1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
863         ESN->getSymbol(), ESN->getTargetFlags()));
864     break;
865   }
866   case ISD::MCSymbol: {
867     auto *MCSN = cast<MCSymbolSDNode>(N);
868     Erased = MCSymbols.erase(MCSN->getMCSymbol());
869     break;
870   }
871   case ISD::VALUETYPE: {
872     EVT VT = cast<VTSDNode>(N)->getVT();
873     if (VT.isExtended()) {
874       Erased = ExtendedValueTypeNodes.erase(VT);
875     } else {
876       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
877       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
878     }
879     break;
880   }
881   default:
882     // Remove it from the CSE Map.
883     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
884     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
885     Erased = CSEMap.RemoveNode(N);
886     break;
887   }
888 #ifndef NDEBUG
889   // Verify that the node was actually in one of the CSE maps, unless it has a
890   // flag result (which cannot be CSE'd) or is one of the special cases that are
891   // not subject to CSE.
892   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
893       !N->isMachineOpcode() && !doNotCSE(N)) {
894     N->dump(this);
895     dbgs() << "\n";
896     llvm_unreachable("Node is not in map!");
897   }
898 #endif
899   return Erased;
900 }
901 
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
906 void
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
908   // For node types that aren't CSE'd, just act as if no identical node
909   // already exists.
910   if (!doNotCSE(N)) {
911     SDNode *Existing = CSEMap.GetOrInsertNode(N);
912     if (Existing != N) {
913       // If there was already an existing matching node, use ReplaceAllUsesWith
914       // to replace the dead one with the existing one.  This can cause
915       // recursive merging of other unrelated nodes down the line.
916       ReplaceAllUsesWith(N, Existing);
917 
918       // N is now dead. Inform the listeners and delete it.
919       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
920         DUL->NodeDeleted(N, Existing);
921       DeleteNodeNotInCSEMaps(N);
922       return;
923     }
924   }
925 
926   // If the node doesn't already exist, we updated it.  Inform listeners.
927   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
928     DUL->NodeUpdated(N);
929 }
930 
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified.  If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take.  If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
936                                            void *&InsertPos) {
937   if (doNotCSE(N))
938     return nullptr;
939 
940   SDValue Ops[] = { Op };
941   FoldingSetNodeID ID;
942   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
943   AddNodeIDCustom(ID, N);
944   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
945   if (Node)
946     Node->intersectFlagsWith(N->getFlags());
947   return Node;
948 }
949 
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified.  If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take.  If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
955                                            SDValue Op1, SDValue Op2,
956                                            void *&InsertPos) {
957   if (doNotCSE(N))
958     return nullptr;
959 
960   SDValue Ops[] = { Op1, Op2 };
961   FoldingSetNodeID ID;
962   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
963   AddNodeIDCustom(ID, N);
964   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
965   if (Node)
966     Node->intersectFlagsWith(N->getFlags());
967   return Node;
968 }
969 
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified.  If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take.  If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
975                                            void *&InsertPos) {
976   if (doNotCSE(N))
977     return nullptr;
978 
979   FoldingSetNodeID ID;
980   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981   AddNodeIDCustom(ID, N);
982   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983   if (Node)
984     Node->intersectFlagsWith(N->getFlags());
985   return Node;
986 }
987 
988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
989   Type *Ty = VT == MVT::iPTR ?
990                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991                    VT.getTypeForEVT(*getContext());
992 
993   return getDataLayout().getABITypeAlignment(Ty);
994 }
995 
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
998     : TM(tm), OptLevel(OL),
999       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1000       Root(getEntryNode()) {
1001   InsertNode(&EntryNode);
1002   DbgInfo = new SDDbgInfo();
1003 }
1004 
1005 void SelectionDAG::init(MachineFunction &NewMF,
1006                         OptimizationRemarkEmitter &NewORE,
1007                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1008                         LegacyDivergenceAnalysis * Divergence) {
1009   MF = &NewMF;
1010   SDAGISelPass = PassPtr;
1011   ORE = &NewORE;
1012   TLI = getSubtarget().getTargetLowering();
1013   TSI = getSubtarget().getSelectionDAGInfo();
1014   LibInfo = LibraryInfo;
1015   Context = &MF->getFunction().getContext();
1016   DA = Divergence;
1017 }
1018 
1019 SelectionDAG::~SelectionDAG() {
1020   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1021   allnodes_clear();
1022   OperandRecycler.clear(OperandAllocator);
1023   delete DbgInfo;
1024 }
1025 
1026 void SelectionDAG::allnodes_clear() {
1027   assert(&*AllNodes.begin() == &EntryNode);
1028   AllNodes.remove(AllNodes.begin());
1029   while (!AllNodes.empty())
1030     DeallocateNode(&AllNodes.front());
1031 #ifndef NDEBUG
1032   NextPersistentId = 0;
1033 #endif
1034 }
1035 
1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1037                                           void *&InsertPos) {
1038   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1039   if (N) {
1040     switch (N->getOpcode()) {
1041     default: break;
1042     case ISD::Constant:
1043     case ISD::ConstantFP:
1044       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045                        "debug location.  Use another overload.");
1046     }
1047   }
1048   return N;
1049 }
1050 
1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1052                                           const SDLoc &DL, void *&InsertPos) {
1053   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1054   if (N) {
1055     switch (N->getOpcode()) {
1056     case ISD::Constant:
1057     case ISD::ConstantFP:
1058       // Erase debug location from the node if the node is used at several
1059       // different places. Do not propagate one location to all uses as it
1060       // will cause a worse single stepping debugging experience.
1061       if (N->getDebugLoc() != DL.getDebugLoc())
1062         N->setDebugLoc(DebugLoc());
1063       break;
1064     default:
1065       // When the node's point of use is located earlier in the instruction
1066       // sequence than its prior point of use, update its debug info to the
1067       // earlier location.
1068       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1069         N->setDebugLoc(DL.getDebugLoc());
1070       break;
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 void SelectionDAG::clear() {
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   OperandAllocator.Reset();
1080   CSEMap.clear();
1081 
1082   ExtendedValueTypeNodes.clear();
1083   ExternalSymbols.clear();
1084   TargetExternalSymbols.clear();
1085   MCSymbols.clear();
1086   SDCallSiteDbgInfo.clear();
1087   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088             static_cast<CondCodeSDNode*>(nullptr));
1089   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090             static_cast<SDNode*>(nullptr));
1091 
1092   EntryNode.UseList = nullptr;
1093   InsertNode(&EntryNode);
1094   Root = getEntryNode();
1095   DbgInfo->clear();
1096 }
1097 
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099   return VT.bitsGT(Op.getValueType())
1100              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1102 }
1103 
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105   return VT.bitsGT(Op.getValueType()) ?
1106     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107     getNode(ISD::TRUNCATE, DL, VT, Op);
1108 }
1109 
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111   return VT.bitsGT(Op.getValueType()) ?
1112     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113     getNode(ISD::TRUNCATE, DL, VT, Op);
1114 }
1115 
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117   return VT.bitsGT(Op.getValueType()) ?
1118     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119     getNode(ISD::TRUNCATE, DL, VT, Op);
1120 }
1121 
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123                                         EVT OpVT) {
1124   if (VT.bitsLE(Op.getValueType()))
1125     return getNode(ISD::TRUNCATE, SL, VT, Op);
1126 
1127   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1129 }
1130 
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132   assert(!VT.isVector() &&
1133          "getZeroExtendInReg should use the vector element type instead of "
1134          "the vector type!");
1135   if (Op.getValueType().getScalarType() == VT) return Op;
1136   unsigned BitWidth = Op.getScalarValueSizeInBits();
1137   APInt Imm = APInt::getLowBitsSet(BitWidth,
1138                                    VT.getSizeInBits());
1139   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140                  getConstant(Imm, DL, Op.getValueType()));
1141 }
1142 
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   // Only unsigned pointer semantics are supported right now. In the future this
1145   // might delegate to TLI to check pointer signedness.
1146   return getZExtOrTrunc(Op, DL, VT);
1147 }
1148 
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150   // Only unsigned pointer semantics are supported right now. In the future this
1151   // might delegate to TLI to check pointer signedness.
1152   return getZeroExtendInReg(Op, DL, VT);
1153 }
1154 
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   EVT EltVT = VT.getScalarType();
1158   SDValue NegOne =
1159     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1161 }
1162 
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1166 }
1167 
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169                                       EVT OpVT) {
1170   if (!V)
1171     return getConstant(0, DL, VT);
1172 
1173   switch (TLI->getBooleanContents(OpVT)) {
1174   case TargetLowering::ZeroOrOneBooleanContent:
1175   case TargetLowering::UndefinedBooleanContent:
1176     return getConstant(1, DL, VT);
1177   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178     return getAllOnesConstant(DL, VT);
1179   }
1180   llvm_unreachable("Unexpected boolean content enum!");
1181 }
1182 
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184                                   bool isT, bool isO) {
1185   EVT EltVT = VT.getScalarType();
1186   assert((EltVT.getSizeInBits() >= 64 ||
1187          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188          "getConstant with a uint64_t value that doesn't fit in the type!");
1189   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1190 }
1191 
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193                                   bool isT, bool isO) {
1194   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1195 }
1196 
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198                                   EVT VT, bool isT, bool isO) {
1199   assert(VT.isInteger() && "Cannot create FP integer constant!");
1200 
1201   EVT EltVT = VT.getScalarType();
1202   const ConstantInt *Elt = &Val;
1203 
1204   // In some cases the vector type is legal but the element type is illegal and
1205   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1206   // inserted value (the type does not need to match the vector element type).
1207   // Any extra bits introduced will be truncated away.
1208   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209       TargetLowering::TypePromoteInteger) {
1210    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212    Elt = ConstantInt::get(*getContext(), NewVal);
1213   }
1214   // In other cases the element type is illegal and needs to be expanded, for
1215   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216   // the value into n parts and use a vector type with n-times the elements.
1217   // Then bitcast to the type requested.
1218   // Legalizing constants too early makes the DAGCombiner's job harder so we
1219   // only legalize if the DAG tells us we must produce legal types.
1220   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221            TLI->getTypeAction(*getContext(), EltVT) ==
1222            TargetLowering::TypeExpandInteger) {
1223     const APInt &NewVal = Elt->getValue();
1224     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1228 
1229     // Check the temporary vector is the correct size. If this fails then
1230     // getTypeToTransformTo() probably returned a type whose size (in bits)
1231     // isn't a power-of-2 factor of the requested type size.
1232     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1233 
1234     SmallVector<SDValue, 2> EltParts;
1235     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1238                                      ViaEltVT, isT, isO));
1239     }
1240 
1241     // EltParts is currently in little endian order. If we actually want
1242     // big-endian order then reverse it now.
1243     if (getDataLayout().isBigEndian())
1244       std::reverse(EltParts.begin(), EltParts.end());
1245 
1246     // The elements must be reversed when the element order is different
1247     // to the endianness of the elements (because the BITCAST is itself a
1248     // vector shuffle in this situation). However, we do not need any code to
1249     // perform this reversal because getConstant() is producing a vector
1250     // splat.
1251     // This situation occurs in MIPS MSA.
1252 
1253     SmallVector<SDValue, 8> Ops;
1254     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1256 
1257     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258     return V;
1259   }
1260 
1261   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262          "APInt size does not match type size!");
1263   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264   FoldingSetNodeID ID;
1265   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266   ID.AddPointer(Elt);
1267   ID.AddBoolean(isO);
1268   void *IP = nullptr;
1269   SDNode *N = nullptr;
1270   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271     if (!VT.isVector())
1272       return SDValue(N, 0);
1273 
1274   if (!N) {
1275     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276     CSEMap.InsertNode(N, IP);
1277     InsertNode(N);
1278     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1279   }
1280 
1281   SDValue Result(N, 0);
1282   if (VT.isScalableVector())
1283     Result = getSplatVector(VT, DL, Result);
1284   else if (VT.isVector())
1285     Result = getSplatBuildVector(VT, DL, Result);
1286 
1287   return Result;
1288 }
1289 
1290 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1291                                         bool isTarget) {
1292   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1293 }
1294 
1295 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1296                                              const SDLoc &DL, bool LegalTypes) {
1297   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1298   return getConstant(Val, DL, ShiftVT);
1299 }
1300 
1301 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1302                                     bool isTarget) {
1303   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1304 }
1305 
1306 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1307                                     EVT VT, bool isTarget) {
1308   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1309 
1310   EVT EltVT = VT.getScalarType();
1311 
1312   // Do the map lookup using the actual bit pattern for the floating point
1313   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1314   // we don't have issues with SNANs.
1315   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1316   FoldingSetNodeID ID;
1317   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1318   ID.AddPointer(&V);
1319   void *IP = nullptr;
1320   SDNode *N = nullptr;
1321   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1322     if (!VT.isVector())
1323       return SDValue(N, 0);
1324 
1325   if (!N) {
1326     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1327     CSEMap.InsertNode(N, IP);
1328     InsertNode(N);
1329   }
1330 
1331   SDValue Result(N, 0);
1332   if (VT.isVector())
1333     Result = getSplatBuildVector(VT, DL, Result);
1334   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1335   return Result;
1336 }
1337 
1338 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1339                                     bool isTarget) {
1340   EVT EltVT = VT.getScalarType();
1341   if (EltVT == MVT::f32)
1342     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1343   else if (EltVT == MVT::f64)
1344     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1345   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1346            EltVT == MVT::f16) {
1347     bool Ignored;
1348     APFloat APF = APFloat(Val);
1349     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1350                 &Ignored);
1351     return getConstantFP(APF, DL, VT, isTarget);
1352   } else
1353     llvm_unreachable("Unsupported type in getConstantFP");
1354 }
1355 
1356 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1357                                        EVT VT, int64_t Offset, bool isTargetGA,
1358                                        unsigned TargetFlags) {
1359   assert((TargetFlags == 0 || isTargetGA) &&
1360          "Cannot set target flags on target-independent globals");
1361 
1362   // Truncate (with sign-extension) the offset value to the pointer size.
1363   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1364   if (BitWidth < 64)
1365     Offset = SignExtend64(Offset, BitWidth);
1366 
1367   unsigned Opc;
1368   if (GV->isThreadLocal())
1369     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1370   else
1371     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1372 
1373   FoldingSetNodeID ID;
1374   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1375   ID.AddPointer(GV);
1376   ID.AddInteger(Offset);
1377   ID.AddInteger(TargetFlags);
1378   void *IP = nullptr;
1379   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1380     return SDValue(E, 0);
1381 
1382   auto *N = newSDNode<GlobalAddressSDNode>(
1383       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1384   CSEMap.InsertNode(N, IP);
1385     InsertNode(N);
1386   return SDValue(N, 0);
1387 }
1388 
1389 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1390   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1391   FoldingSetNodeID ID;
1392   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1393   ID.AddInteger(FI);
1394   void *IP = nullptr;
1395   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1396     return SDValue(E, 0);
1397 
1398   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1399   CSEMap.InsertNode(N, IP);
1400   InsertNode(N);
1401   return SDValue(N, 0);
1402 }
1403 
1404 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1405                                    unsigned TargetFlags) {
1406   assert((TargetFlags == 0 || isTarget) &&
1407          "Cannot set target flags on target-independent jump tables");
1408   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1409   FoldingSetNodeID ID;
1410   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1411   ID.AddInteger(JTI);
1412   ID.AddInteger(TargetFlags);
1413   void *IP = nullptr;
1414   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1415     return SDValue(E, 0);
1416 
1417   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1418   CSEMap.InsertNode(N, IP);
1419   InsertNode(N);
1420   return SDValue(N, 0);
1421 }
1422 
1423 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1424                                       unsigned Alignment, int Offset,
1425                                       bool isTarget,
1426                                       unsigned TargetFlags) {
1427   assert((TargetFlags == 0 || isTarget) &&
1428          "Cannot set target flags on target-independent globals");
1429   if (Alignment == 0)
1430     Alignment = MF->getFunction().hasOptSize()
1431                     ? getDataLayout().getABITypeAlignment(C->getType())
1432                     : getDataLayout().getPrefTypeAlignment(C->getType());
1433   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1434   FoldingSetNodeID ID;
1435   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1436   ID.AddInteger(Alignment);
1437   ID.AddInteger(Offset);
1438   ID.AddPointer(C);
1439   ID.AddInteger(TargetFlags);
1440   void *IP = nullptr;
1441   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1442     return SDValue(E, 0);
1443 
1444   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1445                                           TargetFlags);
1446   CSEMap.InsertNode(N, IP);
1447   InsertNode(N);
1448   return SDValue(N, 0);
1449 }
1450 
1451 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1452                                       unsigned Alignment, int Offset,
1453                                       bool isTarget,
1454                                       unsigned TargetFlags) {
1455   assert((TargetFlags == 0 || isTarget) &&
1456          "Cannot set target flags on target-independent globals");
1457   if (Alignment == 0)
1458     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1459   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1462   ID.AddInteger(Alignment);
1463   ID.AddInteger(Offset);
1464   C->addSelectionDAGCSEId(ID);
1465   ID.AddInteger(TargetFlags);
1466   void *IP = nullptr;
1467   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1468     return SDValue(E, 0);
1469 
1470   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1471                                           TargetFlags);
1472   CSEMap.InsertNode(N, IP);
1473   InsertNode(N);
1474   return SDValue(N, 0);
1475 }
1476 
1477 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1478                                      unsigned TargetFlags) {
1479   FoldingSetNodeID ID;
1480   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1481   ID.AddInteger(Index);
1482   ID.AddInteger(Offset);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1489   CSEMap.InsertNode(N, IP);
1490   InsertNode(N);
1491   return SDValue(N, 0);
1492 }
1493 
1494 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1495   FoldingSetNodeID ID;
1496   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1497   ID.AddPointer(MBB);
1498   void *IP = nullptr;
1499   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1500     return SDValue(E, 0);
1501 
1502   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1503   CSEMap.InsertNode(N, IP);
1504   InsertNode(N);
1505   return SDValue(N, 0);
1506 }
1507 
1508 SDValue SelectionDAG::getValueType(EVT VT) {
1509   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1510       ValueTypeNodes.size())
1511     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1512 
1513   SDNode *&N = VT.isExtended() ?
1514     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1515 
1516   if (N) return SDValue(N, 0);
1517   N = newSDNode<VTSDNode>(VT);
1518   InsertNode(N);
1519   return SDValue(N, 0);
1520 }
1521 
1522 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1523   SDNode *&N = ExternalSymbols[Sym];
1524   if (N) return SDValue(N, 0);
1525   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1526   InsertNode(N);
1527   return SDValue(N, 0);
1528 }
1529 
1530 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1531   SDNode *&N = MCSymbols[Sym];
1532   if (N)
1533     return SDValue(N, 0);
1534   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1535   InsertNode(N);
1536   return SDValue(N, 0);
1537 }
1538 
1539 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1540                                               unsigned TargetFlags) {
1541   SDNode *&N =
1542       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1543   if (N) return SDValue(N, 0);
1544   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1545   InsertNode(N);
1546   return SDValue(N, 0);
1547 }
1548 
1549 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1550   if ((unsigned)Cond >= CondCodeNodes.size())
1551     CondCodeNodes.resize(Cond+1);
1552 
1553   if (!CondCodeNodes[Cond]) {
1554     auto *N = newSDNode<CondCodeSDNode>(Cond);
1555     CondCodeNodes[Cond] = N;
1556     InsertNode(N);
1557   }
1558 
1559   return SDValue(CondCodeNodes[Cond], 0);
1560 }
1561 
1562 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1563 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1564 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1565   std::swap(N1, N2);
1566   ShuffleVectorSDNode::commuteMask(M);
1567 }
1568 
1569 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1570                                        SDValue N2, ArrayRef<int> Mask) {
1571   assert(VT.getVectorNumElements() == Mask.size() &&
1572            "Must have the same number of vector elements as mask elements!");
1573   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1574          "Invalid VECTOR_SHUFFLE");
1575 
1576   // Canonicalize shuffle undef, undef -> undef
1577   if (N1.isUndef() && N2.isUndef())
1578     return getUNDEF(VT);
1579 
1580   // Validate that all indices in Mask are within the range of the elements
1581   // input to the shuffle.
1582   int NElts = Mask.size();
1583   assert(llvm::all_of(Mask,
1584                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1585          "Index out of range");
1586 
1587   // Copy the mask so we can do any needed cleanup.
1588   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1589 
1590   // Canonicalize shuffle v, v -> v, undef
1591   if (N1 == N2) {
1592     N2 = getUNDEF(VT);
1593     for (int i = 0; i != NElts; ++i)
1594       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1595   }
1596 
1597   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1598   if (N1.isUndef())
1599     commuteShuffle(N1, N2, MaskVec);
1600 
1601   if (TLI->hasVectorBlend()) {
1602     // If shuffling a splat, try to blend the splat instead. We do this here so
1603     // that even when this arises during lowering we don't have to re-handle it.
1604     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1605       BitVector UndefElements;
1606       SDValue Splat = BV->getSplatValue(&UndefElements);
1607       if (!Splat)
1608         return;
1609 
1610       for (int i = 0; i < NElts; ++i) {
1611         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1612           continue;
1613 
1614         // If this input comes from undef, mark it as such.
1615         if (UndefElements[MaskVec[i] - Offset]) {
1616           MaskVec[i] = -1;
1617           continue;
1618         }
1619 
1620         // If we can blend a non-undef lane, use that instead.
1621         if (!UndefElements[i])
1622           MaskVec[i] = i + Offset;
1623       }
1624     };
1625     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1626       BlendSplat(N1BV, 0);
1627     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1628       BlendSplat(N2BV, NElts);
1629   }
1630 
1631   // Canonicalize all index into lhs, -> shuffle lhs, undef
1632   // Canonicalize all index into rhs, -> shuffle rhs, undef
1633   bool AllLHS = true, AllRHS = true;
1634   bool N2Undef = N2.isUndef();
1635   for (int i = 0; i != NElts; ++i) {
1636     if (MaskVec[i] >= NElts) {
1637       if (N2Undef)
1638         MaskVec[i] = -1;
1639       else
1640         AllLHS = false;
1641     } else if (MaskVec[i] >= 0) {
1642       AllRHS = false;
1643     }
1644   }
1645   if (AllLHS && AllRHS)
1646     return getUNDEF(VT);
1647   if (AllLHS && !N2Undef)
1648     N2 = getUNDEF(VT);
1649   if (AllRHS) {
1650     N1 = getUNDEF(VT);
1651     commuteShuffle(N1, N2, MaskVec);
1652   }
1653   // Reset our undef status after accounting for the mask.
1654   N2Undef = N2.isUndef();
1655   // Re-check whether both sides ended up undef.
1656   if (N1.isUndef() && N2Undef)
1657     return getUNDEF(VT);
1658 
1659   // If Identity shuffle return that node.
1660   bool Identity = true, AllSame = true;
1661   for (int i = 0; i != NElts; ++i) {
1662     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1663     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1664   }
1665   if (Identity && NElts)
1666     return N1;
1667 
1668   // Shuffling a constant splat doesn't change the result.
1669   if (N2Undef) {
1670     SDValue V = N1;
1671 
1672     // Look through any bitcasts. We check that these don't change the number
1673     // (and size) of elements and just changes their types.
1674     while (V.getOpcode() == ISD::BITCAST)
1675       V = V->getOperand(0);
1676 
1677     // A splat should always show up as a build vector node.
1678     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1679       BitVector UndefElements;
1680       SDValue Splat = BV->getSplatValue(&UndefElements);
1681       // If this is a splat of an undef, shuffling it is also undef.
1682       if (Splat && Splat.isUndef())
1683         return getUNDEF(VT);
1684 
1685       bool SameNumElts =
1686           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1687 
1688       // We only have a splat which can skip shuffles if there is a splatted
1689       // value and no undef lanes rearranged by the shuffle.
1690       if (Splat && UndefElements.none()) {
1691         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1692         // number of elements match or the value splatted is a zero constant.
1693         if (SameNumElts)
1694           return N1;
1695         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1696           if (C->isNullValue())
1697             return N1;
1698       }
1699 
1700       // If the shuffle itself creates a splat, build the vector directly.
1701       if (AllSame && SameNumElts) {
1702         EVT BuildVT = BV->getValueType(0);
1703         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1704         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1705 
1706         // We may have jumped through bitcasts, so the type of the
1707         // BUILD_VECTOR may not match the type of the shuffle.
1708         if (BuildVT != VT)
1709           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1710         return NewBV;
1711       }
1712     }
1713   }
1714 
1715   FoldingSetNodeID ID;
1716   SDValue Ops[2] = { N1, N2 };
1717   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1718   for (int i = 0; i != NElts; ++i)
1719     ID.AddInteger(MaskVec[i]);
1720 
1721   void* IP = nullptr;
1722   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1723     return SDValue(E, 0);
1724 
1725   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1726   // SDNode doesn't have access to it.  This memory will be "leaked" when
1727   // the node is deallocated, but recovered when the NodeAllocator is released.
1728   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1729   llvm::copy(MaskVec, MaskAlloc);
1730 
1731   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1732                                            dl.getDebugLoc(), MaskAlloc);
1733   createOperands(N, Ops);
1734 
1735   CSEMap.InsertNode(N, IP);
1736   InsertNode(N);
1737   SDValue V = SDValue(N, 0);
1738   NewSDValueDbgMsg(V, "Creating new node: ", this);
1739   return V;
1740 }
1741 
1742 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1743   EVT VT = SV.getValueType(0);
1744   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1745   ShuffleVectorSDNode::commuteMask(MaskVec);
1746 
1747   SDValue Op0 = SV.getOperand(0);
1748   SDValue Op1 = SV.getOperand(1);
1749   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1750 }
1751 
1752 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1753   FoldingSetNodeID ID;
1754   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1755   ID.AddInteger(RegNo);
1756   void *IP = nullptr;
1757   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758     return SDValue(E, 0);
1759 
1760   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1761   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1762   CSEMap.InsertNode(N, IP);
1763   InsertNode(N);
1764   return SDValue(N, 0);
1765 }
1766 
1767 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1768   FoldingSetNodeID ID;
1769   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1770   ID.AddPointer(RegMask);
1771   void *IP = nullptr;
1772   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1773     return SDValue(E, 0);
1774 
1775   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1776   CSEMap.InsertNode(N, IP);
1777   InsertNode(N);
1778   return SDValue(N, 0);
1779 }
1780 
1781 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1782                                  MCSymbol *Label) {
1783   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1784 }
1785 
1786 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1787                                    SDValue Root, MCSymbol *Label) {
1788   FoldingSetNodeID ID;
1789   SDValue Ops[] = { Root };
1790   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1791   ID.AddPointer(Label);
1792   void *IP = nullptr;
1793   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1794     return SDValue(E, 0);
1795 
1796   auto *N =
1797       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1798   createOperands(N, Ops);
1799 
1800   CSEMap.InsertNode(N, IP);
1801   InsertNode(N);
1802   return SDValue(N, 0);
1803 }
1804 
1805 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1806                                       int64_t Offset, bool isTarget,
1807                                       unsigned TargetFlags) {
1808   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1809 
1810   FoldingSetNodeID ID;
1811   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1812   ID.AddPointer(BA);
1813   ID.AddInteger(Offset);
1814   ID.AddInteger(TargetFlags);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getSrcValue(const Value *V) {
1826   assert((!V || V->getType()->isPointerTy()) &&
1827          "SrcValue is not a pointer?");
1828 
1829   FoldingSetNodeID ID;
1830   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1831   ID.AddPointer(V);
1832 
1833   void *IP = nullptr;
1834   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1835     return SDValue(E, 0);
1836 
1837   auto *N = newSDNode<SrcValueSDNode>(V);
1838   CSEMap.InsertNode(N, IP);
1839   InsertNode(N);
1840   return SDValue(N, 0);
1841 }
1842 
1843 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1844   FoldingSetNodeID ID;
1845   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1846   ID.AddPointer(MD);
1847 
1848   void *IP = nullptr;
1849   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1850     return SDValue(E, 0);
1851 
1852   auto *N = newSDNode<MDNodeSDNode>(MD);
1853   CSEMap.InsertNode(N, IP);
1854   InsertNode(N);
1855   return SDValue(N, 0);
1856 }
1857 
1858 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1859   if (VT == V.getValueType())
1860     return V;
1861 
1862   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1863 }
1864 
1865 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1866                                        unsigned SrcAS, unsigned DestAS) {
1867   SDValue Ops[] = {Ptr};
1868   FoldingSetNodeID ID;
1869   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1870   ID.AddInteger(SrcAS);
1871   ID.AddInteger(DestAS);
1872 
1873   void *IP = nullptr;
1874   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1875     return SDValue(E, 0);
1876 
1877   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1878                                            VT, SrcAS, DestAS);
1879   createOperands(N, Ops);
1880 
1881   CSEMap.InsertNode(N, IP);
1882   InsertNode(N);
1883   return SDValue(N, 0);
1884 }
1885 
1886 /// getShiftAmountOperand - Return the specified value casted to
1887 /// the target's desired shift amount type.
1888 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1889   EVT OpTy = Op.getValueType();
1890   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1891   if (OpTy == ShTy || OpTy.isVector()) return Op;
1892 
1893   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1894 }
1895 
1896 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1897   SDLoc dl(Node);
1898   const TargetLowering &TLI = getTargetLoweringInfo();
1899   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1900   EVT VT = Node->getValueType(0);
1901   SDValue Tmp1 = Node->getOperand(0);
1902   SDValue Tmp2 = Node->getOperand(1);
1903   const MaybeAlign MA(Node->getConstantOperandVal(3));
1904 
1905   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1906                                Tmp2, MachinePointerInfo(V));
1907   SDValue VAList = VAListLoad;
1908 
1909   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1910     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1911                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1912 
1913     VAList =
1914         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1915                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1916   }
1917 
1918   // Increment the pointer, VAList, to the next vaarg
1919   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1920                  getConstant(getDataLayout().getTypeAllocSize(
1921                                                VT.getTypeForEVT(*getContext())),
1922                              dl, VAList.getValueType()));
1923   // Store the incremented VAList to the legalized pointer
1924   Tmp1 =
1925       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1926   // Load the actual argument out of the pointer VAList
1927   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1928 }
1929 
1930 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1931   SDLoc dl(Node);
1932   const TargetLowering &TLI = getTargetLoweringInfo();
1933   // This defaults to loading a pointer from the input and storing it to the
1934   // output, returning the chain.
1935   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1936   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1937   SDValue Tmp1 =
1938       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1939               Node->getOperand(2), MachinePointerInfo(VS));
1940   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1941                   MachinePointerInfo(VD));
1942 }
1943 
1944 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1945   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1946   unsigned ByteSize = VT.getStoreSize();
1947   Type *Ty = VT.getTypeForEVT(*getContext());
1948   unsigned StackAlign =
1949       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1950 
1951   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1952   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1953 }
1954 
1955 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1956   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1957   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1958   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1959   const DataLayout &DL = getDataLayout();
1960   unsigned Align =
1961       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1962 
1963   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1964   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1965   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1966 }
1967 
1968 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1969                                 ISD::CondCode Cond, const SDLoc &dl) {
1970   EVT OpVT = N1.getValueType();
1971 
1972   // These setcc operations always fold.
1973   switch (Cond) {
1974   default: break;
1975   case ISD::SETFALSE:
1976   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1977   case ISD::SETTRUE:
1978   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1979 
1980   case ISD::SETOEQ:
1981   case ISD::SETOGT:
1982   case ISD::SETOGE:
1983   case ISD::SETOLT:
1984   case ISD::SETOLE:
1985   case ISD::SETONE:
1986   case ISD::SETO:
1987   case ISD::SETUO:
1988   case ISD::SETUEQ:
1989   case ISD::SETUNE:
1990     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1991     break;
1992   }
1993 
1994   if (OpVT.isInteger()) {
1995     // For EQ and NE, we can always pick a value for the undef to make the
1996     // predicate pass or fail, so we can return undef.
1997     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1998     // icmp eq/ne X, undef -> undef.
1999     if ((N1.isUndef() || N2.isUndef()) &&
2000         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2001       return getUNDEF(VT);
2002 
2003     // If both operands are undef, we can return undef for int comparison.
2004     // icmp undef, undef -> undef.
2005     if (N1.isUndef() && N2.isUndef())
2006       return getUNDEF(VT);
2007 
2008     // icmp X, X -> true/false
2009     // icmp X, undef -> true/false because undef could be X.
2010     if (N1 == N2)
2011       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2012   }
2013 
2014   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2015     const APInt &C2 = N2C->getAPIntValue();
2016     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2017       const APInt &C1 = N1C->getAPIntValue();
2018 
2019       switch (Cond) {
2020       default: llvm_unreachable("Unknown integer setcc!");
2021       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2022       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2023       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2024       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2025       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2026       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2027       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2028       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2029       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2030       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2031       }
2032     }
2033   }
2034 
2035   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2036   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2037 
2038   if (N1CFP && N2CFP) {
2039     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2040     switch (Cond) {
2041     default: break;
2042     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2043                         return getUNDEF(VT);
2044                       LLVM_FALLTHROUGH;
2045     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2046                                              OpVT);
2047     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2048                         return getUNDEF(VT);
2049                       LLVM_FALLTHROUGH;
2050     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2051                                              R==APFloat::cmpLessThan, dl, VT,
2052                                              OpVT);
2053     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2054                         return getUNDEF(VT);
2055                       LLVM_FALLTHROUGH;
2056     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2057                                              OpVT);
2058     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2059                         return getUNDEF(VT);
2060                       LLVM_FALLTHROUGH;
2061     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2062                                              VT, OpVT);
2063     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2064                         return getUNDEF(VT);
2065                       LLVM_FALLTHROUGH;
2066     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2067                                              R==APFloat::cmpEqual, dl, VT,
2068                                              OpVT);
2069     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2070                         return getUNDEF(VT);
2071                       LLVM_FALLTHROUGH;
2072     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2073                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2074     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2075                                              OpVT);
2076     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2077                                              OpVT);
2078     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2079                                              R==APFloat::cmpEqual, dl, VT,
2080                                              OpVT);
2081     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2082                                              OpVT);
2083     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2084                                              R==APFloat::cmpLessThan, dl, VT,
2085                                              OpVT);
2086     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2087                                              R==APFloat::cmpUnordered, dl, VT,
2088                                              OpVT);
2089     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2090                                              VT, OpVT);
2091     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2092                                              OpVT);
2093     }
2094   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2095     // Ensure that the constant occurs on the RHS.
2096     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2097     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2098       return SDValue();
2099     return getSetCC(dl, VT, N2, N1, SwappedCond);
2100   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2101              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2102     // If an operand is known to be a nan (or undef that could be a nan), we can
2103     // fold it.
2104     // Choosing NaN for the undef will always make unordered comparison succeed
2105     // and ordered comparison fails.
2106     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2107     switch (ISD::getUnorderedFlavor(Cond)) {
2108     default:
2109       llvm_unreachable("Unknown flavor!");
2110     case 0: // Known false.
2111       return getBoolConstant(false, dl, VT, OpVT);
2112     case 1: // Known true.
2113       return getBoolConstant(true, dl, VT, OpVT);
2114     case 2: // Undefined.
2115       return getUNDEF(VT);
2116     }
2117   }
2118 
2119   // Could not fold it.
2120   return SDValue();
2121 }
2122 
2123 /// See if the specified operand can be simplified with the knowledge that only
2124 /// the bits specified by DemandedBits are used.
2125 /// TODO: really we should be making this into the DAG equivalent of
2126 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2127 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2128   EVT VT = V.getValueType();
2129   APInt DemandedElts = VT.isVector()
2130                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2131                            : APInt(1, 1);
2132   return GetDemandedBits(V, DemandedBits, DemandedElts);
2133 }
2134 
2135 /// See if the specified operand can be simplified with the knowledge that only
2136 /// the bits specified by DemandedBits are used in the elements specified by
2137 /// DemandedElts.
2138 /// TODO: really we should be making this into the DAG equivalent of
2139 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2140 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2141                                       const APInt &DemandedElts) {
2142   switch (V.getOpcode()) {
2143   default:
2144     break;
2145   case ISD::Constant: {
2146     auto *CV = cast<ConstantSDNode>(V.getNode());
2147     assert(CV && "Const value should be ConstSDNode.");
2148     const APInt &CVal = CV->getAPIntValue();
2149     APInt NewVal = CVal & DemandedBits;
2150     if (NewVal != CVal)
2151       return getConstant(NewVal, SDLoc(V), V.getValueType());
2152     break;
2153   }
2154   case ISD::OR:
2155   case ISD::XOR:
2156   case ISD::SIGN_EXTEND_INREG:
2157     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2158                                                 *this, 0);
2159   case ISD::SRL:
2160     // Only look at single-use SRLs.
2161     if (!V.getNode()->hasOneUse())
2162       break;
2163     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2164       // See if we can recursively simplify the LHS.
2165       unsigned Amt = RHSC->getZExtValue();
2166 
2167       // Watch out for shift count overflow though.
2168       if (Amt >= DemandedBits.getBitWidth())
2169         break;
2170       APInt SrcDemandedBits = DemandedBits << Amt;
2171       if (SDValue SimplifyLHS =
2172               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2173         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2174                        V.getOperand(1));
2175     }
2176     break;
2177   case ISD::AND: {
2178     // X & -1 -> X (ignoring bits which aren't demanded).
2179     // Also handle the case where masked out bits in X are known to be zero.
2180     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2181       const APInt &AndVal = RHSC->getAPIntValue();
2182       if (DemandedBits.isSubsetOf(AndVal) ||
2183           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2184                                   AndVal))
2185         return V.getOperand(0);
2186     }
2187     break;
2188   }
2189   case ISD::ANY_EXTEND: {
2190     SDValue Src = V.getOperand(0);
2191     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2192     // Being conservative here - only peek through if we only demand bits in the
2193     // non-extended source (even though the extended bits are technically
2194     // undef).
2195     if (DemandedBits.getActiveBits() > SrcBitWidth)
2196       break;
2197     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2198     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2199       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2200     break;
2201   }
2202   }
2203   return SDValue();
2204 }
2205 
2206 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2207 /// use this predicate to simplify operations downstream.
2208 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2209   unsigned BitWidth = Op.getScalarValueSizeInBits();
2210   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2211 }
2212 
2213 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2214 /// this predicate to simplify operations downstream.  Mask is known to be zero
2215 /// for bits that V cannot have.
2216 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2217                                      unsigned Depth) const {
2218   EVT VT = V.getValueType();
2219   APInt DemandedElts = VT.isVector()
2220                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2221                            : APInt(1, 1);
2222   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2223 }
2224 
2225 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2226 /// DemandedElts.  We use this predicate to simplify operations downstream.
2227 /// Mask is known to be zero for bits that V cannot have.
2228 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2229                                      const APInt &DemandedElts,
2230                                      unsigned Depth) const {
2231   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2232 }
2233 
2234 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2235 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2236                                         unsigned Depth) const {
2237   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2238 }
2239 
2240 /// isSplatValue - Return true if the vector V has the same value
2241 /// across all DemandedElts.
2242 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2243                                 APInt &UndefElts) {
2244   if (!DemandedElts)
2245     return false; // No demanded elts, better to assume we don't know anything.
2246 
2247   EVT VT = V.getValueType();
2248   assert(VT.isVector() && "Vector type expected");
2249 
2250   unsigned NumElts = VT.getVectorNumElements();
2251   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2252   UndefElts = APInt::getNullValue(NumElts);
2253 
2254   switch (V.getOpcode()) {
2255   case ISD::BUILD_VECTOR: {
2256     SDValue Scl;
2257     for (unsigned i = 0; i != NumElts; ++i) {
2258       SDValue Op = V.getOperand(i);
2259       if (Op.isUndef()) {
2260         UndefElts.setBit(i);
2261         continue;
2262       }
2263       if (!DemandedElts[i])
2264         continue;
2265       if (Scl && Scl != Op)
2266         return false;
2267       Scl = Op;
2268     }
2269     return true;
2270   }
2271   case ISD::VECTOR_SHUFFLE: {
2272     // Check if this is a shuffle node doing a splat.
2273     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2274     int SplatIndex = -1;
2275     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2276     for (int i = 0; i != (int)NumElts; ++i) {
2277       int M = Mask[i];
2278       if (M < 0) {
2279         UndefElts.setBit(i);
2280         continue;
2281       }
2282       if (!DemandedElts[i])
2283         continue;
2284       if (0 <= SplatIndex && SplatIndex != M)
2285         return false;
2286       SplatIndex = M;
2287     }
2288     return true;
2289   }
2290   case ISD::EXTRACT_SUBVECTOR: {
2291     SDValue Src = V.getOperand(0);
2292     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2293     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2294     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2295       // Offset the demanded elts by the subvector index.
2296       uint64_t Idx = SubIdx->getZExtValue();
2297       APInt UndefSrcElts;
2298       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2299       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2300         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2301         return true;
2302       }
2303     }
2304     break;
2305   }
2306   case ISD::ADD:
2307   case ISD::SUB:
2308   case ISD::AND: {
2309     APInt UndefLHS, UndefRHS;
2310     SDValue LHS = V.getOperand(0);
2311     SDValue RHS = V.getOperand(1);
2312     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2313         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2314       UndefElts = UndefLHS | UndefRHS;
2315       return true;
2316     }
2317     break;
2318   }
2319   }
2320 
2321   return false;
2322 }
2323 
2324 /// Helper wrapper to main isSplatValue function.
2325 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2326   EVT VT = V.getValueType();
2327   assert(VT.isVector() && "Vector type expected");
2328   unsigned NumElts = VT.getVectorNumElements();
2329 
2330   APInt UndefElts;
2331   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2332   return isSplatValue(V, DemandedElts, UndefElts) &&
2333          (AllowUndefs || !UndefElts);
2334 }
2335 
2336 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2337   V = peekThroughExtractSubvectors(V);
2338 
2339   EVT VT = V.getValueType();
2340   unsigned Opcode = V.getOpcode();
2341   switch (Opcode) {
2342   default: {
2343     APInt UndefElts;
2344     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2345     if (isSplatValue(V, DemandedElts, UndefElts)) {
2346       // Handle case where all demanded elements are UNDEF.
2347       if (DemandedElts.isSubsetOf(UndefElts)) {
2348         SplatIdx = 0;
2349         return getUNDEF(VT);
2350       }
2351       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2352       return V;
2353     }
2354     break;
2355   }
2356   case ISD::VECTOR_SHUFFLE: {
2357     // Check if this is a shuffle node doing a splat.
2358     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2359     // getTargetVShiftNode currently struggles without the splat source.
2360     auto *SVN = cast<ShuffleVectorSDNode>(V);
2361     if (!SVN->isSplat())
2362       break;
2363     int Idx = SVN->getSplatIndex();
2364     int NumElts = V.getValueType().getVectorNumElements();
2365     SplatIdx = Idx % NumElts;
2366     return V.getOperand(Idx / NumElts);
2367   }
2368   }
2369 
2370   return SDValue();
2371 }
2372 
2373 SDValue SelectionDAG::getSplatValue(SDValue V) {
2374   int SplatIdx;
2375   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2376     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2377                    SrcVector.getValueType().getScalarType(), SrcVector,
2378                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2379   return SDValue();
2380 }
2381 
2382 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2383 /// is less than the element bit-width of the shift node, return it.
2384 static const APInt *getValidShiftAmountConstant(SDValue V) {
2385   unsigned BitWidth = V.getScalarValueSizeInBits();
2386   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2387     // Shifting more than the bitwidth is not valid.
2388     const APInt &ShAmt = SA->getAPIntValue();
2389     if (ShAmt.ult(BitWidth))
2390       return &ShAmt;
2391   }
2392   return nullptr;
2393 }
2394 
2395 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2396 /// than the element bit-width of the shift node, return the minimum value.
2397 static const APInt *getValidMinimumShiftAmountConstant(SDValue V) {
2398   unsigned BitWidth = V.getScalarValueSizeInBits();
2399   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2400   if (!BV)
2401     return nullptr;
2402   const APInt *MinShAmt = nullptr;
2403   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2404     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2405     if (!SA)
2406       return nullptr;
2407     // Shifting more than the bitwidth is not valid.
2408     const APInt &ShAmt = SA->getAPIntValue();
2409     if (ShAmt.uge(BitWidth))
2410       return nullptr;
2411     if (MinShAmt && MinShAmt->ule(ShAmt))
2412       continue;
2413     MinShAmt = &ShAmt;
2414   }
2415   return MinShAmt;
2416 }
2417 
2418 /// Determine which bits of Op are known to be either zero or one and return
2419 /// them in Known. For vectors, the known bits are those that are shared by
2420 /// every vector element.
2421 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2422   EVT VT = Op.getValueType();
2423   APInt DemandedElts = VT.isVector()
2424                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2425                            : APInt(1, 1);
2426   return computeKnownBits(Op, DemandedElts, Depth);
2427 }
2428 
2429 /// Determine which bits of Op are known to be either zero or one and return
2430 /// them in Known. The DemandedElts argument allows us to only collect the known
2431 /// bits that are shared by the requested vector elements.
2432 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2433                                          unsigned Depth) const {
2434   unsigned BitWidth = Op.getScalarValueSizeInBits();
2435 
2436   KnownBits Known(BitWidth);   // Don't know anything.
2437 
2438   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2439     // We know all of the bits for a constant!
2440     Known.One = C->getAPIntValue();
2441     Known.Zero = ~Known.One;
2442     return Known;
2443   }
2444   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2445     // We know all of the bits for a constant fp!
2446     Known.One = C->getValueAPF().bitcastToAPInt();
2447     Known.Zero = ~Known.One;
2448     return Known;
2449   }
2450 
2451   if (Depth >= MaxRecursionDepth)
2452     return Known;  // Limit search depth.
2453 
2454   KnownBits Known2;
2455   unsigned NumElts = DemandedElts.getBitWidth();
2456   assert((!Op.getValueType().isVector() ||
2457           NumElts == Op.getValueType().getVectorNumElements()) &&
2458          "Unexpected vector size");
2459 
2460   if (!DemandedElts)
2461     return Known;  // No demanded elts, better to assume we don't know anything.
2462 
2463   unsigned Opcode = Op.getOpcode();
2464   switch (Opcode) {
2465   case ISD::BUILD_VECTOR:
2466     // Collect the known bits that are shared by every demanded vector element.
2467     Known.Zero.setAllBits(); Known.One.setAllBits();
2468     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2469       if (!DemandedElts[i])
2470         continue;
2471 
2472       SDValue SrcOp = Op.getOperand(i);
2473       Known2 = computeKnownBits(SrcOp, Depth + 1);
2474 
2475       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2476       if (SrcOp.getValueSizeInBits() != BitWidth) {
2477         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2478                "Expected BUILD_VECTOR implicit truncation");
2479         Known2 = Known2.trunc(BitWidth);
2480       }
2481 
2482       // Known bits are the values that are shared by every demanded element.
2483       Known.One &= Known2.One;
2484       Known.Zero &= Known2.Zero;
2485 
2486       // If we don't know any bits, early out.
2487       if (Known.isUnknown())
2488         break;
2489     }
2490     break;
2491   case ISD::VECTOR_SHUFFLE: {
2492     // Collect the known bits that are shared by every vector element referenced
2493     // by the shuffle.
2494     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2495     Known.Zero.setAllBits(); Known.One.setAllBits();
2496     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2497     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2498     for (unsigned i = 0; i != NumElts; ++i) {
2499       if (!DemandedElts[i])
2500         continue;
2501 
2502       int M = SVN->getMaskElt(i);
2503       if (M < 0) {
2504         // For UNDEF elements, we don't know anything about the common state of
2505         // the shuffle result.
2506         Known.resetAll();
2507         DemandedLHS.clearAllBits();
2508         DemandedRHS.clearAllBits();
2509         break;
2510       }
2511 
2512       if ((unsigned)M < NumElts)
2513         DemandedLHS.setBit((unsigned)M % NumElts);
2514       else
2515         DemandedRHS.setBit((unsigned)M % NumElts);
2516     }
2517     // Known bits are the values that are shared by every demanded element.
2518     if (!!DemandedLHS) {
2519       SDValue LHS = Op.getOperand(0);
2520       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2521       Known.One &= Known2.One;
2522       Known.Zero &= Known2.Zero;
2523     }
2524     // If we don't know any bits, early out.
2525     if (Known.isUnknown())
2526       break;
2527     if (!!DemandedRHS) {
2528       SDValue RHS = Op.getOperand(1);
2529       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2530       Known.One &= Known2.One;
2531       Known.Zero &= Known2.Zero;
2532     }
2533     break;
2534   }
2535   case ISD::CONCAT_VECTORS: {
2536     // Split DemandedElts and test each of the demanded subvectors.
2537     Known.Zero.setAllBits(); Known.One.setAllBits();
2538     EVT SubVectorVT = Op.getOperand(0).getValueType();
2539     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2540     unsigned NumSubVectors = Op.getNumOperands();
2541     for (unsigned i = 0; i != NumSubVectors; ++i) {
2542       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2543       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2544       if (!!DemandedSub) {
2545         SDValue Sub = Op.getOperand(i);
2546         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2547         Known.One &= Known2.One;
2548         Known.Zero &= Known2.Zero;
2549       }
2550       // If we don't know any bits, early out.
2551       if (Known.isUnknown())
2552         break;
2553     }
2554     break;
2555   }
2556   case ISD::INSERT_SUBVECTOR: {
2557     // If we know the element index, demand any elements from the subvector and
2558     // the remainder from the src its inserted into, otherwise demand them all.
2559     SDValue Src = Op.getOperand(0);
2560     SDValue Sub = Op.getOperand(1);
2561     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2562     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2563     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2564       Known.One.setAllBits();
2565       Known.Zero.setAllBits();
2566       uint64_t Idx = SubIdx->getZExtValue();
2567       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2568       if (!!DemandedSubElts) {
2569         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2570         if (Known.isUnknown())
2571           break; // early-out.
2572       }
2573       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2574       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2575       if (!!DemandedSrcElts) {
2576         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2577         Known.One &= Known2.One;
2578         Known.Zero &= Known2.Zero;
2579       }
2580     } else {
2581       Known = computeKnownBits(Sub, Depth + 1);
2582       if (Known.isUnknown())
2583         break; // early-out.
2584       Known2 = computeKnownBits(Src, Depth + 1);
2585       Known.One &= Known2.One;
2586       Known.Zero &= Known2.Zero;
2587     }
2588     break;
2589   }
2590   case ISD::EXTRACT_SUBVECTOR: {
2591     // If we know the element index, just demand that subvector elements,
2592     // otherwise demand them all.
2593     SDValue Src = Op.getOperand(0);
2594     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2595     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2596     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2597     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2598       // Offset the demanded elts by the subvector index.
2599       uint64_t Idx = SubIdx->getZExtValue();
2600       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2601     }
2602     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2603     break;
2604   }
2605   case ISD::SCALAR_TO_VECTOR: {
2606     // We know about scalar_to_vector as much as we know about it source,
2607     // which becomes the first element of otherwise unknown vector.
2608     if (DemandedElts != 1)
2609       break;
2610 
2611     SDValue N0 = Op.getOperand(0);
2612     Known = computeKnownBits(N0, Depth + 1);
2613     if (N0.getValueSizeInBits() != BitWidth)
2614       Known = Known.trunc(BitWidth);
2615 
2616     break;
2617   }
2618   case ISD::BITCAST: {
2619     SDValue N0 = Op.getOperand(0);
2620     EVT SubVT = N0.getValueType();
2621     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2622 
2623     // Ignore bitcasts from unsupported types.
2624     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2625       break;
2626 
2627     // Fast handling of 'identity' bitcasts.
2628     if (BitWidth == SubBitWidth) {
2629       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2630       break;
2631     }
2632 
2633     bool IsLE = getDataLayout().isLittleEndian();
2634 
2635     // Bitcast 'small element' vector to 'large element' scalar/vector.
2636     if ((BitWidth % SubBitWidth) == 0) {
2637       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2638 
2639       // Collect known bits for the (larger) output by collecting the known
2640       // bits from each set of sub elements and shift these into place.
2641       // We need to separately call computeKnownBits for each set of
2642       // sub elements as the knownbits for each is likely to be different.
2643       unsigned SubScale = BitWidth / SubBitWidth;
2644       APInt SubDemandedElts(NumElts * SubScale, 0);
2645       for (unsigned i = 0; i != NumElts; ++i)
2646         if (DemandedElts[i])
2647           SubDemandedElts.setBit(i * SubScale);
2648 
2649       for (unsigned i = 0; i != SubScale; ++i) {
2650         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2651                          Depth + 1);
2652         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2653         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2654         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2655       }
2656     }
2657 
2658     // Bitcast 'large element' scalar/vector to 'small element' vector.
2659     if ((SubBitWidth % BitWidth) == 0) {
2660       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2661 
2662       // Collect known bits for the (smaller) output by collecting the known
2663       // bits from the overlapping larger input elements and extracting the
2664       // sub sections we actually care about.
2665       unsigned SubScale = SubBitWidth / BitWidth;
2666       APInt SubDemandedElts(NumElts / SubScale, 0);
2667       for (unsigned i = 0; i != NumElts; ++i)
2668         if (DemandedElts[i])
2669           SubDemandedElts.setBit(i / SubScale);
2670 
2671       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2672 
2673       Known.Zero.setAllBits(); Known.One.setAllBits();
2674       for (unsigned i = 0; i != NumElts; ++i)
2675         if (DemandedElts[i]) {
2676           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2677           unsigned Offset = (Shifts % SubScale) * BitWidth;
2678           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2679           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2680           // If we don't know any bits, early out.
2681           if (Known.isUnknown())
2682             break;
2683         }
2684     }
2685     break;
2686   }
2687   case ISD::AND:
2688     // If either the LHS or the RHS are Zero, the result is zero.
2689     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2690     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2691 
2692     // Output known-1 bits are only known if set in both the LHS & RHS.
2693     Known.One &= Known2.One;
2694     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2695     Known.Zero |= Known2.Zero;
2696     break;
2697   case ISD::OR:
2698     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2699     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2700 
2701     // Output known-0 bits are only known if clear in both the LHS & RHS.
2702     Known.Zero &= Known2.Zero;
2703     // Output known-1 are known to be set if set in either the LHS | RHS.
2704     Known.One |= Known2.One;
2705     break;
2706   case ISD::XOR: {
2707     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2708     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2709 
2710     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2711     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2712     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2713     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2714     Known.Zero = KnownZeroOut;
2715     break;
2716   }
2717   case ISD::MUL: {
2718     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2719     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2720 
2721     // If low bits are zero in either operand, output low known-0 bits.
2722     // Also compute a conservative estimate for high known-0 bits.
2723     // More trickiness is possible, but this is sufficient for the
2724     // interesting case of alignment computation.
2725     unsigned TrailZ = Known.countMinTrailingZeros() +
2726                       Known2.countMinTrailingZeros();
2727     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2728                                Known2.countMinLeadingZeros(),
2729                                BitWidth) - BitWidth;
2730 
2731     Known.resetAll();
2732     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2733     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2734     break;
2735   }
2736   case ISD::UDIV: {
2737     // For the purposes of computing leading zeros we can conservatively
2738     // treat a udiv as a logical right shift by the power of 2 known to
2739     // be less than the denominator.
2740     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2741     unsigned LeadZ = Known2.countMinLeadingZeros();
2742 
2743     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2744     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2745     if (RHSMaxLeadingZeros != BitWidth)
2746       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2747 
2748     Known.Zero.setHighBits(LeadZ);
2749     break;
2750   }
2751   case ISD::SELECT:
2752   case ISD::VSELECT:
2753     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2754     // If we don't know any bits, early out.
2755     if (Known.isUnknown())
2756       break;
2757     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2758 
2759     // Only known if known in both the LHS and RHS.
2760     Known.One &= Known2.One;
2761     Known.Zero &= Known2.Zero;
2762     break;
2763   case ISD::SELECT_CC:
2764     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2765     // If we don't know any bits, early out.
2766     if (Known.isUnknown())
2767       break;
2768     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2769 
2770     // Only known if known in both the LHS and RHS.
2771     Known.One &= Known2.One;
2772     Known.Zero &= Known2.Zero;
2773     break;
2774   case ISD::SMULO:
2775   case ISD::UMULO:
2776   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2777     if (Op.getResNo() != 1)
2778       break;
2779     // The boolean result conforms to getBooleanContents.
2780     // If we know the result of a setcc has the top bits zero, use this info.
2781     // We know that we have an integer-based boolean since these operations
2782     // are only available for integer.
2783     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2784             TargetLowering::ZeroOrOneBooleanContent &&
2785         BitWidth > 1)
2786       Known.Zero.setBitsFrom(1);
2787     break;
2788   case ISD::SETCC:
2789     // If we know the result of a setcc has the top bits zero, use this info.
2790     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2791             TargetLowering::ZeroOrOneBooleanContent &&
2792         BitWidth > 1)
2793       Known.Zero.setBitsFrom(1);
2794     break;
2795   case ISD::SHL:
2796     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2797       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2798       unsigned Shift = ShAmt->getZExtValue();
2799       Known.Zero <<= Shift;
2800       Known.One <<= Shift;
2801       // Low bits are known zero.
2802       Known.Zero.setLowBits(Shift);
2803     }
2804     break;
2805   case ISD::SRL:
2806     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2807       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2808       unsigned Shift = ShAmt->getZExtValue();
2809       Known.Zero.lshrInPlace(Shift);
2810       Known.One.lshrInPlace(Shift);
2811       // High bits are known zero.
2812       Known.Zero.setHighBits(Shift);
2813     } else if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op)) {
2814       // Minimum shift high bits are known zero.
2815       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2816     }
2817     break;
2818   case ISD::SRA:
2819     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2820       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2821       unsigned Shift = ShAmt->getZExtValue();
2822       // Sign extend known zero/one bit (else is unknown).
2823       Known.Zero.ashrInPlace(Shift);
2824       Known.One.ashrInPlace(Shift);
2825     }
2826     break;
2827   case ISD::FSHL:
2828   case ISD::FSHR:
2829     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2830       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2831 
2832       // For fshl, 0-shift returns the 1st arg.
2833       // For fshr, 0-shift returns the 2nd arg.
2834       if (Amt == 0) {
2835         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2836                                  DemandedElts, Depth + 1);
2837         break;
2838       }
2839 
2840       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2841       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2842       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2843       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2844       if (Opcode == ISD::FSHL) {
2845         Known.One <<= Amt;
2846         Known.Zero <<= Amt;
2847         Known2.One.lshrInPlace(BitWidth - Amt);
2848         Known2.Zero.lshrInPlace(BitWidth - Amt);
2849       } else {
2850         Known.One <<= BitWidth - Amt;
2851         Known.Zero <<= BitWidth - Amt;
2852         Known2.One.lshrInPlace(Amt);
2853         Known2.Zero.lshrInPlace(Amt);
2854       }
2855       Known.One |= Known2.One;
2856       Known.Zero |= Known2.Zero;
2857     }
2858     break;
2859   case ISD::SIGN_EXTEND_INREG: {
2860     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2861     unsigned EBits = EVT.getScalarSizeInBits();
2862 
2863     // Sign extension.  Compute the demanded bits in the result that are not
2864     // present in the input.
2865     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2866 
2867     APInt InSignMask = APInt::getSignMask(EBits);
2868     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2869 
2870     // If the sign extended bits are demanded, we know that the sign
2871     // bit is demanded.
2872     InSignMask = InSignMask.zext(BitWidth);
2873     if (NewBits.getBoolValue())
2874       InputDemandedBits |= InSignMask;
2875 
2876     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2877     Known.One &= InputDemandedBits;
2878     Known.Zero &= InputDemandedBits;
2879 
2880     // If the sign bit of the input is known set or clear, then we know the
2881     // top bits of the result.
2882     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2883       Known.Zero |= NewBits;
2884       Known.One  &= ~NewBits;
2885     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2886       Known.One  |= NewBits;
2887       Known.Zero &= ~NewBits;
2888     } else {                              // Input sign bit unknown
2889       Known.Zero &= ~NewBits;
2890       Known.One  &= ~NewBits;
2891     }
2892     break;
2893   }
2894   case ISD::CTTZ:
2895   case ISD::CTTZ_ZERO_UNDEF: {
2896     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2897     // If we have a known 1, its position is our upper bound.
2898     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2899     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2900     Known.Zero.setBitsFrom(LowBits);
2901     break;
2902   }
2903   case ISD::CTLZ:
2904   case ISD::CTLZ_ZERO_UNDEF: {
2905     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906     // If we have a known 1, its position is our upper bound.
2907     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2908     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2909     Known.Zero.setBitsFrom(LowBits);
2910     break;
2911   }
2912   case ISD::CTPOP: {
2913     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2914     // If we know some of the bits are zero, they can't be one.
2915     unsigned PossibleOnes = Known2.countMaxPopulation();
2916     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2917     break;
2918   }
2919   case ISD::LOAD: {
2920     LoadSDNode *LD = cast<LoadSDNode>(Op);
2921     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2922     if (ISD::isNON_EXTLoad(LD) && Cst) {
2923       // Determine any common known bits from the loaded constant pool value.
2924       Type *CstTy = Cst->getType();
2925       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2926         // If its a vector splat, then we can (quickly) reuse the scalar path.
2927         // NOTE: We assume all elements match and none are UNDEF.
2928         if (CstTy->isVectorTy()) {
2929           if (const Constant *Splat = Cst->getSplatValue()) {
2930             Cst = Splat;
2931             CstTy = Cst->getType();
2932           }
2933         }
2934         // TODO - do we need to handle different bitwidths?
2935         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2936           // Iterate across all vector elements finding common known bits.
2937           Known.One.setAllBits();
2938           Known.Zero.setAllBits();
2939           for (unsigned i = 0; i != NumElts; ++i) {
2940             if (!DemandedElts[i])
2941               continue;
2942             if (Constant *Elt = Cst->getAggregateElement(i)) {
2943               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2944                 const APInt &Value = CInt->getValue();
2945                 Known.One &= Value;
2946                 Known.Zero &= ~Value;
2947                 continue;
2948               }
2949               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2950                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2951                 Known.One &= Value;
2952                 Known.Zero &= ~Value;
2953                 continue;
2954               }
2955             }
2956             Known.One.clearAllBits();
2957             Known.Zero.clearAllBits();
2958             break;
2959           }
2960         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2961           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2962             const APInt &Value = CInt->getValue();
2963             Known.One = Value;
2964             Known.Zero = ~Value;
2965           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2966             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2967             Known.One = Value;
2968             Known.Zero = ~Value;
2969           }
2970         }
2971       }
2972     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2973       // If this is a ZEXTLoad and we are looking at the loaded value.
2974       EVT VT = LD->getMemoryVT();
2975       unsigned MemBits = VT.getScalarSizeInBits();
2976       Known.Zero.setBitsFrom(MemBits);
2977     } else if (const MDNode *Ranges = LD->getRanges()) {
2978       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2979         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2980     }
2981     break;
2982   }
2983   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2984     EVT InVT = Op.getOperand(0).getValueType();
2985     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2986     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2987     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2988     break;
2989   }
2990   case ISD::ZERO_EXTEND: {
2991     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2993     break;
2994   }
2995   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2996     EVT InVT = Op.getOperand(0).getValueType();
2997     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2998     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2999     // If the sign bit is known to be zero or one, then sext will extend
3000     // it to the top bits, else it will just zext.
3001     Known = Known.sext(BitWidth);
3002     break;
3003   }
3004   case ISD::SIGN_EXTEND: {
3005     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3006     // If the sign bit is known to be zero or one, then sext will extend
3007     // it to the top bits, else it will just zext.
3008     Known = Known.sext(BitWidth);
3009     break;
3010   }
3011   case ISD::ANY_EXTEND: {
3012     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3013     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3014     break;
3015   }
3016   case ISD::TRUNCATE: {
3017     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3018     Known = Known.trunc(BitWidth);
3019     break;
3020   }
3021   case ISD::AssertZext: {
3022     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3023     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3024     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3025     Known.Zero |= (~InMask);
3026     Known.One  &= (~Known.Zero);
3027     break;
3028   }
3029   case ISD::FGETSIGN:
3030     // All bits are zero except the low bit.
3031     Known.Zero.setBitsFrom(1);
3032     break;
3033   case ISD::USUBO:
3034   case ISD::SSUBO:
3035     if (Op.getResNo() == 1) {
3036       // If we know the result of a setcc has the top bits zero, use this info.
3037       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3038               TargetLowering::ZeroOrOneBooleanContent &&
3039           BitWidth > 1)
3040         Known.Zero.setBitsFrom(1);
3041       break;
3042     }
3043     LLVM_FALLTHROUGH;
3044   case ISD::SUB:
3045   case ISD::SUBC: {
3046     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3047     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3048     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3049                                         Known, Known2);
3050     break;
3051   }
3052   case ISD::UADDO:
3053   case ISD::SADDO:
3054   case ISD::ADDCARRY:
3055     if (Op.getResNo() == 1) {
3056       // If we know the result of a setcc has the top bits zero, use this info.
3057       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3058               TargetLowering::ZeroOrOneBooleanContent &&
3059           BitWidth > 1)
3060         Known.Zero.setBitsFrom(1);
3061       break;
3062     }
3063     LLVM_FALLTHROUGH;
3064   case ISD::ADD:
3065   case ISD::ADDC:
3066   case ISD::ADDE: {
3067     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3068 
3069     // With ADDE and ADDCARRY, a carry bit may be added in.
3070     KnownBits Carry(1);
3071     if (Opcode == ISD::ADDE)
3072       // Can't track carry from glue, set carry to unknown.
3073       Carry.resetAll();
3074     else if (Opcode == ISD::ADDCARRY)
3075       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3076       // the trouble (how often will we find a known carry bit). And I haven't
3077       // tested this very much yet, but something like this might work:
3078       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3079       //   Carry = Carry.zextOrTrunc(1, false);
3080       Carry.resetAll();
3081     else
3082       Carry.setAllZero();
3083 
3084     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3085     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3086     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3087     break;
3088   }
3089   case ISD::SREM:
3090     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3091       const APInt &RA = Rem->getAPIntValue().abs();
3092       if (RA.isPowerOf2()) {
3093         APInt LowBits = RA - 1;
3094         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3095 
3096         // The low bits of the first operand are unchanged by the srem.
3097         Known.Zero = Known2.Zero & LowBits;
3098         Known.One = Known2.One & LowBits;
3099 
3100         // If the first operand is non-negative or has all low bits zero, then
3101         // the upper bits are all zero.
3102         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3103           Known.Zero |= ~LowBits;
3104 
3105         // If the first operand is negative and not all low bits are zero, then
3106         // the upper bits are all one.
3107         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3108           Known.One |= ~LowBits;
3109         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3110       }
3111     }
3112     break;
3113   case ISD::UREM: {
3114     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3115       const APInt &RA = Rem->getAPIntValue();
3116       if (RA.isPowerOf2()) {
3117         APInt LowBits = (RA - 1);
3118         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3119 
3120         // The upper bits are all zero, the lower ones are unchanged.
3121         Known.Zero = Known2.Zero | ~LowBits;
3122         Known.One = Known2.One & LowBits;
3123         break;
3124       }
3125     }
3126 
3127     // Since the result is less than or equal to either operand, any leading
3128     // zero bits in either operand must also exist in the result.
3129     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3130     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3131 
3132     uint32_t Leaders =
3133         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3134     Known.resetAll();
3135     Known.Zero.setHighBits(Leaders);
3136     break;
3137   }
3138   case ISD::EXTRACT_ELEMENT: {
3139     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3140     const unsigned Index = Op.getConstantOperandVal(1);
3141     const unsigned EltBitWidth = Op.getValueSizeInBits();
3142 
3143     // Remove low part of known bits mask
3144     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3145     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3146 
3147     // Remove high part of known bit mask
3148     Known = Known.trunc(EltBitWidth);
3149     break;
3150   }
3151   case ISD::EXTRACT_VECTOR_ELT: {
3152     SDValue InVec = Op.getOperand(0);
3153     SDValue EltNo = Op.getOperand(1);
3154     EVT VecVT = InVec.getValueType();
3155     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3156     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3157     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3158     // anything about the extended bits.
3159     if (BitWidth > EltBitWidth)
3160       Known = Known.trunc(EltBitWidth);
3161     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3162     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3163       // If we know the element index, just demand that vector element.
3164       unsigned Idx = ConstEltNo->getZExtValue();
3165       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3166       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3167     } else {
3168       // Unknown element index, so ignore DemandedElts and demand them all.
3169       Known = computeKnownBits(InVec, Depth + 1);
3170     }
3171     if (BitWidth > EltBitWidth)
3172       Known = Known.zext(BitWidth, false /* => any extend */);
3173     break;
3174   }
3175   case ISD::INSERT_VECTOR_ELT: {
3176     SDValue InVec = Op.getOperand(0);
3177     SDValue InVal = Op.getOperand(1);
3178     SDValue EltNo = Op.getOperand(2);
3179 
3180     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3181     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3182       // If we know the element index, split the demand between the
3183       // source vector and the inserted element.
3184       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3185       unsigned EltIdx = CEltNo->getZExtValue();
3186 
3187       // If we demand the inserted element then add its common known bits.
3188       if (DemandedElts[EltIdx]) {
3189         Known2 = computeKnownBits(InVal, Depth + 1);
3190         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3191         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3192       }
3193 
3194       // If we demand the source vector then add its common known bits, ensuring
3195       // that we don't demand the inserted element.
3196       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3197       if (!!VectorElts) {
3198         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3199         Known.One &= Known2.One;
3200         Known.Zero &= Known2.Zero;
3201       }
3202     } else {
3203       // Unknown element index, so ignore DemandedElts and demand them all.
3204       Known = computeKnownBits(InVec, Depth + 1);
3205       Known2 = computeKnownBits(InVal, Depth + 1);
3206       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3207       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3208     }
3209     break;
3210   }
3211   case ISD::BITREVERSE: {
3212     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3213     Known.Zero = Known2.Zero.reverseBits();
3214     Known.One = Known2.One.reverseBits();
3215     break;
3216   }
3217   case ISD::BSWAP: {
3218     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3219     Known.Zero = Known2.Zero.byteSwap();
3220     Known.One = Known2.One.byteSwap();
3221     break;
3222   }
3223   case ISD::ABS: {
3224     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225 
3226     // If the source's MSB is zero then we know the rest of the bits already.
3227     if (Known2.isNonNegative()) {
3228       Known.Zero = Known2.Zero;
3229       Known.One = Known2.One;
3230       break;
3231     }
3232 
3233     // We only know that the absolute values's MSB will be zero iff there is
3234     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3235     Known2.One.clearSignBit();
3236     if (Known2.One.getBoolValue()) {
3237       Known.Zero = APInt::getSignMask(BitWidth);
3238       break;
3239     }
3240     break;
3241   }
3242   case ISD::UMIN: {
3243     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3244     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3245 
3246     // UMIN - we know that the result will have the maximum of the
3247     // known zero leading bits of the inputs.
3248     unsigned LeadZero = Known.countMinLeadingZeros();
3249     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3250 
3251     Known.Zero &= Known2.Zero;
3252     Known.One &= Known2.One;
3253     Known.Zero.setHighBits(LeadZero);
3254     break;
3255   }
3256   case ISD::UMAX: {
3257     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3258     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3259 
3260     // UMAX - we know that the result will have the maximum of the
3261     // known one leading bits of the inputs.
3262     unsigned LeadOne = Known.countMinLeadingOnes();
3263     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3264 
3265     Known.Zero &= Known2.Zero;
3266     Known.One &= Known2.One;
3267     Known.One.setHighBits(LeadOne);
3268     break;
3269   }
3270   case ISD::SMIN:
3271   case ISD::SMAX: {
3272     // If we have a clamp pattern, we know that the number of sign bits will be
3273     // the minimum of the clamp min/max range.
3274     bool IsMax = (Opcode == ISD::SMAX);
3275     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3276     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3277       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3278         CstHigh =
3279             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3280     if (CstLow && CstHigh) {
3281       if (!IsMax)
3282         std::swap(CstLow, CstHigh);
3283 
3284       const APInt &ValueLow = CstLow->getAPIntValue();
3285       const APInt &ValueHigh = CstHigh->getAPIntValue();
3286       if (ValueLow.sle(ValueHigh)) {
3287         unsigned LowSignBits = ValueLow.getNumSignBits();
3288         unsigned HighSignBits = ValueHigh.getNumSignBits();
3289         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3290         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3291           Known.One.setHighBits(MinSignBits);
3292           break;
3293         }
3294         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3295           Known.Zero.setHighBits(MinSignBits);
3296           break;
3297         }
3298       }
3299     }
3300 
3301     // Fallback - just get the shared known bits of the operands.
3302     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3303     if (Known.isUnknown()) break; // Early-out
3304     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3305     Known.Zero &= Known2.Zero;
3306     Known.One &= Known2.One;
3307     break;
3308   }
3309   case ISD::FrameIndex:
3310   case ISD::TargetFrameIndex:
3311     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3312     break;
3313 
3314   default:
3315     if (Opcode < ISD::BUILTIN_OP_END)
3316       break;
3317     LLVM_FALLTHROUGH;
3318   case ISD::INTRINSIC_WO_CHAIN:
3319   case ISD::INTRINSIC_W_CHAIN:
3320   case ISD::INTRINSIC_VOID:
3321     // Allow the target to implement this method for its nodes.
3322     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3323     break;
3324   }
3325 
3326   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3327   return Known;
3328 }
3329 
3330 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3331                                                              SDValue N1) const {
3332   // X + 0 never overflow
3333   if (isNullConstant(N1))
3334     return OFK_Never;
3335 
3336   KnownBits N1Known = computeKnownBits(N1);
3337   if (N1Known.Zero.getBoolValue()) {
3338     KnownBits N0Known = computeKnownBits(N0);
3339 
3340     bool overflow;
3341     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3342     if (!overflow)
3343       return OFK_Never;
3344   }
3345 
3346   // mulhi + 1 never overflow
3347   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3348       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3349     return OFK_Never;
3350 
3351   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3352     KnownBits N0Known = computeKnownBits(N0);
3353 
3354     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3355       return OFK_Never;
3356   }
3357 
3358   return OFK_Sometime;
3359 }
3360 
3361 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3362   EVT OpVT = Val.getValueType();
3363   unsigned BitWidth = OpVT.getScalarSizeInBits();
3364 
3365   // Is the constant a known power of 2?
3366   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3367     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3368 
3369   // A left-shift of a constant one will have exactly one bit set because
3370   // shifting the bit off the end is undefined.
3371   if (Val.getOpcode() == ISD::SHL) {
3372     auto *C = isConstOrConstSplat(Val.getOperand(0));
3373     if (C && C->getAPIntValue() == 1)
3374       return true;
3375   }
3376 
3377   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3378   // one bit set.
3379   if (Val.getOpcode() == ISD::SRL) {
3380     auto *C = isConstOrConstSplat(Val.getOperand(0));
3381     if (C && C->getAPIntValue().isSignMask())
3382       return true;
3383   }
3384 
3385   // Are all operands of a build vector constant powers of two?
3386   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3387     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3388           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3389             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3390           return false;
3391         }))
3392       return true;
3393 
3394   // More could be done here, though the above checks are enough
3395   // to handle some common cases.
3396 
3397   // Fall back to computeKnownBits to catch other known cases.
3398   KnownBits Known = computeKnownBits(Val);
3399   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3400 }
3401 
3402 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3403   EVT VT = Op.getValueType();
3404   APInt DemandedElts = VT.isVector()
3405                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3406                            : APInt(1, 1);
3407   return ComputeNumSignBits(Op, DemandedElts, Depth);
3408 }
3409 
3410 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3411                                           unsigned Depth) const {
3412   EVT VT = Op.getValueType();
3413   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3414   unsigned VTBits = VT.getScalarSizeInBits();
3415   unsigned NumElts = DemandedElts.getBitWidth();
3416   unsigned Tmp, Tmp2;
3417   unsigned FirstAnswer = 1;
3418 
3419   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3420     const APInt &Val = C->getAPIntValue();
3421     return Val.getNumSignBits();
3422   }
3423 
3424   if (Depth >= MaxRecursionDepth)
3425     return 1;  // Limit search depth.
3426 
3427   if (!DemandedElts)
3428     return 1;  // No demanded elts, better to assume we don't know anything.
3429 
3430   unsigned Opcode = Op.getOpcode();
3431   switch (Opcode) {
3432   default: break;
3433   case ISD::AssertSext:
3434     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3435     return VTBits-Tmp+1;
3436   case ISD::AssertZext:
3437     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3438     return VTBits-Tmp;
3439 
3440   case ISD::BUILD_VECTOR:
3441     Tmp = VTBits;
3442     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3443       if (!DemandedElts[i])
3444         continue;
3445 
3446       SDValue SrcOp = Op.getOperand(i);
3447       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3448 
3449       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3450       if (SrcOp.getValueSizeInBits() != VTBits) {
3451         assert(SrcOp.getValueSizeInBits() > VTBits &&
3452                "Expected BUILD_VECTOR implicit truncation");
3453         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3454         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3455       }
3456       Tmp = std::min(Tmp, Tmp2);
3457     }
3458     return Tmp;
3459 
3460   case ISD::VECTOR_SHUFFLE: {
3461     // Collect the minimum number of sign bits that are shared by every vector
3462     // element referenced by the shuffle.
3463     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3464     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3465     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3466     for (unsigned i = 0; i != NumElts; ++i) {
3467       int M = SVN->getMaskElt(i);
3468       if (!DemandedElts[i])
3469         continue;
3470       // For UNDEF elements, we don't know anything about the common state of
3471       // the shuffle result.
3472       if (M < 0)
3473         return 1;
3474       if ((unsigned)M < NumElts)
3475         DemandedLHS.setBit((unsigned)M % NumElts);
3476       else
3477         DemandedRHS.setBit((unsigned)M % NumElts);
3478     }
3479     Tmp = std::numeric_limits<unsigned>::max();
3480     if (!!DemandedLHS)
3481       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3482     if (!!DemandedRHS) {
3483       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3484       Tmp = std::min(Tmp, Tmp2);
3485     }
3486     // If we don't know anything, early out and try computeKnownBits fall-back.
3487     if (Tmp == 1)
3488       break;
3489     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3490     return Tmp;
3491   }
3492 
3493   case ISD::BITCAST: {
3494     SDValue N0 = Op.getOperand(0);
3495     EVT SrcVT = N0.getValueType();
3496     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3497 
3498     // Ignore bitcasts from unsupported types..
3499     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3500       break;
3501 
3502     // Fast handling of 'identity' bitcasts.
3503     if (VTBits == SrcBits)
3504       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3505 
3506     bool IsLE = getDataLayout().isLittleEndian();
3507 
3508     // Bitcast 'large element' scalar/vector to 'small element' vector.
3509     if ((SrcBits % VTBits) == 0) {
3510       assert(VT.isVector() && "Expected bitcast to vector");
3511 
3512       unsigned Scale = SrcBits / VTBits;
3513       APInt SrcDemandedElts(NumElts / Scale, 0);
3514       for (unsigned i = 0; i != NumElts; ++i)
3515         if (DemandedElts[i])
3516           SrcDemandedElts.setBit(i / Scale);
3517 
3518       // Fast case - sign splat can be simply split across the small elements.
3519       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3520       if (Tmp == SrcBits)
3521         return VTBits;
3522 
3523       // Slow case - determine how far the sign extends into each sub-element.
3524       Tmp2 = VTBits;
3525       for (unsigned i = 0; i != NumElts; ++i)
3526         if (DemandedElts[i]) {
3527           unsigned SubOffset = i % Scale;
3528           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3529           SubOffset = SubOffset * VTBits;
3530           if (Tmp <= SubOffset)
3531             return 1;
3532           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3533         }
3534       return Tmp2;
3535     }
3536     break;
3537   }
3538 
3539   case ISD::SIGN_EXTEND:
3540     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3541     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3542   case ISD::SIGN_EXTEND_INREG:
3543     // Max of the input and what this extends.
3544     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3545     Tmp = VTBits-Tmp+1;
3546     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3547     return std::max(Tmp, Tmp2);
3548   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3549     SDValue Src = Op.getOperand(0);
3550     EVT SrcVT = Src.getValueType();
3551     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3552     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3553     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3554   }
3555 
3556   case ISD::SRA:
3557     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3558     // SRA X, C   -> adds C sign bits.
3559     if (ConstantSDNode *C =
3560             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3561       APInt ShiftVal = C->getAPIntValue();
3562       ShiftVal += Tmp;
3563       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3564     }
3565     return Tmp;
3566   case ISD::SHL:
3567     if (ConstantSDNode *C =
3568             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3569       // shl destroys sign bits.
3570       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3571       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3572           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3573       return Tmp - C->getZExtValue();
3574     }
3575     break;
3576   case ISD::AND:
3577   case ISD::OR:
3578   case ISD::XOR:    // NOT is handled here.
3579     // Logical binary ops preserve the number of sign bits at the worst.
3580     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3581     if (Tmp != 1) {
3582       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3583       FirstAnswer = std::min(Tmp, Tmp2);
3584       // We computed what we know about the sign bits as our first
3585       // answer. Now proceed to the generic code that uses
3586       // computeKnownBits, and pick whichever answer is better.
3587     }
3588     break;
3589 
3590   case ISD::SELECT:
3591   case ISD::VSELECT:
3592     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3593     if (Tmp == 1) return 1;  // Early out.
3594     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3595     return std::min(Tmp, Tmp2);
3596   case ISD::SELECT_CC:
3597     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3598     if (Tmp == 1) return 1;  // Early out.
3599     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3600     return std::min(Tmp, Tmp2);
3601 
3602   case ISD::SMIN:
3603   case ISD::SMAX: {
3604     // If we have a clamp pattern, we know that the number of sign bits will be
3605     // the minimum of the clamp min/max range.
3606     bool IsMax = (Opcode == ISD::SMAX);
3607     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3608     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3609       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3610         CstHigh =
3611             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3612     if (CstLow && CstHigh) {
3613       if (!IsMax)
3614         std::swap(CstLow, CstHigh);
3615       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3616         Tmp = CstLow->getAPIntValue().getNumSignBits();
3617         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3618         return std::min(Tmp, Tmp2);
3619       }
3620     }
3621 
3622     // Fallback - just get the minimum number of sign bits of the operands.
3623     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3624     if (Tmp == 1)
3625       return 1;  // Early out.
3626     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3627     return std::min(Tmp, Tmp2);
3628   }
3629   case ISD::UMIN:
3630   case ISD::UMAX:
3631     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3632     if (Tmp == 1)
3633       return 1;  // Early out.
3634     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3635     return std::min(Tmp, Tmp2);
3636   case ISD::SADDO:
3637   case ISD::UADDO:
3638   case ISD::SSUBO:
3639   case ISD::USUBO:
3640   case ISD::SMULO:
3641   case ISD::UMULO:
3642     if (Op.getResNo() != 1)
3643       break;
3644     // The boolean result conforms to getBooleanContents.  Fall through.
3645     // If setcc returns 0/-1, all bits are sign bits.
3646     // We know that we have an integer-based boolean since these operations
3647     // are only available for integer.
3648     if (TLI->getBooleanContents(VT.isVector(), false) ==
3649         TargetLowering::ZeroOrNegativeOneBooleanContent)
3650       return VTBits;
3651     break;
3652   case ISD::SETCC:
3653     // If setcc returns 0/-1, all bits are sign bits.
3654     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3655         TargetLowering::ZeroOrNegativeOneBooleanContent)
3656       return VTBits;
3657     break;
3658   case ISD::ROTL:
3659   case ISD::ROTR:
3660     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3661       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3662 
3663       // Handle rotate right by N like a rotate left by 32-N.
3664       if (Opcode == ISD::ROTR)
3665         RotAmt = (VTBits - RotAmt) % VTBits;
3666 
3667       // If we aren't rotating out all of the known-in sign bits, return the
3668       // number that are left.  This handles rotl(sext(x), 1) for example.
3669       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3670       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3671     }
3672     break;
3673   case ISD::ADD:
3674   case ISD::ADDC:
3675     // Add can have at most one carry bit.  Thus we know that the output
3676     // is, at worst, one more bit than the inputs.
3677     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3678     if (Tmp == 1) return 1;  // Early out.
3679 
3680     // Special case decrementing a value (ADD X, -1):
3681     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3682       if (CRHS->isAllOnesValue()) {
3683         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3684 
3685         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3686         // sign bits set.
3687         if ((Known.Zero | 1).isAllOnesValue())
3688           return VTBits;
3689 
3690         // If we are subtracting one from a positive number, there is no carry
3691         // out of the result.
3692         if (Known.isNonNegative())
3693           return Tmp;
3694       }
3695 
3696     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3697     if (Tmp2 == 1) return 1;
3698     return std::min(Tmp, Tmp2)-1;
3699 
3700   case ISD::SUB:
3701     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3702     if (Tmp2 == 1) return 1;
3703 
3704     // Handle NEG.
3705     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3706       if (CLHS->isNullValue()) {
3707         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3708         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3709         // sign bits set.
3710         if ((Known.Zero | 1).isAllOnesValue())
3711           return VTBits;
3712 
3713         // If the input is known to be positive (the sign bit is known clear),
3714         // the output of the NEG has the same number of sign bits as the input.
3715         if (Known.isNonNegative())
3716           return Tmp2;
3717 
3718         // Otherwise, we treat this like a SUB.
3719       }
3720 
3721     // Sub can have at most one carry bit.  Thus we know that the output
3722     // is, at worst, one more bit than the inputs.
3723     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3724     if (Tmp == 1) return 1;  // Early out.
3725     return std::min(Tmp, Tmp2)-1;
3726   case ISD::MUL: {
3727     // The output of the Mul can be at most twice the valid bits in the inputs.
3728     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3729     if (SignBitsOp0 == 1)
3730       break;
3731     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3732     if (SignBitsOp1 == 1)
3733       break;
3734     unsigned OutValidBits =
3735         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3736     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3737   }
3738   case ISD::TRUNCATE: {
3739     // Check if the sign bits of source go down as far as the truncated value.
3740     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3741     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3742     if (NumSrcSignBits > (NumSrcBits - VTBits))
3743       return NumSrcSignBits - (NumSrcBits - VTBits);
3744     break;
3745   }
3746   case ISD::EXTRACT_ELEMENT: {
3747     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3748     const int BitWidth = Op.getValueSizeInBits();
3749     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3750 
3751     // Get reverse index (starting from 1), Op1 value indexes elements from
3752     // little end. Sign starts at big end.
3753     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3754 
3755     // If the sign portion ends in our element the subtraction gives correct
3756     // result. Otherwise it gives either negative or > bitwidth result
3757     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3758   }
3759   case ISD::INSERT_VECTOR_ELT: {
3760     SDValue InVec = Op.getOperand(0);
3761     SDValue InVal = Op.getOperand(1);
3762     SDValue EltNo = Op.getOperand(2);
3763 
3764     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3765     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3766       // If we know the element index, split the demand between the
3767       // source vector and the inserted element.
3768       unsigned EltIdx = CEltNo->getZExtValue();
3769 
3770       // If we demand the inserted element then get its sign bits.
3771       Tmp = std::numeric_limits<unsigned>::max();
3772       if (DemandedElts[EltIdx]) {
3773         // TODO - handle implicit truncation of inserted elements.
3774         if (InVal.getScalarValueSizeInBits() != VTBits)
3775           break;
3776         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3777       }
3778 
3779       // If we demand the source vector then get its sign bits, and determine
3780       // the minimum.
3781       APInt VectorElts = DemandedElts;
3782       VectorElts.clearBit(EltIdx);
3783       if (!!VectorElts) {
3784         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3785         Tmp = std::min(Tmp, Tmp2);
3786       }
3787     } else {
3788       // Unknown element index, so ignore DemandedElts and demand them all.
3789       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3790       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3791       Tmp = std::min(Tmp, Tmp2);
3792     }
3793     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3794     return Tmp;
3795   }
3796   case ISD::EXTRACT_VECTOR_ELT: {
3797     SDValue InVec = Op.getOperand(0);
3798     SDValue EltNo = Op.getOperand(1);
3799     EVT VecVT = InVec.getValueType();
3800     const unsigned BitWidth = Op.getValueSizeInBits();
3801     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3802     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3803 
3804     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3805     // anything about sign bits. But if the sizes match we can derive knowledge
3806     // about sign bits from the vector operand.
3807     if (BitWidth != EltBitWidth)
3808       break;
3809 
3810     // If we know the element index, just demand that vector element, else for
3811     // an unknown element index, ignore DemandedElts and demand them all.
3812     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3813     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3814     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3815       DemandedSrcElts =
3816           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3817 
3818     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3819   }
3820   case ISD::EXTRACT_SUBVECTOR: {
3821     // If we know the element index, just demand that subvector elements,
3822     // otherwise demand them all.
3823     SDValue Src = Op.getOperand(0);
3824     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3825     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3826     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3827     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3828       // Offset the demanded elts by the subvector index.
3829       uint64_t Idx = SubIdx->getZExtValue();
3830       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3831     }
3832     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3833   }
3834   case ISD::CONCAT_VECTORS: {
3835     // Determine the minimum number of sign bits across all demanded
3836     // elts of the input vectors. Early out if the result is already 1.
3837     Tmp = std::numeric_limits<unsigned>::max();
3838     EVT SubVectorVT = Op.getOperand(0).getValueType();
3839     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3840     unsigned NumSubVectors = Op.getNumOperands();
3841     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3842       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3843       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3844       if (!DemandedSub)
3845         continue;
3846       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3847       Tmp = std::min(Tmp, Tmp2);
3848     }
3849     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3850     return Tmp;
3851   }
3852   case ISD::INSERT_SUBVECTOR: {
3853     // If we know the element index, demand any elements from the subvector and
3854     // the remainder from the src its inserted into, otherwise demand them all.
3855     SDValue Src = Op.getOperand(0);
3856     SDValue Sub = Op.getOperand(1);
3857     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3858     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3859     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3860       Tmp = std::numeric_limits<unsigned>::max();
3861       uint64_t Idx = SubIdx->getZExtValue();
3862       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3863       if (!!DemandedSubElts) {
3864         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3865         if (Tmp == 1) return 1; // early-out
3866       }
3867       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3868       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3869       if (!!DemandedSrcElts) {
3870         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3871         Tmp = std::min(Tmp, Tmp2);
3872       }
3873       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3874       return Tmp;
3875     }
3876 
3877     // Not able to determine the index so just assume worst case.
3878     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3879     if (Tmp == 1) return 1; // early-out
3880     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3881     Tmp = std::min(Tmp, Tmp2);
3882     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3883     return Tmp;
3884   }
3885   }
3886 
3887   // If we are looking at the loaded value of the SDNode.
3888   if (Op.getResNo() == 0) {
3889     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3890     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3891       unsigned ExtType = LD->getExtensionType();
3892       switch (ExtType) {
3893       default: break;
3894       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3895         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3896         return VTBits - Tmp + 1;
3897       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3898         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3899         return VTBits - Tmp;
3900       case ISD::NON_EXTLOAD:
3901         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3902           // We only need to handle vectors - computeKnownBits should handle
3903           // scalar cases.
3904           Type *CstTy = Cst->getType();
3905           if (CstTy->isVectorTy() &&
3906               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3907             Tmp = VTBits;
3908             for (unsigned i = 0; i != NumElts; ++i) {
3909               if (!DemandedElts[i])
3910                 continue;
3911               if (Constant *Elt = Cst->getAggregateElement(i)) {
3912                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3913                   const APInt &Value = CInt->getValue();
3914                   Tmp = std::min(Tmp, Value.getNumSignBits());
3915                   continue;
3916                 }
3917                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3918                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3919                   Tmp = std::min(Tmp, Value.getNumSignBits());
3920                   continue;
3921                 }
3922               }
3923               // Unknown type. Conservatively assume no bits match sign bit.
3924               return 1;
3925             }
3926             return Tmp;
3927           }
3928         }
3929         break;
3930       }
3931     }
3932   }
3933 
3934   // Allow the target to implement this method for its nodes.
3935   if (Opcode >= ISD::BUILTIN_OP_END ||
3936       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3937       Opcode == ISD::INTRINSIC_W_CHAIN ||
3938       Opcode == ISD::INTRINSIC_VOID) {
3939     unsigned NumBits =
3940         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3941     if (NumBits > 1)
3942       FirstAnswer = std::max(FirstAnswer, NumBits);
3943   }
3944 
3945   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3946   // use this information.
3947   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3948 
3949   APInt Mask;
3950   if (Known.isNonNegative()) {        // sign bit is 0
3951     Mask = Known.Zero;
3952   } else if (Known.isNegative()) {  // sign bit is 1;
3953     Mask = Known.One;
3954   } else {
3955     // Nothing known.
3956     return FirstAnswer;
3957   }
3958 
3959   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3960   // the number of identical bits in the top of the input value.
3961   Mask = ~Mask;
3962   Mask <<= Mask.getBitWidth()-VTBits;
3963   // Return # leading zeros.  We use 'min' here in case Val was zero before
3964   // shifting.  We don't want to return '64' as for an i32 "0".
3965   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3966 }
3967 
3968 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3969   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3970       !isa<ConstantSDNode>(Op.getOperand(1)))
3971     return false;
3972 
3973   if (Op.getOpcode() == ISD::OR &&
3974       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3975     return false;
3976 
3977   return true;
3978 }
3979 
3980 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3981   // If we're told that NaNs won't happen, assume they won't.
3982   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3983     return true;
3984 
3985   if (Depth >= MaxRecursionDepth)
3986     return false; // Limit search depth.
3987 
3988   // TODO: Handle vectors.
3989   // If the value is a constant, we can obviously see if it is a NaN or not.
3990   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3991     return !C->getValueAPF().isNaN() ||
3992            (SNaN && !C->getValueAPF().isSignaling());
3993   }
3994 
3995   unsigned Opcode = Op.getOpcode();
3996   switch (Opcode) {
3997   case ISD::FADD:
3998   case ISD::FSUB:
3999   case ISD::FMUL:
4000   case ISD::FDIV:
4001   case ISD::FREM:
4002   case ISD::FSIN:
4003   case ISD::FCOS: {
4004     if (SNaN)
4005       return true;
4006     // TODO: Need isKnownNeverInfinity
4007     return false;
4008   }
4009   case ISD::FCANONICALIZE:
4010   case ISD::FEXP:
4011   case ISD::FEXP2:
4012   case ISD::FTRUNC:
4013   case ISD::FFLOOR:
4014   case ISD::FCEIL:
4015   case ISD::FROUND:
4016   case ISD::FRINT:
4017   case ISD::FNEARBYINT: {
4018     if (SNaN)
4019       return true;
4020     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4021   }
4022   case ISD::FABS:
4023   case ISD::FNEG:
4024   case ISD::FCOPYSIGN: {
4025     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4026   }
4027   case ISD::SELECT:
4028     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4029            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4030   case ISD::FP_EXTEND:
4031   case ISD::FP_ROUND: {
4032     if (SNaN)
4033       return true;
4034     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4035   }
4036   case ISD::SINT_TO_FP:
4037   case ISD::UINT_TO_FP:
4038     return true;
4039   case ISD::FMA:
4040   case ISD::FMAD: {
4041     if (SNaN)
4042       return true;
4043     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4044            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4045            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4046   }
4047   case ISD::FSQRT: // Need is known positive
4048   case ISD::FLOG:
4049   case ISD::FLOG2:
4050   case ISD::FLOG10:
4051   case ISD::FPOWI:
4052   case ISD::FPOW: {
4053     if (SNaN)
4054       return true;
4055     // TODO: Refine on operand
4056     return false;
4057   }
4058   case ISD::FMINNUM:
4059   case ISD::FMAXNUM: {
4060     // Only one needs to be known not-nan, since it will be returned if the
4061     // other ends up being one.
4062     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4063            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4064   }
4065   case ISD::FMINNUM_IEEE:
4066   case ISD::FMAXNUM_IEEE: {
4067     if (SNaN)
4068       return true;
4069     // This can return a NaN if either operand is an sNaN, or if both operands
4070     // are NaN.
4071     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4072             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4073            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4074             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4075   }
4076   case ISD::FMINIMUM:
4077   case ISD::FMAXIMUM: {
4078     // TODO: Does this quiet or return the origina NaN as-is?
4079     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4080            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4081   }
4082   case ISD::EXTRACT_VECTOR_ELT: {
4083     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4084   }
4085   default:
4086     if (Opcode >= ISD::BUILTIN_OP_END ||
4087         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4088         Opcode == ISD::INTRINSIC_W_CHAIN ||
4089         Opcode == ISD::INTRINSIC_VOID) {
4090       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4091     }
4092 
4093     return false;
4094   }
4095 }
4096 
4097 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4098   assert(Op.getValueType().isFloatingPoint() &&
4099          "Floating point type expected");
4100 
4101   // If the value is a constant, we can obviously see if it is a zero or not.
4102   // TODO: Add BuildVector support.
4103   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4104     return !C->isZero();
4105   return false;
4106 }
4107 
4108 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4109   assert(!Op.getValueType().isFloatingPoint() &&
4110          "Floating point types unsupported - use isKnownNeverZeroFloat");
4111 
4112   // If the value is a constant, we can obviously see if it is a zero or not.
4113   if (ISD::matchUnaryPredicate(
4114           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4115     return true;
4116 
4117   // TODO: Recognize more cases here.
4118   switch (Op.getOpcode()) {
4119   default: break;
4120   case ISD::OR:
4121     if (isKnownNeverZero(Op.getOperand(1)) ||
4122         isKnownNeverZero(Op.getOperand(0)))
4123       return true;
4124     break;
4125   }
4126 
4127   return false;
4128 }
4129 
4130 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4131   // Check the obvious case.
4132   if (A == B) return true;
4133 
4134   // For for negative and positive zero.
4135   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4136     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4137       if (CA->isZero() && CB->isZero()) return true;
4138 
4139   // Otherwise they may not be equal.
4140   return false;
4141 }
4142 
4143 // FIXME: unify with llvm::haveNoCommonBitsSet.
4144 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4145 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4146   assert(A.getValueType() == B.getValueType() &&
4147          "Values must have the same type");
4148   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4149 }
4150 
4151 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4152                                 ArrayRef<SDValue> Ops,
4153                                 SelectionDAG &DAG) {
4154   int NumOps = Ops.size();
4155   assert(NumOps != 0 && "Can't build an empty vector!");
4156   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4157          "Incorrect element count in BUILD_VECTOR!");
4158 
4159   // BUILD_VECTOR of UNDEFs is UNDEF.
4160   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4161     return DAG.getUNDEF(VT);
4162 
4163   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4164   SDValue IdentitySrc;
4165   bool IsIdentity = true;
4166   for (int i = 0; i != NumOps; ++i) {
4167     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4168         Ops[i].getOperand(0).getValueType() != VT ||
4169         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4170         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4171         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4172       IsIdentity = false;
4173       break;
4174     }
4175     IdentitySrc = Ops[i].getOperand(0);
4176   }
4177   if (IsIdentity)
4178     return IdentitySrc;
4179 
4180   return SDValue();
4181 }
4182 
4183 /// Try to simplify vector concatenation to an input value, undef, or build
4184 /// vector.
4185 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4186                                   ArrayRef<SDValue> Ops,
4187                                   SelectionDAG &DAG) {
4188   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4189   assert(llvm::all_of(Ops,
4190                       [Ops](SDValue Op) {
4191                         return Ops[0].getValueType() == Op.getValueType();
4192                       }) &&
4193          "Concatenation of vectors with inconsistent value types!");
4194   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4195              VT.getVectorNumElements() &&
4196          "Incorrect element count in vector concatenation!");
4197 
4198   if (Ops.size() == 1)
4199     return Ops[0];
4200 
4201   // Concat of UNDEFs is UNDEF.
4202   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4203     return DAG.getUNDEF(VT);
4204 
4205   // Scan the operands and look for extract operations from a single source
4206   // that correspond to insertion at the same location via this concatenation:
4207   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4208   SDValue IdentitySrc;
4209   bool IsIdentity = true;
4210   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4211     SDValue Op = Ops[i];
4212     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4213     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4214         Op.getOperand(0).getValueType() != VT ||
4215         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4216         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4217         Op.getConstantOperandVal(1) != IdentityIndex) {
4218       IsIdentity = false;
4219       break;
4220     }
4221     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4222            "Unexpected identity source vector for concat of extracts");
4223     IdentitySrc = Op.getOperand(0);
4224   }
4225   if (IsIdentity) {
4226     assert(IdentitySrc && "Failed to set source vector of extracts");
4227     return IdentitySrc;
4228   }
4229 
4230   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4231   // simplified to one big BUILD_VECTOR.
4232   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4233   EVT SVT = VT.getScalarType();
4234   SmallVector<SDValue, 16> Elts;
4235   for (SDValue Op : Ops) {
4236     EVT OpVT = Op.getValueType();
4237     if (Op.isUndef())
4238       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4239     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4240       Elts.append(Op->op_begin(), Op->op_end());
4241     else
4242       return SDValue();
4243   }
4244 
4245   // BUILD_VECTOR requires all inputs to be of the same type, find the
4246   // maximum type and extend them all.
4247   for (SDValue Op : Elts)
4248     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4249 
4250   if (SVT.bitsGT(VT.getScalarType()))
4251     for (SDValue &Op : Elts)
4252       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4253                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4254                : DAG.getSExtOrTrunc(Op, DL, SVT);
4255 
4256   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4257   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4258   return V;
4259 }
4260 
4261 /// Gets or creates the specified node.
4262 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4263   FoldingSetNodeID ID;
4264   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4265   void *IP = nullptr;
4266   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4267     return SDValue(E, 0);
4268 
4269   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4270                               getVTList(VT));
4271   CSEMap.InsertNode(N, IP);
4272 
4273   InsertNode(N);
4274   SDValue V = SDValue(N, 0);
4275   NewSDValueDbgMsg(V, "Creating new node: ", this);
4276   return V;
4277 }
4278 
4279 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4280                               SDValue Operand, const SDNodeFlags Flags) {
4281   // Constant fold unary operations with an integer constant operand. Even
4282   // opaque constant will be folded, because the folding of unary operations
4283   // doesn't create new constants with different values. Nevertheless, the
4284   // opaque flag is preserved during folding to prevent future folding with
4285   // other constants.
4286   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4287     const APInt &Val = C->getAPIntValue();
4288     switch (Opcode) {
4289     default: break;
4290     case ISD::SIGN_EXTEND:
4291       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4292                          C->isTargetOpcode(), C->isOpaque());
4293     case ISD::TRUNCATE:
4294       if (C->isOpaque())
4295         break;
4296       LLVM_FALLTHROUGH;
4297     case ISD::ANY_EXTEND:
4298     case ISD::ZERO_EXTEND:
4299       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4300                          C->isTargetOpcode(), C->isOpaque());
4301     case ISD::UINT_TO_FP:
4302     case ISD::SINT_TO_FP: {
4303       APFloat apf(EVTToAPFloatSemantics(VT),
4304                   APInt::getNullValue(VT.getSizeInBits()));
4305       (void)apf.convertFromAPInt(Val,
4306                                  Opcode==ISD::SINT_TO_FP,
4307                                  APFloat::rmNearestTiesToEven);
4308       return getConstantFP(apf, DL, VT);
4309     }
4310     case ISD::BITCAST:
4311       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4312         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4313       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4314         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4315       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4316         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4317       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4318         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4319       break;
4320     case ISD::ABS:
4321       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4322                          C->isOpaque());
4323     case ISD::BITREVERSE:
4324       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4325                          C->isOpaque());
4326     case ISD::BSWAP:
4327       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4328                          C->isOpaque());
4329     case ISD::CTPOP:
4330       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4331                          C->isOpaque());
4332     case ISD::CTLZ:
4333     case ISD::CTLZ_ZERO_UNDEF:
4334       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4335                          C->isOpaque());
4336     case ISD::CTTZ:
4337     case ISD::CTTZ_ZERO_UNDEF:
4338       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4339                          C->isOpaque());
4340     case ISD::FP16_TO_FP: {
4341       bool Ignored;
4342       APFloat FPV(APFloat::IEEEhalf(),
4343                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4344 
4345       // This can return overflow, underflow, or inexact; we don't care.
4346       // FIXME need to be more flexible about rounding mode.
4347       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4348                         APFloat::rmNearestTiesToEven, &Ignored);
4349       return getConstantFP(FPV, DL, VT);
4350     }
4351     }
4352   }
4353 
4354   // Constant fold unary operations with a floating point constant operand.
4355   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4356     APFloat V = C->getValueAPF();    // make copy
4357     switch (Opcode) {
4358     case ISD::FNEG:
4359       V.changeSign();
4360       return getConstantFP(V, DL, VT);
4361     case ISD::FABS:
4362       V.clearSign();
4363       return getConstantFP(V, DL, VT);
4364     case ISD::FCEIL: {
4365       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4366       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4367         return getConstantFP(V, DL, VT);
4368       break;
4369     }
4370     case ISD::FTRUNC: {
4371       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4372       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4373         return getConstantFP(V, DL, VT);
4374       break;
4375     }
4376     case ISD::FFLOOR: {
4377       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4378       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4379         return getConstantFP(V, DL, VT);
4380       break;
4381     }
4382     case ISD::FP_EXTEND: {
4383       bool ignored;
4384       // This can return overflow, underflow, or inexact; we don't care.
4385       // FIXME need to be more flexible about rounding mode.
4386       (void)V.convert(EVTToAPFloatSemantics(VT),
4387                       APFloat::rmNearestTiesToEven, &ignored);
4388       return getConstantFP(V, DL, VT);
4389     }
4390     case ISD::FP_TO_SINT:
4391     case ISD::FP_TO_UINT: {
4392       bool ignored;
4393       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4394       // FIXME need to be more flexible about rounding mode.
4395       APFloat::opStatus s =
4396           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4397       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4398         break;
4399       return getConstant(IntVal, DL, VT);
4400     }
4401     case ISD::BITCAST:
4402       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4403         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4404       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4405         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4406       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4407         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4408       break;
4409     case ISD::FP_TO_FP16: {
4410       bool Ignored;
4411       // This can return overflow, underflow, or inexact; we don't care.
4412       // FIXME need to be more flexible about rounding mode.
4413       (void)V.convert(APFloat::IEEEhalf(),
4414                       APFloat::rmNearestTiesToEven, &Ignored);
4415       return getConstant(V.bitcastToAPInt(), DL, VT);
4416     }
4417     }
4418   }
4419 
4420   // Constant fold unary operations with a vector integer or float operand.
4421   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4422     if (BV->isConstant()) {
4423       switch (Opcode) {
4424       default:
4425         // FIXME: Entirely reasonable to perform folding of other unary
4426         // operations here as the need arises.
4427         break;
4428       case ISD::FNEG:
4429       case ISD::FABS:
4430       case ISD::FCEIL:
4431       case ISD::FTRUNC:
4432       case ISD::FFLOOR:
4433       case ISD::FP_EXTEND:
4434       case ISD::FP_TO_SINT:
4435       case ISD::FP_TO_UINT:
4436       case ISD::TRUNCATE:
4437       case ISD::ANY_EXTEND:
4438       case ISD::ZERO_EXTEND:
4439       case ISD::SIGN_EXTEND:
4440       case ISD::UINT_TO_FP:
4441       case ISD::SINT_TO_FP:
4442       case ISD::ABS:
4443       case ISD::BITREVERSE:
4444       case ISD::BSWAP:
4445       case ISD::CTLZ:
4446       case ISD::CTLZ_ZERO_UNDEF:
4447       case ISD::CTTZ:
4448       case ISD::CTTZ_ZERO_UNDEF:
4449       case ISD::CTPOP: {
4450         SDValue Ops = { Operand };
4451         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4452           return Fold;
4453       }
4454       }
4455     }
4456   }
4457 
4458   unsigned OpOpcode = Operand.getNode()->getOpcode();
4459   switch (Opcode) {
4460   case ISD::TokenFactor:
4461   case ISD::MERGE_VALUES:
4462   case ISD::CONCAT_VECTORS:
4463     return Operand;         // Factor, merge or concat of one node?  No need.
4464   case ISD::BUILD_VECTOR: {
4465     // Attempt to simplify BUILD_VECTOR.
4466     SDValue Ops[] = {Operand};
4467     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4468       return V;
4469     break;
4470   }
4471   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4472   case ISD::FP_EXTEND:
4473     assert(VT.isFloatingPoint() &&
4474            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4475     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4476     assert((!VT.isVector() ||
4477             VT.getVectorNumElements() ==
4478             Operand.getValueType().getVectorNumElements()) &&
4479            "Vector element count mismatch!");
4480     assert(Operand.getValueType().bitsLT(VT) &&
4481            "Invalid fpext node, dst < src!");
4482     if (Operand.isUndef())
4483       return getUNDEF(VT);
4484     break;
4485   case ISD::FP_TO_SINT:
4486   case ISD::FP_TO_UINT:
4487     if (Operand.isUndef())
4488       return getUNDEF(VT);
4489     break;
4490   case ISD::SINT_TO_FP:
4491   case ISD::UINT_TO_FP:
4492     // [us]itofp(undef) = 0, because the result value is bounded.
4493     if (Operand.isUndef())
4494       return getConstantFP(0.0, DL, VT);
4495     break;
4496   case ISD::SIGN_EXTEND:
4497     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4498            "Invalid SIGN_EXTEND!");
4499     assert(VT.isVector() == Operand.getValueType().isVector() &&
4500            "SIGN_EXTEND result type type should be vector iff the operand "
4501            "type is vector!");
4502     if (Operand.getValueType() == VT) return Operand;   // noop extension
4503     assert((!VT.isVector() ||
4504             VT.getVectorNumElements() ==
4505             Operand.getValueType().getVectorNumElements()) &&
4506            "Vector element count mismatch!");
4507     assert(Operand.getValueType().bitsLT(VT) &&
4508            "Invalid sext node, dst < src!");
4509     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4510       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4511     else if (OpOpcode == ISD::UNDEF)
4512       // sext(undef) = 0, because the top bits will all be the same.
4513       return getConstant(0, DL, VT);
4514     break;
4515   case ISD::ZERO_EXTEND:
4516     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4517            "Invalid ZERO_EXTEND!");
4518     assert(VT.isVector() == Operand.getValueType().isVector() &&
4519            "ZERO_EXTEND result type type should be vector iff the operand "
4520            "type is vector!");
4521     if (Operand.getValueType() == VT) return Operand;   // noop extension
4522     assert((!VT.isVector() ||
4523             VT.getVectorNumElements() ==
4524             Operand.getValueType().getVectorNumElements()) &&
4525            "Vector element count mismatch!");
4526     assert(Operand.getValueType().bitsLT(VT) &&
4527            "Invalid zext node, dst < src!");
4528     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4529       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4530     else if (OpOpcode == ISD::UNDEF)
4531       // zext(undef) = 0, because the top bits will be zero.
4532       return getConstant(0, DL, VT);
4533     break;
4534   case ISD::ANY_EXTEND:
4535     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4536            "Invalid ANY_EXTEND!");
4537     assert(VT.isVector() == Operand.getValueType().isVector() &&
4538            "ANY_EXTEND result type type should be vector iff the operand "
4539            "type is vector!");
4540     if (Operand.getValueType() == VT) return Operand;   // noop extension
4541     assert((!VT.isVector() ||
4542             VT.getVectorNumElements() ==
4543             Operand.getValueType().getVectorNumElements()) &&
4544            "Vector element count mismatch!");
4545     assert(Operand.getValueType().bitsLT(VT) &&
4546            "Invalid anyext node, dst < src!");
4547 
4548     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4549         OpOpcode == ISD::ANY_EXTEND)
4550       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4551       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4552     else if (OpOpcode == ISD::UNDEF)
4553       return getUNDEF(VT);
4554 
4555     // (ext (trunc x)) -> x
4556     if (OpOpcode == ISD::TRUNCATE) {
4557       SDValue OpOp = Operand.getOperand(0);
4558       if (OpOp.getValueType() == VT) {
4559         transferDbgValues(Operand, OpOp);
4560         return OpOp;
4561       }
4562     }
4563     break;
4564   case ISD::TRUNCATE:
4565     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4566            "Invalid TRUNCATE!");
4567     assert(VT.isVector() == Operand.getValueType().isVector() &&
4568            "TRUNCATE result type type should be vector iff the operand "
4569            "type is vector!");
4570     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4571     assert((!VT.isVector() ||
4572             VT.getVectorNumElements() ==
4573             Operand.getValueType().getVectorNumElements()) &&
4574            "Vector element count mismatch!");
4575     assert(Operand.getValueType().bitsGT(VT) &&
4576            "Invalid truncate node, src < dst!");
4577     if (OpOpcode == ISD::TRUNCATE)
4578       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4579     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4580         OpOpcode == ISD::ANY_EXTEND) {
4581       // If the source is smaller than the dest, we still need an extend.
4582       if (Operand.getOperand(0).getValueType().getScalarType()
4583             .bitsLT(VT.getScalarType()))
4584         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4585       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4586         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4587       return Operand.getOperand(0);
4588     }
4589     if (OpOpcode == ISD::UNDEF)
4590       return getUNDEF(VT);
4591     break;
4592   case ISD::ANY_EXTEND_VECTOR_INREG:
4593   case ISD::ZERO_EXTEND_VECTOR_INREG:
4594   case ISD::SIGN_EXTEND_VECTOR_INREG:
4595     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4596     assert(Operand.getValueType().bitsLE(VT) &&
4597            "The input must be the same size or smaller than the result.");
4598     assert(VT.getVectorNumElements() <
4599              Operand.getValueType().getVectorNumElements() &&
4600            "The destination vector type must have fewer lanes than the input.");
4601     break;
4602   case ISD::ABS:
4603     assert(VT.isInteger() && VT == Operand.getValueType() &&
4604            "Invalid ABS!");
4605     if (OpOpcode == ISD::UNDEF)
4606       return getUNDEF(VT);
4607     break;
4608   case ISD::BSWAP:
4609     assert(VT.isInteger() && VT == Operand.getValueType() &&
4610            "Invalid BSWAP!");
4611     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4612            "BSWAP types must be a multiple of 16 bits!");
4613     if (OpOpcode == ISD::UNDEF)
4614       return getUNDEF(VT);
4615     break;
4616   case ISD::BITREVERSE:
4617     assert(VT.isInteger() && VT == Operand.getValueType() &&
4618            "Invalid BITREVERSE!");
4619     if (OpOpcode == ISD::UNDEF)
4620       return getUNDEF(VT);
4621     break;
4622   case ISD::BITCAST:
4623     // Basic sanity checking.
4624     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4625            "Cannot BITCAST between types of different sizes!");
4626     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4627     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4628       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4629     if (OpOpcode == ISD::UNDEF)
4630       return getUNDEF(VT);
4631     break;
4632   case ISD::SCALAR_TO_VECTOR:
4633     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4634            (VT.getVectorElementType() == Operand.getValueType() ||
4635             (VT.getVectorElementType().isInteger() &&
4636              Operand.getValueType().isInteger() &&
4637              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4638            "Illegal SCALAR_TO_VECTOR node!");
4639     if (OpOpcode == ISD::UNDEF)
4640       return getUNDEF(VT);
4641     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4642     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4643         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4644         Operand.getConstantOperandVal(1) == 0 &&
4645         Operand.getOperand(0).getValueType() == VT)
4646       return Operand.getOperand(0);
4647     break;
4648   case ISD::FNEG:
4649     // Negation of an unknown bag of bits is still completely undefined.
4650     if (OpOpcode == ISD::UNDEF)
4651       return getUNDEF(VT);
4652 
4653     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4654     if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
4655         OpOpcode == ISD::FSUB)
4656       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4657                      Operand.getOperand(0), Flags);
4658     if (OpOpcode == ISD::FNEG)  // --X -> X
4659       return Operand.getOperand(0);
4660     break;
4661   case ISD::FABS:
4662     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4663       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4664     break;
4665   }
4666 
4667   SDNode *N;
4668   SDVTList VTs = getVTList(VT);
4669   SDValue Ops[] = {Operand};
4670   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4671     FoldingSetNodeID ID;
4672     AddNodeIDNode(ID, Opcode, VTs, Ops);
4673     void *IP = nullptr;
4674     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4675       E->intersectFlagsWith(Flags);
4676       return SDValue(E, 0);
4677     }
4678 
4679     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4680     N->setFlags(Flags);
4681     createOperands(N, Ops);
4682     CSEMap.InsertNode(N, IP);
4683   } else {
4684     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4685     createOperands(N, Ops);
4686   }
4687 
4688   InsertNode(N);
4689   SDValue V = SDValue(N, 0);
4690   NewSDValueDbgMsg(V, "Creating new node: ", this);
4691   return V;
4692 }
4693 
4694 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4695                                         const APInt &C2) {
4696   switch (Opcode) {
4697   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4698   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4699   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4700   case ISD::AND:  return std::make_pair(C1 & C2, true);
4701   case ISD::OR:   return std::make_pair(C1 | C2, true);
4702   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4703   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4704   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4705   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4706   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4707   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4708   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4709   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4710   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4711   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4712   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4713   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4714   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4715   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4716   case ISD::UDIV:
4717     if (!C2.getBoolValue())
4718       break;
4719     return std::make_pair(C1.udiv(C2), true);
4720   case ISD::UREM:
4721     if (!C2.getBoolValue())
4722       break;
4723     return std::make_pair(C1.urem(C2), true);
4724   case ISD::SDIV:
4725     if (!C2.getBoolValue())
4726       break;
4727     return std::make_pair(C1.sdiv(C2), true);
4728   case ISD::SREM:
4729     if (!C2.getBoolValue())
4730       break;
4731     return std::make_pair(C1.srem(C2), true);
4732   }
4733   return std::make_pair(APInt(1, 0), false);
4734 }
4735 
4736 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4737                                              EVT VT, const ConstantSDNode *C1,
4738                                              const ConstantSDNode *C2) {
4739   if (C1->isOpaque() || C2->isOpaque())
4740     return SDValue();
4741 
4742   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4743                                             C2->getAPIntValue());
4744   if (!Folded.second)
4745     return SDValue();
4746   return getConstant(Folded.first, DL, VT);
4747 }
4748 
4749 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4750                                        const GlobalAddressSDNode *GA,
4751                                        const SDNode *N2) {
4752   if (GA->getOpcode() != ISD::GlobalAddress)
4753     return SDValue();
4754   if (!TLI->isOffsetFoldingLegal(GA))
4755     return SDValue();
4756   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4757   if (!C2)
4758     return SDValue();
4759   int64_t Offset = C2->getSExtValue();
4760   switch (Opcode) {
4761   case ISD::ADD: break;
4762   case ISD::SUB: Offset = -uint64_t(Offset); break;
4763   default: return SDValue();
4764   }
4765   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4766                           GA->getOffset() + uint64_t(Offset));
4767 }
4768 
4769 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4770   switch (Opcode) {
4771   case ISD::SDIV:
4772   case ISD::UDIV:
4773   case ISD::SREM:
4774   case ISD::UREM: {
4775     // If a divisor is zero/undef or any element of a divisor vector is
4776     // zero/undef, the whole op is undef.
4777     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4778     SDValue Divisor = Ops[1];
4779     if (Divisor.isUndef() || isNullConstant(Divisor))
4780       return true;
4781 
4782     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4783            llvm::any_of(Divisor->op_values(),
4784                         [](SDValue V) { return V.isUndef() ||
4785                                         isNullConstant(V); });
4786     // TODO: Handle signed overflow.
4787   }
4788   // TODO: Handle oversized shifts.
4789   default:
4790     return false;
4791   }
4792 }
4793 
4794 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4795                                              EVT VT, SDNode *N1, SDNode *N2) {
4796   // If the opcode is a target-specific ISD node, there's nothing we can
4797   // do here and the operand rules may not line up with the below, so
4798   // bail early.
4799   if (Opcode >= ISD::BUILTIN_OP_END)
4800     return SDValue();
4801 
4802   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4803     return getUNDEF(VT);
4804 
4805   // Handle the case of two scalars.
4806   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4807     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4808       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4809       assert((!Folded || !VT.isVector()) &&
4810              "Can't fold vectors ops with scalar operands");
4811       return Folded;
4812     }
4813   }
4814 
4815   // fold (add Sym, c) -> Sym+c
4816   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4817     return FoldSymbolOffset(Opcode, VT, GA, N2);
4818   if (TLI->isCommutativeBinOp(Opcode))
4819     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4820       return FoldSymbolOffset(Opcode, VT, GA, N1);
4821 
4822   // For vectors, extract each constant element and fold them individually.
4823   // Either input may be an undef value.
4824   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4825   if (!BV1 && !N1->isUndef())
4826     return SDValue();
4827   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4828   if (!BV2 && !N2->isUndef())
4829     return SDValue();
4830   // If both operands are undef, that's handled the same way as scalars.
4831   if (!BV1 && !BV2)
4832     return SDValue();
4833 
4834   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4835          "Vector binop with different number of elements in operands?");
4836 
4837   EVT SVT = VT.getScalarType();
4838   EVT LegalSVT = SVT;
4839   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4840     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4841     if (LegalSVT.bitsLT(SVT))
4842       return SDValue();
4843   }
4844   SmallVector<SDValue, 4> Outputs;
4845   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4846   for (unsigned I = 0; I != NumOps; ++I) {
4847     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4848     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4849     if (SVT.isInteger()) {
4850       if (V1->getValueType(0).bitsGT(SVT))
4851         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4852       if (V2->getValueType(0).bitsGT(SVT))
4853         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4854     }
4855 
4856     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4857       return SDValue();
4858 
4859     // Fold one vector element.
4860     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4861     if (LegalSVT != SVT)
4862       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4863 
4864     // Scalar folding only succeeded if the result is a constant or UNDEF.
4865     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4866         ScalarResult.getOpcode() != ISD::ConstantFP)
4867       return SDValue();
4868     Outputs.push_back(ScalarResult);
4869   }
4870 
4871   assert(VT.getVectorNumElements() == Outputs.size() &&
4872          "Vector size mismatch!");
4873 
4874   // We may have a vector type but a scalar result. Create a splat.
4875   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4876 
4877   // Build a big vector out of the scalar elements we generated.
4878   return getBuildVector(VT, SDLoc(), Outputs);
4879 }
4880 
4881 // TODO: Merge with FoldConstantArithmetic
4882 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4883                                                    const SDLoc &DL, EVT VT,
4884                                                    ArrayRef<SDValue> Ops,
4885                                                    const SDNodeFlags Flags) {
4886   // If the opcode is a target-specific ISD node, there's nothing we can
4887   // do here and the operand rules may not line up with the below, so
4888   // bail early.
4889   if (Opcode >= ISD::BUILTIN_OP_END)
4890     return SDValue();
4891 
4892   if (isUndef(Opcode, Ops))
4893     return getUNDEF(VT);
4894 
4895   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4896   if (!VT.isVector())
4897     return SDValue();
4898 
4899   unsigned NumElts = VT.getVectorNumElements();
4900 
4901   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4902     return !Op.getValueType().isVector() ||
4903            Op.getValueType().getVectorNumElements() == NumElts;
4904   };
4905 
4906   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4907     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4908     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4909            (BV && BV->isConstant());
4910   };
4911 
4912   // All operands must be vector types with the same number of elements as
4913   // the result type and must be either UNDEF or a build vector of constant
4914   // or UNDEF scalars.
4915   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4916       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4917     return SDValue();
4918 
4919   // If we are comparing vectors, then the result needs to be a i1 boolean
4920   // that is then sign-extended back to the legal result type.
4921   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4922 
4923   // Find legal integer scalar type for constant promotion and
4924   // ensure that its scalar size is at least as large as source.
4925   EVT LegalSVT = VT.getScalarType();
4926   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4927     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4928     if (LegalSVT.bitsLT(VT.getScalarType()))
4929       return SDValue();
4930   }
4931 
4932   // Constant fold each scalar lane separately.
4933   SmallVector<SDValue, 4> ScalarResults;
4934   for (unsigned i = 0; i != NumElts; i++) {
4935     SmallVector<SDValue, 4> ScalarOps;
4936     for (SDValue Op : Ops) {
4937       EVT InSVT = Op.getValueType().getScalarType();
4938       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4939       if (!InBV) {
4940         // We've checked that this is UNDEF or a constant of some kind.
4941         if (Op.isUndef())
4942           ScalarOps.push_back(getUNDEF(InSVT));
4943         else
4944           ScalarOps.push_back(Op);
4945         continue;
4946       }
4947 
4948       SDValue ScalarOp = InBV->getOperand(i);
4949       EVT ScalarVT = ScalarOp.getValueType();
4950 
4951       // Build vector (integer) scalar operands may need implicit
4952       // truncation - do this before constant folding.
4953       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4954         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4955 
4956       ScalarOps.push_back(ScalarOp);
4957     }
4958 
4959     // Constant fold the scalar operands.
4960     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4961 
4962     // Legalize the (integer) scalar constant if necessary.
4963     if (LegalSVT != SVT)
4964       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4965 
4966     // Scalar folding only succeeded if the result is a constant or UNDEF.
4967     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4968         ScalarResult.getOpcode() != ISD::ConstantFP)
4969       return SDValue();
4970     ScalarResults.push_back(ScalarResult);
4971   }
4972 
4973   SDValue V = getBuildVector(VT, DL, ScalarResults);
4974   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4975   return V;
4976 }
4977 
4978 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4979                                          EVT VT, SDValue N1, SDValue N2) {
4980   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4981   //       should. That will require dealing with a potentially non-default
4982   //       rounding mode, checking the "opStatus" return value from the APFloat
4983   //       math calculations, and possibly other variations.
4984   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4985   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4986   if (N1CFP && N2CFP) {
4987     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4988     switch (Opcode) {
4989     case ISD::FADD:
4990       C1.add(C2, APFloat::rmNearestTiesToEven);
4991       return getConstantFP(C1, DL, VT);
4992     case ISD::FSUB:
4993       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4994       return getConstantFP(C1, DL, VT);
4995     case ISD::FMUL:
4996       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4997       return getConstantFP(C1, DL, VT);
4998     case ISD::FDIV:
4999       C1.divide(C2, APFloat::rmNearestTiesToEven);
5000       return getConstantFP(C1, DL, VT);
5001     case ISD::FREM:
5002       C1.mod(C2);
5003       return getConstantFP(C1, DL, VT);
5004     case ISD::FCOPYSIGN:
5005       C1.copySign(C2);
5006       return getConstantFP(C1, DL, VT);
5007     default: break;
5008     }
5009   }
5010   if (N1CFP && Opcode == ISD::FP_ROUND) {
5011     APFloat C1 = N1CFP->getValueAPF();    // make copy
5012     bool Unused;
5013     // This can return overflow, underflow, or inexact; we don't care.
5014     // FIXME need to be more flexible about rounding mode.
5015     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5016                       &Unused);
5017     return getConstantFP(C1, DL, VT);
5018   }
5019 
5020   switch (Opcode) {
5021   case ISD::FADD:
5022   case ISD::FSUB:
5023   case ISD::FMUL:
5024   case ISD::FDIV:
5025   case ISD::FREM:
5026     // If both operands are undef, the result is undef. If 1 operand is undef,
5027     // the result is NaN. This should match the behavior of the IR optimizer.
5028     if (N1.isUndef() && N2.isUndef())
5029       return getUNDEF(VT);
5030     if (N1.isUndef() || N2.isUndef())
5031       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5032   }
5033   return SDValue();
5034 }
5035 
5036 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5037                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5038   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5039   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5040   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5041   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5042 
5043   // Canonicalize constant to RHS if commutative.
5044   if (TLI->isCommutativeBinOp(Opcode)) {
5045     if (N1C && !N2C) {
5046       std::swap(N1C, N2C);
5047       std::swap(N1, N2);
5048     } else if (N1CFP && !N2CFP) {
5049       std::swap(N1CFP, N2CFP);
5050       std::swap(N1, N2);
5051     }
5052   }
5053 
5054   switch (Opcode) {
5055   default: break;
5056   case ISD::TokenFactor:
5057     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5058            N2.getValueType() == MVT::Other && "Invalid token factor!");
5059     // Fold trivial token factors.
5060     if (N1.getOpcode() == ISD::EntryToken) return N2;
5061     if (N2.getOpcode() == ISD::EntryToken) return N1;
5062     if (N1 == N2) return N1;
5063     break;
5064   case ISD::BUILD_VECTOR: {
5065     // Attempt to simplify BUILD_VECTOR.
5066     SDValue Ops[] = {N1, N2};
5067     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5068       return V;
5069     break;
5070   }
5071   case ISD::CONCAT_VECTORS: {
5072     SDValue Ops[] = {N1, N2};
5073     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5074       return V;
5075     break;
5076   }
5077   case ISD::AND:
5078     assert(VT.isInteger() && "This operator does not apply to FP types!");
5079     assert(N1.getValueType() == N2.getValueType() &&
5080            N1.getValueType() == VT && "Binary operator types must match!");
5081     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5082     // worth handling here.
5083     if (N2C && N2C->isNullValue())
5084       return N2;
5085     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5086       return N1;
5087     break;
5088   case ISD::OR:
5089   case ISD::XOR:
5090   case ISD::ADD:
5091   case ISD::SUB:
5092     assert(VT.isInteger() && "This operator does not apply to FP types!");
5093     assert(N1.getValueType() == N2.getValueType() &&
5094            N1.getValueType() == VT && "Binary operator types must match!");
5095     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5096     // it's worth handling here.
5097     if (N2C && N2C->isNullValue())
5098       return N1;
5099     break;
5100   case ISD::UDIV:
5101   case ISD::UREM:
5102   case ISD::MULHU:
5103   case ISD::MULHS:
5104   case ISD::MUL:
5105   case ISD::SDIV:
5106   case ISD::SREM:
5107   case ISD::SMIN:
5108   case ISD::SMAX:
5109   case ISD::UMIN:
5110   case ISD::UMAX:
5111   case ISD::SADDSAT:
5112   case ISD::SSUBSAT:
5113   case ISD::UADDSAT:
5114   case ISD::USUBSAT:
5115     assert(VT.isInteger() && "This operator does not apply to FP types!");
5116     assert(N1.getValueType() == N2.getValueType() &&
5117            N1.getValueType() == VT && "Binary operator types must match!");
5118     break;
5119   case ISD::FADD:
5120   case ISD::FSUB:
5121   case ISD::FMUL:
5122   case ISD::FDIV:
5123   case ISD::FREM:
5124     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5125     assert(N1.getValueType() == N2.getValueType() &&
5126            N1.getValueType() == VT && "Binary operator types must match!");
5127     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5128       return V;
5129     break;
5130   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5131     assert(N1.getValueType() == VT &&
5132            N1.getValueType().isFloatingPoint() &&
5133            N2.getValueType().isFloatingPoint() &&
5134            "Invalid FCOPYSIGN!");
5135     break;
5136   case ISD::SHL:
5137   case ISD::SRA:
5138   case ISD::SRL:
5139     if (SDValue V = simplifyShift(N1, N2))
5140       return V;
5141     LLVM_FALLTHROUGH;
5142   case ISD::ROTL:
5143   case ISD::ROTR:
5144     assert(VT == N1.getValueType() &&
5145            "Shift operators return type must be the same as their first arg");
5146     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5147            "Shifts only work on integers");
5148     assert((!VT.isVector() || VT == N2.getValueType()) &&
5149            "Vector shift amounts must be in the same as their first arg");
5150     // Verify that the shift amount VT is big enough to hold valid shift
5151     // amounts.  This catches things like trying to shift an i1024 value by an
5152     // i8, which is easy to fall into in generic code that uses
5153     // TLI.getShiftAmount().
5154     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5155            "Invalid use of small shift amount with oversized value!");
5156 
5157     // Always fold shifts of i1 values so the code generator doesn't need to
5158     // handle them.  Since we know the size of the shift has to be less than the
5159     // size of the value, the shift/rotate count is guaranteed to be zero.
5160     if (VT == MVT::i1)
5161       return N1;
5162     if (N2C && N2C->isNullValue())
5163       return N1;
5164     break;
5165   case ISD::FP_ROUND:
5166     assert(VT.isFloatingPoint() &&
5167            N1.getValueType().isFloatingPoint() &&
5168            VT.bitsLE(N1.getValueType()) &&
5169            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5170            "Invalid FP_ROUND!");
5171     if (N1.getValueType() == VT) return N1;  // noop conversion.
5172     break;
5173   case ISD::AssertSext:
5174   case ISD::AssertZext: {
5175     EVT EVT = cast<VTSDNode>(N2)->getVT();
5176     assert(VT == N1.getValueType() && "Not an inreg extend!");
5177     assert(VT.isInteger() && EVT.isInteger() &&
5178            "Cannot *_EXTEND_INREG FP types");
5179     assert(!EVT.isVector() &&
5180            "AssertSExt/AssertZExt type should be the vector element type "
5181            "rather than the vector type!");
5182     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5183     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5184     break;
5185   }
5186   case ISD::SIGN_EXTEND_INREG: {
5187     EVT EVT = cast<VTSDNode>(N2)->getVT();
5188     assert(VT == N1.getValueType() && "Not an inreg extend!");
5189     assert(VT.isInteger() && EVT.isInteger() &&
5190            "Cannot *_EXTEND_INREG FP types");
5191     assert(EVT.isVector() == VT.isVector() &&
5192            "SIGN_EXTEND_INREG type should be vector iff the operand "
5193            "type is vector!");
5194     assert((!EVT.isVector() ||
5195             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5196            "Vector element counts must match in SIGN_EXTEND_INREG");
5197     assert(EVT.bitsLE(VT) && "Not extending!");
5198     if (EVT == VT) return N1;  // Not actually extending
5199 
5200     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5201       unsigned FromBits = EVT.getScalarSizeInBits();
5202       Val <<= Val.getBitWidth() - FromBits;
5203       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5204       return getConstant(Val, DL, ConstantVT);
5205     };
5206 
5207     if (N1C) {
5208       const APInt &Val = N1C->getAPIntValue();
5209       return SignExtendInReg(Val, VT);
5210     }
5211     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5212       SmallVector<SDValue, 8> Ops;
5213       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5214       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5215         SDValue Op = N1.getOperand(i);
5216         if (Op.isUndef()) {
5217           Ops.push_back(getUNDEF(OpVT));
5218           continue;
5219         }
5220         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5221         APInt Val = C->getAPIntValue();
5222         Ops.push_back(SignExtendInReg(Val, OpVT));
5223       }
5224       return getBuildVector(VT, DL, Ops);
5225     }
5226     break;
5227   }
5228   case ISD::EXTRACT_VECTOR_ELT:
5229     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5230            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5231              element type of the vector.");
5232 
5233     // Extract from an undefined value or using an undefined index is undefined.
5234     if (N1.isUndef() || N2.isUndef())
5235       return getUNDEF(VT);
5236 
5237     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5238     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5239       return getUNDEF(VT);
5240 
5241     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5242     // expanding copies of large vectors from registers.
5243     if (N2C &&
5244         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5245         N1.getNumOperands() > 0) {
5246       unsigned Factor =
5247         N1.getOperand(0).getValueType().getVectorNumElements();
5248       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5249                      N1.getOperand(N2C->getZExtValue() / Factor),
5250                      getConstant(N2C->getZExtValue() % Factor, DL,
5251                                  N2.getValueType()));
5252     }
5253 
5254     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5255     // expanding large vector constants.
5256     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5257       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5258 
5259       if (VT != Elt.getValueType())
5260         // If the vector element type is not legal, the BUILD_VECTOR operands
5261         // are promoted and implicitly truncated, and the result implicitly
5262         // extended. Make that explicit here.
5263         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5264 
5265       return Elt;
5266     }
5267 
5268     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5269     // operations are lowered to scalars.
5270     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5271       // If the indices are the same, return the inserted element else
5272       // if the indices are known different, extract the element from
5273       // the original vector.
5274       SDValue N1Op2 = N1.getOperand(2);
5275       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5276 
5277       if (N1Op2C && N2C) {
5278         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5279           if (VT == N1.getOperand(1).getValueType())
5280             return N1.getOperand(1);
5281           else
5282             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5283         }
5284 
5285         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5286       }
5287     }
5288 
5289     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5290     // when vector types are scalarized and v1iX is legal.
5291     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5292     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5293         N1.getValueType().getVectorNumElements() == 1) {
5294       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5295                      N1.getOperand(1));
5296     }
5297     break;
5298   case ISD::EXTRACT_ELEMENT:
5299     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5300     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5301            (N1.getValueType().isInteger() == VT.isInteger()) &&
5302            N1.getValueType() != VT &&
5303            "Wrong types for EXTRACT_ELEMENT!");
5304 
5305     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5306     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5307     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5308     if (N1.getOpcode() == ISD::BUILD_PAIR)
5309       return N1.getOperand(N2C->getZExtValue());
5310 
5311     // EXTRACT_ELEMENT of a constant int is also very common.
5312     if (N1C) {
5313       unsigned ElementSize = VT.getSizeInBits();
5314       unsigned Shift = ElementSize * N2C->getZExtValue();
5315       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5316       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5317     }
5318     break;
5319   case ISD::EXTRACT_SUBVECTOR:
5320     if (VT.isSimple() && N1.getValueType().isSimple()) {
5321       assert(VT.isVector() && N1.getValueType().isVector() &&
5322              "Extract subvector VTs must be a vectors!");
5323       assert(VT.getVectorElementType() ==
5324              N1.getValueType().getVectorElementType() &&
5325              "Extract subvector VTs must have the same element type!");
5326       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5327              "Extract subvector must be from larger vector to smaller vector!");
5328 
5329       if (N2C) {
5330         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5331                 <= N1.getValueType().getVectorNumElements())
5332                && "Extract subvector overflow!");
5333       }
5334 
5335       // Trivial extraction.
5336       if (VT.getSimpleVT() == N1.getSimpleValueType())
5337         return N1;
5338 
5339       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5340       if (N1.isUndef())
5341         return getUNDEF(VT);
5342 
5343       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5344       // the concat have the same type as the extract.
5345       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5346           N1.getNumOperands() > 0 &&
5347           VT == N1.getOperand(0).getValueType()) {
5348         unsigned Factor = VT.getVectorNumElements();
5349         return N1.getOperand(N2C->getZExtValue() / Factor);
5350       }
5351 
5352       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5353       // during shuffle legalization.
5354       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5355           VT == N1.getOperand(1).getValueType())
5356         return N1.getOperand(1);
5357     }
5358     break;
5359   }
5360 
5361   // Perform trivial constant folding.
5362   if (SDValue SV =
5363           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5364     return SV;
5365 
5366   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5367     return V;
5368 
5369   // Canonicalize an UNDEF to the RHS, even over a constant.
5370   if (N1.isUndef()) {
5371     if (TLI->isCommutativeBinOp(Opcode)) {
5372       std::swap(N1, N2);
5373     } else {
5374       switch (Opcode) {
5375       case ISD::SIGN_EXTEND_INREG:
5376       case ISD::SUB:
5377         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5378       case ISD::UDIV:
5379       case ISD::SDIV:
5380       case ISD::UREM:
5381       case ISD::SREM:
5382       case ISD::SSUBSAT:
5383       case ISD::USUBSAT:
5384         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5385       }
5386     }
5387   }
5388 
5389   // Fold a bunch of operators when the RHS is undef.
5390   if (N2.isUndef()) {
5391     switch (Opcode) {
5392     case ISD::XOR:
5393       if (N1.isUndef())
5394         // Handle undef ^ undef -> 0 special case. This is a common
5395         // idiom (misuse).
5396         return getConstant(0, DL, VT);
5397       LLVM_FALLTHROUGH;
5398     case ISD::ADD:
5399     case ISD::SUB:
5400     case ISD::UDIV:
5401     case ISD::SDIV:
5402     case ISD::UREM:
5403     case ISD::SREM:
5404       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5405     case ISD::MUL:
5406     case ISD::AND:
5407     case ISD::SSUBSAT:
5408     case ISD::USUBSAT:
5409       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5410     case ISD::OR:
5411     case ISD::SADDSAT:
5412     case ISD::UADDSAT:
5413       return getAllOnesConstant(DL, VT);
5414     }
5415   }
5416 
5417   // Memoize this node if possible.
5418   SDNode *N;
5419   SDVTList VTs = getVTList(VT);
5420   SDValue Ops[] = {N1, N2};
5421   if (VT != MVT::Glue) {
5422     FoldingSetNodeID ID;
5423     AddNodeIDNode(ID, Opcode, VTs, Ops);
5424     void *IP = nullptr;
5425     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5426       E->intersectFlagsWith(Flags);
5427       return SDValue(E, 0);
5428     }
5429 
5430     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5431     N->setFlags(Flags);
5432     createOperands(N, Ops);
5433     CSEMap.InsertNode(N, IP);
5434   } else {
5435     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5436     createOperands(N, Ops);
5437   }
5438 
5439   InsertNode(N);
5440   SDValue V = SDValue(N, 0);
5441   NewSDValueDbgMsg(V, "Creating new node: ", this);
5442   return V;
5443 }
5444 
5445 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5446                               SDValue N1, SDValue N2, SDValue N3,
5447                               const SDNodeFlags Flags) {
5448   // Perform various simplifications.
5449   switch (Opcode) {
5450   case ISD::FMA: {
5451     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5452     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5453            N3.getValueType() == VT && "FMA types must match!");
5454     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5455     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5456     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5457     if (N1CFP && N2CFP && N3CFP) {
5458       APFloat  V1 = N1CFP->getValueAPF();
5459       const APFloat &V2 = N2CFP->getValueAPF();
5460       const APFloat &V3 = N3CFP->getValueAPF();
5461       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5462       return getConstantFP(V1, DL, VT);
5463     }
5464     break;
5465   }
5466   case ISD::BUILD_VECTOR: {
5467     // Attempt to simplify BUILD_VECTOR.
5468     SDValue Ops[] = {N1, N2, N3};
5469     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5470       return V;
5471     break;
5472   }
5473   case ISD::CONCAT_VECTORS: {
5474     SDValue Ops[] = {N1, N2, N3};
5475     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5476       return V;
5477     break;
5478   }
5479   case ISD::SETCC: {
5480     assert(VT.isInteger() && "SETCC result type must be an integer!");
5481     assert(N1.getValueType() == N2.getValueType() &&
5482            "SETCC operands must have the same type!");
5483     assert(VT.isVector() == N1.getValueType().isVector() &&
5484            "SETCC type should be vector iff the operand type is vector!");
5485     assert((!VT.isVector() ||
5486             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5487            "SETCC vector element counts must match!");
5488     // Use FoldSetCC to simplify SETCC's.
5489     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5490       return V;
5491     // Vector constant folding.
5492     SDValue Ops[] = {N1, N2, N3};
5493     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5494       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5495       return V;
5496     }
5497     break;
5498   }
5499   case ISD::SELECT:
5500   case ISD::VSELECT:
5501     if (SDValue V = simplifySelect(N1, N2, N3))
5502       return V;
5503     break;
5504   case ISD::VECTOR_SHUFFLE:
5505     llvm_unreachable("should use getVectorShuffle constructor!");
5506   case ISD::INSERT_VECTOR_ELT: {
5507     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5508     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5509     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5510       return getUNDEF(VT);
5511 
5512     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5513     if (N3.isUndef())
5514       return getUNDEF(VT);
5515 
5516     // If the inserted element is an UNDEF, just use the input vector.
5517     if (N2.isUndef())
5518       return N1;
5519 
5520     break;
5521   }
5522   case ISD::INSERT_SUBVECTOR: {
5523     // Inserting undef into undef is still undef.
5524     if (N1.isUndef() && N2.isUndef())
5525       return getUNDEF(VT);
5526     SDValue Index = N3;
5527     if (VT.isSimple() && N1.getValueType().isSimple()
5528         && N2.getValueType().isSimple()) {
5529       assert(VT.isVector() && N1.getValueType().isVector() &&
5530              N2.getValueType().isVector() &&
5531              "Insert subvector VTs must be a vectors");
5532       assert(VT == N1.getValueType() &&
5533              "Dest and insert subvector source types must match!");
5534       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5535              "Insert subvector must be from smaller vector to larger vector!");
5536       if (isa<ConstantSDNode>(Index)) {
5537         assert((N2.getValueType().getVectorNumElements() +
5538                 cast<ConstantSDNode>(Index)->getZExtValue()
5539                 <= VT.getVectorNumElements())
5540                && "Insert subvector overflow!");
5541       }
5542 
5543       // Trivial insertion.
5544       if (VT.getSimpleVT() == N2.getSimpleValueType())
5545         return N2;
5546 
5547       // If this is an insert of an extracted vector into an undef vector, we
5548       // can just use the input to the extract.
5549       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5550           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5551         return N2.getOperand(0);
5552     }
5553     break;
5554   }
5555   case ISD::BITCAST:
5556     // Fold bit_convert nodes from a type to themselves.
5557     if (N1.getValueType() == VT)
5558       return N1;
5559     break;
5560   }
5561 
5562   // Memoize node if it doesn't produce a flag.
5563   SDNode *N;
5564   SDVTList VTs = getVTList(VT);
5565   SDValue Ops[] = {N1, N2, N3};
5566   if (VT != MVT::Glue) {
5567     FoldingSetNodeID ID;
5568     AddNodeIDNode(ID, Opcode, VTs, Ops);
5569     void *IP = nullptr;
5570     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5571       E->intersectFlagsWith(Flags);
5572       return SDValue(E, 0);
5573     }
5574 
5575     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5576     N->setFlags(Flags);
5577     createOperands(N, Ops);
5578     CSEMap.InsertNode(N, IP);
5579   } else {
5580     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5581     createOperands(N, Ops);
5582   }
5583 
5584   InsertNode(N);
5585   SDValue V = SDValue(N, 0);
5586   NewSDValueDbgMsg(V, "Creating new node: ", this);
5587   return V;
5588 }
5589 
5590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5591                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5592   SDValue Ops[] = { N1, N2, N3, N4 };
5593   return getNode(Opcode, DL, VT, Ops);
5594 }
5595 
5596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5597                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5598                               SDValue N5) {
5599   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5600   return getNode(Opcode, DL, VT, Ops);
5601 }
5602 
5603 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5604 /// the incoming stack arguments to be loaded from the stack.
5605 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5606   SmallVector<SDValue, 8> ArgChains;
5607 
5608   // Include the original chain at the beginning of the list. When this is
5609   // used by target LowerCall hooks, this helps legalize find the
5610   // CALLSEQ_BEGIN node.
5611   ArgChains.push_back(Chain);
5612 
5613   // Add a chain value for each stack argument.
5614   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5615        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5616     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5617       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5618         if (FI->getIndex() < 0)
5619           ArgChains.push_back(SDValue(L, 1));
5620 
5621   // Build a tokenfactor for all the chains.
5622   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5623 }
5624 
5625 /// getMemsetValue - Vectorized representation of the memset value
5626 /// operand.
5627 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5628                               const SDLoc &dl) {
5629   assert(!Value.isUndef());
5630 
5631   unsigned NumBits = VT.getScalarSizeInBits();
5632   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5633     assert(C->getAPIntValue().getBitWidth() == 8);
5634     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5635     if (VT.isInteger()) {
5636       bool IsOpaque = VT.getSizeInBits() > 64 ||
5637           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5638       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5639     }
5640     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5641                              VT);
5642   }
5643 
5644   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5645   EVT IntVT = VT.getScalarType();
5646   if (!IntVT.isInteger())
5647     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5648 
5649   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5650   if (NumBits > 8) {
5651     // Use a multiplication with 0x010101... to extend the input to the
5652     // required length.
5653     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5654     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5655                         DAG.getConstant(Magic, dl, IntVT));
5656   }
5657 
5658   if (VT != Value.getValueType() && !VT.isInteger())
5659     Value = DAG.getBitcast(VT.getScalarType(), Value);
5660   if (VT != Value.getValueType())
5661     Value = DAG.getSplatBuildVector(VT, dl, Value);
5662 
5663   return Value;
5664 }
5665 
5666 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5667 /// used when a memcpy is turned into a memset when the source is a constant
5668 /// string ptr.
5669 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5670                                   const TargetLowering &TLI,
5671                                   const ConstantDataArraySlice &Slice) {
5672   // Handle vector with all elements zero.
5673   if (Slice.Array == nullptr) {
5674     if (VT.isInteger())
5675       return DAG.getConstant(0, dl, VT);
5676     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5677       return DAG.getConstantFP(0.0, dl, VT);
5678     else if (VT.isVector()) {
5679       unsigned NumElts = VT.getVectorNumElements();
5680       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5681       return DAG.getNode(ISD::BITCAST, dl, VT,
5682                          DAG.getConstant(0, dl,
5683                                          EVT::getVectorVT(*DAG.getContext(),
5684                                                           EltVT, NumElts)));
5685     } else
5686       llvm_unreachable("Expected type!");
5687   }
5688 
5689   assert(!VT.isVector() && "Can't handle vector type here!");
5690   unsigned NumVTBits = VT.getSizeInBits();
5691   unsigned NumVTBytes = NumVTBits / 8;
5692   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5693 
5694   APInt Val(NumVTBits, 0);
5695   if (DAG.getDataLayout().isLittleEndian()) {
5696     for (unsigned i = 0; i != NumBytes; ++i)
5697       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5698   } else {
5699     for (unsigned i = 0; i != NumBytes; ++i)
5700       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5701   }
5702 
5703   // If the "cost" of materializing the integer immediate is less than the cost
5704   // of a load, then it is cost effective to turn the load into the immediate.
5705   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5706   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5707     return DAG.getConstant(Val, dl, VT);
5708   return SDValue(nullptr, 0);
5709 }
5710 
5711 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5712                                            const SDLoc &DL) {
5713   EVT VT = Base.getValueType();
5714   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5715 }
5716 
5717 /// Returns true if memcpy source is constant data.
5718 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5719   uint64_t SrcDelta = 0;
5720   GlobalAddressSDNode *G = nullptr;
5721   if (Src.getOpcode() == ISD::GlobalAddress)
5722     G = cast<GlobalAddressSDNode>(Src);
5723   else if (Src.getOpcode() == ISD::ADD &&
5724            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5725            Src.getOperand(1).getOpcode() == ISD::Constant) {
5726     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5727     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5728   }
5729   if (!G)
5730     return false;
5731 
5732   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5733                                   SrcDelta + G->getOffset());
5734 }
5735 
5736 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5737   // On Darwin, -Os means optimize for size without hurting performance, so
5738   // only really optimize for size when -Oz (MinSize) is used.
5739   if (MF.getTarget().getTargetTriple().isOSDarwin())
5740     return MF.getFunction().hasMinSize();
5741   return MF.getFunction().hasOptSize();
5742 }
5743 
5744 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5745                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5746                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5747                           SmallVector<SDValue, 16> &OutStoreChains) {
5748   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5749   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5750   SmallVector<SDValue, 16> GluedLoadChains;
5751   for (unsigned i = From; i < To; ++i) {
5752     OutChains.push_back(OutLoadChains[i]);
5753     GluedLoadChains.push_back(OutLoadChains[i]);
5754   }
5755 
5756   // Chain for all loads.
5757   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5758                                   GluedLoadChains);
5759 
5760   for (unsigned i = From; i < To; ++i) {
5761     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5762     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5763                                   ST->getBasePtr(), ST->getMemoryVT(),
5764                                   ST->getMemOperand());
5765     OutChains.push_back(NewStore);
5766   }
5767 }
5768 
5769 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5770                                        SDValue Chain, SDValue Dst, SDValue Src,
5771                                        uint64_t Size, unsigned Alignment,
5772                                        bool isVol, bool AlwaysInline,
5773                                        MachinePointerInfo DstPtrInfo,
5774                                        MachinePointerInfo SrcPtrInfo) {
5775   // Turn a memcpy of undef to nop.
5776   // FIXME: We need to honor volatile even is Src is undef.
5777   if (Src.isUndef())
5778     return Chain;
5779 
5780   // Expand memcpy to a series of load and store ops if the size operand falls
5781   // below a certain threshold.
5782   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5783   // rather than maybe a humongous number of loads and stores.
5784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5785   const DataLayout &DL = DAG.getDataLayout();
5786   LLVMContext &C = *DAG.getContext();
5787   std::vector<EVT> MemOps;
5788   bool DstAlignCanChange = false;
5789   MachineFunction &MF = DAG.getMachineFunction();
5790   MachineFrameInfo &MFI = MF.getFrameInfo();
5791   bool OptSize = shouldLowerMemFuncForSize(MF);
5792   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5793   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5794     DstAlignCanChange = true;
5795   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5796   if (Alignment > SrcAlign)
5797     SrcAlign = Alignment;
5798   ConstantDataArraySlice Slice;
5799   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5800   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5801   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5802 
5803   if (!TLI.findOptimalMemOpLowering(
5804           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5805           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5806           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5807           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5808           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5809     return SDValue();
5810 
5811   if (DstAlignCanChange) {
5812     Type *Ty = MemOps[0].getTypeForEVT(C);
5813     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5814 
5815     // Don't promote to an alignment that would require dynamic stack
5816     // realignment.
5817     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5818     if (!TRI->needsStackRealignment(MF))
5819       while (NewAlign > Alignment &&
5820              DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5821         NewAlign /= 2;
5822 
5823     if (NewAlign > Alignment) {
5824       // Give the stack frame object a larger alignment if needed.
5825       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5826         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5827       Alignment = NewAlign;
5828     }
5829   }
5830 
5831   MachineMemOperand::Flags MMOFlags =
5832       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5833   SmallVector<SDValue, 16> OutLoadChains;
5834   SmallVector<SDValue, 16> OutStoreChains;
5835   SmallVector<SDValue, 32> OutChains;
5836   unsigned NumMemOps = MemOps.size();
5837   uint64_t SrcOff = 0, DstOff = 0;
5838   for (unsigned i = 0; i != NumMemOps; ++i) {
5839     EVT VT = MemOps[i];
5840     unsigned VTSize = VT.getSizeInBits() / 8;
5841     SDValue Value, Store;
5842 
5843     if (VTSize > Size) {
5844       // Issuing an unaligned load / store pair  that overlaps with the previous
5845       // pair. Adjust the offset accordingly.
5846       assert(i == NumMemOps-1 && i != 0);
5847       SrcOff -= VTSize - Size;
5848       DstOff -= VTSize - Size;
5849     }
5850 
5851     if (CopyFromConstant &&
5852         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5853       // It's unlikely a store of a vector immediate can be done in a single
5854       // instruction. It would require a load from a constantpool first.
5855       // We only handle zero vectors here.
5856       // FIXME: Handle other cases where store of vector immediate is done in
5857       // a single instruction.
5858       ConstantDataArraySlice SubSlice;
5859       if (SrcOff < Slice.Length) {
5860         SubSlice = Slice;
5861         SubSlice.move(SrcOff);
5862       } else {
5863         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5864         SubSlice.Array = nullptr;
5865         SubSlice.Offset = 0;
5866         SubSlice.Length = VTSize;
5867       }
5868       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5869       if (Value.getNode()) {
5870         Store = DAG.getStore(
5871             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5872             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5873         OutChains.push_back(Store);
5874       }
5875     }
5876 
5877     if (!Store.getNode()) {
5878       // The type might not be legal for the target.  This should only happen
5879       // if the type is smaller than a legal type, as on PPC, so the right
5880       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5881       // to Load/Store if NVT==VT.
5882       // FIXME does the case above also need this?
5883       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5884       assert(NVT.bitsGE(VT));
5885 
5886       bool isDereferenceable =
5887         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5888       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5889       if (isDereferenceable)
5890         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5891 
5892       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5893                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5894                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5895                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5896       OutLoadChains.push_back(Value.getValue(1));
5897 
5898       Store = DAG.getTruncStore(
5899           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5900           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
5901       OutStoreChains.push_back(Store);
5902     }
5903     SrcOff += VTSize;
5904     DstOff += VTSize;
5905     Size -= VTSize;
5906   }
5907 
5908   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5909                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5910   unsigned NumLdStInMemcpy = OutStoreChains.size();
5911 
5912   if (NumLdStInMemcpy) {
5913     // It may be that memcpy might be converted to memset if it's memcpy
5914     // of constants. In such a case, we won't have loads and stores, but
5915     // just stores. In the absence of loads, there is nothing to gang up.
5916     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5917       // If target does not care, just leave as it.
5918       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5919         OutChains.push_back(OutLoadChains[i]);
5920         OutChains.push_back(OutStoreChains[i]);
5921       }
5922     } else {
5923       // Ld/St less than/equal limit set by target.
5924       if (NumLdStInMemcpy <= GluedLdStLimit) {
5925           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5926                                         NumLdStInMemcpy, OutLoadChains,
5927                                         OutStoreChains);
5928       } else {
5929         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5930         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5931         unsigned GlueIter = 0;
5932 
5933         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5934           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5935           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5936 
5937           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5938                                        OutLoadChains, OutStoreChains);
5939           GlueIter += GluedLdStLimit;
5940         }
5941 
5942         // Residual ld/st.
5943         if (RemainingLdStInMemcpy) {
5944           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5945                                         RemainingLdStInMemcpy, OutLoadChains,
5946                                         OutStoreChains);
5947         }
5948       }
5949     }
5950   }
5951   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5952 }
5953 
5954 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5955                                         SDValue Chain, SDValue Dst, SDValue Src,
5956                                         uint64_t Size, unsigned Align,
5957                                         bool isVol, bool AlwaysInline,
5958                                         MachinePointerInfo DstPtrInfo,
5959                                         MachinePointerInfo SrcPtrInfo) {
5960   // Turn a memmove of undef to nop.
5961   // FIXME: We need to honor volatile even is Src is undef.
5962   if (Src.isUndef())
5963     return Chain;
5964 
5965   // Expand memmove to a series of load and store ops if the size operand falls
5966   // below a certain threshold.
5967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5968   const DataLayout &DL = DAG.getDataLayout();
5969   LLVMContext &C = *DAG.getContext();
5970   std::vector<EVT> MemOps;
5971   bool DstAlignCanChange = false;
5972   MachineFunction &MF = DAG.getMachineFunction();
5973   MachineFrameInfo &MFI = MF.getFrameInfo();
5974   bool OptSize = shouldLowerMemFuncForSize(MF);
5975   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5976   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5977     DstAlignCanChange = true;
5978   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5979   if (Align > SrcAlign)
5980     SrcAlign = Align;
5981   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5982   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5983   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5984   // correct code.
5985   bool AllowOverlap = false;
5986   if (!TLI.findOptimalMemOpLowering(
5987           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
5988           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5989           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
5990           MF.getFunction().getAttributes()))
5991     return SDValue();
5992 
5993   if (DstAlignCanChange) {
5994     Type *Ty = MemOps[0].getTypeForEVT(C);
5995     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5996     if (NewAlign > Align) {
5997       // Give the stack frame object a larger alignment if needed.
5998       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5999         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6000       Align = NewAlign;
6001     }
6002   }
6003 
6004   MachineMemOperand::Flags MMOFlags =
6005       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6006   uint64_t SrcOff = 0, DstOff = 0;
6007   SmallVector<SDValue, 8> LoadValues;
6008   SmallVector<SDValue, 8> LoadChains;
6009   SmallVector<SDValue, 8> OutChains;
6010   unsigned NumMemOps = MemOps.size();
6011   for (unsigned i = 0; i < NumMemOps; i++) {
6012     EVT VT = MemOps[i];
6013     unsigned VTSize = VT.getSizeInBits() / 8;
6014     SDValue Value;
6015 
6016     bool isDereferenceable =
6017       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6018     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6019     if (isDereferenceable)
6020       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6021 
6022     Value =
6023         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6024                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6025     LoadValues.push_back(Value);
6026     LoadChains.push_back(Value.getValue(1));
6027     SrcOff += VTSize;
6028   }
6029   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6030   OutChains.clear();
6031   for (unsigned i = 0; i < NumMemOps; i++) {
6032     EVT VT = MemOps[i];
6033     unsigned VTSize = VT.getSizeInBits() / 8;
6034     SDValue Store;
6035 
6036     Store = DAG.getStore(Chain, dl, LoadValues[i],
6037                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6038                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6039     OutChains.push_back(Store);
6040     DstOff += VTSize;
6041   }
6042 
6043   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6044 }
6045 
6046 /// Lower the call to 'memset' intrinsic function into a series of store
6047 /// operations.
6048 ///
6049 /// \param DAG Selection DAG where lowered code is placed.
6050 /// \param dl Link to corresponding IR location.
6051 /// \param Chain Control flow dependency.
6052 /// \param Dst Pointer to destination memory location.
6053 /// \param Src Value of byte to write into the memory.
6054 /// \param Size Number of bytes to write.
6055 /// \param Align Alignment of the destination in bytes.
6056 /// \param isVol True if destination is volatile.
6057 /// \param DstPtrInfo IR information on the memory pointer.
6058 /// \returns New head in the control flow, if lowering was successful, empty
6059 /// SDValue otherwise.
6060 ///
6061 /// The function tries to replace 'llvm.memset' intrinsic with several store
6062 /// operations and value calculation code. This is usually profitable for small
6063 /// memory size.
6064 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6065                                SDValue Chain, SDValue Dst, SDValue Src,
6066                                uint64_t Size, unsigned Align, bool isVol,
6067                                MachinePointerInfo DstPtrInfo) {
6068   // Turn a memset of undef to nop.
6069   // FIXME: We need to honor volatile even is Src is undef.
6070   if (Src.isUndef())
6071     return Chain;
6072 
6073   // Expand memset to a series of load/store ops if the size operand
6074   // falls below a certain threshold.
6075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6076   std::vector<EVT> MemOps;
6077   bool DstAlignCanChange = false;
6078   MachineFunction &MF = DAG.getMachineFunction();
6079   MachineFrameInfo &MFI = MF.getFrameInfo();
6080   bool OptSize = shouldLowerMemFuncForSize(MF);
6081   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6082   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6083     DstAlignCanChange = true;
6084   bool IsZeroVal =
6085     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6086   if (!TLI.findOptimalMemOpLowering(
6087           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6088           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6089           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6090           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6091           MF.getFunction().getAttributes()))
6092     return SDValue();
6093 
6094   if (DstAlignCanChange) {
6095     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6096     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6097     if (NewAlign > Align) {
6098       // Give the stack frame object a larger alignment if needed.
6099       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6100         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6101       Align = NewAlign;
6102     }
6103   }
6104 
6105   SmallVector<SDValue, 8> OutChains;
6106   uint64_t DstOff = 0;
6107   unsigned NumMemOps = MemOps.size();
6108 
6109   // Find the largest store and generate the bit pattern for it.
6110   EVT LargestVT = MemOps[0];
6111   for (unsigned i = 1; i < NumMemOps; i++)
6112     if (MemOps[i].bitsGT(LargestVT))
6113       LargestVT = MemOps[i];
6114   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6115 
6116   for (unsigned i = 0; i < NumMemOps; i++) {
6117     EVT VT = MemOps[i];
6118     unsigned VTSize = VT.getSizeInBits() / 8;
6119     if (VTSize > Size) {
6120       // Issuing an unaligned load / store pair  that overlaps with the previous
6121       // pair. Adjust the offset accordingly.
6122       assert(i == NumMemOps-1 && i != 0);
6123       DstOff -= VTSize - Size;
6124     }
6125 
6126     // If this store is smaller than the largest store see whether we can get
6127     // the smaller value for free with a truncate.
6128     SDValue Value = MemSetValue;
6129     if (VT.bitsLT(LargestVT)) {
6130       if (!LargestVT.isVector() && !VT.isVector() &&
6131           TLI.isTruncateFree(LargestVT, VT))
6132         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6133       else
6134         Value = getMemsetValue(Src, VT, DAG, dl);
6135     }
6136     assert(Value.getValueType() == VT && "Value with wrong type.");
6137     SDValue Store = DAG.getStore(
6138         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6139         DstPtrInfo.getWithOffset(DstOff), Align,
6140         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6141     OutChains.push_back(Store);
6142     DstOff += VT.getSizeInBits() / 8;
6143     Size -= VTSize;
6144   }
6145 
6146   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6147 }
6148 
6149 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6150                                             unsigned AS) {
6151   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6152   // pointer operands can be losslessly bitcasted to pointers of address space 0
6153   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6154     report_fatal_error("cannot lower memory intrinsic in address space " +
6155                        Twine(AS));
6156   }
6157 }
6158 
6159 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6160                                 SDValue Src, SDValue Size, unsigned Align,
6161                                 bool isVol, bool AlwaysInline, bool isTailCall,
6162                                 MachinePointerInfo DstPtrInfo,
6163                                 MachinePointerInfo SrcPtrInfo) {
6164   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6165 
6166   // Check to see if we should lower the memcpy to loads and stores first.
6167   // For cases within the target-specified limits, this is the best choice.
6168   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6169   if (ConstantSize) {
6170     // Memcpy with size zero? Just return the original chain.
6171     if (ConstantSize->isNullValue())
6172       return Chain;
6173 
6174     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6175                                              ConstantSize->getZExtValue(),Align,
6176                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6177     if (Result.getNode())
6178       return Result;
6179   }
6180 
6181   // Then check to see if we should lower the memcpy with target-specific
6182   // code. If the target chooses to do this, this is the next best.
6183   if (TSI) {
6184     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6185         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6186         DstPtrInfo, SrcPtrInfo);
6187     if (Result.getNode())
6188       return Result;
6189   }
6190 
6191   // If we really need inline code and the target declined to provide it,
6192   // use a (potentially long) sequence of loads and stores.
6193   if (AlwaysInline) {
6194     assert(ConstantSize && "AlwaysInline requires a constant size!");
6195     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6196                                    ConstantSize->getZExtValue(), Align, isVol,
6197                                    true, DstPtrInfo, SrcPtrInfo);
6198   }
6199 
6200   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6201   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6202 
6203   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6204   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6205   // respect volatile, so they may do things like read or write memory
6206   // beyond the given memory regions. But fixing this isn't easy, and most
6207   // people don't care.
6208 
6209   // Emit a library call.
6210   TargetLowering::ArgListTy Args;
6211   TargetLowering::ArgListEntry Entry;
6212   Entry.Ty = Type::getInt8PtrTy(*getContext());
6213   Entry.Node = Dst; Args.push_back(Entry);
6214   Entry.Node = Src; Args.push_back(Entry);
6215 
6216   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6217   Entry.Node = Size; Args.push_back(Entry);
6218   // FIXME: pass in SDLoc
6219   TargetLowering::CallLoweringInfo CLI(*this);
6220   CLI.setDebugLoc(dl)
6221       .setChain(Chain)
6222       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6223                     Dst.getValueType().getTypeForEVT(*getContext()),
6224                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6225                                       TLI->getPointerTy(getDataLayout())),
6226                     std::move(Args))
6227       .setDiscardResult()
6228       .setTailCall(isTailCall);
6229 
6230   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6231   return CallResult.second;
6232 }
6233 
6234 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6235                                       SDValue Dst, unsigned DstAlign,
6236                                       SDValue Src, unsigned SrcAlign,
6237                                       SDValue Size, Type *SizeTy,
6238                                       unsigned ElemSz, bool isTailCall,
6239                                       MachinePointerInfo DstPtrInfo,
6240                                       MachinePointerInfo SrcPtrInfo) {
6241   // Emit a library call.
6242   TargetLowering::ArgListTy Args;
6243   TargetLowering::ArgListEntry Entry;
6244   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6245   Entry.Node = Dst;
6246   Args.push_back(Entry);
6247 
6248   Entry.Node = Src;
6249   Args.push_back(Entry);
6250 
6251   Entry.Ty = SizeTy;
6252   Entry.Node = Size;
6253   Args.push_back(Entry);
6254 
6255   RTLIB::Libcall LibraryCall =
6256       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6257   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6258     report_fatal_error("Unsupported element size");
6259 
6260   TargetLowering::CallLoweringInfo CLI(*this);
6261   CLI.setDebugLoc(dl)
6262       .setChain(Chain)
6263       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6264                     Type::getVoidTy(*getContext()),
6265                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6266                                       TLI->getPointerTy(getDataLayout())),
6267                     std::move(Args))
6268       .setDiscardResult()
6269       .setTailCall(isTailCall);
6270 
6271   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6272   return CallResult.second;
6273 }
6274 
6275 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6276                                  SDValue Src, SDValue Size, unsigned Align,
6277                                  bool isVol, bool isTailCall,
6278                                  MachinePointerInfo DstPtrInfo,
6279                                  MachinePointerInfo SrcPtrInfo) {
6280   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6281 
6282   // Check to see if we should lower the memmove to loads and stores first.
6283   // For cases within the target-specified limits, this is the best choice.
6284   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6285   if (ConstantSize) {
6286     // Memmove with size zero? Just return the original chain.
6287     if (ConstantSize->isNullValue())
6288       return Chain;
6289 
6290     SDValue Result =
6291       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6292                                ConstantSize->getZExtValue(), Align, isVol,
6293                                false, DstPtrInfo, SrcPtrInfo);
6294     if (Result.getNode())
6295       return Result;
6296   }
6297 
6298   // Then check to see if we should lower the memmove with target-specific
6299   // code. If the target chooses to do this, this is the next best.
6300   if (TSI) {
6301     SDValue Result = TSI->EmitTargetCodeForMemmove(
6302         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6303     if (Result.getNode())
6304       return Result;
6305   }
6306 
6307   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6308   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6309 
6310   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6311   // not be safe.  See memcpy above for more details.
6312 
6313   // Emit a library call.
6314   TargetLowering::ArgListTy Args;
6315   TargetLowering::ArgListEntry Entry;
6316   Entry.Ty = Type::getInt8PtrTy(*getContext());
6317   Entry.Node = Dst; Args.push_back(Entry);
6318   Entry.Node = Src; Args.push_back(Entry);
6319 
6320   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6321   Entry.Node = Size; Args.push_back(Entry);
6322   // FIXME:  pass in SDLoc
6323   TargetLowering::CallLoweringInfo CLI(*this);
6324   CLI.setDebugLoc(dl)
6325       .setChain(Chain)
6326       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6327                     Dst.getValueType().getTypeForEVT(*getContext()),
6328                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6329                                       TLI->getPointerTy(getDataLayout())),
6330                     std::move(Args))
6331       .setDiscardResult()
6332       .setTailCall(isTailCall);
6333 
6334   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6335   return CallResult.second;
6336 }
6337 
6338 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6339                                        SDValue Dst, unsigned DstAlign,
6340                                        SDValue Src, unsigned SrcAlign,
6341                                        SDValue Size, Type *SizeTy,
6342                                        unsigned ElemSz, bool isTailCall,
6343                                        MachinePointerInfo DstPtrInfo,
6344                                        MachinePointerInfo SrcPtrInfo) {
6345   // Emit a library call.
6346   TargetLowering::ArgListTy Args;
6347   TargetLowering::ArgListEntry Entry;
6348   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6349   Entry.Node = Dst;
6350   Args.push_back(Entry);
6351 
6352   Entry.Node = Src;
6353   Args.push_back(Entry);
6354 
6355   Entry.Ty = SizeTy;
6356   Entry.Node = Size;
6357   Args.push_back(Entry);
6358 
6359   RTLIB::Libcall LibraryCall =
6360       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6361   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6362     report_fatal_error("Unsupported element size");
6363 
6364   TargetLowering::CallLoweringInfo CLI(*this);
6365   CLI.setDebugLoc(dl)
6366       .setChain(Chain)
6367       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6368                     Type::getVoidTy(*getContext()),
6369                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6370                                       TLI->getPointerTy(getDataLayout())),
6371                     std::move(Args))
6372       .setDiscardResult()
6373       .setTailCall(isTailCall);
6374 
6375   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6376   return CallResult.second;
6377 }
6378 
6379 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6380                                 SDValue Src, SDValue Size, unsigned Align,
6381                                 bool isVol, bool isTailCall,
6382                                 MachinePointerInfo DstPtrInfo) {
6383   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6384 
6385   // Check to see if we should lower the memset to stores first.
6386   // For cases within the target-specified limits, this is the best choice.
6387   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6388   if (ConstantSize) {
6389     // Memset with size zero? Just return the original chain.
6390     if (ConstantSize->isNullValue())
6391       return Chain;
6392 
6393     SDValue Result =
6394       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6395                       Align, isVol, DstPtrInfo);
6396 
6397     if (Result.getNode())
6398       return Result;
6399   }
6400 
6401   // Then check to see if we should lower the memset with target-specific
6402   // code. If the target chooses to do this, this is the next best.
6403   if (TSI) {
6404     SDValue Result = TSI->EmitTargetCodeForMemset(
6405         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6406     if (Result.getNode())
6407       return Result;
6408   }
6409 
6410   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6411 
6412   // Emit a library call.
6413   TargetLowering::ArgListTy Args;
6414   TargetLowering::ArgListEntry Entry;
6415   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6416   Args.push_back(Entry);
6417   Entry.Node = Src;
6418   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6419   Args.push_back(Entry);
6420   Entry.Node = Size;
6421   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6422   Args.push_back(Entry);
6423 
6424   // FIXME: pass in SDLoc
6425   TargetLowering::CallLoweringInfo CLI(*this);
6426   CLI.setDebugLoc(dl)
6427       .setChain(Chain)
6428       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6429                     Dst.getValueType().getTypeForEVT(*getContext()),
6430                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6431                                       TLI->getPointerTy(getDataLayout())),
6432                     std::move(Args))
6433       .setDiscardResult()
6434       .setTailCall(isTailCall);
6435 
6436   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6437   return CallResult.second;
6438 }
6439 
6440 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6441                                       SDValue Dst, unsigned DstAlign,
6442                                       SDValue Value, SDValue Size, Type *SizeTy,
6443                                       unsigned ElemSz, bool isTailCall,
6444                                       MachinePointerInfo DstPtrInfo) {
6445   // Emit a library call.
6446   TargetLowering::ArgListTy Args;
6447   TargetLowering::ArgListEntry Entry;
6448   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6449   Entry.Node = Dst;
6450   Args.push_back(Entry);
6451 
6452   Entry.Ty = Type::getInt8Ty(*getContext());
6453   Entry.Node = Value;
6454   Args.push_back(Entry);
6455 
6456   Entry.Ty = SizeTy;
6457   Entry.Node = Size;
6458   Args.push_back(Entry);
6459 
6460   RTLIB::Libcall LibraryCall =
6461       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6462   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6463     report_fatal_error("Unsupported element size");
6464 
6465   TargetLowering::CallLoweringInfo CLI(*this);
6466   CLI.setDebugLoc(dl)
6467       .setChain(Chain)
6468       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6469                     Type::getVoidTy(*getContext()),
6470                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6471                                       TLI->getPointerTy(getDataLayout())),
6472                     std::move(Args))
6473       .setDiscardResult()
6474       .setTailCall(isTailCall);
6475 
6476   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6477   return CallResult.second;
6478 }
6479 
6480 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6481                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6482                                 MachineMemOperand *MMO) {
6483   FoldingSetNodeID ID;
6484   ID.AddInteger(MemVT.getRawBits());
6485   AddNodeIDNode(ID, Opcode, VTList, Ops);
6486   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6487   void* IP = nullptr;
6488   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6489     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6490     return SDValue(E, 0);
6491   }
6492 
6493   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6494                                     VTList, MemVT, MMO);
6495   createOperands(N, Ops);
6496 
6497   CSEMap.InsertNode(N, IP);
6498   InsertNode(N);
6499   return SDValue(N, 0);
6500 }
6501 
6502 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6503                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6504                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6505                                        MachineMemOperand *MMO) {
6506   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6507          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6508   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6509 
6510   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6511   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6512 }
6513 
6514 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6515                                 SDValue Chain, SDValue Ptr, SDValue Val,
6516                                 MachineMemOperand *MMO) {
6517   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6518           Opcode == ISD::ATOMIC_LOAD_SUB ||
6519           Opcode == ISD::ATOMIC_LOAD_AND ||
6520           Opcode == ISD::ATOMIC_LOAD_CLR ||
6521           Opcode == ISD::ATOMIC_LOAD_OR ||
6522           Opcode == ISD::ATOMIC_LOAD_XOR ||
6523           Opcode == ISD::ATOMIC_LOAD_NAND ||
6524           Opcode == ISD::ATOMIC_LOAD_MIN ||
6525           Opcode == ISD::ATOMIC_LOAD_MAX ||
6526           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6527           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6528           Opcode == ISD::ATOMIC_LOAD_FADD ||
6529           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6530           Opcode == ISD::ATOMIC_SWAP ||
6531           Opcode == ISD::ATOMIC_STORE) &&
6532          "Invalid Atomic Op");
6533 
6534   EVT VT = Val.getValueType();
6535 
6536   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6537                                                getVTList(VT, MVT::Other);
6538   SDValue Ops[] = {Chain, Ptr, Val};
6539   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6540 }
6541 
6542 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6543                                 EVT VT, SDValue Chain, SDValue Ptr,
6544                                 MachineMemOperand *MMO) {
6545   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6546 
6547   SDVTList VTs = getVTList(VT, MVT::Other);
6548   SDValue Ops[] = {Chain, Ptr};
6549   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6550 }
6551 
6552 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6553 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6554   if (Ops.size() == 1)
6555     return Ops[0];
6556 
6557   SmallVector<EVT, 4> VTs;
6558   VTs.reserve(Ops.size());
6559   for (unsigned i = 0; i < Ops.size(); ++i)
6560     VTs.push_back(Ops[i].getValueType());
6561   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6562 }
6563 
6564 SDValue SelectionDAG::getMemIntrinsicNode(
6565     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6566     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6567     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6568   if (Align == 0)  // Ensure that codegen never sees alignment 0
6569     Align = getEVTAlignment(MemVT);
6570 
6571   if (!Size)
6572     Size = MemVT.getStoreSize();
6573 
6574   MachineFunction &MF = getMachineFunction();
6575   MachineMemOperand *MMO =
6576       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6577 
6578   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6579 }
6580 
6581 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6582                                           SDVTList VTList,
6583                                           ArrayRef<SDValue> Ops, EVT MemVT,
6584                                           MachineMemOperand *MMO) {
6585   assert((Opcode == ISD::INTRINSIC_VOID ||
6586           Opcode == ISD::INTRINSIC_W_CHAIN ||
6587           Opcode == ISD::PREFETCH ||
6588           Opcode == ISD::LIFETIME_START ||
6589           Opcode == ISD::LIFETIME_END ||
6590           ((int)Opcode <= std::numeric_limits<int>::max() &&
6591            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6592          "Opcode is not a memory-accessing opcode!");
6593 
6594   // Memoize the node unless it returns a flag.
6595   MemIntrinsicSDNode *N;
6596   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6597     FoldingSetNodeID ID;
6598     AddNodeIDNode(ID, Opcode, VTList, Ops);
6599     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6600         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6601     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6602     void *IP = nullptr;
6603     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6604       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6605       return SDValue(E, 0);
6606     }
6607 
6608     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6609                                       VTList, MemVT, MMO);
6610     createOperands(N, Ops);
6611 
6612   CSEMap.InsertNode(N, IP);
6613   } else {
6614     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6615                                       VTList, MemVT, MMO);
6616     createOperands(N, Ops);
6617   }
6618   InsertNode(N);
6619   SDValue V(N, 0);
6620   NewSDValueDbgMsg(V, "Creating new node: ", this);
6621   return V;
6622 }
6623 
6624 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6625                                       SDValue Chain, int FrameIndex,
6626                                       int64_t Size, int64_t Offset) {
6627   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6628   const auto VTs = getVTList(MVT::Other);
6629   SDValue Ops[2] = {
6630       Chain,
6631       getFrameIndex(FrameIndex,
6632                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6633                     true)};
6634 
6635   FoldingSetNodeID ID;
6636   AddNodeIDNode(ID, Opcode, VTs, Ops);
6637   ID.AddInteger(FrameIndex);
6638   ID.AddInteger(Size);
6639   ID.AddInteger(Offset);
6640   void *IP = nullptr;
6641   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6642     return SDValue(E, 0);
6643 
6644   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6645       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6646   createOperands(N, Ops);
6647   CSEMap.InsertNode(N, IP);
6648   InsertNode(N);
6649   SDValue V(N, 0);
6650   NewSDValueDbgMsg(V, "Creating new node: ", this);
6651   return V;
6652 }
6653 
6654 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6655 /// MachinePointerInfo record from it.  This is particularly useful because the
6656 /// code generator has many cases where it doesn't bother passing in a
6657 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6658 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6659                                            SelectionDAG &DAG, SDValue Ptr,
6660                                            int64_t Offset = 0) {
6661   // If this is FI+Offset, we can model it.
6662   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6663     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6664                                              FI->getIndex(), Offset);
6665 
6666   // If this is (FI+Offset1)+Offset2, we can model it.
6667   if (Ptr.getOpcode() != ISD::ADD ||
6668       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6669       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6670     return Info;
6671 
6672   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6673   return MachinePointerInfo::getFixedStack(
6674       DAG.getMachineFunction(), FI,
6675       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6676 }
6677 
6678 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6679 /// MachinePointerInfo record from it.  This is particularly useful because the
6680 /// code generator has many cases where it doesn't bother passing in a
6681 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6682 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6683                                            SelectionDAG &DAG, SDValue Ptr,
6684                                            SDValue OffsetOp) {
6685   // If the 'Offset' value isn't a constant, we can't handle this.
6686   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6687     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6688   if (OffsetOp.isUndef())
6689     return InferPointerInfo(Info, DAG, Ptr);
6690   return Info;
6691 }
6692 
6693 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6694                               EVT VT, const SDLoc &dl, SDValue Chain,
6695                               SDValue Ptr, SDValue Offset,
6696                               MachinePointerInfo PtrInfo, EVT MemVT,
6697                               unsigned Alignment,
6698                               MachineMemOperand::Flags MMOFlags,
6699                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6700   assert(Chain.getValueType() == MVT::Other &&
6701         "Invalid chain type");
6702   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6703     Alignment = getEVTAlignment(MemVT);
6704 
6705   MMOFlags |= MachineMemOperand::MOLoad;
6706   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6707   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6708   // clients.
6709   if (PtrInfo.V.isNull())
6710     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6711 
6712   MachineFunction &MF = getMachineFunction();
6713   MachineMemOperand *MMO = MF.getMachineMemOperand(
6714       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6715   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6716 }
6717 
6718 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6719                               EVT VT, const SDLoc &dl, SDValue Chain,
6720                               SDValue Ptr, SDValue Offset, EVT MemVT,
6721                               MachineMemOperand *MMO) {
6722   if (VT == MemVT) {
6723     ExtType = ISD::NON_EXTLOAD;
6724   } else if (ExtType == ISD::NON_EXTLOAD) {
6725     assert(VT == MemVT && "Non-extending load from different memory type!");
6726   } else {
6727     // Extending load.
6728     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6729            "Should only be an extending load, not truncating!");
6730     assert(VT.isInteger() == MemVT.isInteger() &&
6731            "Cannot convert from FP to Int or Int -> FP!");
6732     assert(VT.isVector() == MemVT.isVector() &&
6733            "Cannot use an ext load to convert to or from a vector!");
6734     assert((!VT.isVector() ||
6735             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6736            "Cannot use an ext load to change the number of vector elements!");
6737   }
6738 
6739   bool Indexed = AM != ISD::UNINDEXED;
6740   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6741 
6742   SDVTList VTs = Indexed ?
6743     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6744   SDValue Ops[] = { Chain, Ptr, Offset };
6745   FoldingSetNodeID ID;
6746   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6747   ID.AddInteger(MemVT.getRawBits());
6748   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6749       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6750   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6751   void *IP = nullptr;
6752   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6753     cast<LoadSDNode>(E)->refineAlignment(MMO);
6754     return SDValue(E, 0);
6755   }
6756   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6757                                   ExtType, MemVT, MMO);
6758   createOperands(N, Ops);
6759 
6760   CSEMap.InsertNode(N, IP);
6761   InsertNode(N);
6762   SDValue V(N, 0);
6763   NewSDValueDbgMsg(V, "Creating new node: ", this);
6764   return V;
6765 }
6766 
6767 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6768                               SDValue Ptr, MachinePointerInfo PtrInfo,
6769                               unsigned Alignment,
6770                               MachineMemOperand::Flags MMOFlags,
6771                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6772   SDValue Undef = getUNDEF(Ptr.getValueType());
6773   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6774                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6775 }
6776 
6777 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6778                               SDValue Ptr, MachineMemOperand *MMO) {
6779   SDValue Undef = getUNDEF(Ptr.getValueType());
6780   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6781                  VT, MMO);
6782 }
6783 
6784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6785                                  EVT VT, SDValue Chain, SDValue Ptr,
6786                                  MachinePointerInfo PtrInfo, EVT MemVT,
6787                                  unsigned Alignment,
6788                                  MachineMemOperand::Flags MMOFlags,
6789                                  const AAMDNodes &AAInfo) {
6790   SDValue Undef = getUNDEF(Ptr.getValueType());
6791   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6792                  MemVT, Alignment, MMOFlags, AAInfo);
6793 }
6794 
6795 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6796                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6797                                  MachineMemOperand *MMO) {
6798   SDValue Undef = getUNDEF(Ptr.getValueType());
6799   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6800                  MemVT, MMO);
6801 }
6802 
6803 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6804                                      SDValue Base, SDValue Offset,
6805                                      ISD::MemIndexedMode AM) {
6806   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6807   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6808   // Don't propagate the invariant or dereferenceable flags.
6809   auto MMOFlags =
6810       LD->getMemOperand()->getFlags() &
6811       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6812   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6813                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6814                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6815                  LD->getAAInfo());
6816 }
6817 
6818 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6819                                SDValue Ptr, MachinePointerInfo PtrInfo,
6820                                unsigned Alignment,
6821                                MachineMemOperand::Flags MMOFlags,
6822                                const AAMDNodes &AAInfo) {
6823   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6824   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6825     Alignment = getEVTAlignment(Val.getValueType());
6826 
6827   MMOFlags |= MachineMemOperand::MOStore;
6828   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6829 
6830   if (PtrInfo.V.isNull())
6831     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6832 
6833   MachineFunction &MF = getMachineFunction();
6834   MachineMemOperand *MMO = MF.getMachineMemOperand(
6835       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6836   return getStore(Chain, dl, Val, Ptr, MMO);
6837 }
6838 
6839 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6840                                SDValue Ptr, MachineMemOperand *MMO) {
6841   assert(Chain.getValueType() == MVT::Other &&
6842         "Invalid chain type");
6843   EVT VT = Val.getValueType();
6844   SDVTList VTs = getVTList(MVT::Other);
6845   SDValue Undef = getUNDEF(Ptr.getValueType());
6846   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6847   FoldingSetNodeID ID;
6848   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6849   ID.AddInteger(VT.getRawBits());
6850   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6851       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6852   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6853   void *IP = nullptr;
6854   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6855     cast<StoreSDNode>(E)->refineAlignment(MMO);
6856     return SDValue(E, 0);
6857   }
6858   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6859                                    ISD::UNINDEXED, false, VT, MMO);
6860   createOperands(N, Ops);
6861 
6862   CSEMap.InsertNode(N, IP);
6863   InsertNode(N);
6864   SDValue V(N, 0);
6865   NewSDValueDbgMsg(V, "Creating new node: ", this);
6866   return V;
6867 }
6868 
6869 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6870                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6871                                     EVT SVT, unsigned Alignment,
6872                                     MachineMemOperand::Flags MMOFlags,
6873                                     const AAMDNodes &AAInfo) {
6874   assert(Chain.getValueType() == MVT::Other &&
6875         "Invalid chain type");
6876   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6877     Alignment = getEVTAlignment(SVT);
6878 
6879   MMOFlags |= MachineMemOperand::MOStore;
6880   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6881 
6882   if (PtrInfo.V.isNull())
6883     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6884 
6885   MachineFunction &MF = getMachineFunction();
6886   MachineMemOperand *MMO = MF.getMachineMemOperand(
6887       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6888   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6889 }
6890 
6891 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6892                                     SDValue Ptr, EVT SVT,
6893                                     MachineMemOperand *MMO) {
6894   EVT VT = Val.getValueType();
6895 
6896   assert(Chain.getValueType() == MVT::Other &&
6897         "Invalid chain type");
6898   if (VT == SVT)
6899     return getStore(Chain, dl, Val, Ptr, MMO);
6900 
6901   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6902          "Should only be a truncating store, not extending!");
6903   assert(VT.isInteger() == SVT.isInteger() &&
6904          "Can't do FP-INT conversion!");
6905   assert(VT.isVector() == SVT.isVector() &&
6906          "Cannot use trunc store to convert to or from a vector!");
6907   assert((!VT.isVector() ||
6908           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6909          "Cannot use trunc store to change the number of vector elements!");
6910 
6911   SDVTList VTs = getVTList(MVT::Other);
6912   SDValue Undef = getUNDEF(Ptr.getValueType());
6913   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6914   FoldingSetNodeID ID;
6915   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6916   ID.AddInteger(SVT.getRawBits());
6917   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6918       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6919   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6920   void *IP = nullptr;
6921   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6922     cast<StoreSDNode>(E)->refineAlignment(MMO);
6923     return SDValue(E, 0);
6924   }
6925   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6926                                    ISD::UNINDEXED, true, SVT, MMO);
6927   createOperands(N, Ops);
6928 
6929   CSEMap.InsertNode(N, IP);
6930   InsertNode(N);
6931   SDValue V(N, 0);
6932   NewSDValueDbgMsg(V, "Creating new node: ", this);
6933   return V;
6934 }
6935 
6936 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6937                                       SDValue Base, SDValue Offset,
6938                                       ISD::MemIndexedMode AM) {
6939   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6940   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6941   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6942   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6943   FoldingSetNodeID ID;
6944   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6945   ID.AddInteger(ST->getMemoryVT().getRawBits());
6946   ID.AddInteger(ST->getRawSubclassData());
6947   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6948   void *IP = nullptr;
6949   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6950     return SDValue(E, 0);
6951 
6952   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6953                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6954                                    ST->getMemOperand());
6955   createOperands(N, Ops);
6956 
6957   CSEMap.InsertNode(N, IP);
6958   InsertNode(N);
6959   SDValue V(N, 0);
6960   NewSDValueDbgMsg(V, "Creating new node: ", this);
6961   return V;
6962 }
6963 
6964 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6965                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6966                                     EVT MemVT, MachineMemOperand *MMO,
6967                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6968   SDVTList VTs = getVTList(VT, MVT::Other);
6969   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6970   FoldingSetNodeID ID;
6971   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6972   ID.AddInteger(MemVT.getRawBits());
6973   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6974       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6975   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6976   void *IP = nullptr;
6977   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6978     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6979     return SDValue(E, 0);
6980   }
6981   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6982                                         ExtTy, isExpanding, MemVT, MMO);
6983   createOperands(N, Ops);
6984 
6985   CSEMap.InsertNode(N, IP);
6986   InsertNode(N);
6987   SDValue V(N, 0);
6988   NewSDValueDbgMsg(V, "Creating new node: ", this);
6989   return V;
6990 }
6991 
6992 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6993                                      SDValue Val, SDValue Ptr, SDValue Mask,
6994                                      EVT MemVT, MachineMemOperand *MMO,
6995                                      bool IsTruncating, bool IsCompressing) {
6996   assert(Chain.getValueType() == MVT::Other &&
6997         "Invalid chain type");
6998   SDVTList VTs = getVTList(MVT::Other);
6999   SDValue Ops[] = { Chain, Val, Ptr, Mask };
7000   FoldingSetNodeID ID;
7001   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7002   ID.AddInteger(MemVT.getRawBits());
7003   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7004       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
7005   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7006   void *IP = nullptr;
7007   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7008     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7009     return SDValue(E, 0);
7010   }
7011   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7012                                          IsTruncating, IsCompressing, MemVT, MMO);
7013   createOperands(N, Ops);
7014 
7015   CSEMap.InsertNode(N, IP);
7016   InsertNode(N);
7017   SDValue V(N, 0);
7018   NewSDValueDbgMsg(V, "Creating new node: ", this);
7019   return V;
7020 }
7021 
7022 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7023                                       ArrayRef<SDValue> Ops,
7024                                       MachineMemOperand *MMO,
7025                                       ISD::MemIndexType IndexType) {
7026   assert(Ops.size() == 6 && "Incompatible number of operands");
7027 
7028   FoldingSetNodeID ID;
7029   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7030   ID.AddInteger(VT.getRawBits());
7031   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7032       dl.getIROrder(), VTs, VT, MMO, IndexType));
7033   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7034   void *IP = nullptr;
7035   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7036     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7037     return SDValue(E, 0);
7038   }
7039 
7040   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7041                                           VTs, VT, MMO, IndexType);
7042   createOperands(N, Ops);
7043 
7044   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7045          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7046   assert(N->getMask().getValueType().getVectorNumElements() ==
7047              N->getValueType(0).getVectorNumElements() &&
7048          "Vector width mismatch between mask and data");
7049   assert(N->getIndex().getValueType().getVectorNumElements() >=
7050              N->getValueType(0).getVectorNumElements() &&
7051          "Vector width mismatch between index and data");
7052   assert(isa<ConstantSDNode>(N->getScale()) &&
7053          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7054          "Scale should be a constant power of 2");
7055 
7056   CSEMap.InsertNode(N, IP);
7057   InsertNode(N);
7058   SDValue V(N, 0);
7059   NewSDValueDbgMsg(V, "Creating new node: ", this);
7060   return V;
7061 }
7062 
7063 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7064                                        ArrayRef<SDValue> Ops,
7065                                        MachineMemOperand *MMO,
7066                                        ISD::MemIndexType IndexType) {
7067   assert(Ops.size() == 6 && "Incompatible number of operands");
7068 
7069   FoldingSetNodeID ID;
7070   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7071   ID.AddInteger(VT.getRawBits());
7072   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7073       dl.getIROrder(), VTs, VT, MMO, IndexType));
7074   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7075   void *IP = nullptr;
7076   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7077     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7078     return SDValue(E, 0);
7079   }
7080   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7081                                            VTs, VT, MMO, IndexType);
7082   createOperands(N, Ops);
7083 
7084   assert(N->getMask().getValueType().getVectorNumElements() ==
7085              N->getValue().getValueType().getVectorNumElements() &&
7086          "Vector width mismatch between mask and data");
7087   assert(N->getIndex().getValueType().getVectorNumElements() >=
7088              N->getValue().getValueType().getVectorNumElements() &&
7089          "Vector width mismatch between index and data");
7090   assert(isa<ConstantSDNode>(N->getScale()) &&
7091          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7092          "Scale should be a constant power of 2");
7093 
7094   CSEMap.InsertNode(N, IP);
7095   InsertNode(N);
7096   SDValue V(N, 0);
7097   NewSDValueDbgMsg(V, "Creating new node: ", this);
7098   return V;
7099 }
7100 
7101 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7102   // select undef, T, F --> T (if T is a constant), otherwise F
7103   // select, ?, undef, F --> F
7104   // select, ?, T, undef --> T
7105   if (Cond.isUndef())
7106     return isConstantValueOfAnyType(T) ? T : F;
7107   if (T.isUndef())
7108     return F;
7109   if (F.isUndef())
7110     return T;
7111 
7112   // select true, T, F --> T
7113   // select false, T, F --> F
7114   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7115     return CondC->isNullValue() ? F : T;
7116 
7117   // TODO: This should simplify VSELECT with constant condition using something
7118   // like this (but check boolean contents to be complete?):
7119   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7120   //    return T;
7121   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7122   //    return F;
7123 
7124   // select ?, T, T --> T
7125   if (T == F)
7126     return T;
7127 
7128   return SDValue();
7129 }
7130 
7131 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7132   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7133   if (X.isUndef())
7134     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7135   // shift X, undef --> undef (because it may shift by the bitwidth)
7136   if (Y.isUndef())
7137     return getUNDEF(X.getValueType());
7138 
7139   // shift 0, Y --> 0
7140   // shift X, 0 --> X
7141   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7142     return X;
7143 
7144   // shift X, C >= bitwidth(X) --> undef
7145   // All vector elements must be too big (or undef) to avoid partial undefs.
7146   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7147     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7148   };
7149   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7150     return getUNDEF(X.getValueType());
7151 
7152   return SDValue();
7153 }
7154 
7155 // TODO: Use fast-math-flags to enable more simplifications.
7156 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7157   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7158   if (!YC)
7159     return SDValue();
7160 
7161   // X + -0.0 --> X
7162   if (Opcode == ISD::FADD)
7163     if (YC->getValueAPF().isNegZero())
7164       return X;
7165 
7166   // X - +0.0 --> X
7167   if (Opcode == ISD::FSUB)
7168     if (YC->getValueAPF().isPosZero())
7169       return X;
7170 
7171   // X * 1.0 --> X
7172   // X / 1.0 --> X
7173   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7174     if (YC->getValueAPF().isExactlyValue(1.0))
7175       return X;
7176 
7177   return SDValue();
7178 }
7179 
7180 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7181                                SDValue Ptr, SDValue SV, unsigned Align) {
7182   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7183   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7184 }
7185 
7186 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7187                               ArrayRef<SDUse> Ops) {
7188   switch (Ops.size()) {
7189   case 0: return getNode(Opcode, DL, VT);
7190   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7191   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7192   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7193   default: break;
7194   }
7195 
7196   // Copy from an SDUse array into an SDValue array for use with
7197   // the regular getNode logic.
7198   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7199   return getNode(Opcode, DL, VT, NewOps);
7200 }
7201 
7202 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7203                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7204   unsigned NumOps = Ops.size();
7205   switch (NumOps) {
7206   case 0: return getNode(Opcode, DL, VT);
7207   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7208   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7209   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7210   default: break;
7211   }
7212 
7213   switch (Opcode) {
7214   default: break;
7215   case ISD::BUILD_VECTOR:
7216     // Attempt to simplify BUILD_VECTOR.
7217     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7218       return V;
7219     break;
7220   case ISD::CONCAT_VECTORS:
7221     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7222       return V;
7223     break;
7224   case ISD::SELECT_CC:
7225     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7226     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7227            "LHS and RHS of condition must have same type!");
7228     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7229            "True and False arms of SelectCC must have same type!");
7230     assert(Ops[2].getValueType() == VT &&
7231            "select_cc node must be of same type as true and false value!");
7232     break;
7233   case ISD::BR_CC:
7234     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7235     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7236            "LHS/RHS of comparison should match types!");
7237     break;
7238   }
7239 
7240   // Memoize nodes.
7241   SDNode *N;
7242   SDVTList VTs = getVTList(VT);
7243 
7244   if (VT != MVT::Glue) {
7245     FoldingSetNodeID ID;
7246     AddNodeIDNode(ID, Opcode, VTs, Ops);
7247     void *IP = nullptr;
7248 
7249     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7250       return SDValue(E, 0);
7251 
7252     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7253     createOperands(N, Ops);
7254 
7255     CSEMap.InsertNode(N, IP);
7256   } else {
7257     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7258     createOperands(N, Ops);
7259   }
7260 
7261   InsertNode(N);
7262   SDValue V(N, 0);
7263   NewSDValueDbgMsg(V, "Creating new node: ", this);
7264   return V;
7265 }
7266 
7267 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7268                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7269   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7270 }
7271 
7272 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7273                               ArrayRef<SDValue> Ops) {
7274   if (VTList.NumVTs == 1)
7275     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7276 
7277 #if 0
7278   switch (Opcode) {
7279   // FIXME: figure out how to safely handle things like
7280   // int foo(int x) { return 1 << (x & 255); }
7281   // int bar() { return foo(256); }
7282   case ISD::SRA_PARTS:
7283   case ISD::SRL_PARTS:
7284   case ISD::SHL_PARTS:
7285     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7286         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7287       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7288     else if (N3.getOpcode() == ISD::AND)
7289       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7290         // If the and is only masking out bits that cannot effect the shift,
7291         // eliminate the and.
7292         unsigned NumBits = VT.getScalarSizeInBits()*2;
7293         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7294           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7295       }
7296     break;
7297   }
7298 #endif
7299 
7300   // Memoize the node unless it returns a flag.
7301   SDNode *N;
7302   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7303     FoldingSetNodeID ID;
7304     AddNodeIDNode(ID, Opcode, VTList, Ops);
7305     void *IP = nullptr;
7306     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7307       return SDValue(E, 0);
7308 
7309     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7310     createOperands(N, Ops);
7311     CSEMap.InsertNode(N, IP);
7312   } else {
7313     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7314     createOperands(N, Ops);
7315   }
7316   InsertNode(N);
7317   SDValue V(N, 0);
7318   NewSDValueDbgMsg(V, "Creating new node: ", this);
7319   return V;
7320 }
7321 
7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7323                               SDVTList VTList) {
7324   return getNode(Opcode, DL, VTList, None);
7325 }
7326 
7327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7328                               SDValue N1) {
7329   SDValue Ops[] = { N1 };
7330   return getNode(Opcode, DL, VTList, Ops);
7331 }
7332 
7333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7334                               SDValue N1, SDValue N2) {
7335   SDValue Ops[] = { N1, N2 };
7336   return getNode(Opcode, DL, VTList, Ops);
7337 }
7338 
7339 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7340                               SDValue N1, SDValue N2, SDValue N3) {
7341   SDValue Ops[] = { N1, N2, N3 };
7342   return getNode(Opcode, DL, VTList, Ops);
7343 }
7344 
7345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7346                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7347   SDValue Ops[] = { N1, N2, N3, N4 };
7348   return getNode(Opcode, DL, VTList, Ops);
7349 }
7350 
7351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7352                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7353                               SDValue N5) {
7354   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7355   return getNode(Opcode, DL, VTList, Ops);
7356 }
7357 
7358 SDVTList SelectionDAG::getVTList(EVT VT) {
7359   return makeVTList(SDNode::getValueTypeList(VT), 1);
7360 }
7361 
7362 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7363   FoldingSetNodeID ID;
7364   ID.AddInteger(2U);
7365   ID.AddInteger(VT1.getRawBits());
7366   ID.AddInteger(VT2.getRawBits());
7367 
7368   void *IP = nullptr;
7369   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7370   if (!Result) {
7371     EVT *Array = Allocator.Allocate<EVT>(2);
7372     Array[0] = VT1;
7373     Array[1] = VT2;
7374     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7375     VTListMap.InsertNode(Result, IP);
7376   }
7377   return Result->getSDVTList();
7378 }
7379 
7380 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7381   FoldingSetNodeID ID;
7382   ID.AddInteger(3U);
7383   ID.AddInteger(VT1.getRawBits());
7384   ID.AddInteger(VT2.getRawBits());
7385   ID.AddInteger(VT3.getRawBits());
7386 
7387   void *IP = nullptr;
7388   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7389   if (!Result) {
7390     EVT *Array = Allocator.Allocate<EVT>(3);
7391     Array[0] = VT1;
7392     Array[1] = VT2;
7393     Array[2] = VT3;
7394     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7395     VTListMap.InsertNode(Result, IP);
7396   }
7397   return Result->getSDVTList();
7398 }
7399 
7400 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7401   FoldingSetNodeID ID;
7402   ID.AddInteger(4U);
7403   ID.AddInteger(VT1.getRawBits());
7404   ID.AddInteger(VT2.getRawBits());
7405   ID.AddInteger(VT3.getRawBits());
7406   ID.AddInteger(VT4.getRawBits());
7407 
7408   void *IP = nullptr;
7409   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7410   if (!Result) {
7411     EVT *Array = Allocator.Allocate<EVT>(4);
7412     Array[0] = VT1;
7413     Array[1] = VT2;
7414     Array[2] = VT3;
7415     Array[3] = VT4;
7416     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7417     VTListMap.InsertNode(Result, IP);
7418   }
7419   return Result->getSDVTList();
7420 }
7421 
7422 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7423   unsigned NumVTs = VTs.size();
7424   FoldingSetNodeID ID;
7425   ID.AddInteger(NumVTs);
7426   for (unsigned index = 0; index < NumVTs; index++) {
7427     ID.AddInteger(VTs[index].getRawBits());
7428   }
7429 
7430   void *IP = nullptr;
7431   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7432   if (!Result) {
7433     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7434     llvm::copy(VTs, Array);
7435     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7436     VTListMap.InsertNode(Result, IP);
7437   }
7438   return Result->getSDVTList();
7439 }
7440 
7441 
7442 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7443 /// specified operands.  If the resultant node already exists in the DAG,
7444 /// this does not modify the specified node, instead it returns the node that
7445 /// already exists.  If the resultant node does not exist in the DAG, the
7446 /// input node is returned.  As a degenerate case, if you specify the same
7447 /// input operands as the node already has, the input node is returned.
7448 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7449   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7450 
7451   // Check to see if there is no change.
7452   if (Op == N->getOperand(0)) return N;
7453 
7454   // See if the modified node already exists.
7455   void *InsertPos = nullptr;
7456   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7457     return Existing;
7458 
7459   // Nope it doesn't.  Remove the node from its current place in the maps.
7460   if (InsertPos)
7461     if (!RemoveNodeFromCSEMaps(N))
7462       InsertPos = nullptr;
7463 
7464   // Now we update the operands.
7465   N->OperandList[0].set(Op);
7466 
7467   updateDivergence(N);
7468   // If this gets put into a CSE map, add it.
7469   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7470   return N;
7471 }
7472 
7473 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7474   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7475 
7476   // Check to see if there is no change.
7477   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7478     return N;   // No operands changed, just return the input node.
7479 
7480   // See if the modified node already exists.
7481   void *InsertPos = nullptr;
7482   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7483     return Existing;
7484 
7485   // Nope it doesn't.  Remove the node from its current place in the maps.
7486   if (InsertPos)
7487     if (!RemoveNodeFromCSEMaps(N))
7488       InsertPos = nullptr;
7489 
7490   // Now we update the operands.
7491   if (N->OperandList[0] != Op1)
7492     N->OperandList[0].set(Op1);
7493   if (N->OperandList[1] != Op2)
7494     N->OperandList[1].set(Op2);
7495 
7496   updateDivergence(N);
7497   // If this gets put into a CSE map, add it.
7498   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7499   return N;
7500 }
7501 
7502 SDNode *SelectionDAG::
7503 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7504   SDValue Ops[] = { Op1, Op2, Op3 };
7505   return UpdateNodeOperands(N, Ops);
7506 }
7507 
7508 SDNode *SelectionDAG::
7509 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7510                    SDValue Op3, SDValue Op4) {
7511   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7512   return UpdateNodeOperands(N, Ops);
7513 }
7514 
7515 SDNode *SelectionDAG::
7516 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7517                    SDValue Op3, SDValue Op4, SDValue Op5) {
7518   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7519   return UpdateNodeOperands(N, Ops);
7520 }
7521 
7522 SDNode *SelectionDAG::
7523 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7524   unsigned NumOps = Ops.size();
7525   assert(N->getNumOperands() == NumOps &&
7526          "Update with wrong number of operands");
7527 
7528   // If no operands changed just return the input node.
7529   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7530     return N;
7531 
7532   // See if the modified node already exists.
7533   void *InsertPos = nullptr;
7534   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7535     return Existing;
7536 
7537   // Nope it doesn't.  Remove the node from its current place in the maps.
7538   if (InsertPos)
7539     if (!RemoveNodeFromCSEMaps(N))
7540       InsertPos = nullptr;
7541 
7542   // Now we update the operands.
7543   for (unsigned i = 0; i != NumOps; ++i)
7544     if (N->OperandList[i] != Ops[i])
7545       N->OperandList[i].set(Ops[i]);
7546 
7547   updateDivergence(N);
7548   // If this gets put into a CSE map, add it.
7549   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7550   return N;
7551 }
7552 
7553 /// DropOperands - Release the operands and set this node to have
7554 /// zero operands.
7555 void SDNode::DropOperands() {
7556   // Unlike the code in MorphNodeTo that does this, we don't need to
7557   // watch for dead nodes here.
7558   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7559     SDUse &Use = *I++;
7560     Use.set(SDValue());
7561   }
7562 }
7563 
7564 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7565                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7566   if (NewMemRefs.empty()) {
7567     N->clearMemRefs();
7568     return;
7569   }
7570 
7571   // Check if we can avoid allocating by storing a single reference directly.
7572   if (NewMemRefs.size() == 1) {
7573     N->MemRefs = NewMemRefs[0];
7574     N->NumMemRefs = 1;
7575     return;
7576   }
7577 
7578   MachineMemOperand **MemRefsBuffer =
7579       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7580   llvm::copy(NewMemRefs, MemRefsBuffer);
7581   N->MemRefs = MemRefsBuffer;
7582   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7583 }
7584 
7585 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7586 /// machine opcode.
7587 ///
7588 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7589                                    EVT VT) {
7590   SDVTList VTs = getVTList(VT);
7591   return SelectNodeTo(N, MachineOpc, VTs, None);
7592 }
7593 
7594 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7595                                    EVT VT, SDValue Op1) {
7596   SDVTList VTs = getVTList(VT);
7597   SDValue Ops[] = { Op1 };
7598   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7599 }
7600 
7601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7602                                    EVT VT, SDValue Op1,
7603                                    SDValue Op2) {
7604   SDVTList VTs = getVTList(VT);
7605   SDValue Ops[] = { Op1, Op2 };
7606   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7607 }
7608 
7609 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7610                                    EVT VT, SDValue Op1,
7611                                    SDValue Op2, SDValue Op3) {
7612   SDVTList VTs = getVTList(VT);
7613   SDValue Ops[] = { Op1, Op2, Op3 };
7614   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7615 }
7616 
7617 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7618                                    EVT VT, ArrayRef<SDValue> Ops) {
7619   SDVTList VTs = getVTList(VT);
7620   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7621 }
7622 
7623 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7624                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7625   SDVTList VTs = getVTList(VT1, VT2);
7626   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7627 }
7628 
7629 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7630                                    EVT VT1, EVT VT2) {
7631   SDVTList VTs = getVTList(VT1, VT2);
7632   return SelectNodeTo(N, MachineOpc, VTs, None);
7633 }
7634 
7635 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7636                                    EVT VT1, EVT VT2, EVT VT3,
7637                                    ArrayRef<SDValue> Ops) {
7638   SDVTList VTs = getVTList(VT1, VT2, VT3);
7639   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7640 }
7641 
7642 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7643                                    EVT VT1, EVT VT2,
7644                                    SDValue Op1, SDValue Op2) {
7645   SDVTList VTs = getVTList(VT1, VT2);
7646   SDValue Ops[] = { Op1, Op2 };
7647   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7648 }
7649 
7650 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7651                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7652   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7653   // Reset the NodeID to -1.
7654   New->setNodeId(-1);
7655   if (New != N) {
7656     ReplaceAllUsesWith(N, New);
7657     RemoveDeadNode(N);
7658   }
7659   return New;
7660 }
7661 
7662 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7663 /// the line number information on the merged node since it is not possible to
7664 /// preserve the information that operation is associated with multiple lines.
7665 /// This will make the debugger working better at -O0, were there is a higher
7666 /// probability having other instructions associated with that line.
7667 ///
7668 /// For IROrder, we keep the smaller of the two
7669 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7670   DebugLoc NLoc = N->getDebugLoc();
7671   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7672     N->setDebugLoc(DebugLoc());
7673   }
7674   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7675   N->setIROrder(Order);
7676   return N;
7677 }
7678 
7679 /// MorphNodeTo - This *mutates* the specified node to have the specified
7680 /// return type, opcode, and operands.
7681 ///
7682 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7683 /// node of the specified opcode and operands, it returns that node instead of
7684 /// the current one.  Note that the SDLoc need not be the same.
7685 ///
7686 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7687 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7688 /// node, and because it doesn't require CSE recalculation for any of
7689 /// the node's users.
7690 ///
7691 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7692 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7693 /// the legalizer which maintain worklists that would need to be updated when
7694 /// deleting things.
7695 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7696                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7697   // If an identical node already exists, use it.
7698   void *IP = nullptr;
7699   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7700     FoldingSetNodeID ID;
7701     AddNodeIDNode(ID, Opc, VTs, Ops);
7702     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7703       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7704   }
7705 
7706   if (!RemoveNodeFromCSEMaps(N))
7707     IP = nullptr;
7708 
7709   // Start the morphing.
7710   N->NodeType = Opc;
7711   N->ValueList = VTs.VTs;
7712   N->NumValues = VTs.NumVTs;
7713 
7714   // Clear the operands list, updating used nodes to remove this from their
7715   // use list.  Keep track of any operands that become dead as a result.
7716   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7717   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7718     SDUse &Use = *I++;
7719     SDNode *Used = Use.getNode();
7720     Use.set(SDValue());
7721     if (Used->use_empty())
7722       DeadNodeSet.insert(Used);
7723   }
7724 
7725   // For MachineNode, initialize the memory references information.
7726   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7727     MN->clearMemRefs();
7728 
7729   // Swap for an appropriately sized array from the recycler.
7730   removeOperands(N);
7731   createOperands(N, Ops);
7732 
7733   // Delete any nodes that are still dead after adding the uses for the
7734   // new operands.
7735   if (!DeadNodeSet.empty()) {
7736     SmallVector<SDNode *, 16> DeadNodes;
7737     for (SDNode *N : DeadNodeSet)
7738       if (N->use_empty())
7739         DeadNodes.push_back(N);
7740     RemoveDeadNodes(DeadNodes);
7741   }
7742 
7743   if (IP)
7744     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7745   return N;
7746 }
7747 
7748 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7749   unsigned OrigOpc = Node->getOpcode();
7750   unsigned NewOpc;
7751   switch (OrigOpc) {
7752   default:
7753     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7754 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7755   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7756 #include "llvm/IR/ConstrainedOps.def"
7757   }
7758 
7759   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7760 
7761   // We're taking this node out of the chain, so we need to re-link things.
7762   SDValue InputChain = Node->getOperand(0);
7763   SDValue OutputChain = SDValue(Node, 1);
7764   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7765 
7766   SmallVector<SDValue, 3> Ops;
7767   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7768     Ops.push_back(Node->getOperand(i));
7769 
7770   SDVTList VTs = getVTList(Node->getValueType(0));
7771   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7772 
7773   // MorphNodeTo can operate in two ways: if an existing node with the
7774   // specified operands exists, it can just return it.  Otherwise, it
7775   // updates the node in place to have the requested operands.
7776   if (Res == Node) {
7777     // If we updated the node in place, reset the node ID.  To the isel,
7778     // this should be just like a newly allocated machine node.
7779     Res->setNodeId(-1);
7780   } else {
7781     ReplaceAllUsesWith(Node, Res);
7782     RemoveDeadNode(Node);
7783   }
7784 
7785   return Res;
7786 }
7787 
7788 /// getMachineNode - These are used for target selectors to create a new node
7789 /// with specified return type(s), MachineInstr opcode, and operands.
7790 ///
7791 /// Note that getMachineNode returns the resultant node.  If there is already a
7792 /// node of the specified opcode and operands, it returns that node instead of
7793 /// the current one.
7794 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7795                                             EVT VT) {
7796   SDVTList VTs = getVTList(VT);
7797   return getMachineNode(Opcode, dl, VTs, None);
7798 }
7799 
7800 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7801                                             EVT VT, SDValue Op1) {
7802   SDVTList VTs = getVTList(VT);
7803   SDValue Ops[] = { Op1 };
7804   return getMachineNode(Opcode, dl, VTs, Ops);
7805 }
7806 
7807 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7808                                             EVT VT, SDValue Op1, SDValue Op2) {
7809   SDVTList VTs = getVTList(VT);
7810   SDValue Ops[] = { Op1, Op2 };
7811   return getMachineNode(Opcode, dl, VTs, Ops);
7812 }
7813 
7814 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7815                                             EVT VT, SDValue Op1, SDValue Op2,
7816                                             SDValue Op3) {
7817   SDVTList VTs = getVTList(VT);
7818   SDValue Ops[] = { Op1, Op2, Op3 };
7819   return getMachineNode(Opcode, dl, VTs, Ops);
7820 }
7821 
7822 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7823                                             EVT VT, ArrayRef<SDValue> Ops) {
7824   SDVTList VTs = getVTList(VT);
7825   return getMachineNode(Opcode, dl, VTs, Ops);
7826 }
7827 
7828 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7829                                             EVT VT1, EVT VT2, SDValue Op1,
7830                                             SDValue Op2) {
7831   SDVTList VTs = getVTList(VT1, VT2);
7832   SDValue Ops[] = { Op1, Op2 };
7833   return getMachineNode(Opcode, dl, VTs, Ops);
7834 }
7835 
7836 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7837                                             EVT VT1, EVT VT2, SDValue Op1,
7838                                             SDValue Op2, SDValue Op3) {
7839   SDVTList VTs = getVTList(VT1, VT2);
7840   SDValue Ops[] = { Op1, Op2, Op3 };
7841   return getMachineNode(Opcode, dl, VTs, Ops);
7842 }
7843 
7844 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7845                                             EVT VT1, EVT VT2,
7846                                             ArrayRef<SDValue> Ops) {
7847   SDVTList VTs = getVTList(VT1, VT2);
7848   return getMachineNode(Opcode, dl, VTs, Ops);
7849 }
7850 
7851 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7852                                             EVT VT1, EVT VT2, EVT VT3,
7853                                             SDValue Op1, SDValue Op2) {
7854   SDVTList VTs = getVTList(VT1, VT2, VT3);
7855   SDValue Ops[] = { Op1, Op2 };
7856   return getMachineNode(Opcode, dl, VTs, Ops);
7857 }
7858 
7859 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7860                                             EVT VT1, EVT VT2, EVT VT3,
7861                                             SDValue Op1, SDValue Op2,
7862                                             SDValue Op3) {
7863   SDVTList VTs = getVTList(VT1, VT2, VT3);
7864   SDValue Ops[] = { Op1, Op2, Op3 };
7865   return getMachineNode(Opcode, dl, VTs, Ops);
7866 }
7867 
7868 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7869                                             EVT VT1, EVT VT2, EVT VT3,
7870                                             ArrayRef<SDValue> Ops) {
7871   SDVTList VTs = getVTList(VT1, VT2, VT3);
7872   return getMachineNode(Opcode, dl, VTs, Ops);
7873 }
7874 
7875 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7876                                             ArrayRef<EVT> ResultTys,
7877                                             ArrayRef<SDValue> Ops) {
7878   SDVTList VTs = getVTList(ResultTys);
7879   return getMachineNode(Opcode, dl, VTs, Ops);
7880 }
7881 
7882 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7883                                             SDVTList VTs,
7884                                             ArrayRef<SDValue> Ops) {
7885   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7886   MachineSDNode *N;
7887   void *IP = nullptr;
7888 
7889   if (DoCSE) {
7890     FoldingSetNodeID ID;
7891     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7892     IP = nullptr;
7893     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7894       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7895     }
7896   }
7897 
7898   // Allocate a new MachineSDNode.
7899   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7900   createOperands(N, Ops);
7901 
7902   if (DoCSE)
7903     CSEMap.InsertNode(N, IP);
7904 
7905   InsertNode(N);
7906   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
7907   return N;
7908 }
7909 
7910 /// getTargetExtractSubreg - A convenience function for creating
7911 /// TargetOpcode::EXTRACT_SUBREG nodes.
7912 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7913                                              SDValue Operand) {
7914   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7915   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7916                                   VT, Operand, SRIdxVal);
7917   return SDValue(Subreg, 0);
7918 }
7919 
7920 /// getTargetInsertSubreg - A convenience function for creating
7921 /// TargetOpcode::INSERT_SUBREG nodes.
7922 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7923                                             SDValue Operand, SDValue Subreg) {
7924   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7925   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7926                                   VT, Operand, Subreg, SRIdxVal);
7927   return SDValue(Result, 0);
7928 }
7929 
7930 /// getNodeIfExists - Get the specified node if it's already available, or
7931 /// else return NULL.
7932 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7933                                       ArrayRef<SDValue> Ops,
7934                                       const SDNodeFlags Flags) {
7935   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7936     FoldingSetNodeID ID;
7937     AddNodeIDNode(ID, Opcode, VTList, Ops);
7938     void *IP = nullptr;
7939     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7940       E->intersectFlagsWith(Flags);
7941       return E;
7942     }
7943   }
7944   return nullptr;
7945 }
7946 
7947 /// getDbgValue - Creates a SDDbgValue node.
7948 ///
7949 /// SDNode
7950 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7951                                       SDNode *N, unsigned R, bool IsIndirect,
7952                                       const DebugLoc &DL, unsigned O) {
7953   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7954          "Expected inlined-at fields to agree");
7955   return new (DbgInfo->getAlloc())
7956       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7957 }
7958 
7959 /// Constant
7960 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7961                                               DIExpression *Expr,
7962                                               const Value *C,
7963                                               const DebugLoc &DL, unsigned O) {
7964   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7965          "Expected inlined-at fields to agree");
7966   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7967 }
7968 
7969 /// FrameIndex
7970 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7971                                                 DIExpression *Expr, unsigned FI,
7972                                                 bool IsIndirect,
7973                                                 const DebugLoc &DL,
7974                                                 unsigned O) {
7975   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7976          "Expected inlined-at fields to agree");
7977   return new (DbgInfo->getAlloc())
7978       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7979 }
7980 
7981 /// VReg
7982 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7983                                           DIExpression *Expr,
7984                                           unsigned VReg, bool IsIndirect,
7985                                           const DebugLoc &DL, unsigned O) {
7986   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7987          "Expected inlined-at fields to agree");
7988   return new (DbgInfo->getAlloc())
7989       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7990 }
7991 
7992 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7993                                      unsigned OffsetInBits, unsigned SizeInBits,
7994                                      bool InvalidateDbg) {
7995   SDNode *FromNode = From.getNode();
7996   SDNode *ToNode = To.getNode();
7997   assert(FromNode && ToNode && "Can't modify dbg values");
7998 
7999   // PR35338
8000   // TODO: assert(From != To && "Redundant dbg value transfer");
8001   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8002   if (From == To || FromNode == ToNode)
8003     return;
8004 
8005   if (!FromNode->getHasDebugValue())
8006     return;
8007 
8008   SmallVector<SDDbgValue *, 2> ClonedDVs;
8009   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8010     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8011       continue;
8012 
8013     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8014 
8015     // Just transfer the dbg value attached to From.
8016     if (Dbg->getResNo() != From.getResNo())
8017       continue;
8018 
8019     DIVariable *Var = Dbg->getVariable();
8020     auto *Expr = Dbg->getExpression();
8021     // If a fragment is requested, update the expression.
8022     if (SizeInBits) {
8023       // When splitting a larger (e.g., sign-extended) value whose
8024       // lower bits are described with an SDDbgValue, do not attempt
8025       // to transfer the SDDbgValue to the upper bits.
8026       if (auto FI = Expr->getFragmentInfo())
8027         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8028           continue;
8029       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8030                                                              SizeInBits);
8031       if (!Fragment)
8032         continue;
8033       Expr = *Fragment;
8034     }
8035     // Clone the SDDbgValue and move it to To.
8036     SDDbgValue *Clone =
8037         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8038                     Dbg->getDebugLoc(), Dbg->getOrder());
8039     ClonedDVs.push_back(Clone);
8040 
8041     if (InvalidateDbg) {
8042       // Invalidate value and indicate the SDDbgValue should not be emitted.
8043       Dbg->setIsInvalidated();
8044       Dbg->setIsEmitted();
8045     }
8046   }
8047 
8048   for (SDDbgValue *Dbg : ClonedDVs)
8049     AddDbgValue(Dbg, ToNode, false);
8050 }
8051 
8052 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8053   if (!N.getHasDebugValue())
8054     return;
8055 
8056   SmallVector<SDDbgValue *, 2> ClonedDVs;
8057   for (auto DV : GetDbgValues(&N)) {
8058     if (DV->isInvalidated())
8059       continue;
8060     switch (N.getOpcode()) {
8061     default:
8062       break;
8063     case ISD::ADD:
8064       SDValue N0 = N.getOperand(0);
8065       SDValue N1 = N.getOperand(1);
8066       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8067           isConstantIntBuildVectorOrConstantInt(N1)) {
8068         uint64_t Offset = N.getConstantOperandVal(1);
8069         // Rewrite an ADD constant node into a DIExpression. Since we are
8070         // performing arithmetic to compute the variable's *value* in the
8071         // DIExpression, we need to mark the expression with a
8072         // DW_OP_stack_value.
8073         auto *DIExpr = DV->getExpression();
8074         DIExpr =
8075             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8076         SDDbgValue *Clone =
8077             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8078                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8079         ClonedDVs.push_back(Clone);
8080         DV->setIsInvalidated();
8081         DV->setIsEmitted();
8082         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8083                    N0.getNode()->dumprFull(this);
8084                    dbgs() << " into " << *DIExpr << '\n');
8085       }
8086     }
8087   }
8088 
8089   for (SDDbgValue *Dbg : ClonedDVs)
8090     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8091 }
8092 
8093 /// Creates a SDDbgLabel node.
8094 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8095                                       const DebugLoc &DL, unsigned O) {
8096   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8097          "Expected inlined-at fields to agree");
8098   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8099 }
8100 
8101 namespace {
8102 
8103 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8104 /// pointed to by a use iterator is deleted, increment the use iterator
8105 /// so that it doesn't dangle.
8106 ///
8107 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8108   SDNode::use_iterator &UI;
8109   SDNode::use_iterator &UE;
8110 
8111   void NodeDeleted(SDNode *N, SDNode *E) override {
8112     // Increment the iterator as needed.
8113     while (UI != UE && N == *UI)
8114       ++UI;
8115   }
8116 
8117 public:
8118   RAUWUpdateListener(SelectionDAG &d,
8119                      SDNode::use_iterator &ui,
8120                      SDNode::use_iterator &ue)
8121     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8122 };
8123 
8124 } // end anonymous namespace
8125 
8126 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8127 /// This can cause recursive merging of nodes in the DAG.
8128 ///
8129 /// This version assumes From has a single result value.
8130 ///
8131 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8132   SDNode *From = FromN.getNode();
8133   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8134          "Cannot replace with this method!");
8135   assert(From != To.getNode() && "Cannot replace uses of with self");
8136 
8137   // Preserve Debug Values
8138   transferDbgValues(FromN, To);
8139 
8140   // Iterate over all the existing uses of From. New uses will be added
8141   // to the beginning of the use list, which we avoid visiting.
8142   // This specifically avoids visiting uses of From that arise while the
8143   // replacement is happening, because any such uses would be the result
8144   // of CSE: If an existing node looks like From after one of its operands
8145   // is replaced by To, we don't want to replace of all its users with To
8146   // too. See PR3018 for more info.
8147   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8148   RAUWUpdateListener Listener(*this, UI, UE);
8149   while (UI != UE) {
8150     SDNode *User = *UI;
8151 
8152     // This node is about to morph, remove its old self from the CSE maps.
8153     RemoveNodeFromCSEMaps(User);
8154 
8155     // A user can appear in a use list multiple times, and when this
8156     // happens the uses are usually next to each other in the list.
8157     // To help reduce the number of CSE recomputations, process all
8158     // the uses of this user that we can find this way.
8159     do {
8160       SDUse &Use = UI.getUse();
8161       ++UI;
8162       Use.set(To);
8163       if (To->isDivergent() != From->isDivergent())
8164         updateDivergence(User);
8165     } while (UI != UE && *UI == User);
8166     // Now that we have modified User, add it back to the CSE maps.  If it
8167     // already exists there, recursively merge the results together.
8168     AddModifiedNodeToCSEMaps(User);
8169   }
8170 
8171   // If we just RAUW'd the root, take note.
8172   if (FromN == getRoot())
8173     setRoot(To);
8174 }
8175 
8176 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8177 /// This can cause recursive merging of nodes in the DAG.
8178 ///
8179 /// This version assumes that for each value of From, there is a
8180 /// corresponding value in To in the same position with the same type.
8181 ///
8182 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8183 #ifndef NDEBUG
8184   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8185     assert((!From->hasAnyUseOfValue(i) ||
8186             From->getValueType(i) == To->getValueType(i)) &&
8187            "Cannot use this version of ReplaceAllUsesWith!");
8188 #endif
8189 
8190   // Handle the trivial case.
8191   if (From == To)
8192     return;
8193 
8194   // Preserve Debug Info. Only do this if there's a use.
8195   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8196     if (From->hasAnyUseOfValue(i)) {
8197       assert((i < To->getNumValues()) && "Invalid To location");
8198       transferDbgValues(SDValue(From, i), SDValue(To, i));
8199     }
8200 
8201   // Iterate over just the existing users of From. See the comments in
8202   // the ReplaceAllUsesWith above.
8203   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8204   RAUWUpdateListener Listener(*this, UI, UE);
8205   while (UI != UE) {
8206     SDNode *User = *UI;
8207 
8208     // This node is about to morph, remove its old self from the CSE maps.
8209     RemoveNodeFromCSEMaps(User);
8210 
8211     // A user can appear in a use list multiple times, and when this
8212     // happens the uses are usually next to each other in the list.
8213     // To help reduce the number of CSE recomputations, process all
8214     // the uses of this user that we can find this way.
8215     do {
8216       SDUse &Use = UI.getUse();
8217       ++UI;
8218       Use.setNode(To);
8219       if (To->isDivergent() != From->isDivergent())
8220         updateDivergence(User);
8221     } while (UI != UE && *UI == User);
8222 
8223     // Now that we have modified User, add it back to the CSE maps.  If it
8224     // already exists there, recursively merge the results together.
8225     AddModifiedNodeToCSEMaps(User);
8226   }
8227 
8228   // If we just RAUW'd the root, take note.
8229   if (From == getRoot().getNode())
8230     setRoot(SDValue(To, getRoot().getResNo()));
8231 }
8232 
8233 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8234 /// This can cause recursive merging of nodes in the DAG.
8235 ///
8236 /// This version can replace From with any result values.  To must match the
8237 /// number and types of values returned by From.
8238 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8239   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8240     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8241 
8242   // Preserve Debug Info.
8243   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8244     transferDbgValues(SDValue(From, i), To[i]);
8245 
8246   // Iterate over just the existing users of From. See the comments in
8247   // the ReplaceAllUsesWith above.
8248   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8249   RAUWUpdateListener Listener(*this, UI, UE);
8250   while (UI != UE) {
8251     SDNode *User = *UI;
8252 
8253     // This node is about to morph, remove its old self from the CSE maps.
8254     RemoveNodeFromCSEMaps(User);
8255 
8256     // A user can appear in a use list multiple times, and when this happens the
8257     // uses are usually next to each other in the list.  To help reduce the
8258     // number of CSE and divergence recomputations, process all the uses of this
8259     // user that we can find this way.
8260     bool To_IsDivergent = false;
8261     do {
8262       SDUse &Use = UI.getUse();
8263       const SDValue &ToOp = To[Use.getResNo()];
8264       ++UI;
8265       Use.set(ToOp);
8266       To_IsDivergent |= ToOp->isDivergent();
8267     } while (UI != UE && *UI == User);
8268 
8269     if (To_IsDivergent != From->isDivergent())
8270       updateDivergence(User);
8271 
8272     // Now that we have modified User, add it back to the CSE maps.  If it
8273     // already exists there, recursively merge the results together.
8274     AddModifiedNodeToCSEMaps(User);
8275   }
8276 
8277   // If we just RAUW'd the root, take note.
8278   if (From == getRoot().getNode())
8279     setRoot(SDValue(To[getRoot().getResNo()]));
8280 }
8281 
8282 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8283 /// uses of other values produced by From.getNode() alone.  The Deleted
8284 /// vector is handled the same way as for ReplaceAllUsesWith.
8285 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8286   // Handle the really simple, really trivial case efficiently.
8287   if (From == To) return;
8288 
8289   // Handle the simple, trivial, case efficiently.
8290   if (From.getNode()->getNumValues() == 1) {
8291     ReplaceAllUsesWith(From, To);
8292     return;
8293   }
8294 
8295   // Preserve Debug Info.
8296   transferDbgValues(From, To);
8297 
8298   // Iterate over just the existing users of From. See the comments in
8299   // the ReplaceAllUsesWith above.
8300   SDNode::use_iterator UI = From.getNode()->use_begin(),
8301                        UE = From.getNode()->use_end();
8302   RAUWUpdateListener Listener(*this, UI, UE);
8303   while (UI != UE) {
8304     SDNode *User = *UI;
8305     bool UserRemovedFromCSEMaps = false;
8306 
8307     // A user can appear in a use list multiple times, and when this
8308     // happens the uses are usually next to each other in the list.
8309     // To help reduce the number of CSE recomputations, process all
8310     // the uses of this user that we can find this way.
8311     do {
8312       SDUse &Use = UI.getUse();
8313 
8314       // Skip uses of different values from the same node.
8315       if (Use.getResNo() != From.getResNo()) {
8316         ++UI;
8317         continue;
8318       }
8319 
8320       // If this node hasn't been modified yet, it's still in the CSE maps,
8321       // so remove its old self from the CSE maps.
8322       if (!UserRemovedFromCSEMaps) {
8323         RemoveNodeFromCSEMaps(User);
8324         UserRemovedFromCSEMaps = true;
8325       }
8326 
8327       ++UI;
8328       Use.set(To);
8329       if (To->isDivergent() != From->isDivergent())
8330         updateDivergence(User);
8331     } while (UI != UE && *UI == User);
8332     // We are iterating over all uses of the From node, so if a use
8333     // doesn't use the specific value, no changes are made.
8334     if (!UserRemovedFromCSEMaps)
8335       continue;
8336 
8337     // Now that we have modified User, add it back to the CSE maps.  If it
8338     // already exists there, recursively merge the results together.
8339     AddModifiedNodeToCSEMaps(User);
8340   }
8341 
8342   // If we just RAUW'd the root, take note.
8343   if (From == getRoot())
8344     setRoot(To);
8345 }
8346 
8347 namespace {
8348 
8349   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8350   /// to record information about a use.
8351   struct UseMemo {
8352     SDNode *User;
8353     unsigned Index;
8354     SDUse *Use;
8355   };
8356 
8357   /// operator< - Sort Memos by User.
8358   bool operator<(const UseMemo &L, const UseMemo &R) {
8359     return (intptr_t)L.User < (intptr_t)R.User;
8360   }
8361 
8362 } // end anonymous namespace
8363 
8364 void SelectionDAG::updateDivergence(SDNode * N)
8365 {
8366   if (TLI->isSDNodeAlwaysUniform(N))
8367     return;
8368   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8369   for (auto &Op : N->ops()) {
8370     if (Op.Val.getValueType() != MVT::Other)
8371       IsDivergent |= Op.getNode()->isDivergent();
8372   }
8373   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8374     N->SDNodeBits.IsDivergent = IsDivergent;
8375     for (auto U : N->uses()) {
8376       updateDivergence(U);
8377     }
8378   }
8379 }
8380 
8381 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8382   DenseMap<SDNode *, unsigned> Degree;
8383   Order.reserve(AllNodes.size());
8384   for (auto &N : allnodes()) {
8385     unsigned NOps = N.getNumOperands();
8386     Degree[&N] = NOps;
8387     if (0 == NOps)
8388       Order.push_back(&N);
8389   }
8390   for (size_t I = 0; I != Order.size(); ++I) {
8391     SDNode *N = Order[I];
8392     for (auto U : N->uses()) {
8393       unsigned &UnsortedOps = Degree[U];
8394       if (0 == --UnsortedOps)
8395         Order.push_back(U);
8396     }
8397   }
8398 }
8399 
8400 #ifndef NDEBUG
8401 void SelectionDAG::VerifyDAGDiverence() {
8402   std::vector<SDNode *> TopoOrder;
8403   CreateTopologicalOrder(TopoOrder);
8404   const TargetLowering &TLI = getTargetLoweringInfo();
8405   DenseMap<const SDNode *, bool> DivergenceMap;
8406   for (auto &N : allnodes()) {
8407     DivergenceMap[&N] = false;
8408   }
8409   for (auto N : TopoOrder) {
8410     bool IsDivergent = DivergenceMap[N];
8411     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8412     for (auto &Op : N->ops()) {
8413       if (Op.Val.getValueType() != MVT::Other)
8414         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8415     }
8416     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8417       DivergenceMap[N] = true;
8418     }
8419   }
8420   for (auto &N : allnodes()) {
8421     (void)N;
8422     assert(DivergenceMap[&N] == N.isDivergent() &&
8423            "Divergence bit inconsistency detected\n");
8424   }
8425 }
8426 #endif
8427 
8428 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8429 /// uses of other values produced by From.getNode() alone.  The same value
8430 /// may appear in both the From and To list.  The Deleted vector is
8431 /// handled the same way as for ReplaceAllUsesWith.
8432 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8433                                               const SDValue *To,
8434                                               unsigned Num){
8435   // Handle the simple, trivial case efficiently.
8436   if (Num == 1)
8437     return ReplaceAllUsesOfValueWith(*From, *To);
8438 
8439   transferDbgValues(*From, *To);
8440 
8441   // Read up all the uses and make records of them. This helps
8442   // processing new uses that are introduced during the
8443   // replacement process.
8444   SmallVector<UseMemo, 4> Uses;
8445   for (unsigned i = 0; i != Num; ++i) {
8446     unsigned FromResNo = From[i].getResNo();
8447     SDNode *FromNode = From[i].getNode();
8448     for (SDNode::use_iterator UI = FromNode->use_begin(),
8449          E = FromNode->use_end(); UI != E; ++UI) {
8450       SDUse &Use = UI.getUse();
8451       if (Use.getResNo() == FromResNo) {
8452         UseMemo Memo = { *UI, i, &Use };
8453         Uses.push_back(Memo);
8454       }
8455     }
8456   }
8457 
8458   // Sort the uses, so that all the uses from a given User are together.
8459   llvm::sort(Uses);
8460 
8461   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8462        UseIndex != UseIndexEnd; ) {
8463     // We know that this user uses some value of From.  If it is the right
8464     // value, update it.
8465     SDNode *User = Uses[UseIndex].User;
8466 
8467     // This node is about to morph, remove its old self from the CSE maps.
8468     RemoveNodeFromCSEMaps(User);
8469 
8470     // The Uses array is sorted, so all the uses for a given User
8471     // are next to each other in the list.
8472     // To help reduce the number of CSE recomputations, process all
8473     // the uses of this user that we can find this way.
8474     do {
8475       unsigned i = Uses[UseIndex].Index;
8476       SDUse &Use = *Uses[UseIndex].Use;
8477       ++UseIndex;
8478 
8479       Use.set(To[i]);
8480     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8481 
8482     // Now that we have modified User, add it back to the CSE maps.  If it
8483     // already exists there, recursively merge the results together.
8484     AddModifiedNodeToCSEMaps(User);
8485   }
8486 }
8487 
8488 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8489 /// based on their topological order. It returns the maximum id and a vector
8490 /// of the SDNodes* in assigned order by reference.
8491 unsigned SelectionDAG::AssignTopologicalOrder() {
8492   unsigned DAGSize = 0;
8493 
8494   // SortedPos tracks the progress of the algorithm. Nodes before it are
8495   // sorted, nodes after it are unsorted. When the algorithm completes
8496   // it is at the end of the list.
8497   allnodes_iterator SortedPos = allnodes_begin();
8498 
8499   // Visit all the nodes. Move nodes with no operands to the front of
8500   // the list immediately. Annotate nodes that do have operands with their
8501   // operand count. Before we do this, the Node Id fields of the nodes
8502   // may contain arbitrary values. After, the Node Id fields for nodes
8503   // before SortedPos will contain the topological sort index, and the
8504   // Node Id fields for nodes At SortedPos and after will contain the
8505   // count of outstanding operands.
8506   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8507     SDNode *N = &*I++;
8508     checkForCycles(N, this);
8509     unsigned Degree = N->getNumOperands();
8510     if (Degree == 0) {
8511       // A node with no uses, add it to the result array immediately.
8512       N->setNodeId(DAGSize++);
8513       allnodes_iterator Q(N);
8514       if (Q != SortedPos)
8515         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8516       assert(SortedPos != AllNodes.end() && "Overran node list");
8517       ++SortedPos;
8518     } else {
8519       // Temporarily use the Node Id as scratch space for the degree count.
8520       N->setNodeId(Degree);
8521     }
8522   }
8523 
8524   // Visit all the nodes. As we iterate, move nodes into sorted order,
8525   // such that by the time the end is reached all nodes will be sorted.
8526   for (SDNode &Node : allnodes()) {
8527     SDNode *N = &Node;
8528     checkForCycles(N, this);
8529     // N is in sorted position, so all its uses have one less operand
8530     // that needs to be sorted.
8531     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8532          UI != UE; ++UI) {
8533       SDNode *P = *UI;
8534       unsigned Degree = P->getNodeId();
8535       assert(Degree != 0 && "Invalid node degree");
8536       --Degree;
8537       if (Degree == 0) {
8538         // All of P's operands are sorted, so P may sorted now.
8539         P->setNodeId(DAGSize++);
8540         if (P->getIterator() != SortedPos)
8541           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8542         assert(SortedPos != AllNodes.end() && "Overran node list");
8543         ++SortedPos;
8544       } else {
8545         // Update P's outstanding operand count.
8546         P->setNodeId(Degree);
8547       }
8548     }
8549     if (Node.getIterator() == SortedPos) {
8550 #ifndef NDEBUG
8551       allnodes_iterator I(N);
8552       SDNode *S = &*++I;
8553       dbgs() << "Overran sorted position:\n";
8554       S->dumprFull(this); dbgs() << "\n";
8555       dbgs() << "Checking if this is due to cycles\n";
8556       checkForCycles(this, true);
8557 #endif
8558       llvm_unreachable(nullptr);
8559     }
8560   }
8561 
8562   assert(SortedPos == AllNodes.end() &&
8563          "Topological sort incomplete!");
8564   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8565          "First node in topological sort is not the entry token!");
8566   assert(AllNodes.front().getNodeId() == 0 &&
8567          "First node in topological sort has non-zero id!");
8568   assert(AllNodes.front().getNumOperands() == 0 &&
8569          "First node in topological sort has operands!");
8570   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8571          "Last node in topologic sort has unexpected id!");
8572   assert(AllNodes.back().use_empty() &&
8573          "Last node in topologic sort has users!");
8574   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8575   return DAGSize;
8576 }
8577 
8578 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8579 /// value is produced by SD.
8580 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8581   if (SD) {
8582     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8583     SD->setHasDebugValue(true);
8584   }
8585   DbgInfo->add(DB, SD, isParameter);
8586 }
8587 
8588 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8589   DbgInfo->add(DB);
8590 }
8591 
8592 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8593                                                    SDValue NewMemOp) {
8594   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8595   // The new memory operation must have the same position as the old load in
8596   // terms of memory dependency. Create a TokenFactor for the old load and new
8597   // memory operation and update uses of the old load's output chain to use that
8598   // TokenFactor.
8599   SDValue OldChain = SDValue(OldLoad, 1);
8600   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8601   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8602     return NewChain;
8603 
8604   SDValue TokenFactor =
8605       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8606   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8607   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8608   return TokenFactor;
8609 }
8610 
8611 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8612                                                      Function **OutFunction) {
8613   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8614 
8615   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8616   auto *Module = MF->getFunction().getParent();
8617   auto *Function = Module->getFunction(Symbol);
8618 
8619   if (OutFunction != nullptr)
8620       *OutFunction = Function;
8621 
8622   if (Function != nullptr) {
8623     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8624     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8625   }
8626 
8627   std::string ErrorStr;
8628   raw_string_ostream ErrorFormatter(ErrorStr);
8629 
8630   ErrorFormatter << "Undefined external symbol ";
8631   ErrorFormatter << '"' << Symbol << '"';
8632   ErrorFormatter.flush();
8633 
8634   report_fatal_error(ErrorStr);
8635 }
8636 
8637 //===----------------------------------------------------------------------===//
8638 //                              SDNode Class
8639 //===----------------------------------------------------------------------===//
8640 
8641 bool llvm::isNullConstant(SDValue V) {
8642   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8643   return Const != nullptr && Const->isNullValue();
8644 }
8645 
8646 bool llvm::isNullFPConstant(SDValue V) {
8647   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8648   return Const != nullptr && Const->isZero() && !Const->isNegative();
8649 }
8650 
8651 bool llvm::isAllOnesConstant(SDValue V) {
8652   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8653   return Const != nullptr && Const->isAllOnesValue();
8654 }
8655 
8656 bool llvm::isOneConstant(SDValue V) {
8657   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8658   return Const != nullptr && Const->isOne();
8659 }
8660 
8661 SDValue llvm::peekThroughBitcasts(SDValue V) {
8662   while (V.getOpcode() == ISD::BITCAST)
8663     V = V.getOperand(0);
8664   return V;
8665 }
8666 
8667 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8668   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8669     V = V.getOperand(0);
8670   return V;
8671 }
8672 
8673 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8674   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8675     V = V.getOperand(0);
8676   return V;
8677 }
8678 
8679 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8680   if (V.getOpcode() != ISD::XOR)
8681     return false;
8682   V = peekThroughBitcasts(V.getOperand(1));
8683   unsigned NumBits = V.getScalarValueSizeInBits();
8684   ConstantSDNode *C =
8685       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8686   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8687 }
8688 
8689 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8690                                           bool AllowTruncation) {
8691   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8692     return CN;
8693 
8694   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8695     BitVector UndefElements;
8696     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8697 
8698     // BuildVectors can truncate their operands. Ignore that case here unless
8699     // AllowTruncation is set.
8700     if (CN && (UndefElements.none() || AllowUndefs)) {
8701       EVT CVT = CN->getValueType(0);
8702       EVT NSVT = N.getValueType().getScalarType();
8703       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8704       if (AllowTruncation || (CVT == NSVT))
8705         return CN;
8706     }
8707   }
8708 
8709   return nullptr;
8710 }
8711 
8712 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8713                                           bool AllowUndefs,
8714                                           bool AllowTruncation) {
8715   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8716     return CN;
8717 
8718   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8719     BitVector UndefElements;
8720     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8721 
8722     // BuildVectors can truncate their operands. Ignore that case here unless
8723     // AllowTruncation is set.
8724     if (CN && (UndefElements.none() || AllowUndefs)) {
8725       EVT CVT = CN->getValueType(0);
8726       EVT NSVT = N.getValueType().getScalarType();
8727       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8728       if (AllowTruncation || (CVT == NSVT))
8729         return CN;
8730     }
8731   }
8732 
8733   return nullptr;
8734 }
8735 
8736 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8737   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8738     return CN;
8739 
8740   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8741     BitVector UndefElements;
8742     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8743     if (CN && (UndefElements.none() || AllowUndefs))
8744       return CN;
8745   }
8746 
8747   return nullptr;
8748 }
8749 
8750 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8751                                               const APInt &DemandedElts,
8752                                               bool AllowUndefs) {
8753   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8754     return CN;
8755 
8756   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8757     BitVector UndefElements;
8758     ConstantFPSDNode *CN =
8759         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8760     if (CN && (UndefElements.none() || AllowUndefs))
8761       return CN;
8762   }
8763 
8764   return nullptr;
8765 }
8766 
8767 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8768   // TODO: may want to use peekThroughBitcast() here.
8769   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8770   return C && C->isNullValue();
8771 }
8772 
8773 bool llvm::isOneOrOneSplat(SDValue N) {
8774   // TODO: may want to use peekThroughBitcast() here.
8775   unsigned BitWidth = N.getScalarValueSizeInBits();
8776   ConstantSDNode *C = isConstOrConstSplat(N);
8777   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8778 }
8779 
8780 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8781   N = peekThroughBitcasts(N);
8782   unsigned BitWidth = N.getScalarValueSizeInBits();
8783   ConstantSDNode *C = isConstOrConstSplat(N);
8784   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8785 }
8786 
8787 HandleSDNode::~HandleSDNode() {
8788   DropOperands();
8789 }
8790 
8791 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8792                                          const DebugLoc &DL,
8793                                          const GlobalValue *GA, EVT VT,
8794                                          int64_t o, unsigned TF)
8795     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8796   TheGlobal = GA;
8797 }
8798 
8799 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8800                                          EVT VT, unsigned SrcAS,
8801                                          unsigned DestAS)
8802     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8803       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8804 
8805 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8806                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8807     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8808   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8809   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8810   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8811   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8812 
8813   // We check here that the size of the memory operand fits within the size of
8814   // the MMO. This is because the MMO might indicate only a possible address
8815   // range instead of specifying the affected memory addresses precisely.
8816   // TODO: Make MachineMemOperands aware of scalable vectors.
8817   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
8818          "Size mismatch!");
8819 }
8820 
8821 /// Profile - Gather unique data for the node.
8822 ///
8823 void SDNode::Profile(FoldingSetNodeID &ID) const {
8824   AddNodeIDNode(ID, this);
8825 }
8826 
8827 namespace {
8828 
8829   struct EVTArray {
8830     std::vector<EVT> VTs;
8831 
8832     EVTArray() {
8833       VTs.reserve(MVT::LAST_VALUETYPE);
8834       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8835         VTs.push_back(MVT((MVT::SimpleValueType)i));
8836     }
8837   };
8838 
8839 } // end anonymous namespace
8840 
8841 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8842 static ManagedStatic<EVTArray> SimpleVTArray;
8843 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8844 
8845 /// getValueTypeList - Return a pointer to the specified value type.
8846 ///
8847 const EVT *SDNode::getValueTypeList(EVT VT) {
8848   if (VT.isExtended()) {
8849     sys::SmartScopedLock<true> Lock(*VTMutex);
8850     return &(*EVTs->insert(VT).first);
8851   } else {
8852     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8853            "Value type out of range!");
8854     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8855   }
8856 }
8857 
8858 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8859 /// indicated value.  This method ignores uses of other values defined by this
8860 /// operation.
8861 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8862   assert(Value < getNumValues() && "Bad value!");
8863 
8864   // TODO: Only iterate over uses of a given value of the node
8865   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8866     if (UI.getUse().getResNo() == Value) {
8867       if (NUses == 0)
8868         return false;
8869       --NUses;
8870     }
8871   }
8872 
8873   // Found exactly the right number of uses?
8874   return NUses == 0;
8875 }
8876 
8877 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8878 /// value. This method ignores uses of other values defined by this operation.
8879 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8880   assert(Value < getNumValues() && "Bad value!");
8881 
8882   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8883     if (UI.getUse().getResNo() == Value)
8884       return true;
8885 
8886   return false;
8887 }
8888 
8889 /// isOnlyUserOf - Return true if this node is the only use of N.
8890 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8891   bool Seen = false;
8892   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8893     SDNode *User = *I;
8894     if (User == this)
8895       Seen = true;
8896     else
8897       return false;
8898   }
8899 
8900   return Seen;
8901 }
8902 
8903 /// Return true if the only users of N are contained in Nodes.
8904 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8905   bool Seen = false;
8906   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8907     SDNode *User = *I;
8908     if (llvm::any_of(Nodes,
8909                      [&User](const SDNode *Node) { return User == Node; }))
8910       Seen = true;
8911     else
8912       return false;
8913   }
8914 
8915   return Seen;
8916 }
8917 
8918 /// isOperand - Return true if this node is an operand of N.
8919 bool SDValue::isOperandOf(const SDNode *N) const {
8920   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8921 }
8922 
8923 bool SDNode::isOperandOf(const SDNode *N) const {
8924   return any_of(N->op_values(),
8925                 [this](SDValue Op) { return this == Op.getNode(); });
8926 }
8927 
8928 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8929 /// be a chain) reaches the specified operand without crossing any
8930 /// side-effecting instructions on any chain path.  In practice, this looks
8931 /// through token factors and non-volatile loads.  In order to remain efficient,
8932 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8933 ///
8934 /// Note that we only need to examine chains when we're searching for
8935 /// side-effects; SelectionDAG requires that all side-effects are represented
8936 /// by chains, even if another operand would force a specific ordering. This
8937 /// constraint is necessary to allow transformations like splitting loads.
8938 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8939                                              unsigned Depth) const {
8940   if (*this == Dest) return true;
8941 
8942   // Don't search too deeply, we just want to be able to see through
8943   // TokenFactor's etc.
8944   if (Depth == 0) return false;
8945 
8946   // If this is a token factor, all inputs to the TF happen in parallel.
8947   if (getOpcode() == ISD::TokenFactor) {
8948     // First, try a shallow search.
8949     if (is_contained((*this)->ops(), Dest)) {
8950       // We found the chain we want as an operand of this TokenFactor.
8951       // Essentially, we reach the chain without side-effects if we could
8952       // serialize the TokenFactor into a simple chain of operations with
8953       // Dest as the last operation. This is automatically true if the
8954       // chain has one use: there are no other ordering constraints.
8955       // If the chain has more than one use, we give up: some other
8956       // use of Dest might force a side-effect between Dest and the current
8957       // node.
8958       if (Dest.hasOneUse())
8959         return true;
8960     }
8961     // Next, try a deep search: check whether every operand of the TokenFactor
8962     // reaches Dest.
8963     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8964       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8965     });
8966   }
8967 
8968   // Loads don't have side effects, look through them.
8969   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8970     if (Ld->isUnordered())
8971       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8972   }
8973   return false;
8974 }
8975 
8976 bool SDNode::hasPredecessor(const SDNode *N) const {
8977   SmallPtrSet<const SDNode *, 32> Visited;
8978   SmallVector<const SDNode *, 16> Worklist;
8979   Worklist.push_back(this);
8980   return hasPredecessorHelper(N, Visited, Worklist);
8981 }
8982 
8983 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8984   this->Flags.intersectWith(Flags);
8985 }
8986 
8987 SDValue
8988 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8989                                   ArrayRef<ISD::NodeType> CandidateBinOps,
8990                                   bool AllowPartials) {
8991   // The pattern must end in an extract from index 0.
8992   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8993       !isNullConstant(Extract->getOperand(1)))
8994     return SDValue();
8995 
8996   // Match against one of the candidate binary ops.
8997   SDValue Op = Extract->getOperand(0);
8998   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8999         return Op.getOpcode() == unsigned(BinOp);
9000       }))
9001     return SDValue();
9002 
9003   // Floating-point reductions may require relaxed constraints on the final step
9004   // of the reduction because they may reorder intermediate operations.
9005   unsigned CandidateBinOp = Op.getOpcode();
9006   if (Op.getValueType().isFloatingPoint()) {
9007     SDNodeFlags Flags = Op->getFlags();
9008     switch (CandidateBinOp) {
9009     case ISD::FADD:
9010       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9011         return SDValue();
9012       break;
9013     default:
9014       llvm_unreachable("Unhandled FP opcode for binop reduction");
9015     }
9016   }
9017 
9018   // Matching failed - attempt to see if we did enough stages that a partial
9019   // reduction from a subvector is possible.
9020   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9021     if (!AllowPartials || !Op)
9022       return SDValue();
9023     EVT OpVT = Op.getValueType();
9024     EVT OpSVT = OpVT.getScalarType();
9025     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9026     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9027       return SDValue();
9028     BinOp = (ISD::NodeType)CandidateBinOp;
9029     return getNode(
9030         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9031         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9032   };
9033 
9034   // At each stage, we're looking for something that looks like:
9035   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9036   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9037   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9038   // %a = binop <8 x i32> %op, %s
9039   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9040   // we expect something like:
9041   // <4,5,6,7,u,u,u,u>
9042   // <2,3,u,u,u,u,u,u>
9043   // <1,u,u,u,u,u,u,u>
9044   // While a partial reduction match would be:
9045   // <2,3,u,u,u,u,u,u>
9046   // <1,u,u,u,u,u,u,u>
9047   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9048   SDValue PrevOp;
9049   for (unsigned i = 0; i < Stages; ++i) {
9050     unsigned MaskEnd = (1 << i);
9051 
9052     if (Op.getOpcode() != CandidateBinOp)
9053       return PartialReduction(PrevOp, MaskEnd);
9054 
9055     SDValue Op0 = Op.getOperand(0);
9056     SDValue Op1 = Op.getOperand(1);
9057 
9058     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9059     if (Shuffle) {
9060       Op = Op1;
9061     } else {
9062       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9063       Op = Op0;
9064     }
9065 
9066     // The first operand of the shuffle should be the same as the other operand
9067     // of the binop.
9068     if (!Shuffle || Shuffle->getOperand(0) != Op)
9069       return PartialReduction(PrevOp, MaskEnd);
9070 
9071     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9072     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9073       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9074         return PartialReduction(PrevOp, MaskEnd);
9075 
9076     PrevOp = Op;
9077   }
9078 
9079   BinOp = (ISD::NodeType)CandidateBinOp;
9080   return Op;
9081 }
9082 
9083 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9084   assert(N->getNumValues() == 1 &&
9085          "Can't unroll a vector with multiple results!");
9086 
9087   EVT VT = N->getValueType(0);
9088   unsigned NE = VT.getVectorNumElements();
9089   EVT EltVT = VT.getVectorElementType();
9090   SDLoc dl(N);
9091 
9092   SmallVector<SDValue, 8> Scalars;
9093   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9094 
9095   // If ResNE is 0, fully unroll the vector op.
9096   if (ResNE == 0)
9097     ResNE = NE;
9098   else if (NE > ResNE)
9099     NE = ResNE;
9100 
9101   unsigned i;
9102   for (i= 0; i != NE; ++i) {
9103     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9104       SDValue Operand = N->getOperand(j);
9105       EVT OperandVT = Operand.getValueType();
9106       if (OperandVT.isVector()) {
9107         // A vector operand; extract a single element.
9108         EVT OperandEltVT = OperandVT.getVectorElementType();
9109         Operands[j] =
9110             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9111                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9112       } else {
9113         // A scalar operand; just use it as is.
9114         Operands[j] = Operand;
9115       }
9116     }
9117 
9118     switch (N->getOpcode()) {
9119     default: {
9120       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9121                                 N->getFlags()));
9122       break;
9123     }
9124     case ISD::VSELECT:
9125       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9126       break;
9127     case ISD::SHL:
9128     case ISD::SRA:
9129     case ISD::SRL:
9130     case ISD::ROTL:
9131     case ISD::ROTR:
9132       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9133                                getShiftAmountOperand(Operands[0].getValueType(),
9134                                                      Operands[1])));
9135       break;
9136     case ISD::SIGN_EXTEND_INREG: {
9137       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9138       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9139                                 Operands[0],
9140                                 getValueType(ExtVT)));
9141     }
9142     }
9143   }
9144 
9145   for (; i < ResNE; ++i)
9146     Scalars.push_back(getUNDEF(EltVT));
9147 
9148   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9149   return getBuildVector(VecVT, dl, Scalars);
9150 }
9151 
9152 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9153     SDNode *N, unsigned ResNE) {
9154   unsigned Opcode = N->getOpcode();
9155   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9156           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9157           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9158          "Expected an overflow opcode");
9159 
9160   EVT ResVT = N->getValueType(0);
9161   EVT OvVT = N->getValueType(1);
9162   EVT ResEltVT = ResVT.getVectorElementType();
9163   EVT OvEltVT = OvVT.getVectorElementType();
9164   SDLoc dl(N);
9165 
9166   // If ResNE is 0, fully unroll the vector op.
9167   unsigned NE = ResVT.getVectorNumElements();
9168   if (ResNE == 0)
9169     ResNE = NE;
9170   else if (NE > ResNE)
9171     NE = ResNE;
9172 
9173   SmallVector<SDValue, 8> LHSScalars;
9174   SmallVector<SDValue, 8> RHSScalars;
9175   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9176   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9177 
9178   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9179   SDVTList VTs = getVTList(ResEltVT, SVT);
9180   SmallVector<SDValue, 8> ResScalars;
9181   SmallVector<SDValue, 8> OvScalars;
9182   for (unsigned i = 0; i < NE; ++i) {
9183     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9184     SDValue Ov =
9185         getSelect(dl, OvEltVT, Res.getValue(1),
9186                   getBoolConstant(true, dl, OvEltVT, ResVT),
9187                   getConstant(0, dl, OvEltVT));
9188 
9189     ResScalars.push_back(Res);
9190     OvScalars.push_back(Ov);
9191   }
9192 
9193   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9194   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9195 
9196   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9197   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9198   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9199                         getBuildVector(NewOvVT, dl, OvScalars));
9200 }
9201 
9202 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9203                                                   LoadSDNode *Base,
9204                                                   unsigned Bytes,
9205                                                   int Dist) const {
9206   if (LD->isVolatile() || Base->isVolatile())
9207     return false;
9208   // TODO: probably too restrictive for atomics, revisit
9209   if (!LD->isSimple())
9210     return false;
9211   if (LD->isIndexed() || Base->isIndexed())
9212     return false;
9213   if (LD->getChain() != Base->getChain())
9214     return false;
9215   EVT VT = LD->getValueType(0);
9216   if (VT.getSizeInBits() / 8 != Bytes)
9217     return false;
9218 
9219   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9220   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9221 
9222   int64_t Offset = 0;
9223   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9224     return (Dist * Bytes == Offset);
9225   return false;
9226 }
9227 
9228 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9229 /// it cannot be inferred.
9230 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9231   // If this is a GlobalAddress + cst, return the alignment.
9232   const GlobalValue *GV = nullptr;
9233   int64_t GVOffset = 0;
9234   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9235     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9236     KnownBits Known(IdxWidth);
9237     llvm::computeKnownBits(GV, Known, getDataLayout());
9238     unsigned AlignBits = Known.countMinTrailingZeros();
9239     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9240     if (Align)
9241       return MinAlign(Align, GVOffset);
9242   }
9243 
9244   // If this is a direct reference to a stack slot, use information about the
9245   // stack slot's alignment.
9246   int FrameIdx = INT_MIN;
9247   int64_t FrameOffset = 0;
9248   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9249     FrameIdx = FI->getIndex();
9250   } else if (isBaseWithConstantOffset(Ptr) &&
9251              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9252     // Handle FI+Cst
9253     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9254     FrameOffset = Ptr.getConstantOperandVal(1);
9255   }
9256 
9257   if (FrameIdx != INT_MIN) {
9258     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9259     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9260                                     FrameOffset);
9261     return FIInfoAlign;
9262   }
9263 
9264   return 0;
9265 }
9266 
9267 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9268 /// which is split (or expanded) into two not necessarily identical pieces.
9269 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9270   // Currently all types are split in half.
9271   EVT LoVT, HiVT;
9272   if (!VT.isVector())
9273     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9274   else
9275     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9276 
9277   return std::make_pair(LoVT, HiVT);
9278 }
9279 
9280 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9281 /// low/high part.
9282 std::pair<SDValue, SDValue>
9283 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9284                           const EVT &HiVT) {
9285   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9286          N.getValueType().getVectorNumElements() &&
9287          "More vector elements requested than available!");
9288   SDValue Lo, Hi;
9289   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9290                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9291   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9292                getConstant(LoVT.getVectorNumElements(), DL,
9293                            TLI->getVectorIdxTy(getDataLayout())));
9294   return std::make_pair(Lo, Hi);
9295 }
9296 
9297 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9298 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9299   EVT VT = N.getValueType();
9300   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9301                                 NextPowerOf2(VT.getVectorNumElements()));
9302   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9303                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9304 }
9305 
9306 void SelectionDAG::ExtractVectorElements(SDValue Op,
9307                                          SmallVectorImpl<SDValue> &Args,
9308                                          unsigned Start, unsigned Count) {
9309   EVT VT = Op.getValueType();
9310   if (Count == 0)
9311     Count = VT.getVectorNumElements();
9312 
9313   EVT EltVT = VT.getVectorElementType();
9314   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9315   SDLoc SL(Op);
9316   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9317     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9318                            Op, getConstant(i, SL, IdxTy)));
9319   }
9320 }
9321 
9322 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9323 unsigned GlobalAddressSDNode::getAddressSpace() const {
9324   return getGlobal()->getType()->getAddressSpace();
9325 }
9326 
9327 Type *ConstantPoolSDNode::getType() const {
9328   if (isMachineConstantPoolEntry())
9329     return Val.MachineCPVal->getType();
9330   return Val.ConstVal->getType();
9331 }
9332 
9333 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9334                                         unsigned &SplatBitSize,
9335                                         bool &HasAnyUndefs,
9336                                         unsigned MinSplatBits,
9337                                         bool IsBigEndian) const {
9338   EVT VT = getValueType(0);
9339   assert(VT.isVector() && "Expected a vector type");
9340   unsigned VecWidth = VT.getSizeInBits();
9341   if (MinSplatBits > VecWidth)
9342     return false;
9343 
9344   // FIXME: The widths are based on this node's type, but build vectors can
9345   // truncate their operands.
9346   SplatValue = APInt(VecWidth, 0);
9347   SplatUndef = APInt(VecWidth, 0);
9348 
9349   // Get the bits. Bits with undefined values (when the corresponding element
9350   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9351   // in SplatValue. If any of the values are not constant, give up and return
9352   // false.
9353   unsigned int NumOps = getNumOperands();
9354   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9355   unsigned EltWidth = VT.getScalarSizeInBits();
9356 
9357   for (unsigned j = 0; j < NumOps; ++j) {
9358     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9359     SDValue OpVal = getOperand(i);
9360     unsigned BitPos = j * EltWidth;
9361 
9362     if (OpVal.isUndef())
9363       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9364     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9365       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9366     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9367       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9368     else
9369       return false;
9370   }
9371 
9372   // The build_vector is all constants or undefs. Find the smallest element
9373   // size that splats the vector.
9374   HasAnyUndefs = (SplatUndef != 0);
9375 
9376   // FIXME: This does not work for vectors with elements less than 8 bits.
9377   while (VecWidth > 8) {
9378     unsigned HalfSize = VecWidth / 2;
9379     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9380     APInt LowValue = SplatValue.trunc(HalfSize);
9381     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9382     APInt LowUndef = SplatUndef.trunc(HalfSize);
9383 
9384     // If the two halves do not match (ignoring undef bits), stop here.
9385     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9386         MinSplatBits > HalfSize)
9387       break;
9388 
9389     SplatValue = HighValue | LowValue;
9390     SplatUndef = HighUndef & LowUndef;
9391 
9392     VecWidth = HalfSize;
9393   }
9394 
9395   SplatBitSize = VecWidth;
9396   return true;
9397 }
9398 
9399 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9400                                          BitVector *UndefElements) const {
9401   if (UndefElements) {
9402     UndefElements->clear();
9403     UndefElements->resize(getNumOperands());
9404   }
9405   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9406          "Unexpected vector size");
9407   if (!DemandedElts)
9408     return SDValue();
9409   SDValue Splatted;
9410   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9411     if (!DemandedElts[i])
9412       continue;
9413     SDValue Op = getOperand(i);
9414     if (Op.isUndef()) {
9415       if (UndefElements)
9416         (*UndefElements)[i] = true;
9417     } else if (!Splatted) {
9418       Splatted = Op;
9419     } else if (Splatted != Op) {
9420       return SDValue();
9421     }
9422   }
9423 
9424   if (!Splatted) {
9425     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9426     assert(getOperand(FirstDemandedIdx).isUndef() &&
9427            "Can only have a splat without a constant for all undefs.");
9428     return getOperand(FirstDemandedIdx);
9429   }
9430 
9431   return Splatted;
9432 }
9433 
9434 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9435   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9436   return getSplatValue(DemandedElts, UndefElements);
9437 }
9438 
9439 ConstantSDNode *
9440 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9441                                         BitVector *UndefElements) const {
9442   return dyn_cast_or_null<ConstantSDNode>(
9443       getSplatValue(DemandedElts, UndefElements));
9444 }
9445 
9446 ConstantSDNode *
9447 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9448   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9449 }
9450 
9451 ConstantFPSDNode *
9452 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9453                                           BitVector *UndefElements) const {
9454   return dyn_cast_or_null<ConstantFPSDNode>(
9455       getSplatValue(DemandedElts, UndefElements));
9456 }
9457 
9458 ConstantFPSDNode *
9459 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9460   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9461 }
9462 
9463 int32_t
9464 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9465                                                    uint32_t BitWidth) const {
9466   if (ConstantFPSDNode *CN =
9467           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9468     bool IsExact;
9469     APSInt IntVal(BitWidth);
9470     const APFloat &APF = CN->getValueAPF();
9471     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9472             APFloat::opOK ||
9473         !IsExact)
9474       return -1;
9475 
9476     return IntVal.exactLogBase2();
9477   }
9478   return -1;
9479 }
9480 
9481 bool BuildVectorSDNode::isConstant() const {
9482   for (const SDValue &Op : op_values()) {
9483     unsigned Opc = Op.getOpcode();
9484     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9485       return false;
9486   }
9487   return true;
9488 }
9489 
9490 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9491   // Find the first non-undef value in the shuffle mask.
9492   unsigned i, e;
9493   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9494     /* search */;
9495 
9496   // If all elements are undefined, this shuffle can be considered a splat
9497   // (although it should eventually get simplified away completely).
9498   if (i == e)
9499     return true;
9500 
9501   // Make sure all remaining elements are either undef or the same as the first
9502   // non-undef value.
9503   for (int Idx = Mask[i]; i != e; ++i)
9504     if (Mask[i] >= 0 && Mask[i] != Idx)
9505       return false;
9506   return true;
9507 }
9508 
9509 // Returns the SDNode if it is a constant integer BuildVector
9510 // or constant integer.
9511 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9512   if (isa<ConstantSDNode>(N))
9513     return N.getNode();
9514   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9515     return N.getNode();
9516   // Treat a GlobalAddress supporting constant offset folding as a
9517   // constant integer.
9518   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9519     if (GA->getOpcode() == ISD::GlobalAddress &&
9520         TLI->isOffsetFoldingLegal(GA))
9521       return GA;
9522   return nullptr;
9523 }
9524 
9525 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9526   if (isa<ConstantFPSDNode>(N))
9527     return N.getNode();
9528 
9529   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9530     return N.getNode();
9531 
9532   return nullptr;
9533 }
9534 
9535 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9536   assert(!Node->OperandList && "Node already has operands");
9537   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9538          "too many operands to fit into SDNode");
9539   SDUse *Ops = OperandRecycler.allocate(
9540       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9541 
9542   bool IsDivergent = false;
9543   for (unsigned I = 0; I != Vals.size(); ++I) {
9544     Ops[I].setUser(Node);
9545     Ops[I].setInitial(Vals[I]);
9546     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9547       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9548   }
9549   Node->NumOperands = Vals.size();
9550   Node->OperandList = Ops;
9551   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9552   if (!TLI->isSDNodeAlwaysUniform(Node))
9553     Node->SDNodeBits.IsDivergent = IsDivergent;
9554   checkForCycles(Node);
9555 }
9556 
9557 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9558                                      SmallVectorImpl<SDValue> &Vals) {
9559   size_t Limit = SDNode::getMaxNumOperands();
9560   while (Vals.size() > Limit) {
9561     unsigned SliceIdx = Vals.size() - Limit;
9562     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9563     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9564     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9565     Vals.emplace_back(NewTF);
9566   }
9567   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9568 }
9569 
9570 #ifndef NDEBUG
9571 static void checkForCyclesHelper(const SDNode *N,
9572                                  SmallPtrSetImpl<const SDNode*> &Visited,
9573                                  SmallPtrSetImpl<const SDNode*> &Checked,
9574                                  const llvm::SelectionDAG *DAG) {
9575   // If this node has already been checked, don't check it again.
9576   if (Checked.count(N))
9577     return;
9578 
9579   // If a node has already been visited on this depth-first walk, reject it as
9580   // a cycle.
9581   if (!Visited.insert(N).second) {
9582     errs() << "Detected cycle in SelectionDAG\n";
9583     dbgs() << "Offending node:\n";
9584     N->dumprFull(DAG); dbgs() << "\n";
9585     abort();
9586   }
9587 
9588   for (const SDValue &Op : N->op_values())
9589     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9590 
9591   Checked.insert(N);
9592   Visited.erase(N);
9593 }
9594 #endif
9595 
9596 void llvm::checkForCycles(const llvm::SDNode *N,
9597                           const llvm::SelectionDAG *DAG,
9598                           bool force) {
9599 #ifndef NDEBUG
9600   bool check = force;
9601 #ifdef EXPENSIVE_CHECKS
9602   check = true;
9603 #endif  // EXPENSIVE_CHECKS
9604   if (check) {
9605     assert(N && "Checking nonexistent SDNode");
9606     SmallPtrSet<const SDNode*, 32> visited;
9607     SmallPtrSet<const SDNode*, 32> checked;
9608     checkForCyclesHelper(N, visited, checked, DAG);
9609   }
9610 #endif  // !NDEBUG
9611 }
9612 
9613 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9614   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9615 }
9616