
8783   }
8784 }
8785 
8786 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8787                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8788   if (NewMemRefs.empty()) {
8789     N->clearMemRefs();
8790     return;
8791   }
8792 
8793   // Check if we can avoid allocating by storing a single reference directly.
8794   if (NewMemRefs.size() == 1) {
8795     N->MemRefs = NewMemRefs[0];
8796     N->NumMemRefs = 1;
8797     return;
8798   }
8799 
8800   MachineMemOperand **MemRefsBuffer =
8801       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8802   llvm::copy(NewMemRefs, MemRefsBuffer);
8803   N->MemRefs = MemRefsBuffer;
8804   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8805 }
8806 
8807 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8808 /// machine opcode.
8809 ///
8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8811                                    EVT VT) {
8812   SDVTList VTs = getVTList(VT);
8813   return SelectNodeTo(N, MachineOpc, VTs, None);
8814 }
8815 
8816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8817                                    EVT VT, SDValue Op1) {
8818   SDVTList VTs = getVTList(VT);
8819   SDValue Ops[] = { Op1 };
8820   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8821 }
8822 
8823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8824                                    EVT VT, SDValue Op1,
8825                                    SDValue Op2) {
8826   SDVTList VTs = getVTList(VT);
8827   SDValue Ops[] = { Op1, Op2 };
8828   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8829 }
8830 
8831 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8832                                    EVT VT, SDValue Op1,
8833                                    SDValue Op2, SDValue Op3) {
8834   SDVTList VTs = getVTList(VT);
8835   SDValue Ops[] = { Op1, Op2, Op3 };
8836   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8837 }
8838 
8839 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8840                                    EVT VT, ArrayRef<SDValue> Ops) {
8841   SDVTList VTs = getVTList(VT);
8842   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8843 }
8844 
8845 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8846                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8847   SDVTList VTs = getVTList(VT1, VT2);
8848   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8849 }
8850 
8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8852                                    EVT VT1, EVT VT2) {
8853   SDVTList VTs = getVTList(VT1, VT2);
8854   return SelectNodeTo(N, MachineOpc, VTs, None);
8855 }
8856 
8857 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8858                                    EVT VT1, EVT VT2, EVT VT3,
8859                                    ArrayRef<SDValue> Ops) {
8860   SDVTList VTs = getVTList(VT1, VT2, VT3);
8861   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8862 }
8863 
8864 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8865                                    EVT VT1, EVT VT2,
8866                                    SDValue Op1, SDValue Op2) {
8867   SDVTList VTs = getVTList(VT1, VT2);
8868   SDValue Ops[] = { Op1, Op2 };
8869   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8870 }
8871 
8872 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8873                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8874   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8875   // Reset the NodeID to -1.
8876   New->setNodeId(-1);
8877   if (New != N) {
8878     ReplaceAllUsesWith(N, New);
8879     RemoveDeadNode(N);
8880   }
8881   return New;
8882 }
8883 
8884 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8885 /// the line number information on the merged node since it is not possible to
8886 /// preserve the information that operation is associated with multiple lines.
8887 /// This will make the debugger working better at -O0, were there is a higher
8888 /// probability having other instructions associated with that line.
8889 ///
8890 /// For IROrder, we keep the smaller of the two
8891 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8892   DebugLoc NLoc = N->getDebugLoc();
8893   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8894     N->setDebugLoc(DebugLoc());
8895   }
8896   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8897   N->setIROrder(Order);
8898   return N;
8899 }
8900 
8901 /// MorphNodeTo - This *mutates* the specified node to have the specified
8902 /// return type, opcode, and operands.
8903 ///
8904 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8905 /// node of the specified opcode and operands, it returns that node instead of
8906 /// the current one.  Note that the SDLoc need not be the same.
8907 ///
8908 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8909 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8910 /// node, and because it doesn't require CSE recalculation for any of
8911 /// the node's users.
8912 ///
8913 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8914 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8915 /// the legalizer which maintain worklists that would need to be updated when
8916 /// deleting things.
8917 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8918                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8919   // If an identical node already exists, use it.
8920   void *IP = nullptr;
8921   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8922     FoldingSetNodeID ID;
8923     AddNodeIDNode(ID, Opc, VTs, Ops);
8924     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8925       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8926   }
8927 
8928   if (!RemoveNodeFromCSEMaps(N))
8929     IP = nullptr;
8930 
8931   // Start the morphing.
8932   N->NodeType = Opc;
8933   N->ValueList = VTs.VTs;
8934   N->NumValues = VTs.NumVTs;
8935 
8936   // Clear the operands list, updating used nodes to remove this from their
8937   // use list.  Keep track of any operands that become dead as a result.
8938   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8939   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8940     SDUse &Use = *I++;
8941     SDNode *Used = Use.getNode();
8942     Use.set(SDValue());
8943     if (Used->use_empty())
8944       DeadNodeSet.insert(Used);
8945   }
8946 
8947   // For MachineNode, initialize the memory references information.
8948   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8949     MN->clearMemRefs();
8950 
8951   // Swap for an appropriately sized array from the recycler.
8952   removeOperands(N);
8953   createOperands(N, Ops);
8954 
8955   // Delete any nodes that are still dead after adding the uses for the
8956   // new operands.
8957   if (!DeadNodeSet.empty()) {
8958     SmallVector<SDNode *, 16> DeadNodes;
8959     for (SDNode *N : DeadNodeSet)
8960       if (N->use_empty())
8961         DeadNodes.push_back(N);
8962     RemoveDeadNodes(DeadNodes);
8963   }
8964 
8965   if (IP)
8966     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8967   return N;
8968 }
8969 
8970 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8971   unsigned OrigOpc = Node->getOpcode();
8972   unsigned NewOpc;
8973   switch (OrigOpc) {
8974   default:
8975     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8976 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8977   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8978 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8979   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8980 #include "llvm/IR/ConstrainedOps.def"
8981   }
8982 
8983   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8984 
8985   // We're taking this node out of the chain, so we need to re-link things.
8986   SDValue InputChain = Node->getOperand(0);
8987   SDValue OutputChain = SDValue(Node, 1);
8988   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8989 
8990   SmallVector<SDValue, 3> Ops;
8991   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8992     Ops.push_back(Node->getOperand(i));
8993 
8994   SDVTList VTs = getVTList(Node->getValueType(0));
8995   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8996 
8997   // MorphNodeTo can operate in two ways: if an existing node with the
8998   // specified operands exists, it can just return it.  Otherwise, it
8999   // updates the node in place to have the requested operands.
9000   if (Res == Node) {
9001     // If we updated the node in place, reset the node ID.  To the isel,
9002     // this should be just like a newly allocated machine node.
9003     Res->setNodeId(-1);
9004   } else {
9005     ReplaceAllUsesWith(Node, Res);
9006     RemoveDeadNode(Node);
9007   }
9008 
9009   return Res;
9010 }
9011 
9012 /// getMachineNode - These are used for target selectors to create a new node
9013 /// with specified return type(s), MachineInstr opcode, and operands.
9014 ///
9015 /// Note that getMachineNode returns the resultant node.  If there is already a
9016 /// node of the specified opcode and operands, it returns that node instead of
9017 /// the current one.
9018 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9019                                             EVT VT) {
9020   SDVTList VTs = getVTList(VT);
9021   return getMachineNode(Opcode, dl, VTs, None);
9022 }
9023 
9024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9025                                             EVT VT, SDValue Op1) {
9026   SDVTList VTs = getVTList(VT);
9027   SDValue Ops[] = { Op1 };
9028   return getMachineNode(Opcode, dl, VTs, Ops);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT, SDValue Op1, SDValue Op2) {
9033   SDVTList VTs = getVTList(VT);
9034   SDValue Ops[] = { Op1, Op2 };
9035   return getMachineNode(Opcode, dl, VTs, Ops);
9036 }
9037 
9038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9039                                             EVT VT, SDValue Op1, SDValue Op2,
9040                                             SDValue Op3) {
9041   SDVTList VTs = getVTList(VT);
9042   SDValue Ops[] = { Op1, Op2, Op3 };
9043   return getMachineNode(Opcode, dl, VTs, Ops);
9044 }
9045 
9046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9047                                             EVT VT, ArrayRef<SDValue> Ops) {
9048   SDVTList VTs = getVTList(VT);
9049   return getMachineNode(Opcode, dl, VTs, Ops);
9050 }
9051 
9052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9053                                             EVT VT1, EVT VT2, SDValue Op1,
9054                                             SDValue Op2) {
9055   SDVTList VTs = getVTList(VT1, VT2);
9056   SDValue Ops[] = { Op1, Op2 };
9057   return getMachineNode(Opcode, dl, VTs, Ops);
9058 }
9059 
9060 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9061                                             EVT VT1, EVT VT2, SDValue Op1,
9062                                             SDValue Op2, SDValue Op3) {
9063   SDVTList VTs = getVTList(VT1, VT2);
9064   SDValue Ops[] = { Op1, Op2, Op3 };
9065   return getMachineNode(Opcode, dl, VTs, Ops);
9066 }
9067 
9068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9069                                             EVT VT1, EVT VT2,
9070                                             ArrayRef<SDValue> Ops) {
9071   SDVTList VTs = getVTList(VT1, VT2);
9072   return getMachineNode(Opcode, dl, VTs, Ops);
9073 }
9074 
9075 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9076                                             EVT VT1, EVT VT2, EVT VT3,
9077                                             SDValue Op1, SDValue Op2) {
9078   SDVTList VTs = getVTList(VT1, VT2, VT3);
9079   SDValue Ops[] = { Op1, Op2 };
9080   return getMachineNode(Opcode, dl, VTs, Ops);
9081 }
9082 
9083 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9084                                             EVT VT1, EVT VT2, EVT VT3,
9085                                             SDValue Op1, SDValue Op2,
9086                                             SDValue Op3) {
9087   SDVTList VTs = getVTList(VT1, VT2, VT3);
9088   SDValue Ops[] = { Op1, Op2, Op3 };
9089   return getMachineNode(Opcode, dl, VTs, Ops);
9090 }
9091 
9092 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9093                                             EVT VT1, EVT VT2, EVT VT3,
9094                                             ArrayRef<SDValue> Ops) {
9095   SDVTList VTs = getVTList(VT1, VT2, VT3);
9096   return getMachineNode(Opcode, dl, VTs, Ops);
9097 }
9098 
9099 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9100                                             ArrayRef<EVT> ResultTys,
9101                                             ArrayRef<SDValue> Ops) {
9102   SDVTList VTs = getVTList(ResultTys);
9103   return getMachineNode(Opcode, dl, VTs, Ops);
9104 }
9105 
9106 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9107                                             SDVTList VTs,
9108                                             ArrayRef<SDValue> Ops) {
9109   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9110   MachineSDNode *N;
9111   void *IP = nullptr;
9112 
9113   if (DoCSE) {
9114     FoldingSetNodeID ID;
9115     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9116     IP = nullptr;
9117     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9118       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9119     }
9120   }
9121 
9122   // Allocate a new MachineSDNode.
9123   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9124   createOperands(N, Ops);
9125 
9126   if (DoCSE)
9127     CSEMap.InsertNode(N, IP);
9128 
9129   InsertNode(N);
9130   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9131   return N;
9132 }
9133 
9134 /// getTargetExtractSubreg - A convenience function for creating
9135 /// TargetOpcode::EXTRACT_SUBREG nodes.
9136 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9137                                              SDValue Operand) {
9138   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9139   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9140                                   VT, Operand, SRIdxVal);
9141   return SDValue(Subreg, 0);
9142 }
9143 
9144 /// getTargetInsertSubreg - A convenience function for creating
9145 /// TargetOpcode::INSERT_SUBREG nodes.
9146 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9147                                             SDValue Operand, SDValue Subreg) {
9148   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9149   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9150                                   VT, Operand, Subreg, SRIdxVal);
9151   return SDValue(Result, 0);
9152 }
9153 
9154 /// getNodeIfExists - Get the specified node if it's already available, or
9155 /// else return NULL.
9156 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9157                                       ArrayRef<SDValue> Ops) {
9158   SDNodeFlags Flags;
9159   if (Inserter)
9160     Flags = Inserter->getFlags();
9161   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9162 }
9163 
9164 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9165                                       ArrayRef<SDValue> Ops,
9166                                       const SDNodeFlags Flags) {
9167   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9168     FoldingSetNodeID ID;
9169     AddNodeIDNode(ID, Opcode, VTList, Ops);
9170     void *IP = nullptr;
9171     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9172       E->intersectFlagsWith(Flags);
9173       return E;
9174     }
9175   }
9176   return nullptr;
9177 }
9178 
9179 /// doesNodeExist - Check if a node exists without modifying its flags.
9180 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9181                                  ArrayRef<SDValue> Ops) {
9182   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9183     FoldingSetNodeID ID;
9184     AddNodeIDNode(ID, Opcode, VTList, Ops);
9185     void *IP = nullptr;
9186     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9187       return true;
9188   }
9189   return false;
9190 }
9191 
9192 /// getDbgValue - Creates a SDDbgValue node.
9193 ///
9194 /// SDNode
9195 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9196                                       SDNode *N, unsigned R, bool IsIndirect,
9197                                       const DebugLoc &DL, unsigned O) {
9198   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9199          "Expected inlined-at fields to agree");
9200   return new (DbgInfo->getAlloc())
9201       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9202                  {}, IsIndirect, DL, O,
9203                  /*IsVariadic=*/false);
9204 }
9205 
9206 /// Constant
9207 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9208                                               DIExpression *Expr,
9209                                               const Value *C,
9210                                               const DebugLoc &DL, unsigned O) {
9211   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9212          "Expected inlined-at fields to agree");
9213   return new (DbgInfo->getAlloc())
9214       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9215                  /*IsIndirect=*/false, DL, O,
9216                  /*IsVariadic=*/false);
9217 }
9218 
9219 /// FrameIndex
9220 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9221                                                 DIExpression *Expr, unsigned FI,
9222                                                 bool IsIndirect,
9223                                                 const DebugLoc &DL,
9224                                                 unsigned O) {
9225   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9226          "Expected inlined-at fields to agree");
9227   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9228 }
9229 
9230 /// FrameIndex with dependencies
9231 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9232                                                 DIExpression *Expr, unsigned FI,
9233                                                 ArrayRef<SDNode *> Dependencies,
9234                                                 bool IsIndirect,
9235                                                 const DebugLoc &DL,
9236                                                 unsigned O) {
9237   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9238          "Expected inlined-at fields to agree");
9239   return new (DbgInfo->getAlloc())
9240       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9241                  Dependencies, IsIndirect, DL, O,
9242                  /*IsVariadic=*/false);
9243 }
9244 
9245 /// VReg
9246 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9247                                           unsigned VReg, bool IsIndirect,
9248                                           const DebugLoc &DL, unsigned O) {
9249   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9250          "Expected inlined-at fields to agree");
9251   return new (DbgInfo->getAlloc())
9252       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9253                  {}, IsIndirect, DL, O,
9254                  /*IsVariadic=*/false);
9255 }
9256 
9257 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9258                                           ArrayRef<SDDbgOperand> Locs,
9259                                           ArrayRef<SDNode *> Dependencies,
9260                                           bool IsIndirect, const DebugLoc &DL,
9261                                           unsigned O, bool IsVariadic) {
9262   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9263          "Expected inlined-at fields to agree");
9264   return new (DbgInfo->getAlloc())
9265       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9266                  DL, O, IsVariadic);
9267 }
9268 
9269 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9270                                      unsigned OffsetInBits, unsigned SizeInBits,
9271                                      bool InvalidateDbg) {
9272   SDNode *FromNode = From.getNode();
9273   SDNode *ToNode = To.getNode();
9274   assert(FromNode && ToNode && "Can't modify dbg values");
9275 
9276   // PR35338
9277   // TODO: assert(From != To && "Redundant dbg value transfer");
9278   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9279   if (From == To || FromNode == ToNode)
9280     return;
9281 
9282   if (!FromNode->getHasDebugValue())
9283     return;
9284 
9285   SDDbgOperand FromLocOp =
9286       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9287   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9288 
9289   SmallVector<SDDbgValue *, 2> ClonedDVs;
9290   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9291     if (Dbg->isInvalidated())
9292       continue;
9293 
9294     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9295 
9296     // Create a new location ops vector that is equal to the old vector, but
9297     // with each instance of FromLocOp replaced with ToLocOp.
9298     bool Changed = false;
9299     auto NewLocOps = Dbg->copyLocationOps();
9300     std::replace_if(
9301         NewLocOps.begin(), NewLocOps.end(),
9302         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9303           bool Match = Op == FromLocOp;
9304           Changed |= Match;
9305           return Match;
9306         },
9307         ToLocOp);
9308     // Ignore this SDDbgValue if we didn't find a matching location.
9309     if (!Changed)
9310       continue;
9311 
9312     DIVariable *Var = Dbg->getVariable();
9313     auto *Expr = Dbg->getExpression();
9314     // If a fragment is requested, update the expression.
9315     if (SizeInBits) {
9316       // When splitting a larger (e.g., sign-extended) value whose
9317       // lower bits are described with an SDDbgValue, do not attempt
9318       // to transfer the SDDbgValue to the upper bits.
9319       if (auto FI = Expr->getFragmentInfo())
9320         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9321           continue;
9322       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9323                                                              SizeInBits);
9324       if (!Fragment)
9325         continue;
9326       Expr = *Fragment;
9327     }
9328 
9329     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9330     // Clone the SDDbgValue and move it to To.
9331     SDDbgValue *Clone = getDbgValueList(
9332         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9333         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9334         Dbg->isVariadic());
9335     ClonedDVs.push_back(Clone);
9336 
9337     if (InvalidateDbg) {
9338       // Invalidate value and indicate the SDDbgValue should not be emitted.
9339       Dbg->setIsInvalidated();
9340       Dbg->setIsEmitted();
9341     }
9342   }
9343 
9344   for (SDDbgValue *Dbg : ClonedDVs) {
9345     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9346            "Transferred DbgValues should depend on the new SDNode");
9347     AddDbgValue(Dbg, false);
9348   }
9349 }
9350 
9351 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9352   if (!N.getHasDebugValue())
9353     return;
9354 
9355   SmallVector<SDDbgValue *, 2> ClonedDVs;
9356   for (auto DV : GetDbgValues(&N)) {
9357     if (DV->isInvalidated())
9358       continue;
9359     switch (N.getOpcode()) {
9360     default:
9361       break;
9362     case ISD::ADD:
9363       SDValue N0 = N.getOperand(0);
9364       SDValue N1 = N.getOperand(1);
9365       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9366           isConstantIntBuildVectorOrConstantInt(N1)) {
9367         uint64_t Offset = N.getConstantOperandVal(1);
9368 
9369         // Rewrite an ADD constant node into a DIExpression. Since we are
9370         // performing arithmetic to compute the variable's *value* in the
9371         // DIExpression, we need to mark the expression with a
9372         // DW_OP_stack_value.
9373         auto *DIExpr = DV->getExpression();
9374         auto NewLocOps = DV->copyLocationOps();
9375         bool Changed = false;
9376         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9377           // We're not given a ResNo to compare against because the whole
9378           // node is going away. We know that any ISD::ADD only has one
9379           // result, so we can assume any node match is using the result.
9380           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9381               NewLocOps[i].getSDNode() != &N)
9382             continue;
9383           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9384           SmallVector<uint64_t, 3> ExprOps;
9385           DIExpression::appendOffset(ExprOps, Offset);
9386           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9387           Changed = true;
9388         }
9389         (void)Changed;
9390         assert(Changed && "Salvage target doesn't use N");
9391 
9392         auto AdditionalDependencies = DV->getAdditionalDependencies();
9393         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9394                                             NewLocOps, AdditionalDependencies,
9395                                             DV->isIndirect(), DV->getDebugLoc(),
9396                                             DV->getOrder(), DV->isVariadic());
9397         ClonedDVs.push_back(Clone);
9398         DV->setIsInvalidated();
9399         DV->setIsEmitted();
9400         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9401                    N0.getNode()->dumprFull(this);
9402                    dbgs() << " into " << *DIExpr << '\n');
9403       }
9404     }
9405   }
9406 
9407   for (SDDbgValue *Dbg : ClonedDVs) {
9408     assert(!Dbg->getSDNodes().empty() &&
9409            "Salvaged DbgValue should depend on a new SDNode");
9410     AddDbgValue(Dbg, false);
9411   }
9412 }
9413 
9414 /// Creates a SDDbgLabel node.
9415 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9416                                       const DebugLoc &DL, unsigned O) {
9417   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9418          "Expected inlined-at fields to agree");
9419   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9420 }
9421 
9422 namespace {
9423 
9424 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9425 /// pointed to by a use iterator is deleted, increment the use iterator
9426 /// so that it doesn't dangle.
9427 ///
9428 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9429   SDNode::use_iterator &UI;
9430   SDNode::use_iterator &UE;
9431 
9432   void NodeDeleted(SDNode *N, SDNode *E) override {
9433     // Increment the iterator as needed.
9434     while (UI != UE && N == *UI)
9435       ++UI;
9436   }
9437 
9438 public:
9439   RAUWUpdateListener(SelectionDAG &d,
9440                      SDNode::use_iterator &ui,
9441                      SDNode::use_iterator &ue)
9442     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9443 };
9444 
9445 } // end anonymous namespace
9446 
9447 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9448 /// This can cause recursive merging of nodes in the DAG.
9449 ///
9450 /// This version assumes From has a single result value.
9451 ///
9452 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9453   SDNode *From = FromN.getNode();
9454   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9455          "Cannot replace with this method!");
9456   assert(From != To.getNode() && "Cannot replace uses of with self");
9457 
9458   // Preserve Debug Values
9459   transferDbgValues(FromN, To);
9460 
9461   // Iterate over all the existing uses of From. New uses will be added
9462   // to the beginning of the use list, which we avoid visiting.
9463   // This specifically avoids visiting uses of From that arise while the
9464   // replacement is happening, because any such uses would be the result
9465   // of CSE: If an existing node looks like From after one of its operands
9466   // is replaced by To, we don't want to replace of all its users with To
9467   // too. See PR3018 for more info.
9468   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9469   RAUWUpdateListener Listener(*this, UI, UE);
9470   while (UI != UE) {
9471     SDNode *User = *UI;
9472 
9473     // This node is about to morph, remove its old self from the CSE maps.
9474     RemoveNodeFromCSEMaps(User);
9475 
9476     // A user can appear in a use list multiple times, and when this
9477     // happens the uses are usually next to each other in the list.
9478     // To help reduce the number of CSE recomputations, process all
9479     // the uses of this user that we can find this way.
9480     do {
9481       SDUse &Use = UI.getUse();
9482       ++UI;
9483       Use.set(To);
9484       if (To->isDivergent() != From->isDivergent())
9485         updateDivergence(User);
9486     } while (UI != UE && *UI == User);
9487     // Now that we have modified User, add it back to the CSE maps.  If it
9488     // already exists there, recursively merge the results together.
9489     AddModifiedNodeToCSEMaps(User);
9490   }
9491 
9492   // If we just RAUW'd the root, take note.
9493   if (FromN == getRoot())
9494     setRoot(To);
9495 }
9496 
9497 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9498 /// This can cause recursive merging of nodes in the DAG.
9499 ///
9500 /// This version assumes that for each value of From, there is a
9501 /// corresponding value in To in the same position with the same type.
9502 ///
9503 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9504 #ifndef NDEBUG
9505   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9506     assert((!From->hasAnyUseOfValue(i) ||
9507             From->getValueType(i) == To->getValueType(i)) &&
9508            "Cannot use this version of ReplaceAllUsesWith!");
9509 #endif
9510 
9511   // Handle the trivial case.
9512   if (From == To)
9513     return;
9514 
9515   // Preserve Debug Info. Only do this if there's a use.
9516   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9517     if (From->hasAnyUseOfValue(i)) {
9518       assert((i < To->getNumValues()) && "Invalid To location");
9519       transferDbgValues(SDValue(From, i), SDValue(To, i));
9520     }
9521 
9522   // Iterate over just the existing users of From. See the comments in
9523   // the ReplaceAllUsesWith above.
9524   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9525   RAUWUpdateListener Listener(*this, UI, UE);
9526   while (UI != UE) {
9527     SDNode *User = *UI;
9528 
9529     // This node is about to morph, remove its old self from the CSE maps.
9530     RemoveNodeFromCSEMaps(User);
9531 
9532     // A user can appear in a use list multiple times, and when this
9533     // happens the uses are usually next to each other in the list.
9534     // To help reduce the number of CSE recomputations, process all
9535     // the uses of this user that we can find this way.
9536     do {
9537       SDUse &Use = UI.getUse();
9538       ++UI;
9539       Use.setNode(To);
9540       if (To->isDivergent() != From->isDivergent())
9541         updateDivergence(User);
9542     } while (UI != UE && *UI == User);
9543 
9544     // Now that we have modified User, add it back to the CSE maps.  If it
9545     // already exists there, recursively merge the results together.
9546     AddModifiedNodeToCSEMaps(User);
9547   }
9548 
9549   // If we just RAUW'd the root, take note.
9550   if (From == getRoot().getNode())
9551     setRoot(SDValue(To, getRoot().getResNo()));
9552 }
9553 
9554 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9555 /// This can cause recursive merging of nodes in the DAG.
9556 ///
9557 /// This version can replace From with any result values.  To must match the
9558 /// number and types of values returned by From.
9559 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9560   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9561     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9562 
9563   // Preserve Debug Info.
9564   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9565     transferDbgValues(SDValue(From, i), To[i]);
9566 
9567   // Iterate over just the existing users of From. See the comments in
9568   // the ReplaceAllUsesWith above.
9569   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9570   RAUWUpdateListener Listener(*this, UI, UE);
9571   while (UI != UE) {
9572     SDNode *User = *UI;
9573 
9574     // This node is about to morph, remove its old self from the CSE maps.
9575     RemoveNodeFromCSEMaps(User);
9576 
9577     // A user can appear in a use list multiple times, and when this happens the
9578     // uses are usually next to each other in the list.  To help reduce the
9579     // number of CSE and divergence recomputations, process all the uses of this
9580     // user that we can find this way.
9581     bool To_IsDivergent = false;
9582     do {
9583       SDUse &Use = UI.getUse();
9584       const SDValue &ToOp = To[Use.getResNo()];
9585       ++UI;
9586       Use.set(ToOp);
9587       To_IsDivergent |= ToOp->isDivergent();
9588     } while (UI != UE && *UI == User);
9589 
9590     if (To_IsDivergent != From->isDivergent())
9591       updateDivergence(User);
9592 
9593     // Now that we have modified User, add it back to the CSE maps.  If it
9594     // already exists there, recursively merge the results together.
9595     AddModifiedNodeToCSEMaps(User);
9596   }
9597 
9598   // If we just RAUW'd the root, take note.
9599   if (From == getRoot().getNode())
9600     setRoot(SDValue(To[getRoot().getResNo()]));
9601 }
9602 
9603 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9604 /// uses of other values produced by From.getNode() alone.  The Deleted
9605 /// vector is handled the same way as for ReplaceAllUsesWith.
9606 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9607   // Handle the really simple, really trivial case efficiently.
9608   if (From == To) return;
9609 
9610   // Handle the simple, trivial, case efficiently.
9611   if (From.getNode()->getNumValues() == 1) {
9612     ReplaceAllUsesWith(From, To);
9613     return;
9614   }
9615 
9616   // Preserve Debug Info.
9617   transferDbgValues(From, To);
9618 
9619   // Iterate over just the existing users of From. See the comments in
9620   // the ReplaceAllUsesWith above.
9621   SDNode::use_iterator UI = From.getNode()->use_begin(),
9622                        UE = From.getNode()->use_end();
9623   RAUWUpdateListener Listener(*this, UI, UE);
9624   while (UI != UE) {
9625     SDNode *User = *UI;
9626     bool UserRemovedFromCSEMaps = false;
9627 
9628     // A user can appear in a use list multiple times, and when this
9629     // happens the uses are usually next to each other in the list.
9630     // To help reduce the number of CSE recomputations, process all
9631     // the uses of this user that we can find this way.
9632     do {
9633       SDUse &Use = UI.getUse();
9634 
9635       // Skip uses of different values from the same node.
9636       if (Use.getResNo() != From.getResNo()) {
9637         ++UI;
9638         continue;
9639       }
9640 
9641       // If this node hasn't been modified yet, it's still in the CSE maps,
9642       // so remove its old self from the CSE maps.
9643       if (!UserRemovedFromCSEMaps) {
9644         RemoveNodeFromCSEMaps(User);
9645         UserRemovedFromCSEMaps = true;
9646       }
9647 
9648       ++UI;
9649       Use.set(To);
9650       if (To->isDivergent() != From->isDivergent())
9651         updateDivergence(User);
9652     } while (UI != UE && *UI == User);
9653     // We are iterating over all uses of the From node, so if a use
9654     // doesn't use the specific value, no changes are made.
9655     if (!UserRemovedFromCSEMaps)
9656       continue;
9657 
9658     // Now that we have modified User, add it back to the CSE maps.  If it
9659     // already exists there, recursively merge the results together.
9660     AddModifiedNodeToCSEMaps(User);
9661   }
9662 
9663   // If we just RAUW'd the root, take note.
9664   if (From == getRoot())
9665     setRoot(To);
9666 }
9667 
9668 namespace {
9669 
9670   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9671   /// to record information about a use.
9672   struct UseMemo {
9673     SDNode *User;
9674     unsigned Index;
9675     SDUse *Use;
9676   };
9677 
9678   /// operator< - Sort Memos by User.
9679   bool operator<(const UseMemo &L, const UseMemo &R) {
9680     return (intptr_t)L.User < (intptr_t)R.User;
9681   }
9682 
9683 } // end anonymous namespace
9684 
9685 bool SelectionDAG::calculateDivergence(SDNode *N) {
9686   if (TLI->isSDNodeAlwaysUniform(N)) {
9687     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9688            "Conflicting divergence information!");
9689     return false;
9690   }
9691   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9692     return true;
9693   for (auto &Op : N->ops()) {
9694     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9695       return true;
9696   }
9697   return false;
9698 }
9699 
9700 void SelectionDAG::updateDivergence(SDNode *N) {
9701   SmallVector<SDNode *, 16> Worklist(1, N);
9702   do {
9703     N = Worklist.pop_back_val();
9704     bool IsDivergent = calculateDivergence(N);
9705     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9706       N->SDNodeBits.IsDivergent = IsDivergent;
9707       llvm::append_range(Worklist, N->uses());
9708     }
9709   } while (!Worklist.empty());
9710 }
9711 
9712 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9713   DenseMap<SDNode *, unsigned> Degree;
9714   Order.reserve(AllNodes.size());
9715   for (auto &N : allnodes()) {
9716     unsigned NOps = N.getNumOperands();
9717     Degree[&N] = NOps;
9718     if (0 == NOps)
9719       Order.push_back(&N);
9720   }
9721   for (size_t I = 0; I != Order.size(); ++I) {
9722     SDNode *N = Order[I];
9723     for (auto U : N->uses()) {
9724       unsigned &UnsortedOps = Degree[U];
9725       if (0 == --UnsortedOps)
9726         Order.push_back(U);
9727     }
9728   }
9729 }
9730 
9731 #ifndef NDEBUG
9732 void SelectionDAG::VerifyDAGDivergence() {
9733   std::vector<SDNode *> TopoOrder;
9734   CreateTopologicalOrder(TopoOrder);
9735   for (auto *N : TopoOrder) {
9736     assert(calculateDivergence(N) == N->isDivergent() &&
9737            "Divergence bit inconsistency detected");
9738   }
9739 }
9740 #endif
9741 
9742 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9743 /// uses of other values produced by From.getNode() alone.  The same value
9744 /// may appear in both the From and To list.  The Deleted vector is
9745 /// handled the same way as for ReplaceAllUsesWith.
9746 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9747                                               const SDValue *To,
9748                                               unsigned Num){
9749   // Handle the simple, trivial case efficiently.
9750   if (Num == 1)
9751     return ReplaceAllUsesOfValueWith(*From, *To);
9752 
9753   transferDbgValues(*From, *To);
9754 
9755   // Read up all the uses and make records of them. This helps
9756   // processing new uses that are introduced during the
9757   // replacement process.
9758   SmallVector<UseMemo, 4> Uses;
9759   for (unsigned i = 0; i != Num; ++i) {
9760     unsigned FromResNo = From[i].getResNo();
9761     SDNode *FromNode = From[i].getNode();
9762     for (SDNode::use_iterator UI = FromNode->use_begin(),
9763          E = FromNode->use_end(); UI != E; ++UI) {
9764       SDUse &Use = UI.getUse();
9765       if (Use.getResNo() == FromResNo) {
9766         UseMemo Memo = { *UI, i, &Use };
9767         Uses.push_back(Memo);
9768       }
9769     }
9770   }
9771 
9772   // Sort the uses, so that all the uses from a given User are together.
9773   llvm::sort(Uses);
9774 
9775   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9776        UseIndex != UseIndexEnd; ) {
9777     // We know that this user uses some value of From.  If it is the right
9778     // value, update it.
9779     SDNode *User = Uses[UseIndex].User;
9780 
9781     // This node is about to morph, remove its old self from the CSE maps.
9782     RemoveNodeFromCSEMaps(User);
9783 
9784     // The Uses array is sorted, so all the uses for a given User
9785     // are next to each other in the list.
9786     // To help reduce the number of CSE recomputations, process all
9787     // the uses of this user that we can find this way.
9788     do {
9789       unsigned i = Uses[UseIndex].Index;
9790       SDUse &Use = *Uses[UseIndex].Use;
9791       ++UseIndex;
9792 
9793       Use.set(To[i]);
9794     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9795 
9796     // Now that we have modified User, add it back to the CSE maps.  If it
9797     // already exists there, recursively merge the results together.
9798     AddModifiedNodeToCSEMaps(User);
9799   }
9800 }
9801 
9802 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9803 /// based on their topological order. It returns the maximum id and a vector
9804 /// of the SDNodes* in assigned order by reference.
9805 unsigned SelectionDAG::AssignTopologicalOrder() {
9806   unsigned DAGSize = 0;
9807 
9808   // SortedPos tracks the progress of the algorithm. Nodes before it are
9809   // sorted, nodes after it are unsorted. When the algorithm completes
9810   // it is at the end of the list.
9811   allnodes_iterator SortedPos = allnodes_begin();
9812 
9813   // Visit all the nodes. Move nodes with no operands to the front of
9814   // the list immediately. Annotate nodes that do have operands with their
9815   // operand count. Before we do this, the Node Id fields of the nodes
9816   // may contain arbitrary values. After, the Node Id fields for nodes
9817   // before SortedPos will contain the topological sort index, and the
9818   // Node Id fields for nodes At SortedPos and after will contain the
9819   // count of outstanding operands.
9820   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9821     SDNode *N = &*I++;
9822     checkForCycles(N, this);
9823     unsigned Degree = N->getNumOperands();
9824     if (Degree == 0) {
9825       // A node with no uses, add it to the result array immediately.
9826       N->setNodeId(DAGSize++);
9827       allnodes_iterator Q(N);
9828       if (Q != SortedPos)
9829         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9830       assert(SortedPos != AllNodes.end() && "Overran node list");
9831       ++SortedPos;
9832     } else {
9833       // Temporarily use the Node Id as scratch space for the degree count.
9834       N->setNodeId(Degree);
9835     }
9836   }
9837 
9838   // Visit all the nodes. As we iterate, move nodes into sorted order,
9839   // such that by the time the end is reached all nodes will be sorted.
9840   for (SDNode &Node : allnodes()) {
9841     SDNode *N = &Node;
9842     checkForCycles(N, this);
9843     // N is in sorted position, so all its uses have one less operand
9844     // that needs to be sorted.
9845     for (SDNode *P : N->uses()) {
9846       unsigned Degree = P->getNodeId();
9847       assert(Degree != 0 && "Invalid node degree");
9848       --Degree;
9849       if (Degree == 0) {
9850         // All of P's operands are sorted, so P may sorted now.
9851         P->setNodeId(DAGSize++);
9852         if (P->getIterator() != SortedPos)
9853           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9854         assert(SortedPos != AllNodes.end() && "Overran node list");
9855         ++SortedPos;
9856       } else {
9857         // Update P's outstanding operand count.
9858         P->setNodeId(Degree);
9859       }
9860     }
9861     if (Node.getIterator() == SortedPos) {
9862 #ifndef NDEBUG
9863       allnodes_iterator I(N);
9864       SDNode *S = &*++I;
9865       dbgs() << "Overran sorted position:\n";
9866       S->dumprFull(this); dbgs() << "\n";
9867       dbgs() << "Checking if this is due to cycles\n";
9868       checkForCycles(this, true);
9869 #endif
9870       llvm_unreachable(nullptr);
9871     }
9872   }
9873 
9874   assert(SortedPos == AllNodes.end() &&
9875          "Topological sort incomplete!");
9876   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9877          "First node in topological sort is not the entry token!");
9878   assert(AllNodes.front().getNodeId() == 0 &&
9879          "First node in topological sort has non-zero id!");
9880   assert(AllNodes.front().getNumOperands() == 0 &&
9881          "First node in topological sort has operands!");
9882   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9883          "Last node in topologic sort has unexpected id!");
9884   assert(AllNodes.back().use_empty() &&
9885          "Last node in topologic sort has users!");
9886   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9887   return DAGSize;
9888 }
9889 
9890 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9891 /// value is produced by SD.
9892 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9893   for (SDNode *SD : DB->getSDNodes()) {
9894     if (!SD)
9895       continue;
9896     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9897     SD->setHasDebugValue(true);
9898   }
9899   DbgInfo->add(DB, isParameter);
9900 }
9901 
9902 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9903 
9904 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9905                                                    SDValue NewMemOpChain) {
9906   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9907   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9908   // The new memory operation must have the same position as the old load in
9909   // terms of memory dependency. Create a TokenFactor for the old load and new
9910   // memory operation and update uses of the old load's output chain to use that
9911   // TokenFactor.
9912   if (OldChain == NewMemOpChain || OldChain.use_empty())
9913     return NewMemOpChain;
9914 
9915   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9916                                 OldChain, NewMemOpChain);
9917   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9918   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9919   return TokenFactor;
9920 }
9921 
9922 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9923                                                    SDValue NewMemOp) {
9924   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9925   SDValue OldChain = SDValue(OldLoad, 1);
9926   SDValue NewMemOpChain = NewMemOp.getValue(1);
9927   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9928 }
9929 
9930 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9931                                                      Function **OutFunction) {
9932   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9933 
9934   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9935   auto *Module = MF->getFunction().getParent();
9936   auto *Function = Module->getFunction(Symbol);
9937 
9938   if (OutFunction != nullptr)
9939       *OutFunction = Function;
9940 
9941   if (Function != nullptr) {
9942     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9943     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9944   }
9945 
9946   std::string ErrorStr;
9947   raw_string_ostream ErrorFormatter(ErrorStr);
9948   ErrorFormatter << "Undefined external symbol ";
9949   ErrorFormatter << '"' << Symbol << '"';
9950   report_fatal_error(Twine(ErrorFormatter.str()));
9951 }
9952 
9953 //===----------------------------------------------------------------------===//
9954 //                              SDNode Class
9955 //===----------------------------------------------------------------------===//
9956 
9957 bool llvm::isNullConstant(SDValue V) {
9958   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9959   return Const != nullptr && Const->isZero();
9960 }
9961 
9962 bool llvm::isNullFPConstant(SDValue V) {
9963   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9964   return Const != nullptr && Const->isZero() && !Const->isNegative();
9965 }
9966 
9967 bool llvm::isAllOnesConstant(SDValue V) {
9968   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9969   return Const != nullptr && Const->isAllOnes();
9970 }
9971 
9972 bool llvm::isOneConstant(SDValue V) {
9973   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9974   return Const != nullptr && Const->isOne();
9975 }
9976 
9977 SDValue llvm::peekThroughBitcasts(SDValue V) {
9978   while (V.getOpcode() == ISD::BITCAST)
9979     V = V.getOperand(0);
9980   return V;
9981 }
9982 
9983 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9984   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9985     V = V.getOperand(0);
9986   return V;
9987 }
9988 
9989 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9990   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9991     V = V.getOperand(0);
9992   return V;
9993 }
9994 
9995 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9996   if (V.getOpcode() != ISD::XOR)
9997     return false;
9998   V = peekThroughBitcasts(V.getOperand(1));
9999   unsigned NumBits = V.getScalarValueSizeInBits();
10000   ConstantSDNode *C =
10001       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10002   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10003 }
10004 
10005 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10006                                           bool AllowTruncation) {
10007   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10008     return CN;
10009 
10010   // SplatVectors can truncate their operands. Ignore that case here unless
10011   // AllowTruncation is set.
10012   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10013     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10014     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10015       EVT CVT = CN->getValueType(0);
10016       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10017       if (AllowTruncation || CVT == VecEltVT)
10018         return CN;
10019     }
10020   }
10021 
10022   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10023     BitVector UndefElements;
10024     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10025 
10026     // BuildVectors can truncate their operands. Ignore that case here unless
10027     // AllowTruncation is set.
10028     if (CN && (UndefElements.none() || AllowUndefs)) {
10029       EVT CVT = CN->getValueType(0);
10030       EVT NSVT = N.getValueType().getScalarType();
10031       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10032       if (AllowTruncation || (CVT == NSVT))
10033         return CN;
10034     }
10035   }
10036 
10037   return nullptr;
10038 }
10039 
10040 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10041                                           bool AllowUndefs,
10042                                           bool AllowTruncation) {
10043   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10044     return CN;
10045 
10046   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10047     BitVector UndefElements;
10048     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10049 
10050     // BuildVectors can truncate their operands. Ignore that case here unless
10051     // AllowTruncation is set.
10052     if (CN && (UndefElements.none() || AllowUndefs)) {
10053       EVT CVT = CN->getValueType(0);
10054       EVT NSVT = N.getValueType().getScalarType();
10055       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10056       if (AllowTruncation || (CVT == NSVT))
10057         return CN;
10058     }
10059   }
10060 
10061   return nullptr;
10062 }
10063 
10064 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10065   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10066     return CN;
10067 
10068   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10069     BitVector UndefElements;
10070     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10071     if (CN && (UndefElements.none() || AllowUndefs))
10072       return CN;
10073   }
10074 
10075   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10076     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10077       return CN;
10078 
10079   return nullptr;
10080 }
10081 
10082 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10083                                               const APInt &DemandedElts,
10084                                               bool AllowUndefs) {
10085   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10086     return CN;
10087 
10088   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10089     BitVector UndefElements;
10090     ConstantFPSDNode *CN =
10091         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10092     if (CN && (UndefElements.none() || AllowUndefs))
10093       return CN;
10094   }
10095 
10096   return nullptr;
10097 }
10098 
10099 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10100   // TODO: may want to use peekThroughBitcast() here.
10101   ConstantSDNode *C =
10102       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10103   return C && C->isZero();
10104 }
10105 
10106 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10107   // TODO: may want to use peekThroughBitcast() here.
10108   unsigned BitWidth = N.getScalarValueSizeInBits();
10109   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10110   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10111 }
10112 
10113 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10114   N = peekThroughBitcasts(N);
10115   unsigned BitWidth = N.getScalarValueSizeInBits();
10116   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10117   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10118 }
10119 
10120 HandleSDNode::~HandleSDNode() {
10121   DropOperands();
10122 }
10123 
10124 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10125                                          const DebugLoc &DL,
10126                                          const GlobalValue *GA, EVT VT,
10127                                          int64_t o, unsigned TF)
10128     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10129   TheGlobal = GA;
10130 }
10131 
10132 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10133                                          EVT VT, unsigned SrcAS,
10134                                          unsigned DestAS)
10135     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10136       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10137 
10138 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10139                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10140     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10141   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10142   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10143   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10144   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10145 
10146   // We check here that the size of the memory operand fits within the size of
10147   // the MMO. This is because the MMO might indicate only a possible address
10148   // range instead of specifying the affected memory addresses precisely.
10149   // TODO: Make MachineMemOperands aware of scalable vectors.
10150   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10151          "Size mismatch!");
10152 }
10153 
10154 /// Profile - Gather unique data for the node.
10155 ///
10156 void SDNode::Profile(FoldingSetNodeID &ID) const {
10157   AddNodeIDNode(ID, this);
10158 }
10159 
10160 namespace {
10161 
10162   struct EVTArray {
10163     std::vector<EVT> VTs;
10164 
10165     EVTArray() {
10166       VTs.reserve(MVT::VALUETYPE_SIZE);
10167       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10168         VTs.push_back(MVT((MVT::SimpleValueType)i));
10169     }
10170   };
10171 
10172 } // end anonymous namespace
10173 
10174 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10175 static ManagedStatic<EVTArray> SimpleVTArray;
10176 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10177 
10178 /// getValueTypeList - Return a pointer to the specified value type.
10179 ///
10180 const EVT *SDNode::getValueTypeList(EVT VT) {
10181   if (VT.isExtended()) {
10182     sys::SmartScopedLock<true> Lock(*VTMutex);
10183     return &(*EVTs->insert(VT).first);
10184   }
10185   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10186   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10187 }
10188 
10189 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10190 /// indicated value.  This method ignores uses of other values defined by this
10191 /// operation.
10192 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10193   assert(Value < getNumValues() && "Bad value!");
10194 
10195   // TODO: Only iterate over uses of a given value of the node
10196   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10197     if (UI.getUse().getResNo() == Value) {
10198       if (NUses == 0)
10199         return false;
10200       --NUses;
10201     }
10202   }
10203 
10204   // Found exactly the right number of uses?
10205   return NUses == 0;
10206 }
10207 
10208 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10209 /// value. This method ignores uses of other values defined by this operation.
10210 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10211   assert(Value < getNumValues() && "Bad value!");
10212 
10213   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10214     if (UI.getUse().getResNo() == Value)
10215       return true;
10216 
10217   return false;
10218 }
10219 
10220 /// isOnlyUserOf - Return true if this node is the only use of N.
10221 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10222   bool Seen = false;
10223   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10224     SDNode *User = *I;
10225     if (User == this)
10226       Seen = true;
10227     else
10228       return false;
10229   }
10230 
10231   return Seen;
10232 }
10233 
10234 /// Return true if the only users of N are contained in Nodes.
10235 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10236   bool Seen = false;
10237   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10238     SDNode *User = *I;
10239     if (llvm::is_contained(Nodes, User))
10240       Seen = true;
10241     else
10242       return false;
10243   }
10244 
10245   return Seen;
10246 }
10247 
10248 /// isOperand - Return true if this node is an operand of N.
10249 bool SDValue::isOperandOf(const SDNode *N) const {
10250   return is_contained(N->op_values(), *this);
10251 }
10252 
10253 bool SDNode::isOperandOf(const SDNode *N) const {
10254   return any_of(N->op_values(),
10255                 [this](SDValue Op) { return this == Op.getNode(); });
10256 }
10257 
10258 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10259 /// be a chain) reaches the specified operand without crossing any
10260 /// side-effecting instructions on any chain path.  In practice, this looks
10261 /// through token factors and non-volatile loads.  In order to remain efficient,
10262 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10263 ///
10264 /// Note that we only need to examine chains when we're searching for
10265 /// side-effects; SelectionDAG requires that all side-effects are represented
10266 /// by chains, even if another operand would force a specific ordering. This
10267 /// constraint is necessary to allow transformations like splitting loads.
10268 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10269                                              unsigned Depth) const {
10270   if (*this == Dest) return true;
10271 
10272   // Don't search too deeply, we just want to be able to see through
10273   // TokenFactor's etc.
10274   if (Depth == 0) return false;
10275 
10276   // If this is a token factor, all inputs to the TF happen in parallel.
10277   if (getOpcode() == ISD::TokenFactor) {
10278     // First, try a shallow search.
10279     if (is_contained((*this)->ops(), Dest)) {
10280       // We found the chain we want as an operand of this TokenFactor.
10281       // Essentially, we reach the chain without side-effects if we could
10282       // serialize the TokenFactor into a simple chain of operations with
10283       // Dest as the last operation. This is automatically true if the
10284       // chain has one use: there are no other ordering constraints.
10285       // If the chain has more than one use, we give up: some other
10286       // use of Dest might force a side-effect between Dest and the current
10287       // node.
10288       if (Dest.hasOneUse())
10289         return true;
10290     }
10291     // Next, try a deep search: check whether every operand of the TokenFactor
10292     // reaches Dest.
10293     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10294       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10295     });
10296   }
10297 
10298   // Loads don't have side effects, look through them.
10299   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10300     if (Ld->isUnordered())
10301       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10302   }
10303   return false;
10304 }
10305 
10306 bool SDNode::hasPredecessor(const SDNode *N) const {
10307   SmallPtrSet<const SDNode *, 32> Visited;
10308   SmallVector<const SDNode *, 16> Worklist;
10309   Worklist.push_back(this);
10310   return hasPredecessorHelper(N, Visited, Worklist);
10311 }
10312 
10313 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10314   this->Flags.intersectWith(Flags);
10315 }
10316 
10317 SDValue
10318 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10319                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10320                                   bool AllowPartials) {
10321   // The pattern must end in an extract from index 0.
10322   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10323       !isNullConstant(Extract->getOperand(1)))
10324     return SDValue();
10325 
10326   // Match against one of the candidate binary ops.
10327   SDValue Op = Extract->getOperand(0);
10328   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10329         return Op.getOpcode() == unsigned(BinOp);
10330       }))
10331     return SDValue();
10332 
10333   // Floating-point reductions may require relaxed constraints on the final step
10334   // of the reduction because they may reorder intermediate operations.
10335   unsigned CandidateBinOp = Op.getOpcode();
10336   if (Op.getValueType().isFloatingPoint()) {
10337     SDNodeFlags Flags = Op->getFlags();
10338     switch (CandidateBinOp) {
10339     case ISD::FADD:
10340       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10341         return SDValue();
10342       break;
10343     default:
10344       llvm_unreachable("Unhandled FP opcode for binop reduction");
10345     }
10346   }
10347 
10348   // Matching failed - attempt to see if we did enough stages that a partial
10349   // reduction from a subvector is possible.
10350   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10351     if (!AllowPartials || !Op)
10352       return SDValue();
10353     EVT OpVT = Op.getValueType();
10354     EVT OpSVT = OpVT.getScalarType();
10355     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10356     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10357       return SDValue();
10358     BinOp = (ISD::NodeType)CandidateBinOp;
10359     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10360                    getVectorIdxConstant(0, SDLoc(Op)));
10361   };
10362 
10363   // At each stage, we're looking for something that looks like:
10364   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10365   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10366   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10367   // %a = binop <8 x i32> %op, %s
10368   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10369   // we expect something like:
10370   // <4,5,6,7,u,u,u,u>
10371   // <2,3,u,u,u,u,u,u>
10372   // <1,u,u,u,u,u,u,u>
10373   // While a partial reduction match would be:
10374   // <2,3,u,u,u,u,u,u>
10375   // <1,u,u,u,u,u,u,u>
10376   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10377   SDValue PrevOp;
10378   for (unsigned i = 0; i < Stages; ++i) {
10379     unsigned MaskEnd = (1 << i);
10380 
10381     if (Op.getOpcode() != CandidateBinOp)
10382       return PartialReduction(PrevOp, MaskEnd);
10383 
10384     SDValue Op0 = Op.getOperand(0);
10385     SDValue Op1 = Op.getOperand(1);
10386 
10387     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10388     if (Shuffle) {
10389       Op = Op1;
10390     } else {
10391       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10392       Op = Op0;
10393     }
10394 
10395     // The first operand of the shuffle should be the same as the other operand
10396     // of the binop.
10397     if (!Shuffle || Shuffle->getOperand(0) != Op)
10398       return PartialReduction(PrevOp, MaskEnd);
10399 
10400     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10401     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10402       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10403         return PartialReduction(PrevOp, MaskEnd);
10404 
10405     PrevOp = Op;
10406   }
10407 
10408   // Handle subvector reductions, which tend to appear after the shuffle
10409   // reduction stages.
10410   while (Op.getOpcode() == CandidateBinOp) {
10411     unsigned NumElts = Op.getValueType().getVectorNumElements();
10412     SDValue Op0 = Op.getOperand(0);
10413     SDValue Op1 = Op.getOperand(1);
10414     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10415         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10416         Op0.getOperand(0) != Op1.getOperand(0))
10417       break;
10418     SDValue Src = Op0.getOperand(0);
10419     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10420     if (NumSrcElts != (2 * NumElts))
10421       break;
10422     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10423           Op1.getConstantOperandAPInt(1) == NumElts) &&
10424         !(Op1.getConstantOperandAPInt(1) == 0 &&
10425           Op0.getConstantOperandAPInt(1) == NumElts))
10426       break;
10427     Op = Src;
10428   }
10429 
10430   BinOp = (ISD::NodeType)CandidateBinOp;
10431   return Op;
10432 }
10433 
10434 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10435   assert(N->getNumValues() == 1 &&
10436          "Can't unroll a vector with multiple results!");
10437 
10438   EVT VT = N->getValueType(0);
10439   unsigned NE = VT.getVectorNumElements();
10440   EVT EltVT = VT.getVectorElementType();
10441   SDLoc dl(N);
10442 
10443   SmallVector<SDValue, 8> Scalars;
10444   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10445 
10446   // If ResNE is 0, fully unroll the vector op.
10447   if (ResNE == 0)
10448     ResNE = NE;
10449   else if (NE > ResNE)
10450     NE = ResNE;
10451 
10452   unsigned i;
10453   for (i= 0; i != NE; ++i) {
10454     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10455       SDValue Operand = N->getOperand(j);
10456       EVT OperandVT = Operand.getValueType();
10457       if (OperandVT.isVector()) {
10458         // A vector operand; extract a single element.
10459         EVT OperandEltVT = OperandVT.getVectorElementType();
10460         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10461                               Operand, getVectorIdxConstant(i, dl));
10462       } else {
10463         // A scalar operand; just use it as is.
10464         Operands[j] = Operand;
10465       }
10466     }
10467 
10468     switch (N->getOpcode()) {
10469     default: {
10470       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10471                                 N->getFlags()));
10472       break;
10473     }
10474     case ISD::VSELECT:
10475       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10476       break;
10477     case ISD::SHL:
10478     case ISD::SRA:
10479     case ISD::SRL:
10480     case ISD::ROTL:
10481     case ISD::ROTR:
10482       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10483                                getShiftAmountOperand(Operands[0].getValueType(),
10484                                                      Operands[1])));
10485       break;
10486     case ISD::SIGN_EXTEND_INREG: {
10487       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10488       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10489                                 Operands[0],
10490                                 getValueType(ExtVT)));
10491     }
10492     }
10493   }
10494 
10495   for (; i < ResNE; ++i)
10496     Scalars.push_back(getUNDEF(EltVT));
10497 
10498   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10499   return getBuildVector(VecVT, dl, Scalars);
10500 }
10501 
10502 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10503     SDNode *N, unsigned ResNE) {
10504   unsigned Opcode = N->getOpcode();
10505   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10506           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10507           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10508          "Expected an overflow opcode");
10509 
10510   EVT ResVT = N->getValueType(0);
10511   EVT OvVT = N->getValueType(1);
10512   EVT ResEltVT = ResVT.getVectorElementType();
10513   EVT OvEltVT = OvVT.getVectorElementType();
10514   SDLoc dl(N);
10515 
10516   // If ResNE is 0, fully unroll the vector op.
10517   unsigned NE = ResVT.getVectorNumElements();
10518   if (ResNE == 0)
10519     ResNE = NE;
10520   else if (NE > ResNE)
10521     NE = ResNE;
10522 
10523   SmallVector<SDValue, 8> LHSScalars;
10524   SmallVector<SDValue, 8> RHSScalars;
10525   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10526   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10527 
10528   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10529   SDVTList VTs = getVTList(ResEltVT, SVT);
10530   SmallVector<SDValue, 8> ResScalars;
10531   SmallVector<SDValue, 8> OvScalars;
10532   for (unsigned i = 0; i < NE; ++i) {
10533     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10534     SDValue Ov =
10535         getSelect(dl, OvEltVT, Res.getValue(1),
10536                   getBoolConstant(true, dl, OvEltVT, ResVT),
10537                   getConstant(0, dl, OvEltVT));
10538 
10539     ResScalars.push_back(Res);
10540     OvScalars.push_back(Ov);
10541   }
10542 
10543   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10544   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10545 
10546   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10547   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10548   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10549                         getBuildVector(NewOvVT, dl, OvScalars));
10550 }
10551 
10552 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10553                                                   LoadSDNode *Base,
10554                                                   unsigned Bytes,
10555                                                   int Dist) const {
10556   if (LD->isVolatile() || Base->isVolatile())
10557     return false;
10558   // TODO: probably too restrictive for atomics, revisit
10559   if (!LD->isSimple())
10560     return false;
10561   if (LD->isIndexed() || Base->isIndexed())
10562     return false;
10563   if (LD->getChain() != Base->getChain())
10564     return false;
10565   EVT VT = LD->getValueType(0);
10566   if (VT.getSizeInBits() / 8 != Bytes)
10567     return false;
10568 
10569   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10570   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10571 
10572   int64_t Offset = 0;
10573   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10574     return (Dist * Bytes == Offset);
10575   return false;
10576 }
10577 
10578 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10579 /// if it cannot be inferred.
10580 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10581   // If this is a GlobalAddress + cst, return the alignment.
10582   const GlobalValue *GV = nullptr;
10583   int64_t GVOffset = 0;
10584   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10585     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10586     KnownBits Known(PtrWidth);
10587     llvm::computeKnownBits(GV, Known, getDataLayout());
10588     unsigned AlignBits = Known.countMinTrailingZeros();
10589     if (AlignBits)
10590       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10591   }
10592 
10593   // If this is a direct reference to a stack slot, use information about the
10594   // stack slot's alignment.
10595   int FrameIdx = INT_MIN;
10596   int64_t FrameOffset = 0;
10597   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10598     FrameIdx = FI->getIndex();
10599   } else if (isBaseWithConstantOffset(Ptr) &&
10600              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10601     // Handle FI+Cst
10602     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10603     FrameOffset = Ptr.getConstantOperandVal(1);
10604   }
10605 
10606   if (FrameIdx != INT_MIN) {
10607     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10608     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10609   }
10610 
10611   return None;
10612 }
10613 
10614 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10615 /// which is split (or expanded) into two not necessarily identical pieces.
10616 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10617   // Currently all types are split in half.
10618   EVT LoVT, HiVT;
10619   if (!VT.isVector())
10620     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10621   else
10622     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10623 
10624   return std::make_pair(LoVT, HiVT);
10625 }
10626 
10627 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10628 /// type, dependent on an enveloping VT that has been split into two identical
10629 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10630 std::pair<EVT, EVT>
10631 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10632                                        bool *HiIsEmpty) const {
10633   EVT EltTp = VT.getVectorElementType();
10634   // Examples:
10635   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10636   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10637   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10638   //   etc.
10639   ElementCount VTNumElts = VT.getVectorElementCount();
10640   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10641   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10642          "Mixing fixed width and scalable vectors when enveloping a type");
10643   EVT LoVT, HiVT;
10644   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10645     LoVT = EnvVT;
10646     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10647     *HiIsEmpty = false;
10648   } else {
10649     // Flag that hi type has zero storage size, but return split envelop type
10650     // (this would be easier if vector types with zero elements were allowed).
10651     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10652     HiVT = EnvVT;
10653     *HiIsEmpty = true;
10654   }
10655   return std::make_pair(LoVT, HiVT);
10656 }
10657 
10658 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10659 /// low/high part.
10660 std::pair<SDValue, SDValue>
10661 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10662                           const EVT &HiVT) {
10663   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10664          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10665          "Splitting vector with an invalid mixture of fixed and scalable "
10666          "vector types");
10667   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10668              N.getValueType().getVectorMinNumElements() &&
10669          "More vector elements requested than available!");
10670   SDValue Lo, Hi;
10671   Lo =
10672       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10673   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10674   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10675   // IDX with the runtime scaling factor of the result vector type. For
10676   // fixed-width result vectors, that runtime scaling factor is 1.
10677   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10678                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10679   return std::make_pair(Lo, Hi);
10680 }
10681 
10682 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10683 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10684   EVT VT = N.getValueType();
10685   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10686                                 NextPowerOf2(VT.getVectorNumElements()));
10687   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10688                  getVectorIdxConstant(0, DL));
10689 }
10690 
10691 void SelectionDAG::ExtractVectorElements(SDValue Op,
10692                                          SmallVectorImpl<SDValue> &Args,
10693                                          unsigned Start, unsigned Count,
10694                                          EVT EltVT) {
10695   EVT VT = Op.getValueType();
10696   if (Count == 0)
10697     Count = VT.getVectorNumElements();
10698   if (EltVT == EVT())
10699     EltVT = VT.getVectorElementType();
10700   SDLoc SL(Op);
10701   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10702     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10703                            getVectorIdxConstant(i, SL)));
10704   }
10705 }
10706 
10707 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10708 unsigned GlobalAddressSDNode::getAddressSpace() const {
10709   return getGlobal()->getType()->getAddressSpace();
10710 }
10711 
10712 Type *ConstantPoolSDNode::getType() const {
10713   if (isMachineConstantPoolEntry())
10714     return Val.MachineCPVal->getType();
10715   return Val.ConstVal->getType();
10716 }
10717 
10718 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10719                                         unsigned &SplatBitSize,
10720                                         bool &HasAnyUndefs,
10721                                         unsigned MinSplatBits,
10722                                         bool IsBigEndian) const {
10723   EVT VT = getValueType(0);
10724   assert(VT.isVector() && "Expected a vector type");
10725   unsigned VecWidth = VT.getSizeInBits();
10726   if (MinSplatBits > VecWidth)
10727     return false;
10728 
10729   // FIXME: The widths are based on this node's type, but build vectors can
10730   // truncate their operands.
10731   SplatValue = APInt(VecWidth, 0);
10732   SplatUndef = APInt(VecWidth, 0);
10733 
10734   // Get the bits. Bits with undefined values (when the corresponding element
10735   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10736   // in SplatValue. If any of the values are not constant, give up and return
10737   // false.
10738   unsigned int NumOps = getNumOperands();
10739   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10740   unsigned EltWidth = VT.getScalarSizeInBits();
10741 
10742   for (unsigned j = 0; j < NumOps; ++j) {
10743     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10744     SDValue OpVal = getOperand(i);
10745     unsigned BitPos = j * EltWidth;
10746 
10747     if (OpVal.isUndef())
10748       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10749     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10750       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10751     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10752       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10753     else
10754       return false;
10755   }
10756 
10757   // The build_vector is all constants or undefs. Find the smallest element
10758   // size that splats the vector.
10759   HasAnyUndefs = (SplatUndef != 0);
10760 
10761   // FIXME: This does not work for vectors with elements less than 8 bits.
10762   while (VecWidth > 8) {
10763     unsigned HalfSize = VecWidth / 2;
10764     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10765     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10766     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10767     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10768 
10769     // If the two halves do not match (ignoring undef bits), stop here.
10770     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10771         MinSplatBits > HalfSize)
10772       break;
10773 
10774     SplatValue = HighValue | LowValue;
10775     SplatUndef = HighUndef & LowUndef;
10776 
10777     VecWidth = HalfSize;
10778   }
10779 
10780   SplatBitSize = VecWidth;
10781   return true;
10782 }
10783 
10784 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10785                                          BitVector *UndefElements) const {
10786   unsigned NumOps = getNumOperands();
10787   if (UndefElements) {
10788     UndefElements->clear();
10789     UndefElements->resize(NumOps);
10790   }
10791   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10792   if (!DemandedElts)
10793     return SDValue();
10794   SDValue Splatted;
10795   for (unsigned i = 0; i != NumOps; ++i) {
10796     if (!DemandedElts[i])
10797       continue;
10798     SDValue Op = getOperand(i);
10799     if (Op.isUndef()) {
10800       if (UndefElements)
10801         (*UndefElements)[i] = true;
10802     } else if (!Splatted) {
10803       Splatted = Op;
10804     } else if (Splatted != Op) {
10805       return SDValue();
10806     }
10807   }
10808 
10809   if (!Splatted) {
10810     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10811     assert(getOperand(FirstDemandedIdx).isUndef() &&
10812            "Can only have a splat without a constant for all undefs.");
10813     return getOperand(FirstDemandedIdx);
10814   }
10815 
10816   return Splatted;
10817 }
10818 
10819 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10820   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10821   return getSplatValue(DemandedElts, UndefElements);
10822 }
10823 
10824 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10825                                             SmallVectorImpl<SDValue> &Sequence,
10826                                             BitVector *UndefElements) const {
10827   unsigned NumOps = getNumOperands();
10828   Sequence.clear();
10829   if (UndefElements) {
10830     UndefElements->clear();
10831     UndefElements->resize(NumOps);
10832   }
10833   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10834   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10835     return false;
10836 
10837   // Set the undefs even if we don't find a sequence (like getSplatValue).
10838   if (UndefElements)
10839     for (unsigned I = 0; I != NumOps; ++I)
10840       if (DemandedElts[I] && getOperand(I).isUndef())
10841         (*UndefElements)[I] = true;
10842 
10843   // Iteratively widen the sequence length looking for repetitions.
10844   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10845     Sequence.append(SeqLen, SDValue());
10846     for (unsigned I = 0; I != NumOps; ++I) {
10847       if (!DemandedElts[I])
10848         continue;
10849       SDValue &SeqOp = Sequence[I % SeqLen];
10850       SDValue Op = getOperand(I);
10851       if (Op.isUndef()) {
10852         if (!SeqOp)
10853           SeqOp = Op;
10854         continue;
10855       }
10856       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10857         Sequence.clear();
10858         break;
10859       }
10860       SeqOp = Op;
10861     }
10862     if (!Sequence.empty())
10863       return true;
10864   }
10865 
10866   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10867   return false;
10868 }
10869 
10870 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10871                                             BitVector *UndefElements) const {
10872   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10873   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10874 }
10875 
10876 ConstantSDNode *
10877 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10878                                         BitVector *UndefElements) const {
10879   return dyn_cast_or_null<ConstantSDNode>(
10880       getSplatValue(DemandedElts, UndefElements));
10881 }
10882 
10883 ConstantSDNode *
10884 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10885   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10886 }
10887 
10888 ConstantFPSDNode *
10889 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10890                                           BitVector *UndefElements) const {
10891   return dyn_cast_or_null<ConstantFPSDNode>(
10892       getSplatValue(DemandedElts, UndefElements));
10893 }
10894 
10895 ConstantFPSDNode *
10896 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10897   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10898 }
10899 
10900 int32_t
10901 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10902                                                    uint32_t BitWidth) const {
10903   if (ConstantFPSDNode *CN =
10904           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10905     bool IsExact;
10906     APSInt IntVal(BitWidth);
10907     const APFloat &APF = CN->getValueAPF();
10908     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10909             APFloat::opOK ||
10910         !IsExact)
10911       return -1;
10912 
10913     return IntVal.exactLogBase2();
10914   }
10915   return -1;
10916 }
10917 
10918 bool BuildVectorSDNode::isConstant() const {
10919   for (const SDValue &Op : op_values()) {
10920     unsigned Opc = Op.getOpcode();
10921     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10922       return false;
10923   }
10924   return true;
10925 }
10926 
10927 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10928   // Find the first non-undef value in the shuffle mask.
10929   unsigned i, e;
10930   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10931     /* search */;
10932 
10933   // If all elements are undefined, this shuffle can be considered a splat
10934   // (although it should eventually get simplified away completely).
10935   if (i == e)
10936     return true;
10937 
10938   // Make sure all remaining elements are either undef or the same as the first
10939   // non-undef value.
10940   for (int Idx = Mask[i]; i != e; ++i)
10941     if (Mask[i] >= 0 && Mask[i] != Idx)
10942       return false;
10943   return true;
10944 }
10945 
10946 // Returns the SDNode if it is a constant integer BuildVector
10947 // or constant integer.
10948 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10949   if (isa<ConstantSDNode>(N))
10950     return N.getNode();
10951   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10952     return N.getNode();
10953   // Treat a GlobalAddress supporting constant offset folding as a
10954   // constant integer.
10955   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10956     if (GA->getOpcode() == ISD::GlobalAddress &&
10957         TLI->isOffsetFoldingLegal(GA))
10958       return GA;
10959   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10960       isa<ConstantSDNode>(N.getOperand(0)))
10961     return N.getNode();
10962   return nullptr;
10963 }
10964 
10965 // Returns the SDNode if it is a constant float BuildVector
10966 // or constant float.
10967 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10968   if (isa<ConstantFPSDNode>(N))
10969     return N.getNode();
10970 
10971   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10972     return N.getNode();
10973 
10974   return nullptr;
10975 }
10976 
10977 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10978   assert(!Node->OperandList && "Node already has operands");
10979   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10980          "too many operands to fit into SDNode");
10981   SDUse *Ops = OperandRecycler.allocate(
10982       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10983 
10984   bool IsDivergent = false;
10985   for (unsigned I = 0; I != Vals.size(); ++I) {
10986     Ops[I].setUser(Node);
10987     Ops[I].setInitial(Vals[I]);
10988     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10989       IsDivergent |= Ops[I].getNode()->isDivergent();
10990   }
10991   Node->NumOperands = Vals.size();
10992   Node->OperandList = Ops;
10993   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10994     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10995     Node->SDNodeBits.IsDivergent = IsDivergent;
10996   }
10997   checkForCycles(Node);
10998 }
10999 
11000 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11001                                      SmallVectorImpl<SDValue> &Vals) {
11002   size_t Limit = SDNode::getMaxNumOperands();
11003   while (Vals.size() > Limit) {
11004     unsigned SliceIdx = Vals.size() - Limit;
11005     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11006     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11007     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11008     Vals.emplace_back(NewTF);
11009   }
11010   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11011 }
11012 
11013 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11014                                         EVT VT, SDNodeFlags Flags) {
11015   switch (Opcode) {
11016   default:
11017     return SDValue();
11018   case ISD::ADD:
11019   case ISD::OR:
11020   case ISD::XOR:
11021   case ISD::UMAX:
11022     return getConstant(0, DL, VT);
11023   case ISD::MUL:
11024     return getConstant(1, DL, VT);
11025   case ISD::AND:
11026   case ISD::UMIN:
11027     return getAllOnesConstant(DL, VT);
11028   case ISD::SMAX:
11029     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11030   case ISD::SMIN:
11031     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11032   case ISD::FADD:
11033     return getConstantFP(-0.0, DL, VT);
11034   case ISD::FMUL:
11035     return getConstantFP(1.0, DL, VT);
11036   case ISD::FMINNUM:
11037   case ISD::FMAXNUM: {
11038     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11039     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11040     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11041                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11042                         APFloat::getLargest(Semantics);
11043     if (Opcode == ISD::FMAXNUM)
11044       NeutralAF.changeSign();
11045 
11046     return getConstantFP(NeutralAF, DL, VT);
11047   }
11048   }
11049 }
11050 
11051 #ifndef NDEBUG
11052 static void checkForCyclesHelper(const SDNode *N,
11053                                  SmallPtrSetImpl<const SDNode*> &Visited,
11054                                  SmallPtrSetImpl<const SDNode*> &Checked,
11055                                  const llvm::SelectionDAG *DAG) {
11056   // If this node has already been checked, don't check it again.
11057   if (Checked.count(N))
11058     return;
11059 
11060   // If a node has already been visited on this depth-first walk, reject it as
11061   // a cycle.
11062   if (!Visited.insert(N).second) {
11063     errs() << "Detected cycle in SelectionDAG\n";
11064     dbgs() << "Offending node:\n";
11065     N->dumprFull(DAG); dbgs() << "\n";
11066     abort();
11067   }
11068 
11069   for (const SDValue &Op : N->op_values())
11070     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11071 
11072   Checked.insert(N);
11073   Visited.erase(N);
11074 }
11075 #endif
11076 
11077 void llvm::checkForCycles(const llvm::SDNode *N,
11078                           const llvm::SelectionDAG *DAG,
11079                           bool force) {
11080 #ifndef NDEBUG
11081   bool check = force;
11082 #ifdef EXPENSIVE_CHECKS
11083   check = true;
11084 #endif  // EXPENSIVE_CHECKS
11085   if (check) {
11086     assert(N && "Checking nonexistent SDNode");
11087     SmallPtrSet<const SDNode*, 32> visited;
11088     SmallPtrSet<const SDNode*, 32> checked;
11089     checkForCyclesHelper(N, visited, checked, DAG);
11090   }
11091 #endif  // !NDEBUG
11092 }
11093 
11094 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11095   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11096 }
11097