1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   auto *BV = dyn_cast<BuildVectorSDNode>(N);
143   if (!BV)
144     return false;
145 
146   APInt SplatUndef;
147   unsigned SplatBitSize;
148   bool HasUndefs;
149   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
150   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
151                              EltSize) &&
152          EltSize == SplatBitSize;
153 }
154 
155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
156 // specializations of the more general isConstantSplatVector()?
157 
158 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
159   // Look through a bit convert.
160   while (N->getOpcode() == ISD::BITCAST)
161     N = N->getOperand(0).getNode();
162 
163   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
164 
165   unsigned i = 0, e = N->getNumOperands();
166 
167   // Skip over all of the undef values.
168   while (i != e && N->getOperand(i).isUndef())
169     ++i;
170 
171   // Do not accept an all-undef vector.
172   if (i == e) return false;
173 
174   // Do not accept build_vectors that aren't all constants or which have non-~0
175   // elements. We have to be a bit careful here, as the type of the constant
176   // may not be the same as the type of the vector elements due to type
177   // legalization (the elements are promoted to a legal type for the target and
178   // a vector of a type may be legal when the base element type is not).
179   // We only want to check enough bits to cover the vector elements, because
180   // we care if the resultant vector is all ones, not whether the individual
181   // constants are.
182   SDValue NotZero = N->getOperand(i);
183   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
184   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
185     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
186       return false;
187   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
188     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
189       return false;
190   } else
191     return false;
192 
193   // Okay, we have at least one ~0 value, check to see if the rest match or are
194   // undefs. Even with the above element type twiddling, this should be OK, as
195   // the same type legalization should have applied to all the elements.
196   for (++i; i != e; ++i)
197     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
198       return false;
199   return true;
200 }
201 
202 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
203   // Look through a bit convert.
204   while (N->getOpcode() == ISD::BITCAST)
205     N = N->getOperand(0).getNode();
206 
207   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
208 
209   bool IsAllUndef = true;
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     IsAllUndef = false;
214     // Do not accept build_vectors that aren't all constants or which have non-0
215     // elements. We have to be a bit careful here, as the type of the constant
216     // may not be the same as the type of the vector elements due to type
217     // legalization (the elements are promoted to a legal type for the target
218     // and a vector of a type may be legal when the base element type is not).
219     // We only want to check enough bits to cover the vector elements, because
220     // we care if the resultant vector is all zeros, not whether the individual
221     // constants are.
222     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
223     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
224       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
225         return false;
226     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
227       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
228         return false;
229     } else
230       return false;
231   }
232 
233   // Do not accept an all-undef vector.
234   if (IsAllUndef)
235     return false;
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
253   if (N->getOpcode() != ISD::BUILD_VECTOR)
254     return false;
255 
256   for (const SDValue &Op : N->op_values()) {
257     if (Op.isUndef())
258       continue;
259     if (!isa<ConstantFPSDNode>(Op))
260       return false;
261   }
262   return true;
263 }
264 
265 bool ISD::allOperandsUndef(const SDNode *N) {
266   // Return false if the node has no operands.
267   // This is "logically inconsistent" with the definition of "all" but
268   // is probably the desired behavior.
269   if (N->getNumOperands() == 0)
270     return false;
271   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
272 }
273 
274 bool ISD::matchUnaryPredicate(SDValue Op,
275                               std::function<bool(ConstantSDNode *)> Match,
276                               bool AllowUndefs) {
277   // FIXME: Add support for scalar UNDEF cases?
278   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
279     return Match(Cst);
280 
281   // FIXME: Add support for vector UNDEF cases?
282   if (ISD::BUILD_VECTOR != Op.getOpcode())
283     return false;
284 
285   EVT SVT = Op.getValueType().getScalarType();
286   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
287     if (AllowUndefs && Op.getOperand(i).isUndef()) {
288       if (!Match(nullptr))
289         return false;
290       continue;
291     }
292 
293     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
294     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
295       return false;
296   }
297   return true;
298 }
299 
300 bool ISD::matchBinaryPredicate(
301     SDValue LHS, SDValue RHS,
302     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
303     bool AllowUndefs, bool AllowTypeMismatch) {
304   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
305     return false;
306 
307   // TODO: Add support for scalar UNDEF cases?
308   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
309     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
310       return Match(LHSCst, RHSCst);
311 
312   // TODO: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
314       ISD::BUILD_VECTOR != RHS.getOpcode())
315     return false;
316 
317   EVT SVT = LHS.getValueType().getScalarType();
318   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
319     SDValue LHSOp = LHS.getOperand(i);
320     SDValue RHSOp = RHS.getOperand(i);
321     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
322     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
323     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
324     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
325     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
326       return false;
327     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
328                                LHSOp.getValueType() != RHSOp.getValueType()))
329       return false;
330     if (!Match(LHSCst, RHSCst))
331       return false;
332   }
333   return true;
334 }
335 
336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
337   switch (VecReduceOpcode) {
338   default:
339     llvm_unreachable("Expected VECREDUCE opcode");
340   case ISD::VECREDUCE_FADD:
341   case ISD::VECREDUCE_SEQ_FADD:
342     return ISD::FADD;
343   case ISD::VECREDUCE_FMUL:
344     return ISD::FMUL;
345   case ISD::VECREDUCE_ADD:
346     return ISD::ADD;
347   case ISD::VECREDUCE_MUL:
348     return ISD::MUL;
349   case ISD::VECREDUCE_AND:
350     return ISD::AND;
351   case ISD::VECREDUCE_OR:
352     return ISD::OR;
353   case ISD::VECREDUCE_XOR:
354     return ISD::XOR;
355   case ISD::VECREDUCE_SMAX:
356     return ISD::SMAX;
357   case ISD::VECREDUCE_SMIN:
358     return ISD::SMIN;
359   case ISD::VECREDUCE_UMAX:
360     return ISD::UMAX;
361   case ISD::VECREDUCE_UMIN:
362     return ISD::UMIN;
363   case ISD::VECREDUCE_FMAX:
364     return ISD::FMAXNUM;
365   case ISD::VECREDUCE_FMIN:
366     return ISD::FMINNUM;
367   }
368 }
369 
370 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
371   switch (ExtType) {
372   case ISD::EXTLOAD:
373     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
374   case ISD::SEXTLOAD:
375     return ISD::SIGN_EXTEND;
376   case ISD::ZEXTLOAD:
377     return ISD::ZERO_EXTEND;
378   default:
379     break;
380   }
381 
382   llvm_unreachable("Invalid LoadExtType");
383 }
384 
385 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
386   // To perform this operation, we just need to swap the L and G bits of the
387   // operation.
388   unsigned OldL = (Operation >> 2) & 1;
389   unsigned OldG = (Operation >> 1) & 1;
390   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
391                        (OldL << 1) |       // New G bit
392                        (OldG << 2));       // New L bit.
393 }
394 
395 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
396   unsigned Operation = Op;
397   if (isIntegerLike)
398     Operation ^= 7;   // Flip L, G, E bits, but not U.
399   else
400     Operation ^= 15;  // Flip all of the condition bits.
401 
402   if (Operation > ISD::SETTRUE2)
403     Operation &= ~8;  // Don't let N and U bits get set.
404 
405   return ISD::CondCode(Operation);
406 }
407 
408 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
409   return getSetCCInverseImpl(Op, Type.isInteger());
410 }
411 
412 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
413                                                bool isIntegerLike) {
414   return getSetCCInverseImpl(Op, isIntegerLike);
415 }
416 
417 /// For an integer comparison, return 1 if the comparison is a signed operation
418 /// and 2 if the result is an unsigned comparison. Return zero if the operation
419 /// does not depend on the sign of the input (setne and seteq).
420 static int isSignedOp(ISD::CondCode Opcode) {
421   switch (Opcode) {
422   default: llvm_unreachable("Illegal integer setcc operation!");
423   case ISD::SETEQ:
424   case ISD::SETNE: return 0;
425   case ISD::SETLT:
426   case ISD::SETLE:
427   case ISD::SETGT:
428   case ISD::SETGE: return 1;
429   case ISD::SETULT:
430   case ISD::SETULE:
431   case ISD::SETUGT:
432   case ISD::SETUGE: return 2;
433   }
434 }
435 
436 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
437                                        EVT Type) {
438   bool IsInteger = Type.isInteger();
439   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
440     // Cannot fold a signed integer setcc with an unsigned integer setcc.
441     return ISD::SETCC_INVALID;
442 
443   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
444 
445   // If the N and U bits get set, then the resultant comparison DOES suddenly
446   // care about orderedness, and it is true when ordered.
447   if (Op > ISD::SETTRUE2)
448     Op &= ~16;     // Clear the U bit if the N bit is set.
449 
450   // Canonicalize illegal integer setcc's.
451   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
452     Op = ISD::SETNE;
453 
454   return ISD::CondCode(Op);
455 }
456 
457 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
458                                         EVT Type) {
459   bool IsInteger = Type.isInteger();
460   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
461     // Cannot fold a signed setcc with an unsigned setcc.
462     return ISD::SETCC_INVALID;
463 
464   // Combine all of the condition bits.
465   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
466 
467   // Canonicalize illegal integer setcc's.
468   if (IsInteger) {
469     switch (Result) {
470     default: break;
471     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
472     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
473     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
474     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
475     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
476     }
477   }
478 
479   return Result;
480 }
481 
482 //===----------------------------------------------------------------------===//
483 //                           SDNode Profile Support
484 //===----------------------------------------------------------------------===//
485 
486 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
487 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
488   ID.AddInteger(OpC);
489 }
490 
491 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
492 /// solely with their pointer.
493 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
494   ID.AddPointer(VTList.VTs);
495 }
496 
497 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
498 static void AddNodeIDOperands(FoldingSetNodeID &ID,
499                               ArrayRef<SDValue> Ops) {
500   for (auto& Op : Ops) {
501     ID.AddPointer(Op.getNode());
502     ID.AddInteger(Op.getResNo());
503   }
504 }
505 
506 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
507 static void AddNodeIDOperands(FoldingSetNodeID &ID,
508                               ArrayRef<SDUse> Ops) {
509   for (auto& Op : Ops) {
510     ID.AddPointer(Op.getNode());
511     ID.AddInteger(Op.getResNo());
512   }
513 }
514 
515 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
516                           SDVTList VTList, ArrayRef<SDValue> OpList) {
517   AddNodeIDOpcode(ID, OpC);
518   AddNodeIDValueTypes(ID, VTList);
519   AddNodeIDOperands(ID, OpList);
520 }
521 
522 /// If this is an SDNode with special info, add this info to the NodeID data.
523 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
524   switch (N->getOpcode()) {
525   case ISD::TargetExternalSymbol:
526   case ISD::ExternalSymbol:
527   case ISD::MCSymbol:
528     llvm_unreachable("Should only be used on nodes with operands");
529   default: break;  // Normal nodes don't need extra info.
530   case ISD::TargetConstant:
531   case ISD::Constant: {
532     const ConstantSDNode *C = cast<ConstantSDNode>(N);
533     ID.AddPointer(C->getConstantIntValue());
534     ID.AddBoolean(C->isOpaque());
535     break;
536   }
537   case ISD::TargetConstantFP:
538   case ISD::ConstantFP:
539     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
540     break;
541   case ISD::TargetGlobalAddress:
542   case ISD::GlobalAddress:
543   case ISD::TargetGlobalTLSAddress:
544   case ISD::GlobalTLSAddress: {
545     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
546     ID.AddPointer(GA->getGlobal());
547     ID.AddInteger(GA->getOffset());
548     ID.AddInteger(GA->getTargetFlags());
549     break;
550   }
551   case ISD::BasicBlock:
552     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
553     break;
554   case ISD::Register:
555     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
556     break;
557   case ISD::RegisterMask:
558     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
559     break;
560   case ISD::SRCVALUE:
561     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
562     break;
563   case ISD::FrameIndex:
564   case ISD::TargetFrameIndex:
565     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
566     break;
567   case ISD::LIFETIME_START:
568   case ISD::LIFETIME_END:
569     if (cast<LifetimeSDNode>(N)->hasOffset()) {
570       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
571       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
572     }
573     break;
574   case ISD::JumpTable:
575   case ISD::TargetJumpTable:
576     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
577     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
578     break;
579   case ISD::ConstantPool:
580   case ISD::TargetConstantPool: {
581     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
582     ID.AddInteger(CP->getAlign().value());
583     ID.AddInteger(CP->getOffset());
584     if (CP->isMachineConstantPoolEntry())
585       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
586     else
587       ID.AddPointer(CP->getConstVal());
588     ID.AddInteger(CP->getTargetFlags());
589     break;
590   }
591   case ISD::TargetIndex: {
592     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
593     ID.AddInteger(TI->getIndex());
594     ID.AddInteger(TI->getOffset());
595     ID.AddInteger(TI->getTargetFlags());
596     break;
597   }
598   case ISD::LOAD: {
599     const LoadSDNode *LD = cast<LoadSDNode>(N);
600     ID.AddInteger(LD->getMemoryVT().getRawBits());
601     ID.AddInteger(LD->getRawSubclassData());
602     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
603     break;
604   }
605   case ISD::STORE: {
606     const StoreSDNode *ST = cast<StoreSDNode>(N);
607     ID.AddInteger(ST->getMemoryVT().getRawBits());
608     ID.AddInteger(ST->getRawSubclassData());
609     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
610     break;
611   }
612   case ISD::MLOAD: {
613     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
614     ID.AddInteger(MLD->getMemoryVT().getRawBits());
615     ID.AddInteger(MLD->getRawSubclassData());
616     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
617     break;
618   }
619   case ISD::MSTORE: {
620     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
621     ID.AddInteger(MST->getMemoryVT().getRawBits());
622     ID.AddInteger(MST->getRawSubclassData());
623     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::MGATHER: {
627     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
628     ID.AddInteger(MG->getMemoryVT().getRawBits());
629     ID.AddInteger(MG->getRawSubclassData());
630     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
631     break;
632   }
633   case ISD::MSCATTER: {
634     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
635     ID.AddInteger(MS->getMemoryVT().getRawBits());
636     ID.AddInteger(MS->getRawSubclassData());
637     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
638     break;
639   }
640   case ISD::ATOMIC_CMP_SWAP:
641   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
642   case ISD::ATOMIC_SWAP:
643   case ISD::ATOMIC_LOAD_ADD:
644   case ISD::ATOMIC_LOAD_SUB:
645   case ISD::ATOMIC_LOAD_AND:
646   case ISD::ATOMIC_LOAD_CLR:
647   case ISD::ATOMIC_LOAD_OR:
648   case ISD::ATOMIC_LOAD_XOR:
649   case ISD::ATOMIC_LOAD_NAND:
650   case ISD::ATOMIC_LOAD_MIN:
651   case ISD::ATOMIC_LOAD_MAX:
652   case ISD::ATOMIC_LOAD_UMIN:
653   case ISD::ATOMIC_LOAD_UMAX:
654   case ISD::ATOMIC_LOAD:
655   case ISD::ATOMIC_STORE: {
656     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
657     ID.AddInteger(AT->getMemoryVT().getRawBits());
658     ID.AddInteger(AT->getRawSubclassData());
659     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
660     break;
661   }
662   case ISD::PREFETCH: {
663     const MemSDNode *PF = cast<MemSDNode>(N);
664     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
665     break;
666   }
667   case ISD::VECTOR_SHUFFLE: {
668     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
669     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
670          i != e; ++i)
671       ID.AddInteger(SVN->getMaskElt(i));
672     break;
673   }
674   case ISD::TargetBlockAddress:
675   case ISD::BlockAddress: {
676     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
677     ID.AddPointer(BA->getBlockAddress());
678     ID.AddInteger(BA->getOffset());
679     ID.AddInteger(BA->getTargetFlags());
680     break;
681   }
682   } // end switch (N->getOpcode())
683 
684   // Target specific memory nodes could also have address spaces to check.
685   if (N->isTargetMemoryOpcode())
686     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
687 }
688 
689 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
690 /// data.
691 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
692   AddNodeIDOpcode(ID, N->getOpcode());
693   // Add the return value info.
694   AddNodeIDValueTypes(ID, N->getVTList());
695   // Add the operand info.
696   AddNodeIDOperands(ID, N->ops());
697 
698   // Handle SDNode leafs with special info.
699   AddNodeIDCustom(ID, N);
700 }
701 
702 //===----------------------------------------------------------------------===//
703 //                              SelectionDAG Class
704 //===----------------------------------------------------------------------===//
705 
706 /// doNotCSE - Return true if CSE should not be performed for this node.
707 static bool doNotCSE(SDNode *N) {
708   if (N->getValueType(0) == MVT::Glue)
709     return true; // Never CSE anything that produces a flag.
710 
711   switch (N->getOpcode()) {
712   default: break;
713   case ISD::HANDLENODE:
714   case ISD::EH_LABEL:
715     return true;   // Never CSE these nodes.
716   }
717 
718   // Check that remaining values produced are not flags.
719   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
720     if (N->getValueType(i) == MVT::Glue)
721       return true; // Never CSE anything that produces a flag.
722 
723   return false;
724 }
725 
726 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
727 /// SelectionDAG.
728 void SelectionDAG::RemoveDeadNodes() {
729   // Create a dummy node (which is not added to allnodes), that adds a reference
730   // to the root node, preventing it from being deleted.
731   HandleSDNode Dummy(getRoot());
732 
733   SmallVector<SDNode*, 128> DeadNodes;
734 
735   // Add all obviously-dead nodes to the DeadNodes worklist.
736   for (SDNode &Node : allnodes())
737     if (Node.use_empty())
738       DeadNodes.push_back(&Node);
739 
740   RemoveDeadNodes(DeadNodes);
741 
742   // If the root changed (e.g. it was a dead load, update the root).
743   setRoot(Dummy.getValue());
744 }
745 
746 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
747 /// given list, and any nodes that become unreachable as a result.
748 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
749 
750   // Process the worklist, deleting the nodes and adding their uses to the
751   // worklist.
752   while (!DeadNodes.empty()) {
753     SDNode *N = DeadNodes.pop_back_val();
754     // Skip to next node if we've already managed to delete the node. This could
755     // happen if replacing a node causes a node previously added to the node to
756     // be deleted.
757     if (N->getOpcode() == ISD::DELETED_NODE)
758       continue;
759 
760     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
761       DUL->NodeDeleted(N, nullptr);
762 
763     // Take the node out of the appropriate CSE map.
764     RemoveNodeFromCSEMaps(N);
765 
766     // Next, brutally remove the operand list.  This is safe to do, as there are
767     // no cycles in the graph.
768     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
769       SDUse &Use = *I++;
770       SDNode *Operand = Use.getNode();
771       Use.set(SDValue());
772 
773       // Now that we removed this operand, see if there are no uses of it left.
774       if (Operand->use_empty())
775         DeadNodes.push_back(Operand);
776     }
777 
778     DeallocateNode(N);
779   }
780 }
781 
782 void SelectionDAG::RemoveDeadNode(SDNode *N){
783   SmallVector<SDNode*, 16> DeadNodes(1, N);
784 
785   // Create a dummy node that adds a reference to the root node, preventing
786   // it from being deleted.  (This matters if the root is an operand of the
787   // dead node.)
788   HandleSDNode Dummy(getRoot());
789 
790   RemoveDeadNodes(DeadNodes);
791 }
792 
793 void SelectionDAG::DeleteNode(SDNode *N) {
794   // First take this out of the appropriate CSE map.
795   RemoveNodeFromCSEMaps(N);
796 
797   // Finally, remove uses due to operands of this node, remove from the
798   // AllNodes list, and delete the node.
799   DeleteNodeNotInCSEMaps(N);
800 }
801 
802 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
803   assert(N->getIterator() != AllNodes.begin() &&
804          "Cannot delete the entry node!");
805   assert(N->use_empty() && "Cannot delete a node that is not dead!");
806 
807   // Drop all of the operands and decrement used node's use counts.
808   N->DropOperands();
809 
810   DeallocateNode(N);
811 }
812 
813 void SDDbgInfo::erase(const SDNode *Node) {
814   DbgValMapType::iterator I = DbgValMap.find(Node);
815   if (I == DbgValMap.end())
816     return;
817   for (auto &Val: I->second)
818     Val->setIsInvalidated();
819   DbgValMap.erase(I);
820 }
821 
822 void SelectionDAG::DeallocateNode(SDNode *N) {
823   // If we have operands, deallocate them.
824   removeOperands(N);
825 
826   NodeAllocator.Deallocate(AllNodes.remove(N));
827 
828   // Set the opcode to DELETED_NODE to help catch bugs when node
829   // memory is reallocated.
830   // FIXME: There are places in SDag that have grown a dependency on the opcode
831   // value in the released node.
832   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
833   N->NodeType = ISD::DELETED_NODE;
834 
835   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
836   // them and forget about that node.
837   DbgInfo->erase(N);
838 }
839 
840 #ifndef NDEBUG
841 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
842 static void VerifySDNode(SDNode *N) {
843   switch (N->getOpcode()) {
844   default:
845     break;
846   case ISD::BUILD_PAIR: {
847     EVT VT = N->getValueType(0);
848     assert(N->getNumValues() == 1 && "Too many results!");
849     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
850            "Wrong return type!");
851     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
852     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
853            "Mismatched operand types!");
854     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
855            "Wrong operand type!");
856     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
857            "Wrong return type size");
858     break;
859   }
860   case ISD::BUILD_VECTOR: {
861     assert(N->getNumValues() == 1 && "Too many results!");
862     assert(N->getValueType(0).isVector() && "Wrong return type!");
863     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
864            "Wrong number of operands!");
865     EVT EltVT = N->getValueType(0).getVectorElementType();
866     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
867       assert((I->getValueType() == EltVT ||
868              (EltVT.isInteger() && I->getValueType().isInteger() &&
869               EltVT.bitsLE(I->getValueType()))) &&
870             "Wrong operand type!");
871       assert(I->getValueType() == N->getOperand(0).getValueType() &&
872              "Operands must all have the same type");
873     }
874     break;
875   }
876   }
877 }
878 #endif // NDEBUG
879 
880 /// Insert a newly allocated node into the DAG.
881 ///
882 /// Handles insertion into the all nodes list and CSE map, as well as
883 /// verification and other common operations when a new node is allocated.
884 void SelectionDAG::InsertNode(SDNode *N) {
885   AllNodes.push_back(N);
886 #ifndef NDEBUG
887   N->PersistentId = NextPersistentId++;
888   VerifySDNode(N);
889 #endif
890   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
891     DUL->NodeInserted(N);
892 }
893 
894 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
895 /// correspond to it.  This is useful when we're about to delete or repurpose
896 /// the node.  We don't want future request for structurally identical nodes
897 /// to return N anymore.
898 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
899   bool Erased = false;
900   switch (N->getOpcode()) {
901   case ISD::HANDLENODE: return false;  // noop.
902   case ISD::CONDCODE:
903     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
904            "Cond code doesn't exist!");
905     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
906     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
907     break;
908   case ISD::ExternalSymbol:
909     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
910     break;
911   case ISD::TargetExternalSymbol: {
912     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
913     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
914         ESN->getSymbol(), ESN->getTargetFlags()));
915     break;
916   }
917   case ISD::MCSymbol: {
918     auto *MCSN = cast<MCSymbolSDNode>(N);
919     Erased = MCSymbols.erase(MCSN->getMCSymbol());
920     break;
921   }
922   case ISD::VALUETYPE: {
923     EVT VT = cast<VTSDNode>(N)->getVT();
924     if (VT.isExtended()) {
925       Erased = ExtendedValueTypeNodes.erase(VT);
926     } else {
927       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
928       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
929     }
930     break;
931   }
932   default:
933     // Remove it from the CSE Map.
934     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
935     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
936     Erased = CSEMap.RemoveNode(N);
937     break;
938   }
939 #ifndef NDEBUG
940   // Verify that the node was actually in one of the CSE maps, unless it has a
941   // flag result (which cannot be CSE'd) or is one of the special cases that are
942   // not subject to CSE.
943   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
944       !N->isMachineOpcode() && !doNotCSE(N)) {
945     N->dump(this);
946     dbgs() << "\n";
947     llvm_unreachable("Node is not in map!");
948   }
949 #endif
950   return Erased;
951 }
952 
953 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
954 /// maps and modified in place. Add it back to the CSE maps, unless an identical
955 /// node already exists, in which case transfer all its users to the existing
956 /// node. This transfer can potentially trigger recursive merging.
957 void
958 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
959   // For node types that aren't CSE'd, just act as if no identical node
960   // already exists.
961   if (!doNotCSE(N)) {
962     SDNode *Existing = CSEMap.GetOrInsertNode(N);
963     if (Existing != N) {
964       // If there was already an existing matching node, use ReplaceAllUsesWith
965       // to replace the dead one with the existing one.  This can cause
966       // recursive merging of other unrelated nodes down the line.
967       ReplaceAllUsesWith(N, Existing);
968 
969       // N is now dead. Inform the listeners and delete it.
970       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
971         DUL->NodeDeleted(N, Existing);
972       DeleteNodeNotInCSEMaps(N);
973       return;
974     }
975   }
976 
977   // If the node doesn't already exist, we updated it.  Inform listeners.
978   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
979     DUL->NodeUpdated(N);
980 }
981 
982 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
983 /// were replaced with those specified.  If this node is never memoized,
984 /// return null, otherwise return a pointer to the slot it would take.  If a
985 /// node already exists with these operands, the slot will be non-null.
986 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
987                                            void *&InsertPos) {
988   if (doNotCSE(N))
989     return nullptr;
990 
991   SDValue Ops[] = { Op };
992   FoldingSetNodeID ID;
993   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
994   AddNodeIDCustom(ID, N);
995   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
996   if (Node)
997     Node->intersectFlagsWith(N->getFlags());
998   return Node;
999 }
1000 
1001 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1002 /// were replaced with those specified.  If this node is never memoized,
1003 /// return null, otherwise return a pointer to the slot it would take.  If a
1004 /// node already exists with these operands, the slot will be non-null.
1005 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1006                                            SDValue Op1, SDValue Op2,
1007                                            void *&InsertPos) {
1008   if (doNotCSE(N))
1009     return nullptr;
1010 
1011   SDValue Ops[] = { Op1, Op2 };
1012   FoldingSetNodeID ID;
1013   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1014   AddNodeIDCustom(ID, N);
1015   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1016   if (Node)
1017     Node->intersectFlagsWith(N->getFlags());
1018   return Node;
1019 }
1020 
1021 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1022 /// were replaced with those specified.  If this node is never memoized,
1023 /// return null, otherwise return a pointer to the slot it would take.  If a
1024 /// node already exists with these operands, the slot will be non-null.
1025 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1026                                            void *&InsertPos) {
1027   if (doNotCSE(N))
1028     return nullptr;
1029 
1030   FoldingSetNodeID ID;
1031   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1032   AddNodeIDCustom(ID, N);
1033   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1034   if (Node)
1035     Node->intersectFlagsWith(N->getFlags());
1036   return Node;
1037 }
1038 
1039 Align SelectionDAG::getEVTAlign(EVT VT) const {
1040   Type *Ty = VT == MVT::iPTR ?
1041                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1042                    VT.getTypeForEVT(*getContext());
1043 
1044   return getDataLayout().getABITypeAlign(Ty);
1045 }
1046 
1047 // EntryNode could meaningfully have debug info if we can find it...
1048 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1049     : TM(tm), OptLevel(OL),
1050       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1051       Root(getEntryNode()) {
1052   InsertNode(&EntryNode);
1053   DbgInfo = new SDDbgInfo();
1054 }
1055 
1056 void SelectionDAG::init(MachineFunction &NewMF,
1057                         OptimizationRemarkEmitter &NewORE,
1058                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1059                         LegacyDivergenceAnalysis * Divergence,
1060                         ProfileSummaryInfo *PSIin,
1061                         BlockFrequencyInfo *BFIin) {
1062   MF = &NewMF;
1063   SDAGISelPass = PassPtr;
1064   ORE = &NewORE;
1065   TLI = getSubtarget().getTargetLowering();
1066   TSI = getSubtarget().getSelectionDAGInfo();
1067   LibInfo = LibraryInfo;
1068   Context = &MF->getFunction().getContext();
1069   DA = Divergence;
1070   PSI = PSIin;
1071   BFI = BFIin;
1072 }
1073 
1074 SelectionDAG::~SelectionDAG() {
1075   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1076   allnodes_clear();
1077   OperandRecycler.clear(OperandAllocator);
1078   delete DbgInfo;
1079 }
1080 
1081 bool SelectionDAG::shouldOptForSize() const {
1082   return MF->getFunction().hasOptSize() ||
1083       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1084 }
1085 
1086 void SelectionDAG::allnodes_clear() {
1087   assert(&*AllNodes.begin() == &EntryNode);
1088   AllNodes.remove(AllNodes.begin());
1089   while (!AllNodes.empty())
1090     DeallocateNode(&AllNodes.front());
1091 #ifndef NDEBUG
1092   NextPersistentId = 0;
1093 #endif
1094 }
1095 
1096 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1097                                           void *&InsertPos) {
1098   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1099   if (N) {
1100     switch (N->getOpcode()) {
1101     default: break;
1102     case ISD::Constant:
1103     case ISD::ConstantFP:
1104       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1105                        "debug location.  Use another overload.");
1106     }
1107   }
1108   return N;
1109 }
1110 
1111 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1112                                           const SDLoc &DL, void *&InsertPos) {
1113   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1114   if (N) {
1115     switch (N->getOpcode()) {
1116     case ISD::Constant:
1117     case ISD::ConstantFP:
1118       // Erase debug location from the node if the node is used at several
1119       // different places. Do not propagate one location to all uses as it
1120       // will cause a worse single stepping debugging experience.
1121       if (N->getDebugLoc() != DL.getDebugLoc())
1122         N->setDebugLoc(DebugLoc());
1123       break;
1124     default:
1125       // When the node's point of use is located earlier in the instruction
1126       // sequence than its prior point of use, update its debug info to the
1127       // earlier location.
1128       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1129         N->setDebugLoc(DL.getDebugLoc());
1130       break;
1131     }
1132   }
1133   return N;
1134 }
1135 
1136 void SelectionDAG::clear() {
1137   allnodes_clear();
1138   OperandRecycler.clear(OperandAllocator);
1139   OperandAllocator.Reset();
1140   CSEMap.clear();
1141 
1142   ExtendedValueTypeNodes.clear();
1143   ExternalSymbols.clear();
1144   TargetExternalSymbols.clear();
1145   MCSymbols.clear();
1146   SDCallSiteDbgInfo.clear();
1147   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1148             static_cast<CondCodeSDNode*>(nullptr));
1149   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1150             static_cast<SDNode*>(nullptr));
1151 
1152   EntryNode.UseList = nullptr;
1153   InsertNode(&EntryNode);
1154   Root = getEntryNode();
1155   DbgInfo->clear();
1156 }
1157 
1158 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1159   return VT.bitsGT(Op.getValueType())
1160              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1161              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1162 }
1163 
1164 std::pair<SDValue, SDValue>
1165 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1166                                        const SDLoc &DL, EVT VT) {
1167   assert(!VT.bitsEq(Op.getValueType()) &&
1168          "Strict no-op FP extend/round not allowed.");
1169   SDValue Res =
1170       VT.bitsGT(Op.getValueType())
1171           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1172           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1173                     {Chain, Op, getIntPtrConstant(0, DL)});
1174 
1175   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1176 }
1177 
1178 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1179   return VT.bitsGT(Op.getValueType()) ?
1180     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1181     getNode(ISD::TRUNCATE, DL, VT, Op);
1182 }
1183 
1184 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1185   return VT.bitsGT(Op.getValueType()) ?
1186     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1187     getNode(ISD::TRUNCATE, DL, VT, Op);
1188 }
1189 
1190 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1191   return VT.bitsGT(Op.getValueType()) ?
1192     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1193     getNode(ISD::TRUNCATE, DL, VT, Op);
1194 }
1195 
1196 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1197                                         EVT OpVT) {
1198   if (VT.bitsLE(Op.getValueType()))
1199     return getNode(ISD::TRUNCATE, SL, VT, Op);
1200 
1201   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1202   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1203 }
1204 
1205 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1206   EVT OpVT = Op.getValueType();
1207   assert(VT.isInteger() && OpVT.isInteger() &&
1208          "Cannot getZeroExtendInReg FP types");
1209   assert(VT.isVector() == OpVT.isVector() &&
1210          "getZeroExtendInReg type should be vector iff the operand "
1211          "type is vector!");
1212   assert((!VT.isVector() ||
1213           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1214          "Vector element counts must match in getZeroExtendInReg");
1215   assert(VT.bitsLE(OpVT) && "Not extending!");
1216   if (OpVT == VT)
1217     return Op;
1218   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1219                                    VT.getScalarSizeInBits());
1220   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1221 }
1222 
1223 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1224   // Only unsigned pointer semantics are supported right now. In the future this
1225   // might delegate to TLI to check pointer signedness.
1226   return getZExtOrTrunc(Op, DL, VT);
1227 }
1228 
1229 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1230   // Only unsigned pointer semantics are supported right now. In the future this
1231   // might delegate to TLI to check pointer signedness.
1232   return getZeroExtendInReg(Op, DL, VT);
1233 }
1234 
1235 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1236 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1237   EVT EltVT = VT.getScalarType();
1238   SDValue NegOne =
1239     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1240   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1241 }
1242 
1243 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1244   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1245   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1246 }
1247 
1248 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1249                                       EVT OpVT) {
1250   if (!V)
1251     return getConstant(0, DL, VT);
1252 
1253   switch (TLI->getBooleanContents(OpVT)) {
1254   case TargetLowering::ZeroOrOneBooleanContent:
1255   case TargetLowering::UndefinedBooleanContent:
1256     return getConstant(1, DL, VT);
1257   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1258     return getAllOnesConstant(DL, VT);
1259   }
1260   llvm_unreachable("Unexpected boolean content enum!");
1261 }
1262 
1263 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1264                                   bool isT, bool isO) {
1265   EVT EltVT = VT.getScalarType();
1266   assert((EltVT.getSizeInBits() >= 64 ||
1267          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1268          "getConstant with a uint64_t value that doesn't fit in the type!");
1269   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1270 }
1271 
1272 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1273                                   bool isT, bool isO) {
1274   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1275 }
1276 
1277 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1278                                   EVT VT, bool isT, bool isO) {
1279   assert(VT.isInteger() && "Cannot create FP integer constant!");
1280 
1281   EVT EltVT = VT.getScalarType();
1282   const ConstantInt *Elt = &Val;
1283 
1284   // In some cases the vector type is legal but the element type is illegal and
1285   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1286   // inserted value (the type does not need to match the vector element type).
1287   // Any extra bits introduced will be truncated away.
1288   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1289       TargetLowering::TypePromoteInteger) {
1290    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1291    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1292    Elt = ConstantInt::get(*getContext(), NewVal);
1293   }
1294   // In other cases the element type is illegal and needs to be expanded, for
1295   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1296   // the value into n parts and use a vector type with n-times the elements.
1297   // Then bitcast to the type requested.
1298   // Legalizing constants too early makes the DAGCombiner's job harder so we
1299   // only legalize if the DAG tells us we must produce legal types.
1300   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1301            TLI->getTypeAction(*getContext(), EltVT) ==
1302            TargetLowering::TypeExpandInteger) {
1303     const APInt &NewVal = Elt->getValue();
1304     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1305     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1306     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1307     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1308 
1309     // Check the temporary vector is the correct size. If this fails then
1310     // getTypeToTransformTo() probably returned a type whose size (in bits)
1311     // isn't a power-of-2 factor of the requested type size.
1312     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1313 
1314     SmallVector<SDValue, 2> EltParts;
1315     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1316       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1317                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1318                                      ViaEltVT, isT, isO));
1319     }
1320 
1321     // EltParts is currently in little endian order. If we actually want
1322     // big-endian order then reverse it now.
1323     if (getDataLayout().isBigEndian())
1324       std::reverse(EltParts.begin(), EltParts.end());
1325 
1326     // The elements must be reversed when the element order is different
1327     // to the endianness of the elements (because the BITCAST is itself a
1328     // vector shuffle in this situation). However, we do not need any code to
1329     // perform this reversal because getConstant() is producing a vector
1330     // splat.
1331     // This situation occurs in MIPS MSA.
1332 
1333     SmallVector<SDValue, 8> Ops;
1334     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1335       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1336 
1337     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1338     return V;
1339   }
1340 
1341   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1342          "APInt size does not match type size!");
1343   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1344   FoldingSetNodeID ID;
1345   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1346   ID.AddPointer(Elt);
1347   ID.AddBoolean(isO);
1348   void *IP = nullptr;
1349   SDNode *N = nullptr;
1350   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1351     if (!VT.isVector())
1352       return SDValue(N, 0);
1353 
1354   if (!N) {
1355     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1356     CSEMap.InsertNode(N, IP);
1357     InsertNode(N);
1358     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1359   }
1360 
1361   SDValue Result(N, 0);
1362   if (VT.isScalableVector())
1363     Result = getSplatVector(VT, DL, Result);
1364   else if (VT.isVector())
1365     Result = getSplatBuildVector(VT, DL, Result);
1366 
1367   return Result;
1368 }
1369 
1370 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1371                                         bool isTarget) {
1372   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1373 }
1374 
1375 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1376                                              const SDLoc &DL, bool LegalTypes) {
1377   assert(VT.isInteger() && "Shift amount is not an integer type!");
1378   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1379   return getConstant(Val, DL, ShiftVT);
1380 }
1381 
1382 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1383                                            bool isTarget) {
1384   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1385 }
1386 
1387 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1388                                     bool isTarget) {
1389   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1390 }
1391 
1392 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1393                                     EVT VT, bool isTarget) {
1394   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1395 
1396   EVT EltVT = VT.getScalarType();
1397 
1398   // Do the map lookup using the actual bit pattern for the floating point
1399   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1400   // we don't have issues with SNANs.
1401   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1402   FoldingSetNodeID ID;
1403   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1404   ID.AddPointer(&V);
1405   void *IP = nullptr;
1406   SDNode *N = nullptr;
1407   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1408     if (!VT.isVector())
1409       return SDValue(N, 0);
1410 
1411   if (!N) {
1412     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1413     CSEMap.InsertNode(N, IP);
1414     InsertNode(N);
1415   }
1416 
1417   SDValue Result(N, 0);
1418   if (VT.isScalableVector())
1419     Result = getSplatVector(VT, DL, Result);
1420   else if (VT.isVector())
1421     Result = getSplatBuildVector(VT, DL, Result);
1422   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1423   return Result;
1424 }
1425 
1426 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1427                                     bool isTarget) {
1428   EVT EltVT = VT.getScalarType();
1429   if (EltVT == MVT::f32)
1430     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1431   else if (EltVT == MVT::f64)
1432     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1433   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1434            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1435     bool Ignored;
1436     APFloat APF = APFloat(Val);
1437     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1438                 &Ignored);
1439     return getConstantFP(APF, DL, VT, isTarget);
1440   } else
1441     llvm_unreachable("Unsupported type in getConstantFP");
1442 }
1443 
1444 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1445                                        EVT VT, int64_t Offset, bool isTargetGA,
1446                                        unsigned TargetFlags) {
1447   assert((TargetFlags == 0 || isTargetGA) &&
1448          "Cannot set target flags on target-independent globals");
1449 
1450   // Truncate (with sign-extension) the offset value to the pointer size.
1451   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1452   if (BitWidth < 64)
1453     Offset = SignExtend64(Offset, BitWidth);
1454 
1455   unsigned Opc;
1456   if (GV->isThreadLocal())
1457     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1458   else
1459     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1460 
1461   FoldingSetNodeID ID;
1462   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1463   ID.AddPointer(GV);
1464   ID.AddInteger(Offset);
1465   ID.AddInteger(TargetFlags);
1466   void *IP = nullptr;
1467   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1468     return SDValue(E, 0);
1469 
1470   auto *N = newSDNode<GlobalAddressSDNode>(
1471       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1472   CSEMap.InsertNode(N, IP);
1473     InsertNode(N);
1474   return SDValue(N, 0);
1475 }
1476 
1477 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1478   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1479   FoldingSetNodeID ID;
1480   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1481   ID.AddInteger(FI);
1482   void *IP = nullptr;
1483   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484     return SDValue(E, 0);
1485 
1486   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1487   CSEMap.InsertNode(N, IP);
1488   InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1493                                    unsigned TargetFlags) {
1494   assert((TargetFlags == 0 || isTarget) &&
1495          "Cannot set target flags on target-independent jump tables");
1496   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1497   FoldingSetNodeID ID;
1498   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1499   ID.AddInteger(JTI);
1500   ID.AddInteger(TargetFlags);
1501   void *IP = nullptr;
1502   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1503     return SDValue(E, 0);
1504 
1505   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1506   CSEMap.InsertNode(N, IP);
1507   InsertNode(N);
1508   return SDValue(N, 0);
1509 }
1510 
1511 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1512                                       MaybeAlign Alignment, int Offset,
1513                                       bool isTarget, unsigned TargetFlags) {
1514   assert((TargetFlags == 0 || isTarget) &&
1515          "Cannot set target flags on target-independent globals");
1516   if (!Alignment)
1517     Alignment = shouldOptForSize()
1518                     ? getDataLayout().getABITypeAlign(C->getType())
1519                     : getDataLayout().getPrefTypeAlign(C->getType());
1520   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1521   FoldingSetNodeID ID;
1522   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1523   ID.AddInteger(Alignment->value());
1524   ID.AddInteger(Offset);
1525   ID.AddPointer(C);
1526   ID.AddInteger(TargetFlags);
1527   void *IP = nullptr;
1528   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1529     return SDValue(E, 0);
1530 
1531   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1532                                           TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   SDValue V = SDValue(N, 0);
1536   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1537   return V;
1538 }
1539 
1540 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1541                                       MaybeAlign Alignment, int Offset,
1542                                       bool isTarget, unsigned TargetFlags) {
1543   assert((TargetFlags == 0 || isTarget) &&
1544          "Cannot set target flags on target-independent globals");
1545   if (!Alignment)
1546     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1547   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1548   FoldingSetNodeID ID;
1549   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1550   ID.AddInteger(Alignment->value());
1551   ID.AddInteger(Offset);
1552   C->addSelectionDAGCSEId(ID);
1553   ID.AddInteger(TargetFlags);
1554   void *IP = nullptr;
1555   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1556     return SDValue(E, 0);
1557 
1558   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1559                                           TargetFlags);
1560   CSEMap.InsertNode(N, IP);
1561   InsertNode(N);
1562   return SDValue(N, 0);
1563 }
1564 
1565 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1566                                      unsigned TargetFlags) {
1567   FoldingSetNodeID ID;
1568   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1569   ID.AddInteger(Index);
1570   ID.AddInteger(Offset);
1571   ID.AddInteger(TargetFlags);
1572   void *IP = nullptr;
1573   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1574     return SDValue(E, 0);
1575 
1576   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1577   CSEMap.InsertNode(N, IP);
1578   InsertNode(N);
1579   return SDValue(N, 0);
1580 }
1581 
1582 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1583   FoldingSetNodeID ID;
1584   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1585   ID.AddPointer(MBB);
1586   void *IP = nullptr;
1587   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1588     return SDValue(E, 0);
1589 
1590   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1591   CSEMap.InsertNode(N, IP);
1592   InsertNode(N);
1593   return SDValue(N, 0);
1594 }
1595 
1596 SDValue SelectionDAG::getValueType(EVT VT) {
1597   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1598       ValueTypeNodes.size())
1599     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1600 
1601   SDNode *&N = VT.isExtended() ?
1602     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1603 
1604   if (N) return SDValue(N, 0);
1605   N = newSDNode<VTSDNode>(VT);
1606   InsertNode(N);
1607   return SDValue(N, 0);
1608 }
1609 
1610 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1611   SDNode *&N = ExternalSymbols[Sym];
1612   if (N) return SDValue(N, 0);
1613   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1614   InsertNode(N);
1615   return SDValue(N, 0);
1616 }
1617 
1618 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1619   SDNode *&N = MCSymbols[Sym];
1620   if (N)
1621     return SDValue(N, 0);
1622   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1623   InsertNode(N);
1624   return SDValue(N, 0);
1625 }
1626 
1627 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1628                                               unsigned TargetFlags) {
1629   SDNode *&N =
1630       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1631   if (N) return SDValue(N, 0);
1632   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1633   InsertNode(N);
1634   return SDValue(N, 0);
1635 }
1636 
1637 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1638   if ((unsigned)Cond >= CondCodeNodes.size())
1639     CondCodeNodes.resize(Cond+1);
1640 
1641   if (!CondCodeNodes[Cond]) {
1642     auto *N = newSDNode<CondCodeSDNode>(Cond);
1643     CondCodeNodes[Cond] = N;
1644     InsertNode(N);
1645   }
1646 
1647   return SDValue(CondCodeNodes[Cond], 0);
1648 }
1649 
1650 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1651 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1652 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1653   std::swap(N1, N2);
1654   ShuffleVectorSDNode::commuteMask(M);
1655 }
1656 
1657 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1658                                        SDValue N2, ArrayRef<int> Mask) {
1659   assert(VT.getVectorNumElements() == Mask.size() &&
1660            "Must have the same number of vector elements as mask elements!");
1661   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1662          "Invalid VECTOR_SHUFFLE");
1663 
1664   // Canonicalize shuffle undef, undef -> undef
1665   if (N1.isUndef() && N2.isUndef())
1666     return getUNDEF(VT);
1667 
1668   // Validate that all indices in Mask are within the range of the elements
1669   // input to the shuffle.
1670   int NElts = Mask.size();
1671   assert(llvm::all_of(Mask,
1672                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1673          "Index out of range");
1674 
1675   // Copy the mask so we can do any needed cleanup.
1676   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1677 
1678   // Canonicalize shuffle v, v -> v, undef
1679   if (N1 == N2) {
1680     N2 = getUNDEF(VT);
1681     for (int i = 0; i != NElts; ++i)
1682       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1683   }
1684 
1685   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1686   if (N1.isUndef())
1687     commuteShuffle(N1, N2, MaskVec);
1688 
1689   if (TLI->hasVectorBlend()) {
1690     // If shuffling a splat, try to blend the splat instead. We do this here so
1691     // that even when this arises during lowering we don't have to re-handle it.
1692     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1693       BitVector UndefElements;
1694       SDValue Splat = BV->getSplatValue(&UndefElements);
1695       if (!Splat)
1696         return;
1697 
1698       for (int i = 0; i < NElts; ++i) {
1699         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1700           continue;
1701 
1702         // If this input comes from undef, mark it as such.
1703         if (UndefElements[MaskVec[i] - Offset]) {
1704           MaskVec[i] = -1;
1705           continue;
1706         }
1707 
1708         // If we can blend a non-undef lane, use that instead.
1709         if (!UndefElements[i])
1710           MaskVec[i] = i + Offset;
1711       }
1712     };
1713     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1714       BlendSplat(N1BV, 0);
1715     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1716       BlendSplat(N2BV, NElts);
1717   }
1718 
1719   // Canonicalize all index into lhs, -> shuffle lhs, undef
1720   // Canonicalize all index into rhs, -> shuffle rhs, undef
1721   bool AllLHS = true, AllRHS = true;
1722   bool N2Undef = N2.isUndef();
1723   for (int i = 0; i != NElts; ++i) {
1724     if (MaskVec[i] >= NElts) {
1725       if (N2Undef)
1726         MaskVec[i] = -1;
1727       else
1728         AllLHS = false;
1729     } else if (MaskVec[i] >= 0) {
1730       AllRHS = false;
1731     }
1732   }
1733   if (AllLHS && AllRHS)
1734     return getUNDEF(VT);
1735   if (AllLHS && !N2Undef)
1736     N2 = getUNDEF(VT);
1737   if (AllRHS) {
1738     N1 = getUNDEF(VT);
1739     commuteShuffle(N1, N2, MaskVec);
1740   }
1741   // Reset our undef status after accounting for the mask.
1742   N2Undef = N2.isUndef();
1743   // Re-check whether both sides ended up undef.
1744   if (N1.isUndef() && N2Undef)
1745     return getUNDEF(VT);
1746 
1747   // If Identity shuffle return that node.
1748   bool Identity = true, AllSame = true;
1749   for (int i = 0; i != NElts; ++i) {
1750     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1751     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1752   }
1753   if (Identity && NElts)
1754     return N1;
1755 
1756   // Shuffling a constant splat doesn't change the result.
1757   if (N2Undef) {
1758     SDValue V = N1;
1759 
1760     // Look through any bitcasts. We check that these don't change the number
1761     // (and size) of elements and just changes their types.
1762     while (V.getOpcode() == ISD::BITCAST)
1763       V = V->getOperand(0);
1764 
1765     // A splat should always show up as a build vector node.
1766     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1767       BitVector UndefElements;
1768       SDValue Splat = BV->getSplatValue(&UndefElements);
1769       // If this is a splat of an undef, shuffling it is also undef.
1770       if (Splat && Splat.isUndef())
1771         return getUNDEF(VT);
1772 
1773       bool SameNumElts =
1774           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1775 
1776       // We only have a splat which can skip shuffles if there is a splatted
1777       // value and no undef lanes rearranged by the shuffle.
1778       if (Splat && UndefElements.none()) {
1779         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1780         // number of elements match or the value splatted is a zero constant.
1781         if (SameNumElts)
1782           return N1;
1783         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1784           if (C->isNullValue())
1785             return N1;
1786       }
1787 
1788       // If the shuffle itself creates a splat, build the vector directly.
1789       if (AllSame && SameNumElts) {
1790         EVT BuildVT = BV->getValueType(0);
1791         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1792         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1793 
1794         // We may have jumped through bitcasts, so the type of the
1795         // BUILD_VECTOR may not match the type of the shuffle.
1796         if (BuildVT != VT)
1797           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1798         return NewBV;
1799       }
1800     }
1801   }
1802 
1803   FoldingSetNodeID ID;
1804   SDValue Ops[2] = { N1, N2 };
1805   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1806   for (int i = 0; i != NElts; ++i)
1807     ID.AddInteger(MaskVec[i]);
1808 
1809   void* IP = nullptr;
1810   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1811     return SDValue(E, 0);
1812 
1813   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1814   // SDNode doesn't have access to it.  This memory will be "leaked" when
1815   // the node is deallocated, but recovered when the NodeAllocator is released.
1816   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1817   llvm::copy(MaskVec, MaskAlloc);
1818 
1819   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1820                                            dl.getDebugLoc(), MaskAlloc);
1821   createOperands(N, Ops);
1822 
1823   CSEMap.InsertNode(N, IP);
1824   InsertNode(N);
1825   SDValue V = SDValue(N, 0);
1826   NewSDValueDbgMsg(V, "Creating new node: ", this);
1827   return V;
1828 }
1829 
1830 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1831   EVT VT = SV.getValueType(0);
1832   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1833   ShuffleVectorSDNode::commuteMask(MaskVec);
1834 
1835   SDValue Op0 = SV.getOperand(0);
1836   SDValue Op1 = SV.getOperand(1);
1837   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1838 }
1839 
1840 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1841   FoldingSetNodeID ID;
1842   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1843   ID.AddInteger(RegNo);
1844   void *IP = nullptr;
1845   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1846     return SDValue(E, 0);
1847 
1848   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1849   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1850   CSEMap.InsertNode(N, IP);
1851   InsertNode(N);
1852   return SDValue(N, 0);
1853 }
1854 
1855 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1856   FoldingSetNodeID ID;
1857   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1858   ID.AddPointer(RegMask);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1870                                  MCSymbol *Label) {
1871   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1872 }
1873 
1874 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1875                                    SDValue Root, MCSymbol *Label) {
1876   FoldingSetNodeID ID;
1877   SDValue Ops[] = { Root };
1878   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1879   ID.AddPointer(Label);
1880   void *IP = nullptr;
1881   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1882     return SDValue(E, 0);
1883 
1884   auto *N =
1885       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1886   createOperands(N, Ops);
1887 
1888   CSEMap.InsertNode(N, IP);
1889   InsertNode(N);
1890   return SDValue(N, 0);
1891 }
1892 
1893 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1894                                       int64_t Offset, bool isTarget,
1895                                       unsigned TargetFlags) {
1896   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1897 
1898   FoldingSetNodeID ID;
1899   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1900   ID.AddPointer(BA);
1901   ID.AddInteger(Offset);
1902   ID.AddInteger(TargetFlags);
1903   void *IP = nullptr;
1904   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1905     return SDValue(E, 0);
1906 
1907   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1908   CSEMap.InsertNode(N, IP);
1909   InsertNode(N);
1910   return SDValue(N, 0);
1911 }
1912 
1913 SDValue SelectionDAG::getSrcValue(const Value *V) {
1914   FoldingSetNodeID ID;
1915   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1916   ID.AddPointer(V);
1917 
1918   void *IP = nullptr;
1919   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1920     return SDValue(E, 0);
1921 
1922   auto *N = newSDNode<SrcValueSDNode>(V);
1923   CSEMap.InsertNode(N, IP);
1924   InsertNode(N);
1925   return SDValue(N, 0);
1926 }
1927 
1928 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1929   FoldingSetNodeID ID;
1930   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1931   ID.AddPointer(MD);
1932 
1933   void *IP = nullptr;
1934   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1935     return SDValue(E, 0);
1936 
1937   auto *N = newSDNode<MDNodeSDNode>(MD);
1938   CSEMap.InsertNode(N, IP);
1939   InsertNode(N);
1940   return SDValue(N, 0);
1941 }
1942 
1943 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1944   if (VT == V.getValueType())
1945     return V;
1946 
1947   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1948 }
1949 
1950 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1951                                        unsigned SrcAS, unsigned DestAS) {
1952   SDValue Ops[] = {Ptr};
1953   FoldingSetNodeID ID;
1954   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1955   ID.AddInteger(SrcAS);
1956   ID.AddInteger(DestAS);
1957 
1958   void *IP = nullptr;
1959   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1960     return SDValue(E, 0);
1961 
1962   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1963                                            VT, SrcAS, DestAS);
1964   createOperands(N, Ops);
1965 
1966   CSEMap.InsertNode(N, IP);
1967   InsertNode(N);
1968   return SDValue(N, 0);
1969 }
1970 
1971 SDValue SelectionDAG::getFreeze(SDValue V) {
1972   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1973 }
1974 
1975 /// getShiftAmountOperand - Return the specified value casted to
1976 /// the target's desired shift amount type.
1977 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1978   EVT OpTy = Op.getValueType();
1979   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1980   if (OpTy == ShTy || OpTy.isVector()) return Op;
1981 
1982   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1983 }
1984 
1985 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1986   SDLoc dl(Node);
1987   const TargetLowering &TLI = getTargetLoweringInfo();
1988   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1989   EVT VT = Node->getValueType(0);
1990   SDValue Tmp1 = Node->getOperand(0);
1991   SDValue Tmp2 = Node->getOperand(1);
1992   const MaybeAlign MA(Node->getConstantOperandVal(3));
1993 
1994   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1995                                Tmp2, MachinePointerInfo(V));
1996   SDValue VAList = VAListLoad;
1997 
1998   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1999     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2000                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2001 
2002     VAList =
2003         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2004                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2005   }
2006 
2007   // Increment the pointer, VAList, to the next vaarg
2008   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2009                  getConstant(getDataLayout().getTypeAllocSize(
2010                                                VT.getTypeForEVT(*getContext())),
2011                              dl, VAList.getValueType()));
2012   // Store the incremented VAList to the legalized pointer
2013   Tmp1 =
2014       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2015   // Load the actual argument out of the pointer VAList
2016   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2017 }
2018 
2019 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2020   SDLoc dl(Node);
2021   const TargetLowering &TLI = getTargetLoweringInfo();
2022   // This defaults to loading a pointer from the input and storing it to the
2023   // output, returning the chain.
2024   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2025   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2026   SDValue Tmp1 =
2027       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2028               Node->getOperand(2), MachinePointerInfo(VS));
2029   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2030                   MachinePointerInfo(VD));
2031 }
2032 
2033 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2034   const DataLayout &DL = getDataLayout();
2035   Type *Ty = VT.getTypeForEVT(*getContext());
2036   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2037 
2038   if (TLI->isTypeLegal(VT) || !VT.isVector())
2039     return RedAlign;
2040 
2041   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2042   const Align StackAlign = TFI->getStackAlign();
2043 
2044   // See if we can choose a smaller ABI alignment in cases where it's an
2045   // illegal vector type that will get broken down.
2046   if (RedAlign > StackAlign) {
2047     EVT IntermediateVT;
2048     MVT RegisterVT;
2049     unsigned NumIntermediates;
2050     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2051                                 NumIntermediates, RegisterVT);
2052     Ty = IntermediateVT.getTypeForEVT(*getContext());
2053     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2054     if (RedAlign2 < RedAlign)
2055       RedAlign = RedAlign2;
2056   }
2057 
2058   return RedAlign;
2059 }
2060 
2061 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2062   MachineFrameInfo &MFI = MF->getFrameInfo();
2063   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2064   int StackID = 0;
2065   if (Bytes.isScalable())
2066     StackID = TFI->getStackIDForScalableVectors();
2067   // The stack id gives an indication of whether the object is scalable or
2068   // not, so it's safe to pass in the minimum size here.
2069   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2070                                        false, nullptr, StackID);
2071   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2072 }
2073 
2074 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2075   Type *Ty = VT.getTypeForEVT(*getContext());
2076   Align StackAlign =
2077       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2078   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2079 }
2080 
2081 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2082   TypeSize VT1Size = VT1.getStoreSize();
2083   TypeSize VT2Size = VT2.getStoreSize();
2084   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2085          "Don't know how to choose the maximum size when creating a stack "
2086          "temporary");
2087   TypeSize Bytes =
2088       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2089 
2090   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2091   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2092   const DataLayout &DL = getDataLayout();
2093   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2094   return CreateStackTemporary(Bytes, Align);
2095 }
2096 
2097 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2098                                 ISD::CondCode Cond, const SDLoc &dl) {
2099   EVT OpVT = N1.getValueType();
2100 
2101   // These setcc operations always fold.
2102   switch (Cond) {
2103   default: break;
2104   case ISD::SETFALSE:
2105   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2106   case ISD::SETTRUE:
2107   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2108 
2109   case ISD::SETOEQ:
2110   case ISD::SETOGT:
2111   case ISD::SETOGE:
2112   case ISD::SETOLT:
2113   case ISD::SETOLE:
2114   case ISD::SETONE:
2115   case ISD::SETO:
2116   case ISD::SETUO:
2117   case ISD::SETUEQ:
2118   case ISD::SETUNE:
2119     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2120     break;
2121   }
2122 
2123   if (OpVT.isInteger()) {
2124     // For EQ and NE, we can always pick a value for the undef to make the
2125     // predicate pass or fail, so we can return undef.
2126     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2127     // icmp eq/ne X, undef -> undef.
2128     if ((N1.isUndef() || N2.isUndef()) &&
2129         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2130       return getUNDEF(VT);
2131 
2132     // If both operands are undef, we can return undef for int comparison.
2133     // icmp undef, undef -> undef.
2134     if (N1.isUndef() && N2.isUndef())
2135       return getUNDEF(VT);
2136 
2137     // icmp X, X -> true/false
2138     // icmp X, undef -> true/false because undef could be X.
2139     if (N1 == N2)
2140       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2141   }
2142 
2143   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2144     const APInt &C2 = N2C->getAPIntValue();
2145     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2146       const APInt &C1 = N1C->getAPIntValue();
2147 
2148       switch (Cond) {
2149       default: llvm_unreachable("Unknown integer setcc!");
2150       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2151       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2152       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2153       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2154       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2155       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2156       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2157       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2158       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2159       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2160       }
2161     }
2162   }
2163 
2164   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2165   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2166 
2167   if (N1CFP && N2CFP) {
2168     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2169     switch (Cond) {
2170     default: break;
2171     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2172                         return getUNDEF(VT);
2173                       LLVM_FALLTHROUGH;
2174     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2175                                              OpVT);
2176     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2177                         return getUNDEF(VT);
2178                       LLVM_FALLTHROUGH;
2179     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2180                                              R==APFloat::cmpLessThan, dl, VT,
2181                                              OpVT);
2182     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2183                         return getUNDEF(VT);
2184                       LLVM_FALLTHROUGH;
2185     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2186                                              OpVT);
2187     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2188                         return getUNDEF(VT);
2189                       LLVM_FALLTHROUGH;
2190     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2191                                              VT, OpVT);
2192     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2193                         return getUNDEF(VT);
2194                       LLVM_FALLTHROUGH;
2195     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2196                                              R==APFloat::cmpEqual, dl, VT,
2197                                              OpVT);
2198     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2199                         return getUNDEF(VT);
2200                       LLVM_FALLTHROUGH;
2201     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2202                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2203     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2204                                              OpVT);
2205     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2206                                              OpVT);
2207     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2208                                              R==APFloat::cmpEqual, dl, VT,
2209                                              OpVT);
2210     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2211                                              OpVT);
2212     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2213                                              R==APFloat::cmpLessThan, dl, VT,
2214                                              OpVT);
2215     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2216                                              R==APFloat::cmpUnordered, dl, VT,
2217                                              OpVT);
2218     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2219                                              VT, OpVT);
2220     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2221                                              OpVT);
2222     }
2223   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2224     // Ensure that the constant occurs on the RHS.
2225     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2226     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2227       return SDValue();
2228     return getSetCC(dl, VT, N2, N1, SwappedCond);
2229   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2230              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2231     // If an operand is known to be a nan (or undef that could be a nan), we can
2232     // fold it.
2233     // Choosing NaN for the undef will always make unordered comparison succeed
2234     // and ordered comparison fails.
2235     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2236     switch (ISD::getUnorderedFlavor(Cond)) {
2237     default:
2238       llvm_unreachable("Unknown flavor!");
2239     case 0: // Known false.
2240       return getBoolConstant(false, dl, VT, OpVT);
2241     case 1: // Known true.
2242       return getBoolConstant(true, dl, VT, OpVT);
2243     case 2: // Undefined.
2244       return getUNDEF(VT);
2245     }
2246   }
2247 
2248   // Could not fold it.
2249   return SDValue();
2250 }
2251 
2252 /// See if the specified operand can be simplified with the knowledge that only
2253 /// the bits specified by DemandedBits are used.
2254 /// TODO: really we should be making this into the DAG equivalent of
2255 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2256 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2257   EVT VT = V.getValueType();
2258 
2259   if (VT.isScalableVector())
2260     return SDValue();
2261 
2262   APInt DemandedElts = VT.isVector()
2263                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2264                            : APInt(1, 1);
2265   return GetDemandedBits(V, DemandedBits, DemandedElts);
2266 }
2267 
2268 /// See if the specified operand can be simplified with the knowledge that only
2269 /// the bits specified by DemandedBits are used in the elements specified by
2270 /// DemandedElts.
2271 /// TODO: really we should be making this into the DAG equivalent of
2272 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2273 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2274                                       const APInt &DemandedElts) {
2275   switch (V.getOpcode()) {
2276   default:
2277     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2278                                                 *this, 0);
2279   case ISD::Constant: {
2280     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2281     APInt NewVal = CVal & DemandedBits;
2282     if (NewVal != CVal)
2283       return getConstant(NewVal, SDLoc(V), V.getValueType());
2284     break;
2285   }
2286   case ISD::SRL:
2287     // Only look at single-use SRLs.
2288     if (!V.getNode()->hasOneUse())
2289       break;
2290     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2291       // See if we can recursively simplify the LHS.
2292       unsigned Amt = RHSC->getZExtValue();
2293 
2294       // Watch out for shift count overflow though.
2295       if (Amt >= DemandedBits.getBitWidth())
2296         break;
2297       APInt SrcDemandedBits = DemandedBits << Amt;
2298       if (SDValue SimplifyLHS =
2299               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2300         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2301                        V.getOperand(1));
2302     }
2303     break;
2304   }
2305   return SDValue();
2306 }
2307 
2308 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2309 /// use this predicate to simplify operations downstream.
2310 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2311   unsigned BitWidth = Op.getScalarValueSizeInBits();
2312   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2313 }
2314 
2315 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2316 /// this predicate to simplify operations downstream.  Mask is known to be zero
2317 /// for bits that V cannot have.
2318 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2319                                      unsigned Depth) const {
2320   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2321 }
2322 
2323 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2324 /// DemandedElts.  We use this predicate to simplify operations downstream.
2325 /// Mask is known to be zero for bits that V cannot have.
2326 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2327                                      const APInt &DemandedElts,
2328                                      unsigned Depth) const {
2329   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2330 }
2331 
2332 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2333 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2334                                         unsigned Depth) const {
2335   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2336 }
2337 
2338 /// isSplatValue - Return true if the vector V has the same value
2339 /// across all DemandedElts. For scalable vectors it does not make
2340 /// sense to specify which elements are demanded or undefined, therefore
2341 /// they are simply ignored.
2342 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2343                                 APInt &UndefElts) {
2344   EVT VT = V.getValueType();
2345   assert(VT.isVector() && "Vector type expected");
2346 
2347   if (!VT.isScalableVector() && !DemandedElts)
2348     return false; // No demanded elts, better to assume we don't know anything.
2349 
2350   // Deal with some common cases here that work for both fixed and scalable
2351   // vector types.
2352   switch (V.getOpcode()) {
2353   case ISD::SPLAT_VECTOR:
2354     UndefElts = V.getOperand(0).isUndef()
2355                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2356                     : APInt(DemandedElts.getBitWidth(), 0);
2357     return true;
2358   case ISD::ADD:
2359   case ISD::SUB:
2360   case ISD::AND: {
2361     APInt UndefLHS, UndefRHS;
2362     SDValue LHS = V.getOperand(0);
2363     SDValue RHS = V.getOperand(1);
2364     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2365         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2366       UndefElts = UndefLHS | UndefRHS;
2367       return true;
2368     }
2369     break;
2370   }
2371   case ISD::TRUNCATE:
2372   case ISD::SIGN_EXTEND:
2373   case ISD::ZERO_EXTEND:
2374     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2375   }
2376 
2377   // We don't support other cases than those above for scalable vectors at
2378   // the moment.
2379   if (VT.isScalableVector())
2380     return false;
2381 
2382   unsigned NumElts = VT.getVectorNumElements();
2383   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2384   UndefElts = APInt::getNullValue(NumElts);
2385 
2386   switch (V.getOpcode()) {
2387   case ISD::BUILD_VECTOR: {
2388     SDValue Scl;
2389     for (unsigned i = 0; i != NumElts; ++i) {
2390       SDValue Op = V.getOperand(i);
2391       if (Op.isUndef()) {
2392         UndefElts.setBit(i);
2393         continue;
2394       }
2395       if (!DemandedElts[i])
2396         continue;
2397       if (Scl && Scl != Op)
2398         return false;
2399       Scl = Op;
2400     }
2401     return true;
2402   }
2403   case ISD::VECTOR_SHUFFLE: {
2404     // Check if this is a shuffle node doing a splat.
2405     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2406     int SplatIndex = -1;
2407     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2408     for (int i = 0; i != (int)NumElts; ++i) {
2409       int M = Mask[i];
2410       if (M < 0) {
2411         UndefElts.setBit(i);
2412         continue;
2413       }
2414       if (!DemandedElts[i])
2415         continue;
2416       if (0 <= SplatIndex && SplatIndex != M)
2417         return false;
2418       SplatIndex = M;
2419     }
2420     return true;
2421   }
2422   case ISD::EXTRACT_SUBVECTOR: {
2423     // Offset the demanded elts by the subvector index.
2424     SDValue Src = V.getOperand(0);
2425     uint64_t Idx = V.getConstantOperandVal(1);
2426     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2427     APInt UndefSrcElts;
2428     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2429     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2430       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2431       return true;
2432     }
2433     break;
2434   }
2435   }
2436 
2437   return false;
2438 }
2439 
2440 /// Helper wrapper to main isSplatValue function.
2441 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2442   EVT VT = V.getValueType();
2443   assert(VT.isVector() && "Vector type expected");
2444 
2445   APInt UndefElts;
2446   APInt DemandedElts;
2447 
2448   // For now we don't support this with scalable vectors.
2449   if (!VT.isScalableVector())
2450     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2451   return isSplatValue(V, DemandedElts, UndefElts) &&
2452          (AllowUndefs || !UndefElts);
2453 }
2454 
2455 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2456   V = peekThroughExtractSubvectors(V);
2457 
2458   EVT VT = V.getValueType();
2459   unsigned Opcode = V.getOpcode();
2460   switch (Opcode) {
2461   default: {
2462     APInt UndefElts;
2463     APInt DemandedElts;
2464 
2465     if (!VT.isScalableVector())
2466       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2467 
2468     if (isSplatValue(V, DemandedElts, UndefElts)) {
2469       if (VT.isScalableVector()) {
2470         // DemandedElts and UndefElts are ignored for scalable vectors, since
2471         // the only supported cases are SPLAT_VECTOR nodes.
2472         SplatIdx = 0;
2473       } else {
2474         // Handle case where all demanded elements are UNDEF.
2475         if (DemandedElts.isSubsetOf(UndefElts)) {
2476           SplatIdx = 0;
2477           return getUNDEF(VT);
2478         }
2479         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2480       }
2481       return V;
2482     }
2483     break;
2484   }
2485   case ISD::SPLAT_VECTOR:
2486     SplatIdx = 0;
2487     return V;
2488   case ISD::VECTOR_SHUFFLE: {
2489     if (VT.isScalableVector())
2490       return SDValue();
2491 
2492     // Check if this is a shuffle node doing a splat.
2493     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2494     // getTargetVShiftNode currently struggles without the splat source.
2495     auto *SVN = cast<ShuffleVectorSDNode>(V);
2496     if (!SVN->isSplat())
2497       break;
2498     int Idx = SVN->getSplatIndex();
2499     int NumElts = V.getValueType().getVectorNumElements();
2500     SplatIdx = Idx % NumElts;
2501     return V.getOperand(Idx / NumElts);
2502   }
2503   }
2504 
2505   return SDValue();
2506 }
2507 
2508 SDValue SelectionDAG::getSplatValue(SDValue V) {
2509   int SplatIdx;
2510   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2511     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2512                    SrcVector.getValueType().getScalarType(), SrcVector,
2513                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2514   return SDValue();
2515 }
2516 
2517 const APInt *
2518 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2519                                           const APInt &DemandedElts) const {
2520   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2521           V.getOpcode() == ISD::SRA) &&
2522          "Unknown shift node");
2523   unsigned BitWidth = V.getScalarValueSizeInBits();
2524   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2525     // Shifting more than the bitwidth is not valid.
2526     const APInt &ShAmt = SA->getAPIntValue();
2527     if (ShAmt.ult(BitWidth))
2528       return &ShAmt;
2529   }
2530   return nullptr;
2531 }
2532 
2533 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2534     SDValue V, const APInt &DemandedElts) const {
2535   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2536           V.getOpcode() == ISD::SRA) &&
2537          "Unknown shift node");
2538   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2539     return ValidAmt;
2540   unsigned BitWidth = V.getScalarValueSizeInBits();
2541   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2542   if (!BV)
2543     return nullptr;
2544   const APInt *MinShAmt = nullptr;
2545   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2546     if (!DemandedElts[i])
2547       continue;
2548     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2549     if (!SA)
2550       return nullptr;
2551     // Shifting more than the bitwidth is not valid.
2552     const APInt &ShAmt = SA->getAPIntValue();
2553     if (ShAmt.uge(BitWidth))
2554       return nullptr;
2555     if (MinShAmt && MinShAmt->ule(ShAmt))
2556       continue;
2557     MinShAmt = &ShAmt;
2558   }
2559   return MinShAmt;
2560 }
2561 
2562 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2563     SDValue V, const APInt &DemandedElts) const {
2564   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2565           V.getOpcode() == ISD::SRA) &&
2566          "Unknown shift node");
2567   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2568     return ValidAmt;
2569   unsigned BitWidth = V.getScalarValueSizeInBits();
2570   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2571   if (!BV)
2572     return nullptr;
2573   const APInt *MaxShAmt = nullptr;
2574   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2575     if (!DemandedElts[i])
2576       continue;
2577     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2578     if (!SA)
2579       return nullptr;
2580     // Shifting more than the bitwidth is not valid.
2581     const APInt &ShAmt = SA->getAPIntValue();
2582     if (ShAmt.uge(BitWidth))
2583       return nullptr;
2584     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2585       continue;
2586     MaxShAmt = &ShAmt;
2587   }
2588   return MaxShAmt;
2589 }
2590 
2591 /// Determine which bits of Op are known to be either zero or one and return
2592 /// them in Known. For vectors, the known bits are those that are shared by
2593 /// every vector element.
2594 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2595   EVT VT = Op.getValueType();
2596 
2597   // TOOD: Until we have a plan for how to represent demanded elements for
2598   // scalable vectors, we can just bail out for now.
2599   if (Op.getValueType().isScalableVector()) {
2600     unsigned BitWidth = Op.getScalarValueSizeInBits();
2601     return KnownBits(BitWidth);
2602   }
2603 
2604   APInt DemandedElts = VT.isVector()
2605                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2606                            : APInt(1, 1);
2607   return computeKnownBits(Op, DemandedElts, Depth);
2608 }
2609 
2610 /// Determine which bits of Op are known to be either zero or one and return
2611 /// them in Known. The DemandedElts argument allows us to only collect the known
2612 /// bits that are shared by the requested vector elements.
2613 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2614                                          unsigned Depth) const {
2615   unsigned BitWidth = Op.getScalarValueSizeInBits();
2616 
2617   KnownBits Known(BitWidth);   // Don't know anything.
2618 
2619   // TOOD: Until we have a plan for how to represent demanded elements for
2620   // scalable vectors, we can just bail out for now.
2621   if (Op.getValueType().isScalableVector())
2622     return Known;
2623 
2624   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2625     // We know all of the bits for a constant!
2626     Known.One = C->getAPIntValue();
2627     Known.Zero = ~Known.One;
2628     return Known;
2629   }
2630   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2631     // We know all of the bits for a constant fp!
2632     Known.One = C->getValueAPF().bitcastToAPInt();
2633     Known.Zero = ~Known.One;
2634     return Known;
2635   }
2636 
2637   if (Depth >= MaxRecursionDepth)
2638     return Known;  // Limit search depth.
2639 
2640   KnownBits Known2;
2641   unsigned NumElts = DemandedElts.getBitWidth();
2642   assert((!Op.getValueType().isVector() ||
2643           NumElts == Op.getValueType().getVectorNumElements()) &&
2644          "Unexpected vector size");
2645 
2646   if (!DemandedElts)
2647     return Known;  // No demanded elts, better to assume we don't know anything.
2648 
2649   unsigned Opcode = Op.getOpcode();
2650   switch (Opcode) {
2651   case ISD::BUILD_VECTOR:
2652     // Collect the known bits that are shared by every demanded vector element.
2653     Known.Zero.setAllBits(); Known.One.setAllBits();
2654     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2655       if (!DemandedElts[i])
2656         continue;
2657 
2658       SDValue SrcOp = Op.getOperand(i);
2659       Known2 = computeKnownBits(SrcOp, Depth + 1);
2660 
2661       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2662       if (SrcOp.getValueSizeInBits() != BitWidth) {
2663         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2664                "Expected BUILD_VECTOR implicit truncation");
2665         Known2 = Known2.trunc(BitWidth);
2666       }
2667 
2668       // Known bits are the values that are shared by every demanded element.
2669       Known.One &= Known2.One;
2670       Known.Zero &= Known2.Zero;
2671 
2672       // If we don't know any bits, early out.
2673       if (Known.isUnknown())
2674         break;
2675     }
2676     break;
2677   case ISD::VECTOR_SHUFFLE: {
2678     // Collect the known bits that are shared by every vector element referenced
2679     // by the shuffle.
2680     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2681     Known.Zero.setAllBits(); Known.One.setAllBits();
2682     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2683     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2684     for (unsigned i = 0; i != NumElts; ++i) {
2685       if (!DemandedElts[i])
2686         continue;
2687 
2688       int M = SVN->getMaskElt(i);
2689       if (M < 0) {
2690         // For UNDEF elements, we don't know anything about the common state of
2691         // the shuffle result.
2692         Known.resetAll();
2693         DemandedLHS.clearAllBits();
2694         DemandedRHS.clearAllBits();
2695         break;
2696       }
2697 
2698       if ((unsigned)M < NumElts)
2699         DemandedLHS.setBit((unsigned)M % NumElts);
2700       else
2701         DemandedRHS.setBit((unsigned)M % NumElts);
2702     }
2703     // Known bits are the values that are shared by every demanded element.
2704     if (!!DemandedLHS) {
2705       SDValue LHS = Op.getOperand(0);
2706       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2707       Known.One &= Known2.One;
2708       Known.Zero &= Known2.Zero;
2709     }
2710     // If we don't know any bits, early out.
2711     if (Known.isUnknown())
2712       break;
2713     if (!!DemandedRHS) {
2714       SDValue RHS = Op.getOperand(1);
2715       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2716       Known.One &= Known2.One;
2717       Known.Zero &= Known2.Zero;
2718     }
2719     break;
2720   }
2721   case ISD::CONCAT_VECTORS: {
2722     // Split DemandedElts and test each of the demanded subvectors.
2723     Known.Zero.setAllBits(); Known.One.setAllBits();
2724     EVT SubVectorVT = Op.getOperand(0).getValueType();
2725     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2726     unsigned NumSubVectors = Op.getNumOperands();
2727     for (unsigned i = 0; i != NumSubVectors; ++i) {
2728       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2729       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2730       if (!!DemandedSub) {
2731         SDValue Sub = Op.getOperand(i);
2732         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2733         Known.One &= Known2.One;
2734         Known.Zero &= Known2.Zero;
2735       }
2736       // If we don't know any bits, early out.
2737       if (Known.isUnknown())
2738         break;
2739     }
2740     break;
2741   }
2742   case ISD::INSERT_SUBVECTOR: {
2743     // Demand any elements from the subvector and the remainder from the src its
2744     // inserted into.
2745     SDValue Src = Op.getOperand(0);
2746     SDValue Sub = Op.getOperand(1);
2747     uint64_t Idx = Op.getConstantOperandVal(2);
2748     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2749     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2750     APInt DemandedSrcElts = DemandedElts;
2751     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2752 
2753     Known.One.setAllBits();
2754     Known.Zero.setAllBits();
2755     if (!!DemandedSubElts) {
2756       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2757       if (Known.isUnknown())
2758         break; // early-out.
2759     }
2760     if (!!DemandedSrcElts) {
2761       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2762       Known.One &= Known2.One;
2763       Known.Zero &= Known2.Zero;
2764     }
2765     break;
2766   }
2767   case ISD::EXTRACT_SUBVECTOR: {
2768     // Offset the demanded elts by the subvector index.
2769     SDValue Src = Op.getOperand(0);
2770     // Bail until we can represent demanded elements for scalable vectors.
2771     if (Src.getValueType().isScalableVector())
2772       break;
2773     uint64_t Idx = Op.getConstantOperandVal(1);
2774     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2775     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2776     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2777     break;
2778   }
2779   case ISD::SCALAR_TO_VECTOR: {
2780     // We know about scalar_to_vector as much as we know about it source,
2781     // which becomes the first element of otherwise unknown vector.
2782     if (DemandedElts != 1)
2783       break;
2784 
2785     SDValue N0 = Op.getOperand(0);
2786     Known = computeKnownBits(N0, Depth + 1);
2787     if (N0.getValueSizeInBits() != BitWidth)
2788       Known = Known.trunc(BitWidth);
2789 
2790     break;
2791   }
2792   case ISD::BITCAST: {
2793     SDValue N0 = Op.getOperand(0);
2794     EVT SubVT = N0.getValueType();
2795     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2796 
2797     // Ignore bitcasts from unsupported types.
2798     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2799       break;
2800 
2801     // Fast handling of 'identity' bitcasts.
2802     if (BitWidth == SubBitWidth) {
2803       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2804       break;
2805     }
2806 
2807     bool IsLE = getDataLayout().isLittleEndian();
2808 
2809     // Bitcast 'small element' vector to 'large element' scalar/vector.
2810     if ((BitWidth % SubBitWidth) == 0) {
2811       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2812 
2813       // Collect known bits for the (larger) output by collecting the known
2814       // bits from each set of sub elements and shift these into place.
2815       // We need to separately call computeKnownBits for each set of
2816       // sub elements as the knownbits for each is likely to be different.
2817       unsigned SubScale = BitWidth / SubBitWidth;
2818       APInt SubDemandedElts(NumElts * SubScale, 0);
2819       for (unsigned i = 0; i != NumElts; ++i)
2820         if (DemandedElts[i])
2821           SubDemandedElts.setBit(i * SubScale);
2822 
2823       for (unsigned i = 0; i != SubScale; ++i) {
2824         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2825                          Depth + 1);
2826         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2827         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2828         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2829       }
2830     }
2831 
2832     // Bitcast 'large element' scalar/vector to 'small element' vector.
2833     if ((SubBitWidth % BitWidth) == 0) {
2834       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2835 
2836       // Collect known bits for the (smaller) output by collecting the known
2837       // bits from the overlapping larger input elements and extracting the
2838       // sub sections we actually care about.
2839       unsigned SubScale = SubBitWidth / BitWidth;
2840       APInt SubDemandedElts(NumElts / SubScale, 0);
2841       for (unsigned i = 0; i != NumElts; ++i)
2842         if (DemandedElts[i])
2843           SubDemandedElts.setBit(i / SubScale);
2844 
2845       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2846 
2847       Known.Zero.setAllBits(); Known.One.setAllBits();
2848       for (unsigned i = 0; i != NumElts; ++i)
2849         if (DemandedElts[i]) {
2850           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2851           unsigned Offset = (Shifts % SubScale) * BitWidth;
2852           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2853           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2854           // If we don't know any bits, early out.
2855           if (Known.isUnknown())
2856             break;
2857         }
2858     }
2859     break;
2860   }
2861   case ISD::AND:
2862     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2863     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2864 
2865     Known &= Known2;
2866     break;
2867   case ISD::OR:
2868     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2869     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2870 
2871     Known |= Known2;
2872     break;
2873   case ISD::XOR:
2874     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2875     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2876 
2877     Known ^= Known2;
2878     break;
2879   case ISD::MUL: {
2880     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2881     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2882     Known = KnownBits::computeForMul(Known, Known2);
2883     break;
2884   }
2885   case ISD::UDIV: {
2886     // For the purposes of computing leading zeros we can conservatively
2887     // treat a udiv as a logical right shift by the power of 2 known to
2888     // be less than the denominator.
2889     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2890     unsigned LeadZ = Known2.countMinLeadingZeros();
2891 
2892     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2893     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2894     if (RHSMaxLeadingZeros != BitWidth)
2895       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2896 
2897     Known.Zero.setHighBits(LeadZ);
2898     break;
2899   }
2900   case ISD::SELECT:
2901   case ISD::VSELECT:
2902     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2903     // If we don't know any bits, early out.
2904     if (Known.isUnknown())
2905       break;
2906     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2907 
2908     // Only known if known in both the LHS and RHS.
2909     Known.One &= Known2.One;
2910     Known.Zero &= Known2.Zero;
2911     break;
2912   case ISD::SELECT_CC:
2913     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2914     // If we don't know any bits, early out.
2915     if (Known.isUnknown())
2916       break;
2917     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2918 
2919     // Only known if known in both the LHS and RHS.
2920     Known.One &= Known2.One;
2921     Known.Zero &= Known2.Zero;
2922     break;
2923   case ISD::SMULO:
2924   case ISD::UMULO:
2925   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2926     if (Op.getResNo() != 1)
2927       break;
2928     // The boolean result conforms to getBooleanContents.
2929     // If we know the result of a setcc has the top bits zero, use this info.
2930     // We know that we have an integer-based boolean since these operations
2931     // are only available for integer.
2932     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2933             TargetLowering::ZeroOrOneBooleanContent &&
2934         BitWidth > 1)
2935       Known.Zero.setBitsFrom(1);
2936     break;
2937   case ISD::SETCC:
2938   case ISD::STRICT_FSETCC:
2939   case ISD::STRICT_FSETCCS: {
2940     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2941     // If we know the result of a setcc has the top bits zero, use this info.
2942     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2943             TargetLowering::ZeroOrOneBooleanContent &&
2944         BitWidth > 1)
2945       Known.Zero.setBitsFrom(1);
2946     break;
2947   }
2948   case ISD::SHL:
2949     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2950     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2951     Known = KnownBits::shl(Known, Known2);
2952 
2953     // Minimum shift low bits are known zero.
2954     if (const APInt *ShMinAmt =
2955             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2956       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2957     break;
2958   case ISD::SRL:
2959     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2960     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2961     Known = KnownBits::lshr(Known, Known2);
2962 
2963     // Minimum shift high bits are known zero.
2964     if (const APInt *ShMinAmt =
2965             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2966       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2967     break;
2968   case ISD::SRA:
2969     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2970     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2971     Known = KnownBits::ashr(Known, Known2);
2972     // TODO: Add minimum shift high known sign bits.
2973     break;
2974   case ISD::FSHL:
2975   case ISD::FSHR:
2976     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2977       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2978 
2979       // For fshl, 0-shift returns the 1st arg.
2980       // For fshr, 0-shift returns the 2nd arg.
2981       if (Amt == 0) {
2982         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2983                                  DemandedElts, Depth + 1);
2984         break;
2985       }
2986 
2987       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2988       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2989       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2990       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2991       if (Opcode == ISD::FSHL) {
2992         Known.One <<= Amt;
2993         Known.Zero <<= Amt;
2994         Known2.One.lshrInPlace(BitWidth - Amt);
2995         Known2.Zero.lshrInPlace(BitWidth - Amt);
2996       } else {
2997         Known.One <<= BitWidth - Amt;
2998         Known.Zero <<= BitWidth - Amt;
2999         Known2.One.lshrInPlace(Amt);
3000         Known2.Zero.lshrInPlace(Amt);
3001       }
3002       Known.One |= Known2.One;
3003       Known.Zero |= Known2.Zero;
3004     }
3005     break;
3006   case ISD::SIGN_EXTEND_INREG: {
3007     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3008     unsigned EBits = EVT.getScalarSizeInBits();
3009 
3010     // Sign extension.  Compute the demanded bits in the result that are not
3011     // present in the input.
3012     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3013 
3014     APInt InSignMask = APInt::getSignMask(EBits);
3015     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3016 
3017     // If the sign extended bits are demanded, we know that the sign
3018     // bit is demanded.
3019     InSignMask = InSignMask.zext(BitWidth);
3020     if (NewBits.getBoolValue())
3021       InputDemandedBits |= InSignMask;
3022 
3023     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3024     Known.One &= InputDemandedBits;
3025     Known.Zero &= InputDemandedBits;
3026 
3027     // If the sign bit of the input is known set or clear, then we know the
3028     // top bits of the result.
3029     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3030       Known.Zero |= NewBits;
3031       Known.One  &= ~NewBits;
3032     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3033       Known.One  |= NewBits;
3034       Known.Zero &= ~NewBits;
3035     } else {                              // Input sign bit unknown
3036       Known.Zero &= ~NewBits;
3037       Known.One  &= ~NewBits;
3038     }
3039     break;
3040   }
3041   case ISD::CTTZ:
3042   case ISD::CTTZ_ZERO_UNDEF: {
3043     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3044     // If we have a known 1, its position is our upper bound.
3045     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3046     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3047     Known.Zero.setBitsFrom(LowBits);
3048     break;
3049   }
3050   case ISD::CTLZ:
3051   case ISD::CTLZ_ZERO_UNDEF: {
3052     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3053     // If we have a known 1, its position is our upper bound.
3054     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3055     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3056     Known.Zero.setBitsFrom(LowBits);
3057     break;
3058   }
3059   case ISD::CTPOP: {
3060     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3061     // If we know some of the bits are zero, they can't be one.
3062     unsigned PossibleOnes = Known2.countMaxPopulation();
3063     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3064     break;
3065   }
3066   case ISD::PARITY: {
3067     // Parity returns 0 everywhere but the LSB.
3068     Known.Zero.setBitsFrom(1);
3069     break;
3070   }
3071   case ISD::LOAD: {
3072     LoadSDNode *LD = cast<LoadSDNode>(Op);
3073     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3074     if (ISD::isNON_EXTLoad(LD) && Cst) {
3075       // Determine any common known bits from the loaded constant pool value.
3076       Type *CstTy = Cst->getType();
3077       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3078         // If its a vector splat, then we can (quickly) reuse the scalar path.
3079         // NOTE: We assume all elements match and none are UNDEF.
3080         if (CstTy->isVectorTy()) {
3081           if (const Constant *Splat = Cst->getSplatValue()) {
3082             Cst = Splat;
3083             CstTy = Cst->getType();
3084           }
3085         }
3086         // TODO - do we need to handle different bitwidths?
3087         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3088           // Iterate across all vector elements finding common known bits.
3089           Known.One.setAllBits();
3090           Known.Zero.setAllBits();
3091           for (unsigned i = 0; i != NumElts; ++i) {
3092             if (!DemandedElts[i])
3093               continue;
3094             if (Constant *Elt = Cst->getAggregateElement(i)) {
3095               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3096                 const APInt &Value = CInt->getValue();
3097                 Known.One &= Value;
3098                 Known.Zero &= ~Value;
3099                 continue;
3100               }
3101               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3102                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3103                 Known.One &= Value;
3104                 Known.Zero &= ~Value;
3105                 continue;
3106               }
3107             }
3108             Known.One.clearAllBits();
3109             Known.Zero.clearAllBits();
3110             break;
3111           }
3112         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3113           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3114             const APInt &Value = CInt->getValue();
3115             Known.One = Value;
3116             Known.Zero = ~Value;
3117           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3118             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3119             Known.One = Value;
3120             Known.Zero = ~Value;
3121           }
3122         }
3123       }
3124     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3125       // If this is a ZEXTLoad and we are looking at the loaded value.
3126       EVT VT = LD->getMemoryVT();
3127       unsigned MemBits = VT.getScalarSizeInBits();
3128       Known.Zero.setBitsFrom(MemBits);
3129     } else if (const MDNode *Ranges = LD->getRanges()) {
3130       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3131         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3132     }
3133     break;
3134   }
3135   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3136     EVT InVT = Op.getOperand(0).getValueType();
3137     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3138     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3139     Known = Known.zext(BitWidth);
3140     break;
3141   }
3142   case ISD::ZERO_EXTEND: {
3143     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3144     Known = Known.zext(BitWidth);
3145     break;
3146   }
3147   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3148     EVT InVT = Op.getOperand(0).getValueType();
3149     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3150     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3151     // If the sign bit is known to be zero or one, then sext will extend
3152     // it to the top bits, else it will just zext.
3153     Known = Known.sext(BitWidth);
3154     break;
3155   }
3156   case ISD::SIGN_EXTEND: {
3157     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3158     // If the sign bit is known to be zero or one, then sext will extend
3159     // it to the top bits, else it will just zext.
3160     Known = Known.sext(BitWidth);
3161     break;
3162   }
3163   case ISD::ANY_EXTEND_VECTOR_INREG: {
3164     EVT InVT = Op.getOperand(0).getValueType();
3165     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3166     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3167     Known = Known.anyext(BitWidth);
3168     break;
3169   }
3170   case ISD::ANY_EXTEND: {
3171     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     Known = Known.anyext(BitWidth);
3173     break;
3174   }
3175   case ISD::TRUNCATE: {
3176     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3177     Known = Known.trunc(BitWidth);
3178     break;
3179   }
3180   case ISD::AssertZext: {
3181     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3182     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3183     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3184     Known.Zero |= (~InMask);
3185     Known.One  &= (~Known.Zero);
3186     break;
3187   }
3188   case ISD::AssertAlign: {
3189     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3190     assert(LogOfAlign != 0);
3191     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3192     // well as clearing one bits.
3193     Known.Zero.setLowBits(LogOfAlign);
3194     Known.One.clearLowBits(LogOfAlign);
3195     break;
3196   }
3197   case ISD::FGETSIGN:
3198     // All bits are zero except the low bit.
3199     Known.Zero.setBitsFrom(1);
3200     break;
3201   case ISD::USUBO:
3202   case ISD::SSUBO:
3203     if (Op.getResNo() == 1) {
3204       // If we know the result of a setcc has the top bits zero, use this info.
3205       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3206               TargetLowering::ZeroOrOneBooleanContent &&
3207           BitWidth > 1)
3208         Known.Zero.setBitsFrom(1);
3209       break;
3210     }
3211     LLVM_FALLTHROUGH;
3212   case ISD::SUB:
3213   case ISD::SUBC: {
3214     assert(Op.getResNo() == 0 &&
3215            "We only compute knownbits for the difference here.");
3216 
3217     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3218     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3219     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3220                                         Known, Known2);
3221     break;
3222   }
3223   case ISD::UADDO:
3224   case ISD::SADDO:
3225   case ISD::ADDCARRY:
3226     if (Op.getResNo() == 1) {
3227       // If we know the result of a setcc has the top bits zero, use this info.
3228       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3229               TargetLowering::ZeroOrOneBooleanContent &&
3230           BitWidth > 1)
3231         Known.Zero.setBitsFrom(1);
3232       break;
3233     }
3234     LLVM_FALLTHROUGH;
3235   case ISD::ADD:
3236   case ISD::ADDC:
3237   case ISD::ADDE: {
3238     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3239 
3240     // With ADDE and ADDCARRY, a carry bit may be added in.
3241     KnownBits Carry(1);
3242     if (Opcode == ISD::ADDE)
3243       // Can't track carry from glue, set carry to unknown.
3244       Carry.resetAll();
3245     else if (Opcode == ISD::ADDCARRY)
3246       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3247       // the trouble (how often will we find a known carry bit). And I haven't
3248       // tested this very much yet, but something like this might work:
3249       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3250       //   Carry = Carry.zextOrTrunc(1, false);
3251       Carry.resetAll();
3252     else
3253       Carry.setAllZero();
3254 
3255     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3256     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3257     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3258     break;
3259   }
3260   case ISD::SREM:
3261     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3262       const APInt &RA = Rem->getAPIntValue().abs();
3263       if (RA.isPowerOf2()) {
3264         APInt LowBits = RA - 1;
3265         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3266 
3267         // The low bits of the first operand are unchanged by the srem.
3268         Known.Zero = Known2.Zero & LowBits;
3269         Known.One = Known2.One & LowBits;
3270 
3271         // If the first operand is non-negative or has all low bits zero, then
3272         // the upper bits are all zero.
3273         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3274           Known.Zero |= ~LowBits;
3275 
3276         // If the first operand is negative and not all low bits are zero, then
3277         // the upper bits are all one.
3278         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3279           Known.One |= ~LowBits;
3280         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3281       }
3282     }
3283     break;
3284   case ISD::UREM: {
3285     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3286       const APInt &RA = Rem->getAPIntValue();
3287       if (RA.isPowerOf2()) {
3288         APInt LowBits = (RA - 1);
3289         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3290 
3291         // The upper bits are all zero, the lower ones are unchanged.
3292         Known.Zero = Known2.Zero | ~LowBits;
3293         Known.One = Known2.One & LowBits;
3294         break;
3295       }
3296     }
3297 
3298     // Since the result is less than or equal to either operand, any leading
3299     // zero bits in either operand must also exist in the result.
3300     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3301     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3302 
3303     uint32_t Leaders =
3304         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3305     Known.resetAll();
3306     Known.Zero.setHighBits(Leaders);
3307     break;
3308   }
3309   case ISD::EXTRACT_ELEMENT: {
3310     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3311     const unsigned Index = Op.getConstantOperandVal(1);
3312     const unsigned EltBitWidth = Op.getValueSizeInBits();
3313 
3314     // Remove low part of known bits mask
3315     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3316     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3317 
3318     // Remove high part of known bit mask
3319     Known = Known.trunc(EltBitWidth);
3320     break;
3321   }
3322   case ISD::EXTRACT_VECTOR_ELT: {
3323     SDValue InVec = Op.getOperand(0);
3324     SDValue EltNo = Op.getOperand(1);
3325     EVT VecVT = InVec.getValueType();
3326     // computeKnownBits not yet implemented for scalable vectors.
3327     if (VecVT.isScalableVector())
3328       break;
3329     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3330     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3331 
3332     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3333     // anything about the extended bits.
3334     if (BitWidth > EltBitWidth)
3335       Known = Known.trunc(EltBitWidth);
3336 
3337     // If we know the element index, just demand that vector element, else for
3338     // an unknown element index, ignore DemandedElts and demand them all.
3339     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3340     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3341     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3342       DemandedSrcElts =
3343           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3344 
3345     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3346     if (BitWidth > EltBitWidth)
3347       Known = Known.anyext(BitWidth);
3348     break;
3349   }
3350   case ISD::INSERT_VECTOR_ELT: {
3351     // If we know the element index, split the demand between the
3352     // source vector and the inserted element, otherwise assume we need
3353     // the original demanded vector elements and the value.
3354     SDValue InVec = Op.getOperand(0);
3355     SDValue InVal = Op.getOperand(1);
3356     SDValue EltNo = Op.getOperand(2);
3357     bool DemandedVal = true;
3358     APInt DemandedVecElts = DemandedElts;
3359     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3360     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3361       unsigned EltIdx = CEltNo->getZExtValue();
3362       DemandedVal = !!DemandedElts[EltIdx];
3363       DemandedVecElts.clearBit(EltIdx);
3364     }
3365     Known.One.setAllBits();
3366     Known.Zero.setAllBits();
3367     if (DemandedVal) {
3368       Known2 = computeKnownBits(InVal, Depth + 1);
3369       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3370       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3371     }
3372     if (!!DemandedVecElts) {
3373       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3374       Known.One &= Known2.One;
3375       Known.Zero &= Known2.Zero;
3376     }
3377     break;
3378   }
3379   case ISD::BITREVERSE: {
3380     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3381     Known = Known2.reverseBits();
3382     break;
3383   }
3384   case ISD::BSWAP: {
3385     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3386     Known = Known2.byteSwap();
3387     break;
3388   }
3389   case ISD::ABS: {
3390     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3391     Known = Known2.abs();
3392     break;
3393   }
3394   case ISD::UMIN: {
3395     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3396     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3397     Known = KnownBits::umin(Known, Known2);
3398     break;
3399   }
3400   case ISD::UMAX: {
3401     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3402     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3403     Known = KnownBits::umax(Known, Known2);
3404     break;
3405   }
3406   case ISD::SMIN:
3407   case ISD::SMAX: {
3408     // If we have a clamp pattern, we know that the number of sign bits will be
3409     // the minimum of the clamp min/max range.
3410     bool IsMax = (Opcode == ISD::SMAX);
3411     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3412     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3413       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3414         CstHigh =
3415             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3416     if (CstLow && CstHigh) {
3417       if (!IsMax)
3418         std::swap(CstLow, CstHigh);
3419 
3420       const APInt &ValueLow = CstLow->getAPIntValue();
3421       const APInt &ValueHigh = CstHigh->getAPIntValue();
3422       if (ValueLow.sle(ValueHigh)) {
3423         unsigned LowSignBits = ValueLow.getNumSignBits();
3424         unsigned HighSignBits = ValueHigh.getNumSignBits();
3425         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3426         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3427           Known.One.setHighBits(MinSignBits);
3428           break;
3429         }
3430         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3431           Known.Zero.setHighBits(MinSignBits);
3432           break;
3433         }
3434       }
3435     }
3436 
3437     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3438     if (Known.isUnknown()) break; // Early-out
3439     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3440     if (IsMax)
3441       Known = KnownBits::smax(Known, Known2);
3442     else
3443       Known = KnownBits::smin(Known, Known2);
3444     break;
3445   }
3446   case ISD::FrameIndex:
3447   case ISD::TargetFrameIndex:
3448     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3449                                        Known, getMachineFunction());
3450     break;
3451 
3452   default:
3453     if (Opcode < ISD::BUILTIN_OP_END)
3454       break;
3455     LLVM_FALLTHROUGH;
3456   case ISD::INTRINSIC_WO_CHAIN:
3457   case ISD::INTRINSIC_W_CHAIN:
3458   case ISD::INTRINSIC_VOID:
3459     // Allow the target to implement this method for its nodes.
3460     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3461     break;
3462   }
3463 
3464   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3465   return Known;
3466 }
3467 
3468 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3469                                                              SDValue N1) const {
3470   // X + 0 never overflow
3471   if (isNullConstant(N1))
3472     return OFK_Never;
3473 
3474   KnownBits N1Known = computeKnownBits(N1);
3475   if (N1Known.Zero.getBoolValue()) {
3476     KnownBits N0Known = computeKnownBits(N0);
3477 
3478     bool overflow;
3479     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3480     if (!overflow)
3481       return OFK_Never;
3482   }
3483 
3484   // mulhi + 1 never overflow
3485   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3486       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3487     return OFK_Never;
3488 
3489   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3490     KnownBits N0Known = computeKnownBits(N0);
3491 
3492     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3493       return OFK_Never;
3494   }
3495 
3496   return OFK_Sometime;
3497 }
3498 
3499 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3500   EVT OpVT = Val.getValueType();
3501   unsigned BitWidth = OpVT.getScalarSizeInBits();
3502 
3503   // Is the constant a known power of 2?
3504   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3505     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3506 
3507   // A left-shift of a constant one will have exactly one bit set because
3508   // shifting the bit off the end is undefined.
3509   if (Val.getOpcode() == ISD::SHL) {
3510     auto *C = isConstOrConstSplat(Val.getOperand(0));
3511     if (C && C->getAPIntValue() == 1)
3512       return true;
3513   }
3514 
3515   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3516   // one bit set.
3517   if (Val.getOpcode() == ISD::SRL) {
3518     auto *C = isConstOrConstSplat(Val.getOperand(0));
3519     if (C && C->getAPIntValue().isSignMask())
3520       return true;
3521   }
3522 
3523   // Are all operands of a build vector constant powers of two?
3524   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3525     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3526           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3527             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3528           return false;
3529         }))
3530       return true;
3531 
3532   // More could be done here, though the above checks are enough
3533   // to handle some common cases.
3534 
3535   // Fall back to computeKnownBits to catch other known cases.
3536   KnownBits Known = computeKnownBits(Val);
3537   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3538 }
3539 
3540 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3541   EVT VT = Op.getValueType();
3542 
3543   // TODO: Assume we don't know anything for now.
3544   if (VT.isScalableVector())
3545     return 1;
3546 
3547   APInt DemandedElts = VT.isVector()
3548                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3549                            : APInt(1, 1);
3550   return ComputeNumSignBits(Op, DemandedElts, Depth);
3551 }
3552 
3553 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3554                                           unsigned Depth) const {
3555   EVT VT = Op.getValueType();
3556   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3557   unsigned VTBits = VT.getScalarSizeInBits();
3558   unsigned NumElts = DemandedElts.getBitWidth();
3559   unsigned Tmp, Tmp2;
3560   unsigned FirstAnswer = 1;
3561 
3562   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3563     const APInt &Val = C->getAPIntValue();
3564     return Val.getNumSignBits();
3565   }
3566 
3567   if (Depth >= MaxRecursionDepth)
3568     return 1;  // Limit search depth.
3569 
3570   if (!DemandedElts || VT.isScalableVector())
3571     return 1;  // No demanded elts, better to assume we don't know anything.
3572 
3573   unsigned Opcode = Op.getOpcode();
3574   switch (Opcode) {
3575   default: break;
3576   case ISD::AssertSext:
3577     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3578     return VTBits-Tmp+1;
3579   case ISD::AssertZext:
3580     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3581     return VTBits-Tmp;
3582 
3583   case ISD::BUILD_VECTOR:
3584     Tmp = VTBits;
3585     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3586       if (!DemandedElts[i])
3587         continue;
3588 
3589       SDValue SrcOp = Op.getOperand(i);
3590       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3591 
3592       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3593       if (SrcOp.getValueSizeInBits() != VTBits) {
3594         assert(SrcOp.getValueSizeInBits() > VTBits &&
3595                "Expected BUILD_VECTOR implicit truncation");
3596         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3597         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3598       }
3599       Tmp = std::min(Tmp, Tmp2);
3600     }
3601     return Tmp;
3602 
3603   case ISD::VECTOR_SHUFFLE: {
3604     // Collect the minimum number of sign bits that are shared by every vector
3605     // element referenced by the shuffle.
3606     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3607     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3608     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3609     for (unsigned i = 0; i != NumElts; ++i) {
3610       int M = SVN->getMaskElt(i);
3611       if (!DemandedElts[i])
3612         continue;
3613       // For UNDEF elements, we don't know anything about the common state of
3614       // the shuffle result.
3615       if (M < 0)
3616         return 1;
3617       if ((unsigned)M < NumElts)
3618         DemandedLHS.setBit((unsigned)M % NumElts);
3619       else
3620         DemandedRHS.setBit((unsigned)M % NumElts);
3621     }
3622     Tmp = std::numeric_limits<unsigned>::max();
3623     if (!!DemandedLHS)
3624       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3625     if (!!DemandedRHS) {
3626       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3627       Tmp = std::min(Tmp, Tmp2);
3628     }
3629     // If we don't know anything, early out and try computeKnownBits fall-back.
3630     if (Tmp == 1)
3631       break;
3632     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3633     return Tmp;
3634   }
3635 
3636   case ISD::BITCAST: {
3637     SDValue N0 = Op.getOperand(0);
3638     EVT SrcVT = N0.getValueType();
3639     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3640 
3641     // Ignore bitcasts from unsupported types..
3642     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3643       break;
3644 
3645     // Fast handling of 'identity' bitcasts.
3646     if (VTBits == SrcBits)
3647       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3648 
3649     bool IsLE = getDataLayout().isLittleEndian();
3650 
3651     // Bitcast 'large element' scalar/vector to 'small element' vector.
3652     if ((SrcBits % VTBits) == 0) {
3653       assert(VT.isVector() && "Expected bitcast to vector");
3654 
3655       unsigned Scale = SrcBits / VTBits;
3656       APInt SrcDemandedElts(NumElts / Scale, 0);
3657       for (unsigned i = 0; i != NumElts; ++i)
3658         if (DemandedElts[i])
3659           SrcDemandedElts.setBit(i / Scale);
3660 
3661       // Fast case - sign splat can be simply split across the small elements.
3662       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3663       if (Tmp == SrcBits)
3664         return VTBits;
3665 
3666       // Slow case - determine how far the sign extends into each sub-element.
3667       Tmp2 = VTBits;
3668       for (unsigned i = 0; i != NumElts; ++i)
3669         if (DemandedElts[i]) {
3670           unsigned SubOffset = i % Scale;
3671           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3672           SubOffset = SubOffset * VTBits;
3673           if (Tmp <= SubOffset)
3674             return 1;
3675           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3676         }
3677       return Tmp2;
3678     }
3679     break;
3680   }
3681 
3682   case ISD::SIGN_EXTEND:
3683     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3684     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3685   case ISD::SIGN_EXTEND_INREG:
3686     // Max of the input and what this extends.
3687     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3688     Tmp = VTBits-Tmp+1;
3689     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3690     return std::max(Tmp, Tmp2);
3691   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3692     SDValue Src = Op.getOperand(0);
3693     EVT SrcVT = Src.getValueType();
3694     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3695     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3696     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3697   }
3698   case ISD::SRA:
3699     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3700     // SRA X, C -> adds C sign bits.
3701     if (const APInt *ShAmt =
3702             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3703       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3704     return Tmp;
3705   case ISD::SHL:
3706     if (const APInt *ShAmt =
3707             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3708       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3709       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3710       if (ShAmt->ult(Tmp))
3711         return Tmp - ShAmt->getZExtValue();
3712     }
3713     break;
3714   case ISD::AND:
3715   case ISD::OR:
3716   case ISD::XOR:    // NOT is handled here.
3717     // Logical binary ops preserve the number of sign bits at the worst.
3718     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3719     if (Tmp != 1) {
3720       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3721       FirstAnswer = std::min(Tmp, Tmp2);
3722       // We computed what we know about the sign bits as our first
3723       // answer. Now proceed to the generic code that uses
3724       // computeKnownBits, and pick whichever answer is better.
3725     }
3726     break;
3727 
3728   case ISD::SELECT:
3729   case ISD::VSELECT:
3730     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3731     if (Tmp == 1) return 1;  // Early out.
3732     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3733     return std::min(Tmp, Tmp2);
3734   case ISD::SELECT_CC:
3735     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3736     if (Tmp == 1) return 1;  // Early out.
3737     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3738     return std::min(Tmp, Tmp2);
3739 
3740   case ISD::SMIN:
3741   case ISD::SMAX: {
3742     // If we have a clamp pattern, we know that the number of sign bits will be
3743     // the minimum of the clamp min/max range.
3744     bool IsMax = (Opcode == ISD::SMAX);
3745     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3746     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3747       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3748         CstHigh =
3749             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3750     if (CstLow && CstHigh) {
3751       if (!IsMax)
3752         std::swap(CstLow, CstHigh);
3753       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3754         Tmp = CstLow->getAPIntValue().getNumSignBits();
3755         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3756         return std::min(Tmp, Tmp2);
3757       }
3758     }
3759 
3760     // Fallback - just get the minimum number of sign bits of the operands.
3761     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3762     if (Tmp == 1)
3763       return 1;  // Early out.
3764     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3765     return std::min(Tmp, Tmp2);
3766   }
3767   case ISD::UMIN:
3768   case ISD::UMAX:
3769     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3770     if (Tmp == 1)
3771       return 1;  // Early out.
3772     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3773     return std::min(Tmp, Tmp2);
3774   case ISD::SADDO:
3775   case ISD::UADDO:
3776   case ISD::SSUBO:
3777   case ISD::USUBO:
3778   case ISD::SMULO:
3779   case ISD::UMULO:
3780     if (Op.getResNo() != 1)
3781       break;
3782     // The boolean result conforms to getBooleanContents.  Fall through.
3783     // If setcc returns 0/-1, all bits are sign bits.
3784     // We know that we have an integer-based boolean since these operations
3785     // are only available for integer.
3786     if (TLI->getBooleanContents(VT.isVector(), false) ==
3787         TargetLowering::ZeroOrNegativeOneBooleanContent)
3788       return VTBits;
3789     break;
3790   case ISD::SETCC:
3791   case ISD::STRICT_FSETCC:
3792   case ISD::STRICT_FSETCCS: {
3793     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3794     // If setcc returns 0/-1, all bits are sign bits.
3795     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3796         TargetLowering::ZeroOrNegativeOneBooleanContent)
3797       return VTBits;
3798     break;
3799   }
3800   case ISD::ROTL:
3801   case ISD::ROTR:
3802     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3803 
3804     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3805     if (Tmp == VTBits)
3806       return VTBits;
3807 
3808     if (ConstantSDNode *C =
3809             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3810       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3811 
3812       // Handle rotate right by N like a rotate left by 32-N.
3813       if (Opcode == ISD::ROTR)
3814         RotAmt = (VTBits - RotAmt) % VTBits;
3815 
3816       // If we aren't rotating out all of the known-in sign bits, return the
3817       // number that are left.  This handles rotl(sext(x), 1) for example.
3818       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3819     }
3820     break;
3821   case ISD::ADD:
3822   case ISD::ADDC:
3823     // Add can have at most one carry bit.  Thus we know that the output
3824     // is, at worst, one more bit than the inputs.
3825     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3826     if (Tmp == 1) return 1; // Early out.
3827 
3828     // Special case decrementing a value (ADD X, -1):
3829     if (ConstantSDNode *CRHS =
3830             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3831       if (CRHS->isAllOnesValue()) {
3832         KnownBits Known =
3833             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3834 
3835         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3836         // sign bits set.
3837         if ((Known.Zero | 1).isAllOnesValue())
3838           return VTBits;
3839 
3840         // If we are subtracting one from a positive number, there is no carry
3841         // out of the result.
3842         if (Known.isNonNegative())
3843           return Tmp;
3844       }
3845 
3846     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3847     if (Tmp2 == 1) return 1; // Early out.
3848     return std::min(Tmp, Tmp2) - 1;
3849   case ISD::SUB:
3850     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3851     if (Tmp2 == 1) return 1; // Early out.
3852 
3853     // Handle NEG.
3854     if (ConstantSDNode *CLHS =
3855             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3856       if (CLHS->isNullValue()) {
3857         KnownBits Known =
3858             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3859         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3860         // sign bits set.
3861         if ((Known.Zero | 1).isAllOnesValue())
3862           return VTBits;
3863 
3864         // If the input is known to be positive (the sign bit is known clear),
3865         // the output of the NEG has the same number of sign bits as the input.
3866         if (Known.isNonNegative())
3867           return Tmp2;
3868 
3869         // Otherwise, we treat this like a SUB.
3870       }
3871 
3872     // Sub can have at most one carry bit.  Thus we know that the output
3873     // is, at worst, one more bit than the inputs.
3874     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3875     if (Tmp == 1) return 1; // Early out.
3876     return std::min(Tmp, Tmp2) - 1;
3877   case ISD::MUL: {
3878     // The output of the Mul can be at most twice the valid bits in the inputs.
3879     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3880     if (SignBitsOp0 == 1)
3881       break;
3882     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3883     if (SignBitsOp1 == 1)
3884       break;
3885     unsigned OutValidBits =
3886         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3887     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3888   }
3889   case ISD::TRUNCATE: {
3890     // Check if the sign bits of source go down as far as the truncated value.
3891     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3892     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3893     if (NumSrcSignBits > (NumSrcBits - VTBits))
3894       return NumSrcSignBits - (NumSrcBits - VTBits);
3895     break;
3896   }
3897   case ISD::EXTRACT_ELEMENT: {
3898     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3899     const int BitWidth = Op.getValueSizeInBits();
3900     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3901 
3902     // Get reverse index (starting from 1), Op1 value indexes elements from
3903     // little end. Sign starts at big end.
3904     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3905 
3906     // If the sign portion ends in our element the subtraction gives correct
3907     // result. Otherwise it gives either negative or > bitwidth result
3908     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3909   }
3910   case ISD::INSERT_VECTOR_ELT: {
3911     // If we know the element index, split the demand between the
3912     // source vector and the inserted element, otherwise assume we need
3913     // the original demanded vector elements and the value.
3914     SDValue InVec = Op.getOperand(0);
3915     SDValue InVal = Op.getOperand(1);
3916     SDValue EltNo = Op.getOperand(2);
3917     bool DemandedVal = true;
3918     APInt DemandedVecElts = DemandedElts;
3919     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3920     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3921       unsigned EltIdx = CEltNo->getZExtValue();
3922       DemandedVal = !!DemandedElts[EltIdx];
3923       DemandedVecElts.clearBit(EltIdx);
3924     }
3925     Tmp = std::numeric_limits<unsigned>::max();
3926     if (DemandedVal) {
3927       // TODO - handle implicit truncation of inserted elements.
3928       if (InVal.getScalarValueSizeInBits() != VTBits)
3929         break;
3930       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3931       Tmp = std::min(Tmp, Tmp2);
3932     }
3933     if (!!DemandedVecElts) {
3934       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3935       Tmp = std::min(Tmp, Tmp2);
3936     }
3937     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3938     return Tmp;
3939   }
3940   case ISD::EXTRACT_VECTOR_ELT: {
3941     SDValue InVec = Op.getOperand(0);
3942     SDValue EltNo = Op.getOperand(1);
3943     EVT VecVT = InVec.getValueType();
3944     const unsigned BitWidth = Op.getValueSizeInBits();
3945     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3946     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3947 
3948     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3949     // anything about sign bits. But if the sizes match we can derive knowledge
3950     // about sign bits from the vector operand.
3951     if (BitWidth != EltBitWidth)
3952       break;
3953 
3954     // If we know the element index, just demand that vector element, else for
3955     // an unknown element index, ignore DemandedElts and demand them all.
3956     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3957     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3958     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3959       DemandedSrcElts =
3960           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3961 
3962     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3963   }
3964   case ISD::EXTRACT_SUBVECTOR: {
3965     // Offset the demanded elts by the subvector index.
3966     SDValue Src = Op.getOperand(0);
3967     // Bail until we can represent demanded elements for scalable vectors.
3968     if (Src.getValueType().isScalableVector())
3969       break;
3970     uint64_t Idx = Op.getConstantOperandVal(1);
3971     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3972     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3973     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3974   }
3975   case ISD::CONCAT_VECTORS: {
3976     // Determine the minimum number of sign bits across all demanded
3977     // elts of the input vectors. Early out if the result is already 1.
3978     Tmp = std::numeric_limits<unsigned>::max();
3979     EVT SubVectorVT = Op.getOperand(0).getValueType();
3980     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3981     unsigned NumSubVectors = Op.getNumOperands();
3982     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3983       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3984       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3985       if (!DemandedSub)
3986         continue;
3987       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3988       Tmp = std::min(Tmp, Tmp2);
3989     }
3990     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3991     return Tmp;
3992   }
3993   case ISD::INSERT_SUBVECTOR: {
3994     // Demand any elements from the subvector and the remainder from the src its
3995     // inserted into.
3996     SDValue Src = Op.getOperand(0);
3997     SDValue Sub = Op.getOperand(1);
3998     uint64_t Idx = Op.getConstantOperandVal(2);
3999     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4000     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4001     APInt DemandedSrcElts = DemandedElts;
4002     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4003 
4004     Tmp = std::numeric_limits<unsigned>::max();
4005     if (!!DemandedSubElts) {
4006       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4007       if (Tmp == 1)
4008         return 1; // early-out
4009     }
4010     if (!!DemandedSrcElts) {
4011       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4012       Tmp = std::min(Tmp, Tmp2);
4013     }
4014     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4015     return Tmp;
4016   }
4017   }
4018 
4019   // If we are looking at the loaded value of the SDNode.
4020   if (Op.getResNo() == 0) {
4021     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4022     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4023       unsigned ExtType = LD->getExtensionType();
4024       switch (ExtType) {
4025       default: break;
4026       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4027         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4028         return VTBits - Tmp + 1;
4029       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4030         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4031         return VTBits - Tmp;
4032       case ISD::NON_EXTLOAD:
4033         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4034           // We only need to handle vectors - computeKnownBits should handle
4035           // scalar cases.
4036           Type *CstTy = Cst->getType();
4037           if (CstTy->isVectorTy() &&
4038               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4039             Tmp = VTBits;
4040             for (unsigned i = 0; i != NumElts; ++i) {
4041               if (!DemandedElts[i])
4042                 continue;
4043               if (Constant *Elt = Cst->getAggregateElement(i)) {
4044                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4045                   const APInt &Value = CInt->getValue();
4046                   Tmp = std::min(Tmp, Value.getNumSignBits());
4047                   continue;
4048                 }
4049                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4050                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4051                   Tmp = std::min(Tmp, Value.getNumSignBits());
4052                   continue;
4053                 }
4054               }
4055               // Unknown type. Conservatively assume no bits match sign bit.
4056               return 1;
4057             }
4058             return Tmp;
4059           }
4060         }
4061         break;
4062       }
4063     }
4064   }
4065 
4066   // Allow the target to implement this method for its nodes.
4067   if (Opcode >= ISD::BUILTIN_OP_END ||
4068       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4069       Opcode == ISD::INTRINSIC_W_CHAIN ||
4070       Opcode == ISD::INTRINSIC_VOID) {
4071     unsigned NumBits =
4072         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4073     if (NumBits > 1)
4074       FirstAnswer = std::max(FirstAnswer, NumBits);
4075   }
4076 
4077   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4078   // use this information.
4079   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4080 
4081   APInt Mask;
4082   if (Known.isNonNegative()) {        // sign bit is 0
4083     Mask = Known.Zero;
4084   } else if (Known.isNegative()) {  // sign bit is 1;
4085     Mask = Known.One;
4086   } else {
4087     // Nothing known.
4088     return FirstAnswer;
4089   }
4090 
4091   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4092   // the number of identical bits in the top of the input value.
4093   Mask <<= Mask.getBitWidth()-VTBits;
4094   return std::max(FirstAnswer, Mask.countLeadingOnes());
4095 }
4096 
4097 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4098   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4099       !isa<ConstantSDNode>(Op.getOperand(1)))
4100     return false;
4101 
4102   if (Op.getOpcode() == ISD::OR &&
4103       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4104     return false;
4105 
4106   return true;
4107 }
4108 
4109 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4110   // If we're told that NaNs won't happen, assume they won't.
4111   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4112     return true;
4113 
4114   if (Depth >= MaxRecursionDepth)
4115     return false; // Limit search depth.
4116 
4117   // TODO: Handle vectors.
4118   // If the value is a constant, we can obviously see if it is a NaN or not.
4119   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4120     return !C->getValueAPF().isNaN() ||
4121            (SNaN && !C->getValueAPF().isSignaling());
4122   }
4123 
4124   unsigned Opcode = Op.getOpcode();
4125   switch (Opcode) {
4126   case ISD::FADD:
4127   case ISD::FSUB:
4128   case ISD::FMUL:
4129   case ISD::FDIV:
4130   case ISD::FREM:
4131   case ISD::FSIN:
4132   case ISD::FCOS: {
4133     if (SNaN)
4134       return true;
4135     // TODO: Need isKnownNeverInfinity
4136     return false;
4137   }
4138   case ISD::FCANONICALIZE:
4139   case ISD::FEXP:
4140   case ISD::FEXP2:
4141   case ISD::FTRUNC:
4142   case ISD::FFLOOR:
4143   case ISD::FCEIL:
4144   case ISD::FROUND:
4145   case ISD::FROUNDEVEN:
4146   case ISD::FRINT:
4147   case ISD::FNEARBYINT: {
4148     if (SNaN)
4149       return true;
4150     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4151   }
4152   case ISD::FABS:
4153   case ISD::FNEG:
4154   case ISD::FCOPYSIGN: {
4155     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4156   }
4157   case ISD::SELECT:
4158     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4159            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4160   case ISD::FP_EXTEND:
4161   case ISD::FP_ROUND: {
4162     if (SNaN)
4163       return true;
4164     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4165   }
4166   case ISD::SINT_TO_FP:
4167   case ISD::UINT_TO_FP:
4168     return true;
4169   case ISD::FMA:
4170   case ISD::FMAD: {
4171     if (SNaN)
4172       return true;
4173     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4174            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4175            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4176   }
4177   case ISD::FSQRT: // Need is known positive
4178   case ISD::FLOG:
4179   case ISD::FLOG2:
4180   case ISD::FLOG10:
4181   case ISD::FPOWI:
4182   case ISD::FPOW: {
4183     if (SNaN)
4184       return true;
4185     // TODO: Refine on operand
4186     return false;
4187   }
4188   case ISD::FMINNUM:
4189   case ISD::FMAXNUM: {
4190     // Only one needs to be known not-nan, since it will be returned if the
4191     // other ends up being one.
4192     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4193            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4194   }
4195   case ISD::FMINNUM_IEEE:
4196   case ISD::FMAXNUM_IEEE: {
4197     if (SNaN)
4198       return true;
4199     // This can return a NaN if either operand is an sNaN, or if both operands
4200     // are NaN.
4201     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4202             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4203            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4204             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4205   }
4206   case ISD::FMINIMUM:
4207   case ISD::FMAXIMUM: {
4208     // TODO: Does this quiet or return the origina NaN as-is?
4209     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4210            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4211   }
4212   case ISD::EXTRACT_VECTOR_ELT: {
4213     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4214   }
4215   default:
4216     if (Opcode >= ISD::BUILTIN_OP_END ||
4217         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4218         Opcode == ISD::INTRINSIC_W_CHAIN ||
4219         Opcode == ISD::INTRINSIC_VOID) {
4220       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4221     }
4222 
4223     return false;
4224   }
4225 }
4226 
4227 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4228   assert(Op.getValueType().isFloatingPoint() &&
4229          "Floating point type expected");
4230 
4231   // If the value is a constant, we can obviously see if it is a zero or not.
4232   // TODO: Add BuildVector support.
4233   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4234     return !C->isZero();
4235   return false;
4236 }
4237 
4238 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4239   assert(!Op.getValueType().isFloatingPoint() &&
4240          "Floating point types unsupported - use isKnownNeverZeroFloat");
4241 
4242   // If the value is a constant, we can obviously see if it is a zero or not.
4243   if (ISD::matchUnaryPredicate(
4244           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4245     return true;
4246 
4247   // TODO: Recognize more cases here.
4248   switch (Op.getOpcode()) {
4249   default: break;
4250   case ISD::OR:
4251     if (isKnownNeverZero(Op.getOperand(1)) ||
4252         isKnownNeverZero(Op.getOperand(0)))
4253       return true;
4254     break;
4255   }
4256 
4257   return false;
4258 }
4259 
4260 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4261   // Check the obvious case.
4262   if (A == B) return true;
4263 
4264   // For for negative and positive zero.
4265   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4266     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4267       if (CA->isZero() && CB->isZero()) return true;
4268 
4269   // Otherwise they may not be equal.
4270   return false;
4271 }
4272 
4273 // FIXME: unify with llvm::haveNoCommonBitsSet.
4274 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4275 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4276   assert(A.getValueType() == B.getValueType() &&
4277          "Values must have the same type");
4278   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4279 }
4280 
4281 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4282                                 ArrayRef<SDValue> Ops,
4283                                 SelectionDAG &DAG) {
4284   int NumOps = Ops.size();
4285   assert(NumOps != 0 && "Can't build an empty vector!");
4286   assert(!VT.isScalableVector() &&
4287          "BUILD_VECTOR cannot be used with scalable types");
4288   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4289          "Incorrect element count in BUILD_VECTOR!");
4290 
4291   // BUILD_VECTOR of UNDEFs is UNDEF.
4292   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4293     return DAG.getUNDEF(VT);
4294 
4295   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4296   SDValue IdentitySrc;
4297   bool IsIdentity = true;
4298   for (int i = 0; i != NumOps; ++i) {
4299     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4300         Ops[i].getOperand(0).getValueType() != VT ||
4301         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4302         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4303         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4304       IsIdentity = false;
4305       break;
4306     }
4307     IdentitySrc = Ops[i].getOperand(0);
4308   }
4309   if (IsIdentity)
4310     return IdentitySrc;
4311 
4312   return SDValue();
4313 }
4314 
4315 /// Try to simplify vector concatenation to an input value, undef, or build
4316 /// vector.
4317 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4318                                   ArrayRef<SDValue> Ops,
4319                                   SelectionDAG &DAG) {
4320   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4321   assert(llvm::all_of(Ops,
4322                       [Ops](SDValue Op) {
4323                         return Ops[0].getValueType() == Op.getValueType();
4324                       }) &&
4325          "Concatenation of vectors with inconsistent value types!");
4326   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4327              VT.getVectorElementCount() &&
4328          "Incorrect element count in vector concatenation!");
4329 
4330   if (Ops.size() == 1)
4331     return Ops[0];
4332 
4333   // Concat of UNDEFs is UNDEF.
4334   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4335     return DAG.getUNDEF(VT);
4336 
4337   // Scan the operands and look for extract operations from a single source
4338   // that correspond to insertion at the same location via this concatenation:
4339   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4340   SDValue IdentitySrc;
4341   bool IsIdentity = true;
4342   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4343     SDValue Op = Ops[i];
4344     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4345     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4346         Op.getOperand(0).getValueType() != VT ||
4347         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4348         Op.getConstantOperandVal(1) != IdentityIndex) {
4349       IsIdentity = false;
4350       break;
4351     }
4352     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4353            "Unexpected identity source vector for concat of extracts");
4354     IdentitySrc = Op.getOperand(0);
4355   }
4356   if (IsIdentity) {
4357     assert(IdentitySrc && "Failed to set source vector of extracts");
4358     return IdentitySrc;
4359   }
4360 
4361   // The code below this point is only designed to work for fixed width
4362   // vectors, so we bail out for now.
4363   if (VT.isScalableVector())
4364     return SDValue();
4365 
4366   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4367   // simplified to one big BUILD_VECTOR.
4368   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4369   EVT SVT = VT.getScalarType();
4370   SmallVector<SDValue, 16> Elts;
4371   for (SDValue Op : Ops) {
4372     EVT OpVT = Op.getValueType();
4373     if (Op.isUndef())
4374       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4375     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4376       Elts.append(Op->op_begin(), Op->op_end());
4377     else
4378       return SDValue();
4379   }
4380 
4381   // BUILD_VECTOR requires all inputs to be of the same type, find the
4382   // maximum type and extend them all.
4383   for (SDValue Op : Elts)
4384     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4385 
4386   if (SVT.bitsGT(VT.getScalarType())) {
4387     for (SDValue &Op : Elts) {
4388       if (Op.isUndef())
4389         Op = DAG.getUNDEF(SVT);
4390       else
4391         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4392                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4393                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4394     }
4395   }
4396 
4397   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4398   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4399   return V;
4400 }
4401 
4402 /// Gets or creates the specified node.
4403 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4404   FoldingSetNodeID ID;
4405   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4406   void *IP = nullptr;
4407   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4408     return SDValue(E, 0);
4409 
4410   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4411                               getVTList(VT));
4412   CSEMap.InsertNode(N, IP);
4413 
4414   InsertNode(N);
4415   SDValue V = SDValue(N, 0);
4416   NewSDValueDbgMsg(V, "Creating new node: ", this);
4417   return V;
4418 }
4419 
4420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4421                               SDValue Operand) {
4422   SDNodeFlags Flags;
4423   if (Inserter)
4424     Flags = Inserter->getFlags();
4425   return getNode(Opcode, DL, VT, Operand, Flags);
4426 }
4427 
4428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4429                               SDValue Operand, const SDNodeFlags Flags) {
4430   // Constant fold unary operations with an integer constant operand. Even
4431   // opaque constant will be folded, because the folding of unary operations
4432   // doesn't create new constants with different values. Nevertheless, the
4433   // opaque flag is preserved during folding to prevent future folding with
4434   // other constants.
4435   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4436     const APInt &Val = C->getAPIntValue();
4437     switch (Opcode) {
4438     default: break;
4439     case ISD::SIGN_EXTEND:
4440       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4441                          C->isTargetOpcode(), C->isOpaque());
4442     case ISD::TRUNCATE:
4443       if (C->isOpaque())
4444         break;
4445       LLVM_FALLTHROUGH;
4446     case ISD::ANY_EXTEND:
4447     case ISD::ZERO_EXTEND:
4448       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4449                          C->isTargetOpcode(), C->isOpaque());
4450     case ISD::UINT_TO_FP:
4451     case ISD::SINT_TO_FP: {
4452       APFloat apf(EVTToAPFloatSemantics(VT),
4453                   APInt::getNullValue(VT.getSizeInBits()));
4454       (void)apf.convertFromAPInt(Val,
4455                                  Opcode==ISD::SINT_TO_FP,
4456                                  APFloat::rmNearestTiesToEven);
4457       return getConstantFP(apf, DL, VT);
4458     }
4459     case ISD::BITCAST:
4460       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4461         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4462       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4463         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4464       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4465         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4466       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4467         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4468       break;
4469     case ISD::ABS:
4470       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4471                          C->isOpaque());
4472     case ISD::BITREVERSE:
4473       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4474                          C->isOpaque());
4475     case ISD::BSWAP:
4476       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4477                          C->isOpaque());
4478     case ISD::CTPOP:
4479       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4480                          C->isOpaque());
4481     case ISD::CTLZ:
4482     case ISD::CTLZ_ZERO_UNDEF:
4483       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4484                          C->isOpaque());
4485     case ISD::CTTZ:
4486     case ISD::CTTZ_ZERO_UNDEF:
4487       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4488                          C->isOpaque());
4489     case ISD::FP16_TO_FP: {
4490       bool Ignored;
4491       APFloat FPV(APFloat::IEEEhalf(),
4492                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4493 
4494       // This can return overflow, underflow, or inexact; we don't care.
4495       // FIXME need to be more flexible about rounding mode.
4496       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4497                         APFloat::rmNearestTiesToEven, &Ignored);
4498       return getConstantFP(FPV, DL, VT);
4499     }
4500     }
4501   }
4502 
4503   // Constant fold unary operations with a floating point constant operand.
4504   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4505     APFloat V = C->getValueAPF();    // make copy
4506     switch (Opcode) {
4507     case ISD::FNEG:
4508       V.changeSign();
4509       return getConstantFP(V, DL, VT);
4510     case ISD::FABS:
4511       V.clearSign();
4512       return getConstantFP(V, DL, VT);
4513     case ISD::FCEIL: {
4514       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4515       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4516         return getConstantFP(V, DL, VT);
4517       break;
4518     }
4519     case ISD::FTRUNC: {
4520       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4521       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4522         return getConstantFP(V, DL, VT);
4523       break;
4524     }
4525     case ISD::FFLOOR: {
4526       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4527       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4528         return getConstantFP(V, DL, VT);
4529       break;
4530     }
4531     case ISD::FP_EXTEND: {
4532       bool ignored;
4533       // This can return overflow, underflow, or inexact; we don't care.
4534       // FIXME need to be more flexible about rounding mode.
4535       (void)V.convert(EVTToAPFloatSemantics(VT),
4536                       APFloat::rmNearestTiesToEven, &ignored);
4537       return getConstantFP(V, DL, VT);
4538     }
4539     case ISD::FP_TO_SINT:
4540     case ISD::FP_TO_UINT: {
4541       bool ignored;
4542       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4543       // FIXME need to be more flexible about rounding mode.
4544       APFloat::opStatus s =
4545           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4546       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4547         break;
4548       return getConstant(IntVal, DL, VT);
4549     }
4550     case ISD::BITCAST:
4551       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4552         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4553       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4554         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4555       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4556         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4557       break;
4558     case ISD::FP_TO_FP16: {
4559       bool Ignored;
4560       // This can return overflow, underflow, or inexact; we don't care.
4561       // FIXME need to be more flexible about rounding mode.
4562       (void)V.convert(APFloat::IEEEhalf(),
4563                       APFloat::rmNearestTiesToEven, &Ignored);
4564       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4565     }
4566     }
4567   }
4568 
4569   // Constant fold unary operations with a vector integer or float operand.
4570   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4571     if (BV->isConstant()) {
4572       switch (Opcode) {
4573       default:
4574         // FIXME: Entirely reasonable to perform folding of other unary
4575         // operations here as the need arises.
4576         break;
4577       case ISD::FNEG:
4578       case ISD::FABS:
4579       case ISD::FCEIL:
4580       case ISD::FTRUNC:
4581       case ISD::FFLOOR:
4582       case ISD::FP_EXTEND:
4583       case ISD::FP_TO_SINT:
4584       case ISD::FP_TO_UINT:
4585       case ISD::TRUNCATE:
4586       case ISD::ANY_EXTEND:
4587       case ISD::ZERO_EXTEND:
4588       case ISD::SIGN_EXTEND:
4589       case ISD::UINT_TO_FP:
4590       case ISD::SINT_TO_FP:
4591       case ISD::ABS:
4592       case ISD::BITREVERSE:
4593       case ISD::BSWAP:
4594       case ISD::CTLZ:
4595       case ISD::CTLZ_ZERO_UNDEF:
4596       case ISD::CTTZ:
4597       case ISD::CTTZ_ZERO_UNDEF:
4598       case ISD::CTPOP: {
4599         SDValue Ops = { Operand };
4600         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4601           return Fold;
4602       }
4603       }
4604     }
4605   }
4606 
4607   unsigned OpOpcode = Operand.getNode()->getOpcode();
4608   switch (Opcode) {
4609   case ISD::FREEZE:
4610     assert(VT == Operand.getValueType() && "Unexpected VT!");
4611     break;
4612   case ISD::TokenFactor:
4613   case ISD::MERGE_VALUES:
4614   case ISD::CONCAT_VECTORS:
4615     return Operand;         // Factor, merge or concat of one node?  No need.
4616   case ISD::BUILD_VECTOR: {
4617     // Attempt to simplify BUILD_VECTOR.
4618     SDValue Ops[] = {Operand};
4619     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4620       return V;
4621     break;
4622   }
4623   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4624   case ISD::FP_EXTEND:
4625     assert(VT.isFloatingPoint() &&
4626            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4627     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4628     assert((!VT.isVector() ||
4629             VT.getVectorElementCount() ==
4630             Operand.getValueType().getVectorElementCount()) &&
4631            "Vector element count mismatch!");
4632     assert(Operand.getValueType().bitsLT(VT) &&
4633            "Invalid fpext node, dst < src!");
4634     if (Operand.isUndef())
4635       return getUNDEF(VT);
4636     break;
4637   case ISD::FP_TO_SINT:
4638   case ISD::FP_TO_UINT:
4639     if (Operand.isUndef())
4640       return getUNDEF(VT);
4641     break;
4642   case ISD::SINT_TO_FP:
4643   case ISD::UINT_TO_FP:
4644     // [us]itofp(undef) = 0, because the result value is bounded.
4645     if (Operand.isUndef())
4646       return getConstantFP(0.0, DL, VT);
4647     break;
4648   case ISD::SIGN_EXTEND:
4649     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4650            "Invalid SIGN_EXTEND!");
4651     assert(VT.isVector() == Operand.getValueType().isVector() &&
4652            "SIGN_EXTEND result type type should be vector iff the operand "
4653            "type is vector!");
4654     if (Operand.getValueType() == VT) return Operand;   // noop extension
4655     assert((!VT.isVector() ||
4656             VT.getVectorElementCount() ==
4657                 Operand.getValueType().getVectorElementCount()) &&
4658            "Vector element count mismatch!");
4659     assert(Operand.getValueType().bitsLT(VT) &&
4660            "Invalid sext node, dst < src!");
4661     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4662       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4663     else if (OpOpcode == ISD::UNDEF)
4664       // sext(undef) = 0, because the top bits will all be the same.
4665       return getConstant(0, DL, VT);
4666     break;
4667   case ISD::ZERO_EXTEND:
4668     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4669            "Invalid ZERO_EXTEND!");
4670     assert(VT.isVector() == Operand.getValueType().isVector() &&
4671            "ZERO_EXTEND result type type should be vector iff the operand "
4672            "type is vector!");
4673     if (Operand.getValueType() == VT) return Operand;   // noop extension
4674     assert((!VT.isVector() ||
4675             VT.getVectorElementCount() ==
4676                 Operand.getValueType().getVectorElementCount()) &&
4677            "Vector element count mismatch!");
4678     assert(Operand.getValueType().bitsLT(VT) &&
4679            "Invalid zext node, dst < src!");
4680     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4681       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4682     else if (OpOpcode == ISD::UNDEF)
4683       // zext(undef) = 0, because the top bits will be zero.
4684       return getConstant(0, DL, VT);
4685     break;
4686   case ISD::ANY_EXTEND:
4687     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4688            "Invalid ANY_EXTEND!");
4689     assert(VT.isVector() == Operand.getValueType().isVector() &&
4690            "ANY_EXTEND result type type should be vector iff the operand "
4691            "type is vector!");
4692     if (Operand.getValueType() == VT) return Operand;   // noop extension
4693     assert((!VT.isVector() ||
4694             VT.getVectorElementCount() ==
4695                 Operand.getValueType().getVectorElementCount()) &&
4696            "Vector element count mismatch!");
4697     assert(Operand.getValueType().bitsLT(VT) &&
4698            "Invalid anyext node, dst < src!");
4699 
4700     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4701         OpOpcode == ISD::ANY_EXTEND)
4702       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4703       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4704     else if (OpOpcode == ISD::UNDEF)
4705       return getUNDEF(VT);
4706 
4707     // (ext (trunc x)) -> x
4708     if (OpOpcode == ISD::TRUNCATE) {
4709       SDValue OpOp = Operand.getOperand(0);
4710       if (OpOp.getValueType() == VT) {
4711         transferDbgValues(Operand, OpOp);
4712         return OpOp;
4713       }
4714     }
4715     break;
4716   case ISD::TRUNCATE:
4717     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4718            "Invalid TRUNCATE!");
4719     assert(VT.isVector() == Operand.getValueType().isVector() &&
4720            "TRUNCATE result type type should be vector iff the operand "
4721            "type is vector!");
4722     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4723     assert((!VT.isVector() ||
4724             VT.getVectorElementCount() ==
4725                 Operand.getValueType().getVectorElementCount()) &&
4726            "Vector element count mismatch!");
4727     assert(Operand.getValueType().bitsGT(VT) &&
4728            "Invalid truncate node, src < dst!");
4729     if (OpOpcode == ISD::TRUNCATE)
4730       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4731     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4732         OpOpcode == ISD::ANY_EXTEND) {
4733       // If the source is smaller than the dest, we still need an extend.
4734       if (Operand.getOperand(0).getValueType().getScalarType()
4735             .bitsLT(VT.getScalarType()))
4736         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4737       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4738         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4739       return Operand.getOperand(0);
4740     }
4741     if (OpOpcode == ISD::UNDEF)
4742       return getUNDEF(VT);
4743     break;
4744   case ISD::ANY_EXTEND_VECTOR_INREG:
4745   case ISD::ZERO_EXTEND_VECTOR_INREG:
4746   case ISD::SIGN_EXTEND_VECTOR_INREG:
4747     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4748     assert(Operand.getValueType().bitsLE(VT) &&
4749            "The input must be the same size or smaller than the result.");
4750     assert(VT.getVectorNumElements() <
4751              Operand.getValueType().getVectorNumElements() &&
4752            "The destination vector type must have fewer lanes than the input.");
4753     break;
4754   case ISD::ABS:
4755     assert(VT.isInteger() && VT == Operand.getValueType() &&
4756            "Invalid ABS!");
4757     if (OpOpcode == ISD::UNDEF)
4758       return getUNDEF(VT);
4759     break;
4760   case ISD::BSWAP:
4761     assert(VT.isInteger() && VT == Operand.getValueType() &&
4762            "Invalid BSWAP!");
4763     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4764            "BSWAP types must be a multiple of 16 bits!");
4765     if (OpOpcode == ISD::UNDEF)
4766       return getUNDEF(VT);
4767     break;
4768   case ISD::BITREVERSE:
4769     assert(VT.isInteger() && VT == Operand.getValueType() &&
4770            "Invalid BITREVERSE!");
4771     if (OpOpcode == ISD::UNDEF)
4772       return getUNDEF(VT);
4773     break;
4774   case ISD::BITCAST:
4775     // Basic sanity checking.
4776     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4777            "Cannot BITCAST between types of different sizes!");
4778     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4779     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4780       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4781     if (OpOpcode == ISD::UNDEF)
4782       return getUNDEF(VT);
4783     break;
4784   case ISD::SCALAR_TO_VECTOR:
4785     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4786            (VT.getVectorElementType() == Operand.getValueType() ||
4787             (VT.getVectorElementType().isInteger() &&
4788              Operand.getValueType().isInteger() &&
4789              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4790            "Illegal SCALAR_TO_VECTOR node!");
4791     if (OpOpcode == ISD::UNDEF)
4792       return getUNDEF(VT);
4793     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4794     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4795         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4796         Operand.getConstantOperandVal(1) == 0 &&
4797         Operand.getOperand(0).getValueType() == VT)
4798       return Operand.getOperand(0);
4799     break;
4800   case ISD::FNEG:
4801     // Negation of an unknown bag of bits is still completely undefined.
4802     if (OpOpcode == ISD::UNDEF)
4803       return getUNDEF(VT);
4804 
4805     if (OpOpcode == ISD::FNEG)  // --X -> X
4806       return Operand.getOperand(0);
4807     break;
4808   case ISD::FABS:
4809     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4810       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4811     break;
4812   case ISD::VSCALE:
4813     assert(VT == Operand.getValueType() && "Unexpected VT!");
4814     break;
4815   case ISD::VECREDUCE_SMIN:
4816   case ISD::VECREDUCE_UMAX:
4817     if (Operand.getValueType().getScalarType() == MVT::i1)
4818       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4819     break;
4820   case ISD::VECREDUCE_SMAX:
4821   case ISD::VECREDUCE_UMIN:
4822     if (Operand.getValueType().getScalarType() == MVT::i1)
4823       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4824     break;
4825   }
4826 
4827   SDNode *N;
4828   SDVTList VTs = getVTList(VT);
4829   SDValue Ops[] = {Operand};
4830   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4831     FoldingSetNodeID ID;
4832     AddNodeIDNode(ID, Opcode, VTs, Ops);
4833     void *IP = nullptr;
4834     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4835       E->intersectFlagsWith(Flags);
4836       return SDValue(E, 0);
4837     }
4838 
4839     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4840     N->setFlags(Flags);
4841     createOperands(N, Ops);
4842     CSEMap.InsertNode(N, IP);
4843   } else {
4844     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4845     createOperands(N, Ops);
4846   }
4847 
4848   InsertNode(N);
4849   SDValue V = SDValue(N, 0);
4850   NewSDValueDbgMsg(V, "Creating new node: ", this);
4851   return V;
4852 }
4853 
4854 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4855                                        const APInt &C2) {
4856   switch (Opcode) {
4857   case ISD::ADD:  return C1 + C2;
4858   case ISD::SUB:  return C1 - C2;
4859   case ISD::MUL:  return C1 * C2;
4860   case ISD::AND:  return C1 & C2;
4861   case ISD::OR:   return C1 | C2;
4862   case ISD::XOR:  return C1 ^ C2;
4863   case ISD::SHL:  return C1 << C2;
4864   case ISD::SRL:  return C1.lshr(C2);
4865   case ISD::SRA:  return C1.ashr(C2);
4866   case ISD::ROTL: return C1.rotl(C2);
4867   case ISD::ROTR: return C1.rotr(C2);
4868   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4869   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4870   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4871   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4872   case ISD::SADDSAT: return C1.sadd_sat(C2);
4873   case ISD::UADDSAT: return C1.uadd_sat(C2);
4874   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4875   case ISD::USUBSAT: return C1.usub_sat(C2);
4876   case ISD::UDIV:
4877     if (!C2.getBoolValue())
4878       break;
4879     return C1.udiv(C2);
4880   case ISD::UREM:
4881     if (!C2.getBoolValue())
4882       break;
4883     return C1.urem(C2);
4884   case ISD::SDIV:
4885     if (!C2.getBoolValue())
4886       break;
4887     return C1.sdiv(C2);
4888   case ISD::SREM:
4889     if (!C2.getBoolValue())
4890       break;
4891     return C1.srem(C2);
4892   }
4893   return llvm::None;
4894 }
4895 
4896 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4897                                        const GlobalAddressSDNode *GA,
4898                                        const SDNode *N2) {
4899   if (GA->getOpcode() != ISD::GlobalAddress)
4900     return SDValue();
4901   if (!TLI->isOffsetFoldingLegal(GA))
4902     return SDValue();
4903   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4904   if (!C2)
4905     return SDValue();
4906   int64_t Offset = C2->getSExtValue();
4907   switch (Opcode) {
4908   case ISD::ADD: break;
4909   case ISD::SUB: Offset = -uint64_t(Offset); break;
4910   default: return SDValue();
4911   }
4912   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4913                           GA->getOffset() + uint64_t(Offset));
4914 }
4915 
4916 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4917   switch (Opcode) {
4918   case ISD::SDIV:
4919   case ISD::UDIV:
4920   case ISD::SREM:
4921   case ISD::UREM: {
4922     // If a divisor is zero/undef or any element of a divisor vector is
4923     // zero/undef, the whole op is undef.
4924     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4925     SDValue Divisor = Ops[1];
4926     if (Divisor.isUndef() || isNullConstant(Divisor))
4927       return true;
4928 
4929     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4930            llvm::any_of(Divisor->op_values(),
4931                         [](SDValue V) { return V.isUndef() ||
4932                                         isNullConstant(V); });
4933     // TODO: Handle signed overflow.
4934   }
4935   // TODO: Handle oversized shifts.
4936   default:
4937     return false;
4938   }
4939 }
4940 
4941 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4942                                              EVT VT, ArrayRef<SDValue> Ops) {
4943   // If the opcode is a target-specific ISD node, there's nothing we can
4944   // do here and the operand rules may not line up with the below, so
4945   // bail early.
4946   if (Opcode >= ISD::BUILTIN_OP_END)
4947     return SDValue();
4948 
4949   // For now, the array Ops should only contain two values.
4950   // This enforcement will be removed once this function is merged with
4951   // FoldConstantVectorArithmetic
4952   if (Ops.size() != 2)
4953     return SDValue();
4954 
4955   if (isUndef(Opcode, Ops))
4956     return getUNDEF(VT);
4957 
4958   SDNode *N1 = Ops[0].getNode();
4959   SDNode *N2 = Ops[1].getNode();
4960 
4961   // Handle the case of two scalars.
4962   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4963     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4964       if (C1->isOpaque() || C2->isOpaque())
4965         return SDValue();
4966 
4967       Optional<APInt> FoldAttempt =
4968           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4969       if (!FoldAttempt)
4970         return SDValue();
4971 
4972       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4973       assert((!Folded || !VT.isVector()) &&
4974              "Can't fold vectors ops with scalar operands");
4975       return Folded;
4976     }
4977   }
4978 
4979   // fold (add Sym, c) -> Sym+c
4980   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4981     return FoldSymbolOffset(Opcode, VT, GA, N2);
4982   if (TLI->isCommutativeBinOp(Opcode))
4983     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4984       return FoldSymbolOffset(Opcode, VT, GA, N1);
4985 
4986   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4987   // vector width, however we should be able to do constant folds involving
4988   // splat vector nodes too.
4989   if (VT.isScalableVector())
4990     return SDValue();
4991 
4992   // For fixed width vectors, extract each constant element and fold them
4993   // individually. Either input may be an undef value.
4994   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4995   if (!BV1 && !N1->isUndef())
4996     return SDValue();
4997   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4998   if (!BV2 && !N2->isUndef())
4999     return SDValue();
5000   // If both operands are undef, that's handled the same way as scalars.
5001   if (!BV1 && !BV2)
5002     return SDValue();
5003 
5004   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5005          "Vector binop with different number of elements in operands?");
5006 
5007   EVT SVT = VT.getScalarType();
5008   EVT LegalSVT = SVT;
5009   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5010     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5011     if (LegalSVT.bitsLT(SVT))
5012       return SDValue();
5013   }
5014   SmallVector<SDValue, 4> Outputs;
5015   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5016   for (unsigned I = 0; I != NumOps; ++I) {
5017     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5018     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5019     if (SVT.isInteger()) {
5020       if (V1->getValueType(0).bitsGT(SVT))
5021         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5022       if (V2->getValueType(0).bitsGT(SVT))
5023         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5024     }
5025 
5026     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5027       return SDValue();
5028 
5029     // Fold one vector element.
5030     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5031     if (LegalSVT != SVT)
5032       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5033 
5034     // Scalar folding only succeeded if the result is a constant or UNDEF.
5035     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5036         ScalarResult.getOpcode() != ISD::ConstantFP)
5037       return SDValue();
5038     Outputs.push_back(ScalarResult);
5039   }
5040 
5041   assert(VT.getVectorNumElements() == Outputs.size() &&
5042          "Vector size mismatch!");
5043 
5044   // We may have a vector type but a scalar result. Create a splat.
5045   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5046 
5047   // Build a big vector out of the scalar elements we generated.
5048   return getBuildVector(VT, SDLoc(), Outputs);
5049 }
5050 
5051 // TODO: Merge with FoldConstantArithmetic
5052 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5053                                                    const SDLoc &DL, EVT VT,
5054                                                    ArrayRef<SDValue> Ops,
5055                                                    const SDNodeFlags Flags) {
5056   // If the opcode is a target-specific ISD node, there's nothing we can
5057   // do here and the operand rules may not line up with the below, so
5058   // bail early.
5059   if (Opcode >= ISD::BUILTIN_OP_END)
5060     return SDValue();
5061 
5062   if (isUndef(Opcode, Ops))
5063     return getUNDEF(VT);
5064 
5065   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5066   if (!VT.isVector())
5067     return SDValue();
5068 
5069   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5070   // vector width, however we should be able to do constant folds involving
5071   // splat vector nodes too.
5072   if (VT.isScalableVector())
5073     return SDValue();
5074 
5075   // From this point onwards all vectors are assumed to be fixed width.
5076   unsigned NumElts = VT.getVectorNumElements();
5077 
5078   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5079     return !Op.getValueType().isVector() ||
5080            Op.getValueType().getVectorNumElements() == NumElts;
5081   };
5082 
5083   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5084     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5085     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5086            (BV && BV->isConstant());
5087   };
5088 
5089   // All operands must be vector types with the same number of elements as
5090   // the result type and must be either UNDEF or a build vector of constant
5091   // or UNDEF scalars.
5092   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5093       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5094     return SDValue();
5095 
5096   // If we are comparing vectors, then the result needs to be a i1 boolean
5097   // that is then sign-extended back to the legal result type.
5098   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5099 
5100   // Find legal integer scalar type for constant promotion and
5101   // ensure that its scalar size is at least as large as source.
5102   EVT LegalSVT = VT.getScalarType();
5103   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5104     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5105     if (LegalSVT.bitsLT(VT.getScalarType()))
5106       return SDValue();
5107   }
5108 
5109   // Constant fold each scalar lane separately.
5110   SmallVector<SDValue, 4> ScalarResults;
5111   for (unsigned i = 0; i != NumElts; i++) {
5112     SmallVector<SDValue, 4> ScalarOps;
5113     for (SDValue Op : Ops) {
5114       EVT InSVT = Op.getValueType().getScalarType();
5115       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5116       if (!InBV) {
5117         // We've checked that this is UNDEF or a constant of some kind.
5118         if (Op.isUndef())
5119           ScalarOps.push_back(getUNDEF(InSVT));
5120         else
5121           ScalarOps.push_back(Op);
5122         continue;
5123       }
5124 
5125       SDValue ScalarOp = InBV->getOperand(i);
5126       EVT ScalarVT = ScalarOp.getValueType();
5127 
5128       // Build vector (integer) scalar operands may need implicit
5129       // truncation - do this before constant folding.
5130       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5131         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5132 
5133       ScalarOps.push_back(ScalarOp);
5134     }
5135 
5136     // Constant fold the scalar operands.
5137     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5138 
5139     // Legalize the (integer) scalar constant if necessary.
5140     if (LegalSVT != SVT)
5141       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5142 
5143     // Scalar folding only succeeded if the result is a constant or UNDEF.
5144     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5145         ScalarResult.getOpcode() != ISD::ConstantFP)
5146       return SDValue();
5147     ScalarResults.push_back(ScalarResult);
5148   }
5149 
5150   SDValue V = getBuildVector(VT, DL, ScalarResults);
5151   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5152   return V;
5153 }
5154 
5155 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5156                                          EVT VT, SDValue N1, SDValue N2) {
5157   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5158   //       should. That will require dealing with a potentially non-default
5159   //       rounding mode, checking the "opStatus" return value from the APFloat
5160   //       math calculations, and possibly other variations.
5161   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5162   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5163   if (N1CFP && N2CFP) {
5164     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5165     switch (Opcode) {
5166     case ISD::FADD:
5167       C1.add(C2, APFloat::rmNearestTiesToEven);
5168       return getConstantFP(C1, DL, VT);
5169     case ISD::FSUB:
5170       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5171       return getConstantFP(C1, DL, VT);
5172     case ISD::FMUL:
5173       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5174       return getConstantFP(C1, DL, VT);
5175     case ISD::FDIV:
5176       C1.divide(C2, APFloat::rmNearestTiesToEven);
5177       return getConstantFP(C1, DL, VT);
5178     case ISD::FREM:
5179       C1.mod(C2);
5180       return getConstantFP(C1, DL, VT);
5181     case ISD::FCOPYSIGN:
5182       C1.copySign(C2);
5183       return getConstantFP(C1, DL, VT);
5184     default: break;
5185     }
5186   }
5187   if (N1CFP && Opcode == ISD::FP_ROUND) {
5188     APFloat C1 = N1CFP->getValueAPF();    // make copy
5189     bool Unused;
5190     // This can return overflow, underflow, or inexact; we don't care.
5191     // FIXME need to be more flexible about rounding mode.
5192     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5193                       &Unused);
5194     return getConstantFP(C1, DL, VT);
5195   }
5196 
5197   switch (Opcode) {
5198   case ISD::FSUB:
5199     // -0.0 - undef --> undef (consistent with "fneg undef")
5200     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5201       return getUNDEF(VT);
5202     LLVM_FALLTHROUGH;
5203 
5204   case ISD::FADD:
5205   case ISD::FMUL:
5206   case ISD::FDIV:
5207   case ISD::FREM:
5208     // If both operands are undef, the result is undef. If 1 operand is undef,
5209     // the result is NaN. This should match the behavior of the IR optimizer.
5210     if (N1.isUndef() && N2.isUndef())
5211       return getUNDEF(VT);
5212     if (N1.isUndef() || N2.isUndef())
5213       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5214   }
5215   return SDValue();
5216 }
5217 
5218 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5219   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5220 
5221   // There's no need to assert on a byte-aligned pointer. All pointers are at
5222   // least byte aligned.
5223   if (A == Align(1))
5224     return Val;
5225 
5226   FoldingSetNodeID ID;
5227   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5228   ID.AddInteger(A.value());
5229 
5230   void *IP = nullptr;
5231   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5232     return SDValue(E, 0);
5233 
5234   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5235                                          Val.getValueType(), A);
5236   createOperands(N, {Val});
5237 
5238   CSEMap.InsertNode(N, IP);
5239   InsertNode(N);
5240 
5241   SDValue V(N, 0);
5242   NewSDValueDbgMsg(V, "Creating new node: ", this);
5243   return V;
5244 }
5245 
5246 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5247                               SDValue N1, SDValue N2) {
5248   SDNodeFlags Flags;
5249   if (Inserter)
5250     Flags = Inserter->getFlags();
5251   return getNode(Opcode, DL, VT, N1, N2, Flags);
5252 }
5253 
5254 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5255                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5256   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5257   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5258   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5259   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5260 
5261   // Canonicalize constant to RHS if commutative.
5262   if (TLI->isCommutativeBinOp(Opcode)) {
5263     if (N1C && !N2C) {
5264       std::swap(N1C, N2C);
5265       std::swap(N1, N2);
5266     } else if (N1CFP && !N2CFP) {
5267       std::swap(N1CFP, N2CFP);
5268       std::swap(N1, N2);
5269     }
5270   }
5271 
5272   switch (Opcode) {
5273   default: break;
5274   case ISD::TokenFactor:
5275     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5276            N2.getValueType() == MVT::Other && "Invalid token factor!");
5277     // Fold trivial token factors.
5278     if (N1.getOpcode() == ISD::EntryToken) return N2;
5279     if (N2.getOpcode() == ISD::EntryToken) return N1;
5280     if (N1 == N2) return N1;
5281     break;
5282   case ISD::BUILD_VECTOR: {
5283     // Attempt to simplify BUILD_VECTOR.
5284     SDValue Ops[] = {N1, N2};
5285     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5286       return V;
5287     break;
5288   }
5289   case ISD::CONCAT_VECTORS: {
5290     SDValue Ops[] = {N1, N2};
5291     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5292       return V;
5293     break;
5294   }
5295   case ISD::AND:
5296     assert(VT.isInteger() && "This operator does not apply to FP types!");
5297     assert(N1.getValueType() == N2.getValueType() &&
5298            N1.getValueType() == VT && "Binary operator types must match!");
5299     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5300     // worth handling here.
5301     if (N2C && N2C->isNullValue())
5302       return N2;
5303     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5304       return N1;
5305     break;
5306   case ISD::OR:
5307   case ISD::XOR:
5308   case ISD::ADD:
5309   case ISD::SUB:
5310     assert(VT.isInteger() && "This operator does not apply to FP types!");
5311     assert(N1.getValueType() == N2.getValueType() &&
5312            N1.getValueType() == VT && "Binary operator types must match!");
5313     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5314     // it's worth handling here.
5315     if (N2C && N2C->isNullValue())
5316       return N1;
5317     break;
5318   case ISD::MUL:
5319     assert(VT.isInteger() && "This operator does not apply to FP types!");
5320     assert(N1.getValueType() == N2.getValueType() &&
5321            N1.getValueType() == VT && "Binary operator types must match!");
5322     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5323       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5324       APInt N2CImm = N2C->getAPIntValue();
5325       return getVScale(DL, VT, MulImm * N2CImm);
5326     }
5327     break;
5328   case ISD::UDIV:
5329   case ISD::UREM:
5330   case ISD::MULHU:
5331   case ISD::MULHS:
5332   case ISD::SDIV:
5333   case ISD::SREM:
5334   case ISD::SADDSAT:
5335   case ISD::SSUBSAT:
5336   case ISD::UADDSAT:
5337   case ISD::USUBSAT:
5338     assert(VT.isInteger() && "This operator does not apply to FP types!");
5339     assert(N1.getValueType() == N2.getValueType() &&
5340            N1.getValueType() == VT && "Binary operator types must match!");
5341     break;
5342   case ISD::SMIN:
5343   case ISD::UMAX:
5344     assert(VT.isInteger() && "This operator does not apply to FP types!");
5345     assert(N1.getValueType() == N2.getValueType() &&
5346            N1.getValueType() == VT && "Binary operator types must match!");
5347     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5348       return getNode(ISD::OR, DL, VT, N1, N2);
5349     break;
5350   case ISD::SMAX:
5351   case ISD::UMIN:
5352     assert(VT.isInteger() && "This operator does not apply to FP types!");
5353     assert(N1.getValueType() == N2.getValueType() &&
5354            N1.getValueType() == VT && "Binary operator types must match!");
5355     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5356       return getNode(ISD::AND, DL, VT, N1, N2);
5357     break;
5358   case ISD::FADD:
5359   case ISD::FSUB:
5360   case ISD::FMUL:
5361   case ISD::FDIV:
5362   case ISD::FREM:
5363     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5364     assert(N1.getValueType() == N2.getValueType() &&
5365            N1.getValueType() == VT && "Binary operator types must match!");
5366     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5367       return V;
5368     break;
5369   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5370     assert(N1.getValueType() == VT &&
5371            N1.getValueType().isFloatingPoint() &&
5372            N2.getValueType().isFloatingPoint() &&
5373            "Invalid FCOPYSIGN!");
5374     break;
5375   case ISD::SHL:
5376     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5377       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5378       APInt ShiftImm = N2C->getAPIntValue();
5379       return getVScale(DL, VT, MulImm << ShiftImm);
5380     }
5381     LLVM_FALLTHROUGH;
5382   case ISD::SRA:
5383   case ISD::SRL:
5384     if (SDValue V = simplifyShift(N1, N2))
5385       return V;
5386     LLVM_FALLTHROUGH;
5387   case ISD::ROTL:
5388   case ISD::ROTR:
5389     assert(VT == N1.getValueType() &&
5390            "Shift operators return type must be the same as their first arg");
5391     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5392            "Shifts only work on integers");
5393     assert((!VT.isVector() || VT == N2.getValueType()) &&
5394            "Vector shift amounts must be in the same as their first arg");
5395     // Verify that the shift amount VT is big enough to hold valid shift
5396     // amounts.  This catches things like trying to shift an i1024 value by an
5397     // i8, which is easy to fall into in generic code that uses
5398     // TLI.getShiftAmount().
5399     assert(N2.getValueType().getScalarSizeInBits() >=
5400                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5401            "Invalid use of small shift amount with oversized value!");
5402 
5403     // Always fold shifts of i1 values so the code generator doesn't need to
5404     // handle them.  Since we know the size of the shift has to be less than the
5405     // size of the value, the shift/rotate count is guaranteed to be zero.
5406     if (VT == MVT::i1)
5407       return N1;
5408     if (N2C && N2C->isNullValue())
5409       return N1;
5410     break;
5411   case ISD::FP_ROUND:
5412     assert(VT.isFloatingPoint() &&
5413            N1.getValueType().isFloatingPoint() &&
5414            VT.bitsLE(N1.getValueType()) &&
5415            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5416            "Invalid FP_ROUND!");
5417     if (N1.getValueType() == VT) return N1;  // noop conversion.
5418     break;
5419   case ISD::AssertSext:
5420   case ISD::AssertZext: {
5421     EVT EVT = cast<VTSDNode>(N2)->getVT();
5422     assert(VT == N1.getValueType() && "Not an inreg extend!");
5423     assert(VT.isInteger() && EVT.isInteger() &&
5424            "Cannot *_EXTEND_INREG FP types");
5425     assert(!EVT.isVector() &&
5426            "AssertSExt/AssertZExt type should be the vector element type "
5427            "rather than the vector type!");
5428     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5429     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5430     break;
5431   }
5432   case ISD::SIGN_EXTEND_INREG: {
5433     EVT EVT = cast<VTSDNode>(N2)->getVT();
5434     assert(VT == N1.getValueType() && "Not an inreg extend!");
5435     assert(VT.isInteger() && EVT.isInteger() &&
5436            "Cannot *_EXTEND_INREG FP types");
5437     assert(EVT.isVector() == VT.isVector() &&
5438            "SIGN_EXTEND_INREG type should be vector iff the operand "
5439            "type is vector!");
5440     assert((!EVT.isVector() ||
5441             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5442            "Vector element counts must match in SIGN_EXTEND_INREG");
5443     assert(EVT.bitsLE(VT) && "Not extending!");
5444     if (EVT == VT) return N1;  // Not actually extending
5445 
5446     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5447       unsigned FromBits = EVT.getScalarSizeInBits();
5448       Val <<= Val.getBitWidth() - FromBits;
5449       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5450       return getConstant(Val, DL, ConstantVT);
5451     };
5452 
5453     if (N1C) {
5454       const APInt &Val = N1C->getAPIntValue();
5455       return SignExtendInReg(Val, VT);
5456     }
5457     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5458       SmallVector<SDValue, 8> Ops;
5459       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5460       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5461         SDValue Op = N1.getOperand(i);
5462         if (Op.isUndef()) {
5463           Ops.push_back(getUNDEF(OpVT));
5464           continue;
5465         }
5466         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5467         APInt Val = C->getAPIntValue();
5468         Ops.push_back(SignExtendInReg(Val, OpVT));
5469       }
5470       return getBuildVector(VT, DL, Ops);
5471     }
5472     break;
5473   }
5474   case ISD::EXTRACT_VECTOR_ELT:
5475     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5476            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5477              element type of the vector.");
5478 
5479     // Extract from an undefined value or using an undefined index is undefined.
5480     if (N1.isUndef() || N2.isUndef())
5481       return getUNDEF(VT);
5482 
5483     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5484     // vectors. For scalable vectors we will provide appropriate support for
5485     // dealing with arbitrary indices.
5486     if (N2C && N1.getValueType().isFixedLengthVector() &&
5487         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5488       return getUNDEF(VT);
5489 
5490     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5491     // expanding copies of large vectors from registers. This only works for
5492     // fixed length vectors, since we need to know the exact number of
5493     // elements.
5494     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5495         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5496       unsigned Factor =
5497         N1.getOperand(0).getValueType().getVectorNumElements();
5498       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5499                      N1.getOperand(N2C->getZExtValue() / Factor),
5500                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5501     }
5502 
5503     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5504     // lowering is expanding large vector constants.
5505     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5506                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5507       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5508               N1.getValueType().isFixedLengthVector()) &&
5509              "BUILD_VECTOR used for scalable vectors");
5510       unsigned Index =
5511           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5512       SDValue Elt = N1.getOperand(Index);
5513 
5514       if (VT != Elt.getValueType())
5515         // If the vector element type is not legal, the BUILD_VECTOR operands
5516         // are promoted and implicitly truncated, and the result implicitly
5517         // extended. Make that explicit here.
5518         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5519 
5520       return Elt;
5521     }
5522 
5523     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5524     // operations are lowered to scalars.
5525     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5526       // If the indices are the same, return the inserted element else
5527       // if the indices are known different, extract the element from
5528       // the original vector.
5529       SDValue N1Op2 = N1.getOperand(2);
5530       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5531 
5532       if (N1Op2C && N2C) {
5533         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5534           if (VT == N1.getOperand(1).getValueType())
5535             return N1.getOperand(1);
5536           else
5537             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5538         }
5539 
5540         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5541       }
5542     }
5543 
5544     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5545     // when vector types are scalarized and v1iX is legal.
5546     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5547     // Here we are completely ignoring the extract element index (N2),
5548     // which is fine for fixed width vectors, since any index other than 0
5549     // is undefined anyway. However, this cannot be ignored for scalable
5550     // vectors - in theory we could support this, but we don't want to do this
5551     // without a profitability check.
5552     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5553         N1.getValueType().isFixedLengthVector() &&
5554         N1.getValueType().getVectorNumElements() == 1) {
5555       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5556                      N1.getOperand(1));
5557     }
5558     break;
5559   case ISD::EXTRACT_ELEMENT:
5560     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5561     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5562            (N1.getValueType().isInteger() == VT.isInteger()) &&
5563            N1.getValueType() != VT &&
5564            "Wrong types for EXTRACT_ELEMENT!");
5565 
5566     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5567     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5568     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5569     if (N1.getOpcode() == ISD::BUILD_PAIR)
5570       return N1.getOperand(N2C->getZExtValue());
5571 
5572     // EXTRACT_ELEMENT of a constant int is also very common.
5573     if (N1C) {
5574       unsigned ElementSize = VT.getSizeInBits();
5575       unsigned Shift = ElementSize * N2C->getZExtValue();
5576       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5577       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5578     }
5579     break;
5580   case ISD::EXTRACT_SUBVECTOR:
5581     EVT N1VT = N1.getValueType();
5582     assert(VT.isVector() && N1VT.isVector() &&
5583            "Extract subvector VTs must be vectors!");
5584     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5585            "Extract subvector VTs must have the same element type!");
5586     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5587            "Cannot extract a scalable vector from a fixed length vector!");
5588     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5589             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5590            "Extract subvector must be from larger vector to smaller vector!");
5591     assert(N2C && "Extract subvector index must be a constant");
5592     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5593             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5594                 N1VT.getVectorMinNumElements()) &&
5595            "Extract subvector overflow!");
5596     assert(N2C->getAPIntValue().getBitWidth() ==
5597                TLI->getVectorIdxTy(getDataLayout())
5598                    .getSizeInBits()
5599                    .getFixedSize() &&
5600            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5601 
5602     // Trivial extraction.
5603     if (VT == N1VT)
5604       return N1;
5605 
5606     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5607     if (N1.isUndef())
5608       return getUNDEF(VT);
5609 
5610     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5611     // the concat have the same type as the extract.
5612     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5613         VT == N1.getOperand(0).getValueType()) {
5614       unsigned Factor = VT.getVectorMinNumElements();
5615       return N1.getOperand(N2C->getZExtValue() / Factor);
5616     }
5617 
5618     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5619     // during shuffle legalization.
5620     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5621         VT == N1.getOperand(1).getValueType())
5622       return N1.getOperand(1);
5623     break;
5624   }
5625 
5626   // Perform trivial constant folding.
5627   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5628     return SV;
5629 
5630   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5631     return V;
5632 
5633   // Canonicalize an UNDEF to the RHS, even over a constant.
5634   if (N1.isUndef()) {
5635     if (TLI->isCommutativeBinOp(Opcode)) {
5636       std::swap(N1, N2);
5637     } else {
5638       switch (Opcode) {
5639       case ISD::SIGN_EXTEND_INREG:
5640       case ISD::SUB:
5641         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5642       case ISD::UDIV:
5643       case ISD::SDIV:
5644       case ISD::UREM:
5645       case ISD::SREM:
5646       case ISD::SSUBSAT:
5647       case ISD::USUBSAT:
5648         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5649       }
5650     }
5651   }
5652 
5653   // Fold a bunch of operators when the RHS is undef.
5654   if (N2.isUndef()) {
5655     switch (Opcode) {
5656     case ISD::XOR:
5657       if (N1.isUndef())
5658         // Handle undef ^ undef -> 0 special case. This is a common
5659         // idiom (misuse).
5660         return getConstant(0, DL, VT);
5661       LLVM_FALLTHROUGH;
5662     case ISD::ADD:
5663     case ISD::SUB:
5664     case ISD::UDIV:
5665     case ISD::SDIV:
5666     case ISD::UREM:
5667     case ISD::SREM:
5668       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5669     case ISD::MUL:
5670     case ISD::AND:
5671     case ISD::SSUBSAT:
5672     case ISD::USUBSAT:
5673       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5674     case ISD::OR:
5675     case ISD::SADDSAT:
5676     case ISD::UADDSAT:
5677       return getAllOnesConstant(DL, VT);
5678     }
5679   }
5680 
5681   // Memoize this node if possible.
5682   SDNode *N;
5683   SDVTList VTs = getVTList(VT);
5684   SDValue Ops[] = {N1, N2};
5685   if (VT != MVT::Glue) {
5686     FoldingSetNodeID ID;
5687     AddNodeIDNode(ID, Opcode, VTs, Ops);
5688     void *IP = nullptr;
5689     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5690       E->intersectFlagsWith(Flags);
5691       return SDValue(E, 0);
5692     }
5693 
5694     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5695     N->setFlags(Flags);
5696     createOperands(N, Ops);
5697     CSEMap.InsertNode(N, IP);
5698   } else {
5699     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5700     createOperands(N, Ops);
5701   }
5702 
5703   InsertNode(N);
5704   SDValue V = SDValue(N, 0);
5705   NewSDValueDbgMsg(V, "Creating new node: ", this);
5706   return V;
5707 }
5708 
5709 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5710                               SDValue N1, SDValue N2, SDValue N3) {
5711   SDNodeFlags Flags;
5712   if (Inserter)
5713     Flags = Inserter->getFlags();
5714   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5715 }
5716 
5717 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5718                               SDValue N1, SDValue N2, SDValue N3,
5719                               const SDNodeFlags Flags) {
5720   // Perform various simplifications.
5721   switch (Opcode) {
5722   case ISD::FMA: {
5723     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5724     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5725            N3.getValueType() == VT && "FMA types must match!");
5726     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5727     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5728     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5729     if (N1CFP && N2CFP && N3CFP) {
5730       APFloat  V1 = N1CFP->getValueAPF();
5731       const APFloat &V2 = N2CFP->getValueAPF();
5732       const APFloat &V3 = N3CFP->getValueAPF();
5733       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5734       return getConstantFP(V1, DL, VT);
5735     }
5736     break;
5737   }
5738   case ISD::BUILD_VECTOR: {
5739     // Attempt to simplify BUILD_VECTOR.
5740     SDValue Ops[] = {N1, N2, N3};
5741     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5742       return V;
5743     break;
5744   }
5745   case ISD::CONCAT_VECTORS: {
5746     SDValue Ops[] = {N1, N2, N3};
5747     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5748       return V;
5749     break;
5750   }
5751   case ISD::SETCC: {
5752     assert(VT.isInteger() && "SETCC result type must be an integer!");
5753     assert(N1.getValueType() == N2.getValueType() &&
5754            "SETCC operands must have the same type!");
5755     assert(VT.isVector() == N1.getValueType().isVector() &&
5756            "SETCC type should be vector iff the operand type is vector!");
5757     assert((!VT.isVector() || VT.getVectorElementCount() ==
5758                                   N1.getValueType().getVectorElementCount()) &&
5759            "SETCC vector element counts must match!");
5760     // Use FoldSetCC to simplify SETCC's.
5761     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5762       return V;
5763     // Vector constant folding.
5764     SDValue Ops[] = {N1, N2, N3};
5765     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5766       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5767       return V;
5768     }
5769     break;
5770   }
5771   case ISD::SELECT:
5772   case ISD::VSELECT:
5773     if (SDValue V = simplifySelect(N1, N2, N3))
5774       return V;
5775     break;
5776   case ISD::VECTOR_SHUFFLE:
5777     llvm_unreachable("should use getVectorShuffle constructor!");
5778   case ISD::INSERT_VECTOR_ELT: {
5779     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5780     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5781     // for scalable vectors where we will generate appropriate code to
5782     // deal with out-of-bounds cases correctly.
5783     if (N3C && N1.getValueType().isFixedLengthVector() &&
5784         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5785       return getUNDEF(VT);
5786 
5787     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5788     if (N3.isUndef())
5789       return getUNDEF(VT);
5790 
5791     // If the inserted element is an UNDEF, just use the input vector.
5792     if (N2.isUndef())
5793       return N1;
5794 
5795     break;
5796   }
5797   case ISD::INSERT_SUBVECTOR: {
5798     // Inserting undef into undef is still undef.
5799     if (N1.isUndef() && N2.isUndef())
5800       return getUNDEF(VT);
5801 
5802     EVT N2VT = N2.getValueType();
5803     assert(VT == N1.getValueType() &&
5804            "Dest and insert subvector source types must match!");
5805     assert(VT.isVector() && N2VT.isVector() &&
5806            "Insert subvector VTs must be vectors!");
5807     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5808            "Cannot insert a scalable vector into a fixed length vector!");
5809     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5810             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5811            "Insert subvector must be from smaller vector to larger vector!");
5812     assert(isa<ConstantSDNode>(N3) &&
5813            "Insert subvector index must be constant");
5814     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5815             (N2VT.getVectorMinNumElements() +
5816              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5817                 VT.getVectorMinNumElements()) &&
5818            "Insert subvector overflow!");
5819 
5820     // Trivial insertion.
5821     if (VT == N2VT)
5822       return N2;
5823 
5824     // If this is an insert of an extracted vector into an undef vector, we
5825     // can just use the input to the extract.
5826     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5827         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5828       return N2.getOperand(0);
5829     break;
5830   }
5831   case ISD::BITCAST:
5832     // Fold bit_convert nodes from a type to themselves.
5833     if (N1.getValueType() == VT)
5834       return N1;
5835     break;
5836   }
5837 
5838   // Memoize node if it doesn't produce a flag.
5839   SDNode *N;
5840   SDVTList VTs = getVTList(VT);
5841   SDValue Ops[] = {N1, N2, N3};
5842   if (VT != MVT::Glue) {
5843     FoldingSetNodeID ID;
5844     AddNodeIDNode(ID, Opcode, VTs, Ops);
5845     void *IP = nullptr;
5846     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5847       E->intersectFlagsWith(Flags);
5848       return SDValue(E, 0);
5849     }
5850 
5851     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5852     N->setFlags(Flags);
5853     createOperands(N, Ops);
5854     CSEMap.InsertNode(N, IP);
5855   } else {
5856     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5857     createOperands(N, Ops);
5858   }
5859 
5860   InsertNode(N);
5861   SDValue V = SDValue(N, 0);
5862   NewSDValueDbgMsg(V, "Creating new node: ", this);
5863   return V;
5864 }
5865 
5866 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5867                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5868   SDValue Ops[] = { N1, N2, N3, N4 };
5869   return getNode(Opcode, DL, VT, Ops);
5870 }
5871 
5872 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5873                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5874                               SDValue N5) {
5875   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5876   return getNode(Opcode, DL, VT, Ops);
5877 }
5878 
5879 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5880 /// the incoming stack arguments to be loaded from the stack.
5881 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5882   SmallVector<SDValue, 8> ArgChains;
5883 
5884   // Include the original chain at the beginning of the list. When this is
5885   // used by target LowerCall hooks, this helps legalize find the
5886   // CALLSEQ_BEGIN node.
5887   ArgChains.push_back(Chain);
5888 
5889   // Add a chain value for each stack argument.
5890   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5891        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5892     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5893       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5894         if (FI->getIndex() < 0)
5895           ArgChains.push_back(SDValue(L, 1));
5896 
5897   // Build a tokenfactor for all the chains.
5898   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5899 }
5900 
5901 /// getMemsetValue - Vectorized representation of the memset value
5902 /// operand.
5903 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5904                               const SDLoc &dl) {
5905   assert(!Value.isUndef());
5906 
5907   unsigned NumBits = VT.getScalarSizeInBits();
5908   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5909     assert(C->getAPIntValue().getBitWidth() == 8);
5910     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5911     if (VT.isInteger()) {
5912       bool IsOpaque = VT.getSizeInBits() > 64 ||
5913           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5914       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5915     }
5916     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5917                              VT);
5918   }
5919 
5920   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5921   EVT IntVT = VT.getScalarType();
5922   if (!IntVT.isInteger())
5923     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5924 
5925   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5926   if (NumBits > 8) {
5927     // Use a multiplication with 0x010101... to extend the input to the
5928     // required length.
5929     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5930     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5931                         DAG.getConstant(Magic, dl, IntVT));
5932   }
5933 
5934   if (VT != Value.getValueType() && !VT.isInteger())
5935     Value = DAG.getBitcast(VT.getScalarType(), Value);
5936   if (VT != Value.getValueType())
5937     Value = DAG.getSplatBuildVector(VT, dl, Value);
5938 
5939   return Value;
5940 }
5941 
5942 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5943 /// used when a memcpy is turned into a memset when the source is a constant
5944 /// string ptr.
5945 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5946                                   const TargetLowering &TLI,
5947                                   const ConstantDataArraySlice &Slice) {
5948   // Handle vector with all elements zero.
5949   if (Slice.Array == nullptr) {
5950     if (VT.isInteger())
5951       return DAG.getConstant(0, dl, VT);
5952     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5953       return DAG.getConstantFP(0.0, dl, VT);
5954     else if (VT.isVector()) {
5955       unsigned NumElts = VT.getVectorNumElements();
5956       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5957       return DAG.getNode(ISD::BITCAST, dl, VT,
5958                          DAG.getConstant(0, dl,
5959                                          EVT::getVectorVT(*DAG.getContext(),
5960                                                           EltVT, NumElts)));
5961     } else
5962       llvm_unreachable("Expected type!");
5963   }
5964 
5965   assert(!VT.isVector() && "Can't handle vector type here!");
5966   unsigned NumVTBits = VT.getSizeInBits();
5967   unsigned NumVTBytes = NumVTBits / 8;
5968   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5969 
5970   APInt Val(NumVTBits, 0);
5971   if (DAG.getDataLayout().isLittleEndian()) {
5972     for (unsigned i = 0; i != NumBytes; ++i)
5973       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5974   } else {
5975     for (unsigned i = 0; i != NumBytes; ++i)
5976       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5977   }
5978 
5979   // If the "cost" of materializing the integer immediate is less than the cost
5980   // of a load, then it is cost effective to turn the load into the immediate.
5981   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5982   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5983     return DAG.getConstant(Val, dl, VT);
5984   return SDValue(nullptr, 0);
5985 }
5986 
5987 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5988                                            const SDLoc &DL,
5989                                            const SDNodeFlags Flags) {
5990   EVT VT = Base.getValueType();
5991   SDValue Index;
5992 
5993   if (Offset.isScalable())
5994     Index = getVScale(DL, Base.getValueType(),
5995                       APInt(Base.getValueSizeInBits().getFixedSize(),
5996                             Offset.getKnownMinSize()));
5997   else
5998     Index = getConstant(Offset.getFixedSize(), DL, VT);
5999 
6000   return getMemBasePlusOffset(Base, Index, DL, Flags);
6001 }
6002 
6003 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6004                                            const SDLoc &DL,
6005                                            const SDNodeFlags Flags) {
6006   assert(Offset.getValueType().isInteger());
6007   EVT BasePtrVT = Ptr.getValueType();
6008   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6009 }
6010 
6011 /// Returns true if memcpy source is constant data.
6012 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6013   uint64_t SrcDelta = 0;
6014   GlobalAddressSDNode *G = nullptr;
6015   if (Src.getOpcode() == ISD::GlobalAddress)
6016     G = cast<GlobalAddressSDNode>(Src);
6017   else if (Src.getOpcode() == ISD::ADD &&
6018            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6019            Src.getOperand(1).getOpcode() == ISD::Constant) {
6020     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6021     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6022   }
6023   if (!G)
6024     return false;
6025 
6026   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6027                                   SrcDelta + G->getOffset());
6028 }
6029 
6030 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6031                                       SelectionDAG &DAG) {
6032   // On Darwin, -Os means optimize for size without hurting performance, so
6033   // only really optimize for size when -Oz (MinSize) is used.
6034   if (MF.getTarget().getTargetTriple().isOSDarwin())
6035     return MF.getFunction().hasMinSize();
6036   return DAG.shouldOptForSize();
6037 }
6038 
6039 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6040                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6041                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6042                           SmallVector<SDValue, 16> &OutStoreChains) {
6043   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6044   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6045   SmallVector<SDValue, 16> GluedLoadChains;
6046   for (unsigned i = From; i < To; ++i) {
6047     OutChains.push_back(OutLoadChains[i]);
6048     GluedLoadChains.push_back(OutLoadChains[i]);
6049   }
6050 
6051   // Chain for all loads.
6052   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6053                                   GluedLoadChains);
6054 
6055   for (unsigned i = From; i < To; ++i) {
6056     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6057     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6058                                   ST->getBasePtr(), ST->getMemoryVT(),
6059                                   ST->getMemOperand());
6060     OutChains.push_back(NewStore);
6061   }
6062 }
6063 
6064 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6065                                        SDValue Chain, SDValue Dst, SDValue Src,
6066                                        uint64_t Size, Align Alignment,
6067                                        bool isVol, bool AlwaysInline,
6068                                        MachinePointerInfo DstPtrInfo,
6069                                        MachinePointerInfo SrcPtrInfo) {
6070   // Turn a memcpy of undef to nop.
6071   // FIXME: We need to honor volatile even is Src is undef.
6072   if (Src.isUndef())
6073     return Chain;
6074 
6075   // Expand memcpy to a series of load and store ops if the size operand falls
6076   // below a certain threshold.
6077   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6078   // rather than maybe a humongous number of loads and stores.
6079   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6080   const DataLayout &DL = DAG.getDataLayout();
6081   LLVMContext &C = *DAG.getContext();
6082   std::vector<EVT> MemOps;
6083   bool DstAlignCanChange = false;
6084   MachineFunction &MF = DAG.getMachineFunction();
6085   MachineFrameInfo &MFI = MF.getFrameInfo();
6086   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6087   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6088   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6089     DstAlignCanChange = true;
6090   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6091   if (!SrcAlign || Alignment > *SrcAlign)
6092     SrcAlign = Alignment;
6093   assert(SrcAlign && "SrcAlign must be set");
6094   ConstantDataArraySlice Slice;
6095   // If marked as volatile, perform a copy even when marked as constant.
6096   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6097   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6098   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6099   const MemOp Op = isZeroConstant
6100                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6101                                     /*IsZeroMemset*/ true, isVol)
6102                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6103                                      *SrcAlign, isVol, CopyFromConstant);
6104   if (!TLI.findOptimalMemOpLowering(
6105           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6106           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6107     return SDValue();
6108 
6109   if (DstAlignCanChange) {
6110     Type *Ty = MemOps[0].getTypeForEVT(C);
6111     Align NewAlign = DL.getABITypeAlign(Ty);
6112 
6113     // Don't promote to an alignment that would require dynamic stack
6114     // realignment.
6115     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6116     if (!TRI->needsStackRealignment(MF))
6117       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6118         NewAlign = NewAlign / 2;
6119 
6120     if (NewAlign > Alignment) {
6121       // Give the stack frame object a larger alignment if needed.
6122       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6123         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6124       Alignment = NewAlign;
6125     }
6126   }
6127 
6128   MachineMemOperand::Flags MMOFlags =
6129       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6130   SmallVector<SDValue, 16> OutLoadChains;
6131   SmallVector<SDValue, 16> OutStoreChains;
6132   SmallVector<SDValue, 32> OutChains;
6133   unsigned NumMemOps = MemOps.size();
6134   uint64_t SrcOff = 0, DstOff = 0;
6135   for (unsigned i = 0; i != NumMemOps; ++i) {
6136     EVT VT = MemOps[i];
6137     unsigned VTSize = VT.getSizeInBits() / 8;
6138     SDValue Value, Store;
6139 
6140     if (VTSize > Size) {
6141       // Issuing an unaligned load / store pair  that overlaps with the previous
6142       // pair. Adjust the offset accordingly.
6143       assert(i == NumMemOps-1 && i != 0);
6144       SrcOff -= VTSize - Size;
6145       DstOff -= VTSize - Size;
6146     }
6147 
6148     if (CopyFromConstant &&
6149         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6150       // It's unlikely a store of a vector immediate can be done in a single
6151       // instruction. It would require a load from a constantpool first.
6152       // We only handle zero vectors here.
6153       // FIXME: Handle other cases where store of vector immediate is done in
6154       // a single instruction.
6155       ConstantDataArraySlice SubSlice;
6156       if (SrcOff < Slice.Length) {
6157         SubSlice = Slice;
6158         SubSlice.move(SrcOff);
6159       } else {
6160         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6161         SubSlice.Array = nullptr;
6162         SubSlice.Offset = 0;
6163         SubSlice.Length = VTSize;
6164       }
6165       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6166       if (Value.getNode()) {
6167         Store = DAG.getStore(
6168             Chain, dl, Value,
6169             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6170             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6171         OutChains.push_back(Store);
6172       }
6173     }
6174 
6175     if (!Store.getNode()) {
6176       // The type might not be legal for the target.  This should only happen
6177       // if the type is smaller than a legal type, as on PPC, so the right
6178       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6179       // to Load/Store if NVT==VT.
6180       // FIXME does the case above also need this?
6181       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6182       assert(NVT.bitsGE(VT));
6183 
6184       bool isDereferenceable =
6185         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6186       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6187       if (isDereferenceable)
6188         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6189 
6190       Value = DAG.getExtLoad(
6191           ISD::EXTLOAD, dl, NVT, Chain,
6192           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6193           SrcPtrInfo.getWithOffset(SrcOff), VT,
6194           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6195       OutLoadChains.push_back(Value.getValue(1));
6196 
6197       Store = DAG.getTruncStore(
6198           Chain, dl, Value,
6199           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6200           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6201       OutStoreChains.push_back(Store);
6202     }
6203     SrcOff += VTSize;
6204     DstOff += VTSize;
6205     Size -= VTSize;
6206   }
6207 
6208   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6209                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6210   unsigned NumLdStInMemcpy = OutStoreChains.size();
6211 
6212   if (NumLdStInMemcpy) {
6213     // It may be that memcpy might be converted to memset if it's memcpy
6214     // of constants. In such a case, we won't have loads and stores, but
6215     // just stores. In the absence of loads, there is nothing to gang up.
6216     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6217       // If target does not care, just leave as it.
6218       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6219         OutChains.push_back(OutLoadChains[i]);
6220         OutChains.push_back(OutStoreChains[i]);
6221       }
6222     } else {
6223       // Ld/St less than/equal limit set by target.
6224       if (NumLdStInMemcpy <= GluedLdStLimit) {
6225           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6226                                         NumLdStInMemcpy, OutLoadChains,
6227                                         OutStoreChains);
6228       } else {
6229         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6230         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6231         unsigned GlueIter = 0;
6232 
6233         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6234           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6235           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6236 
6237           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6238                                        OutLoadChains, OutStoreChains);
6239           GlueIter += GluedLdStLimit;
6240         }
6241 
6242         // Residual ld/st.
6243         if (RemainingLdStInMemcpy) {
6244           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6245                                         RemainingLdStInMemcpy, OutLoadChains,
6246                                         OutStoreChains);
6247         }
6248       }
6249     }
6250   }
6251   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6252 }
6253 
6254 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6255                                         SDValue Chain, SDValue Dst, SDValue Src,
6256                                         uint64_t Size, Align Alignment,
6257                                         bool isVol, bool AlwaysInline,
6258                                         MachinePointerInfo DstPtrInfo,
6259                                         MachinePointerInfo SrcPtrInfo) {
6260   // Turn a memmove of undef to nop.
6261   // FIXME: We need to honor volatile even is Src is undef.
6262   if (Src.isUndef())
6263     return Chain;
6264 
6265   // Expand memmove to a series of load and store ops if the size operand falls
6266   // below a certain threshold.
6267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6268   const DataLayout &DL = DAG.getDataLayout();
6269   LLVMContext &C = *DAG.getContext();
6270   std::vector<EVT> MemOps;
6271   bool DstAlignCanChange = false;
6272   MachineFunction &MF = DAG.getMachineFunction();
6273   MachineFrameInfo &MFI = MF.getFrameInfo();
6274   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6275   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6276   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6277     DstAlignCanChange = true;
6278   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6279   if (!SrcAlign || Alignment > *SrcAlign)
6280     SrcAlign = Alignment;
6281   assert(SrcAlign && "SrcAlign must be set");
6282   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6283   if (!TLI.findOptimalMemOpLowering(
6284           MemOps, Limit,
6285           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6286                       /*IsVolatile*/ true),
6287           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6288           MF.getFunction().getAttributes()))
6289     return SDValue();
6290 
6291   if (DstAlignCanChange) {
6292     Type *Ty = MemOps[0].getTypeForEVT(C);
6293     Align NewAlign = DL.getABITypeAlign(Ty);
6294     if (NewAlign > Alignment) {
6295       // Give the stack frame object a larger alignment if needed.
6296       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6297         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6298       Alignment = NewAlign;
6299     }
6300   }
6301 
6302   MachineMemOperand::Flags MMOFlags =
6303       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6304   uint64_t SrcOff = 0, DstOff = 0;
6305   SmallVector<SDValue, 8> LoadValues;
6306   SmallVector<SDValue, 8> LoadChains;
6307   SmallVector<SDValue, 8> OutChains;
6308   unsigned NumMemOps = MemOps.size();
6309   for (unsigned i = 0; i < NumMemOps; i++) {
6310     EVT VT = MemOps[i];
6311     unsigned VTSize = VT.getSizeInBits() / 8;
6312     SDValue Value;
6313 
6314     bool isDereferenceable =
6315       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6316     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6317     if (isDereferenceable)
6318       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6319 
6320     Value =
6321         DAG.getLoad(VT, dl, Chain,
6322                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6323                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6324     LoadValues.push_back(Value);
6325     LoadChains.push_back(Value.getValue(1));
6326     SrcOff += VTSize;
6327   }
6328   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6329   OutChains.clear();
6330   for (unsigned i = 0; i < NumMemOps; i++) {
6331     EVT VT = MemOps[i];
6332     unsigned VTSize = VT.getSizeInBits() / 8;
6333     SDValue Store;
6334 
6335     Store =
6336         DAG.getStore(Chain, dl, LoadValues[i],
6337                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6338                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6339     OutChains.push_back(Store);
6340     DstOff += VTSize;
6341   }
6342 
6343   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6344 }
6345 
6346 /// Lower the call to 'memset' intrinsic function into a series of store
6347 /// operations.
6348 ///
6349 /// \param DAG Selection DAG where lowered code is placed.
6350 /// \param dl Link to corresponding IR location.
6351 /// \param Chain Control flow dependency.
6352 /// \param Dst Pointer to destination memory location.
6353 /// \param Src Value of byte to write into the memory.
6354 /// \param Size Number of bytes to write.
6355 /// \param Alignment Alignment of the destination in bytes.
6356 /// \param isVol True if destination is volatile.
6357 /// \param DstPtrInfo IR information on the memory pointer.
6358 /// \returns New head in the control flow, if lowering was successful, empty
6359 /// SDValue otherwise.
6360 ///
6361 /// The function tries to replace 'llvm.memset' intrinsic with several store
6362 /// operations and value calculation code. This is usually profitable for small
6363 /// memory size.
6364 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6365                                SDValue Chain, SDValue Dst, SDValue Src,
6366                                uint64_t Size, Align Alignment, bool isVol,
6367                                MachinePointerInfo DstPtrInfo) {
6368   // Turn a memset of undef to nop.
6369   // FIXME: We need to honor volatile even is Src is undef.
6370   if (Src.isUndef())
6371     return Chain;
6372 
6373   // Expand memset to a series of load/store ops if the size operand
6374   // falls below a certain threshold.
6375   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6376   std::vector<EVT> MemOps;
6377   bool DstAlignCanChange = false;
6378   MachineFunction &MF = DAG.getMachineFunction();
6379   MachineFrameInfo &MFI = MF.getFrameInfo();
6380   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6381   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6382   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6383     DstAlignCanChange = true;
6384   bool IsZeroVal =
6385     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6386   if (!TLI.findOptimalMemOpLowering(
6387           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6388           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6389           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6390     return SDValue();
6391 
6392   if (DstAlignCanChange) {
6393     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6394     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6395     if (NewAlign > Alignment) {
6396       // Give the stack frame object a larger alignment if needed.
6397       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6398         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6399       Alignment = NewAlign;
6400     }
6401   }
6402 
6403   SmallVector<SDValue, 8> OutChains;
6404   uint64_t DstOff = 0;
6405   unsigned NumMemOps = MemOps.size();
6406 
6407   // Find the largest store and generate the bit pattern for it.
6408   EVT LargestVT = MemOps[0];
6409   for (unsigned i = 1; i < NumMemOps; i++)
6410     if (MemOps[i].bitsGT(LargestVT))
6411       LargestVT = MemOps[i];
6412   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6413 
6414   for (unsigned i = 0; i < NumMemOps; i++) {
6415     EVT VT = MemOps[i];
6416     unsigned VTSize = VT.getSizeInBits() / 8;
6417     if (VTSize > Size) {
6418       // Issuing an unaligned load / store pair  that overlaps with the previous
6419       // pair. Adjust the offset accordingly.
6420       assert(i == NumMemOps-1 && i != 0);
6421       DstOff -= VTSize - Size;
6422     }
6423 
6424     // If this store is smaller than the largest store see whether we can get
6425     // the smaller value for free with a truncate.
6426     SDValue Value = MemSetValue;
6427     if (VT.bitsLT(LargestVT)) {
6428       if (!LargestVT.isVector() && !VT.isVector() &&
6429           TLI.isTruncateFree(LargestVT, VT))
6430         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6431       else
6432         Value = getMemsetValue(Src, VT, DAG, dl);
6433     }
6434     assert(Value.getValueType() == VT && "Value with wrong type.");
6435     SDValue Store = DAG.getStore(
6436         Chain, dl, Value,
6437         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6438         DstPtrInfo.getWithOffset(DstOff), Alignment,
6439         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6440     OutChains.push_back(Store);
6441     DstOff += VT.getSizeInBits() / 8;
6442     Size -= VTSize;
6443   }
6444 
6445   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6446 }
6447 
6448 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6449                                             unsigned AS) {
6450   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6451   // pointer operands can be losslessly bitcasted to pointers of address space 0
6452   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6453     report_fatal_error("cannot lower memory intrinsic in address space " +
6454                        Twine(AS));
6455   }
6456 }
6457 
6458 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6459                                 SDValue Src, SDValue Size, Align Alignment,
6460                                 bool isVol, bool AlwaysInline, bool isTailCall,
6461                                 MachinePointerInfo DstPtrInfo,
6462                                 MachinePointerInfo SrcPtrInfo) {
6463   // Check to see if we should lower the memcpy to loads and stores first.
6464   // For cases within the target-specified limits, this is the best choice.
6465   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6466   if (ConstantSize) {
6467     // Memcpy with size zero? Just return the original chain.
6468     if (ConstantSize->isNullValue())
6469       return Chain;
6470 
6471     SDValue Result = getMemcpyLoadsAndStores(
6472         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6473         isVol, false, DstPtrInfo, SrcPtrInfo);
6474     if (Result.getNode())
6475       return Result;
6476   }
6477 
6478   // Then check to see if we should lower the memcpy with target-specific
6479   // code. If the target chooses to do this, this is the next best.
6480   if (TSI) {
6481     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6482         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6483         DstPtrInfo, SrcPtrInfo);
6484     if (Result.getNode())
6485       return Result;
6486   }
6487 
6488   // If we really need inline code and the target declined to provide it,
6489   // use a (potentially long) sequence of loads and stores.
6490   if (AlwaysInline) {
6491     assert(ConstantSize && "AlwaysInline requires a constant size!");
6492     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6493                                    ConstantSize->getZExtValue(), Alignment,
6494                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6495   }
6496 
6497   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6498   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6499 
6500   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6501   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6502   // respect volatile, so they may do things like read or write memory
6503   // beyond the given memory regions. But fixing this isn't easy, and most
6504   // people don't care.
6505 
6506   // Emit a library call.
6507   TargetLowering::ArgListTy Args;
6508   TargetLowering::ArgListEntry Entry;
6509   Entry.Ty = Type::getInt8PtrTy(*getContext());
6510   Entry.Node = Dst; Args.push_back(Entry);
6511   Entry.Node = Src; Args.push_back(Entry);
6512 
6513   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6514   Entry.Node = Size; Args.push_back(Entry);
6515   // FIXME: pass in SDLoc
6516   TargetLowering::CallLoweringInfo CLI(*this);
6517   CLI.setDebugLoc(dl)
6518       .setChain(Chain)
6519       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6520                     Dst.getValueType().getTypeForEVT(*getContext()),
6521                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6522                                       TLI->getPointerTy(getDataLayout())),
6523                     std::move(Args))
6524       .setDiscardResult()
6525       .setTailCall(isTailCall);
6526 
6527   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6528   return CallResult.second;
6529 }
6530 
6531 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6532                                       SDValue Dst, unsigned DstAlign,
6533                                       SDValue Src, unsigned SrcAlign,
6534                                       SDValue Size, Type *SizeTy,
6535                                       unsigned ElemSz, bool isTailCall,
6536                                       MachinePointerInfo DstPtrInfo,
6537                                       MachinePointerInfo SrcPtrInfo) {
6538   // Emit a library call.
6539   TargetLowering::ArgListTy Args;
6540   TargetLowering::ArgListEntry Entry;
6541   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6542   Entry.Node = Dst;
6543   Args.push_back(Entry);
6544 
6545   Entry.Node = Src;
6546   Args.push_back(Entry);
6547 
6548   Entry.Ty = SizeTy;
6549   Entry.Node = Size;
6550   Args.push_back(Entry);
6551 
6552   RTLIB::Libcall LibraryCall =
6553       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6554   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6555     report_fatal_error("Unsupported element size");
6556 
6557   TargetLowering::CallLoweringInfo CLI(*this);
6558   CLI.setDebugLoc(dl)
6559       .setChain(Chain)
6560       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6561                     Type::getVoidTy(*getContext()),
6562                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6563                                       TLI->getPointerTy(getDataLayout())),
6564                     std::move(Args))
6565       .setDiscardResult()
6566       .setTailCall(isTailCall);
6567 
6568   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6569   return CallResult.second;
6570 }
6571 
6572 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6573                                  SDValue Src, SDValue Size, Align Alignment,
6574                                  bool isVol, bool isTailCall,
6575                                  MachinePointerInfo DstPtrInfo,
6576                                  MachinePointerInfo SrcPtrInfo) {
6577   // Check to see if we should lower the memmove to loads and stores first.
6578   // For cases within the target-specified limits, this is the best choice.
6579   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6580   if (ConstantSize) {
6581     // Memmove with size zero? Just return the original chain.
6582     if (ConstantSize->isNullValue())
6583       return Chain;
6584 
6585     SDValue Result = getMemmoveLoadsAndStores(
6586         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6587         isVol, false, DstPtrInfo, SrcPtrInfo);
6588     if (Result.getNode())
6589       return Result;
6590   }
6591 
6592   // Then check to see if we should lower the memmove with target-specific
6593   // code. If the target chooses to do this, this is the next best.
6594   if (TSI) {
6595     SDValue Result =
6596         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6597                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6598     if (Result.getNode())
6599       return Result;
6600   }
6601 
6602   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6603   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6604 
6605   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6606   // not be safe.  See memcpy above for more details.
6607 
6608   // Emit a library call.
6609   TargetLowering::ArgListTy Args;
6610   TargetLowering::ArgListEntry Entry;
6611   Entry.Ty = Type::getInt8PtrTy(*getContext());
6612   Entry.Node = Dst; Args.push_back(Entry);
6613   Entry.Node = Src; Args.push_back(Entry);
6614 
6615   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6616   Entry.Node = Size; Args.push_back(Entry);
6617   // FIXME:  pass in SDLoc
6618   TargetLowering::CallLoweringInfo CLI(*this);
6619   CLI.setDebugLoc(dl)
6620       .setChain(Chain)
6621       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6622                     Dst.getValueType().getTypeForEVT(*getContext()),
6623                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6624                                       TLI->getPointerTy(getDataLayout())),
6625                     std::move(Args))
6626       .setDiscardResult()
6627       .setTailCall(isTailCall);
6628 
6629   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6630   return CallResult.second;
6631 }
6632 
6633 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6634                                        SDValue Dst, unsigned DstAlign,
6635                                        SDValue Src, unsigned SrcAlign,
6636                                        SDValue Size, Type *SizeTy,
6637                                        unsigned ElemSz, bool isTailCall,
6638                                        MachinePointerInfo DstPtrInfo,
6639                                        MachinePointerInfo SrcPtrInfo) {
6640   // Emit a library call.
6641   TargetLowering::ArgListTy Args;
6642   TargetLowering::ArgListEntry Entry;
6643   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6644   Entry.Node = Dst;
6645   Args.push_back(Entry);
6646 
6647   Entry.Node = Src;
6648   Args.push_back(Entry);
6649 
6650   Entry.Ty = SizeTy;
6651   Entry.Node = Size;
6652   Args.push_back(Entry);
6653 
6654   RTLIB::Libcall LibraryCall =
6655       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6656   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6657     report_fatal_error("Unsupported element size");
6658 
6659   TargetLowering::CallLoweringInfo CLI(*this);
6660   CLI.setDebugLoc(dl)
6661       .setChain(Chain)
6662       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6663                     Type::getVoidTy(*getContext()),
6664                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6665                                       TLI->getPointerTy(getDataLayout())),
6666                     std::move(Args))
6667       .setDiscardResult()
6668       .setTailCall(isTailCall);
6669 
6670   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6671   return CallResult.second;
6672 }
6673 
6674 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6675                                 SDValue Src, SDValue Size, Align Alignment,
6676                                 bool isVol, bool isTailCall,
6677                                 MachinePointerInfo DstPtrInfo) {
6678   // Check to see if we should lower the memset to stores first.
6679   // For cases within the target-specified limits, this is the best choice.
6680   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6681   if (ConstantSize) {
6682     // Memset with size zero? Just return the original chain.
6683     if (ConstantSize->isNullValue())
6684       return Chain;
6685 
6686     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6687                                      ConstantSize->getZExtValue(), Alignment,
6688                                      isVol, DstPtrInfo);
6689 
6690     if (Result.getNode())
6691       return Result;
6692   }
6693 
6694   // Then check to see if we should lower the memset with target-specific
6695   // code. If the target chooses to do this, this is the next best.
6696   if (TSI) {
6697     SDValue Result = TSI->EmitTargetCodeForMemset(
6698         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6699     if (Result.getNode())
6700       return Result;
6701   }
6702 
6703   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6704 
6705   // Emit a library call.
6706   TargetLowering::ArgListTy Args;
6707   TargetLowering::ArgListEntry Entry;
6708   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6709   Args.push_back(Entry);
6710   Entry.Node = Src;
6711   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6712   Args.push_back(Entry);
6713   Entry.Node = Size;
6714   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6715   Args.push_back(Entry);
6716 
6717   // FIXME: pass in SDLoc
6718   TargetLowering::CallLoweringInfo CLI(*this);
6719   CLI.setDebugLoc(dl)
6720       .setChain(Chain)
6721       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6722                     Dst.getValueType().getTypeForEVT(*getContext()),
6723                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6724                                       TLI->getPointerTy(getDataLayout())),
6725                     std::move(Args))
6726       .setDiscardResult()
6727       .setTailCall(isTailCall);
6728 
6729   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6730   return CallResult.second;
6731 }
6732 
6733 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6734                                       SDValue Dst, unsigned DstAlign,
6735                                       SDValue Value, SDValue Size, Type *SizeTy,
6736                                       unsigned ElemSz, bool isTailCall,
6737                                       MachinePointerInfo DstPtrInfo) {
6738   // Emit a library call.
6739   TargetLowering::ArgListTy Args;
6740   TargetLowering::ArgListEntry Entry;
6741   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6742   Entry.Node = Dst;
6743   Args.push_back(Entry);
6744 
6745   Entry.Ty = Type::getInt8Ty(*getContext());
6746   Entry.Node = Value;
6747   Args.push_back(Entry);
6748 
6749   Entry.Ty = SizeTy;
6750   Entry.Node = Size;
6751   Args.push_back(Entry);
6752 
6753   RTLIB::Libcall LibraryCall =
6754       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6755   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6756     report_fatal_error("Unsupported element size");
6757 
6758   TargetLowering::CallLoweringInfo CLI(*this);
6759   CLI.setDebugLoc(dl)
6760       .setChain(Chain)
6761       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6762                     Type::getVoidTy(*getContext()),
6763                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6764                                       TLI->getPointerTy(getDataLayout())),
6765                     std::move(Args))
6766       .setDiscardResult()
6767       .setTailCall(isTailCall);
6768 
6769   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6770   return CallResult.second;
6771 }
6772 
6773 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6774                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6775                                 MachineMemOperand *MMO) {
6776   FoldingSetNodeID ID;
6777   ID.AddInteger(MemVT.getRawBits());
6778   AddNodeIDNode(ID, Opcode, VTList, Ops);
6779   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6780   void* IP = nullptr;
6781   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6782     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6783     return SDValue(E, 0);
6784   }
6785 
6786   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6787                                     VTList, MemVT, MMO);
6788   createOperands(N, Ops);
6789 
6790   CSEMap.InsertNode(N, IP);
6791   InsertNode(N);
6792   return SDValue(N, 0);
6793 }
6794 
6795 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6796                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6797                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6798                                        MachineMemOperand *MMO) {
6799   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6800          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6801   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6802 
6803   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6804   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6805 }
6806 
6807 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6808                                 SDValue Chain, SDValue Ptr, SDValue Val,
6809                                 MachineMemOperand *MMO) {
6810   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6811           Opcode == ISD::ATOMIC_LOAD_SUB ||
6812           Opcode == ISD::ATOMIC_LOAD_AND ||
6813           Opcode == ISD::ATOMIC_LOAD_CLR ||
6814           Opcode == ISD::ATOMIC_LOAD_OR ||
6815           Opcode == ISD::ATOMIC_LOAD_XOR ||
6816           Opcode == ISD::ATOMIC_LOAD_NAND ||
6817           Opcode == ISD::ATOMIC_LOAD_MIN ||
6818           Opcode == ISD::ATOMIC_LOAD_MAX ||
6819           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6820           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6821           Opcode == ISD::ATOMIC_LOAD_FADD ||
6822           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6823           Opcode == ISD::ATOMIC_SWAP ||
6824           Opcode == ISD::ATOMIC_STORE) &&
6825          "Invalid Atomic Op");
6826 
6827   EVT VT = Val.getValueType();
6828 
6829   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6830                                                getVTList(VT, MVT::Other);
6831   SDValue Ops[] = {Chain, Ptr, Val};
6832   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6833 }
6834 
6835 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6836                                 EVT VT, SDValue Chain, SDValue Ptr,
6837                                 MachineMemOperand *MMO) {
6838   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6839 
6840   SDVTList VTs = getVTList(VT, MVT::Other);
6841   SDValue Ops[] = {Chain, Ptr};
6842   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6843 }
6844 
6845 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6846 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6847   if (Ops.size() == 1)
6848     return Ops[0];
6849 
6850   SmallVector<EVT, 4> VTs;
6851   VTs.reserve(Ops.size());
6852   for (unsigned i = 0; i < Ops.size(); ++i)
6853     VTs.push_back(Ops[i].getValueType());
6854   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6855 }
6856 
6857 SDValue SelectionDAG::getMemIntrinsicNode(
6858     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6859     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6860     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6861   if (!Size && MemVT.isScalableVector())
6862     Size = MemoryLocation::UnknownSize;
6863   else if (!Size)
6864     Size = MemVT.getStoreSize();
6865 
6866   MachineFunction &MF = getMachineFunction();
6867   MachineMemOperand *MMO =
6868       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6869 
6870   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6871 }
6872 
6873 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6874                                           SDVTList VTList,
6875                                           ArrayRef<SDValue> Ops, EVT MemVT,
6876                                           MachineMemOperand *MMO) {
6877   assert((Opcode == ISD::INTRINSIC_VOID ||
6878           Opcode == ISD::INTRINSIC_W_CHAIN ||
6879           Opcode == ISD::PREFETCH ||
6880           ((int)Opcode <= std::numeric_limits<int>::max() &&
6881            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6882          "Opcode is not a memory-accessing opcode!");
6883 
6884   // Memoize the node unless it returns a flag.
6885   MemIntrinsicSDNode *N;
6886   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6887     FoldingSetNodeID ID;
6888     AddNodeIDNode(ID, Opcode, VTList, Ops);
6889     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6890         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6891     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6892     void *IP = nullptr;
6893     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6894       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6895       return SDValue(E, 0);
6896     }
6897 
6898     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6899                                       VTList, MemVT, MMO);
6900     createOperands(N, Ops);
6901 
6902   CSEMap.InsertNode(N, IP);
6903   } else {
6904     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6905                                       VTList, MemVT, MMO);
6906     createOperands(N, Ops);
6907   }
6908   InsertNode(N);
6909   SDValue V(N, 0);
6910   NewSDValueDbgMsg(V, "Creating new node: ", this);
6911   return V;
6912 }
6913 
6914 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6915                                       SDValue Chain, int FrameIndex,
6916                                       int64_t Size, int64_t Offset) {
6917   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6918   const auto VTs = getVTList(MVT::Other);
6919   SDValue Ops[2] = {
6920       Chain,
6921       getFrameIndex(FrameIndex,
6922                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6923                     true)};
6924 
6925   FoldingSetNodeID ID;
6926   AddNodeIDNode(ID, Opcode, VTs, Ops);
6927   ID.AddInteger(FrameIndex);
6928   ID.AddInteger(Size);
6929   ID.AddInteger(Offset);
6930   void *IP = nullptr;
6931   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6932     return SDValue(E, 0);
6933 
6934   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6935       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6936   createOperands(N, Ops);
6937   CSEMap.InsertNode(N, IP);
6938   InsertNode(N);
6939   SDValue V(N, 0);
6940   NewSDValueDbgMsg(V, "Creating new node: ", this);
6941   return V;
6942 }
6943 
6944 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6945 /// MachinePointerInfo record from it.  This is particularly useful because the
6946 /// code generator has many cases where it doesn't bother passing in a
6947 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6948 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6949                                            SelectionDAG &DAG, SDValue Ptr,
6950                                            int64_t Offset = 0) {
6951   // If this is FI+Offset, we can model it.
6952   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6953     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6954                                              FI->getIndex(), Offset);
6955 
6956   // If this is (FI+Offset1)+Offset2, we can model it.
6957   if (Ptr.getOpcode() != ISD::ADD ||
6958       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6959       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6960     return Info;
6961 
6962   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6963   return MachinePointerInfo::getFixedStack(
6964       DAG.getMachineFunction(), FI,
6965       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6966 }
6967 
6968 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6969 /// MachinePointerInfo record from it.  This is particularly useful because the
6970 /// code generator has many cases where it doesn't bother passing in a
6971 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6972 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6973                                            SelectionDAG &DAG, SDValue Ptr,
6974                                            SDValue OffsetOp) {
6975   // If the 'Offset' value isn't a constant, we can't handle this.
6976   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6977     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6978   if (OffsetOp.isUndef())
6979     return InferPointerInfo(Info, DAG, Ptr);
6980   return Info;
6981 }
6982 
6983 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6984                               EVT VT, const SDLoc &dl, SDValue Chain,
6985                               SDValue Ptr, SDValue Offset,
6986                               MachinePointerInfo PtrInfo, EVT MemVT,
6987                               Align Alignment,
6988                               MachineMemOperand::Flags MMOFlags,
6989                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6990   assert(Chain.getValueType() == MVT::Other &&
6991         "Invalid chain type");
6992 
6993   MMOFlags |= MachineMemOperand::MOLoad;
6994   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6995   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6996   // clients.
6997   if (PtrInfo.V.isNull())
6998     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6999 
7000   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7001   MachineFunction &MF = getMachineFunction();
7002   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7003                                                    Alignment, AAInfo, Ranges);
7004   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7005 }
7006 
7007 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7008                               EVT VT, const SDLoc &dl, SDValue Chain,
7009                               SDValue Ptr, SDValue Offset, EVT MemVT,
7010                               MachineMemOperand *MMO) {
7011   if (VT == MemVT) {
7012     ExtType = ISD::NON_EXTLOAD;
7013   } else if (ExtType == ISD::NON_EXTLOAD) {
7014     assert(VT == MemVT && "Non-extending load from different memory type!");
7015   } else {
7016     // Extending load.
7017     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7018            "Should only be an extending load, not truncating!");
7019     assert(VT.isInteger() == MemVT.isInteger() &&
7020            "Cannot convert from FP to Int or Int -> FP!");
7021     assert(VT.isVector() == MemVT.isVector() &&
7022            "Cannot use an ext load to convert to or from a vector!");
7023     assert((!VT.isVector() ||
7024             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7025            "Cannot use an ext load to change the number of vector elements!");
7026   }
7027 
7028   bool Indexed = AM != ISD::UNINDEXED;
7029   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7030 
7031   SDVTList VTs = Indexed ?
7032     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7033   SDValue Ops[] = { Chain, Ptr, Offset };
7034   FoldingSetNodeID ID;
7035   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7036   ID.AddInteger(MemVT.getRawBits());
7037   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7038       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7039   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7040   void *IP = nullptr;
7041   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7042     cast<LoadSDNode>(E)->refineAlignment(MMO);
7043     return SDValue(E, 0);
7044   }
7045   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7046                                   ExtType, MemVT, MMO);
7047   createOperands(N, Ops);
7048 
7049   CSEMap.InsertNode(N, IP);
7050   InsertNode(N);
7051   SDValue V(N, 0);
7052   NewSDValueDbgMsg(V, "Creating new node: ", this);
7053   return V;
7054 }
7055 
7056 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7057                               SDValue Ptr, MachinePointerInfo PtrInfo,
7058                               MaybeAlign Alignment,
7059                               MachineMemOperand::Flags MMOFlags,
7060                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7061   SDValue Undef = getUNDEF(Ptr.getValueType());
7062   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7063                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7064 }
7065 
7066 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7067                               SDValue Ptr, MachineMemOperand *MMO) {
7068   SDValue Undef = getUNDEF(Ptr.getValueType());
7069   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7070                  VT, MMO);
7071 }
7072 
7073 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7074                                  EVT VT, SDValue Chain, SDValue Ptr,
7075                                  MachinePointerInfo PtrInfo, EVT MemVT,
7076                                  MaybeAlign Alignment,
7077                                  MachineMemOperand::Flags MMOFlags,
7078                                  const AAMDNodes &AAInfo) {
7079   SDValue Undef = getUNDEF(Ptr.getValueType());
7080   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7081                  MemVT, Alignment, MMOFlags, AAInfo);
7082 }
7083 
7084 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7085                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7086                                  MachineMemOperand *MMO) {
7087   SDValue Undef = getUNDEF(Ptr.getValueType());
7088   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7089                  MemVT, MMO);
7090 }
7091 
7092 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7093                                      SDValue Base, SDValue Offset,
7094                                      ISD::MemIndexedMode AM) {
7095   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7096   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7097   // Don't propagate the invariant or dereferenceable flags.
7098   auto MMOFlags =
7099       LD->getMemOperand()->getFlags() &
7100       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7101   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7102                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7103                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7104 }
7105 
7106 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7107                                SDValue Ptr, MachinePointerInfo PtrInfo,
7108                                Align Alignment,
7109                                MachineMemOperand::Flags MMOFlags,
7110                                const AAMDNodes &AAInfo) {
7111   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7112 
7113   MMOFlags |= MachineMemOperand::MOStore;
7114   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7115 
7116   if (PtrInfo.V.isNull())
7117     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7118 
7119   MachineFunction &MF = getMachineFunction();
7120   uint64_t Size =
7121       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7122   MachineMemOperand *MMO =
7123       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7124   return getStore(Chain, dl, Val, Ptr, MMO);
7125 }
7126 
7127 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7128                                SDValue Ptr, MachineMemOperand *MMO) {
7129   assert(Chain.getValueType() == MVT::Other &&
7130         "Invalid chain type");
7131   EVT VT = Val.getValueType();
7132   SDVTList VTs = getVTList(MVT::Other);
7133   SDValue Undef = getUNDEF(Ptr.getValueType());
7134   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7135   FoldingSetNodeID ID;
7136   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7137   ID.AddInteger(VT.getRawBits());
7138   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7139       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7140   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7141   void *IP = nullptr;
7142   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7143     cast<StoreSDNode>(E)->refineAlignment(MMO);
7144     return SDValue(E, 0);
7145   }
7146   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7147                                    ISD::UNINDEXED, false, VT, MMO);
7148   createOperands(N, Ops);
7149 
7150   CSEMap.InsertNode(N, IP);
7151   InsertNode(N);
7152   SDValue V(N, 0);
7153   NewSDValueDbgMsg(V, "Creating new node: ", this);
7154   return V;
7155 }
7156 
7157 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7158                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7159                                     EVT SVT, Align Alignment,
7160                                     MachineMemOperand::Flags MMOFlags,
7161                                     const AAMDNodes &AAInfo) {
7162   assert(Chain.getValueType() == MVT::Other &&
7163         "Invalid chain type");
7164 
7165   MMOFlags |= MachineMemOperand::MOStore;
7166   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7167 
7168   if (PtrInfo.V.isNull())
7169     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7170 
7171   MachineFunction &MF = getMachineFunction();
7172   MachineMemOperand *MMO = MF.getMachineMemOperand(
7173       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7174       Alignment, AAInfo);
7175   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7176 }
7177 
7178 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7179                                     SDValue Ptr, EVT SVT,
7180                                     MachineMemOperand *MMO) {
7181   EVT VT = Val.getValueType();
7182 
7183   assert(Chain.getValueType() == MVT::Other &&
7184         "Invalid chain type");
7185   if (VT == SVT)
7186     return getStore(Chain, dl, Val, Ptr, MMO);
7187 
7188   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7189          "Should only be a truncating store, not extending!");
7190   assert(VT.isInteger() == SVT.isInteger() &&
7191          "Can't do FP-INT conversion!");
7192   assert(VT.isVector() == SVT.isVector() &&
7193          "Cannot use trunc store to convert to or from a vector!");
7194   assert((!VT.isVector() ||
7195           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7196          "Cannot use trunc store to change the number of vector elements!");
7197 
7198   SDVTList VTs = getVTList(MVT::Other);
7199   SDValue Undef = getUNDEF(Ptr.getValueType());
7200   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7201   FoldingSetNodeID ID;
7202   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7203   ID.AddInteger(SVT.getRawBits());
7204   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7205       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7206   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7207   void *IP = nullptr;
7208   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7209     cast<StoreSDNode>(E)->refineAlignment(MMO);
7210     return SDValue(E, 0);
7211   }
7212   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7213                                    ISD::UNINDEXED, true, SVT, MMO);
7214   createOperands(N, Ops);
7215 
7216   CSEMap.InsertNode(N, IP);
7217   InsertNode(N);
7218   SDValue V(N, 0);
7219   NewSDValueDbgMsg(V, "Creating new node: ", this);
7220   return V;
7221 }
7222 
7223 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7224                                       SDValue Base, SDValue Offset,
7225                                       ISD::MemIndexedMode AM) {
7226   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7227   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7228   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7229   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7230   FoldingSetNodeID ID;
7231   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7232   ID.AddInteger(ST->getMemoryVT().getRawBits());
7233   ID.AddInteger(ST->getRawSubclassData());
7234   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7235   void *IP = nullptr;
7236   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7237     return SDValue(E, 0);
7238 
7239   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7240                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7241                                    ST->getMemOperand());
7242   createOperands(N, Ops);
7243 
7244   CSEMap.InsertNode(N, IP);
7245   InsertNode(N);
7246   SDValue V(N, 0);
7247   NewSDValueDbgMsg(V, "Creating new node: ", this);
7248   return V;
7249 }
7250 
7251 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7252                                     SDValue Base, SDValue Offset, SDValue Mask,
7253                                     SDValue PassThru, EVT MemVT,
7254                                     MachineMemOperand *MMO,
7255                                     ISD::MemIndexedMode AM,
7256                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7257   bool Indexed = AM != ISD::UNINDEXED;
7258   assert((Indexed || Offset.isUndef()) &&
7259          "Unindexed masked load with an offset!");
7260   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7261                          : getVTList(VT, MVT::Other);
7262   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7263   FoldingSetNodeID ID;
7264   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7265   ID.AddInteger(MemVT.getRawBits());
7266   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7267       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7268   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7269   void *IP = nullptr;
7270   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7271     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7272     return SDValue(E, 0);
7273   }
7274   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7275                                         AM, ExtTy, isExpanding, MemVT, MMO);
7276   createOperands(N, Ops);
7277 
7278   CSEMap.InsertNode(N, IP);
7279   InsertNode(N);
7280   SDValue V(N, 0);
7281   NewSDValueDbgMsg(V, "Creating new node: ", this);
7282   return V;
7283 }
7284 
7285 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7286                                            SDValue Base, SDValue Offset,
7287                                            ISD::MemIndexedMode AM) {
7288   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7289   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7290   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7291                        Offset, LD->getMask(), LD->getPassThru(),
7292                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7293                        LD->getExtensionType(), LD->isExpandingLoad());
7294 }
7295 
7296 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7297                                      SDValue Val, SDValue Base, SDValue Offset,
7298                                      SDValue Mask, EVT MemVT,
7299                                      MachineMemOperand *MMO,
7300                                      ISD::MemIndexedMode AM, bool IsTruncating,
7301                                      bool IsCompressing) {
7302   assert(Chain.getValueType() == MVT::Other &&
7303         "Invalid chain type");
7304   bool Indexed = AM != ISD::UNINDEXED;
7305   assert((Indexed || Offset.isUndef()) &&
7306          "Unindexed masked store with an offset!");
7307   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7308                          : getVTList(MVT::Other);
7309   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7310   FoldingSetNodeID ID;
7311   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7312   ID.AddInteger(MemVT.getRawBits());
7313   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7314       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7315   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7316   void *IP = nullptr;
7317   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7318     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7319     return SDValue(E, 0);
7320   }
7321   auto *N =
7322       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7323                                    IsTruncating, IsCompressing, MemVT, MMO);
7324   createOperands(N, Ops);
7325 
7326   CSEMap.InsertNode(N, IP);
7327   InsertNode(N);
7328   SDValue V(N, 0);
7329   NewSDValueDbgMsg(V, "Creating new node: ", this);
7330   return V;
7331 }
7332 
7333 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7334                                             SDValue Base, SDValue Offset,
7335                                             ISD::MemIndexedMode AM) {
7336   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7337   assert(ST->getOffset().isUndef() &&
7338          "Masked store is already a indexed store!");
7339   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7340                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7341                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7342 }
7343 
7344 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7345                                       ArrayRef<SDValue> Ops,
7346                                       MachineMemOperand *MMO,
7347                                       ISD::MemIndexType IndexType) {
7348   assert(Ops.size() == 6 && "Incompatible number of operands");
7349 
7350   FoldingSetNodeID ID;
7351   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7352   ID.AddInteger(VT.getRawBits());
7353   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7354       dl.getIROrder(), VTs, VT, MMO, IndexType));
7355   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7356   void *IP = nullptr;
7357   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7358     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7359     return SDValue(E, 0);
7360   }
7361 
7362   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7363                                           VTs, VT, MMO, IndexType);
7364   createOperands(N, Ops);
7365 
7366   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7367          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7368   assert(N->getMask().getValueType().getVectorNumElements() ==
7369              N->getValueType(0).getVectorNumElements() &&
7370          "Vector width mismatch between mask and data");
7371   assert(N->getIndex().getValueType().getVectorNumElements() >=
7372              N->getValueType(0).getVectorNumElements() &&
7373          "Vector width mismatch between index and data");
7374   assert(isa<ConstantSDNode>(N->getScale()) &&
7375          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7376          "Scale should be a constant power of 2");
7377 
7378   CSEMap.InsertNode(N, IP);
7379   InsertNode(N);
7380   SDValue V(N, 0);
7381   NewSDValueDbgMsg(V, "Creating new node: ", this);
7382   return V;
7383 }
7384 
7385 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7386                                        ArrayRef<SDValue> Ops,
7387                                        MachineMemOperand *MMO,
7388                                        ISD::MemIndexType IndexType) {
7389   assert(Ops.size() == 6 && "Incompatible number of operands");
7390 
7391   FoldingSetNodeID ID;
7392   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7393   ID.AddInteger(VT.getRawBits());
7394   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7395       dl.getIROrder(), VTs, VT, MMO, IndexType));
7396   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7397   void *IP = nullptr;
7398   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7399     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7400     return SDValue(E, 0);
7401   }
7402   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7403                                            VTs, VT, MMO, IndexType);
7404   createOperands(N, Ops);
7405 
7406   assert(N->getMask().getValueType().getVectorNumElements() ==
7407              N->getValue().getValueType().getVectorNumElements() &&
7408          "Vector width mismatch between mask and data");
7409   assert(N->getIndex().getValueType().getVectorNumElements() >=
7410              N->getValue().getValueType().getVectorNumElements() &&
7411          "Vector width mismatch between index and data");
7412   assert(isa<ConstantSDNode>(N->getScale()) &&
7413          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7414          "Scale should be a constant power of 2");
7415 
7416   CSEMap.InsertNode(N, IP);
7417   InsertNode(N);
7418   SDValue V(N, 0);
7419   NewSDValueDbgMsg(V, "Creating new node: ", this);
7420   return V;
7421 }
7422 
7423 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7424   // select undef, T, F --> T (if T is a constant), otherwise F
7425   // select, ?, undef, F --> F
7426   // select, ?, T, undef --> T
7427   if (Cond.isUndef())
7428     return isConstantValueOfAnyType(T) ? T : F;
7429   if (T.isUndef())
7430     return F;
7431   if (F.isUndef())
7432     return T;
7433 
7434   // select true, T, F --> T
7435   // select false, T, F --> F
7436   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7437     return CondC->isNullValue() ? F : T;
7438 
7439   // TODO: This should simplify VSELECT with constant condition using something
7440   // like this (but check boolean contents to be complete?):
7441   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7442   //    return T;
7443   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7444   //    return F;
7445 
7446   // select ?, T, T --> T
7447   if (T == F)
7448     return T;
7449 
7450   return SDValue();
7451 }
7452 
7453 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7454   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7455   if (X.isUndef())
7456     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7457   // shift X, undef --> undef (because it may shift by the bitwidth)
7458   if (Y.isUndef())
7459     return getUNDEF(X.getValueType());
7460 
7461   // shift 0, Y --> 0
7462   // shift X, 0 --> X
7463   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7464     return X;
7465 
7466   // shift X, C >= bitwidth(X) --> undef
7467   // All vector elements must be too big (or undef) to avoid partial undefs.
7468   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7469     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7470   };
7471   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7472     return getUNDEF(X.getValueType());
7473 
7474   return SDValue();
7475 }
7476 
7477 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7478                                       SDNodeFlags Flags) {
7479   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7480   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7481   // operation is poison. That result can be relaxed to undef.
7482   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7483   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7484   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7485                 (YC && YC->getValueAPF().isNaN());
7486   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7487                 (YC && YC->getValueAPF().isInfinity());
7488 
7489   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7490     return getUNDEF(X.getValueType());
7491 
7492   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7493     return getUNDEF(X.getValueType());
7494 
7495   if (!YC)
7496     return SDValue();
7497 
7498   // X + -0.0 --> X
7499   if (Opcode == ISD::FADD)
7500     if (YC->getValueAPF().isNegZero())
7501       return X;
7502 
7503   // X - +0.0 --> X
7504   if (Opcode == ISD::FSUB)
7505     if (YC->getValueAPF().isPosZero())
7506       return X;
7507 
7508   // X * 1.0 --> X
7509   // X / 1.0 --> X
7510   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7511     if (YC->getValueAPF().isExactlyValue(1.0))
7512       return X;
7513 
7514   // X * 0.0 --> 0.0
7515   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7516     if (YC->getValueAPF().isZero())
7517       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7518 
7519   return SDValue();
7520 }
7521 
7522 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7523                                SDValue Ptr, SDValue SV, unsigned Align) {
7524   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7525   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7526 }
7527 
7528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7529                               ArrayRef<SDUse> Ops) {
7530   switch (Ops.size()) {
7531   case 0: return getNode(Opcode, DL, VT);
7532   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7533   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7534   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7535   default: break;
7536   }
7537 
7538   // Copy from an SDUse array into an SDValue array for use with
7539   // the regular getNode logic.
7540   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7541   return getNode(Opcode, DL, VT, NewOps);
7542 }
7543 
7544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7545                               ArrayRef<SDValue> Ops) {
7546   SDNodeFlags Flags;
7547   if (Inserter)
7548     Flags = Inserter->getFlags();
7549   return getNode(Opcode, DL, VT, Ops, Flags);
7550 }
7551 
7552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7553                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7554   unsigned NumOps = Ops.size();
7555   switch (NumOps) {
7556   case 0: return getNode(Opcode, DL, VT);
7557   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7558   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7559   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7560   default: break;
7561   }
7562 
7563   switch (Opcode) {
7564   default: break;
7565   case ISD::BUILD_VECTOR:
7566     // Attempt to simplify BUILD_VECTOR.
7567     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7568       return V;
7569     break;
7570   case ISD::CONCAT_VECTORS:
7571     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7572       return V;
7573     break;
7574   case ISD::SELECT_CC:
7575     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7576     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7577            "LHS and RHS of condition must have same type!");
7578     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7579            "True and False arms of SelectCC must have same type!");
7580     assert(Ops[2].getValueType() == VT &&
7581            "select_cc node must be of same type as true and false value!");
7582     break;
7583   case ISD::BR_CC:
7584     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7585     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7586            "LHS/RHS of comparison should match types!");
7587     break;
7588   }
7589 
7590   // Memoize nodes.
7591   SDNode *N;
7592   SDVTList VTs = getVTList(VT);
7593 
7594   if (VT != MVT::Glue) {
7595     FoldingSetNodeID ID;
7596     AddNodeIDNode(ID, Opcode, VTs, Ops);
7597     void *IP = nullptr;
7598 
7599     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7600       return SDValue(E, 0);
7601 
7602     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7603     createOperands(N, Ops);
7604 
7605     CSEMap.InsertNode(N, IP);
7606   } else {
7607     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7608     createOperands(N, Ops);
7609   }
7610 
7611   N->setFlags(Flags);
7612   InsertNode(N);
7613   SDValue V(N, 0);
7614   NewSDValueDbgMsg(V, "Creating new node: ", this);
7615   return V;
7616 }
7617 
7618 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7619                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7620   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7621 }
7622 
7623 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7624                               ArrayRef<SDValue> Ops) {
7625   SDNodeFlags Flags;
7626   if (Inserter)
7627     Flags = Inserter->getFlags();
7628   return getNode(Opcode, DL, VTList, Ops, Flags);
7629 }
7630 
7631 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7632                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7633   if (VTList.NumVTs == 1)
7634     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7635 
7636   switch (Opcode) {
7637   case ISD::STRICT_FP_EXTEND:
7638     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7639            "Invalid STRICT_FP_EXTEND!");
7640     assert(VTList.VTs[0].isFloatingPoint() &&
7641            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7642     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7643            "STRICT_FP_EXTEND result type should be vector iff the operand "
7644            "type is vector!");
7645     assert((!VTList.VTs[0].isVector() ||
7646             VTList.VTs[0].getVectorNumElements() ==
7647             Ops[1].getValueType().getVectorNumElements()) &&
7648            "Vector element count mismatch!");
7649     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7650            "Invalid fpext node, dst <= src!");
7651     break;
7652   case ISD::STRICT_FP_ROUND:
7653     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7654     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7655            "STRICT_FP_ROUND result type should be vector iff the operand "
7656            "type is vector!");
7657     assert((!VTList.VTs[0].isVector() ||
7658             VTList.VTs[0].getVectorNumElements() ==
7659             Ops[1].getValueType().getVectorNumElements()) &&
7660            "Vector element count mismatch!");
7661     assert(VTList.VTs[0].isFloatingPoint() &&
7662            Ops[1].getValueType().isFloatingPoint() &&
7663            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7664            isa<ConstantSDNode>(Ops[2]) &&
7665            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7666             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7667            "Invalid STRICT_FP_ROUND!");
7668     break;
7669 #if 0
7670   // FIXME: figure out how to safely handle things like
7671   // int foo(int x) { return 1 << (x & 255); }
7672   // int bar() { return foo(256); }
7673   case ISD::SRA_PARTS:
7674   case ISD::SRL_PARTS:
7675   case ISD::SHL_PARTS:
7676     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7677         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7678       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7679     else if (N3.getOpcode() == ISD::AND)
7680       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7681         // If the and is only masking out bits that cannot effect the shift,
7682         // eliminate the and.
7683         unsigned NumBits = VT.getScalarSizeInBits()*2;
7684         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7685           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7686       }
7687     break;
7688 #endif
7689   }
7690 
7691   // Memoize the node unless it returns a flag.
7692   SDNode *N;
7693   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7694     FoldingSetNodeID ID;
7695     AddNodeIDNode(ID, Opcode, VTList, Ops);
7696     void *IP = nullptr;
7697     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7698       return SDValue(E, 0);
7699 
7700     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7701     createOperands(N, Ops);
7702     CSEMap.InsertNode(N, IP);
7703   } else {
7704     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7705     createOperands(N, Ops);
7706   }
7707 
7708   N->setFlags(Flags);
7709   InsertNode(N);
7710   SDValue V(N, 0);
7711   NewSDValueDbgMsg(V, "Creating new node: ", this);
7712   return V;
7713 }
7714 
7715 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7716                               SDVTList VTList) {
7717   return getNode(Opcode, DL, VTList, None);
7718 }
7719 
7720 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7721                               SDValue N1) {
7722   SDValue Ops[] = { N1 };
7723   return getNode(Opcode, DL, VTList, Ops);
7724 }
7725 
7726 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7727                               SDValue N1, SDValue N2) {
7728   SDValue Ops[] = { N1, N2 };
7729   return getNode(Opcode, DL, VTList, Ops);
7730 }
7731 
7732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7733                               SDValue N1, SDValue N2, SDValue N3) {
7734   SDValue Ops[] = { N1, N2, N3 };
7735   return getNode(Opcode, DL, VTList, Ops);
7736 }
7737 
7738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7739                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7740   SDValue Ops[] = { N1, N2, N3, N4 };
7741   return getNode(Opcode, DL, VTList, Ops);
7742 }
7743 
7744 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7745                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7746                               SDValue N5) {
7747   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7748   return getNode(Opcode, DL, VTList, Ops);
7749 }
7750 
7751 SDVTList SelectionDAG::getVTList(EVT VT) {
7752   return makeVTList(SDNode::getValueTypeList(VT), 1);
7753 }
7754 
7755 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7756   FoldingSetNodeID ID;
7757   ID.AddInteger(2U);
7758   ID.AddInteger(VT1.getRawBits());
7759   ID.AddInteger(VT2.getRawBits());
7760 
7761   void *IP = nullptr;
7762   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7763   if (!Result) {
7764     EVT *Array = Allocator.Allocate<EVT>(2);
7765     Array[0] = VT1;
7766     Array[1] = VT2;
7767     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7768     VTListMap.InsertNode(Result, IP);
7769   }
7770   return Result->getSDVTList();
7771 }
7772 
7773 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7774   FoldingSetNodeID ID;
7775   ID.AddInteger(3U);
7776   ID.AddInteger(VT1.getRawBits());
7777   ID.AddInteger(VT2.getRawBits());
7778   ID.AddInteger(VT3.getRawBits());
7779 
7780   void *IP = nullptr;
7781   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7782   if (!Result) {
7783     EVT *Array = Allocator.Allocate<EVT>(3);
7784     Array[0] = VT1;
7785     Array[1] = VT2;
7786     Array[2] = VT3;
7787     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7788     VTListMap.InsertNode(Result, IP);
7789   }
7790   return Result->getSDVTList();
7791 }
7792 
7793 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7794   FoldingSetNodeID ID;
7795   ID.AddInteger(4U);
7796   ID.AddInteger(VT1.getRawBits());
7797   ID.AddInteger(VT2.getRawBits());
7798   ID.AddInteger(VT3.getRawBits());
7799   ID.AddInteger(VT4.getRawBits());
7800 
7801   void *IP = nullptr;
7802   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7803   if (!Result) {
7804     EVT *Array = Allocator.Allocate<EVT>(4);
7805     Array[0] = VT1;
7806     Array[1] = VT2;
7807     Array[2] = VT3;
7808     Array[3] = VT4;
7809     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7810     VTListMap.InsertNode(Result, IP);
7811   }
7812   return Result->getSDVTList();
7813 }
7814 
7815 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7816   unsigned NumVTs = VTs.size();
7817   FoldingSetNodeID ID;
7818   ID.AddInteger(NumVTs);
7819   for (unsigned index = 0; index < NumVTs; index++) {
7820     ID.AddInteger(VTs[index].getRawBits());
7821   }
7822 
7823   void *IP = nullptr;
7824   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7825   if (!Result) {
7826     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7827     llvm::copy(VTs, Array);
7828     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7829     VTListMap.InsertNode(Result, IP);
7830   }
7831   return Result->getSDVTList();
7832 }
7833 
7834 
7835 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7836 /// specified operands.  If the resultant node already exists in the DAG,
7837 /// this does not modify the specified node, instead it returns the node that
7838 /// already exists.  If the resultant node does not exist in the DAG, the
7839 /// input node is returned.  As a degenerate case, if you specify the same
7840 /// input operands as the node already has, the input node is returned.
7841 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7842   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7843 
7844   // Check to see if there is no change.
7845   if (Op == N->getOperand(0)) return N;
7846 
7847   // See if the modified node already exists.
7848   void *InsertPos = nullptr;
7849   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7850     return Existing;
7851 
7852   // Nope it doesn't.  Remove the node from its current place in the maps.
7853   if (InsertPos)
7854     if (!RemoveNodeFromCSEMaps(N))
7855       InsertPos = nullptr;
7856 
7857   // Now we update the operands.
7858   N->OperandList[0].set(Op);
7859 
7860   updateDivergence(N);
7861   // If this gets put into a CSE map, add it.
7862   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7863   return N;
7864 }
7865 
7866 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7867   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7868 
7869   // Check to see if there is no change.
7870   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7871     return N;   // No operands changed, just return the input node.
7872 
7873   // See if the modified node already exists.
7874   void *InsertPos = nullptr;
7875   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7876     return Existing;
7877 
7878   // Nope it doesn't.  Remove the node from its current place in the maps.
7879   if (InsertPos)
7880     if (!RemoveNodeFromCSEMaps(N))
7881       InsertPos = nullptr;
7882 
7883   // Now we update the operands.
7884   if (N->OperandList[0] != Op1)
7885     N->OperandList[0].set(Op1);
7886   if (N->OperandList[1] != Op2)
7887     N->OperandList[1].set(Op2);
7888 
7889   updateDivergence(N);
7890   // If this gets put into a CSE map, add it.
7891   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7892   return N;
7893 }
7894 
7895 SDNode *SelectionDAG::
7896 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7897   SDValue Ops[] = { Op1, Op2, Op3 };
7898   return UpdateNodeOperands(N, Ops);
7899 }
7900 
7901 SDNode *SelectionDAG::
7902 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7903                    SDValue Op3, SDValue Op4) {
7904   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7905   return UpdateNodeOperands(N, Ops);
7906 }
7907 
7908 SDNode *SelectionDAG::
7909 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7910                    SDValue Op3, SDValue Op4, SDValue Op5) {
7911   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7912   return UpdateNodeOperands(N, Ops);
7913 }
7914 
7915 SDNode *SelectionDAG::
7916 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7917   unsigned NumOps = Ops.size();
7918   assert(N->getNumOperands() == NumOps &&
7919          "Update with wrong number of operands");
7920 
7921   // If no operands changed just return the input node.
7922   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7923     return N;
7924 
7925   // See if the modified node already exists.
7926   void *InsertPos = nullptr;
7927   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7928     return Existing;
7929 
7930   // Nope it doesn't.  Remove the node from its current place in the maps.
7931   if (InsertPos)
7932     if (!RemoveNodeFromCSEMaps(N))
7933       InsertPos = nullptr;
7934 
7935   // Now we update the operands.
7936   for (unsigned i = 0; i != NumOps; ++i)
7937     if (N->OperandList[i] != Ops[i])
7938       N->OperandList[i].set(Ops[i]);
7939 
7940   updateDivergence(N);
7941   // If this gets put into a CSE map, add it.
7942   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7943   return N;
7944 }
7945 
7946 /// DropOperands - Release the operands and set this node to have
7947 /// zero operands.
7948 void SDNode::DropOperands() {
7949   // Unlike the code in MorphNodeTo that does this, we don't need to
7950   // watch for dead nodes here.
7951   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7952     SDUse &Use = *I++;
7953     Use.set(SDValue());
7954   }
7955 }
7956 
7957 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7958                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7959   if (NewMemRefs.empty()) {
7960     N->clearMemRefs();
7961     return;
7962   }
7963 
7964   // Check if we can avoid allocating by storing a single reference directly.
7965   if (NewMemRefs.size() == 1) {
7966     N->MemRefs = NewMemRefs[0];
7967     N->NumMemRefs = 1;
7968     return;
7969   }
7970 
7971   MachineMemOperand **MemRefsBuffer =
7972       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7973   llvm::copy(NewMemRefs, MemRefsBuffer);
7974   N->MemRefs = MemRefsBuffer;
7975   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7976 }
7977 
7978 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7979 /// machine opcode.
7980 ///
7981 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7982                                    EVT VT) {
7983   SDVTList VTs = getVTList(VT);
7984   return SelectNodeTo(N, MachineOpc, VTs, None);
7985 }
7986 
7987 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7988                                    EVT VT, SDValue Op1) {
7989   SDVTList VTs = getVTList(VT);
7990   SDValue Ops[] = { Op1 };
7991   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7992 }
7993 
7994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7995                                    EVT VT, SDValue Op1,
7996                                    SDValue Op2) {
7997   SDVTList VTs = getVTList(VT);
7998   SDValue Ops[] = { Op1, Op2 };
7999   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8000 }
8001 
8002 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8003                                    EVT VT, SDValue Op1,
8004                                    SDValue Op2, SDValue Op3) {
8005   SDVTList VTs = getVTList(VT);
8006   SDValue Ops[] = { Op1, Op2, Op3 };
8007   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8008 }
8009 
8010 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8011                                    EVT VT, ArrayRef<SDValue> Ops) {
8012   SDVTList VTs = getVTList(VT);
8013   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8014 }
8015 
8016 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8017                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8018   SDVTList VTs = getVTList(VT1, VT2);
8019   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8020 }
8021 
8022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8023                                    EVT VT1, EVT VT2) {
8024   SDVTList VTs = getVTList(VT1, VT2);
8025   return SelectNodeTo(N, MachineOpc, VTs, None);
8026 }
8027 
8028 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8029                                    EVT VT1, EVT VT2, EVT VT3,
8030                                    ArrayRef<SDValue> Ops) {
8031   SDVTList VTs = getVTList(VT1, VT2, VT3);
8032   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8033 }
8034 
8035 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8036                                    EVT VT1, EVT VT2,
8037                                    SDValue Op1, SDValue Op2) {
8038   SDVTList VTs = getVTList(VT1, VT2);
8039   SDValue Ops[] = { Op1, Op2 };
8040   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8041 }
8042 
8043 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8044                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8045   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8046   // Reset the NodeID to -1.
8047   New->setNodeId(-1);
8048   if (New != N) {
8049     ReplaceAllUsesWith(N, New);
8050     RemoveDeadNode(N);
8051   }
8052   return New;
8053 }
8054 
8055 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8056 /// the line number information on the merged node since it is not possible to
8057 /// preserve the information that operation is associated with multiple lines.
8058 /// This will make the debugger working better at -O0, were there is a higher
8059 /// probability having other instructions associated with that line.
8060 ///
8061 /// For IROrder, we keep the smaller of the two
8062 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8063   DebugLoc NLoc = N->getDebugLoc();
8064   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8065     N->setDebugLoc(DebugLoc());
8066   }
8067   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8068   N->setIROrder(Order);
8069   return N;
8070 }
8071 
8072 /// MorphNodeTo - This *mutates* the specified node to have the specified
8073 /// return type, opcode, and operands.
8074 ///
8075 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8076 /// node of the specified opcode and operands, it returns that node instead of
8077 /// the current one.  Note that the SDLoc need not be the same.
8078 ///
8079 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8080 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8081 /// node, and because it doesn't require CSE recalculation for any of
8082 /// the node's users.
8083 ///
8084 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8085 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8086 /// the legalizer which maintain worklists that would need to be updated when
8087 /// deleting things.
8088 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8089                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8090   // If an identical node already exists, use it.
8091   void *IP = nullptr;
8092   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8093     FoldingSetNodeID ID;
8094     AddNodeIDNode(ID, Opc, VTs, Ops);
8095     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8096       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8097   }
8098 
8099   if (!RemoveNodeFromCSEMaps(N))
8100     IP = nullptr;
8101 
8102   // Start the morphing.
8103   N->NodeType = Opc;
8104   N->ValueList = VTs.VTs;
8105   N->NumValues = VTs.NumVTs;
8106 
8107   // Clear the operands list, updating used nodes to remove this from their
8108   // use list.  Keep track of any operands that become dead as a result.
8109   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8110   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8111     SDUse &Use = *I++;
8112     SDNode *Used = Use.getNode();
8113     Use.set(SDValue());
8114     if (Used->use_empty())
8115       DeadNodeSet.insert(Used);
8116   }
8117 
8118   // For MachineNode, initialize the memory references information.
8119   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8120     MN->clearMemRefs();
8121 
8122   // Swap for an appropriately sized array from the recycler.
8123   removeOperands(N);
8124   createOperands(N, Ops);
8125 
8126   // Delete any nodes that are still dead after adding the uses for the
8127   // new operands.
8128   if (!DeadNodeSet.empty()) {
8129     SmallVector<SDNode *, 16> DeadNodes;
8130     for (SDNode *N : DeadNodeSet)
8131       if (N->use_empty())
8132         DeadNodes.push_back(N);
8133     RemoveDeadNodes(DeadNodes);
8134   }
8135 
8136   if (IP)
8137     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8138   return N;
8139 }
8140 
8141 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8142   unsigned OrigOpc = Node->getOpcode();
8143   unsigned NewOpc;
8144   switch (OrigOpc) {
8145   default:
8146     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8147 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8148   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8149 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8150   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8151 #include "llvm/IR/ConstrainedOps.def"
8152   }
8153 
8154   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8155 
8156   // We're taking this node out of the chain, so we need to re-link things.
8157   SDValue InputChain = Node->getOperand(0);
8158   SDValue OutputChain = SDValue(Node, 1);
8159   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8160 
8161   SmallVector<SDValue, 3> Ops;
8162   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8163     Ops.push_back(Node->getOperand(i));
8164 
8165   SDVTList VTs = getVTList(Node->getValueType(0));
8166   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8167 
8168   // MorphNodeTo can operate in two ways: if an existing node with the
8169   // specified operands exists, it can just return it.  Otherwise, it
8170   // updates the node in place to have the requested operands.
8171   if (Res == Node) {
8172     // If we updated the node in place, reset the node ID.  To the isel,
8173     // this should be just like a newly allocated machine node.
8174     Res->setNodeId(-1);
8175   } else {
8176     ReplaceAllUsesWith(Node, Res);
8177     RemoveDeadNode(Node);
8178   }
8179 
8180   return Res;
8181 }
8182 
8183 /// getMachineNode - These are used for target selectors to create a new node
8184 /// with specified return type(s), MachineInstr opcode, and operands.
8185 ///
8186 /// Note that getMachineNode returns the resultant node.  If there is already a
8187 /// node of the specified opcode and operands, it returns that node instead of
8188 /// the current one.
8189 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8190                                             EVT VT) {
8191   SDVTList VTs = getVTList(VT);
8192   return getMachineNode(Opcode, dl, VTs, None);
8193 }
8194 
8195 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8196                                             EVT VT, SDValue Op1) {
8197   SDVTList VTs = getVTList(VT);
8198   SDValue Ops[] = { Op1 };
8199   return getMachineNode(Opcode, dl, VTs, Ops);
8200 }
8201 
8202 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8203                                             EVT VT, SDValue Op1, SDValue Op2) {
8204   SDVTList VTs = getVTList(VT);
8205   SDValue Ops[] = { Op1, Op2 };
8206   return getMachineNode(Opcode, dl, VTs, Ops);
8207 }
8208 
8209 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8210                                             EVT VT, SDValue Op1, SDValue Op2,
8211                                             SDValue Op3) {
8212   SDVTList VTs = getVTList(VT);
8213   SDValue Ops[] = { Op1, Op2, Op3 };
8214   return getMachineNode(Opcode, dl, VTs, Ops);
8215 }
8216 
8217 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8218                                             EVT VT, ArrayRef<SDValue> Ops) {
8219   SDVTList VTs = getVTList(VT);
8220   return getMachineNode(Opcode, dl, VTs, Ops);
8221 }
8222 
8223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8224                                             EVT VT1, EVT VT2, SDValue Op1,
8225                                             SDValue Op2) {
8226   SDVTList VTs = getVTList(VT1, VT2);
8227   SDValue Ops[] = { Op1, Op2 };
8228   return getMachineNode(Opcode, dl, VTs, Ops);
8229 }
8230 
8231 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8232                                             EVT VT1, EVT VT2, SDValue Op1,
8233                                             SDValue Op2, SDValue Op3) {
8234   SDVTList VTs = getVTList(VT1, VT2);
8235   SDValue Ops[] = { Op1, Op2, Op3 };
8236   return getMachineNode(Opcode, dl, VTs, Ops);
8237 }
8238 
8239 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8240                                             EVT VT1, EVT VT2,
8241                                             ArrayRef<SDValue> Ops) {
8242   SDVTList VTs = getVTList(VT1, VT2);
8243   return getMachineNode(Opcode, dl, VTs, Ops);
8244 }
8245 
8246 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8247                                             EVT VT1, EVT VT2, EVT VT3,
8248                                             SDValue Op1, SDValue Op2) {
8249   SDVTList VTs = getVTList(VT1, VT2, VT3);
8250   SDValue Ops[] = { Op1, Op2 };
8251   return getMachineNode(Opcode, dl, VTs, Ops);
8252 }
8253 
8254 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8255                                             EVT VT1, EVT VT2, EVT VT3,
8256                                             SDValue Op1, SDValue Op2,
8257                                             SDValue Op3) {
8258   SDVTList VTs = getVTList(VT1, VT2, VT3);
8259   SDValue Ops[] = { Op1, Op2, Op3 };
8260   return getMachineNode(Opcode, dl, VTs, Ops);
8261 }
8262 
8263 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8264                                             EVT VT1, EVT VT2, EVT VT3,
8265                                             ArrayRef<SDValue> Ops) {
8266   SDVTList VTs = getVTList(VT1, VT2, VT3);
8267   return getMachineNode(Opcode, dl, VTs, Ops);
8268 }
8269 
8270 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8271                                             ArrayRef<EVT> ResultTys,
8272                                             ArrayRef<SDValue> Ops) {
8273   SDVTList VTs = getVTList(ResultTys);
8274   return getMachineNode(Opcode, dl, VTs, Ops);
8275 }
8276 
8277 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8278                                             SDVTList VTs,
8279                                             ArrayRef<SDValue> Ops) {
8280   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8281   MachineSDNode *N;
8282   void *IP = nullptr;
8283 
8284   if (DoCSE) {
8285     FoldingSetNodeID ID;
8286     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8287     IP = nullptr;
8288     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8289       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8290     }
8291   }
8292 
8293   // Allocate a new MachineSDNode.
8294   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8295   createOperands(N, Ops);
8296 
8297   if (DoCSE)
8298     CSEMap.InsertNode(N, IP);
8299 
8300   InsertNode(N);
8301   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8302   return N;
8303 }
8304 
8305 /// getTargetExtractSubreg - A convenience function for creating
8306 /// TargetOpcode::EXTRACT_SUBREG nodes.
8307 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8308                                              SDValue Operand) {
8309   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8310   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8311                                   VT, Operand, SRIdxVal);
8312   return SDValue(Subreg, 0);
8313 }
8314 
8315 /// getTargetInsertSubreg - A convenience function for creating
8316 /// TargetOpcode::INSERT_SUBREG nodes.
8317 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8318                                             SDValue Operand, SDValue Subreg) {
8319   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8320   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8321                                   VT, Operand, Subreg, SRIdxVal);
8322   return SDValue(Result, 0);
8323 }
8324 
8325 /// getNodeIfExists - Get the specified node if it's already available, or
8326 /// else return NULL.
8327 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8328                                       ArrayRef<SDValue> Ops) {
8329   SDNodeFlags Flags;
8330   if (Inserter)
8331     Flags = Inserter->getFlags();
8332   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8333 }
8334 
8335 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8336                                       ArrayRef<SDValue> Ops,
8337                                       const SDNodeFlags Flags) {
8338   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8339     FoldingSetNodeID ID;
8340     AddNodeIDNode(ID, Opcode, VTList, Ops);
8341     void *IP = nullptr;
8342     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8343       E->intersectFlagsWith(Flags);
8344       return E;
8345     }
8346   }
8347   return nullptr;
8348 }
8349 
8350 /// getDbgValue - Creates a SDDbgValue node.
8351 ///
8352 /// SDNode
8353 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8354                                       SDNode *N, unsigned R, bool IsIndirect,
8355                                       const DebugLoc &DL, unsigned O) {
8356   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8357          "Expected inlined-at fields to agree");
8358   return new (DbgInfo->getAlloc())
8359       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8360 }
8361 
8362 /// Constant
8363 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8364                                               DIExpression *Expr,
8365                                               const Value *C,
8366                                               const DebugLoc &DL, unsigned O) {
8367   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8368          "Expected inlined-at fields to agree");
8369   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8370 }
8371 
8372 /// FrameIndex
8373 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8374                                                 DIExpression *Expr, unsigned FI,
8375                                                 bool IsIndirect,
8376                                                 const DebugLoc &DL,
8377                                                 unsigned O) {
8378   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8379          "Expected inlined-at fields to agree");
8380   return new (DbgInfo->getAlloc())
8381       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8382 }
8383 
8384 /// VReg
8385 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8386                                           DIExpression *Expr,
8387                                           unsigned VReg, bool IsIndirect,
8388                                           const DebugLoc &DL, unsigned O) {
8389   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8390          "Expected inlined-at fields to agree");
8391   return new (DbgInfo->getAlloc())
8392       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8393 }
8394 
8395 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8396                                      unsigned OffsetInBits, unsigned SizeInBits,
8397                                      bool InvalidateDbg) {
8398   SDNode *FromNode = From.getNode();
8399   SDNode *ToNode = To.getNode();
8400   assert(FromNode && ToNode && "Can't modify dbg values");
8401 
8402   // PR35338
8403   // TODO: assert(From != To && "Redundant dbg value transfer");
8404   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8405   if (From == To || FromNode == ToNode)
8406     return;
8407 
8408   if (!FromNode->getHasDebugValue())
8409     return;
8410 
8411   SmallVector<SDDbgValue *, 2> ClonedDVs;
8412   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8413     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8414       continue;
8415 
8416     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8417 
8418     // Just transfer the dbg value attached to From.
8419     if (Dbg->getResNo() != From.getResNo())
8420       continue;
8421 
8422     DIVariable *Var = Dbg->getVariable();
8423     auto *Expr = Dbg->getExpression();
8424     // If a fragment is requested, update the expression.
8425     if (SizeInBits) {
8426       // When splitting a larger (e.g., sign-extended) value whose
8427       // lower bits are described with an SDDbgValue, do not attempt
8428       // to transfer the SDDbgValue to the upper bits.
8429       if (auto FI = Expr->getFragmentInfo())
8430         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8431           continue;
8432       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8433                                                              SizeInBits);
8434       if (!Fragment)
8435         continue;
8436       Expr = *Fragment;
8437     }
8438     // Clone the SDDbgValue and move it to To.
8439     SDDbgValue *Clone = getDbgValue(
8440         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8441         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8442     ClonedDVs.push_back(Clone);
8443 
8444     if (InvalidateDbg) {
8445       // Invalidate value and indicate the SDDbgValue should not be emitted.
8446       Dbg->setIsInvalidated();
8447       Dbg->setIsEmitted();
8448     }
8449   }
8450 
8451   for (SDDbgValue *Dbg : ClonedDVs)
8452     AddDbgValue(Dbg, ToNode, false);
8453 }
8454 
8455 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8456   if (!N.getHasDebugValue())
8457     return;
8458 
8459   SmallVector<SDDbgValue *, 2> ClonedDVs;
8460   for (auto DV : GetDbgValues(&N)) {
8461     if (DV->isInvalidated())
8462       continue;
8463     switch (N.getOpcode()) {
8464     default:
8465       break;
8466     case ISD::ADD:
8467       SDValue N0 = N.getOperand(0);
8468       SDValue N1 = N.getOperand(1);
8469       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8470           isConstantIntBuildVectorOrConstantInt(N1)) {
8471         uint64_t Offset = N.getConstantOperandVal(1);
8472         // Rewrite an ADD constant node into a DIExpression. Since we are
8473         // performing arithmetic to compute the variable's *value* in the
8474         // DIExpression, we need to mark the expression with a
8475         // DW_OP_stack_value.
8476         auto *DIExpr = DV->getExpression();
8477         DIExpr =
8478             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8479         SDDbgValue *Clone =
8480             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8481                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8482         ClonedDVs.push_back(Clone);
8483         DV->setIsInvalidated();
8484         DV->setIsEmitted();
8485         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8486                    N0.getNode()->dumprFull(this);
8487                    dbgs() << " into " << *DIExpr << '\n');
8488       }
8489     }
8490   }
8491 
8492   for (SDDbgValue *Dbg : ClonedDVs)
8493     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8494 }
8495 
8496 /// Creates a SDDbgLabel node.
8497 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8498                                       const DebugLoc &DL, unsigned O) {
8499   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8500          "Expected inlined-at fields to agree");
8501   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8502 }
8503 
8504 namespace {
8505 
8506 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8507 /// pointed to by a use iterator is deleted, increment the use iterator
8508 /// so that it doesn't dangle.
8509 ///
8510 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8511   SDNode::use_iterator &UI;
8512   SDNode::use_iterator &UE;
8513 
8514   void NodeDeleted(SDNode *N, SDNode *E) override {
8515     // Increment the iterator as needed.
8516     while (UI != UE && N == *UI)
8517       ++UI;
8518   }
8519 
8520 public:
8521   RAUWUpdateListener(SelectionDAG &d,
8522                      SDNode::use_iterator &ui,
8523                      SDNode::use_iterator &ue)
8524     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8525 };
8526 
8527 } // end anonymous namespace
8528 
8529 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8530 /// This can cause recursive merging of nodes in the DAG.
8531 ///
8532 /// This version assumes From has a single result value.
8533 ///
8534 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8535   SDNode *From = FromN.getNode();
8536   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8537          "Cannot replace with this method!");
8538   assert(From != To.getNode() && "Cannot replace uses of with self");
8539 
8540   // Preserve Debug Values
8541   transferDbgValues(FromN, To);
8542 
8543   // Iterate over all the existing uses of From. New uses will be added
8544   // to the beginning of the use list, which we avoid visiting.
8545   // This specifically avoids visiting uses of From that arise while the
8546   // replacement is happening, because any such uses would be the result
8547   // of CSE: If an existing node looks like From after one of its operands
8548   // is replaced by To, we don't want to replace of all its users with To
8549   // too. See PR3018 for more info.
8550   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8551   RAUWUpdateListener Listener(*this, UI, UE);
8552   while (UI != UE) {
8553     SDNode *User = *UI;
8554 
8555     // This node is about to morph, remove its old self from the CSE maps.
8556     RemoveNodeFromCSEMaps(User);
8557 
8558     // A user can appear in a use list multiple times, and when this
8559     // happens the uses are usually next to each other in the list.
8560     // To help reduce the number of CSE recomputations, process all
8561     // the uses of this user that we can find this way.
8562     do {
8563       SDUse &Use = UI.getUse();
8564       ++UI;
8565       Use.set(To);
8566       if (To->isDivergent() != From->isDivergent())
8567         updateDivergence(User);
8568     } while (UI != UE && *UI == User);
8569     // Now that we have modified User, add it back to the CSE maps.  If it
8570     // already exists there, recursively merge the results together.
8571     AddModifiedNodeToCSEMaps(User);
8572   }
8573 
8574   // If we just RAUW'd the root, take note.
8575   if (FromN == getRoot())
8576     setRoot(To);
8577 }
8578 
8579 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8580 /// This can cause recursive merging of nodes in the DAG.
8581 ///
8582 /// This version assumes that for each value of From, there is a
8583 /// corresponding value in To in the same position with the same type.
8584 ///
8585 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8586 #ifndef NDEBUG
8587   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8588     assert((!From->hasAnyUseOfValue(i) ||
8589             From->getValueType(i) == To->getValueType(i)) &&
8590            "Cannot use this version of ReplaceAllUsesWith!");
8591 #endif
8592 
8593   // Handle the trivial case.
8594   if (From == To)
8595     return;
8596 
8597   // Preserve Debug Info. Only do this if there's a use.
8598   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8599     if (From->hasAnyUseOfValue(i)) {
8600       assert((i < To->getNumValues()) && "Invalid To location");
8601       transferDbgValues(SDValue(From, i), SDValue(To, i));
8602     }
8603 
8604   // Iterate over just the existing users of From. See the comments in
8605   // the ReplaceAllUsesWith above.
8606   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8607   RAUWUpdateListener Listener(*this, UI, UE);
8608   while (UI != UE) {
8609     SDNode *User = *UI;
8610 
8611     // This node is about to morph, remove its old self from the CSE maps.
8612     RemoveNodeFromCSEMaps(User);
8613 
8614     // A user can appear in a use list multiple times, and when this
8615     // happens the uses are usually next to each other in the list.
8616     // To help reduce the number of CSE recomputations, process all
8617     // the uses of this user that we can find this way.
8618     do {
8619       SDUse &Use = UI.getUse();
8620       ++UI;
8621       Use.setNode(To);
8622       if (To->isDivergent() != From->isDivergent())
8623         updateDivergence(User);
8624     } while (UI != UE && *UI == User);
8625 
8626     // Now that we have modified User, add it back to the CSE maps.  If it
8627     // already exists there, recursively merge the results together.
8628     AddModifiedNodeToCSEMaps(User);
8629   }
8630 
8631   // If we just RAUW'd the root, take note.
8632   if (From == getRoot().getNode())
8633     setRoot(SDValue(To, getRoot().getResNo()));
8634 }
8635 
8636 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8637 /// This can cause recursive merging of nodes in the DAG.
8638 ///
8639 /// This version can replace From with any result values.  To must match the
8640 /// number and types of values returned by From.
8641 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8642   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8643     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8644 
8645   // Preserve Debug Info.
8646   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8647     transferDbgValues(SDValue(From, i), To[i]);
8648 
8649   // Iterate over just the existing users of From. See the comments in
8650   // the ReplaceAllUsesWith above.
8651   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8652   RAUWUpdateListener Listener(*this, UI, UE);
8653   while (UI != UE) {
8654     SDNode *User = *UI;
8655 
8656     // This node is about to morph, remove its old self from the CSE maps.
8657     RemoveNodeFromCSEMaps(User);
8658 
8659     // A user can appear in a use list multiple times, and when this happens the
8660     // uses are usually next to each other in the list.  To help reduce the
8661     // number of CSE and divergence recomputations, process all the uses of this
8662     // user that we can find this way.
8663     bool To_IsDivergent = false;
8664     do {
8665       SDUse &Use = UI.getUse();
8666       const SDValue &ToOp = To[Use.getResNo()];
8667       ++UI;
8668       Use.set(ToOp);
8669       To_IsDivergent |= ToOp->isDivergent();
8670     } while (UI != UE && *UI == User);
8671 
8672     if (To_IsDivergent != From->isDivergent())
8673       updateDivergence(User);
8674 
8675     // Now that we have modified User, add it back to the CSE maps.  If it
8676     // already exists there, recursively merge the results together.
8677     AddModifiedNodeToCSEMaps(User);
8678   }
8679 
8680   // If we just RAUW'd the root, take note.
8681   if (From == getRoot().getNode())
8682     setRoot(SDValue(To[getRoot().getResNo()]));
8683 }
8684 
8685 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8686 /// uses of other values produced by From.getNode() alone.  The Deleted
8687 /// vector is handled the same way as for ReplaceAllUsesWith.
8688 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8689   // Handle the really simple, really trivial case efficiently.
8690   if (From == To) return;
8691 
8692   // Handle the simple, trivial, case efficiently.
8693   if (From.getNode()->getNumValues() == 1) {
8694     ReplaceAllUsesWith(From, To);
8695     return;
8696   }
8697 
8698   // Preserve Debug Info.
8699   transferDbgValues(From, To);
8700 
8701   // Iterate over just the existing users of From. See the comments in
8702   // the ReplaceAllUsesWith above.
8703   SDNode::use_iterator UI = From.getNode()->use_begin(),
8704                        UE = From.getNode()->use_end();
8705   RAUWUpdateListener Listener(*this, UI, UE);
8706   while (UI != UE) {
8707     SDNode *User = *UI;
8708     bool UserRemovedFromCSEMaps = false;
8709 
8710     // A user can appear in a use list multiple times, and when this
8711     // happens the uses are usually next to each other in the list.
8712     // To help reduce the number of CSE recomputations, process all
8713     // the uses of this user that we can find this way.
8714     do {
8715       SDUse &Use = UI.getUse();
8716 
8717       // Skip uses of different values from the same node.
8718       if (Use.getResNo() != From.getResNo()) {
8719         ++UI;
8720         continue;
8721       }
8722 
8723       // If this node hasn't been modified yet, it's still in the CSE maps,
8724       // so remove its old self from the CSE maps.
8725       if (!UserRemovedFromCSEMaps) {
8726         RemoveNodeFromCSEMaps(User);
8727         UserRemovedFromCSEMaps = true;
8728       }
8729 
8730       ++UI;
8731       Use.set(To);
8732       if (To->isDivergent() != From->isDivergent())
8733         updateDivergence(User);
8734     } while (UI != UE && *UI == User);
8735     // We are iterating over all uses of the From node, so if a use
8736     // doesn't use the specific value, no changes are made.
8737     if (!UserRemovedFromCSEMaps)
8738       continue;
8739 
8740     // Now that we have modified User, add it back to the CSE maps.  If it
8741     // already exists there, recursively merge the results together.
8742     AddModifiedNodeToCSEMaps(User);
8743   }
8744 
8745   // If we just RAUW'd the root, take note.
8746   if (From == getRoot())
8747     setRoot(To);
8748 }
8749 
8750 namespace {
8751 
8752   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8753   /// to record information about a use.
8754   struct UseMemo {
8755     SDNode *User;
8756     unsigned Index;
8757     SDUse *Use;
8758   };
8759 
8760   /// operator< - Sort Memos by User.
8761   bool operator<(const UseMemo &L, const UseMemo &R) {
8762     return (intptr_t)L.User < (intptr_t)R.User;
8763   }
8764 
8765 } // end anonymous namespace
8766 
8767 bool SelectionDAG::calculateDivergence(SDNode *N) {
8768   if (TLI->isSDNodeAlwaysUniform(N)) {
8769     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8770            "Conflicting divergence information!");
8771     return false;
8772   }
8773   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8774     return true;
8775   for (auto &Op : N->ops()) {
8776     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8777       return true;
8778   }
8779   return false;
8780 }
8781 
8782 void SelectionDAG::updateDivergence(SDNode *N) {
8783   SmallVector<SDNode *, 16> Worklist(1, N);
8784   do {
8785     N = Worklist.pop_back_val();
8786     bool IsDivergent = calculateDivergence(N);
8787     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8788       N->SDNodeBits.IsDivergent = IsDivergent;
8789       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8790     }
8791   } while (!Worklist.empty());
8792 }
8793 
8794 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8795   DenseMap<SDNode *, unsigned> Degree;
8796   Order.reserve(AllNodes.size());
8797   for (auto &N : allnodes()) {
8798     unsigned NOps = N.getNumOperands();
8799     Degree[&N] = NOps;
8800     if (0 == NOps)
8801       Order.push_back(&N);
8802   }
8803   for (size_t I = 0; I != Order.size(); ++I) {
8804     SDNode *N = Order[I];
8805     for (auto U : N->uses()) {
8806       unsigned &UnsortedOps = Degree[U];
8807       if (0 == --UnsortedOps)
8808         Order.push_back(U);
8809     }
8810   }
8811 }
8812 
8813 #ifndef NDEBUG
8814 void SelectionDAG::VerifyDAGDiverence() {
8815   std::vector<SDNode *> TopoOrder;
8816   CreateTopologicalOrder(TopoOrder);
8817   for (auto *N : TopoOrder) {
8818     assert(calculateDivergence(N) == N->isDivergent() &&
8819            "Divergence bit inconsistency detected");
8820   }
8821 }
8822 #endif
8823 
8824 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8825 /// uses of other values produced by From.getNode() alone.  The same value
8826 /// may appear in both the From and To list.  The Deleted vector is
8827 /// handled the same way as for ReplaceAllUsesWith.
8828 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8829                                               const SDValue *To,
8830                                               unsigned Num){
8831   // Handle the simple, trivial case efficiently.
8832   if (Num == 1)
8833     return ReplaceAllUsesOfValueWith(*From, *To);
8834 
8835   transferDbgValues(*From, *To);
8836 
8837   // Read up all the uses and make records of them. This helps
8838   // processing new uses that are introduced during the
8839   // replacement process.
8840   SmallVector<UseMemo, 4> Uses;
8841   for (unsigned i = 0; i != Num; ++i) {
8842     unsigned FromResNo = From[i].getResNo();
8843     SDNode *FromNode = From[i].getNode();
8844     for (SDNode::use_iterator UI = FromNode->use_begin(),
8845          E = FromNode->use_end(); UI != E; ++UI) {
8846       SDUse &Use = UI.getUse();
8847       if (Use.getResNo() == FromResNo) {
8848         UseMemo Memo = { *UI, i, &Use };
8849         Uses.push_back(Memo);
8850       }
8851     }
8852   }
8853 
8854   // Sort the uses, so that all the uses from a given User are together.
8855   llvm::sort(Uses);
8856 
8857   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8858        UseIndex != UseIndexEnd; ) {
8859     // We know that this user uses some value of From.  If it is the right
8860     // value, update it.
8861     SDNode *User = Uses[UseIndex].User;
8862 
8863     // This node is about to morph, remove its old self from the CSE maps.
8864     RemoveNodeFromCSEMaps(User);
8865 
8866     // The Uses array is sorted, so all the uses for a given User
8867     // are next to each other in the list.
8868     // To help reduce the number of CSE recomputations, process all
8869     // the uses of this user that we can find this way.
8870     do {
8871       unsigned i = Uses[UseIndex].Index;
8872       SDUse &Use = *Uses[UseIndex].Use;
8873       ++UseIndex;
8874 
8875       Use.set(To[i]);
8876     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8877 
8878     // Now that we have modified User, add it back to the CSE maps.  If it
8879     // already exists there, recursively merge the results together.
8880     AddModifiedNodeToCSEMaps(User);
8881   }
8882 }
8883 
8884 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8885 /// based on their topological order. It returns the maximum id and a vector
8886 /// of the SDNodes* in assigned order by reference.
8887 unsigned SelectionDAG::AssignTopologicalOrder() {
8888   unsigned DAGSize = 0;
8889 
8890   // SortedPos tracks the progress of the algorithm. Nodes before it are
8891   // sorted, nodes after it are unsorted. When the algorithm completes
8892   // it is at the end of the list.
8893   allnodes_iterator SortedPos = allnodes_begin();
8894 
8895   // Visit all the nodes. Move nodes with no operands to the front of
8896   // the list immediately. Annotate nodes that do have operands with their
8897   // operand count. Before we do this, the Node Id fields of the nodes
8898   // may contain arbitrary values. After, the Node Id fields for nodes
8899   // before SortedPos will contain the topological sort index, and the
8900   // Node Id fields for nodes At SortedPos and after will contain the
8901   // count of outstanding operands.
8902   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8903     SDNode *N = &*I++;
8904     checkForCycles(N, this);
8905     unsigned Degree = N->getNumOperands();
8906     if (Degree == 0) {
8907       // A node with no uses, add it to the result array immediately.
8908       N->setNodeId(DAGSize++);
8909       allnodes_iterator Q(N);
8910       if (Q != SortedPos)
8911         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8912       assert(SortedPos != AllNodes.end() && "Overran node list");
8913       ++SortedPos;
8914     } else {
8915       // Temporarily use the Node Id as scratch space for the degree count.
8916       N->setNodeId(Degree);
8917     }
8918   }
8919 
8920   // Visit all the nodes. As we iterate, move nodes into sorted order,
8921   // such that by the time the end is reached all nodes will be sorted.
8922   for (SDNode &Node : allnodes()) {
8923     SDNode *N = &Node;
8924     checkForCycles(N, this);
8925     // N is in sorted position, so all its uses have one less operand
8926     // that needs to be sorted.
8927     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8928          UI != UE; ++UI) {
8929       SDNode *P = *UI;
8930       unsigned Degree = P->getNodeId();
8931       assert(Degree != 0 && "Invalid node degree");
8932       --Degree;
8933       if (Degree == 0) {
8934         // All of P's operands are sorted, so P may sorted now.
8935         P->setNodeId(DAGSize++);
8936         if (P->getIterator() != SortedPos)
8937           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8938         assert(SortedPos != AllNodes.end() && "Overran node list");
8939         ++SortedPos;
8940       } else {
8941         // Update P's outstanding operand count.
8942         P->setNodeId(Degree);
8943       }
8944     }
8945     if (Node.getIterator() == SortedPos) {
8946 #ifndef NDEBUG
8947       allnodes_iterator I(N);
8948       SDNode *S = &*++I;
8949       dbgs() << "Overran sorted position:\n";
8950       S->dumprFull(this); dbgs() << "\n";
8951       dbgs() << "Checking if this is due to cycles\n";
8952       checkForCycles(this, true);
8953 #endif
8954       llvm_unreachable(nullptr);
8955     }
8956   }
8957 
8958   assert(SortedPos == AllNodes.end() &&
8959          "Topological sort incomplete!");
8960   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8961          "First node in topological sort is not the entry token!");
8962   assert(AllNodes.front().getNodeId() == 0 &&
8963          "First node in topological sort has non-zero id!");
8964   assert(AllNodes.front().getNumOperands() == 0 &&
8965          "First node in topological sort has operands!");
8966   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8967          "Last node in topologic sort has unexpected id!");
8968   assert(AllNodes.back().use_empty() &&
8969          "Last node in topologic sort has users!");
8970   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8971   return DAGSize;
8972 }
8973 
8974 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8975 /// value is produced by SD.
8976 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8977   if (SD) {
8978     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8979     SD->setHasDebugValue(true);
8980   }
8981   DbgInfo->add(DB, SD, isParameter);
8982 }
8983 
8984 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8985   DbgInfo->add(DB);
8986 }
8987 
8988 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8989                                                    SDValue NewMemOp) {
8990   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8991   // The new memory operation must have the same position as the old load in
8992   // terms of memory dependency. Create a TokenFactor for the old load and new
8993   // memory operation and update uses of the old load's output chain to use that
8994   // TokenFactor.
8995   SDValue OldChain = SDValue(OldLoad, 1);
8996   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8997   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8998     return NewChain;
8999 
9000   SDValue TokenFactor =
9001       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
9002   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9003   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
9004   return TokenFactor;
9005 }
9006 
9007 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9008                                                      Function **OutFunction) {
9009   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9010 
9011   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9012   auto *Module = MF->getFunction().getParent();
9013   auto *Function = Module->getFunction(Symbol);
9014 
9015   if (OutFunction != nullptr)
9016       *OutFunction = Function;
9017 
9018   if (Function != nullptr) {
9019     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9020     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9021   }
9022 
9023   std::string ErrorStr;
9024   raw_string_ostream ErrorFormatter(ErrorStr);
9025 
9026   ErrorFormatter << "Undefined external symbol ";
9027   ErrorFormatter << '"' << Symbol << '"';
9028   ErrorFormatter.flush();
9029 
9030   report_fatal_error(ErrorStr);
9031 }
9032 
9033 //===----------------------------------------------------------------------===//
9034 //                              SDNode Class
9035 //===----------------------------------------------------------------------===//
9036 
9037 bool llvm::isNullConstant(SDValue V) {
9038   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9039   return Const != nullptr && Const->isNullValue();
9040 }
9041 
9042 bool llvm::isNullFPConstant(SDValue V) {
9043   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9044   return Const != nullptr && Const->isZero() && !Const->isNegative();
9045 }
9046 
9047 bool llvm::isAllOnesConstant(SDValue V) {
9048   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9049   return Const != nullptr && Const->isAllOnesValue();
9050 }
9051 
9052 bool llvm::isOneConstant(SDValue V) {
9053   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9054   return Const != nullptr && Const->isOne();
9055 }
9056 
9057 SDValue llvm::peekThroughBitcasts(SDValue V) {
9058   while (V.getOpcode() == ISD::BITCAST)
9059     V = V.getOperand(0);
9060   return V;
9061 }
9062 
9063 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9064   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9065     V = V.getOperand(0);
9066   return V;
9067 }
9068 
9069 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9070   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9071     V = V.getOperand(0);
9072   return V;
9073 }
9074 
9075 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9076   if (V.getOpcode() != ISD::XOR)
9077     return false;
9078   V = peekThroughBitcasts(V.getOperand(1));
9079   unsigned NumBits = V.getScalarValueSizeInBits();
9080   ConstantSDNode *C =
9081       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9082   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9083 }
9084 
9085 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9086                                           bool AllowTruncation) {
9087   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9088     return CN;
9089 
9090   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9091     BitVector UndefElements;
9092     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9093 
9094     // BuildVectors can truncate their operands. Ignore that case here unless
9095     // AllowTruncation is set.
9096     if (CN && (UndefElements.none() || AllowUndefs)) {
9097       EVT CVT = CN->getValueType(0);
9098       EVT NSVT = N.getValueType().getScalarType();
9099       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9100       if (AllowTruncation || (CVT == NSVT))
9101         return CN;
9102     }
9103   }
9104 
9105   return nullptr;
9106 }
9107 
9108 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9109                                           bool AllowUndefs,
9110                                           bool AllowTruncation) {
9111   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9112     return CN;
9113 
9114   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9115     BitVector UndefElements;
9116     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9117 
9118     // BuildVectors can truncate their operands. Ignore that case here unless
9119     // AllowTruncation is set.
9120     if (CN && (UndefElements.none() || AllowUndefs)) {
9121       EVT CVT = CN->getValueType(0);
9122       EVT NSVT = N.getValueType().getScalarType();
9123       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9124       if (AllowTruncation || (CVT == NSVT))
9125         return CN;
9126     }
9127   }
9128 
9129   return nullptr;
9130 }
9131 
9132 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9133   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9134     return CN;
9135 
9136   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9137     BitVector UndefElements;
9138     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9139     if (CN && (UndefElements.none() || AllowUndefs))
9140       return CN;
9141   }
9142 
9143   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9144     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9145       return CN;
9146 
9147   return nullptr;
9148 }
9149 
9150 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9151                                               const APInt &DemandedElts,
9152                                               bool AllowUndefs) {
9153   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9154     return CN;
9155 
9156   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9157     BitVector UndefElements;
9158     ConstantFPSDNode *CN =
9159         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9160     if (CN && (UndefElements.none() || AllowUndefs))
9161       return CN;
9162   }
9163 
9164   return nullptr;
9165 }
9166 
9167 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9168   // TODO: may want to use peekThroughBitcast() here.
9169   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9170   return C && C->isNullValue();
9171 }
9172 
9173 bool llvm::isOneOrOneSplat(SDValue N) {
9174   // TODO: may want to use peekThroughBitcast() here.
9175   unsigned BitWidth = N.getScalarValueSizeInBits();
9176   ConstantSDNode *C = isConstOrConstSplat(N);
9177   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9178 }
9179 
9180 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9181   N = peekThroughBitcasts(N);
9182   unsigned BitWidth = N.getScalarValueSizeInBits();
9183   ConstantSDNode *C = isConstOrConstSplat(N);
9184   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9185 }
9186 
9187 HandleSDNode::~HandleSDNode() {
9188   DropOperands();
9189 }
9190 
9191 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9192                                          const DebugLoc &DL,
9193                                          const GlobalValue *GA, EVT VT,
9194                                          int64_t o, unsigned TF)
9195     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9196   TheGlobal = GA;
9197 }
9198 
9199 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9200                                          EVT VT, unsigned SrcAS,
9201                                          unsigned DestAS)
9202     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9203       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9204 
9205 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9206                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9207     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9208   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9209   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9210   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9211   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9212 
9213   // We check here that the size of the memory operand fits within the size of
9214   // the MMO. This is because the MMO might indicate only a possible address
9215   // range instead of specifying the affected memory addresses precisely.
9216   // TODO: Make MachineMemOperands aware of scalable vectors.
9217   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9218          "Size mismatch!");
9219 }
9220 
9221 /// Profile - Gather unique data for the node.
9222 ///
9223 void SDNode::Profile(FoldingSetNodeID &ID) const {
9224   AddNodeIDNode(ID, this);
9225 }
9226 
9227 namespace {
9228 
9229   struct EVTArray {
9230     std::vector<EVT> VTs;
9231 
9232     EVTArray() {
9233       VTs.reserve(MVT::LAST_VALUETYPE);
9234       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9235         VTs.push_back(MVT((MVT::SimpleValueType)i));
9236     }
9237   };
9238 
9239 } // end anonymous namespace
9240 
9241 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9242 static ManagedStatic<EVTArray> SimpleVTArray;
9243 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9244 
9245 /// getValueTypeList - Return a pointer to the specified value type.
9246 ///
9247 const EVT *SDNode::getValueTypeList(EVT VT) {
9248   if (VT.isExtended()) {
9249     sys::SmartScopedLock<true> Lock(*VTMutex);
9250     return &(*EVTs->insert(VT).first);
9251   } else {
9252     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9253            "Value type out of range!");
9254     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9255   }
9256 }
9257 
9258 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9259 /// indicated value.  This method ignores uses of other values defined by this
9260 /// operation.
9261 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9262   assert(Value < getNumValues() && "Bad value!");
9263 
9264   // TODO: Only iterate over uses of a given value of the node
9265   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9266     if (UI.getUse().getResNo() == Value) {
9267       if (NUses == 0)
9268         return false;
9269       --NUses;
9270     }
9271   }
9272 
9273   // Found exactly the right number of uses?
9274   return NUses == 0;
9275 }
9276 
9277 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9278 /// value. This method ignores uses of other values defined by this operation.
9279 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9280   assert(Value < getNumValues() && "Bad value!");
9281 
9282   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9283     if (UI.getUse().getResNo() == Value)
9284       return true;
9285 
9286   return false;
9287 }
9288 
9289 /// isOnlyUserOf - Return true if this node is the only use of N.
9290 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9291   bool Seen = false;
9292   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9293     SDNode *User = *I;
9294     if (User == this)
9295       Seen = true;
9296     else
9297       return false;
9298   }
9299 
9300   return Seen;
9301 }
9302 
9303 /// Return true if the only users of N are contained in Nodes.
9304 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9305   bool Seen = false;
9306   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9307     SDNode *User = *I;
9308     if (llvm::any_of(Nodes,
9309                      [&User](const SDNode *Node) { return User == Node; }))
9310       Seen = true;
9311     else
9312       return false;
9313   }
9314 
9315   return Seen;
9316 }
9317 
9318 /// isOperand - Return true if this node is an operand of N.
9319 bool SDValue::isOperandOf(const SDNode *N) const {
9320   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9321 }
9322 
9323 bool SDNode::isOperandOf(const SDNode *N) const {
9324   return any_of(N->op_values(),
9325                 [this](SDValue Op) { return this == Op.getNode(); });
9326 }
9327 
9328 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9329 /// be a chain) reaches the specified operand without crossing any
9330 /// side-effecting instructions on any chain path.  In practice, this looks
9331 /// through token factors and non-volatile loads.  In order to remain efficient,
9332 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9333 ///
9334 /// Note that we only need to examine chains when we're searching for
9335 /// side-effects; SelectionDAG requires that all side-effects are represented
9336 /// by chains, even if another operand would force a specific ordering. This
9337 /// constraint is necessary to allow transformations like splitting loads.
9338 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9339                                              unsigned Depth) const {
9340   if (*this == Dest) return true;
9341 
9342   // Don't search too deeply, we just want to be able to see through
9343   // TokenFactor's etc.
9344   if (Depth == 0) return false;
9345 
9346   // If this is a token factor, all inputs to the TF happen in parallel.
9347   if (getOpcode() == ISD::TokenFactor) {
9348     // First, try a shallow search.
9349     if (is_contained((*this)->ops(), Dest)) {
9350       // We found the chain we want as an operand of this TokenFactor.
9351       // Essentially, we reach the chain without side-effects if we could
9352       // serialize the TokenFactor into a simple chain of operations with
9353       // Dest as the last operation. This is automatically true if the
9354       // chain has one use: there are no other ordering constraints.
9355       // If the chain has more than one use, we give up: some other
9356       // use of Dest might force a side-effect between Dest and the current
9357       // node.
9358       if (Dest.hasOneUse())
9359         return true;
9360     }
9361     // Next, try a deep search: check whether every operand of the TokenFactor
9362     // reaches Dest.
9363     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9364       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9365     });
9366   }
9367 
9368   // Loads don't have side effects, look through them.
9369   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9370     if (Ld->isUnordered())
9371       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9372   }
9373   return false;
9374 }
9375 
9376 bool SDNode::hasPredecessor(const SDNode *N) const {
9377   SmallPtrSet<const SDNode *, 32> Visited;
9378   SmallVector<const SDNode *, 16> Worklist;
9379   Worklist.push_back(this);
9380   return hasPredecessorHelper(N, Visited, Worklist);
9381 }
9382 
9383 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9384   this->Flags.intersectWith(Flags);
9385 }
9386 
9387 SDValue
9388 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9389                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9390                                   bool AllowPartials) {
9391   // The pattern must end in an extract from index 0.
9392   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9393       !isNullConstant(Extract->getOperand(1)))
9394     return SDValue();
9395 
9396   // Match against one of the candidate binary ops.
9397   SDValue Op = Extract->getOperand(0);
9398   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9399         return Op.getOpcode() == unsigned(BinOp);
9400       }))
9401     return SDValue();
9402 
9403   // Floating-point reductions may require relaxed constraints on the final step
9404   // of the reduction because they may reorder intermediate operations.
9405   unsigned CandidateBinOp = Op.getOpcode();
9406   if (Op.getValueType().isFloatingPoint()) {
9407     SDNodeFlags Flags = Op->getFlags();
9408     switch (CandidateBinOp) {
9409     case ISD::FADD:
9410       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9411         return SDValue();
9412       break;
9413     default:
9414       llvm_unreachable("Unhandled FP opcode for binop reduction");
9415     }
9416   }
9417 
9418   // Matching failed - attempt to see if we did enough stages that a partial
9419   // reduction from a subvector is possible.
9420   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9421     if (!AllowPartials || !Op)
9422       return SDValue();
9423     EVT OpVT = Op.getValueType();
9424     EVT OpSVT = OpVT.getScalarType();
9425     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9426     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9427       return SDValue();
9428     BinOp = (ISD::NodeType)CandidateBinOp;
9429     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9430                    getVectorIdxConstant(0, SDLoc(Op)));
9431   };
9432 
9433   // At each stage, we're looking for something that looks like:
9434   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9435   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9436   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9437   // %a = binop <8 x i32> %op, %s
9438   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9439   // we expect something like:
9440   // <4,5,6,7,u,u,u,u>
9441   // <2,3,u,u,u,u,u,u>
9442   // <1,u,u,u,u,u,u,u>
9443   // While a partial reduction match would be:
9444   // <2,3,u,u,u,u,u,u>
9445   // <1,u,u,u,u,u,u,u>
9446   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9447   SDValue PrevOp;
9448   for (unsigned i = 0; i < Stages; ++i) {
9449     unsigned MaskEnd = (1 << i);
9450 
9451     if (Op.getOpcode() != CandidateBinOp)
9452       return PartialReduction(PrevOp, MaskEnd);
9453 
9454     SDValue Op0 = Op.getOperand(0);
9455     SDValue Op1 = Op.getOperand(1);
9456 
9457     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9458     if (Shuffle) {
9459       Op = Op1;
9460     } else {
9461       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9462       Op = Op0;
9463     }
9464 
9465     // The first operand of the shuffle should be the same as the other operand
9466     // of the binop.
9467     if (!Shuffle || Shuffle->getOperand(0) != Op)
9468       return PartialReduction(PrevOp, MaskEnd);
9469 
9470     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9471     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9472       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9473         return PartialReduction(PrevOp, MaskEnd);
9474 
9475     PrevOp = Op;
9476   }
9477 
9478   // Handle subvector reductions, which tend to appear after the shuffle
9479   // reduction stages.
9480   while (Op.getOpcode() == CandidateBinOp) {
9481     unsigned NumElts = Op.getValueType().getVectorNumElements();
9482     SDValue Op0 = Op.getOperand(0);
9483     SDValue Op1 = Op.getOperand(1);
9484     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9485         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9486         Op0.getOperand(0) != Op1.getOperand(0))
9487       break;
9488     SDValue Src = Op0.getOperand(0);
9489     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9490     if (NumSrcElts != (2 * NumElts))
9491       break;
9492     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9493           Op1.getConstantOperandAPInt(1) == NumElts) &&
9494         !(Op1.getConstantOperandAPInt(1) == 0 &&
9495           Op0.getConstantOperandAPInt(1) == NumElts))
9496       break;
9497     Op = Src;
9498   }
9499 
9500   BinOp = (ISD::NodeType)CandidateBinOp;
9501   return Op;
9502 }
9503 
9504 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9505   assert(N->getNumValues() == 1 &&
9506          "Can't unroll a vector with multiple results!");
9507 
9508   EVT VT = N->getValueType(0);
9509   unsigned NE = VT.getVectorNumElements();
9510   EVT EltVT = VT.getVectorElementType();
9511   SDLoc dl(N);
9512 
9513   SmallVector<SDValue, 8> Scalars;
9514   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9515 
9516   // If ResNE is 0, fully unroll the vector op.
9517   if (ResNE == 0)
9518     ResNE = NE;
9519   else if (NE > ResNE)
9520     NE = ResNE;
9521 
9522   unsigned i;
9523   for (i= 0; i != NE; ++i) {
9524     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9525       SDValue Operand = N->getOperand(j);
9526       EVT OperandVT = Operand.getValueType();
9527       if (OperandVT.isVector()) {
9528         // A vector operand; extract a single element.
9529         EVT OperandEltVT = OperandVT.getVectorElementType();
9530         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9531                               Operand, getVectorIdxConstant(i, dl));
9532       } else {
9533         // A scalar operand; just use it as is.
9534         Operands[j] = Operand;
9535       }
9536     }
9537 
9538     switch (N->getOpcode()) {
9539     default: {
9540       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9541                                 N->getFlags()));
9542       break;
9543     }
9544     case ISD::VSELECT:
9545       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9546       break;
9547     case ISD::SHL:
9548     case ISD::SRA:
9549     case ISD::SRL:
9550     case ISD::ROTL:
9551     case ISD::ROTR:
9552       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9553                                getShiftAmountOperand(Operands[0].getValueType(),
9554                                                      Operands[1])));
9555       break;
9556     case ISD::SIGN_EXTEND_INREG: {
9557       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9558       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9559                                 Operands[0],
9560                                 getValueType(ExtVT)));
9561     }
9562     }
9563   }
9564 
9565   for (; i < ResNE; ++i)
9566     Scalars.push_back(getUNDEF(EltVT));
9567 
9568   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9569   return getBuildVector(VecVT, dl, Scalars);
9570 }
9571 
9572 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9573     SDNode *N, unsigned ResNE) {
9574   unsigned Opcode = N->getOpcode();
9575   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9576           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9577           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9578          "Expected an overflow opcode");
9579 
9580   EVT ResVT = N->getValueType(0);
9581   EVT OvVT = N->getValueType(1);
9582   EVT ResEltVT = ResVT.getVectorElementType();
9583   EVT OvEltVT = OvVT.getVectorElementType();
9584   SDLoc dl(N);
9585 
9586   // If ResNE is 0, fully unroll the vector op.
9587   unsigned NE = ResVT.getVectorNumElements();
9588   if (ResNE == 0)
9589     ResNE = NE;
9590   else if (NE > ResNE)
9591     NE = ResNE;
9592 
9593   SmallVector<SDValue, 8> LHSScalars;
9594   SmallVector<SDValue, 8> RHSScalars;
9595   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9596   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9597 
9598   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9599   SDVTList VTs = getVTList(ResEltVT, SVT);
9600   SmallVector<SDValue, 8> ResScalars;
9601   SmallVector<SDValue, 8> OvScalars;
9602   for (unsigned i = 0; i < NE; ++i) {
9603     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9604     SDValue Ov =
9605         getSelect(dl, OvEltVT, Res.getValue(1),
9606                   getBoolConstant(true, dl, OvEltVT, ResVT),
9607                   getConstant(0, dl, OvEltVT));
9608 
9609     ResScalars.push_back(Res);
9610     OvScalars.push_back(Ov);
9611   }
9612 
9613   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9614   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9615 
9616   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9617   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9618   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9619                         getBuildVector(NewOvVT, dl, OvScalars));
9620 }
9621 
9622 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9623                                                   LoadSDNode *Base,
9624                                                   unsigned Bytes,
9625                                                   int Dist) const {
9626   if (LD->isVolatile() || Base->isVolatile())
9627     return false;
9628   // TODO: probably too restrictive for atomics, revisit
9629   if (!LD->isSimple())
9630     return false;
9631   if (LD->isIndexed() || Base->isIndexed())
9632     return false;
9633   if (LD->getChain() != Base->getChain())
9634     return false;
9635   EVT VT = LD->getValueType(0);
9636   if (VT.getSizeInBits() / 8 != Bytes)
9637     return false;
9638 
9639   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9640   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9641 
9642   int64_t Offset = 0;
9643   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9644     return (Dist * Bytes == Offset);
9645   return false;
9646 }
9647 
9648 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9649 /// if it cannot be inferred.
9650 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9651   // If this is a GlobalAddress + cst, return the alignment.
9652   const GlobalValue *GV = nullptr;
9653   int64_t GVOffset = 0;
9654   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9655     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9656     KnownBits Known(PtrWidth);
9657     llvm::computeKnownBits(GV, Known, getDataLayout());
9658     unsigned AlignBits = Known.countMinTrailingZeros();
9659     if (AlignBits)
9660       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9661   }
9662 
9663   // If this is a direct reference to a stack slot, use information about the
9664   // stack slot's alignment.
9665   int FrameIdx = INT_MIN;
9666   int64_t FrameOffset = 0;
9667   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9668     FrameIdx = FI->getIndex();
9669   } else if (isBaseWithConstantOffset(Ptr) &&
9670              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9671     // Handle FI+Cst
9672     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9673     FrameOffset = Ptr.getConstantOperandVal(1);
9674   }
9675 
9676   if (FrameIdx != INT_MIN) {
9677     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9678     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9679   }
9680 
9681   return None;
9682 }
9683 
9684 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9685 /// which is split (or expanded) into two not necessarily identical pieces.
9686 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9687   // Currently all types are split in half.
9688   EVT LoVT, HiVT;
9689   if (!VT.isVector())
9690     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9691   else
9692     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9693 
9694   return std::make_pair(LoVT, HiVT);
9695 }
9696 
9697 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9698 /// type, dependent on an enveloping VT that has been split into two identical
9699 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9700 std::pair<EVT, EVT>
9701 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9702                                        bool *HiIsEmpty) const {
9703   EVT EltTp = VT.getVectorElementType();
9704   // Examples:
9705   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9706   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9707   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9708   //   etc.
9709   ElementCount VTNumElts = VT.getVectorElementCount();
9710   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9711   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9712          "Mixing fixed width and scalable vectors when enveloping a type");
9713   EVT LoVT, HiVT;
9714   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9715     LoVT = EnvVT;
9716     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9717     *HiIsEmpty = false;
9718   } else {
9719     // Flag that hi type has zero storage size, but return split envelop type
9720     // (this would be easier if vector types with zero elements were allowed).
9721     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9722     HiVT = EnvVT;
9723     *HiIsEmpty = true;
9724   }
9725   return std::make_pair(LoVT, HiVT);
9726 }
9727 
9728 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9729 /// low/high part.
9730 std::pair<SDValue, SDValue>
9731 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9732                           const EVT &HiVT) {
9733   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9734          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9735          "Splitting vector with an invalid mixture of fixed and scalable "
9736          "vector types");
9737   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9738              N.getValueType().getVectorMinNumElements() &&
9739          "More vector elements requested than available!");
9740   SDValue Lo, Hi;
9741   Lo =
9742       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9743   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9744   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9745   // IDX with the runtime scaling factor of the result vector type. For
9746   // fixed-width result vectors, that runtime scaling factor is 1.
9747   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9748                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9749   return std::make_pair(Lo, Hi);
9750 }
9751 
9752 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9753 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9754   EVT VT = N.getValueType();
9755   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9756                                 NextPowerOf2(VT.getVectorNumElements()));
9757   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9758                  getVectorIdxConstant(0, DL));
9759 }
9760 
9761 void SelectionDAG::ExtractVectorElements(SDValue Op,
9762                                          SmallVectorImpl<SDValue> &Args,
9763                                          unsigned Start, unsigned Count,
9764                                          EVT EltVT) {
9765   EVT VT = Op.getValueType();
9766   if (Count == 0)
9767     Count = VT.getVectorNumElements();
9768   if (EltVT == EVT())
9769     EltVT = VT.getVectorElementType();
9770   SDLoc SL(Op);
9771   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9772     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9773                            getVectorIdxConstant(i, SL)));
9774   }
9775 }
9776 
9777 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9778 unsigned GlobalAddressSDNode::getAddressSpace() const {
9779   return getGlobal()->getType()->getAddressSpace();
9780 }
9781 
9782 Type *ConstantPoolSDNode::getType() const {
9783   if (isMachineConstantPoolEntry())
9784     return Val.MachineCPVal->getType();
9785   return Val.ConstVal->getType();
9786 }
9787 
9788 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9789                                         unsigned &SplatBitSize,
9790                                         bool &HasAnyUndefs,
9791                                         unsigned MinSplatBits,
9792                                         bool IsBigEndian) const {
9793   EVT VT = getValueType(0);
9794   assert(VT.isVector() && "Expected a vector type");
9795   unsigned VecWidth = VT.getSizeInBits();
9796   if (MinSplatBits > VecWidth)
9797     return false;
9798 
9799   // FIXME: The widths are based on this node's type, but build vectors can
9800   // truncate their operands.
9801   SplatValue = APInt(VecWidth, 0);
9802   SplatUndef = APInt(VecWidth, 0);
9803 
9804   // Get the bits. Bits with undefined values (when the corresponding element
9805   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9806   // in SplatValue. If any of the values are not constant, give up and return
9807   // false.
9808   unsigned int NumOps = getNumOperands();
9809   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9810   unsigned EltWidth = VT.getScalarSizeInBits();
9811 
9812   for (unsigned j = 0; j < NumOps; ++j) {
9813     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9814     SDValue OpVal = getOperand(i);
9815     unsigned BitPos = j * EltWidth;
9816 
9817     if (OpVal.isUndef())
9818       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9819     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9820       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9821     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9822       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9823     else
9824       return false;
9825   }
9826 
9827   // The build_vector is all constants or undefs. Find the smallest element
9828   // size that splats the vector.
9829   HasAnyUndefs = (SplatUndef != 0);
9830 
9831   // FIXME: This does not work for vectors with elements less than 8 bits.
9832   while (VecWidth > 8) {
9833     unsigned HalfSize = VecWidth / 2;
9834     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9835     APInt LowValue = SplatValue.trunc(HalfSize);
9836     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9837     APInt LowUndef = SplatUndef.trunc(HalfSize);
9838 
9839     // If the two halves do not match (ignoring undef bits), stop here.
9840     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9841         MinSplatBits > HalfSize)
9842       break;
9843 
9844     SplatValue = HighValue | LowValue;
9845     SplatUndef = HighUndef & LowUndef;
9846 
9847     VecWidth = HalfSize;
9848   }
9849 
9850   SplatBitSize = VecWidth;
9851   return true;
9852 }
9853 
9854 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9855                                          BitVector *UndefElements) const {
9856   unsigned NumOps = getNumOperands();
9857   if (UndefElements) {
9858     UndefElements->clear();
9859     UndefElements->resize(NumOps);
9860   }
9861   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9862   if (!DemandedElts)
9863     return SDValue();
9864   SDValue Splatted;
9865   for (unsigned i = 0; i != NumOps; ++i) {
9866     if (!DemandedElts[i])
9867       continue;
9868     SDValue Op = getOperand(i);
9869     if (Op.isUndef()) {
9870       if (UndefElements)
9871         (*UndefElements)[i] = true;
9872     } else if (!Splatted) {
9873       Splatted = Op;
9874     } else if (Splatted != Op) {
9875       return SDValue();
9876     }
9877   }
9878 
9879   if (!Splatted) {
9880     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9881     assert(getOperand(FirstDemandedIdx).isUndef() &&
9882            "Can only have a splat without a constant for all undefs.");
9883     return getOperand(FirstDemandedIdx);
9884   }
9885 
9886   return Splatted;
9887 }
9888 
9889 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9890   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9891   return getSplatValue(DemandedElts, UndefElements);
9892 }
9893 
9894 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9895                                             SmallVectorImpl<SDValue> &Sequence,
9896                                             BitVector *UndefElements) const {
9897   unsigned NumOps = getNumOperands();
9898   Sequence.clear();
9899   if (UndefElements) {
9900     UndefElements->clear();
9901     UndefElements->resize(NumOps);
9902   }
9903   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9904   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9905     return false;
9906 
9907   // Set the undefs even if we don't find a sequence (like getSplatValue).
9908   if (UndefElements)
9909     for (unsigned I = 0; I != NumOps; ++I)
9910       if (DemandedElts[I] && getOperand(I).isUndef())
9911         (*UndefElements)[I] = true;
9912 
9913   // Iteratively widen the sequence length looking for repetitions.
9914   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9915     Sequence.append(SeqLen, SDValue());
9916     for (unsigned I = 0; I != NumOps; ++I) {
9917       if (!DemandedElts[I])
9918         continue;
9919       SDValue &SeqOp = Sequence[I % SeqLen];
9920       SDValue Op = getOperand(I);
9921       if (Op.isUndef()) {
9922         if (!SeqOp)
9923           SeqOp = Op;
9924         continue;
9925       }
9926       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9927         Sequence.clear();
9928         break;
9929       }
9930       SeqOp = Op;
9931     }
9932     if (!Sequence.empty())
9933       return true;
9934   }
9935 
9936   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9937   return false;
9938 }
9939 
9940 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
9941                                             BitVector *UndefElements) const {
9942   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9943   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
9944 }
9945 
9946 ConstantSDNode *
9947 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9948                                         BitVector *UndefElements) const {
9949   return dyn_cast_or_null<ConstantSDNode>(
9950       getSplatValue(DemandedElts, UndefElements));
9951 }
9952 
9953 ConstantSDNode *
9954 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9955   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9956 }
9957 
9958 ConstantFPSDNode *
9959 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9960                                           BitVector *UndefElements) const {
9961   return dyn_cast_or_null<ConstantFPSDNode>(
9962       getSplatValue(DemandedElts, UndefElements));
9963 }
9964 
9965 ConstantFPSDNode *
9966 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9967   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9968 }
9969 
9970 int32_t
9971 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9972                                                    uint32_t BitWidth) const {
9973   if (ConstantFPSDNode *CN =
9974           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9975     bool IsExact;
9976     APSInt IntVal(BitWidth);
9977     const APFloat &APF = CN->getValueAPF();
9978     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9979             APFloat::opOK ||
9980         !IsExact)
9981       return -1;
9982 
9983     return IntVal.exactLogBase2();
9984   }
9985   return -1;
9986 }
9987 
9988 bool BuildVectorSDNode::isConstant() const {
9989   for (const SDValue &Op : op_values()) {
9990     unsigned Opc = Op.getOpcode();
9991     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9992       return false;
9993   }
9994   return true;
9995 }
9996 
9997 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9998   // Find the first non-undef value in the shuffle mask.
9999   unsigned i, e;
10000   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10001     /* search */;
10002 
10003   // If all elements are undefined, this shuffle can be considered a splat
10004   // (although it should eventually get simplified away completely).
10005   if (i == e)
10006     return true;
10007 
10008   // Make sure all remaining elements are either undef or the same as the first
10009   // non-undef value.
10010   for (int Idx = Mask[i]; i != e; ++i)
10011     if (Mask[i] >= 0 && Mask[i] != Idx)
10012       return false;
10013   return true;
10014 }
10015 
10016 // Returns the SDNode if it is a constant integer BuildVector
10017 // or constant integer.
10018 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
10019   if (isa<ConstantSDNode>(N))
10020     return N.getNode();
10021   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10022     return N.getNode();
10023   // Treat a GlobalAddress supporting constant offset folding as a
10024   // constant integer.
10025   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10026     if (GA->getOpcode() == ISD::GlobalAddress &&
10027         TLI->isOffsetFoldingLegal(GA))
10028       return GA;
10029   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10030       isa<ConstantSDNode>(N.getOperand(0)))
10031     return N.getNode();
10032   return nullptr;
10033 }
10034 
10035 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
10036   if (isa<ConstantFPSDNode>(N))
10037     return N.getNode();
10038 
10039   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10040     return N.getNode();
10041 
10042   return nullptr;
10043 }
10044 
10045 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10046   assert(!Node->OperandList && "Node already has operands");
10047   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10048          "too many operands to fit into SDNode");
10049   SDUse *Ops = OperandRecycler.allocate(
10050       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10051 
10052   bool IsDivergent = false;
10053   for (unsigned I = 0; I != Vals.size(); ++I) {
10054     Ops[I].setUser(Node);
10055     Ops[I].setInitial(Vals[I]);
10056     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10057       IsDivergent |= Ops[I].getNode()->isDivergent();
10058   }
10059   Node->NumOperands = Vals.size();
10060   Node->OperandList = Ops;
10061   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10062     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10063     Node->SDNodeBits.IsDivergent = IsDivergent;
10064   }
10065   checkForCycles(Node);
10066 }
10067 
10068 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10069                                      SmallVectorImpl<SDValue> &Vals) {
10070   size_t Limit = SDNode::getMaxNumOperands();
10071   while (Vals.size() > Limit) {
10072     unsigned SliceIdx = Vals.size() - Limit;
10073     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10074     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10075     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10076     Vals.emplace_back(NewTF);
10077   }
10078   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10079 }
10080 
10081 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10082                                         EVT VT, SDNodeFlags Flags) {
10083   switch (Opcode) {
10084   default:
10085     return SDValue();
10086   case ISD::ADD:
10087   case ISD::OR:
10088   case ISD::XOR:
10089   case ISD::UMAX:
10090     return getConstant(0, DL, VT);
10091   case ISD::MUL:
10092     return getConstant(1, DL, VT);
10093   case ISD::AND:
10094   case ISD::UMIN:
10095     return getAllOnesConstant(DL, VT);
10096   case ISD::SMAX:
10097     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10098   case ISD::SMIN:
10099     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10100   case ISD::FADD:
10101     return getConstantFP(-0.0, DL, VT);
10102   case ISD::FMUL:
10103     return getConstantFP(1.0, DL, VT);
10104   case ISD::FMINNUM:
10105   case ISD::FMAXNUM: {
10106     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10107     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10108     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10109                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10110                         APFloat::getLargest(Semantics);
10111     if (Opcode == ISD::FMAXNUM)
10112       NeutralAF.changeSign();
10113 
10114     return getConstantFP(NeutralAF, DL, VT);
10115   }
10116   }
10117 }
10118 
10119 #ifndef NDEBUG
10120 static void checkForCyclesHelper(const SDNode *N,
10121                                  SmallPtrSetImpl<const SDNode*> &Visited,
10122                                  SmallPtrSetImpl<const SDNode*> &Checked,
10123                                  const llvm::SelectionDAG *DAG) {
10124   // If this node has already been checked, don't check it again.
10125   if (Checked.count(N))
10126     return;
10127 
10128   // If a node has already been visited on this depth-first walk, reject it as
10129   // a cycle.
10130   if (!Visited.insert(N).second) {
10131     errs() << "Detected cycle in SelectionDAG\n";
10132     dbgs() << "Offending node:\n";
10133     N->dumprFull(DAG); dbgs() << "\n";
10134     abort();
10135   }
10136 
10137   for (const SDValue &Op : N->op_values())
10138     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10139 
10140   Checked.insert(N);
10141   Visited.erase(N);
10142 }
10143 #endif
10144 
10145 void llvm::checkForCycles(const llvm::SDNode *N,
10146                           const llvm::SelectionDAG *DAG,
10147                           bool force) {
10148 #ifndef NDEBUG
10149   bool check = force;
10150 #ifdef EXPENSIVE_CHECKS
10151   check = true;
10152 #endif  // EXPENSIVE_CHECKS
10153   if (check) {
10154     assert(N && "Checking nonexistent SDNode");
10155     SmallPtrSet<const SDNode*, 32> visited;
10156     SmallPtrSet<const SDNode*, 32> checked;
10157     checkForCyclesHelper(N, visited, checked, DAG);
10158   }
10159 #endif  // !NDEBUG
10160 }
10161 
10162 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10163   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10164 }
10165