1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.trunc(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts); 2722 } 2723 return true; 2724 } 2725 break; 2726 } 2727 } 2728 2729 return false; 2730 } 2731 2732 /// Helper wrapper to main isSplatValue function. 2733 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2734 EVT VT = V.getValueType(); 2735 assert(VT.isVector() && "Vector type expected"); 2736 2737 APInt UndefElts; 2738 APInt DemandedElts; 2739 2740 // For now we don't support this with scalable vectors. 2741 if (!VT.isScalableVector()) 2742 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2743 return isSplatValue(V, DemandedElts, UndefElts) && 2744 (AllowUndefs || !UndefElts); 2745 } 2746 2747 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2748 V = peekThroughExtractSubvectors(V); 2749 2750 EVT VT = V.getValueType(); 2751 unsigned Opcode = V.getOpcode(); 2752 switch (Opcode) { 2753 default: { 2754 APInt UndefElts; 2755 APInt DemandedElts; 2756 2757 if (!VT.isScalableVector()) 2758 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2759 2760 if (isSplatValue(V, DemandedElts, UndefElts)) { 2761 if (VT.isScalableVector()) { 2762 // DemandedElts and UndefElts are ignored for scalable vectors, since 2763 // the only supported cases are SPLAT_VECTOR nodes. 2764 SplatIdx = 0; 2765 } else { 2766 // Handle case where all demanded elements are UNDEF. 2767 if (DemandedElts.isSubsetOf(UndefElts)) { 2768 SplatIdx = 0; 2769 return getUNDEF(VT); 2770 } 2771 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2772 } 2773 return V; 2774 } 2775 break; 2776 } 2777 case ISD::SPLAT_VECTOR: 2778 SplatIdx = 0; 2779 return V; 2780 case ISD::VECTOR_SHUFFLE: { 2781 if (VT.isScalableVector()) 2782 return SDValue(); 2783 2784 // Check if this is a shuffle node doing a splat. 2785 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2786 // getTargetVShiftNode currently struggles without the splat source. 2787 auto *SVN = cast<ShuffleVectorSDNode>(V); 2788 if (!SVN->isSplat()) 2789 break; 2790 int Idx = SVN->getSplatIndex(); 2791 int NumElts = V.getValueType().getVectorNumElements(); 2792 SplatIdx = Idx % NumElts; 2793 return V.getOperand(Idx / NumElts); 2794 } 2795 } 2796 2797 return SDValue(); 2798 } 2799 2800 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2801 int SplatIdx; 2802 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2803 EVT SVT = SrcVector.getValueType().getScalarType(); 2804 EVT LegalSVT = SVT; 2805 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2806 if (!SVT.isInteger()) 2807 return SDValue(); 2808 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2809 if (LegalSVT.bitsLT(SVT)) 2810 return SDValue(); 2811 } 2812 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2813 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2814 } 2815 return SDValue(); 2816 } 2817 2818 const APInt * 2819 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2820 const APInt &DemandedElts) const { 2821 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2822 V.getOpcode() == ISD::SRA) && 2823 "Unknown shift node"); 2824 unsigned BitWidth = V.getScalarValueSizeInBits(); 2825 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2826 // Shifting more than the bitwidth is not valid. 2827 const APInt &ShAmt = SA->getAPIntValue(); 2828 if (ShAmt.ult(BitWidth)) 2829 return &ShAmt; 2830 } 2831 return nullptr; 2832 } 2833 2834 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2835 SDValue V, const APInt &DemandedElts) const { 2836 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2837 V.getOpcode() == ISD::SRA) && 2838 "Unknown shift node"); 2839 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2840 return ValidAmt; 2841 unsigned BitWidth = V.getScalarValueSizeInBits(); 2842 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2843 if (!BV) 2844 return nullptr; 2845 const APInt *MinShAmt = nullptr; 2846 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2847 if (!DemandedElts[i]) 2848 continue; 2849 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2850 if (!SA) 2851 return nullptr; 2852 // Shifting more than the bitwidth is not valid. 2853 const APInt &ShAmt = SA->getAPIntValue(); 2854 if (ShAmt.uge(BitWidth)) 2855 return nullptr; 2856 if (MinShAmt && MinShAmt->ule(ShAmt)) 2857 continue; 2858 MinShAmt = &ShAmt; 2859 } 2860 return MinShAmt; 2861 } 2862 2863 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2864 SDValue V, const APInt &DemandedElts) const { 2865 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2866 V.getOpcode() == ISD::SRA) && 2867 "Unknown shift node"); 2868 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2869 return ValidAmt; 2870 unsigned BitWidth = V.getScalarValueSizeInBits(); 2871 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2872 if (!BV) 2873 return nullptr; 2874 const APInt *MaxShAmt = nullptr; 2875 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2876 if (!DemandedElts[i]) 2877 continue; 2878 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2879 if (!SA) 2880 return nullptr; 2881 // Shifting more than the bitwidth is not valid. 2882 const APInt &ShAmt = SA->getAPIntValue(); 2883 if (ShAmt.uge(BitWidth)) 2884 return nullptr; 2885 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2886 continue; 2887 MaxShAmt = &ShAmt; 2888 } 2889 return MaxShAmt; 2890 } 2891 2892 /// Determine which bits of Op are known to be either zero or one and return 2893 /// them in Known. For vectors, the known bits are those that are shared by 2894 /// every vector element. 2895 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2896 EVT VT = Op.getValueType(); 2897 2898 // TOOD: Until we have a plan for how to represent demanded elements for 2899 // scalable vectors, we can just bail out for now. 2900 if (Op.getValueType().isScalableVector()) { 2901 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2902 return KnownBits(BitWidth); 2903 } 2904 2905 APInt DemandedElts = VT.isVector() 2906 ? APInt::getAllOnes(VT.getVectorNumElements()) 2907 : APInt(1, 1); 2908 return computeKnownBits(Op, DemandedElts, Depth); 2909 } 2910 2911 /// Determine which bits of Op are known to be either zero or one and return 2912 /// them in Known. The DemandedElts argument allows us to only collect the known 2913 /// bits that are shared by the requested vector elements. 2914 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2915 unsigned Depth) const { 2916 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2917 2918 KnownBits Known(BitWidth); // Don't know anything. 2919 2920 // TOOD: Until we have a plan for how to represent demanded elements for 2921 // scalable vectors, we can just bail out for now. 2922 if (Op.getValueType().isScalableVector()) 2923 return Known; 2924 2925 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2926 // We know all of the bits for a constant! 2927 return KnownBits::makeConstant(C->getAPIntValue()); 2928 } 2929 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2930 // We know all of the bits for a constant fp! 2931 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2932 } 2933 2934 if (Depth >= MaxRecursionDepth) 2935 return Known; // Limit search depth. 2936 2937 KnownBits Known2; 2938 unsigned NumElts = DemandedElts.getBitWidth(); 2939 assert((!Op.getValueType().isVector() || 2940 NumElts == Op.getValueType().getVectorNumElements()) && 2941 "Unexpected vector size"); 2942 2943 if (!DemandedElts) 2944 return Known; // No demanded elts, better to assume we don't know anything. 2945 2946 unsigned Opcode = Op.getOpcode(); 2947 switch (Opcode) { 2948 case ISD::BUILD_VECTOR: 2949 // Collect the known bits that are shared by every demanded vector element. 2950 Known.Zero.setAllBits(); Known.One.setAllBits(); 2951 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2952 if (!DemandedElts[i]) 2953 continue; 2954 2955 SDValue SrcOp = Op.getOperand(i); 2956 Known2 = computeKnownBits(SrcOp, Depth + 1); 2957 2958 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2959 if (SrcOp.getValueSizeInBits() != BitWidth) { 2960 assert(SrcOp.getValueSizeInBits() > BitWidth && 2961 "Expected BUILD_VECTOR implicit truncation"); 2962 Known2 = Known2.trunc(BitWidth); 2963 } 2964 2965 // Known bits are the values that are shared by every demanded element. 2966 Known = KnownBits::commonBits(Known, Known2); 2967 2968 // If we don't know any bits, early out. 2969 if (Known.isUnknown()) 2970 break; 2971 } 2972 break; 2973 case ISD::VECTOR_SHUFFLE: { 2974 // Collect the known bits that are shared by every vector element referenced 2975 // by the shuffle. 2976 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2977 Known.Zero.setAllBits(); Known.One.setAllBits(); 2978 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2979 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2980 for (unsigned i = 0; i != NumElts; ++i) { 2981 if (!DemandedElts[i]) 2982 continue; 2983 2984 int M = SVN->getMaskElt(i); 2985 if (M < 0) { 2986 // For UNDEF elements, we don't know anything about the common state of 2987 // the shuffle result. 2988 Known.resetAll(); 2989 DemandedLHS.clearAllBits(); 2990 DemandedRHS.clearAllBits(); 2991 break; 2992 } 2993 2994 if ((unsigned)M < NumElts) 2995 DemandedLHS.setBit((unsigned)M % NumElts); 2996 else 2997 DemandedRHS.setBit((unsigned)M % NumElts); 2998 } 2999 // Known bits are the values that are shared by every demanded element. 3000 if (!!DemandedLHS) { 3001 SDValue LHS = Op.getOperand(0); 3002 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3003 Known = KnownBits::commonBits(Known, Known2); 3004 } 3005 // If we don't know any bits, early out. 3006 if (Known.isUnknown()) 3007 break; 3008 if (!!DemandedRHS) { 3009 SDValue RHS = Op.getOperand(1); 3010 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3011 Known = KnownBits::commonBits(Known, Known2); 3012 } 3013 break; 3014 } 3015 case ISD::CONCAT_VECTORS: { 3016 // Split DemandedElts and test each of the demanded subvectors. 3017 Known.Zero.setAllBits(); Known.One.setAllBits(); 3018 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3019 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3020 unsigned NumSubVectors = Op.getNumOperands(); 3021 for (unsigned i = 0; i != NumSubVectors; ++i) { 3022 APInt DemandedSub = 3023 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3024 if (!!DemandedSub) { 3025 SDValue Sub = Op.getOperand(i); 3026 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3027 Known = KnownBits::commonBits(Known, Known2); 3028 } 3029 // If we don't know any bits, early out. 3030 if (Known.isUnknown()) 3031 break; 3032 } 3033 break; 3034 } 3035 case ISD::INSERT_SUBVECTOR: { 3036 // Demand any elements from the subvector and the remainder from the src its 3037 // inserted into. 3038 SDValue Src = Op.getOperand(0); 3039 SDValue Sub = Op.getOperand(1); 3040 uint64_t Idx = Op.getConstantOperandVal(2); 3041 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3042 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3043 APInt DemandedSrcElts = DemandedElts; 3044 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3045 3046 Known.One.setAllBits(); 3047 Known.Zero.setAllBits(); 3048 if (!!DemandedSubElts) { 3049 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3050 if (Known.isUnknown()) 3051 break; // early-out. 3052 } 3053 if (!!DemandedSrcElts) { 3054 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3055 Known = KnownBits::commonBits(Known, Known2); 3056 } 3057 break; 3058 } 3059 case ISD::EXTRACT_SUBVECTOR: { 3060 // Offset the demanded elts by the subvector index. 3061 SDValue Src = Op.getOperand(0); 3062 // Bail until we can represent demanded elements for scalable vectors. 3063 if (Src.getValueType().isScalableVector()) 3064 break; 3065 uint64_t Idx = Op.getConstantOperandVal(1); 3066 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3067 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3068 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3069 break; 3070 } 3071 case ISD::SCALAR_TO_VECTOR: { 3072 // We know about scalar_to_vector as much as we know about it source, 3073 // which becomes the first element of otherwise unknown vector. 3074 if (DemandedElts != 1) 3075 break; 3076 3077 SDValue N0 = Op.getOperand(0); 3078 Known = computeKnownBits(N0, Depth + 1); 3079 if (N0.getValueSizeInBits() != BitWidth) 3080 Known = Known.trunc(BitWidth); 3081 3082 break; 3083 } 3084 case ISD::BITCAST: { 3085 SDValue N0 = Op.getOperand(0); 3086 EVT SubVT = N0.getValueType(); 3087 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3088 3089 // Ignore bitcasts from unsupported types. 3090 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3091 break; 3092 3093 // Fast handling of 'identity' bitcasts. 3094 if (BitWidth == SubBitWidth) { 3095 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3096 break; 3097 } 3098 3099 bool IsLE = getDataLayout().isLittleEndian(); 3100 3101 // Bitcast 'small element' vector to 'large element' scalar/vector. 3102 if ((BitWidth % SubBitWidth) == 0) { 3103 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3104 3105 // Collect known bits for the (larger) output by collecting the known 3106 // bits from each set of sub elements and shift these into place. 3107 // We need to separately call computeKnownBits for each set of 3108 // sub elements as the knownbits for each is likely to be different. 3109 unsigned SubScale = BitWidth / SubBitWidth; 3110 APInt SubDemandedElts(NumElts * SubScale, 0); 3111 for (unsigned i = 0; i != NumElts; ++i) 3112 if (DemandedElts[i]) 3113 SubDemandedElts.setBit(i * SubScale); 3114 3115 for (unsigned i = 0; i != SubScale; ++i) { 3116 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3117 Depth + 1); 3118 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3119 Known.insertBits(Known2, SubBitWidth * Shifts); 3120 } 3121 } 3122 3123 // Bitcast 'large element' scalar/vector to 'small element' vector. 3124 if ((SubBitWidth % BitWidth) == 0) { 3125 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3126 3127 // Collect known bits for the (smaller) output by collecting the known 3128 // bits from the overlapping larger input elements and extracting the 3129 // sub sections we actually care about. 3130 unsigned SubScale = SubBitWidth / BitWidth; 3131 APInt SubDemandedElts = 3132 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3133 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3134 3135 Known.Zero.setAllBits(); Known.One.setAllBits(); 3136 for (unsigned i = 0; i != NumElts; ++i) 3137 if (DemandedElts[i]) { 3138 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3139 unsigned Offset = (Shifts % SubScale) * BitWidth; 3140 Known = KnownBits::commonBits(Known, 3141 Known2.extractBits(BitWidth, Offset)); 3142 // If we don't know any bits, early out. 3143 if (Known.isUnknown()) 3144 break; 3145 } 3146 } 3147 break; 3148 } 3149 case ISD::AND: 3150 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3151 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 3153 Known &= Known2; 3154 break; 3155 case ISD::OR: 3156 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 3159 Known |= Known2; 3160 break; 3161 case ISD::XOR: 3162 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 3165 Known ^= Known2; 3166 break; 3167 case ISD::MUL: { 3168 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3169 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3170 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3171 // TODO: SelfMultiply can be poison, but not undef. 3172 if (SelfMultiply) 3173 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3174 Op.getOperand(0), DemandedElts, false, Depth + 1); 3175 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3176 3177 // If the multiplication is known not to overflow, the product of a number 3178 // with itself is non-negative. Only do this if we didn't already computed 3179 // the opposite value for the sign bit. 3180 if (Op->getFlags().hasNoSignedWrap() && 3181 Op.getOperand(0) == Op.getOperand(1) && 3182 !Known.isNegative()) 3183 Known.makeNonNegative(); 3184 break; 3185 } 3186 case ISD::MULHU: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhu(Known, Known2); 3190 break; 3191 } 3192 case ISD::MULHS: { 3193 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3194 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known = KnownBits::mulhs(Known, Known2); 3196 break; 3197 } 3198 case ISD::UMUL_LOHI: { 3199 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3200 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3201 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3202 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3203 if (Op.getResNo() == 0) 3204 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3205 else 3206 Known = KnownBits::mulhu(Known, Known2); 3207 break; 3208 } 3209 case ISD::SMUL_LOHI: { 3210 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3211 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3212 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3213 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3214 if (Op.getResNo() == 0) 3215 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3216 else 3217 Known = KnownBits::mulhs(Known, Known2); 3218 break; 3219 } 3220 case ISD::UDIV: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = KnownBits::udiv(Known, Known2); 3224 break; 3225 } 3226 case ISD::AVGCEILU: { 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = Known.zext(BitWidth + 1); 3230 Known2 = Known2.zext(BitWidth + 1); 3231 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3232 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3233 Known = Known.extractBits(BitWidth, 1); 3234 break; 3235 } 3236 case ISD::SELECT: 3237 case ISD::VSELECT: 3238 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3239 // If we don't know any bits, early out. 3240 if (Known.isUnknown()) 3241 break; 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3243 3244 // Only known if known in both the LHS and RHS. 3245 Known = KnownBits::commonBits(Known, Known2); 3246 break; 3247 case ISD::SELECT_CC: 3248 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3249 // If we don't know any bits, early out. 3250 if (Known.isUnknown()) 3251 break; 3252 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3253 3254 // Only known if known in both the LHS and RHS. 3255 Known = KnownBits::commonBits(Known, Known2); 3256 break; 3257 case ISD::SMULO: 3258 case ISD::UMULO: 3259 if (Op.getResNo() != 1) 3260 break; 3261 // The boolean result conforms to getBooleanContents. 3262 // If we know the result of a setcc has the top bits zero, use this info. 3263 // We know that we have an integer-based boolean since these operations 3264 // are only available for integer. 3265 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3266 TargetLowering::ZeroOrOneBooleanContent && 3267 BitWidth > 1) 3268 Known.Zero.setBitsFrom(1); 3269 break; 3270 case ISD::SETCC: 3271 case ISD::STRICT_FSETCC: 3272 case ISD::STRICT_FSETCCS: { 3273 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3274 // If we know the result of a setcc has the top bits zero, use this info. 3275 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3276 TargetLowering::ZeroOrOneBooleanContent && 3277 BitWidth > 1) 3278 Known.Zero.setBitsFrom(1); 3279 break; 3280 } 3281 case ISD::SHL: 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 Known = KnownBits::shl(Known, Known2); 3285 3286 // Minimum shift low bits are known zero. 3287 if (const APInt *ShMinAmt = 3288 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3289 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3290 break; 3291 case ISD::SRL: 3292 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3293 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3294 Known = KnownBits::lshr(Known, Known2); 3295 3296 // Minimum shift high bits are known zero. 3297 if (const APInt *ShMinAmt = 3298 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3299 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3300 break; 3301 case ISD::SRA: 3302 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3303 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3304 Known = KnownBits::ashr(Known, Known2); 3305 // TODO: Add minimum shift high known sign bits. 3306 break; 3307 case ISD::FSHL: 3308 case ISD::FSHR: 3309 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3310 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3311 3312 // For fshl, 0-shift returns the 1st arg. 3313 // For fshr, 0-shift returns the 2nd arg. 3314 if (Amt == 0) { 3315 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3316 DemandedElts, Depth + 1); 3317 break; 3318 } 3319 3320 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3321 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3324 if (Opcode == ISD::FSHL) { 3325 Known.One <<= Amt; 3326 Known.Zero <<= Amt; 3327 Known2.One.lshrInPlace(BitWidth - Amt); 3328 Known2.Zero.lshrInPlace(BitWidth - Amt); 3329 } else { 3330 Known.One <<= BitWidth - Amt; 3331 Known.Zero <<= BitWidth - Amt; 3332 Known2.One.lshrInPlace(Amt); 3333 Known2.Zero.lshrInPlace(Amt); 3334 } 3335 Known.One |= Known2.One; 3336 Known.Zero |= Known2.Zero; 3337 } 3338 break; 3339 case ISD::SIGN_EXTEND_INREG: { 3340 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3341 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3342 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3343 break; 3344 } 3345 case ISD::CTTZ: 3346 case ISD::CTTZ_ZERO_UNDEF: { 3347 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3348 // If we have a known 1, its position is our upper bound. 3349 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3350 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3351 Known.Zero.setBitsFrom(LowBits); 3352 break; 3353 } 3354 case ISD::CTLZ: 3355 case ISD::CTLZ_ZERO_UNDEF: { 3356 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 // If we have a known 1, its position is our upper bound. 3358 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3359 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3360 Known.Zero.setBitsFrom(LowBits); 3361 break; 3362 } 3363 case ISD::CTPOP: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 // If we know some of the bits are zero, they can't be one. 3366 unsigned PossibleOnes = Known2.countMaxPopulation(); 3367 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3368 break; 3369 } 3370 case ISD::PARITY: { 3371 // Parity returns 0 everywhere but the LSB. 3372 Known.Zero.setBitsFrom(1); 3373 break; 3374 } 3375 case ISD::LOAD: { 3376 LoadSDNode *LD = cast<LoadSDNode>(Op); 3377 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3378 if (ISD::isNON_EXTLoad(LD) && Cst) { 3379 // Determine any common known bits from the loaded constant pool value. 3380 Type *CstTy = Cst->getType(); 3381 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3382 // If its a vector splat, then we can (quickly) reuse the scalar path. 3383 // NOTE: We assume all elements match and none are UNDEF. 3384 if (CstTy->isVectorTy()) { 3385 if (const Constant *Splat = Cst->getSplatValue()) { 3386 Cst = Splat; 3387 CstTy = Cst->getType(); 3388 } 3389 } 3390 // TODO - do we need to handle different bitwidths? 3391 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3392 // Iterate across all vector elements finding common known bits. 3393 Known.One.setAllBits(); 3394 Known.Zero.setAllBits(); 3395 for (unsigned i = 0; i != NumElts; ++i) { 3396 if (!DemandedElts[i]) 3397 continue; 3398 if (Constant *Elt = Cst->getAggregateElement(i)) { 3399 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3400 const APInt &Value = CInt->getValue(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3406 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3407 Known.One &= Value; 3408 Known.Zero &= ~Value; 3409 continue; 3410 } 3411 } 3412 Known.One.clearAllBits(); 3413 Known.Zero.clearAllBits(); 3414 break; 3415 } 3416 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3417 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3418 Known = KnownBits::makeConstant(CInt->getValue()); 3419 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3420 Known = 3421 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3422 } 3423 } 3424 } 3425 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3426 // If this is a ZEXTLoad and we are looking at the loaded value. 3427 EVT VT = LD->getMemoryVT(); 3428 unsigned MemBits = VT.getScalarSizeInBits(); 3429 Known.Zero.setBitsFrom(MemBits); 3430 } else if (const MDNode *Ranges = LD->getRanges()) { 3431 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3432 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3433 } 3434 break; 3435 } 3436 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3437 EVT InVT = Op.getOperand(0).getValueType(); 3438 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3439 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3440 Known = Known.zext(BitWidth); 3441 break; 3442 } 3443 case ISD::ZERO_EXTEND: { 3444 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3445 Known = Known.zext(BitWidth); 3446 break; 3447 } 3448 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3449 EVT InVT = Op.getOperand(0).getValueType(); 3450 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3451 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3452 // If the sign bit is known to be zero or one, then sext will extend 3453 // it to the top bits, else it will just zext. 3454 Known = Known.sext(BitWidth); 3455 break; 3456 } 3457 case ISD::SIGN_EXTEND: { 3458 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 // If the sign bit is known to be zero or one, then sext will extend 3460 // it to the top bits, else it will just zext. 3461 Known = Known.sext(BitWidth); 3462 break; 3463 } 3464 case ISD::ANY_EXTEND_VECTOR_INREG: { 3465 EVT InVT = Op.getOperand(0).getValueType(); 3466 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3467 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3468 Known = Known.anyext(BitWidth); 3469 break; 3470 } 3471 case ISD::ANY_EXTEND: { 3472 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3473 Known = Known.anyext(BitWidth); 3474 break; 3475 } 3476 case ISD::TRUNCATE: { 3477 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3478 Known = Known.trunc(BitWidth); 3479 break; 3480 } 3481 case ISD::AssertZext: { 3482 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3483 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3484 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3485 Known.Zero |= (~InMask); 3486 Known.One &= (~Known.Zero); 3487 break; 3488 } 3489 case ISD::AssertAlign: { 3490 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3491 assert(LogOfAlign != 0); 3492 3493 // TODO: Should use maximum with source 3494 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3495 // well as clearing one bits. 3496 Known.Zero.setLowBits(LogOfAlign); 3497 Known.One.clearLowBits(LogOfAlign); 3498 break; 3499 } 3500 case ISD::FGETSIGN: 3501 // All bits are zero except the low bit. 3502 Known.Zero.setBitsFrom(1); 3503 break; 3504 case ISD::USUBO: 3505 case ISD::SSUBO: 3506 if (Op.getResNo() == 1) { 3507 // If we know the result of a setcc has the top bits zero, use this info. 3508 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3509 TargetLowering::ZeroOrOneBooleanContent && 3510 BitWidth > 1) 3511 Known.Zero.setBitsFrom(1); 3512 break; 3513 } 3514 LLVM_FALLTHROUGH; 3515 case ISD::SUB: 3516 case ISD::SUBC: { 3517 assert(Op.getResNo() == 0 && 3518 "We only compute knownbits for the difference here."); 3519 3520 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3522 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3523 Known, Known2); 3524 break; 3525 } 3526 case ISD::UADDO: 3527 case ISD::SADDO: 3528 case ISD::ADDCARRY: 3529 if (Op.getResNo() == 1) { 3530 // If we know the result of a setcc has the top bits zero, use this info. 3531 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3532 TargetLowering::ZeroOrOneBooleanContent && 3533 BitWidth > 1) 3534 Known.Zero.setBitsFrom(1); 3535 break; 3536 } 3537 LLVM_FALLTHROUGH; 3538 case ISD::ADD: 3539 case ISD::ADDC: 3540 case ISD::ADDE: { 3541 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3542 3543 // With ADDE and ADDCARRY, a carry bit may be added in. 3544 KnownBits Carry(1); 3545 if (Opcode == ISD::ADDE) 3546 // Can't track carry from glue, set carry to unknown. 3547 Carry.resetAll(); 3548 else if (Opcode == ISD::ADDCARRY) 3549 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3550 // the trouble (how often will we find a known carry bit). And I haven't 3551 // tested this very much yet, but something like this might work: 3552 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3553 // Carry = Carry.zextOrTrunc(1, false); 3554 Carry.resetAll(); 3555 else 3556 Carry.setAllZero(); 3557 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3561 break; 3562 } 3563 case ISD::SREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::srem(Known, Known2); 3567 break; 3568 } 3569 case ISD::UREM: { 3570 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3571 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3572 Known = KnownBits::urem(Known, Known2); 3573 break; 3574 } 3575 case ISD::EXTRACT_ELEMENT: { 3576 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3577 const unsigned Index = Op.getConstantOperandVal(1); 3578 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3579 3580 // Remove low part of known bits mask 3581 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3582 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3583 3584 // Remove high part of known bit mask 3585 Known = Known.trunc(EltBitWidth); 3586 break; 3587 } 3588 case ISD::EXTRACT_VECTOR_ELT: { 3589 SDValue InVec = Op.getOperand(0); 3590 SDValue EltNo = Op.getOperand(1); 3591 EVT VecVT = InVec.getValueType(); 3592 // computeKnownBits not yet implemented for scalable vectors. 3593 if (VecVT.isScalableVector()) 3594 break; 3595 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3596 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3597 3598 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3599 // anything about the extended bits. 3600 if (BitWidth > EltBitWidth) 3601 Known = Known.trunc(EltBitWidth); 3602 3603 // If we know the element index, just demand that vector element, else for 3604 // an unknown element index, ignore DemandedElts and demand them all. 3605 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3606 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3607 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3608 DemandedSrcElts = 3609 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3610 3611 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3612 if (BitWidth > EltBitWidth) 3613 Known = Known.anyext(BitWidth); 3614 break; 3615 } 3616 case ISD::INSERT_VECTOR_ELT: { 3617 // If we know the element index, split the demand between the 3618 // source vector and the inserted element, otherwise assume we need 3619 // the original demanded vector elements and the value. 3620 SDValue InVec = Op.getOperand(0); 3621 SDValue InVal = Op.getOperand(1); 3622 SDValue EltNo = Op.getOperand(2); 3623 bool DemandedVal = true; 3624 APInt DemandedVecElts = DemandedElts; 3625 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3626 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3627 unsigned EltIdx = CEltNo->getZExtValue(); 3628 DemandedVal = !!DemandedElts[EltIdx]; 3629 DemandedVecElts.clearBit(EltIdx); 3630 } 3631 Known.One.setAllBits(); 3632 Known.Zero.setAllBits(); 3633 if (DemandedVal) { 3634 Known2 = computeKnownBits(InVal, Depth + 1); 3635 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3636 } 3637 if (!!DemandedVecElts) { 3638 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3639 Known = KnownBits::commonBits(Known, Known2); 3640 } 3641 break; 3642 } 3643 case ISD::BITREVERSE: { 3644 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3645 Known = Known2.reverseBits(); 3646 break; 3647 } 3648 case ISD::BSWAP: { 3649 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3650 Known = Known2.byteSwap(); 3651 break; 3652 } 3653 case ISD::ABS: { 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known = Known2.abs(); 3656 break; 3657 } 3658 case ISD::USUBSAT: { 3659 // The result of usubsat will never be larger than the LHS. 3660 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3662 break; 3663 } 3664 case ISD::UMIN: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umin(Known, Known2); 3668 break; 3669 } 3670 case ISD::UMAX: { 3671 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3672 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3673 Known = KnownBits::umax(Known, Known2); 3674 break; 3675 } 3676 case ISD::SMIN: 3677 case ISD::SMAX: { 3678 // If we have a clamp pattern, we know that the number of sign bits will be 3679 // the minimum of the clamp min/max range. 3680 bool IsMax = (Opcode == ISD::SMAX); 3681 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3682 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3683 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3684 CstHigh = 3685 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3686 if (CstLow && CstHigh) { 3687 if (!IsMax) 3688 std::swap(CstLow, CstHigh); 3689 3690 const APInt &ValueLow = CstLow->getAPIntValue(); 3691 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3692 if (ValueLow.sle(ValueHigh)) { 3693 unsigned LowSignBits = ValueLow.getNumSignBits(); 3694 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3695 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3696 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3697 Known.One.setHighBits(MinSignBits); 3698 break; 3699 } 3700 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3701 Known.Zero.setHighBits(MinSignBits); 3702 break; 3703 } 3704 } 3705 } 3706 3707 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3708 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3709 if (IsMax) 3710 Known = KnownBits::smax(Known, Known2); 3711 else 3712 Known = KnownBits::smin(Known, Known2); 3713 3714 // For SMAX, if CstLow is non-negative we know the result will be 3715 // non-negative and thus all sign bits are 0. 3716 // TODO: There's an equivalent of this for smin with negative constant for 3717 // known ones. 3718 if (IsMax && CstLow) { 3719 const APInt &ValueLow = CstLow->getAPIntValue(); 3720 if (ValueLow.isNonNegative()) { 3721 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3722 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3723 } 3724 } 3725 3726 break; 3727 } 3728 case ISD::FP_TO_UINT_SAT: { 3729 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3730 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3731 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3732 break; 3733 } 3734 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3735 if (Op.getResNo() == 1) { 3736 // The boolean result conforms to getBooleanContents. 3737 // If we know the result of a setcc has the top bits zero, use this info. 3738 // We know that we have an integer-based boolean since these operations 3739 // are only available for integer. 3740 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3741 TargetLowering::ZeroOrOneBooleanContent && 3742 BitWidth > 1) 3743 Known.Zero.setBitsFrom(1); 3744 break; 3745 } 3746 LLVM_FALLTHROUGH; 3747 case ISD::ATOMIC_CMP_SWAP: 3748 case ISD::ATOMIC_SWAP: 3749 case ISD::ATOMIC_LOAD_ADD: 3750 case ISD::ATOMIC_LOAD_SUB: 3751 case ISD::ATOMIC_LOAD_AND: 3752 case ISD::ATOMIC_LOAD_CLR: 3753 case ISD::ATOMIC_LOAD_OR: 3754 case ISD::ATOMIC_LOAD_XOR: 3755 case ISD::ATOMIC_LOAD_NAND: 3756 case ISD::ATOMIC_LOAD_MIN: 3757 case ISD::ATOMIC_LOAD_MAX: 3758 case ISD::ATOMIC_LOAD_UMIN: 3759 case ISD::ATOMIC_LOAD_UMAX: 3760 case ISD::ATOMIC_LOAD: { 3761 unsigned MemBits = 3762 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3763 // If we are looking at the loaded value. 3764 if (Op.getResNo() == 0) { 3765 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3766 Known.Zero.setBitsFrom(MemBits); 3767 } 3768 break; 3769 } 3770 case ISD::FrameIndex: 3771 case ISD::TargetFrameIndex: 3772 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3773 Known, getMachineFunction()); 3774 break; 3775 3776 default: 3777 if (Opcode < ISD::BUILTIN_OP_END) 3778 break; 3779 LLVM_FALLTHROUGH; 3780 case ISD::INTRINSIC_WO_CHAIN: 3781 case ISD::INTRINSIC_W_CHAIN: 3782 case ISD::INTRINSIC_VOID: 3783 // Allow the target to implement this method for its nodes. 3784 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3785 break; 3786 } 3787 3788 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3789 return Known; 3790 } 3791 3792 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3793 SDValue N1) const { 3794 // X + 0 never overflow 3795 if (isNullConstant(N1)) 3796 return OFK_Never; 3797 3798 KnownBits N1Known = computeKnownBits(N1); 3799 if (N1Known.Zero.getBoolValue()) { 3800 KnownBits N0Known = computeKnownBits(N0); 3801 3802 bool overflow; 3803 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3804 if (!overflow) 3805 return OFK_Never; 3806 } 3807 3808 // mulhi + 1 never overflow 3809 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3810 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3811 return OFK_Never; 3812 3813 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3814 KnownBits N0Known = computeKnownBits(N0); 3815 3816 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3817 return OFK_Never; 3818 } 3819 3820 return OFK_Sometime; 3821 } 3822 3823 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3824 EVT OpVT = Val.getValueType(); 3825 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3826 3827 // Is the constant a known power of 2? 3828 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3829 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3830 3831 // A left-shift of a constant one will have exactly one bit set because 3832 // shifting the bit off the end is undefined. 3833 if (Val.getOpcode() == ISD::SHL) { 3834 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3835 if (C && C->getAPIntValue() == 1) 3836 return true; 3837 } 3838 3839 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3840 // one bit set. 3841 if (Val.getOpcode() == ISD::SRL) { 3842 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3843 if (C && C->getAPIntValue().isSignMask()) 3844 return true; 3845 } 3846 3847 // Are all operands of a build vector constant powers of two? 3848 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3849 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3850 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3851 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3852 return false; 3853 })) 3854 return true; 3855 3856 // Is the operand of a splat vector a constant power of two? 3857 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3858 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3859 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3860 return true; 3861 3862 // More could be done here, though the above checks are enough 3863 // to handle some common cases. 3864 3865 // Fall back to computeKnownBits to catch other known cases. 3866 KnownBits Known = computeKnownBits(Val); 3867 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3868 } 3869 3870 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3871 EVT VT = Op.getValueType(); 3872 3873 // TODO: Assume we don't know anything for now. 3874 if (VT.isScalableVector()) 3875 return 1; 3876 3877 APInt DemandedElts = VT.isVector() 3878 ? APInt::getAllOnes(VT.getVectorNumElements()) 3879 : APInt(1, 1); 3880 return ComputeNumSignBits(Op, DemandedElts, Depth); 3881 } 3882 3883 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3884 unsigned Depth) const { 3885 EVT VT = Op.getValueType(); 3886 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3887 unsigned VTBits = VT.getScalarSizeInBits(); 3888 unsigned NumElts = DemandedElts.getBitWidth(); 3889 unsigned Tmp, Tmp2; 3890 unsigned FirstAnswer = 1; 3891 3892 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3893 const APInt &Val = C->getAPIntValue(); 3894 return Val.getNumSignBits(); 3895 } 3896 3897 if (Depth >= MaxRecursionDepth) 3898 return 1; // Limit search depth. 3899 3900 if (!DemandedElts || VT.isScalableVector()) 3901 return 1; // No demanded elts, better to assume we don't know anything. 3902 3903 unsigned Opcode = Op.getOpcode(); 3904 switch (Opcode) { 3905 default: break; 3906 case ISD::AssertSext: 3907 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3908 return VTBits-Tmp+1; 3909 case ISD::AssertZext: 3910 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3911 return VTBits-Tmp; 3912 3913 case ISD::BUILD_VECTOR: 3914 Tmp = VTBits; 3915 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3916 if (!DemandedElts[i]) 3917 continue; 3918 3919 SDValue SrcOp = Op.getOperand(i); 3920 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3921 3922 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3923 if (SrcOp.getValueSizeInBits() != VTBits) { 3924 assert(SrcOp.getValueSizeInBits() > VTBits && 3925 "Expected BUILD_VECTOR implicit truncation"); 3926 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3927 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3928 } 3929 Tmp = std::min(Tmp, Tmp2); 3930 } 3931 return Tmp; 3932 3933 case ISD::VECTOR_SHUFFLE: { 3934 // Collect the minimum number of sign bits that are shared by every vector 3935 // element referenced by the shuffle. 3936 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3937 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3938 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3939 for (unsigned i = 0; i != NumElts; ++i) { 3940 int M = SVN->getMaskElt(i); 3941 if (!DemandedElts[i]) 3942 continue; 3943 // For UNDEF elements, we don't know anything about the common state of 3944 // the shuffle result. 3945 if (M < 0) 3946 return 1; 3947 if ((unsigned)M < NumElts) 3948 DemandedLHS.setBit((unsigned)M % NumElts); 3949 else 3950 DemandedRHS.setBit((unsigned)M % NumElts); 3951 } 3952 Tmp = std::numeric_limits<unsigned>::max(); 3953 if (!!DemandedLHS) 3954 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3955 if (!!DemandedRHS) { 3956 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3957 Tmp = std::min(Tmp, Tmp2); 3958 } 3959 // If we don't know anything, early out and try computeKnownBits fall-back. 3960 if (Tmp == 1) 3961 break; 3962 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3963 return Tmp; 3964 } 3965 3966 case ISD::BITCAST: { 3967 SDValue N0 = Op.getOperand(0); 3968 EVT SrcVT = N0.getValueType(); 3969 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3970 3971 // Ignore bitcasts from unsupported types.. 3972 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3973 break; 3974 3975 // Fast handling of 'identity' bitcasts. 3976 if (VTBits == SrcBits) 3977 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3978 3979 bool IsLE = getDataLayout().isLittleEndian(); 3980 3981 // Bitcast 'large element' scalar/vector to 'small element' vector. 3982 if ((SrcBits % VTBits) == 0) { 3983 assert(VT.isVector() && "Expected bitcast to vector"); 3984 3985 unsigned Scale = SrcBits / VTBits; 3986 APInt SrcDemandedElts = 3987 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3988 3989 // Fast case - sign splat can be simply split across the small elements. 3990 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3991 if (Tmp == SrcBits) 3992 return VTBits; 3993 3994 // Slow case - determine how far the sign extends into each sub-element. 3995 Tmp2 = VTBits; 3996 for (unsigned i = 0; i != NumElts; ++i) 3997 if (DemandedElts[i]) { 3998 unsigned SubOffset = i % Scale; 3999 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4000 SubOffset = SubOffset * VTBits; 4001 if (Tmp <= SubOffset) 4002 return 1; 4003 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4004 } 4005 return Tmp2; 4006 } 4007 break; 4008 } 4009 4010 case ISD::FP_TO_SINT_SAT: 4011 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4012 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4013 return VTBits - Tmp + 1; 4014 case ISD::SIGN_EXTEND: 4015 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4016 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4017 case ISD::SIGN_EXTEND_INREG: 4018 // Max of the input and what this extends. 4019 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4020 Tmp = VTBits-Tmp+1; 4021 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4022 return std::max(Tmp, Tmp2); 4023 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4024 SDValue Src = Op.getOperand(0); 4025 EVT SrcVT = Src.getValueType(); 4026 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4027 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4028 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4029 } 4030 case ISD::SRA: 4031 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4032 // SRA X, C -> adds C sign bits. 4033 if (const APInt *ShAmt = 4034 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4035 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4036 return Tmp; 4037 case ISD::SHL: 4038 if (const APInt *ShAmt = 4039 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4040 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4041 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4042 if (ShAmt->ult(Tmp)) 4043 return Tmp - ShAmt->getZExtValue(); 4044 } 4045 break; 4046 case ISD::AND: 4047 case ISD::OR: 4048 case ISD::XOR: // NOT is handled here. 4049 // Logical binary ops preserve the number of sign bits at the worst. 4050 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4051 if (Tmp != 1) { 4052 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4053 FirstAnswer = std::min(Tmp, Tmp2); 4054 // We computed what we know about the sign bits as our first 4055 // answer. Now proceed to the generic code that uses 4056 // computeKnownBits, and pick whichever answer is better. 4057 } 4058 break; 4059 4060 case ISD::SELECT: 4061 case ISD::VSELECT: 4062 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4063 if (Tmp == 1) return 1; // Early out. 4064 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4065 return std::min(Tmp, Tmp2); 4066 case ISD::SELECT_CC: 4067 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4068 if (Tmp == 1) return 1; // Early out. 4069 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4070 return std::min(Tmp, Tmp2); 4071 4072 case ISD::SMIN: 4073 case ISD::SMAX: { 4074 // If we have a clamp pattern, we know that the number of sign bits will be 4075 // the minimum of the clamp min/max range. 4076 bool IsMax = (Opcode == ISD::SMAX); 4077 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4078 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4079 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4080 CstHigh = 4081 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4082 if (CstLow && CstHigh) { 4083 if (!IsMax) 4084 std::swap(CstLow, CstHigh); 4085 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4086 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4087 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4088 return std::min(Tmp, Tmp2); 4089 } 4090 } 4091 4092 // Fallback - just get the minimum number of sign bits of the operands. 4093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4094 if (Tmp == 1) 4095 return 1; // Early out. 4096 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4097 return std::min(Tmp, Tmp2); 4098 } 4099 case ISD::UMIN: 4100 case ISD::UMAX: 4101 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4102 if (Tmp == 1) 4103 return 1; // Early out. 4104 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4105 return std::min(Tmp, Tmp2); 4106 case ISD::SADDO: 4107 case ISD::UADDO: 4108 case ISD::SSUBO: 4109 case ISD::USUBO: 4110 case ISD::SMULO: 4111 case ISD::UMULO: 4112 if (Op.getResNo() != 1) 4113 break; 4114 // The boolean result conforms to getBooleanContents. Fall through. 4115 // If setcc returns 0/-1, all bits are sign bits. 4116 // We know that we have an integer-based boolean since these operations 4117 // are only available for integer. 4118 if (TLI->getBooleanContents(VT.isVector(), false) == 4119 TargetLowering::ZeroOrNegativeOneBooleanContent) 4120 return VTBits; 4121 break; 4122 case ISD::SETCC: 4123 case ISD::STRICT_FSETCC: 4124 case ISD::STRICT_FSETCCS: { 4125 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4126 // If setcc returns 0/-1, all bits are sign bits. 4127 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4128 TargetLowering::ZeroOrNegativeOneBooleanContent) 4129 return VTBits; 4130 break; 4131 } 4132 case ISD::ROTL: 4133 case ISD::ROTR: 4134 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4135 4136 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4137 if (Tmp == VTBits) 4138 return VTBits; 4139 4140 if (ConstantSDNode *C = 4141 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4142 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4143 4144 // Handle rotate right by N like a rotate left by 32-N. 4145 if (Opcode == ISD::ROTR) 4146 RotAmt = (VTBits - RotAmt) % VTBits; 4147 4148 // If we aren't rotating out all of the known-in sign bits, return the 4149 // number that are left. This handles rotl(sext(x), 1) for example. 4150 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4151 } 4152 break; 4153 case ISD::ADD: 4154 case ISD::ADDC: 4155 // Add can have at most one carry bit. Thus we know that the output 4156 // is, at worst, one more bit than the inputs. 4157 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4158 if (Tmp == 1) return 1; // Early out. 4159 4160 // Special case decrementing a value (ADD X, -1): 4161 if (ConstantSDNode *CRHS = 4162 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4163 if (CRHS->isAllOnes()) { 4164 KnownBits Known = 4165 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4166 4167 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4168 // sign bits set. 4169 if ((Known.Zero | 1).isAllOnes()) 4170 return VTBits; 4171 4172 // If we are subtracting one from a positive number, there is no carry 4173 // out of the result. 4174 if (Known.isNonNegative()) 4175 return Tmp; 4176 } 4177 4178 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4179 if (Tmp2 == 1) return 1; // Early out. 4180 return std::min(Tmp, Tmp2) - 1; 4181 case ISD::SUB: 4182 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4183 if (Tmp2 == 1) return 1; // Early out. 4184 4185 // Handle NEG. 4186 if (ConstantSDNode *CLHS = 4187 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4188 if (CLHS->isZero()) { 4189 KnownBits Known = 4190 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4191 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4192 // sign bits set. 4193 if ((Known.Zero | 1).isAllOnes()) 4194 return VTBits; 4195 4196 // If the input is known to be positive (the sign bit is known clear), 4197 // the output of the NEG has the same number of sign bits as the input. 4198 if (Known.isNonNegative()) 4199 return Tmp2; 4200 4201 // Otherwise, we treat this like a SUB. 4202 } 4203 4204 // Sub can have at most one carry bit. Thus we know that the output 4205 // is, at worst, one more bit than the inputs. 4206 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4207 if (Tmp == 1) return 1; // Early out. 4208 return std::min(Tmp, Tmp2) - 1; 4209 case ISD::MUL: { 4210 // The output of the Mul can be at most twice the valid bits in the inputs. 4211 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4212 if (SignBitsOp0 == 1) 4213 break; 4214 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4215 if (SignBitsOp1 == 1) 4216 break; 4217 unsigned OutValidBits = 4218 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4219 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4220 } 4221 case ISD::SREM: 4222 // The sign bit is the LHS's sign bit, except when the result of the 4223 // remainder is zero. The magnitude of the result should be less than or 4224 // equal to the magnitude of the LHS. Therefore, the result should have 4225 // at least as many sign bits as the left hand side. 4226 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4227 case ISD::TRUNCATE: { 4228 // Check if the sign bits of source go down as far as the truncated value. 4229 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4230 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4231 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4232 return NumSrcSignBits - (NumSrcBits - VTBits); 4233 break; 4234 } 4235 case ISD::EXTRACT_ELEMENT: { 4236 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4237 const int BitWidth = Op.getValueSizeInBits(); 4238 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4239 4240 // Get reverse index (starting from 1), Op1 value indexes elements from 4241 // little end. Sign starts at big end. 4242 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4243 4244 // If the sign portion ends in our element the subtraction gives correct 4245 // result. Otherwise it gives either negative or > bitwidth result 4246 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4247 } 4248 case ISD::INSERT_VECTOR_ELT: { 4249 // If we know the element index, split the demand between the 4250 // source vector and the inserted element, otherwise assume we need 4251 // the original demanded vector elements and the value. 4252 SDValue InVec = Op.getOperand(0); 4253 SDValue InVal = Op.getOperand(1); 4254 SDValue EltNo = Op.getOperand(2); 4255 bool DemandedVal = true; 4256 APInt DemandedVecElts = DemandedElts; 4257 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4258 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4259 unsigned EltIdx = CEltNo->getZExtValue(); 4260 DemandedVal = !!DemandedElts[EltIdx]; 4261 DemandedVecElts.clearBit(EltIdx); 4262 } 4263 Tmp = std::numeric_limits<unsigned>::max(); 4264 if (DemandedVal) { 4265 // TODO - handle implicit truncation of inserted elements. 4266 if (InVal.getScalarValueSizeInBits() != VTBits) 4267 break; 4268 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4269 Tmp = std::min(Tmp, Tmp2); 4270 } 4271 if (!!DemandedVecElts) { 4272 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4273 Tmp = std::min(Tmp, Tmp2); 4274 } 4275 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4276 return Tmp; 4277 } 4278 case ISD::EXTRACT_VECTOR_ELT: { 4279 SDValue InVec = Op.getOperand(0); 4280 SDValue EltNo = Op.getOperand(1); 4281 EVT VecVT = InVec.getValueType(); 4282 // ComputeNumSignBits not yet implemented for scalable vectors. 4283 if (VecVT.isScalableVector()) 4284 break; 4285 const unsigned BitWidth = Op.getValueSizeInBits(); 4286 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4287 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4288 4289 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4290 // anything about sign bits. But if the sizes match we can derive knowledge 4291 // about sign bits from the vector operand. 4292 if (BitWidth != EltBitWidth) 4293 break; 4294 4295 // If we know the element index, just demand that vector element, else for 4296 // an unknown element index, ignore DemandedElts and demand them all. 4297 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4298 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4299 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4300 DemandedSrcElts = 4301 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4302 4303 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4304 } 4305 case ISD::EXTRACT_SUBVECTOR: { 4306 // Offset the demanded elts by the subvector index. 4307 SDValue Src = Op.getOperand(0); 4308 // Bail until we can represent demanded elements for scalable vectors. 4309 if (Src.getValueType().isScalableVector()) 4310 break; 4311 uint64_t Idx = Op.getConstantOperandVal(1); 4312 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4313 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4314 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4315 } 4316 case ISD::CONCAT_VECTORS: { 4317 // Determine the minimum number of sign bits across all demanded 4318 // elts of the input vectors. Early out if the result is already 1. 4319 Tmp = std::numeric_limits<unsigned>::max(); 4320 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4321 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4322 unsigned NumSubVectors = Op.getNumOperands(); 4323 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4324 APInt DemandedSub = 4325 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4326 if (!DemandedSub) 4327 continue; 4328 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4329 Tmp = std::min(Tmp, Tmp2); 4330 } 4331 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4332 return Tmp; 4333 } 4334 case ISD::INSERT_SUBVECTOR: { 4335 // Demand any elements from the subvector and the remainder from the src its 4336 // inserted into. 4337 SDValue Src = Op.getOperand(0); 4338 SDValue Sub = Op.getOperand(1); 4339 uint64_t Idx = Op.getConstantOperandVal(2); 4340 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4341 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4342 APInt DemandedSrcElts = DemandedElts; 4343 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4344 4345 Tmp = std::numeric_limits<unsigned>::max(); 4346 if (!!DemandedSubElts) { 4347 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4348 if (Tmp == 1) 4349 return 1; // early-out 4350 } 4351 if (!!DemandedSrcElts) { 4352 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4353 Tmp = std::min(Tmp, Tmp2); 4354 } 4355 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4356 return Tmp; 4357 } 4358 case ISD::ATOMIC_CMP_SWAP: 4359 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4360 case ISD::ATOMIC_SWAP: 4361 case ISD::ATOMIC_LOAD_ADD: 4362 case ISD::ATOMIC_LOAD_SUB: 4363 case ISD::ATOMIC_LOAD_AND: 4364 case ISD::ATOMIC_LOAD_CLR: 4365 case ISD::ATOMIC_LOAD_OR: 4366 case ISD::ATOMIC_LOAD_XOR: 4367 case ISD::ATOMIC_LOAD_NAND: 4368 case ISD::ATOMIC_LOAD_MIN: 4369 case ISD::ATOMIC_LOAD_MAX: 4370 case ISD::ATOMIC_LOAD_UMIN: 4371 case ISD::ATOMIC_LOAD_UMAX: 4372 case ISD::ATOMIC_LOAD: { 4373 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4374 // If we are looking at the loaded value. 4375 if (Op.getResNo() == 0) { 4376 if (Tmp == VTBits) 4377 return 1; // early-out 4378 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4379 return VTBits - Tmp + 1; 4380 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4381 return VTBits - Tmp; 4382 } 4383 break; 4384 } 4385 } 4386 4387 // If we are looking at the loaded value of the SDNode. 4388 if (Op.getResNo() == 0) { 4389 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4390 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4391 unsigned ExtType = LD->getExtensionType(); 4392 switch (ExtType) { 4393 default: break; 4394 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4395 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4396 return VTBits - Tmp + 1; 4397 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4398 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4399 return VTBits - Tmp; 4400 case ISD::NON_EXTLOAD: 4401 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4402 // We only need to handle vectors - computeKnownBits should handle 4403 // scalar cases. 4404 Type *CstTy = Cst->getType(); 4405 if (CstTy->isVectorTy() && 4406 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4407 VTBits == CstTy->getScalarSizeInBits()) { 4408 Tmp = VTBits; 4409 for (unsigned i = 0; i != NumElts; ++i) { 4410 if (!DemandedElts[i]) 4411 continue; 4412 if (Constant *Elt = Cst->getAggregateElement(i)) { 4413 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4414 const APInt &Value = CInt->getValue(); 4415 Tmp = std::min(Tmp, Value.getNumSignBits()); 4416 continue; 4417 } 4418 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4419 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4420 Tmp = std::min(Tmp, Value.getNumSignBits()); 4421 continue; 4422 } 4423 } 4424 // Unknown type. Conservatively assume no bits match sign bit. 4425 return 1; 4426 } 4427 return Tmp; 4428 } 4429 } 4430 break; 4431 } 4432 } 4433 } 4434 4435 // Allow the target to implement this method for its nodes. 4436 if (Opcode >= ISD::BUILTIN_OP_END || 4437 Opcode == ISD::INTRINSIC_WO_CHAIN || 4438 Opcode == ISD::INTRINSIC_W_CHAIN || 4439 Opcode == ISD::INTRINSIC_VOID) { 4440 unsigned NumBits = 4441 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4442 if (NumBits > 1) 4443 FirstAnswer = std::max(FirstAnswer, NumBits); 4444 } 4445 4446 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4447 // use this information. 4448 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4449 return std::max(FirstAnswer, Known.countMinSignBits()); 4450 } 4451 4452 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4453 unsigned Depth) const { 4454 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4455 return Op.getScalarValueSizeInBits() - SignBits + 1; 4456 } 4457 4458 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4459 const APInt &DemandedElts, 4460 unsigned Depth) const { 4461 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4462 return Op.getScalarValueSizeInBits() - SignBits + 1; 4463 } 4464 4465 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4466 unsigned Depth) const { 4467 // Early out for FREEZE. 4468 if (Op.getOpcode() == ISD::FREEZE) 4469 return true; 4470 4471 // TODO: Assume we don't know anything for now. 4472 EVT VT = Op.getValueType(); 4473 if (VT.isScalableVector()) 4474 return false; 4475 4476 APInt DemandedElts = VT.isVector() 4477 ? APInt::getAllOnes(VT.getVectorNumElements()) 4478 : APInt(1, 1); 4479 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4480 } 4481 4482 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4483 const APInt &DemandedElts, 4484 bool PoisonOnly, 4485 unsigned Depth) const { 4486 unsigned Opcode = Op.getOpcode(); 4487 4488 // Early out for FREEZE. 4489 if (Opcode == ISD::FREEZE) 4490 return true; 4491 4492 if (Depth >= MaxRecursionDepth) 4493 return false; // Limit search depth. 4494 4495 if (isIntOrFPConstant(Op)) 4496 return true; 4497 4498 switch (Opcode) { 4499 case ISD::UNDEF: 4500 return PoisonOnly; 4501 4502 case ISD::BUILD_VECTOR: 4503 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4504 // this shouldn't affect the result. 4505 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4506 if (!DemandedElts[i]) 4507 continue; 4508 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4509 Depth + 1)) 4510 return false; 4511 } 4512 return true; 4513 4514 // TODO: Search for noundef attributes from library functions. 4515 4516 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4517 4518 default: 4519 // Allow the target to implement this method for its nodes. 4520 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4521 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4522 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4523 Op, DemandedElts, *this, PoisonOnly, Depth); 4524 break; 4525 } 4526 4527 return false; 4528 } 4529 4530 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4531 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4532 !isa<ConstantSDNode>(Op.getOperand(1))) 4533 return false; 4534 4535 if (Op.getOpcode() == ISD::OR && 4536 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4537 return false; 4538 4539 return true; 4540 } 4541 4542 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4543 // If we're told that NaNs won't happen, assume they won't. 4544 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4545 return true; 4546 4547 if (Depth >= MaxRecursionDepth) 4548 return false; // Limit search depth. 4549 4550 // TODO: Handle vectors. 4551 // If the value is a constant, we can obviously see if it is a NaN or not. 4552 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4553 return !C->getValueAPF().isNaN() || 4554 (SNaN && !C->getValueAPF().isSignaling()); 4555 } 4556 4557 unsigned Opcode = Op.getOpcode(); 4558 switch (Opcode) { 4559 case ISD::FADD: 4560 case ISD::FSUB: 4561 case ISD::FMUL: 4562 case ISD::FDIV: 4563 case ISD::FREM: 4564 case ISD::FSIN: 4565 case ISD::FCOS: { 4566 if (SNaN) 4567 return true; 4568 // TODO: Need isKnownNeverInfinity 4569 return false; 4570 } 4571 case ISD::FCANONICALIZE: 4572 case ISD::FEXP: 4573 case ISD::FEXP2: 4574 case ISD::FTRUNC: 4575 case ISD::FFLOOR: 4576 case ISD::FCEIL: 4577 case ISD::FROUND: 4578 case ISD::FROUNDEVEN: 4579 case ISD::FRINT: 4580 case ISD::FNEARBYINT: { 4581 if (SNaN) 4582 return true; 4583 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4584 } 4585 case ISD::FABS: 4586 case ISD::FNEG: 4587 case ISD::FCOPYSIGN: { 4588 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4589 } 4590 case ISD::SELECT: 4591 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4592 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4593 case ISD::FP_EXTEND: 4594 case ISD::FP_ROUND: { 4595 if (SNaN) 4596 return true; 4597 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4598 } 4599 case ISD::SINT_TO_FP: 4600 case ISD::UINT_TO_FP: 4601 return true; 4602 case ISD::FMA: 4603 case ISD::FMAD: { 4604 if (SNaN) 4605 return true; 4606 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4607 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4608 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4609 } 4610 case ISD::FSQRT: // Need is known positive 4611 case ISD::FLOG: 4612 case ISD::FLOG2: 4613 case ISD::FLOG10: 4614 case ISD::FPOWI: 4615 case ISD::FPOW: { 4616 if (SNaN) 4617 return true; 4618 // TODO: Refine on operand 4619 return false; 4620 } 4621 case ISD::FMINNUM: 4622 case ISD::FMAXNUM: { 4623 // Only one needs to be known not-nan, since it will be returned if the 4624 // other ends up being one. 4625 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4626 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4627 } 4628 case ISD::FMINNUM_IEEE: 4629 case ISD::FMAXNUM_IEEE: { 4630 if (SNaN) 4631 return true; 4632 // This can return a NaN if either operand is an sNaN, or if both operands 4633 // are NaN. 4634 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4635 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4636 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4637 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4638 } 4639 case ISD::FMINIMUM: 4640 case ISD::FMAXIMUM: { 4641 // TODO: Does this quiet or return the origina NaN as-is? 4642 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4643 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4644 } 4645 case ISD::EXTRACT_VECTOR_ELT: { 4646 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4647 } 4648 default: 4649 if (Opcode >= ISD::BUILTIN_OP_END || 4650 Opcode == ISD::INTRINSIC_WO_CHAIN || 4651 Opcode == ISD::INTRINSIC_W_CHAIN || 4652 Opcode == ISD::INTRINSIC_VOID) { 4653 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4654 } 4655 4656 return false; 4657 } 4658 } 4659 4660 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4661 assert(Op.getValueType().isFloatingPoint() && 4662 "Floating point type expected"); 4663 4664 // If the value is a constant, we can obviously see if it is a zero or not. 4665 // TODO: Add BuildVector support. 4666 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4667 return !C->isZero(); 4668 return false; 4669 } 4670 4671 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4672 assert(!Op.getValueType().isFloatingPoint() && 4673 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4674 4675 // If the value is a constant, we can obviously see if it is a zero or not. 4676 if (ISD::matchUnaryPredicate(Op, 4677 [](ConstantSDNode *C) { return !C->isZero(); })) 4678 return true; 4679 4680 // TODO: Recognize more cases here. 4681 switch (Op.getOpcode()) { 4682 default: break; 4683 case ISD::OR: 4684 if (isKnownNeverZero(Op.getOperand(1)) || 4685 isKnownNeverZero(Op.getOperand(0))) 4686 return true; 4687 break; 4688 } 4689 4690 return false; 4691 } 4692 4693 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4694 // Check the obvious case. 4695 if (A == B) return true; 4696 4697 // For for negative and positive zero. 4698 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4699 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4700 if (CA->isZero() && CB->isZero()) return true; 4701 4702 // Otherwise they may not be equal. 4703 return false; 4704 } 4705 4706 // Only bits set in Mask must be negated, other bits may be arbitrary. 4707 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4708 if (isBitwiseNot(V, AllowUndefs)) 4709 return V.getOperand(0); 4710 4711 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4712 // bits in the non-extended part. 4713 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4714 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4715 return SDValue(); 4716 SDValue ExtArg = V.getOperand(0); 4717 if (ExtArg.getScalarValueSizeInBits() >= 4718 MaskC->getAPIntValue().getActiveBits() && 4719 isBitwiseNot(ExtArg, AllowUndefs) && 4720 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4721 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4722 return ExtArg.getOperand(0).getOperand(0); 4723 return SDValue(); 4724 } 4725 4726 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4727 // Match masked merge pattern (X & ~M) op (Y & M) 4728 // Including degenerate case (X & ~M) op M 4729 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4730 SDValue Other) { 4731 if (SDValue NotOperand = 4732 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4733 if (Other == NotOperand) 4734 return true; 4735 if (Other->getOpcode() == ISD::AND) 4736 return NotOperand == Other->getOperand(0) || 4737 NotOperand == Other->getOperand(1); 4738 } 4739 return false; 4740 }; 4741 if (A->getOpcode() == ISD::AND) 4742 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4743 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4744 return false; 4745 } 4746 4747 // FIXME: unify with llvm::haveNoCommonBitsSet. 4748 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4749 assert(A.getValueType() == B.getValueType() && 4750 "Values must have the same type"); 4751 if (haveNoCommonBitsSetCommutative(A, B) || 4752 haveNoCommonBitsSetCommutative(B, A)) 4753 return true; 4754 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4755 computeKnownBits(B)); 4756 } 4757 4758 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4759 SelectionDAG &DAG) { 4760 if (cast<ConstantSDNode>(Step)->isZero()) 4761 return DAG.getConstant(0, DL, VT); 4762 4763 return SDValue(); 4764 } 4765 4766 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4767 ArrayRef<SDValue> Ops, 4768 SelectionDAG &DAG) { 4769 int NumOps = Ops.size(); 4770 assert(NumOps != 0 && "Can't build an empty vector!"); 4771 assert(!VT.isScalableVector() && 4772 "BUILD_VECTOR cannot be used with scalable types"); 4773 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4774 "Incorrect element count in BUILD_VECTOR!"); 4775 4776 // BUILD_VECTOR of UNDEFs is UNDEF. 4777 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4778 return DAG.getUNDEF(VT); 4779 4780 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4781 SDValue IdentitySrc; 4782 bool IsIdentity = true; 4783 for (int i = 0; i != NumOps; ++i) { 4784 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4785 Ops[i].getOperand(0).getValueType() != VT || 4786 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4787 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4788 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4789 IsIdentity = false; 4790 break; 4791 } 4792 IdentitySrc = Ops[i].getOperand(0); 4793 } 4794 if (IsIdentity) 4795 return IdentitySrc; 4796 4797 return SDValue(); 4798 } 4799 4800 /// Try to simplify vector concatenation to an input value, undef, or build 4801 /// vector. 4802 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4803 ArrayRef<SDValue> Ops, 4804 SelectionDAG &DAG) { 4805 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4806 assert(llvm::all_of(Ops, 4807 [Ops](SDValue Op) { 4808 return Ops[0].getValueType() == Op.getValueType(); 4809 }) && 4810 "Concatenation of vectors with inconsistent value types!"); 4811 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4812 VT.getVectorElementCount() && 4813 "Incorrect element count in vector concatenation!"); 4814 4815 if (Ops.size() == 1) 4816 return Ops[0]; 4817 4818 // Concat of UNDEFs is UNDEF. 4819 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4820 return DAG.getUNDEF(VT); 4821 4822 // Scan the operands and look for extract operations from a single source 4823 // that correspond to insertion at the same location via this concatenation: 4824 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4825 SDValue IdentitySrc; 4826 bool IsIdentity = true; 4827 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4828 SDValue Op = Ops[i]; 4829 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4830 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4831 Op.getOperand(0).getValueType() != VT || 4832 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4833 Op.getConstantOperandVal(1) != IdentityIndex) { 4834 IsIdentity = false; 4835 break; 4836 } 4837 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4838 "Unexpected identity source vector for concat of extracts"); 4839 IdentitySrc = Op.getOperand(0); 4840 } 4841 if (IsIdentity) { 4842 assert(IdentitySrc && "Failed to set source vector of extracts"); 4843 return IdentitySrc; 4844 } 4845 4846 // The code below this point is only designed to work for fixed width 4847 // vectors, so we bail out for now. 4848 if (VT.isScalableVector()) 4849 return SDValue(); 4850 4851 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4852 // simplified to one big BUILD_VECTOR. 4853 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4854 EVT SVT = VT.getScalarType(); 4855 SmallVector<SDValue, 16> Elts; 4856 for (SDValue Op : Ops) { 4857 EVT OpVT = Op.getValueType(); 4858 if (Op.isUndef()) 4859 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4860 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4861 Elts.append(Op->op_begin(), Op->op_end()); 4862 else 4863 return SDValue(); 4864 } 4865 4866 // BUILD_VECTOR requires all inputs to be of the same type, find the 4867 // maximum type and extend them all. 4868 for (SDValue Op : Elts) 4869 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4870 4871 if (SVT.bitsGT(VT.getScalarType())) { 4872 for (SDValue &Op : Elts) { 4873 if (Op.isUndef()) 4874 Op = DAG.getUNDEF(SVT); 4875 else 4876 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4877 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4878 : DAG.getSExtOrTrunc(Op, DL, SVT); 4879 } 4880 } 4881 4882 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4883 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4884 return V; 4885 } 4886 4887 /// Gets or creates the specified node. 4888 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4889 FoldingSetNodeID ID; 4890 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4891 void *IP = nullptr; 4892 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4893 return SDValue(E, 0); 4894 4895 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4896 getVTList(VT)); 4897 CSEMap.InsertNode(N, IP); 4898 4899 InsertNode(N); 4900 SDValue V = SDValue(N, 0); 4901 NewSDValueDbgMsg(V, "Creating new node: ", this); 4902 return V; 4903 } 4904 4905 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4906 SDValue Operand) { 4907 SDNodeFlags Flags; 4908 if (Inserter) 4909 Flags = Inserter->getFlags(); 4910 return getNode(Opcode, DL, VT, Operand, Flags); 4911 } 4912 4913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4914 SDValue Operand, const SDNodeFlags Flags) { 4915 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4916 "Operand is DELETED_NODE!"); 4917 // Constant fold unary operations with an integer constant operand. Even 4918 // opaque constant will be folded, because the folding of unary operations 4919 // doesn't create new constants with different values. Nevertheless, the 4920 // opaque flag is preserved during folding to prevent future folding with 4921 // other constants. 4922 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4923 const APInt &Val = C->getAPIntValue(); 4924 switch (Opcode) { 4925 default: break; 4926 case ISD::SIGN_EXTEND: 4927 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4928 C->isTargetOpcode(), C->isOpaque()); 4929 case ISD::TRUNCATE: 4930 if (C->isOpaque()) 4931 break; 4932 LLVM_FALLTHROUGH; 4933 case ISD::ZERO_EXTEND: 4934 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4935 C->isTargetOpcode(), C->isOpaque()); 4936 case ISD::ANY_EXTEND: 4937 // Some targets like RISCV prefer to sign extend some types. 4938 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4939 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4940 C->isTargetOpcode(), C->isOpaque()); 4941 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4942 C->isTargetOpcode(), C->isOpaque()); 4943 case ISD::UINT_TO_FP: 4944 case ISD::SINT_TO_FP: { 4945 APFloat apf(EVTToAPFloatSemantics(VT), 4946 APInt::getZero(VT.getSizeInBits())); 4947 (void)apf.convertFromAPInt(Val, 4948 Opcode==ISD::SINT_TO_FP, 4949 APFloat::rmNearestTiesToEven); 4950 return getConstantFP(apf, DL, VT); 4951 } 4952 case ISD::BITCAST: 4953 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4954 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4955 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4956 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4957 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4958 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4959 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4960 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4961 break; 4962 case ISD::ABS: 4963 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4964 C->isOpaque()); 4965 case ISD::BITREVERSE: 4966 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4967 C->isOpaque()); 4968 case ISD::BSWAP: 4969 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4970 C->isOpaque()); 4971 case ISD::CTPOP: 4972 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4973 C->isOpaque()); 4974 case ISD::CTLZ: 4975 case ISD::CTLZ_ZERO_UNDEF: 4976 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4977 C->isOpaque()); 4978 case ISD::CTTZ: 4979 case ISD::CTTZ_ZERO_UNDEF: 4980 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4981 C->isOpaque()); 4982 case ISD::FP16_TO_FP: 4983 case ISD::BF16_TO_FP: { 4984 bool Ignored; 4985 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 4986 : APFloat::BFloat(), 4987 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4988 4989 // This can return overflow, underflow, or inexact; we don't care. 4990 // FIXME need to be more flexible about rounding mode. 4991 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4992 APFloat::rmNearestTiesToEven, &Ignored); 4993 return getConstantFP(FPV, DL, VT); 4994 } 4995 case ISD::STEP_VECTOR: { 4996 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4997 return V; 4998 break; 4999 } 5000 } 5001 } 5002 5003 // Constant fold unary operations with a floating point constant operand. 5004 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5005 APFloat V = C->getValueAPF(); // make copy 5006 switch (Opcode) { 5007 case ISD::FNEG: 5008 V.changeSign(); 5009 return getConstantFP(V, DL, VT); 5010 case ISD::FABS: 5011 V.clearSign(); 5012 return getConstantFP(V, DL, VT); 5013 case ISD::FCEIL: { 5014 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5015 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5016 return getConstantFP(V, DL, VT); 5017 break; 5018 } 5019 case ISD::FTRUNC: { 5020 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5021 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5022 return getConstantFP(V, DL, VT); 5023 break; 5024 } 5025 case ISD::FFLOOR: { 5026 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5027 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5028 return getConstantFP(V, DL, VT); 5029 break; 5030 } 5031 case ISD::FP_EXTEND: { 5032 bool ignored; 5033 // This can return overflow, underflow, or inexact; we don't care. 5034 // FIXME need to be more flexible about rounding mode. 5035 (void)V.convert(EVTToAPFloatSemantics(VT), 5036 APFloat::rmNearestTiesToEven, &ignored); 5037 return getConstantFP(V, DL, VT); 5038 } 5039 case ISD::FP_TO_SINT: 5040 case ISD::FP_TO_UINT: { 5041 bool ignored; 5042 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5043 // FIXME need to be more flexible about rounding mode. 5044 APFloat::opStatus s = 5045 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5046 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5047 break; 5048 return getConstant(IntVal, DL, VT); 5049 } 5050 case ISD::BITCAST: 5051 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5052 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5053 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5054 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5055 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5056 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5057 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5058 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5059 break; 5060 case ISD::FP_TO_FP16: 5061 case ISD::FP_TO_BF16: { 5062 bool Ignored; 5063 // This can return overflow, underflow, or inexact; we don't care. 5064 // FIXME need to be more flexible about rounding mode. 5065 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5066 : APFloat::BFloat(), 5067 APFloat::rmNearestTiesToEven, &Ignored); 5068 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5069 } 5070 } 5071 } 5072 5073 // Constant fold unary operations with a vector integer or float operand. 5074 switch (Opcode) { 5075 default: 5076 // FIXME: Entirely reasonable to perform folding of other unary 5077 // operations here as the need arises. 5078 break; 5079 case ISD::FNEG: 5080 case ISD::FABS: 5081 case ISD::FCEIL: 5082 case ISD::FTRUNC: 5083 case ISD::FFLOOR: 5084 case ISD::FP_EXTEND: 5085 case ISD::FP_TO_SINT: 5086 case ISD::FP_TO_UINT: 5087 case ISD::TRUNCATE: 5088 case ISD::ANY_EXTEND: 5089 case ISD::ZERO_EXTEND: 5090 case ISD::SIGN_EXTEND: 5091 case ISD::UINT_TO_FP: 5092 case ISD::SINT_TO_FP: 5093 case ISD::ABS: 5094 case ISD::BITREVERSE: 5095 case ISD::BSWAP: 5096 case ISD::CTLZ: 5097 case ISD::CTLZ_ZERO_UNDEF: 5098 case ISD::CTTZ: 5099 case ISD::CTTZ_ZERO_UNDEF: 5100 case ISD::CTPOP: { 5101 SDValue Ops = {Operand}; 5102 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5103 return Fold; 5104 } 5105 } 5106 5107 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5108 switch (Opcode) { 5109 case ISD::STEP_VECTOR: 5110 assert(VT.isScalableVector() && 5111 "STEP_VECTOR can only be used with scalable types"); 5112 assert(OpOpcode == ISD::TargetConstant && 5113 VT.getVectorElementType() == Operand.getValueType() && 5114 "Unexpected step operand"); 5115 break; 5116 case ISD::FREEZE: 5117 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5118 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5119 return Operand; 5120 break; 5121 case ISD::TokenFactor: 5122 case ISD::MERGE_VALUES: 5123 case ISD::CONCAT_VECTORS: 5124 return Operand; // Factor, merge or concat of one node? No need. 5125 case ISD::BUILD_VECTOR: { 5126 // Attempt to simplify BUILD_VECTOR. 5127 SDValue Ops[] = {Operand}; 5128 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5129 return V; 5130 break; 5131 } 5132 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5133 case ISD::FP_EXTEND: 5134 assert(VT.isFloatingPoint() && 5135 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5136 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5137 assert((!VT.isVector() || 5138 VT.getVectorElementCount() == 5139 Operand.getValueType().getVectorElementCount()) && 5140 "Vector element count mismatch!"); 5141 assert(Operand.getValueType().bitsLT(VT) && 5142 "Invalid fpext node, dst < src!"); 5143 if (Operand.isUndef()) 5144 return getUNDEF(VT); 5145 break; 5146 case ISD::FP_TO_SINT: 5147 case ISD::FP_TO_UINT: 5148 if (Operand.isUndef()) 5149 return getUNDEF(VT); 5150 break; 5151 case ISD::SINT_TO_FP: 5152 case ISD::UINT_TO_FP: 5153 // [us]itofp(undef) = 0, because the result value is bounded. 5154 if (Operand.isUndef()) 5155 return getConstantFP(0.0, DL, VT); 5156 break; 5157 case ISD::SIGN_EXTEND: 5158 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5159 "Invalid SIGN_EXTEND!"); 5160 assert(VT.isVector() == Operand.getValueType().isVector() && 5161 "SIGN_EXTEND result type type should be vector iff the operand " 5162 "type is vector!"); 5163 if (Operand.getValueType() == VT) return Operand; // noop extension 5164 assert((!VT.isVector() || 5165 VT.getVectorElementCount() == 5166 Operand.getValueType().getVectorElementCount()) && 5167 "Vector element count mismatch!"); 5168 assert(Operand.getValueType().bitsLT(VT) && 5169 "Invalid sext node, dst < src!"); 5170 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5171 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5172 if (OpOpcode == ISD::UNDEF) 5173 // sext(undef) = 0, because the top bits will all be the same. 5174 return getConstant(0, DL, VT); 5175 break; 5176 case ISD::ZERO_EXTEND: 5177 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5178 "Invalid ZERO_EXTEND!"); 5179 assert(VT.isVector() == Operand.getValueType().isVector() && 5180 "ZERO_EXTEND result type type should be vector iff the operand " 5181 "type is vector!"); 5182 if (Operand.getValueType() == VT) return Operand; // noop extension 5183 assert((!VT.isVector() || 5184 VT.getVectorElementCount() == 5185 Operand.getValueType().getVectorElementCount()) && 5186 "Vector element count mismatch!"); 5187 assert(Operand.getValueType().bitsLT(VT) && 5188 "Invalid zext node, dst < src!"); 5189 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5190 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5191 if (OpOpcode == ISD::UNDEF) 5192 // zext(undef) = 0, because the top bits will be zero. 5193 return getConstant(0, DL, VT); 5194 break; 5195 case ISD::ANY_EXTEND: 5196 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5197 "Invalid ANY_EXTEND!"); 5198 assert(VT.isVector() == Operand.getValueType().isVector() && 5199 "ANY_EXTEND result type type should be vector iff the operand " 5200 "type is vector!"); 5201 if (Operand.getValueType() == VT) return Operand; // noop extension 5202 assert((!VT.isVector() || 5203 VT.getVectorElementCount() == 5204 Operand.getValueType().getVectorElementCount()) && 5205 "Vector element count mismatch!"); 5206 assert(Operand.getValueType().bitsLT(VT) && 5207 "Invalid anyext node, dst < src!"); 5208 5209 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5210 OpOpcode == ISD::ANY_EXTEND) 5211 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5212 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5213 if (OpOpcode == ISD::UNDEF) 5214 return getUNDEF(VT); 5215 5216 // (ext (trunc x)) -> x 5217 if (OpOpcode == ISD::TRUNCATE) { 5218 SDValue OpOp = Operand.getOperand(0); 5219 if (OpOp.getValueType() == VT) { 5220 transferDbgValues(Operand, OpOp); 5221 return OpOp; 5222 } 5223 } 5224 break; 5225 case ISD::TRUNCATE: 5226 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5227 "Invalid TRUNCATE!"); 5228 assert(VT.isVector() == Operand.getValueType().isVector() && 5229 "TRUNCATE result type type should be vector iff the operand " 5230 "type is vector!"); 5231 if (Operand.getValueType() == VT) return Operand; // noop truncate 5232 assert((!VT.isVector() || 5233 VT.getVectorElementCount() == 5234 Operand.getValueType().getVectorElementCount()) && 5235 "Vector element count mismatch!"); 5236 assert(Operand.getValueType().bitsGT(VT) && 5237 "Invalid truncate node, src < dst!"); 5238 if (OpOpcode == ISD::TRUNCATE) 5239 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5240 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5241 OpOpcode == ISD::ANY_EXTEND) { 5242 // If the source is smaller than the dest, we still need an extend. 5243 if (Operand.getOperand(0).getValueType().getScalarType() 5244 .bitsLT(VT.getScalarType())) 5245 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5246 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5247 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5248 return Operand.getOperand(0); 5249 } 5250 if (OpOpcode == ISD::UNDEF) 5251 return getUNDEF(VT); 5252 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5253 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5254 break; 5255 case ISD::ANY_EXTEND_VECTOR_INREG: 5256 case ISD::ZERO_EXTEND_VECTOR_INREG: 5257 case ISD::SIGN_EXTEND_VECTOR_INREG: 5258 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5259 assert(Operand.getValueType().bitsLE(VT) && 5260 "The input must be the same size or smaller than the result."); 5261 assert(VT.getVectorMinNumElements() < 5262 Operand.getValueType().getVectorMinNumElements() && 5263 "The destination vector type must have fewer lanes than the input."); 5264 break; 5265 case ISD::ABS: 5266 assert(VT.isInteger() && VT == Operand.getValueType() && 5267 "Invalid ABS!"); 5268 if (OpOpcode == ISD::UNDEF) 5269 return getConstant(0, DL, VT); 5270 break; 5271 case ISD::BSWAP: 5272 assert(VT.isInteger() && VT == Operand.getValueType() && 5273 "Invalid BSWAP!"); 5274 assert((VT.getScalarSizeInBits() % 16 == 0) && 5275 "BSWAP types must be a multiple of 16 bits!"); 5276 if (OpOpcode == ISD::UNDEF) 5277 return getUNDEF(VT); 5278 // bswap(bswap(X)) -> X. 5279 if (OpOpcode == ISD::BSWAP) 5280 return Operand.getOperand(0); 5281 break; 5282 case ISD::BITREVERSE: 5283 assert(VT.isInteger() && VT == Operand.getValueType() && 5284 "Invalid BITREVERSE!"); 5285 if (OpOpcode == ISD::UNDEF) 5286 return getUNDEF(VT); 5287 break; 5288 case ISD::BITCAST: 5289 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5290 "Cannot BITCAST between types of different sizes!"); 5291 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5292 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5293 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5294 if (OpOpcode == ISD::UNDEF) 5295 return getUNDEF(VT); 5296 break; 5297 case ISD::SCALAR_TO_VECTOR: 5298 assert(VT.isVector() && !Operand.getValueType().isVector() && 5299 (VT.getVectorElementType() == Operand.getValueType() || 5300 (VT.getVectorElementType().isInteger() && 5301 Operand.getValueType().isInteger() && 5302 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5303 "Illegal SCALAR_TO_VECTOR node!"); 5304 if (OpOpcode == ISD::UNDEF) 5305 return getUNDEF(VT); 5306 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5307 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5308 isa<ConstantSDNode>(Operand.getOperand(1)) && 5309 Operand.getConstantOperandVal(1) == 0 && 5310 Operand.getOperand(0).getValueType() == VT) 5311 return Operand.getOperand(0); 5312 break; 5313 case ISD::FNEG: 5314 // Negation of an unknown bag of bits is still completely undefined. 5315 if (OpOpcode == ISD::UNDEF) 5316 return getUNDEF(VT); 5317 5318 if (OpOpcode == ISD::FNEG) // --X -> X 5319 return Operand.getOperand(0); 5320 break; 5321 case ISD::FABS: 5322 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5323 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5324 break; 5325 case ISD::VSCALE: 5326 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5327 break; 5328 case ISD::CTPOP: 5329 if (Operand.getValueType().getScalarType() == MVT::i1) 5330 return Operand; 5331 break; 5332 case ISD::CTLZ: 5333 case ISD::CTTZ: 5334 if (Operand.getValueType().getScalarType() == MVT::i1) 5335 return getNOT(DL, Operand, Operand.getValueType()); 5336 break; 5337 case ISD::VECREDUCE_ADD: 5338 if (Operand.getValueType().getScalarType() == MVT::i1) 5339 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5340 break; 5341 case ISD::VECREDUCE_SMIN: 5342 case ISD::VECREDUCE_UMAX: 5343 if (Operand.getValueType().getScalarType() == MVT::i1) 5344 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5345 break; 5346 case ISD::VECREDUCE_SMAX: 5347 case ISD::VECREDUCE_UMIN: 5348 if (Operand.getValueType().getScalarType() == MVT::i1) 5349 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5350 break; 5351 } 5352 5353 SDNode *N; 5354 SDVTList VTs = getVTList(VT); 5355 SDValue Ops[] = {Operand}; 5356 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5357 FoldingSetNodeID ID; 5358 AddNodeIDNode(ID, Opcode, VTs, Ops); 5359 void *IP = nullptr; 5360 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5361 E->intersectFlagsWith(Flags); 5362 return SDValue(E, 0); 5363 } 5364 5365 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5366 N->setFlags(Flags); 5367 createOperands(N, Ops); 5368 CSEMap.InsertNode(N, IP); 5369 } else { 5370 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5371 createOperands(N, Ops); 5372 } 5373 5374 InsertNode(N); 5375 SDValue V = SDValue(N, 0); 5376 NewSDValueDbgMsg(V, "Creating new node: ", this); 5377 return V; 5378 } 5379 5380 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5381 const APInt &C2) { 5382 switch (Opcode) { 5383 case ISD::ADD: return C1 + C2; 5384 case ISD::SUB: return C1 - C2; 5385 case ISD::MUL: return C1 * C2; 5386 case ISD::AND: return C1 & C2; 5387 case ISD::OR: return C1 | C2; 5388 case ISD::XOR: return C1 ^ C2; 5389 case ISD::SHL: return C1 << C2; 5390 case ISD::SRL: return C1.lshr(C2); 5391 case ISD::SRA: return C1.ashr(C2); 5392 case ISD::ROTL: return C1.rotl(C2); 5393 case ISD::ROTR: return C1.rotr(C2); 5394 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5395 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5396 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5397 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5398 case ISD::SADDSAT: return C1.sadd_sat(C2); 5399 case ISD::UADDSAT: return C1.uadd_sat(C2); 5400 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5401 case ISD::USUBSAT: return C1.usub_sat(C2); 5402 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5403 case ISD::USHLSAT: return C1.ushl_sat(C2); 5404 case ISD::UDIV: 5405 if (!C2.getBoolValue()) 5406 break; 5407 return C1.udiv(C2); 5408 case ISD::UREM: 5409 if (!C2.getBoolValue()) 5410 break; 5411 return C1.urem(C2); 5412 case ISD::SDIV: 5413 if (!C2.getBoolValue()) 5414 break; 5415 return C1.sdiv(C2); 5416 case ISD::SREM: 5417 if (!C2.getBoolValue()) 5418 break; 5419 return C1.srem(C2); 5420 case ISD::MULHS: { 5421 unsigned FullWidth = C1.getBitWidth() * 2; 5422 APInt C1Ext = C1.sext(FullWidth); 5423 APInt C2Ext = C2.sext(FullWidth); 5424 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5425 } 5426 case ISD::MULHU: { 5427 unsigned FullWidth = C1.getBitWidth() * 2; 5428 APInt C1Ext = C1.zext(FullWidth); 5429 APInt C2Ext = C2.zext(FullWidth); 5430 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5431 } 5432 case ISD::AVGFLOORS: { 5433 unsigned FullWidth = C1.getBitWidth() + 1; 5434 APInt C1Ext = C1.sext(FullWidth); 5435 APInt C2Ext = C2.sext(FullWidth); 5436 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5437 } 5438 case ISD::AVGFLOORU: { 5439 unsigned FullWidth = C1.getBitWidth() + 1; 5440 APInt C1Ext = C1.zext(FullWidth); 5441 APInt C2Ext = C2.zext(FullWidth); 5442 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5443 } 5444 case ISD::AVGCEILS: { 5445 unsigned FullWidth = C1.getBitWidth() + 1; 5446 APInt C1Ext = C1.sext(FullWidth); 5447 APInt C2Ext = C2.sext(FullWidth); 5448 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5449 } 5450 case ISD::AVGCEILU: { 5451 unsigned FullWidth = C1.getBitWidth() + 1; 5452 APInt C1Ext = C1.zext(FullWidth); 5453 APInt C2Ext = C2.zext(FullWidth); 5454 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5455 } 5456 } 5457 return llvm::None; 5458 } 5459 5460 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5461 const GlobalAddressSDNode *GA, 5462 const SDNode *N2) { 5463 if (GA->getOpcode() != ISD::GlobalAddress) 5464 return SDValue(); 5465 if (!TLI->isOffsetFoldingLegal(GA)) 5466 return SDValue(); 5467 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5468 if (!C2) 5469 return SDValue(); 5470 int64_t Offset = C2->getSExtValue(); 5471 switch (Opcode) { 5472 case ISD::ADD: break; 5473 case ISD::SUB: Offset = -uint64_t(Offset); break; 5474 default: return SDValue(); 5475 } 5476 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5477 GA->getOffset() + uint64_t(Offset)); 5478 } 5479 5480 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5481 switch (Opcode) { 5482 case ISD::SDIV: 5483 case ISD::UDIV: 5484 case ISD::SREM: 5485 case ISD::UREM: { 5486 // If a divisor is zero/undef or any element of a divisor vector is 5487 // zero/undef, the whole op is undef. 5488 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5489 SDValue Divisor = Ops[1]; 5490 if (Divisor.isUndef() || isNullConstant(Divisor)) 5491 return true; 5492 5493 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5494 llvm::any_of(Divisor->op_values(), 5495 [](SDValue V) { return V.isUndef() || 5496 isNullConstant(V); }); 5497 // TODO: Handle signed overflow. 5498 } 5499 // TODO: Handle oversized shifts. 5500 default: 5501 return false; 5502 } 5503 } 5504 5505 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5506 EVT VT, ArrayRef<SDValue> Ops) { 5507 // If the opcode is a target-specific ISD node, there's nothing we can 5508 // do here and the operand rules may not line up with the below, so 5509 // bail early. 5510 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5511 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5512 // foldCONCAT_VECTORS in getNode before this is called. 5513 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5514 return SDValue(); 5515 5516 unsigned NumOps = Ops.size(); 5517 if (NumOps == 0) 5518 return SDValue(); 5519 5520 if (isUndef(Opcode, Ops)) 5521 return getUNDEF(VT); 5522 5523 // Handle binops special cases. 5524 if (NumOps == 2) { 5525 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5526 return CFP; 5527 5528 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5529 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5530 if (C1->isOpaque() || C2->isOpaque()) 5531 return SDValue(); 5532 5533 Optional<APInt> FoldAttempt = 5534 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5535 if (!FoldAttempt) 5536 return SDValue(); 5537 5538 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5539 assert((!Folded || !VT.isVector()) && 5540 "Can't fold vectors ops with scalar operands"); 5541 return Folded; 5542 } 5543 } 5544 5545 // fold (add Sym, c) -> Sym+c 5546 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5547 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5548 if (TLI->isCommutativeBinOp(Opcode)) 5549 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5550 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5551 } 5552 5553 // This is for vector folding only from here on. 5554 if (!VT.isVector()) 5555 return SDValue(); 5556 5557 ElementCount NumElts = VT.getVectorElementCount(); 5558 5559 // See if we can fold through bitcasted integer ops. 5560 // TODO: Can we handle undef elements? 5561 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5562 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5563 Ops[0].getOpcode() == ISD::BITCAST && 5564 Ops[1].getOpcode() == ISD::BITCAST) { 5565 SDValue N1 = peekThroughBitcasts(Ops[0]); 5566 SDValue N2 = peekThroughBitcasts(Ops[1]); 5567 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5568 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5569 EVT BVVT = N1.getValueType(); 5570 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5571 bool IsLE = getDataLayout().isLittleEndian(); 5572 unsigned EltBits = VT.getScalarSizeInBits(); 5573 SmallVector<APInt> RawBits1, RawBits2; 5574 BitVector UndefElts1, UndefElts2; 5575 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5576 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5577 UndefElts1.none() && UndefElts2.none()) { 5578 SmallVector<APInt> RawBits; 5579 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5580 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5581 if (!Fold) 5582 break; 5583 RawBits.push_back(Fold.getValue()); 5584 } 5585 if (RawBits.size() == NumElts.getFixedValue()) { 5586 // We have constant folded, but we need to cast this again back to 5587 // the original (possibly legalized) type. 5588 SmallVector<APInt> DstBits; 5589 BitVector DstUndefs; 5590 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5591 DstBits, RawBits, DstUndefs, 5592 BitVector(RawBits.size(), false)); 5593 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5594 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5595 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5596 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5597 if (DstUndefs[I]) 5598 continue; 5599 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5600 } 5601 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5602 } 5603 } 5604 } 5605 } 5606 5607 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5608 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5609 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5610 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5611 APInt RHSVal; 5612 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5613 APInt NewStep = Opcode == ISD::MUL 5614 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5615 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5616 return getStepVector(DL, VT, NewStep); 5617 } 5618 } 5619 5620 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5621 return !Op.getValueType().isVector() || 5622 Op.getValueType().getVectorElementCount() == NumElts; 5623 }; 5624 5625 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5626 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5627 Op.getOpcode() == ISD::BUILD_VECTOR || 5628 Op.getOpcode() == ISD::SPLAT_VECTOR; 5629 }; 5630 5631 // All operands must be vector types with the same number of elements as 5632 // the result type and must be either UNDEF or a build/splat vector 5633 // or UNDEF scalars. 5634 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5635 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5636 return SDValue(); 5637 5638 // If we are comparing vectors, then the result needs to be a i1 boolean that 5639 // is then extended back to the legal result type depending on how booleans 5640 // are represented. 5641 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5642 ISD::NodeType ExtendCode = 5643 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5644 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5645 : ISD::SIGN_EXTEND; 5646 5647 // Find legal integer scalar type for constant promotion and 5648 // ensure that its scalar size is at least as large as source. 5649 EVT LegalSVT = VT.getScalarType(); 5650 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5651 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5652 if (LegalSVT.bitsLT(VT.getScalarType())) 5653 return SDValue(); 5654 } 5655 5656 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5657 // only have one operand to check. For fixed-length vector types we may have 5658 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5659 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5660 5661 // Constant fold each scalar lane separately. 5662 SmallVector<SDValue, 4> ScalarResults; 5663 for (unsigned I = 0; I != NumVectorElts; I++) { 5664 SmallVector<SDValue, 4> ScalarOps; 5665 for (SDValue Op : Ops) { 5666 EVT InSVT = Op.getValueType().getScalarType(); 5667 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5668 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5669 if (Op.isUndef()) 5670 ScalarOps.push_back(getUNDEF(InSVT)); 5671 else 5672 ScalarOps.push_back(Op); 5673 continue; 5674 } 5675 5676 SDValue ScalarOp = 5677 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5678 EVT ScalarVT = ScalarOp.getValueType(); 5679 5680 // Build vector (integer) scalar operands may need implicit 5681 // truncation - do this before constant folding. 5682 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5683 // Don't create illegally-typed nodes unless they're constants or undef 5684 // - if we fail to constant fold we can't guarantee the (dead) nodes 5685 // we're creating will be cleaned up before being visited for 5686 // legalization. 5687 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5688 !isa<ConstantSDNode>(ScalarOp) && 5689 TLI->getTypeAction(*getContext(), InSVT) != 5690 TargetLowering::TypeLegal) 5691 return SDValue(); 5692 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5693 } 5694 5695 ScalarOps.push_back(ScalarOp); 5696 } 5697 5698 // Constant fold the scalar operands. 5699 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5700 5701 // Legalize the (integer) scalar constant if necessary. 5702 if (LegalSVT != SVT) 5703 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5704 5705 // Scalar folding only succeeded if the result is a constant or UNDEF. 5706 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5707 ScalarResult.getOpcode() != ISD::ConstantFP) 5708 return SDValue(); 5709 ScalarResults.push_back(ScalarResult); 5710 } 5711 5712 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5713 : getBuildVector(VT, DL, ScalarResults); 5714 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5715 return V; 5716 } 5717 5718 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5719 EVT VT, SDValue N1, SDValue N2) { 5720 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5721 // should. That will require dealing with a potentially non-default 5722 // rounding mode, checking the "opStatus" return value from the APFloat 5723 // math calculations, and possibly other variations. 5724 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5725 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5726 if (N1CFP && N2CFP) { 5727 APFloat C1 = N1CFP->getValueAPF(); // make copy 5728 const APFloat &C2 = N2CFP->getValueAPF(); 5729 switch (Opcode) { 5730 case ISD::FADD: 5731 C1.add(C2, APFloat::rmNearestTiesToEven); 5732 return getConstantFP(C1, DL, VT); 5733 case ISD::FSUB: 5734 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5735 return getConstantFP(C1, DL, VT); 5736 case ISD::FMUL: 5737 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5738 return getConstantFP(C1, DL, VT); 5739 case ISD::FDIV: 5740 C1.divide(C2, APFloat::rmNearestTiesToEven); 5741 return getConstantFP(C1, DL, VT); 5742 case ISD::FREM: 5743 C1.mod(C2); 5744 return getConstantFP(C1, DL, VT); 5745 case ISD::FCOPYSIGN: 5746 C1.copySign(C2); 5747 return getConstantFP(C1, DL, VT); 5748 case ISD::FMINNUM: 5749 return getConstantFP(minnum(C1, C2), DL, VT); 5750 case ISD::FMAXNUM: 5751 return getConstantFP(maxnum(C1, C2), DL, VT); 5752 case ISD::FMINIMUM: 5753 return getConstantFP(minimum(C1, C2), DL, VT); 5754 case ISD::FMAXIMUM: 5755 return getConstantFP(maximum(C1, C2), DL, VT); 5756 default: break; 5757 } 5758 } 5759 if (N1CFP && Opcode == ISD::FP_ROUND) { 5760 APFloat C1 = N1CFP->getValueAPF(); // make copy 5761 bool Unused; 5762 // This can return overflow, underflow, or inexact; we don't care. 5763 // FIXME need to be more flexible about rounding mode. 5764 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5765 &Unused); 5766 return getConstantFP(C1, DL, VT); 5767 } 5768 5769 switch (Opcode) { 5770 case ISD::FSUB: 5771 // -0.0 - undef --> undef (consistent with "fneg undef") 5772 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5773 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5774 return getUNDEF(VT); 5775 LLVM_FALLTHROUGH; 5776 5777 case ISD::FADD: 5778 case ISD::FMUL: 5779 case ISD::FDIV: 5780 case ISD::FREM: 5781 // If both operands are undef, the result is undef. If 1 operand is undef, 5782 // the result is NaN. This should match the behavior of the IR optimizer. 5783 if (N1.isUndef() && N2.isUndef()) 5784 return getUNDEF(VT); 5785 if (N1.isUndef() || N2.isUndef()) 5786 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5787 } 5788 return SDValue(); 5789 } 5790 5791 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5792 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5793 5794 // There's no need to assert on a byte-aligned pointer. All pointers are at 5795 // least byte aligned. 5796 if (A == Align(1)) 5797 return Val; 5798 5799 FoldingSetNodeID ID; 5800 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5801 ID.AddInteger(A.value()); 5802 5803 void *IP = nullptr; 5804 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5805 return SDValue(E, 0); 5806 5807 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5808 Val.getValueType(), A); 5809 createOperands(N, {Val}); 5810 5811 CSEMap.InsertNode(N, IP); 5812 InsertNode(N); 5813 5814 SDValue V(N, 0); 5815 NewSDValueDbgMsg(V, "Creating new node: ", this); 5816 return V; 5817 } 5818 5819 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5820 SDValue N1, SDValue N2) { 5821 SDNodeFlags Flags; 5822 if (Inserter) 5823 Flags = Inserter->getFlags(); 5824 return getNode(Opcode, DL, VT, N1, N2, Flags); 5825 } 5826 5827 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5828 SDValue &N2) const { 5829 if (!TLI->isCommutativeBinOp(Opcode)) 5830 return; 5831 5832 // Canonicalize: 5833 // binop(const, nonconst) -> binop(nonconst, const) 5834 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5835 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5836 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5837 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5838 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5839 std::swap(N1, N2); 5840 5841 // Canonicalize: 5842 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5843 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5844 N2.getOpcode() == ISD::STEP_VECTOR) 5845 std::swap(N1, N2); 5846 } 5847 5848 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5849 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5850 assert(N1.getOpcode() != ISD::DELETED_NODE && 5851 N2.getOpcode() != ISD::DELETED_NODE && 5852 "Operand is DELETED_NODE!"); 5853 5854 canonicalizeCommutativeBinop(Opcode, N1, N2); 5855 5856 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5857 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5858 5859 // Don't allow undefs in vector splats - we might be returning N2 when folding 5860 // to zero etc. 5861 ConstantSDNode *N2CV = 5862 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5863 5864 switch (Opcode) { 5865 default: break; 5866 case ISD::TokenFactor: 5867 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5868 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5869 // Fold trivial token factors. 5870 if (N1.getOpcode() == ISD::EntryToken) return N2; 5871 if (N2.getOpcode() == ISD::EntryToken) return N1; 5872 if (N1 == N2) return N1; 5873 break; 5874 case ISD::BUILD_VECTOR: { 5875 // Attempt to simplify BUILD_VECTOR. 5876 SDValue Ops[] = {N1, N2}; 5877 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5878 return V; 5879 break; 5880 } 5881 case ISD::CONCAT_VECTORS: { 5882 SDValue Ops[] = {N1, N2}; 5883 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5884 return V; 5885 break; 5886 } 5887 case ISD::AND: 5888 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5889 assert(N1.getValueType() == N2.getValueType() && 5890 N1.getValueType() == VT && "Binary operator types must match!"); 5891 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5892 // worth handling here. 5893 if (N2CV && N2CV->isZero()) 5894 return N2; 5895 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5896 return N1; 5897 break; 5898 case ISD::OR: 5899 case ISD::XOR: 5900 case ISD::ADD: 5901 case ISD::SUB: 5902 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5903 assert(N1.getValueType() == N2.getValueType() && 5904 N1.getValueType() == VT && "Binary operator types must match!"); 5905 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5906 // it's worth handling here. 5907 if (N2CV && N2CV->isZero()) 5908 return N1; 5909 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5910 VT.getVectorElementType() == MVT::i1) 5911 return getNode(ISD::XOR, DL, VT, N1, N2); 5912 break; 5913 case ISD::MUL: 5914 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5915 assert(N1.getValueType() == N2.getValueType() && 5916 N1.getValueType() == VT && "Binary operator types must match!"); 5917 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5918 return getNode(ISD::AND, DL, VT, N1, N2); 5919 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5920 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5921 const APInt &N2CImm = N2C->getAPIntValue(); 5922 return getVScale(DL, VT, MulImm * N2CImm); 5923 } 5924 break; 5925 case ISD::UDIV: 5926 case ISD::UREM: 5927 case ISD::MULHU: 5928 case ISD::MULHS: 5929 case ISD::SDIV: 5930 case ISD::SREM: 5931 case ISD::SADDSAT: 5932 case ISD::SSUBSAT: 5933 case ISD::UADDSAT: 5934 case ISD::USUBSAT: 5935 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5936 assert(N1.getValueType() == N2.getValueType() && 5937 N1.getValueType() == VT && "Binary operator types must match!"); 5938 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5939 // fold (add_sat x, y) -> (or x, y) for bool types. 5940 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5941 return getNode(ISD::OR, DL, VT, N1, N2); 5942 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5943 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5944 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5945 } 5946 break; 5947 case ISD::SMIN: 5948 case ISD::UMAX: 5949 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5950 assert(N1.getValueType() == N2.getValueType() && 5951 N1.getValueType() == VT && "Binary operator types must match!"); 5952 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5953 return getNode(ISD::OR, DL, VT, N1, N2); 5954 break; 5955 case ISD::SMAX: 5956 case ISD::UMIN: 5957 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5958 assert(N1.getValueType() == N2.getValueType() && 5959 N1.getValueType() == VT && "Binary operator types must match!"); 5960 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5961 return getNode(ISD::AND, DL, VT, N1, N2); 5962 break; 5963 case ISD::FADD: 5964 case ISD::FSUB: 5965 case ISD::FMUL: 5966 case ISD::FDIV: 5967 case ISD::FREM: 5968 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5969 assert(N1.getValueType() == N2.getValueType() && 5970 N1.getValueType() == VT && "Binary operator types must match!"); 5971 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5972 return V; 5973 break; 5974 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5975 assert(N1.getValueType() == VT && 5976 N1.getValueType().isFloatingPoint() && 5977 N2.getValueType().isFloatingPoint() && 5978 "Invalid FCOPYSIGN!"); 5979 break; 5980 case ISD::SHL: 5981 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5982 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5983 const APInt &ShiftImm = N2C->getAPIntValue(); 5984 return getVScale(DL, VT, MulImm << ShiftImm); 5985 } 5986 LLVM_FALLTHROUGH; 5987 case ISD::SRA: 5988 case ISD::SRL: 5989 if (SDValue V = simplifyShift(N1, N2)) 5990 return V; 5991 LLVM_FALLTHROUGH; 5992 case ISD::ROTL: 5993 case ISD::ROTR: 5994 assert(VT == N1.getValueType() && 5995 "Shift operators return type must be the same as their first arg"); 5996 assert(VT.isInteger() && N2.getValueType().isInteger() && 5997 "Shifts only work on integers"); 5998 assert((!VT.isVector() || VT == N2.getValueType()) && 5999 "Vector shift amounts must be in the same as their first arg"); 6000 // Verify that the shift amount VT is big enough to hold valid shift 6001 // amounts. This catches things like trying to shift an i1024 value by an 6002 // i8, which is easy to fall into in generic code that uses 6003 // TLI.getShiftAmount(). 6004 assert(N2.getValueType().getScalarSizeInBits() >= 6005 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6006 "Invalid use of small shift amount with oversized value!"); 6007 6008 // Always fold shifts of i1 values so the code generator doesn't need to 6009 // handle them. Since we know the size of the shift has to be less than the 6010 // size of the value, the shift/rotate count is guaranteed to be zero. 6011 if (VT == MVT::i1) 6012 return N1; 6013 if (N2CV && N2CV->isZero()) 6014 return N1; 6015 break; 6016 case ISD::FP_ROUND: 6017 assert(VT.isFloatingPoint() && 6018 N1.getValueType().isFloatingPoint() && 6019 VT.bitsLE(N1.getValueType()) && 6020 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6021 "Invalid FP_ROUND!"); 6022 if (N1.getValueType() == VT) return N1; // noop conversion. 6023 break; 6024 case ISD::AssertSext: 6025 case ISD::AssertZext: { 6026 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6027 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6028 assert(VT.isInteger() && EVT.isInteger() && 6029 "Cannot *_EXTEND_INREG FP types"); 6030 assert(!EVT.isVector() && 6031 "AssertSExt/AssertZExt type should be the vector element type " 6032 "rather than the vector type!"); 6033 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6034 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6035 break; 6036 } 6037 case ISD::SIGN_EXTEND_INREG: { 6038 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6039 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6040 assert(VT.isInteger() && EVT.isInteger() && 6041 "Cannot *_EXTEND_INREG FP types"); 6042 assert(EVT.isVector() == VT.isVector() && 6043 "SIGN_EXTEND_INREG type should be vector iff the operand " 6044 "type is vector!"); 6045 assert((!EVT.isVector() || 6046 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6047 "Vector element counts must match in SIGN_EXTEND_INREG"); 6048 assert(EVT.bitsLE(VT) && "Not extending!"); 6049 if (EVT == VT) return N1; // Not actually extending 6050 6051 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6052 unsigned FromBits = EVT.getScalarSizeInBits(); 6053 Val <<= Val.getBitWidth() - FromBits; 6054 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6055 return getConstant(Val, DL, ConstantVT); 6056 }; 6057 6058 if (N1C) { 6059 const APInt &Val = N1C->getAPIntValue(); 6060 return SignExtendInReg(Val, VT); 6061 } 6062 6063 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6064 SmallVector<SDValue, 8> Ops; 6065 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6066 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6067 SDValue Op = N1.getOperand(i); 6068 if (Op.isUndef()) { 6069 Ops.push_back(getUNDEF(OpVT)); 6070 continue; 6071 } 6072 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6073 APInt Val = C->getAPIntValue(); 6074 Ops.push_back(SignExtendInReg(Val, OpVT)); 6075 } 6076 return getBuildVector(VT, DL, Ops); 6077 } 6078 break; 6079 } 6080 case ISD::FP_TO_SINT_SAT: 6081 case ISD::FP_TO_UINT_SAT: { 6082 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6083 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6084 assert(N1.getValueType().isVector() == VT.isVector() && 6085 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6086 "vector!"); 6087 assert((!VT.isVector() || VT.getVectorNumElements() == 6088 N1.getValueType().getVectorNumElements()) && 6089 "Vector element counts must match in FP_TO_*INT_SAT"); 6090 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6091 "Type to saturate to must be a scalar."); 6092 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6093 "Not extending!"); 6094 break; 6095 } 6096 case ISD::EXTRACT_VECTOR_ELT: 6097 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6098 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6099 element type of the vector."); 6100 6101 // Extract from an undefined value or using an undefined index is undefined. 6102 if (N1.isUndef() || N2.isUndef()) 6103 return getUNDEF(VT); 6104 6105 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6106 // vectors. For scalable vectors we will provide appropriate support for 6107 // dealing with arbitrary indices. 6108 if (N2C && N1.getValueType().isFixedLengthVector() && 6109 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6110 return getUNDEF(VT); 6111 6112 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6113 // expanding copies of large vectors from registers. This only works for 6114 // fixed length vectors, since we need to know the exact number of 6115 // elements. 6116 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6117 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6118 unsigned Factor = 6119 N1.getOperand(0).getValueType().getVectorNumElements(); 6120 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6121 N1.getOperand(N2C->getZExtValue() / Factor), 6122 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6123 } 6124 6125 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6126 // lowering is expanding large vector constants. 6127 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6128 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6129 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6130 N1.getValueType().isFixedLengthVector()) && 6131 "BUILD_VECTOR used for scalable vectors"); 6132 unsigned Index = 6133 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6134 SDValue Elt = N1.getOperand(Index); 6135 6136 if (VT != Elt.getValueType()) 6137 // If the vector element type is not legal, the BUILD_VECTOR operands 6138 // are promoted and implicitly truncated, and the result implicitly 6139 // extended. Make that explicit here. 6140 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6141 6142 return Elt; 6143 } 6144 6145 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6146 // operations are lowered to scalars. 6147 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6148 // If the indices are the same, return the inserted element else 6149 // if the indices are known different, extract the element from 6150 // the original vector. 6151 SDValue N1Op2 = N1.getOperand(2); 6152 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6153 6154 if (N1Op2C && N2C) { 6155 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6156 if (VT == N1.getOperand(1).getValueType()) 6157 return N1.getOperand(1); 6158 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6159 } 6160 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6161 } 6162 } 6163 6164 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6165 // when vector types are scalarized and v1iX is legal. 6166 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6167 // Here we are completely ignoring the extract element index (N2), 6168 // which is fine for fixed width vectors, since any index other than 0 6169 // is undefined anyway. However, this cannot be ignored for scalable 6170 // vectors - in theory we could support this, but we don't want to do this 6171 // without a profitability check. 6172 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6173 N1.getValueType().isFixedLengthVector() && 6174 N1.getValueType().getVectorNumElements() == 1) { 6175 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6176 N1.getOperand(1)); 6177 } 6178 break; 6179 case ISD::EXTRACT_ELEMENT: 6180 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6181 assert(!N1.getValueType().isVector() && !VT.isVector() && 6182 (N1.getValueType().isInteger() == VT.isInteger()) && 6183 N1.getValueType() != VT && 6184 "Wrong types for EXTRACT_ELEMENT!"); 6185 6186 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6187 // 64-bit integers into 32-bit parts. Instead of building the extract of 6188 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6189 if (N1.getOpcode() == ISD::BUILD_PAIR) 6190 return N1.getOperand(N2C->getZExtValue()); 6191 6192 // EXTRACT_ELEMENT of a constant int is also very common. 6193 if (N1C) { 6194 unsigned ElementSize = VT.getSizeInBits(); 6195 unsigned Shift = ElementSize * N2C->getZExtValue(); 6196 const APInt &Val = N1C->getAPIntValue(); 6197 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6198 } 6199 break; 6200 case ISD::EXTRACT_SUBVECTOR: { 6201 EVT N1VT = N1.getValueType(); 6202 assert(VT.isVector() && N1VT.isVector() && 6203 "Extract subvector VTs must be vectors!"); 6204 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6205 "Extract subvector VTs must have the same element type!"); 6206 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6207 "Cannot extract a scalable vector from a fixed length vector!"); 6208 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6209 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6210 "Extract subvector must be from larger vector to smaller vector!"); 6211 assert(N2C && "Extract subvector index must be a constant"); 6212 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6213 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6214 N1VT.getVectorMinNumElements()) && 6215 "Extract subvector overflow!"); 6216 assert(N2C->getAPIntValue().getBitWidth() == 6217 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6218 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6219 6220 // Trivial extraction. 6221 if (VT == N1VT) 6222 return N1; 6223 6224 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6225 if (N1.isUndef()) 6226 return getUNDEF(VT); 6227 6228 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6229 // the concat have the same type as the extract. 6230 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6231 VT == N1.getOperand(0).getValueType()) { 6232 unsigned Factor = VT.getVectorMinNumElements(); 6233 return N1.getOperand(N2C->getZExtValue() / Factor); 6234 } 6235 6236 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6237 // during shuffle legalization. 6238 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6239 VT == N1.getOperand(1).getValueType()) 6240 return N1.getOperand(1); 6241 break; 6242 } 6243 } 6244 6245 // Perform trivial constant folding. 6246 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6247 return SV; 6248 6249 // Canonicalize an UNDEF to the RHS, even over a constant. 6250 if (N1.isUndef()) { 6251 if (TLI->isCommutativeBinOp(Opcode)) { 6252 std::swap(N1, N2); 6253 } else { 6254 switch (Opcode) { 6255 case ISD::SUB: 6256 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6257 case ISD::SIGN_EXTEND_INREG: 6258 case ISD::UDIV: 6259 case ISD::SDIV: 6260 case ISD::UREM: 6261 case ISD::SREM: 6262 case ISD::SSUBSAT: 6263 case ISD::USUBSAT: 6264 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6265 } 6266 } 6267 } 6268 6269 // Fold a bunch of operators when the RHS is undef. 6270 if (N2.isUndef()) { 6271 switch (Opcode) { 6272 case ISD::XOR: 6273 if (N1.isUndef()) 6274 // Handle undef ^ undef -> 0 special case. This is a common 6275 // idiom (misuse). 6276 return getConstant(0, DL, VT); 6277 LLVM_FALLTHROUGH; 6278 case ISD::ADD: 6279 case ISD::SUB: 6280 case ISD::UDIV: 6281 case ISD::SDIV: 6282 case ISD::UREM: 6283 case ISD::SREM: 6284 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6285 case ISD::MUL: 6286 case ISD::AND: 6287 case ISD::SSUBSAT: 6288 case ISD::USUBSAT: 6289 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6290 case ISD::OR: 6291 case ISD::SADDSAT: 6292 case ISD::UADDSAT: 6293 return getAllOnesConstant(DL, VT); 6294 } 6295 } 6296 6297 // Memoize this node if possible. 6298 SDNode *N; 6299 SDVTList VTs = getVTList(VT); 6300 SDValue Ops[] = {N1, N2}; 6301 if (VT != MVT::Glue) { 6302 FoldingSetNodeID ID; 6303 AddNodeIDNode(ID, Opcode, VTs, Ops); 6304 void *IP = nullptr; 6305 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6306 E->intersectFlagsWith(Flags); 6307 return SDValue(E, 0); 6308 } 6309 6310 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6311 N->setFlags(Flags); 6312 createOperands(N, Ops); 6313 CSEMap.InsertNode(N, IP); 6314 } else { 6315 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6316 createOperands(N, Ops); 6317 } 6318 6319 InsertNode(N); 6320 SDValue V = SDValue(N, 0); 6321 NewSDValueDbgMsg(V, "Creating new node: ", this); 6322 return V; 6323 } 6324 6325 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6326 SDValue N1, SDValue N2, SDValue N3) { 6327 SDNodeFlags Flags; 6328 if (Inserter) 6329 Flags = Inserter->getFlags(); 6330 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6331 } 6332 6333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6334 SDValue N1, SDValue N2, SDValue N3, 6335 const SDNodeFlags Flags) { 6336 assert(N1.getOpcode() != ISD::DELETED_NODE && 6337 N2.getOpcode() != ISD::DELETED_NODE && 6338 N3.getOpcode() != ISD::DELETED_NODE && 6339 "Operand is DELETED_NODE!"); 6340 // Perform various simplifications. 6341 switch (Opcode) { 6342 case ISD::FMA: { 6343 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6344 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6345 N3.getValueType() == VT && "FMA types must match!"); 6346 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6347 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6348 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6349 if (N1CFP && N2CFP && N3CFP) { 6350 APFloat V1 = N1CFP->getValueAPF(); 6351 const APFloat &V2 = N2CFP->getValueAPF(); 6352 const APFloat &V3 = N3CFP->getValueAPF(); 6353 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6354 return getConstantFP(V1, DL, VT); 6355 } 6356 break; 6357 } 6358 case ISD::BUILD_VECTOR: { 6359 // Attempt to simplify BUILD_VECTOR. 6360 SDValue Ops[] = {N1, N2, N3}; 6361 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6362 return V; 6363 break; 6364 } 6365 case ISD::CONCAT_VECTORS: { 6366 SDValue Ops[] = {N1, N2, N3}; 6367 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6368 return V; 6369 break; 6370 } 6371 case ISD::SETCC: { 6372 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6373 assert(N1.getValueType() == N2.getValueType() && 6374 "SETCC operands must have the same type!"); 6375 assert(VT.isVector() == N1.getValueType().isVector() && 6376 "SETCC type should be vector iff the operand type is vector!"); 6377 assert((!VT.isVector() || VT.getVectorElementCount() == 6378 N1.getValueType().getVectorElementCount()) && 6379 "SETCC vector element counts must match!"); 6380 // Use FoldSetCC to simplify SETCC's. 6381 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6382 return V; 6383 // Vector constant folding. 6384 SDValue Ops[] = {N1, N2, N3}; 6385 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6386 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6387 return V; 6388 } 6389 break; 6390 } 6391 case ISD::SELECT: 6392 case ISD::VSELECT: 6393 if (SDValue V = simplifySelect(N1, N2, N3)) 6394 return V; 6395 break; 6396 case ISD::VECTOR_SHUFFLE: 6397 llvm_unreachable("should use getVectorShuffle constructor!"); 6398 case ISD::VECTOR_SPLICE: { 6399 if (cast<ConstantSDNode>(N3)->isNullValue()) 6400 return N1; 6401 break; 6402 } 6403 case ISD::INSERT_VECTOR_ELT: { 6404 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6405 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6406 // for scalable vectors where we will generate appropriate code to 6407 // deal with out-of-bounds cases correctly. 6408 if (N3C && N1.getValueType().isFixedLengthVector() && 6409 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6410 return getUNDEF(VT); 6411 6412 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6413 if (N3.isUndef()) 6414 return getUNDEF(VT); 6415 6416 // If the inserted element is an UNDEF, just use the input vector. 6417 if (N2.isUndef()) 6418 return N1; 6419 6420 break; 6421 } 6422 case ISD::INSERT_SUBVECTOR: { 6423 // Inserting undef into undef is still undef. 6424 if (N1.isUndef() && N2.isUndef()) 6425 return getUNDEF(VT); 6426 6427 EVT N2VT = N2.getValueType(); 6428 assert(VT == N1.getValueType() && 6429 "Dest and insert subvector source types must match!"); 6430 assert(VT.isVector() && N2VT.isVector() && 6431 "Insert subvector VTs must be vectors!"); 6432 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6433 "Cannot insert a scalable vector into a fixed length vector!"); 6434 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6435 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6436 "Insert subvector must be from smaller vector to larger vector!"); 6437 assert(isa<ConstantSDNode>(N3) && 6438 "Insert subvector index must be constant"); 6439 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6440 (N2VT.getVectorMinNumElements() + 6441 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6442 VT.getVectorMinNumElements()) && 6443 "Insert subvector overflow!"); 6444 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6445 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6446 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6447 6448 // Trivial insertion. 6449 if (VT == N2VT) 6450 return N2; 6451 6452 // If this is an insert of an extracted vector into an undef vector, we 6453 // can just use the input to the extract. 6454 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6455 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6456 return N2.getOperand(0); 6457 break; 6458 } 6459 case ISD::BITCAST: 6460 // Fold bit_convert nodes from a type to themselves. 6461 if (N1.getValueType() == VT) 6462 return N1; 6463 break; 6464 } 6465 6466 // Memoize node if it doesn't produce a flag. 6467 SDNode *N; 6468 SDVTList VTs = getVTList(VT); 6469 SDValue Ops[] = {N1, N2, N3}; 6470 if (VT != MVT::Glue) { 6471 FoldingSetNodeID ID; 6472 AddNodeIDNode(ID, Opcode, VTs, Ops); 6473 void *IP = nullptr; 6474 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6475 E->intersectFlagsWith(Flags); 6476 return SDValue(E, 0); 6477 } 6478 6479 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6480 N->setFlags(Flags); 6481 createOperands(N, Ops); 6482 CSEMap.InsertNode(N, IP); 6483 } else { 6484 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6485 createOperands(N, Ops); 6486 } 6487 6488 InsertNode(N); 6489 SDValue V = SDValue(N, 0); 6490 NewSDValueDbgMsg(V, "Creating new node: ", this); 6491 return V; 6492 } 6493 6494 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6495 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6496 SDValue Ops[] = { N1, N2, N3, N4 }; 6497 return getNode(Opcode, DL, VT, Ops); 6498 } 6499 6500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6501 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6502 SDValue N5) { 6503 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6504 return getNode(Opcode, DL, VT, Ops); 6505 } 6506 6507 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6508 /// the incoming stack arguments to be loaded from the stack. 6509 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6510 SmallVector<SDValue, 8> ArgChains; 6511 6512 // Include the original chain at the beginning of the list. When this is 6513 // used by target LowerCall hooks, this helps legalize find the 6514 // CALLSEQ_BEGIN node. 6515 ArgChains.push_back(Chain); 6516 6517 // Add a chain value for each stack argument. 6518 for (SDNode *U : getEntryNode().getNode()->uses()) 6519 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6520 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6521 if (FI->getIndex() < 0) 6522 ArgChains.push_back(SDValue(L, 1)); 6523 6524 // Build a tokenfactor for all the chains. 6525 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6526 } 6527 6528 /// getMemsetValue - Vectorized representation of the memset value 6529 /// operand. 6530 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6531 const SDLoc &dl) { 6532 assert(!Value.isUndef()); 6533 6534 unsigned NumBits = VT.getScalarSizeInBits(); 6535 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6536 assert(C->getAPIntValue().getBitWidth() == 8); 6537 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6538 if (VT.isInteger()) { 6539 bool IsOpaque = VT.getSizeInBits() > 64 || 6540 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6541 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6542 } 6543 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6544 VT); 6545 } 6546 6547 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6548 EVT IntVT = VT.getScalarType(); 6549 if (!IntVT.isInteger()) 6550 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6551 6552 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6553 if (NumBits > 8) { 6554 // Use a multiplication with 0x010101... to extend the input to the 6555 // required length. 6556 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6557 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6558 DAG.getConstant(Magic, dl, IntVT)); 6559 } 6560 6561 if (VT != Value.getValueType() && !VT.isInteger()) 6562 Value = DAG.getBitcast(VT.getScalarType(), Value); 6563 if (VT != Value.getValueType()) 6564 Value = DAG.getSplatBuildVector(VT, dl, Value); 6565 6566 return Value; 6567 } 6568 6569 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6570 /// used when a memcpy is turned into a memset when the source is a constant 6571 /// string ptr. 6572 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6573 const TargetLowering &TLI, 6574 const ConstantDataArraySlice &Slice) { 6575 // Handle vector with all elements zero. 6576 if (Slice.Array == nullptr) { 6577 if (VT.isInteger()) 6578 return DAG.getConstant(0, dl, VT); 6579 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6580 return DAG.getConstantFP(0.0, dl, VT); 6581 if (VT.isVector()) { 6582 unsigned NumElts = VT.getVectorNumElements(); 6583 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6584 return DAG.getNode(ISD::BITCAST, dl, VT, 6585 DAG.getConstant(0, dl, 6586 EVT::getVectorVT(*DAG.getContext(), 6587 EltVT, NumElts))); 6588 } 6589 llvm_unreachable("Expected type!"); 6590 } 6591 6592 assert(!VT.isVector() && "Can't handle vector type here!"); 6593 unsigned NumVTBits = VT.getSizeInBits(); 6594 unsigned NumVTBytes = NumVTBits / 8; 6595 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6596 6597 APInt Val(NumVTBits, 0); 6598 if (DAG.getDataLayout().isLittleEndian()) { 6599 for (unsigned i = 0; i != NumBytes; ++i) 6600 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6601 } else { 6602 for (unsigned i = 0; i != NumBytes; ++i) 6603 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6604 } 6605 6606 // If the "cost" of materializing the integer immediate is less than the cost 6607 // of a load, then it is cost effective to turn the load into the immediate. 6608 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6609 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6610 return DAG.getConstant(Val, dl, VT); 6611 return SDValue(); 6612 } 6613 6614 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6615 const SDLoc &DL, 6616 const SDNodeFlags Flags) { 6617 EVT VT = Base.getValueType(); 6618 SDValue Index; 6619 6620 if (Offset.isScalable()) 6621 Index = getVScale(DL, Base.getValueType(), 6622 APInt(Base.getValueSizeInBits().getFixedSize(), 6623 Offset.getKnownMinSize())); 6624 else 6625 Index = getConstant(Offset.getFixedSize(), DL, VT); 6626 6627 return getMemBasePlusOffset(Base, Index, DL, Flags); 6628 } 6629 6630 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6631 const SDLoc &DL, 6632 const SDNodeFlags Flags) { 6633 assert(Offset.getValueType().isInteger()); 6634 EVT BasePtrVT = Ptr.getValueType(); 6635 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6636 } 6637 6638 /// Returns true if memcpy source is constant data. 6639 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6640 uint64_t SrcDelta = 0; 6641 GlobalAddressSDNode *G = nullptr; 6642 if (Src.getOpcode() == ISD::GlobalAddress) 6643 G = cast<GlobalAddressSDNode>(Src); 6644 else if (Src.getOpcode() == ISD::ADD && 6645 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6646 Src.getOperand(1).getOpcode() == ISD::Constant) { 6647 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6648 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6649 } 6650 if (!G) 6651 return false; 6652 6653 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6654 SrcDelta + G->getOffset()); 6655 } 6656 6657 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6658 SelectionDAG &DAG) { 6659 // On Darwin, -Os means optimize for size without hurting performance, so 6660 // only really optimize for size when -Oz (MinSize) is used. 6661 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6662 return MF.getFunction().hasMinSize(); 6663 return DAG.shouldOptForSize(); 6664 } 6665 6666 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6667 SmallVector<SDValue, 32> &OutChains, unsigned From, 6668 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6669 SmallVector<SDValue, 16> &OutStoreChains) { 6670 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6671 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6672 SmallVector<SDValue, 16> GluedLoadChains; 6673 for (unsigned i = From; i < To; ++i) { 6674 OutChains.push_back(OutLoadChains[i]); 6675 GluedLoadChains.push_back(OutLoadChains[i]); 6676 } 6677 6678 // Chain for all loads. 6679 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6680 GluedLoadChains); 6681 6682 for (unsigned i = From; i < To; ++i) { 6683 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6684 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6685 ST->getBasePtr(), ST->getMemoryVT(), 6686 ST->getMemOperand()); 6687 OutChains.push_back(NewStore); 6688 } 6689 } 6690 6691 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6692 SDValue Chain, SDValue Dst, SDValue Src, 6693 uint64_t Size, Align Alignment, 6694 bool isVol, bool AlwaysInline, 6695 MachinePointerInfo DstPtrInfo, 6696 MachinePointerInfo SrcPtrInfo, 6697 const AAMDNodes &AAInfo) { 6698 // Turn a memcpy of undef to nop. 6699 // FIXME: We need to honor volatile even is Src is undef. 6700 if (Src.isUndef()) 6701 return Chain; 6702 6703 // Expand memcpy to a series of load and store ops if the size operand falls 6704 // below a certain threshold. 6705 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6706 // rather than maybe a humongous number of loads and stores. 6707 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6708 const DataLayout &DL = DAG.getDataLayout(); 6709 LLVMContext &C = *DAG.getContext(); 6710 std::vector<EVT> MemOps; 6711 bool DstAlignCanChange = false; 6712 MachineFunction &MF = DAG.getMachineFunction(); 6713 MachineFrameInfo &MFI = MF.getFrameInfo(); 6714 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6715 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6716 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6717 DstAlignCanChange = true; 6718 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6719 if (!SrcAlign || Alignment > *SrcAlign) 6720 SrcAlign = Alignment; 6721 assert(SrcAlign && "SrcAlign must be set"); 6722 ConstantDataArraySlice Slice; 6723 // If marked as volatile, perform a copy even when marked as constant. 6724 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6725 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6726 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6727 const MemOp Op = isZeroConstant 6728 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6729 /*IsZeroMemset*/ true, isVol) 6730 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6731 *SrcAlign, isVol, CopyFromConstant); 6732 if (!TLI.findOptimalMemOpLowering( 6733 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6734 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6735 return SDValue(); 6736 6737 if (DstAlignCanChange) { 6738 Type *Ty = MemOps[0].getTypeForEVT(C); 6739 Align NewAlign = DL.getABITypeAlign(Ty); 6740 6741 // Don't promote to an alignment that would require dynamic stack 6742 // realignment. 6743 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6744 if (!TRI->hasStackRealignment(MF)) 6745 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6746 NewAlign = NewAlign / 2; 6747 6748 if (NewAlign > Alignment) { 6749 // Give the stack frame object a larger alignment if needed. 6750 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6751 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6752 Alignment = NewAlign; 6753 } 6754 } 6755 6756 // Prepare AAInfo for loads/stores after lowering this memcpy. 6757 AAMDNodes NewAAInfo = AAInfo; 6758 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6759 6760 MachineMemOperand::Flags MMOFlags = 6761 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6762 SmallVector<SDValue, 16> OutLoadChains; 6763 SmallVector<SDValue, 16> OutStoreChains; 6764 SmallVector<SDValue, 32> OutChains; 6765 unsigned NumMemOps = MemOps.size(); 6766 uint64_t SrcOff = 0, DstOff = 0; 6767 for (unsigned i = 0; i != NumMemOps; ++i) { 6768 EVT VT = MemOps[i]; 6769 unsigned VTSize = VT.getSizeInBits() / 8; 6770 SDValue Value, Store; 6771 6772 if (VTSize > Size) { 6773 // Issuing an unaligned load / store pair that overlaps with the previous 6774 // pair. Adjust the offset accordingly. 6775 assert(i == NumMemOps-1 && i != 0); 6776 SrcOff -= VTSize - Size; 6777 DstOff -= VTSize - Size; 6778 } 6779 6780 if (CopyFromConstant && 6781 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6782 // It's unlikely a store of a vector immediate can be done in a single 6783 // instruction. It would require a load from a constantpool first. 6784 // We only handle zero vectors here. 6785 // FIXME: Handle other cases where store of vector immediate is done in 6786 // a single instruction. 6787 ConstantDataArraySlice SubSlice; 6788 if (SrcOff < Slice.Length) { 6789 SubSlice = Slice; 6790 SubSlice.move(SrcOff); 6791 } else { 6792 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6793 SubSlice.Array = nullptr; 6794 SubSlice.Offset = 0; 6795 SubSlice.Length = VTSize; 6796 } 6797 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6798 if (Value.getNode()) { 6799 Store = DAG.getStore( 6800 Chain, dl, Value, 6801 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6802 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6803 OutChains.push_back(Store); 6804 } 6805 } 6806 6807 if (!Store.getNode()) { 6808 // The type might not be legal for the target. This should only happen 6809 // if the type is smaller than a legal type, as on PPC, so the right 6810 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6811 // to Load/Store if NVT==VT. 6812 // FIXME does the case above also need this? 6813 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6814 assert(NVT.bitsGE(VT)); 6815 6816 bool isDereferenceable = 6817 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6818 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6819 if (isDereferenceable) 6820 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6821 6822 Value = DAG.getExtLoad( 6823 ISD::EXTLOAD, dl, NVT, Chain, 6824 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6825 SrcPtrInfo.getWithOffset(SrcOff), VT, 6826 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6827 OutLoadChains.push_back(Value.getValue(1)); 6828 6829 Store = DAG.getTruncStore( 6830 Chain, dl, Value, 6831 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6832 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6833 OutStoreChains.push_back(Store); 6834 } 6835 SrcOff += VTSize; 6836 DstOff += VTSize; 6837 Size -= VTSize; 6838 } 6839 6840 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6841 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6842 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6843 6844 if (NumLdStInMemcpy) { 6845 // It may be that memcpy might be converted to memset if it's memcpy 6846 // of constants. In such a case, we won't have loads and stores, but 6847 // just stores. In the absence of loads, there is nothing to gang up. 6848 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6849 // If target does not care, just leave as it. 6850 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6851 OutChains.push_back(OutLoadChains[i]); 6852 OutChains.push_back(OutStoreChains[i]); 6853 } 6854 } else { 6855 // Ld/St less than/equal limit set by target. 6856 if (NumLdStInMemcpy <= GluedLdStLimit) { 6857 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6858 NumLdStInMemcpy, OutLoadChains, 6859 OutStoreChains); 6860 } else { 6861 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6862 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6863 unsigned GlueIter = 0; 6864 6865 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6866 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6867 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6868 6869 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6870 OutLoadChains, OutStoreChains); 6871 GlueIter += GluedLdStLimit; 6872 } 6873 6874 // Residual ld/st. 6875 if (RemainingLdStInMemcpy) { 6876 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6877 RemainingLdStInMemcpy, OutLoadChains, 6878 OutStoreChains); 6879 } 6880 } 6881 } 6882 } 6883 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6884 } 6885 6886 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6887 SDValue Chain, SDValue Dst, SDValue Src, 6888 uint64_t Size, Align Alignment, 6889 bool isVol, bool AlwaysInline, 6890 MachinePointerInfo DstPtrInfo, 6891 MachinePointerInfo SrcPtrInfo, 6892 const AAMDNodes &AAInfo) { 6893 // Turn a memmove of undef to nop. 6894 // FIXME: We need to honor volatile even is Src is undef. 6895 if (Src.isUndef()) 6896 return Chain; 6897 6898 // Expand memmove to a series of load and store ops if the size operand falls 6899 // below a certain threshold. 6900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6901 const DataLayout &DL = DAG.getDataLayout(); 6902 LLVMContext &C = *DAG.getContext(); 6903 std::vector<EVT> MemOps; 6904 bool DstAlignCanChange = false; 6905 MachineFunction &MF = DAG.getMachineFunction(); 6906 MachineFrameInfo &MFI = MF.getFrameInfo(); 6907 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6908 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6909 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6910 DstAlignCanChange = true; 6911 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6912 if (!SrcAlign || Alignment > *SrcAlign) 6913 SrcAlign = Alignment; 6914 assert(SrcAlign && "SrcAlign must be set"); 6915 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6916 if (!TLI.findOptimalMemOpLowering( 6917 MemOps, Limit, 6918 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6919 /*IsVolatile*/ true), 6920 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6921 MF.getFunction().getAttributes())) 6922 return SDValue(); 6923 6924 if (DstAlignCanChange) { 6925 Type *Ty = MemOps[0].getTypeForEVT(C); 6926 Align NewAlign = DL.getABITypeAlign(Ty); 6927 if (NewAlign > Alignment) { 6928 // Give the stack frame object a larger alignment if needed. 6929 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6930 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6931 Alignment = NewAlign; 6932 } 6933 } 6934 6935 // Prepare AAInfo for loads/stores after lowering this memmove. 6936 AAMDNodes NewAAInfo = AAInfo; 6937 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6938 6939 MachineMemOperand::Flags MMOFlags = 6940 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6941 uint64_t SrcOff = 0, DstOff = 0; 6942 SmallVector<SDValue, 8> LoadValues; 6943 SmallVector<SDValue, 8> LoadChains; 6944 SmallVector<SDValue, 8> OutChains; 6945 unsigned NumMemOps = MemOps.size(); 6946 for (unsigned i = 0; i < NumMemOps; i++) { 6947 EVT VT = MemOps[i]; 6948 unsigned VTSize = VT.getSizeInBits() / 8; 6949 SDValue Value; 6950 6951 bool isDereferenceable = 6952 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6953 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6954 if (isDereferenceable) 6955 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6956 6957 Value = DAG.getLoad( 6958 VT, dl, Chain, 6959 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6960 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6961 LoadValues.push_back(Value); 6962 LoadChains.push_back(Value.getValue(1)); 6963 SrcOff += VTSize; 6964 } 6965 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6966 OutChains.clear(); 6967 for (unsigned i = 0; i < NumMemOps; i++) { 6968 EVT VT = MemOps[i]; 6969 unsigned VTSize = VT.getSizeInBits() / 8; 6970 SDValue Store; 6971 6972 Store = DAG.getStore( 6973 Chain, dl, LoadValues[i], 6974 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6975 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6976 OutChains.push_back(Store); 6977 DstOff += VTSize; 6978 } 6979 6980 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6981 } 6982 6983 /// Lower the call to 'memset' intrinsic function into a series of store 6984 /// operations. 6985 /// 6986 /// \param DAG Selection DAG where lowered code is placed. 6987 /// \param dl Link to corresponding IR location. 6988 /// \param Chain Control flow dependency. 6989 /// \param Dst Pointer to destination memory location. 6990 /// \param Src Value of byte to write into the memory. 6991 /// \param Size Number of bytes to write. 6992 /// \param Alignment Alignment of the destination in bytes. 6993 /// \param isVol True if destination is volatile. 6994 /// \param AlwaysInline Makes sure no function call is generated. 6995 /// \param DstPtrInfo IR information on the memory pointer. 6996 /// \returns New head in the control flow, if lowering was successful, empty 6997 /// SDValue otherwise. 6998 /// 6999 /// The function tries to replace 'llvm.memset' intrinsic with several store 7000 /// operations and value calculation code. This is usually profitable for small 7001 /// memory size or when the semantic requires inlining. 7002 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7003 SDValue Chain, SDValue Dst, SDValue Src, 7004 uint64_t Size, Align Alignment, bool isVol, 7005 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7006 const AAMDNodes &AAInfo) { 7007 // Turn a memset of undef to nop. 7008 // FIXME: We need to honor volatile even is Src is undef. 7009 if (Src.isUndef()) 7010 return Chain; 7011 7012 // Expand memset to a series of load/store ops if the size operand 7013 // falls below a certain threshold. 7014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7015 std::vector<EVT> MemOps; 7016 bool DstAlignCanChange = false; 7017 MachineFunction &MF = DAG.getMachineFunction(); 7018 MachineFrameInfo &MFI = MF.getFrameInfo(); 7019 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7020 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7021 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7022 DstAlignCanChange = true; 7023 bool IsZeroVal = 7024 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7025 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7026 7027 if (!TLI.findOptimalMemOpLowering( 7028 MemOps, Limit, 7029 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7030 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7031 return SDValue(); 7032 7033 if (DstAlignCanChange) { 7034 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7035 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7036 if (NewAlign > Alignment) { 7037 // Give the stack frame object a larger alignment if needed. 7038 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7039 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7040 Alignment = NewAlign; 7041 } 7042 } 7043 7044 SmallVector<SDValue, 8> OutChains; 7045 uint64_t DstOff = 0; 7046 unsigned NumMemOps = MemOps.size(); 7047 7048 // Find the largest store and generate the bit pattern for it. 7049 EVT LargestVT = MemOps[0]; 7050 for (unsigned i = 1; i < NumMemOps; i++) 7051 if (MemOps[i].bitsGT(LargestVT)) 7052 LargestVT = MemOps[i]; 7053 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7054 7055 // Prepare AAInfo for loads/stores after lowering this memset. 7056 AAMDNodes NewAAInfo = AAInfo; 7057 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7058 7059 for (unsigned i = 0; i < NumMemOps; i++) { 7060 EVT VT = MemOps[i]; 7061 unsigned VTSize = VT.getSizeInBits() / 8; 7062 if (VTSize > Size) { 7063 // Issuing an unaligned load / store pair that overlaps with the previous 7064 // pair. Adjust the offset accordingly. 7065 assert(i == NumMemOps-1 && i != 0); 7066 DstOff -= VTSize - Size; 7067 } 7068 7069 // If this store is smaller than the largest store see whether we can get 7070 // the smaller value for free with a truncate. 7071 SDValue Value = MemSetValue; 7072 if (VT.bitsLT(LargestVT)) { 7073 if (!LargestVT.isVector() && !VT.isVector() && 7074 TLI.isTruncateFree(LargestVT, VT)) 7075 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7076 else 7077 Value = getMemsetValue(Src, VT, DAG, dl); 7078 } 7079 assert(Value.getValueType() == VT && "Value with wrong type."); 7080 SDValue Store = DAG.getStore( 7081 Chain, dl, Value, 7082 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7083 DstPtrInfo.getWithOffset(DstOff), Alignment, 7084 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7085 NewAAInfo); 7086 OutChains.push_back(Store); 7087 DstOff += VT.getSizeInBits() / 8; 7088 Size -= VTSize; 7089 } 7090 7091 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7092 } 7093 7094 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7095 unsigned AS) { 7096 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7097 // pointer operands can be losslessly bitcasted to pointers of address space 0 7098 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7099 report_fatal_error("cannot lower memory intrinsic in address space " + 7100 Twine(AS)); 7101 } 7102 } 7103 7104 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7105 SDValue Src, SDValue Size, Align Alignment, 7106 bool isVol, bool AlwaysInline, bool isTailCall, 7107 MachinePointerInfo DstPtrInfo, 7108 MachinePointerInfo SrcPtrInfo, 7109 const AAMDNodes &AAInfo) { 7110 // Check to see if we should lower the memcpy to loads and stores first. 7111 // For cases within the target-specified limits, this is the best choice. 7112 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7113 if (ConstantSize) { 7114 // Memcpy with size zero? Just return the original chain. 7115 if (ConstantSize->isZero()) 7116 return Chain; 7117 7118 SDValue Result = getMemcpyLoadsAndStores( 7119 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7120 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7121 if (Result.getNode()) 7122 return Result; 7123 } 7124 7125 // Then check to see if we should lower the memcpy with target-specific 7126 // code. If the target chooses to do this, this is the next best. 7127 if (TSI) { 7128 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7129 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7130 DstPtrInfo, SrcPtrInfo); 7131 if (Result.getNode()) 7132 return Result; 7133 } 7134 7135 // If we really need inline code and the target declined to provide it, 7136 // use a (potentially long) sequence of loads and stores. 7137 if (AlwaysInline) { 7138 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7139 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7140 ConstantSize->getZExtValue(), Alignment, 7141 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7142 } 7143 7144 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7145 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7146 7147 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7148 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7149 // respect volatile, so they may do things like read or write memory 7150 // beyond the given memory regions. But fixing this isn't easy, and most 7151 // people don't care. 7152 7153 // Emit a library call. 7154 TargetLowering::ArgListTy Args; 7155 TargetLowering::ArgListEntry Entry; 7156 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7157 Entry.Node = Dst; Args.push_back(Entry); 7158 Entry.Node = Src; Args.push_back(Entry); 7159 7160 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7161 Entry.Node = Size; Args.push_back(Entry); 7162 // FIXME: pass in SDLoc 7163 TargetLowering::CallLoweringInfo CLI(*this); 7164 CLI.setDebugLoc(dl) 7165 .setChain(Chain) 7166 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7167 Dst.getValueType().getTypeForEVT(*getContext()), 7168 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7169 TLI->getPointerTy(getDataLayout())), 7170 std::move(Args)) 7171 .setDiscardResult() 7172 .setTailCall(isTailCall); 7173 7174 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7175 return CallResult.second; 7176 } 7177 7178 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7179 SDValue Dst, SDValue Src, SDValue Size, 7180 Type *SizeTy, unsigned ElemSz, 7181 bool isTailCall, 7182 MachinePointerInfo DstPtrInfo, 7183 MachinePointerInfo SrcPtrInfo) { 7184 // Emit a library call. 7185 TargetLowering::ArgListTy Args; 7186 TargetLowering::ArgListEntry Entry; 7187 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7188 Entry.Node = Dst; 7189 Args.push_back(Entry); 7190 7191 Entry.Node = Src; 7192 Args.push_back(Entry); 7193 7194 Entry.Ty = SizeTy; 7195 Entry.Node = Size; 7196 Args.push_back(Entry); 7197 7198 RTLIB::Libcall LibraryCall = 7199 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7200 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7201 report_fatal_error("Unsupported element size"); 7202 7203 TargetLowering::CallLoweringInfo CLI(*this); 7204 CLI.setDebugLoc(dl) 7205 .setChain(Chain) 7206 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7207 Type::getVoidTy(*getContext()), 7208 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7209 TLI->getPointerTy(getDataLayout())), 7210 std::move(Args)) 7211 .setDiscardResult() 7212 .setTailCall(isTailCall); 7213 7214 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7215 return CallResult.second; 7216 } 7217 7218 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7219 SDValue Src, SDValue Size, Align Alignment, 7220 bool isVol, bool isTailCall, 7221 MachinePointerInfo DstPtrInfo, 7222 MachinePointerInfo SrcPtrInfo, 7223 const AAMDNodes &AAInfo) { 7224 // Check to see if we should lower the memmove to loads and stores first. 7225 // For cases within the target-specified limits, this is the best choice. 7226 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7227 if (ConstantSize) { 7228 // Memmove with size zero? Just return the original chain. 7229 if (ConstantSize->isZero()) 7230 return Chain; 7231 7232 SDValue Result = getMemmoveLoadsAndStores( 7233 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7234 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7235 if (Result.getNode()) 7236 return Result; 7237 } 7238 7239 // Then check to see if we should lower the memmove with target-specific 7240 // code. If the target chooses to do this, this is the next best. 7241 if (TSI) { 7242 SDValue Result = 7243 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7244 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7245 if (Result.getNode()) 7246 return Result; 7247 } 7248 7249 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7250 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7251 7252 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7253 // not be safe. See memcpy above for more details. 7254 7255 // Emit a library call. 7256 TargetLowering::ArgListTy Args; 7257 TargetLowering::ArgListEntry Entry; 7258 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7259 Entry.Node = Dst; Args.push_back(Entry); 7260 Entry.Node = Src; Args.push_back(Entry); 7261 7262 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7263 Entry.Node = Size; Args.push_back(Entry); 7264 // FIXME: pass in SDLoc 7265 TargetLowering::CallLoweringInfo CLI(*this); 7266 CLI.setDebugLoc(dl) 7267 .setChain(Chain) 7268 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7269 Dst.getValueType().getTypeForEVT(*getContext()), 7270 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7271 TLI->getPointerTy(getDataLayout())), 7272 std::move(Args)) 7273 .setDiscardResult() 7274 .setTailCall(isTailCall); 7275 7276 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7277 return CallResult.second; 7278 } 7279 7280 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7281 SDValue Dst, SDValue Src, SDValue Size, 7282 Type *SizeTy, unsigned ElemSz, 7283 bool isTailCall, 7284 MachinePointerInfo DstPtrInfo, 7285 MachinePointerInfo SrcPtrInfo) { 7286 // Emit a library call. 7287 TargetLowering::ArgListTy Args; 7288 TargetLowering::ArgListEntry Entry; 7289 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7290 Entry.Node = Dst; 7291 Args.push_back(Entry); 7292 7293 Entry.Node = Src; 7294 Args.push_back(Entry); 7295 7296 Entry.Ty = SizeTy; 7297 Entry.Node = Size; 7298 Args.push_back(Entry); 7299 7300 RTLIB::Libcall LibraryCall = 7301 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7302 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7303 report_fatal_error("Unsupported element size"); 7304 7305 TargetLowering::CallLoweringInfo CLI(*this); 7306 CLI.setDebugLoc(dl) 7307 .setChain(Chain) 7308 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7309 Type::getVoidTy(*getContext()), 7310 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7311 TLI->getPointerTy(getDataLayout())), 7312 std::move(Args)) 7313 .setDiscardResult() 7314 .setTailCall(isTailCall); 7315 7316 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7317 return CallResult.second; 7318 } 7319 7320 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7321 SDValue Src, SDValue Size, Align Alignment, 7322 bool isVol, bool AlwaysInline, bool isTailCall, 7323 MachinePointerInfo DstPtrInfo, 7324 const AAMDNodes &AAInfo) { 7325 // Check to see if we should lower the memset to stores first. 7326 // For cases within the target-specified limits, this is the best choice. 7327 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7328 if (ConstantSize) { 7329 // Memset with size zero? Just return the original chain. 7330 if (ConstantSize->isZero()) 7331 return Chain; 7332 7333 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7334 ConstantSize->getZExtValue(), Alignment, 7335 isVol, false, DstPtrInfo, AAInfo); 7336 7337 if (Result.getNode()) 7338 return Result; 7339 } 7340 7341 // Then check to see if we should lower the memset with target-specific 7342 // code. If the target chooses to do this, this is the next best. 7343 if (TSI) { 7344 SDValue Result = TSI->EmitTargetCodeForMemset( 7345 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7346 if (Result.getNode()) 7347 return Result; 7348 } 7349 7350 // If we really need inline code and the target declined to provide it, 7351 // use a (potentially long) sequence of loads and stores. 7352 if (AlwaysInline) { 7353 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7354 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7355 ConstantSize->getZExtValue(), Alignment, 7356 isVol, true, DstPtrInfo, AAInfo); 7357 assert(Result && 7358 "getMemsetStores must return a valid sequence when AlwaysInline"); 7359 return Result; 7360 } 7361 7362 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7363 7364 // Emit a library call. 7365 auto &Ctx = *getContext(); 7366 const auto& DL = getDataLayout(); 7367 7368 TargetLowering::CallLoweringInfo CLI(*this); 7369 // FIXME: pass in SDLoc 7370 CLI.setDebugLoc(dl).setChain(Chain); 7371 7372 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7373 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7374 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7375 7376 // Helper function to create an Entry from Node and Type. 7377 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7378 TargetLowering::ArgListEntry Entry; 7379 Entry.Node = Node; 7380 Entry.Ty = Ty; 7381 return Entry; 7382 }; 7383 7384 // If zeroing out and bzero is present, use it. 7385 if (SrcIsZero && BzeroName) { 7386 TargetLowering::ArgListTy Args; 7387 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7388 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7389 CLI.setLibCallee( 7390 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7391 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7392 } else { 7393 TargetLowering::ArgListTy Args; 7394 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7395 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7396 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7397 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7398 Dst.getValueType().getTypeForEVT(Ctx), 7399 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7400 TLI->getPointerTy(DL)), 7401 std::move(Args)); 7402 } 7403 7404 CLI.setDiscardResult().setTailCall(isTailCall); 7405 7406 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7407 return CallResult.second; 7408 } 7409 7410 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7411 SDValue Dst, SDValue Value, SDValue Size, 7412 Type *SizeTy, unsigned ElemSz, 7413 bool isTailCall, 7414 MachinePointerInfo DstPtrInfo) { 7415 // Emit a library call. 7416 TargetLowering::ArgListTy Args; 7417 TargetLowering::ArgListEntry Entry; 7418 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7419 Entry.Node = Dst; 7420 Args.push_back(Entry); 7421 7422 Entry.Ty = Type::getInt8Ty(*getContext()); 7423 Entry.Node = Value; 7424 Args.push_back(Entry); 7425 7426 Entry.Ty = SizeTy; 7427 Entry.Node = Size; 7428 Args.push_back(Entry); 7429 7430 RTLIB::Libcall LibraryCall = 7431 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7432 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7433 report_fatal_error("Unsupported element size"); 7434 7435 TargetLowering::CallLoweringInfo CLI(*this); 7436 CLI.setDebugLoc(dl) 7437 .setChain(Chain) 7438 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7439 Type::getVoidTy(*getContext()), 7440 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7441 TLI->getPointerTy(getDataLayout())), 7442 std::move(Args)) 7443 .setDiscardResult() 7444 .setTailCall(isTailCall); 7445 7446 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7447 return CallResult.second; 7448 } 7449 7450 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7451 SDVTList VTList, ArrayRef<SDValue> Ops, 7452 MachineMemOperand *MMO) { 7453 FoldingSetNodeID ID; 7454 ID.AddInteger(MemVT.getRawBits()); 7455 AddNodeIDNode(ID, Opcode, VTList, Ops); 7456 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7457 ID.AddInteger(MMO->getFlags()); 7458 void* IP = nullptr; 7459 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7460 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7461 return SDValue(E, 0); 7462 } 7463 7464 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7465 VTList, MemVT, MMO); 7466 createOperands(N, Ops); 7467 7468 CSEMap.InsertNode(N, IP); 7469 InsertNode(N); 7470 return SDValue(N, 0); 7471 } 7472 7473 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7474 EVT MemVT, SDVTList VTs, SDValue Chain, 7475 SDValue Ptr, SDValue Cmp, SDValue Swp, 7476 MachineMemOperand *MMO) { 7477 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7478 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7479 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7480 7481 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7482 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7483 } 7484 7485 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7486 SDValue Chain, SDValue Ptr, SDValue Val, 7487 MachineMemOperand *MMO) { 7488 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7489 Opcode == ISD::ATOMIC_LOAD_SUB || 7490 Opcode == ISD::ATOMIC_LOAD_AND || 7491 Opcode == ISD::ATOMIC_LOAD_CLR || 7492 Opcode == ISD::ATOMIC_LOAD_OR || 7493 Opcode == ISD::ATOMIC_LOAD_XOR || 7494 Opcode == ISD::ATOMIC_LOAD_NAND || 7495 Opcode == ISD::ATOMIC_LOAD_MIN || 7496 Opcode == ISD::ATOMIC_LOAD_MAX || 7497 Opcode == ISD::ATOMIC_LOAD_UMIN || 7498 Opcode == ISD::ATOMIC_LOAD_UMAX || 7499 Opcode == ISD::ATOMIC_LOAD_FADD || 7500 Opcode == ISD::ATOMIC_LOAD_FSUB || 7501 Opcode == ISD::ATOMIC_SWAP || 7502 Opcode == ISD::ATOMIC_STORE) && 7503 "Invalid Atomic Op"); 7504 7505 EVT VT = Val.getValueType(); 7506 7507 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7508 getVTList(VT, MVT::Other); 7509 SDValue Ops[] = {Chain, Ptr, Val}; 7510 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7511 } 7512 7513 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7514 EVT VT, SDValue Chain, SDValue Ptr, 7515 MachineMemOperand *MMO) { 7516 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7517 7518 SDVTList VTs = getVTList(VT, MVT::Other); 7519 SDValue Ops[] = {Chain, Ptr}; 7520 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7521 } 7522 7523 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7524 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7525 if (Ops.size() == 1) 7526 return Ops[0]; 7527 7528 SmallVector<EVT, 4> VTs; 7529 VTs.reserve(Ops.size()); 7530 for (const SDValue &Op : Ops) 7531 VTs.push_back(Op.getValueType()); 7532 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7533 } 7534 7535 SDValue SelectionDAG::getMemIntrinsicNode( 7536 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7537 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7538 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7539 if (!Size && MemVT.isScalableVector()) 7540 Size = MemoryLocation::UnknownSize; 7541 else if (!Size) 7542 Size = MemVT.getStoreSize(); 7543 7544 MachineFunction &MF = getMachineFunction(); 7545 MachineMemOperand *MMO = 7546 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7547 7548 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7549 } 7550 7551 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7552 SDVTList VTList, 7553 ArrayRef<SDValue> Ops, EVT MemVT, 7554 MachineMemOperand *MMO) { 7555 assert((Opcode == ISD::INTRINSIC_VOID || 7556 Opcode == ISD::INTRINSIC_W_CHAIN || 7557 Opcode == ISD::PREFETCH || 7558 ((int)Opcode <= std::numeric_limits<int>::max() && 7559 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7560 "Opcode is not a memory-accessing opcode!"); 7561 7562 // Memoize the node unless it returns a flag. 7563 MemIntrinsicSDNode *N; 7564 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7565 FoldingSetNodeID ID; 7566 AddNodeIDNode(ID, Opcode, VTList, Ops); 7567 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7568 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7569 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7570 ID.AddInteger(MMO->getFlags()); 7571 void *IP = nullptr; 7572 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7573 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7574 return SDValue(E, 0); 7575 } 7576 7577 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7578 VTList, MemVT, MMO); 7579 createOperands(N, Ops); 7580 7581 CSEMap.InsertNode(N, IP); 7582 } else { 7583 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7584 VTList, MemVT, MMO); 7585 createOperands(N, Ops); 7586 } 7587 InsertNode(N); 7588 SDValue V(N, 0); 7589 NewSDValueDbgMsg(V, "Creating new node: ", this); 7590 return V; 7591 } 7592 7593 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7594 SDValue Chain, int FrameIndex, 7595 int64_t Size, int64_t Offset) { 7596 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7597 const auto VTs = getVTList(MVT::Other); 7598 SDValue Ops[2] = { 7599 Chain, 7600 getFrameIndex(FrameIndex, 7601 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7602 true)}; 7603 7604 FoldingSetNodeID ID; 7605 AddNodeIDNode(ID, Opcode, VTs, Ops); 7606 ID.AddInteger(FrameIndex); 7607 ID.AddInteger(Size); 7608 ID.AddInteger(Offset); 7609 void *IP = nullptr; 7610 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7611 return SDValue(E, 0); 7612 7613 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7614 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7615 createOperands(N, Ops); 7616 CSEMap.InsertNode(N, IP); 7617 InsertNode(N); 7618 SDValue V(N, 0); 7619 NewSDValueDbgMsg(V, "Creating new node: ", this); 7620 return V; 7621 } 7622 7623 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7624 uint64_t Guid, uint64_t Index, 7625 uint32_t Attr) { 7626 const unsigned Opcode = ISD::PSEUDO_PROBE; 7627 const auto VTs = getVTList(MVT::Other); 7628 SDValue Ops[] = {Chain}; 7629 FoldingSetNodeID ID; 7630 AddNodeIDNode(ID, Opcode, VTs, Ops); 7631 ID.AddInteger(Guid); 7632 ID.AddInteger(Index); 7633 void *IP = nullptr; 7634 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7635 return SDValue(E, 0); 7636 7637 auto *N = newSDNode<PseudoProbeSDNode>( 7638 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7639 createOperands(N, Ops); 7640 CSEMap.InsertNode(N, IP); 7641 InsertNode(N); 7642 SDValue V(N, 0); 7643 NewSDValueDbgMsg(V, "Creating new node: ", this); 7644 return V; 7645 } 7646 7647 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7648 /// MachinePointerInfo record from it. This is particularly useful because the 7649 /// code generator has many cases where it doesn't bother passing in a 7650 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7651 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7652 SelectionDAG &DAG, SDValue Ptr, 7653 int64_t Offset = 0) { 7654 // If this is FI+Offset, we can model it. 7655 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7656 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7657 FI->getIndex(), Offset); 7658 7659 // If this is (FI+Offset1)+Offset2, we can model it. 7660 if (Ptr.getOpcode() != ISD::ADD || 7661 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7662 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7663 return Info; 7664 7665 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7666 return MachinePointerInfo::getFixedStack( 7667 DAG.getMachineFunction(), FI, 7668 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7669 } 7670 7671 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7672 /// MachinePointerInfo record from it. This is particularly useful because the 7673 /// code generator has many cases where it doesn't bother passing in a 7674 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7675 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7676 SelectionDAG &DAG, SDValue Ptr, 7677 SDValue OffsetOp) { 7678 // If the 'Offset' value isn't a constant, we can't handle this. 7679 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7680 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7681 if (OffsetOp.isUndef()) 7682 return InferPointerInfo(Info, DAG, Ptr); 7683 return Info; 7684 } 7685 7686 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7687 EVT VT, const SDLoc &dl, SDValue Chain, 7688 SDValue Ptr, SDValue Offset, 7689 MachinePointerInfo PtrInfo, EVT MemVT, 7690 Align Alignment, 7691 MachineMemOperand::Flags MMOFlags, 7692 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7693 assert(Chain.getValueType() == MVT::Other && 7694 "Invalid chain type"); 7695 7696 MMOFlags |= MachineMemOperand::MOLoad; 7697 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7698 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7699 // clients. 7700 if (PtrInfo.V.isNull()) 7701 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7702 7703 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7704 MachineFunction &MF = getMachineFunction(); 7705 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7706 Alignment, AAInfo, Ranges); 7707 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7708 } 7709 7710 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7711 EVT VT, const SDLoc &dl, SDValue Chain, 7712 SDValue Ptr, SDValue Offset, EVT MemVT, 7713 MachineMemOperand *MMO) { 7714 if (VT == MemVT) { 7715 ExtType = ISD::NON_EXTLOAD; 7716 } else if (ExtType == ISD::NON_EXTLOAD) { 7717 assert(VT == MemVT && "Non-extending load from different memory type!"); 7718 } else { 7719 // Extending load. 7720 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7721 "Should only be an extending load, not truncating!"); 7722 assert(VT.isInteger() == MemVT.isInteger() && 7723 "Cannot convert from FP to Int or Int -> FP!"); 7724 assert(VT.isVector() == MemVT.isVector() && 7725 "Cannot use an ext load to convert to or from a vector!"); 7726 assert((!VT.isVector() || 7727 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7728 "Cannot use an ext load to change the number of vector elements!"); 7729 } 7730 7731 bool Indexed = AM != ISD::UNINDEXED; 7732 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7733 7734 SDVTList VTs = Indexed ? 7735 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7736 SDValue Ops[] = { Chain, Ptr, Offset }; 7737 FoldingSetNodeID ID; 7738 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7739 ID.AddInteger(MemVT.getRawBits()); 7740 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7741 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7742 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7743 ID.AddInteger(MMO->getFlags()); 7744 void *IP = nullptr; 7745 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7746 cast<LoadSDNode>(E)->refineAlignment(MMO); 7747 return SDValue(E, 0); 7748 } 7749 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7750 ExtType, MemVT, MMO); 7751 createOperands(N, Ops); 7752 7753 CSEMap.InsertNode(N, IP); 7754 InsertNode(N); 7755 SDValue V(N, 0); 7756 NewSDValueDbgMsg(V, "Creating new node: ", this); 7757 return V; 7758 } 7759 7760 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7761 SDValue Ptr, MachinePointerInfo PtrInfo, 7762 MaybeAlign Alignment, 7763 MachineMemOperand::Flags MMOFlags, 7764 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7765 SDValue Undef = getUNDEF(Ptr.getValueType()); 7766 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7767 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7768 } 7769 7770 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7771 SDValue Ptr, MachineMemOperand *MMO) { 7772 SDValue Undef = getUNDEF(Ptr.getValueType()); 7773 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7774 VT, MMO); 7775 } 7776 7777 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7778 EVT VT, SDValue Chain, SDValue Ptr, 7779 MachinePointerInfo PtrInfo, EVT MemVT, 7780 MaybeAlign Alignment, 7781 MachineMemOperand::Flags MMOFlags, 7782 const AAMDNodes &AAInfo) { 7783 SDValue Undef = getUNDEF(Ptr.getValueType()); 7784 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7785 MemVT, Alignment, MMOFlags, AAInfo); 7786 } 7787 7788 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7789 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7790 MachineMemOperand *MMO) { 7791 SDValue Undef = getUNDEF(Ptr.getValueType()); 7792 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7793 MemVT, MMO); 7794 } 7795 7796 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7797 SDValue Base, SDValue Offset, 7798 ISD::MemIndexedMode AM) { 7799 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7800 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7801 // Don't propagate the invariant or dereferenceable flags. 7802 auto MMOFlags = 7803 LD->getMemOperand()->getFlags() & 7804 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7805 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7806 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7807 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7808 } 7809 7810 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7811 SDValue Ptr, MachinePointerInfo PtrInfo, 7812 Align Alignment, 7813 MachineMemOperand::Flags MMOFlags, 7814 const AAMDNodes &AAInfo) { 7815 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7816 7817 MMOFlags |= MachineMemOperand::MOStore; 7818 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7819 7820 if (PtrInfo.V.isNull()) 7821 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7822 7823 MachineFunction &MF = getMachineFunction(); 7824 uint64_t Size = 7825 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7826 MachineMemOperand *MMO = 7827 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7828 return getStore(Chain, dl, Val, Ptr, MMO); 7829 } 7830 7831 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7832 SDValue Ptr, MachineMemOperand *MMO) { 7833 assert(Chain.getValueType() == MVT::Other && 7834 "Invalid chain type"); 7835 EVT VT = Val.getValueType(); 7836 SDVTList VTs = getVTList(MVT::Other); 7837 SDValue Undef = getUNDEF(Ptr.getValueType()); 7838 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7839 FoldingSetNodeID ID; 7840 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7841 ID.AddInteger(VT.getRawBits()); 7842 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7843 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7844 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7845 ID.AddInteger(MMO->getFlags()); 7846 void *IP = nullptr; 7847 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7848 cast<StoreSDNode>(E)->refineAlignment(MMO); 7849 return SDValue(E, 0); 7850 } 7851 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7852 ISD::UNINDEXED, false, VT, MMO); 7853 createOperands(N, Ops); 7854 7855 CSEMap.InsertNode(N, IP); 7856 InsertNode(N); 7857 SDValue V(N, 0); 7858 NewSDValueDbgMsg(V, "Creating new node: ", this); 7859 return V; 7860 } 7861 7862 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7863 SDValue Ptr, MachinePointerInfo PtrInfo, 7864 EVT SVT, Align Alignment, 7865 MachineMemOperand::Flags MMOFlags, 7866 const AAMDNodes &AAInfo) { 7867 assert(Chain.getValueType() == MVT::Other && 7868 "Invalid chain type"); 7869 7870 MMOFlags |= MachineMemOperand::MOStore; 7871 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7872 7873 if (PtrInfo.V.isNull()) 7874 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7875 7876 MachineFunction &MF = getMachineFunction(); 7877 MachineMemOperand *MMO = MF.getMachineMemOperand( 7878 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7879 Alignment, AAInfo); 7880 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7881 } 7882 7883 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7884 SDValue Ptr, EVT SVT, 7885 MachineMemOperand *MMO) { 7886 EVT VT = Val.getValueType(); 7887 7888 assert(Chain.getValueType() == MVT::Other && 7889 "Invalid chain type"); 7890 if (VT == SVT) 7891 return getStore(Chain, dl, Val, Ptr, MMO); 7892 7893 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7894 "Should only be a truncating store, not extending!"); 7895 assert(VT.isInteger() == SVT.isInteger() && 7896 "Can't do FP-INT conversion!"); 7897 assert(VT.isVector() == SVT.isVector() && 7898 "Cannot use trunc store to convert to or from a vector!"); 7899 assert((!VT.isVector() || 7900 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7901 "Cannot use trunc store to change the number of vector elements!"); 7902 7903 SDVTList VTs = getVTList(MVT::Other); 7904 SDValue Undef = getUNDEF(Ptr.getValueType()); 7905 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7906 FoldingSetNodeID ID; 7907 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7908 ID.AddInteger(SVT.getRawBits()); 7909 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7910 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7911 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7912 ID.AddInteger(MMO->getFlags()); 7913 void *IP = nullptr; 7914 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7915 cast<StoreSDNode>(E)->refineAlignment(MMO); 7916 return SDValue(E, 0); 7917 } 7918 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7919 ISD::UNINDEXED, true, SVT, MMO); 7920 createOperands(N, Ops); 7921 7922 CSEMap.InsertNode(N, IP); 7923 InsertNode(N); 7924 SDValue V(N, 0); 7925 NewSDValueDbgMsg(V, "Creating new node: ", this); 7926 return V; 7927 } 7928 7929 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7930 SDValue Base, SDValue Offset, 7931 ISD::MemIndexedMode AM) { 7932 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7933 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7934 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7935 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7936 FoldingSetNodeID ID; 7937 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7938 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7939 ID.AddInteger(ST->getRawSubclassData()); 7940 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7941 ID.AddInteger(ST->getMemOperand()->getFlags()); 7942 void *IP = nullptr; 7943 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7944 return SDValue(E, 0); 7945 7946 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7947 ST->isTruncatingStore(), ST->getMemoryVT(), 7948 ST->getMemOperand()); 7949 createOperands(N, Ops); 7950 7951 CSEMap.InsertNode(N, IP); 7952 InsertNode(N); 7953 SDValue V(N, 0); 7954 NewSDValueDbgMsg(V, "Creating new node: ", this); 7955 return V; 7956 } 7957 7958 SDValue SelectionDAG::getLoadVP( 7959 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7960 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7961 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7962 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7963 const MDNode *Ranges, bool IsExpanding) { 7964 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7965 7966 MMOFlags |= MachineMemOperand::MOLoad; 7967 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7968 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7969 // clients. 7970 if (PtrInfo.V.isNull()) 7971 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7972 7973 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7974 MachineFunction &MF = getMachineFunction(); 7975 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7976 Alignment, AAInfo, Ranges); 7977 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7978 MMO, IsExpanding); 7979 } 7980 7981 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7982 ISD::LoadExtType ExtType, EVT VT, 7983 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7984 SDValue Offset, SDValue Mask, SDValue EVL, 7985 EVT MemVT, MachineMemOperand *MMO, 7986 bool IsExpanding) { 7987 bool Indexed = AM != ISD::UNINDEXED; 7988 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7989 7990 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7991 : getVTList(VT, MVT::Other); 7992 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7993 FoldingSetNodeID ID; 7994 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7995 ID.AddInteger(VT.getRawBits()); 7996 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7997 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7998 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7999 ID.AddInteger(MMO->getFlags()); 8000 void *IP = nullptr; 8001 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8002 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8003 return SDValue(E, 0); 8004 } 8005 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8006 ExtType, IsExpanding, MemVT, MMO); 8007 createOperands(N, Ops); 8008 8009 CSEMap.InsertNode(N, IP); 8010 InsertNode(N); 8011 SDValue V(N, 0); 8012 NewSDValueDbgMsg(V, "Creating new node: ", this); 8013 return V; 8014 } 8015 8016 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8017 SDValue Ptr, SDValue Mask, SDValue EVL, 8018 MachinePointerInfo PtrInfo, 8019 MaybeAlign Alignment, 8020 MachineMemOperand::Flags MMOFlags, 8021 const AAMDNodes &AAInfo, const MDNode *Ranges, 8022 bool IsExpanding) { 8023 SDValue Undef = getUNDEF(Ptr.getValueType()); 8024 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8025 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8026 IsExpanding); 8027 } 8028 8029 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8030 SDValue Ptr, SDValue Mask, SDValue EVL, 8031 MachineMemOperand *MMO, bool IsExpanding) { 8032 SDValue Undef = getUNDEF(Ptr.getValueType()); 8033 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8034 Mask, EVL, VT, MMO, IsExpanding); 8035 } 8036 8037 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8038 EVT VT, SDValue Chain, SDValue Ptr, 8039 SDValue Mask, SDValue EVL, 8040 MachinePointerInfo PtrInfo, EVT MemVT, 8041 MaybeAlign Alignment, 8042 MachineMemOperand::Flags MMOFlags, 8043 const AAMDNodes &AAInfo, bool IsExpanding) { 8044 SDValue Undef = getUNDEF(Ptr.getValueType()); 8045 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8046 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8047 IsExpanding); 8048 } 8049 8050 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8051 EVT VT, SDValue Chain, SDValue Ptr, 8052 SDValue Mask, SDValue EVL, EVT MemVT, 8053 MachineMemOperand *MMO, bool IsExpanding) { 8054 SDValue Undef = getUNDEF(Ptr.getValueType()); 8055 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8056 EVL, MemVT, MMO, IsExpanding); 8057 } 8058 8059 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8060 SDValue Base, SDValue Offset, 8061 ISD::MemIndexedMode AM) { 8062 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8063 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8064 // Don't propagate the invariant or dereferenceable flags. 8065 auto MMOFlags = 8066 LD->getMemOperand()->getFlags() & 8067 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8068 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8069 LD->getChain(), Base, Offset, LD->getMask(), 8070 LD->getVectorLength(), LD->getPointerInfo(), 8071 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8072 nullptr, LD->isExpandingLoad()); 8073 } 8074 8075 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8076 SDValue Ptr, SDValue Offset, SDValue Mask, 8077 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8078 ISD::MemIndexedMode AM, bool IsTruncating, 8079 bool IsCompressing) { 8080 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8081 bool Indexed = AM != ISD::UNINDEXED; 8082 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8083 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8084 : getVTList(MVT::Other); 8085 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8086 FoldingSetNodeID ID; 8087 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8088 ID.AddInteger(MemVT.getRawBits()); 8089 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8090 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8091 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8092 ID.AddInteger(MMO->getFlags()); 8093 void *IP = nullptr; 8094 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8095 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8096 return SDValue(E, 0); 8097 } 8098 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8099 IsTruncating, IsCompressing, MemVT, MMO); 8100 createOperands(N, Ops); 8101 8102 CSEMap.InsertNode(N, IP); 8103 InsertNode(N); 8104 SDValue V(N, 0); 8105 NewSDValueDbgMsg(V, "Creating new node: ", this); 8106 return V; 8107 } 8108 8109 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8110 SDValue Val, SDValue Ptr, SDValue Mask, 8111 SDValue EVL, MachinePointerInfo PtrInfo, 8112 EVT SVT, Align Alignment, 8113 MachineMemOperand::Flags MMOFlags, 8114 const AAMDNodes &AAInfo, 8115 bool IsCompressing) { 8116 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8117 8118 MMOFlags |= MachineMemOperand::MOStore; 8119 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8120 8121 if (PtrInfo.V.isNull()) 8122 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8123 8124 MachineFunction &MF = getMachineFunction(); 8125 MachineMemOperand *MMO = MF.getMachineMemOperand( 8126 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8127 Alignment, AAInfo); 8128 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8129 IsCompressing); 8130 } 8131 8132 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8133 SDValue Val, SDValue Ptr, SDValue Mask, 8134 SDValue EVL, EVT SVT, 8135 MachineMemOperand *MMO, 8136 bool IsCompressing) { 8137 EVT VT = Val.getValueType(); 8138 8139 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8140 if (VT == SVT) 8141 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8142 EVL, VT, MMO, ISD::UNINDEXED, 8143 /*IsTruncating*/ false, IsCompressing); 8144 8145 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8146 "Should only be a truncating store, not extending!"); 8147 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8148 assert(VT.isVector() == SVT.isVector() && 8149 "Cannot use trunc store to convert to or from a vector!"); 8150 assert((!VT.isVector() || 8151 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8152 "Cannot use trunc store to change the number of vector elements!"); 8153 8154 SDVTList VTs = getVTList(MVT::Other); 8155 SDValue Undef = getUNDEF(Ptr.getValueType()); 8156 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8157 FoldingSetNodeID ID; 8158 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8159 ID.AddInteger(SVT.getRawBits()); 8160 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8161 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8162 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8163 ID.AddInteger(MMO->getFlags()); 8164 void *IP = nullptr; 8165 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8166 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8167 return SDValue(E, 0); 8168 } 8169 auto *N = 8170 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8171 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8172 createOperands(N, Ops); 8173 8174 CSEMap.InsertNode(N, IP); 8175 InsertNode(N); 8176 SDValue V(N, 0); 8177 NewSDValueDbgMsg(V, "Creating new node: ", this); 8178 return V; 8179 } 8180 8181 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8182 SDValue Base, SDValue Offset, 8183 ISD::MemIndexedMode AM) { 8184 auto *ST = cast<VPStoreSDNode>(OrigStore); 8185 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8186 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8187 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8188 Offset, ST->getMask(), ST->getVectorLength()}; 8189 FoldingSetNodeID ID; 8190 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8191 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8192 ID.AddInteger(ST->getRawSubclassData()); 8193 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8194 ID.AddInteger(ST->getMemOperand()->getFlags()); 8195 void *IP = nullptr; 8196 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8197 return SDValue(E, 0); 8198 8199 auto *N = newSDNode<VPStoreSDNode>( 8200 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8201 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8202 createOperands(N, Ops); 8203 8204 CSEMap.InsertNode(N, IP); 8205 InsertNode(N); 8206 SDValue V(N, 0); 8207 NewSDValueDbgMsg(V, "Creating new node: ", this); 8208 return V; 8209 } 8210 8211 SDValue SelectionDAG::getStridedLoadVP( 8212 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8213 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8214 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8215 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8216 const MDNode *Ranges, bool IsExpanding) { 8217 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8218 8219 MMOFlags |= MachineMemOperand::MOLoad; 8220 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8221 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8222 // clients. 8223 if (PtrInfo.V.isNull()) 8224 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8225 8226 uint64_t Size = MemoryLocation::UnknownSize; 8227 MachineFunction &MF = getMachineFunction(); 8228 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8229 Alignment, AAInfo, Ranges); 8230 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8231 EVL, MemVT, MMO, IsExpanding); 8232 } 8233 8234 SDValue SelectionDAG::getStridedLoadVP( 8235 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8236 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8237 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8238 bool Indexed = AM != ISD::UNINDEXED; 8239 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8240 8241 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8242 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8243 : getVTList(VT, MVT::Other); 8244 FoldingSetNodeID ID; 8245 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8246 ID.AddInteger(VT.getRawBits()); 8247 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8248 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8249 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8250 8251 void *IP = nullptr; 8252 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8253 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8254 return SDValue(E, 0); 8255 } 8256 8257 auto *N = 8258 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8259 ExtType, IsExpanding, MemVT, MMO); 8260 createOperands(N, Ops); 8261 CSEMap.InsertNode(N, IP); 8262 InsertNode(N); 8263 SDValue V(N, 0); 8264 NewSDValueDbgMsg(V, "Creating new node: ", this); 8265 return V; 8266 } 8267 8268 SDValue SelectionDAG::getStridedLoadVP( 8269 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8270 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8271 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8272 const MDNode *Ranges, bool IsExpanding) { 8273 SDValue Undef = getUNDEF(Ptr.getValueType()); 8274 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8275 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8276 MMOFlags, AAInfo, Ranges, IsExpanding); 8277 } 8278 8279 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8280 SDValue Ptr, SDValue Stride, 8281 SDValue Mask, SDValue EVL, 8282 MachineMemOperand *MMO, 8283 bool IsExpanding) { 8284 SDValue Undef = getUNDEF(Ptr.getValueType()); 8285 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8286 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8287 } 8288 8289 SDValue SelectionDAG::getExtStridedLoadVP( 8290 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8291 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8292 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8293 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8294 bool IsExpanding) { 8295 SDValue Undef = getUNDEF(Ptr.getValueType()); 8296 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8297 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8298 MMOFlags, AAInfo, nullptr, IsExpanding); 8299 } 8300 8301 SDValue SelectionDAG::getExtStridedLoadVP( 8302 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8303 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8304 MachineMemOperand *MMO, bool IsExpanding) { 8305 SDValue Undef = getUNDEF(Ptr.getValueType()); 8306 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8307 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8308 } 8309 8310 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8311 SDValue Base, SDValue Offset, 8312 ISD::MemIndexedMode AM) { 8313 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8314 assert(SLD->getOffset().isUndef() && 8315 "Strided load is already a indexed load!"); 8316 // Don't propagate the invariant or dereferenceable flags. 8317 auto MMOFlags = 8318 SLD->getMemOperand()->getFlags() & 8319 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8320 return getStridedLoadVP( 8321 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8322 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8323 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8324 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8325 } 8326 8327 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8328 SDValue Val, SDValue Ptr, 8329 SDValue Offset, SDValue Stride, 8330 SDValue Mask, SDValue EVL, EVT MemVT, 8331 MachineMemOperand *MMO, 8332 ISD::MemIndexedMode AM, 8333 bool IsTruncating, bool IsCompressing) { 8334 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8335 bool Indexed = AM != ISD::UNINDEXED; 8336 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8337 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8338 : getVTList(MVT::Other); 8339 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8340 FoldingSetNodeID ID; 8341 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8342 ID.AddInteger(MemVT.getRawBits()); 8343 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8344 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8345 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8346 void *IP = nullptr; 8347 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8348 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8349 return SDValue(E, 0); 8350 } 8351 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8352 VTs, AM, IsTruncating, 8353 IsCompressing, MemVT, MMO); 8354 createOperands(N, Ops); 8355 8356 CSEMap.InsertNode(N, IP); 8357 InsertNode(N); 8358 SDValue V(N, 0); 8359 NewSDValueDbgMsg(V, "Creating new node: ", this); 8360 return V; 8361 } 8362 8363 SDValue SelectionDAG::getTruncStridedStoreVP( 8364 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8365 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8366 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8367 bool IsCompressing) { 8368 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8369 8370 MMOFlags |= MachineMemOperand::MOStore; 8371 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8372 8373 if (PtrInfo.V.isNull()) 8374 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8375 8376 MachineFunction &MF = getMachineFunction(); 8377 MachineMemOperand *MMO = MF.getMachineMemOperand( 8378 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8379 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8380 MMO, IsCompressing); 8381 } 8382 8383 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8384 SDValue Val, SDValue Ptr, 8385 SDValue Stride, SDValue Mask, 8386 SDValue EVL, EVT SVT, 8387 MachineMemOperand *MMO, 8388 bool IsCompressing) { 8389 EVT VT = Val.getValueType(); 8390 8391 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8392 if (VT == SVT) 8393 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8394 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8395 /*IsTruncating*/ false, IsCompressing); 8396 8397 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8398 "Should only be a truncating store, not extending!"); 8399 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8400 assert(VT.isVector() == SVT.isVector() && 8401 "Cannot use trunc store to convert to or from a vector!"); 8402 assert((!VT.isVector() || 8403 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8404 "Cannot use trunc store to change the number of vector elements!"); 8405 8406 SDVTList VTs = getVTList(MVT::Other); 8407 SDValue Undef = getUNDEF(Ptr.getValueType()); 8408 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8409 FoldingSetNodeID ID; 8410 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8411 ID.AddInteger(SVT.getRawBits()); 8412 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8413 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8414 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8415 void *IP = nullptr; 8416 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8417 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8418 return SDValue(E, 0); 8419 } 8420 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8421 VTs, ISD::UNINDEXED, true, 8422 IsCompressing, SVT, MMO); 8423 createOperands(N, Ops); 8424 8425 CSEMap.InsertNode(N, IP); 8426 InsertNode(N); 8427 SDValue V(N, 0); 8428 NewSDValueDbgMsg(V, "Creating new node: ", this); 8429 return V; 8430 } 8431 8432 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8433 const SDLoc &DL, SDValue Base, 8434 SDValue Offset, 8435 ISD::MemIndexedMode AM) { 8436 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8437 assert(SST->getOffset().isUndef() && 8438 "Strided store is already an indexed store!"); 8439 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8440 SDValue Ops[] = { 8441 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8442 SST->getMask(), SST->getVectorLength()}; 8443 FoldingSetNodeID ID; 8444 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8445 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8446 ID.AddInteger(SST->getRawSubclassData()); 8447 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8448 void *IP = nullptr; 8449 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8450 return SDValue(E, 0); 8451 8452 auto *N = newSDNode<VPStridedStoreSDNode>( 8453 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8454 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8455 createOperands(N, Ops); 8456 8457 CSEMap.InsertNode(N, IP); 8458 InsertNode(N); 8459 SDValue V(N, 0); 8460 NewSDValueDbgMsg(V, "Creating new node: ", this); 8461 return V; 8462 } 8463 8464 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8465 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8466 ISD::MemIndexType IndexType) { 8467 assert(Ops.size() == 6 && "Incompatible number of operands"); 8468 8469 FoldingSetNodeID ID; 8470 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8471 ID.AddInteger(VT.getRawBits()); 8472 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8473 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8474 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8475 ID.AddInteger(MMO->getFlags()); 8476 void *IP = nullptr; 8477 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8478 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8479 return SDValue(E, 0); 8480 } 8481 8482 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8483 VT, MMO, IndexType); 8484 createOperands(N, Ops); 8485 8486 assert(N->getMask().getValueType().getVectorElementCount() == 8487 N->getValueType(0).getVectorElementCount() && 8488 "Vector width mismatch between mask and data"); 8489 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8490 N->getValueType(0).getVectorElementCount().isScalable() && 8491 "Scalable flags of index and data do not match"); 8492 assert(ElementCount::isKnownGE( 8493 N->getIndex().getValueType().getVectorElementCount(), 8494 N->getValueType(0).getVectorElementCount()) && 8495 "Vector width mismatch between index and data"); 8496 assert(isa<ConstantSDNode>(N->getScale()) && 8497 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8498 "Scale should be a constant power of 2"); 8499 8500 CSEMap.InsertNode(N, IP); 8501 InsertNode(N); 8502 SDValue V(N, 0); 8503 NewSDValueDbgMsg(V, "Creating new node: ", this); 8504 return V; 8505 } 8506 8507 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8508 ArrayRef<SDValue> Ops, 8509 MachineMemOperand *MMO, 8510 ISD::MemIndexType IndexType) { 8511 assert(Ops.size() == 7 && "Incompatible number of operands"); 8512 8513 FoldingSetNodeID ID; 8514 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8515 ID.AddInteger(VT.getRawBits()); 8516 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8517 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8518 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8519 ID.AddInteger(MMO->getFlags()); 8520 void *IP = nullptr; 8521 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8522 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8523 return SDValue(E, 0); 8524 } 8525 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8526 VT, MMO, IndexType); 8527 createOperands(N, Ops); 8528 8529 assert(N->getMask().getValueType().getVectorElementCount() == 8530 N->getValue().getValueType().getVectorElementCount() && 8531 "Vector width mismatch between mask and data"); 8532 assert( 8533 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8534 N->getValue().getValueType().getVectorElementCount().isScalable() && 8535 "Scalable flags of index and data do not match"); 8536 assert(ElementCount::isKnownGE( 8537 N->getIndex().getValueType().getVectorElementCount(), 8538 N->getValue().getValueType().getVectorElementCount()) && 8539 "Vector width mismatch between index and data"); 8540 assert(isa<ConstantSDNode>(N->getScale()) && 8541 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8542 "Scale should be a constant power of 2"); 8543 8544 CSEMap.InsertNode(N, IP); 8545 InsertNode(N); 8546 SDValue V(N, 0); 8547 NewSDValueDbgMsg(V, "Creating new node: ", this); 8548 return V; 8549 } 8550 8551 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8552 SDValue Base, SDValue Offset, SDValue Mask, 8553 SDValue PassThru, EVT MemVT, 8554 MachineMemOperand *MMO, 8555 ISD::MemIndexedMode AM, 8556 ISD::LoadExtType ExtTy, bool isExpanding) { 8557 bool Indexed = AM != ISD::UNINDEXED; 8558 assert((Indexed || Offset.isUndef()) && 8559 "Unindexed masked load with an offset!"); 8560 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8561 : getVTList(VT, MVT::Other); 8562 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8563 FoldingSetNodeID ID; 8564 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8565 ID.AddInteger(MemVT.getRawBits()); 8566 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8567 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8568 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8569 ID.AddInteger(MMO->getFlags()); 8570 void *IP = nullptr; 8571 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8572 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8573 return SDValue(E, 0); 8574 } 8575 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8576 AM, ExtTy, isExpanding, MemVT, MMO); 8577 createOperands(N, Ops); 8578 8579 CSEMap.InsertNode(N, IP); 8580 InsertNode(N); 8581 SDValue V(N, 0); 8582 NewSDValueDbgMsg(V, "Creating new node: ", this); 8583 return V; 8584 } 8585 8586 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8587 SDValue Base, SDValue Offset, 8588 ISD::MemIndexedMode AM) { 8589 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8590 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8591 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8592 Offset, LD->getMask(), LD->getPassThru(), 8593 LD->getMemoryVT(), LD->getMemOperand(), AM, 8594 LD->getExtensionType(), LD->isExpandingLoad()); 8595 } 8596 8597 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8598 SDValue Val, SDValue Base, SDValue Offset, 8599 SDValue Mask, EVT MemVT, 8600 MachineMemOperand *MMO, 8601 ISD::MemIndexedMode AM, bool IsTruncating, 8602 bool IsCompressing) { 8603 assert(Chain.getValueType() == MVT::Other && 8604 "Invalid chain type"); 8605 bool Indexed = AM != ISD::UNINDEXED; 8606 assert((Indexed || Offset.isUndef()) && 8607 "Unindexed masked store with an offset!"); 8608 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8609 : getVTList(MVT::Other); 8610 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8611 FoldingSetNodeID ID; 8612 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8613 ID.AddInteger(MemVT.getRawBits()); 8614 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8615 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8616 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8617 ID.AddInteger(MMO->getFlags()); 8618 void *IP = nullptr; 8619 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8620 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8621 return SDValue(E, 0); 8622 } 8623 auto *N = 8624 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8625 IsTruncating, IsCompressing, MemVT, MMO); 8626 createOperands(N, Ops); 8627 8628 CSEMap.InsertNode(N, IP); 8629 InsertNode(N); 8630 SDValue V(N, 0); 8631 NewSDValueDbgMsg(V, "Creating new node: ", this); 8632 return V; 8633 } 8634 8635 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8636 SDValue Base, SDValue Offset, 8637 ISD::MemIndexedMode AM) { 8638 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8639 assert(ST->getOffset().isUndef() && 8640 "Masked store is already a indexed store!"); 8641 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8642 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8643 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8644 } 8645 8646 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8647 ArrayRef<SDValue> Ops, 8648 MachineMemOperand *MMO, 8649 ISD::MemIndexType IndexType, 8650 ISD::LoadExtType ExtTy) { 8651 assert(Ops.size() == 6 && "Incompatible number of operands"); 8652 8653 FoldingSetNodeID ID; 8654 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8655 ID.AddInteger(MemVT.getRawBits()); 8656 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8657 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8658 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8659 ID.AddInteger(MMO->getFlags()); 8660 void *IP = nullptr; 8661 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8662 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8663 return SDValue(E, 0); 8664 } 8665 8666 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8667 VTs, MemVT, MMO, IndexType, ExtTy); 8668 createOperands(N, Ops); 8669 8670 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8671 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8672 assert(N->getMask().getValueType().getVectorElementCount() == 8673 N->getValueType(0).getVectorElementCount() && 8674 "Vector width mismatch between mask and data"); 8675 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8676 N->getValueType(0).getVectorElementCount().isScalable() && 8677 "Scalable flags of index and data do not match"); 8678 assert(ElementCount::isKnownGE( 8679 N->getIndex().getValueType().getVectorElementCount(), 8680 N->getValueType(0).getVectorElementCount()) && 8681 "Vector width mismatch between index and data"); 8682 assert(isa<ConstantSDNode>(N->getScale()) && 8683 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8684 "Scale should be a constant power of 2"); 8685 8686 CSEMap.InsertNode(N, IP); 8687 InsertNode(N); 8688 SDValue V(N, 0); 8689 NewSDValueDbgMsg(V, "Creating new node: ", this); 8690 return V; 8691 } 8692 8693 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8694 ArrayRef<SDValue> Ops, 8695 MachineMemOperand *MMO, 8696 ISD::MemIndexType IndexType, 8697 bool IsTrunc) { 8698 assert(Ops.size() == 6 && "Incompatible number of operands"); 8699 8700 FoldingSetNodeID ID; 8701 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8702 ID.AddInteger(MemVT.getRawBits()); 8703 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8704 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8705 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8706 ID.AddInteger(MMO->getFlags()); 8707 void *IP = nullptr; 8708 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8709 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8710 return SDValue(E, 0); 8711 } 8712 8713 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8714 VTs, MemVT, MMO, IndexType, IsTrunc); 8715 createOperands(N, Ops); 8716 8717 assert(N->getMask().getValueType().getVectorElementCount() == 8718 N->getValue().getValueType().getVectorElementCount() && 8719 "Vector width mismatch between mask and data"); 8720 assert( 8721 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8722 N->getValue().getValueType().getVectorElementCount().isScalable() && 8723 "Scalable flags of index and data do not match"); 8724 assert(ElementCount::isKnownGE( 8725 N->getIndex().getValueType().getVectorElementCount(), 8726 N->getValue().getValueType().getVectorElementCount()) && 8727 "Vector width mismatch between index and data"); 8728 assert(isa<ConstantSDNode>(N->getScale()) && 8729 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8730 "Scale should be a constant power of 2"); 8731 8732 CSEMap.InsertNode(N, IP); 8733 InsertNode(N); 8734 SDValue V(N, 0); 8735 NewSDValueDbgMsg(V, "Creating new node: ", this); 8736 return V; 8737 } 8738 8739 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8740 // select undef, T, F --> T (if T is a constant), otherwise F 8741 // select, ?, undef, F --> F 8742 // select, ?, T, undef --> T 8743 if (Cond.isUndef()) 8744 return isConstantValueOfAnyType(T) ? T : F; 8745 if (T.isUndef()) 8746 return F; 8747 if (F.isUndef()) 8748 return T; 8749 8750 // select true, T, F --> T 8751 // select false, T, F --> F 8752 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8753 return CondC->isZero() ? F : T; 8754 8755 // TODO: This should simplify VSELECT with constant condition using something 8756 // like this (but check boolean contents to be complete?): 8757 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8758 // return T; 8759 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8760 // return F; 8761 8762 // select ?, T, T --> T 8763 if (T == F) 8764 return T; 8765 8766 return SDValue(); 8767 } 8768 8769 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8770 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8771 if (X.isUndef()) 8772 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8773 // shift X, undef --> undef (because it may shift by the bitwidth) 8774 if (Y.isUndef()) 8775 return getUNDEF(X.getValueType()); 8776 8777 // shift 0, Y --> 0 8778 // shift X, 0 --> X 8779 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8780 return X; 8781 8782 // shift X, C >= bitwidth(X) --> undef 8783 // All vector elements must be too big (or undef) to avoid partial undefs. 8784 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8785 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8786 }; 8787 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8788 return getUNDEF(X.getValueType()); 8789 8790 return SDValue(); 8791 } 8792 8793 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8794 SDNodeFlags Flags) { 8795 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8796 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8797 // operation is poison. That result can be relaxed to undef. 8798 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8799 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8800 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8801 (YC && YC->getValueAPF().isNaN()); 8802 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8803 (YC && YC->getValueAPF().isInfinity()); 8804 8805 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8806 return getUNDEF(X.getValueType()); 8807 8808 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8809 return getUNDEF(X.getValueType()); 8810 8811 if (!YC) 8812 return SDValue(); 8813 8814 // X + -0.0 --> X 8815 if (Opcode == ISD::FADD) 8816 if (YC->getValueAPF().isNegZero()) 8817 return X; 8818 8819 // X - +0.0 --> X 8820 if (Opcode == ISD::FSUB) 8821 if (YC->getValueAPF().isPosZero()) 8822 return X; 8823 8824 // X * 1.0 --> X 8825 // X / 1.0 --> X 8826 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8827 if (YC->getValueAPF().isExactlyValue(1.0)) 8828 return X; 8829 8830 // X * 0.0 --> 0.0 8831 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8832 if (YC->getValueAPF().isZero()) 8833 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8834 8835 return SDValue(); 8836 } 8837 8838 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8839 SDValue Ptr, SDValue SV, unsigned Align) { 8840 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8841 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8842 } 8843 8844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8845 ArrayRef<SDUse> Ops) { 8846 switch (Ops.size()) { 8847 case 0: return getNode(Opcode, DL, VT); 8848 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8849 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8850 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8851 default: break; 8852 } 8853 8854 // Copy from an SDUse array into an SDValue array for use with 8855 // the regular getNode logic. 8856 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8857 return getNode(Opcode, DL, VT, NewOps); 8858 } 8859 8860 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8861 ArrayRef<SDValue> Ops) { 8862 SDNodeFlags Flags; 8863 if (Inserter) 8864 Flags = Inserter->getFlags(); 8865 return getNode(Opcode, DL, VT, Ops, Flags); 8866 } 8867 8868 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8869 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8870 unsigned NumOps = Ops.size(); 8871 switch (NumOps) { 8872 case 0: return getNode(Opcode, DL, VT); 8873 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8874 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8875 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8876 default: break; 8877 } 8878 8879 #ifndef NDEBUG 8880 for (auto &Op : Ops) 8881 assert(Op.getOpcode() != ISD::DELETED_NODE && 8882 "Operand is DELETED_NODE!"); 8883 #endif 8884 8885 switch (Opcode) { 8886 default: break; 8887 case ISD::BUILD_VECTOR: 8888 // Attempt to simplify BUILD_VECTOR. 8889 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8890 return V; 8891 break; 8892 case ISD::CONCAT_VECTORS: 8893 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8894 return V; 8895 break; 8896 case ISD::SELECT_CC: 8897 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8898 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8899 "LHS and RHS of condition must have same type!"); 8900 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8901 "True and False arms of SelectCC must have same type!"); 8902 assert(Ops[2].getValueType() == VT && 8903 "select_cc node must be of same type as true and false value!"); 8904 break; 8905 case ISD::BR_CC: 8906 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8907 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8908 "LHS/RHS of comparison should match types!"); 8909 break; 8910 case ISD::VP_ADD: 8911 case ISD::VP_SUB: 8912 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8913 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8914 Opcode = ISD::VP_XOR; 8915 break; 8916 case ISD::VP_MUL: 8917 // If it is VP_MUL mask operation then turn it to VP_AND 8918 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8919 Opcode = ISD::VP_AND; 8920 break; 8921 case ISD::VP_REDUCE_MUL: 8922 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8923 if (VT == MVT::i1) 8924 Opcode = ISD::VP_REDUCE_AND; 8925 break; 8926 case ISD::VP_REDUCE_ADD: 8927 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8928 if (VT == MVT::i1) 8929 Opcode = ISD::VP_REDUCE_XOR; 8930 break; 8931 case ISD::VP_REDUCE_SMAX: 8932 case ISD::VP_REDUCE_UMIN: 8933 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8934 // VP_REDUCE_AND. 8935 if (VT == MVT::i1) 8936 Opcode = ISD::VP_REDUCE_AND; 8937 break; 8938 case ISD::VP_REDUCE_SMIN: 8939 case ISD::VP_REDUCE_UMAX: 8940 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8941 // VP_REDUCE_OR. 8942 if (VT == MVT::i1) 8943 Opcode = ISD::VP_REDUCE_OR; 8944 break; 8945 } 8946 8947 // Memoize nodes. 8948 SDNode *N; 8949 SDVTList VTs = getVTList(VT); 8950 8951 if (VT != MVT::Glue) { 8952 FoldingSetNodeID ID; 8953 AddNodeIDNode(ID, Opcode, VTs, Ops); 8954 void *IP = nullptr; 8955 8956 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8957 return SDValue(E, 0); 8958 8959 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8960 createOperands(N, Ops); 8961 8962 CSEMap.InsertNode(N, IP); 8963 } else { 8964 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8965 createOperands(N, Ops); 8966 } 8967 8968 N->setFlags(Flags); 8969 InsertNode(N); 8970 SDValue V(N, 0); 8971 NewSDValueDbgMsg(V, "Creating new node: ", this); 8972 return V; 8973 } 8974 8975 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8976 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8977 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8978 } 8979 8980 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8981 ArrayRef<SDValue> Ops) { 8982 SDNodeFlags Flags; 8983 if (Inserter) 8984 Flags = Inserter->getFlags(); 8985 return getNode(Opcode, DL, VTList, Ops, Flags); 8986 } 8987 8988 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8989 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8990 if (VTList.NumVTs == 1) 8991 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 8992 8993 #ifndef NDEBUG 8994 for (auto &Op : Ops) 8995 assert(Op.getOpcode() != ISD::DELETED_NODE && 8996 "Operand is DELETED_NODE!"); 8997 #endif 8998 8999 switch (Opcode) { 9000 case ISD::STRICT_FP_EXTEND: 9001 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9002 "Invalid STRICT_FP_EXTEND!"); 9003 assert(VTList.VTs[0].isFloatingPoint() && 9004 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9005 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9006 "STRICT_FP_EXTEND result type should be vector iff the operand " 9007 "type is vector!"); 9008 assert((!VTList.VTs[0].isVector() || 9009 VTList.VTs[0].getVectorNumElements() == 9010 Ops[1].getValueType().getVectorNumElements()) && 9011 "Vector element count mismatch!"); 9012 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9013 "Invalid fpext node, dst <= src!"); 9014 break; 9015 case ISD::STRICT_FP_ROUND: 9016 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9017 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9018 "STRICT_FP_ROUND result type should be vector iff the operand " 9019 "type is vector!"); 9020 assert((!VTList.VTs[0].isVector() || 9021 VTList.VTs[0].getVectorNumElements() == 9022 Ops[1].getValueType().getVectorNumElements()) && 9023 "Vector element count mismatch!"); 9024 assert(VTList.VTs[0].isFloatingPoint() && 9025 Ops[1].getValueType().isFloatingPoint() && 9026 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9027 isa<ConstantSDNode>(Ops[2]) && 9028 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9029 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9030 "Invalid STRICT_FP_ROUND!"); 9031 break; 9032 #if 0 9033 // FIXME: figure out how to safely handle things like 9034 // int foo(int x) { return 1 << (x & 255); } 9035 // int bar() { return foo(256); } 9036 case ISD::SRA_PARTS: 9037 case ISD::SRL_PARTS: 9038 case ISD::SHL_PARTS: 9039 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9040 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9041 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9042 else if (N3.getOpcode() == ISD::AND) 9043 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9044 // If the and is only masking out bits that cannot effect the shift, 9045 // eliminate the and. 9046 unsigned NumBits = VT.getScalarSizeInBits()*2; 9047 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9048 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9049 } 9050 break; 9051 #endif 9052 } 9053 9054 // Memoize the node unless it returns a flag. 9055 SDNode *N; 9056 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9057 FoldingSetNodeID ID; 9058 AddNodeIDNode(ID, Opcode, VTList, Ops); 9059 void *IP = nullptr; 9060 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9061 return SDValue(E, 0); 9062 9063 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9064 createOperands(N, Ops); 9065 CSEMap.InsertNode(N, IP); 9066 } else { 9067 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9068 createOperands(N, Ops); 9069 } 9070 9071 N->setFlags(Flags); 9072 InsertNode(N); 9073 SDValue V(N, 0); 9074 NewSDValueDbgMsg(V, "Creating new node: ", this); 9075 return V; 9076 } 9077 9078 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9079 SDVTList VTList) { 9080 return getNode(Opcode, DL, VTList, None); 9081 } 9082 9083 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9084 SDValue N1) { 9085 SDValue Ops[] = { N1 }; 9086 return getNode(Opcode, DL, VTList, Ops); 9087 } 9088 9089 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9090 SDValue N1, SDValue N2) { 9091 SDValue Ops[] = { N1, N2 }; 9092 return getNode(Opcode, DL, VTList, Ops); 9093 } 9094 9095 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9096 SDValue N1, SDValue N2, SDValue N3) { 9097 SDValue Ops[] = { N1, N2, N3 }; 9098 return getNode(Opcode, DL, VTList, Ops); 9099 } 9100 9101 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9102 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9103 SDValue Ops[] = { N1, N2, N3, N4 }; 9104 return getNode(Opcode, DL, VTList, Ops); 9105 } 9106 9107 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9108 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9109 SDValue N5) { 9110 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9111 return getNode(Opcode, DL, VTList, Ops); 9112 } 9113 9114 SDVTList SelectionDAG::getVTList(EVT VT) { 9115 return makeVTList(SDNode::getValueTypeList(VT), 1); 9116 } 9117 9118 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9119 FoldingSetNodeID ID; 9120 ID.AddInteger(2U); 9121 ID.AddInteger(VT1.getRawBits()); 9122 ID.AddInteger(VT2.getRawBits()); 9123 9124 void *IP = nullptr; 9125 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9126 if (!Result) { 9127 EVT *Array = Allocator.Allocate<EVT>(2); 9128 Array[0] = VT1; 9129 Array[1] = VT2; 9130 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9131 VTListMap.InsertNode(Result, IP); 9132 } 9133 return Result->getSDVTList(); 9134 } 9135 9136 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9137 FoldingSetNodeID ID; 9138 ID.AddInteger(3U); 9139 ID.AddInteger(VT1.getRawBits()); 9140 ID.AddInteger(VT2.getRawBits()); 9141 ID.AddInteger(VT3.getRawBits()); 9142 9143 void *IP = nullptr; 9144 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9145 if (!Result) { 9146 EVT *Array = Allocator.Allocate<EVT>(3); 9147 Array[0] = VT1; 9148 Array[1] = VT2; 9149 Array[2] = VT3; 9150 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9151 VTListMap.InsertNode(Result, IP); 9152 } 9153 return Result->getSDVTList(); 9154 } 9155 9156 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9157 FoldingSetNodeID ID; 9158 ID.AddInteger(4U); 9159 ID.AddInteger(VT1.getRawBits()); 9160 ID.AddInteger(VT2.getRawBits()); 9161 ID.AddInteger(VT3.getRawBits()); 9162 ID.AddInteger(VT4.getRawBits()); 9163 9164 void *IP = nullptr; 9165 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9166 if (!Result) { 9167 EVT *Array = Allocator.Allocate<EVT>(4); 9168 Array[0] = VT1; 9169 Array[1] = VT2; 9170 Array[2] = VT3; 9171 Array[3] = VT4; 9172 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9173 VTListMap.InsertNode(Result, IP); 9174 } 9175 return Result->getSDVTList(); 9176 } 9177 9178 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9179 unsigned NumVTs = VTs.size(); 9180 FoldingSetNodeID ID; 9181 ID.AddInteger(NumVTs); 9182 for (unsigned index = 0; index < NumVTs; index++) { 9183 ID.AddInteger(VTs[index].getRawBits()); 9184 } 9185 9186 void *IP = nullptr; 9187 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9188 if (!Result) { 9189 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9190 llvm::copy(VTs, Array); 9191 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9192 VTListMap.InsertNode(Result, IP); 9193 } 9194 return Result->getSDVTList(); 9195 } 9196 9197 9198 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9199 /// specified operands. If the resultant node already exists in the DAG, 9200 /// this does not modify the specified node, instead it returns the node that 9201 /// already exists. If the resultant node does not exist in the DAG, the 9202 /// input node is returned. As a degenerate case, if you specify the same 9203 /// input operands as the node already has, the input node is returned. 9204 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9205 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9206 9207 // Check to see if there is no change. 9208 if (Op == N->getOperand(0)) return N; 9209 9210 // See if the modified node already exists. 9211 void *InsertPos = nullptr; 9212 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9213 return Existing; 9214 9215 // Nope it doesn't. Remove the node from its current place in the maps. 9216 if (InsertPos) 9217 if (!RemoveNodeFromCSEMaps(N)) 9218 InsertPos = nullptr; 9219 9220 // Now we update the operands. 9221 N->OperandList[0].set(Op); 9222 9223 updateDivergence(N); 9224 // If this gets put into a CSE map, add it. 9225 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9226 return N; 9227 } 9228 9229 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9230 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9231 9232 // Check to see if there is no change. 9233 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9234 return N; // No operands changed, just return the input node. 9235 9236 // See if the modified node already exists. 9237 void *InsertPos = nullptr; 9238 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9239 return Existing; 9240 9241 // Nope it doesn't. Remove the node from its current place in the maps. 9242 if (InsertPos) 9243 if (!RemoveNodeFromCSEMaps(N)) 9244 InsertPos = nullptr; 9245 9246 // Now we update the operands. 9247 if (N->OperandList[0] != Op1) 9248 N->OperandList[0].set(Op1); 9249 if (N->OperandList[1] != Op2) 9250 N->OperandList[1].set(Op2); 9251 9252 updateDivergence(N); 9253 // If this gets put into a CSE map, add it. 9254 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9255 return N; 9256 } 9257 9258 SDNode *SelectionDAG:: 9259 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9260 SDValue Ops[] = { Op1, Op2, Op3 }; 9261 return UpdateNodeOperands(N, Ops); 9262 } 9263 9264 SDNode *SelectionDAG:: 9265 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9266 SDValue Op3, SDValue Op4) { 9267 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9268 return UpdateNodeOperands(N, Ops); 9269 } 9270 9271 SDNode *SelectionDAG:: 9272 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9273 SDValue Op3, SDValue Op4, SDValue Op5) { 9274 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9275 return UpdateNodeOperands(N, Ops); 9276 } 9277 9278 SDNode *SelectionDAG:: 9279 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9280 unsigned NumOps = Ops.size(); 9281 assert(N->getNumOperands() == NumOps && 9282 "Update with wrong number of operands"); 9283 9284 // If no operands changed just return the input node. 9285 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9286 return N; 9287 9288 // See if the modified node already exists. 9289 void *InsertPos = nullptr; 9290 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9291 return Existing; 9292 9293 // Nope it doesn't. Remove the node from its current place in the maps. 9294 if (InsertPos) 9295 if (!RemoveNodeFromCSEMaps(N)) 9296 InsertPos = nullptr; 9297 9298 // Now we update the operands. 9299 for (unsigned i = 0; i != NumOps; ++i) 9300 if (N->OperandList[i] != Ops[i]) 9301 N->OperandList[i].set(Ops[i]); 9302 9303 updateDivergence(N); 9304 // If this gets put into a CSE map, add it. 9305 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9306 return N; 9307 } 9308 9309 /// DropOperands - Release the operands and set this node to have 9310 /// zero operands. 9311 void SDNode::DropOperands() { 9312 // Unlike the code in MorphNodeTo that does this, we don't need to 9313 // watch for dead nodes here. 9314 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9315 SDUse &Use = *I++; 9316 Use.set(SDValue()); 9317 } 9318 } 9319 9320 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9321 ArrayRef<MachineMemOperand *> NewMemRefs) { 9322 if (NewMemRefs.empty()) { 9323 N->clearMemRefs(); 9324 return; 9325 } 9326 9327 // Check if we can avoid allocating by storing a single reference directly. 9328 if (NewMemRefs.size() == 1) { 9329 N->MemRefs = NewMemRefs[0]; 9330 N->NumMemRefs = 1; 9331 return; 9332 } 9333 9334 MachineMemOperand **MemRefsBuffer = 9335 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9336 llvm::copy(NewMemRefs, MemRefsBuffer); 9337 N->MemRefs = MemRefsBuffer; 9338 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9339 } 9340 9341 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9342 /// machine opcode. 9343 /// 9344 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9345 EVT VT) { 9346 SDVTList VTs = getVTList(VT); 9347 return SelectNodeTo(N, MachineOpc, VTs, None); 9348 } 9349 9350 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9351 EVT VT, SDValue Op1) { 9352 SDVTList VTs = getVTList(VT); 9353 SDValue Ops[] = { Op1 }; 9354 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9355 } 9356 9357 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9358 EVT VT, SDValue Op1, 9359 SDValue Op2) { 9360 SDVTList VTs = getVTList(VT); 9361 SDValue Ops[] = { Op1, Op2 }; 9362 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9363 } 9364 9365 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9366 EVT VT, SDValue Op1, 9367 SDValue Op2, SDValue Op3) { 9368 SDVTList VTs = getVTList(VT); 9369 SDValue Ops[] = { Op1, Op2, Op3 }; 9370 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9371 } 9372 9373 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9374 EVT VT, ArrayRef<SDValue> Ops) { 9375 SDVTList VTs = getVTList(VT); 9376 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9377 } 9378 9379 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9380 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9381 SDVTList VTs = getVTList(VT1, VT2); 9382 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9383 } 9384 9385 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9386 EVT VT1, EVT VT2) { 9387 SDVTList VTs = getVTList(VT1, VT2); 9388 return SelectNodeTo(N, MachineOpc, VTs, None); 9389 } 9390 9391 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9392 EVT VT1, EVT VT2, EVT VT3, 9393 ArrayRef<SDValue> Ops) { 9394 SDVTList VTs = getVTList(VT1, VT2, VT3); 9395 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9396 } 9397 9398 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9399 EVT VT1, EVT VT2, 9400 SDValue Op1, SDValue Op2) { 9401 SDVTList VTs = getVTList(VT1, VT2); 9402 SDValue Ops[] = { Op1, Op2 }; 9403 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9404 } 9405 9406 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9407 SDVTList VTs,ArrayRef<SDValue> Ops) { 9408 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9409 // Reset the NodeID to -1. 9410 New->setNodeId(-1); 9411 if (New != N) { 9412 ReplaceAllUsesWith(N, New); 9413 RemoveDeadNode(N); 9414 } 9415 return New; 9416 } 9417 9418 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9419 /// the line number information on the merged node since it is not possible to 9420 /// preserve the information that operation is associated with multiple lines. 9421 /// This will make the debugger working better at -O0, were there is a higher 9422 /// probability having other instructions associated with that line. 9423 /// 9424 /// For IROrder, we keep the smaller of the two 9425 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9426 DebugLoc NLoc = N->getDebugLoc(); 9427 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9428 N->setDebugLoc(DebugLoc()); 9429 } 9430 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9431 N->setIROrder(Order); 9432 return N; 9433 } 9434 9435 /// MorphNodeTo - This *mutates* the specified node to have the specified 9436 /// return type, opcode, and operands. 9437 /// 9438 /// Note that MorphNodeTo returns the resultant node. If there is already a 9439 /// node of the specified opcode and operands, it returns that node instead of 9440 /// the current one. Note that the SDLoc need not be the same. 9441 /// 9442 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9443 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9444 /// node, and because it doesn't require CSE recalculation for any of 9445 /// the node's users. 9446 /// 9447 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9448 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9449 /// the legalizer which maintain worklists that would need to be updated when 9450 /// deleting things. 9451 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9452 SDVTList VTs, ArrayRef<SDValue> Ops) { 9453 // If an identical node already exists, use it. 9454 void *IP = nullptr; 9455 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9456 FoldingSetNodeID ID; 9457 AddNodeIDNode(ID, Opc, VTs, Ops); 9458 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9459 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9460 } 9461 9462 if (!RemoveNodeFromCSEMaps(N)) 9463 IP = nullptr; 9464 9465 // Start the morphing. 9466 N->NodeType = Opc; 9467 N->ValueList = VTs.VTs; 9468 N->NumValues = VTs.NumVTs; 9469 9470 // Clear the operands list, updating used nodes to remove this from their 9471 // use list. Keep track of any operands that become dead as a result. 9472 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9473 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9474 SDUse &Use = *I++; 9475 SDNode *Used = Use.getNode(); 9476 Use.set(SDValue()); 9477 if (Used->use_empty()) 9478 DeadNodeSet.insert(Used); 9479 } 9480 9481 // For MachineNode, initialize the memory references information. 9482 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9483 MN->clearMemRefs(); 9484 9485 // Swap for an appropriately sized array from the recycler. 9486 removeOperands(N); 9487 createOperands(N, Ops); 9488 9489 // Delete any nodes that are still dead after adding the uses for the 9490 // new operands. 9491 if (!DeadNodeSet.empty()) { 9492 SmallVector<SDNode *, 16> DeadNodes; 9493 for (SDNode *N : DeadNodeSet) 9494 if (N->use_empty()) 9495 DeadNodes.push_back(N); 9496 RemoveDeadNodes(DeadNodes); 9497 } 9498 9499 if (IP) 9500 CSEMap.InsertNode(N, IP); // Memoize the new node. 9501 return N; 9502 } 9503 9504 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9505 unsigned OrigOpc = Node->getOpcode(); 9506 unsigned NewOpc; 9507 switch (OrigOpc) { 9508 default: 9509 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9510 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9511 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9512 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9513 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9514 #include "llvm/IR/ConstrainedOps.def" 9515 } 9516 9517 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9518 9519 // We're taking this node out of the chain, so we need to re-link things. 9520 SDValue InputChain = Node->getOperand(0); 9521 SDValue OutputChain = SDValue(Node, 1); 9522 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9523 9524 SmallVector<SDValue, 3> Ops; 9525 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9526 Ops.push_back(Node->getOperand(i)); 9527 9528 SDVTList VTs = getVTList(Node->getValueType(0)); 9529 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9530 9531 // MorphNodeTo can operate in two ways: if an existing node with the 9532 // specified operands exists, it can just return it. Otherwise, it 9533 // updates the node in place to have the requested operands. 9534 if (Res == Node) { 9535 // If we updated the node in place, reset the node ID. To the isel, 9536 // this should be just like a newly allocated machine node. 9537 Res->setNodeId(-1); 9538 } else { 9539 ReplaceAllUsesWith(Node, Res); 9540 RemoveDeadNode(Node); 9541 } 9542 9543 return Res; 9544 } 9545 9546 /// getMachineNode - These are used for target selectors to create a new node 9547 /// with specified return type(s), MachineInstr opcode, and operands. 9548 /// 9549 /// Note that getMachineNode returns the resultant node. If there is already a 9550 /// node of the specified opcode and operands, it returns that node instead of 9551 /// the current one. 9552 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9553 EVT VT) { 9554 SDVTList VTs = getVTList(VT); 9555 return getMachineNode(Opcode, dl, VTs, None); 9556 } 9557 9558 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9559 EVT VT, SDValue Op1) { 9560 SDVTList VTs = getVTList(VT); 9561 SDValue Ops[] = { Op1 }; 9562 return getMachineNode(Opcode, dl, VTs, Ops); 9563 } 9564 9565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9566 EVT VT, SDValue Op1, SDValue Op2) { 9567 SDVTList VTs = getVTList(VT); 9568 SDValue Ops[] = { Op1, Op2 }; 9569 return getMachineNode(Opcode, dl, VTs, Ops); 9570 } 9571 9572 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9573 EVT VT, SDValue Op1, SDValue Op2, 9574 SDValue Op3) { 9575 SDVTList VTs = getVTList(VT); 9576 SDValue Ops[] = { Op1, Op2, Op3 }; 9577 return getMachineNode(Opcode, dl, VTs, Ops); 9578 } 9579 9580 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9581 EVT VT, ArrayRef<SDValue> Ops) { 9582 SDVTList VTs = getVTList(VT); 9583 return getMachineNode(Opcode, dl, VTs, Ops); 9584 } 9585 9586 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9587 EVT VT1, EVT VT2, SDValue Op1, 9588 SDValue Op2) { 9589 SDVTList VTs = getVTList(VT1, VT2); 9590 SDValue Ops[] = { Op1, Op2 }; 9591 return getMachineNode(Opcode, dl, VTs, Ops); 9592 } 9593 9594 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9595 EVT VT1, EVT VT2, SDValue Op1, 9596 SDValue Op2, SDValue Op3) { 9597 SDVTList VTs = getVTList(VT1, VT2); 9598 SDValue Ops[] = { Op1, Op2, Op3 }; 9599 return getMachineNode(Opcode, dl, VTs, Ops); 9600 } 9601 9602 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9603 EVT VT1, EVT VT2, 9604 ArrayRef<SDValue> Ops) { 9605 SDVTList VTs = getVTList(VT1, VT2); 9606 return getMachineNode(Opcode, dl, VTs, Ops); 9607 } 9608 9609 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9610 EVT VT1, EVT VT2, EVT VT3, 9611 SDValue Op1, SDValue Op2) { 9612 SDVTList VTs = getVTList(VT1, VT2, VT3); 9613 SDValue Ops[] = { Op1, Op2 }; 9614 return getMachineNode(Opcode, dl, VTs, Ops); 9615 } 9616 9617 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9618 EVT VT1, EVT VT2, EVT VT3, 9619 SDValue Op1, SDValue Op2, 9620 SDValue Op3) { 9621 SDVTList VTs = getVTList(VT1, VT2, VT3); 9622 SDValue Ops[] = { Op1, Op2, Op3 }; 9623 return getMachineNode(Opcode, dl, VTs, Ops); 9624 } 9625 9626 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9627 EVT VT1, EVT VT2, EVT VT3, 9628 ArrayRef<SDValue> Ops) { 9629 SDVTList VTs = getVTList(VT1, VT2, VT3); 9630 return getMachineNode(Opcode, dl, VTs, Ops); 9631 } 9632 9633 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9634 ArrayRef<EVT> ResultTys, 9635 ArrayRef<SDValue> Ops) { 9636 SDVTList VTs = getVTList(ResultTys); 9637 return getMachineNode(Opcode, dl, VTs, Ops); 9638 } 9639 9640 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9641 SDVTList VTs, 9642 ArrayRef<SDValue> Ops) { 9643 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9644 MachineSDNode *N; 9645 void *IP = nullptr; 9646 9647 if (DoCSE) { 9648 FoldingSetNodeID ID; 9649 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9650 IP = nullptr; 9651 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9652 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9653 } 9654 } 9655 9656 // Allocate a new MachineSDNode. 9657 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9658 createOperands(N, Ops); 9659 9660 if (DoCSE) 9661 CSEMap.InsertNode(N, IP); 9662 9663 InsertNode(N); 9664 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9665 return N; 9666 } 9667 9668 /// getTargetExtractSubreg - A convenience function for creating 9669 /// TargetOpcode::EXTRACT_SUBREG nodes. 9670 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9671 SDValue Operand) { 9672 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9673 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9674 VT, Operand, SRIdxVal); 9675 return SDValue(Subreg, 0); 9676 } 9677 9678 /// getTargetInsertSubreg - A convenience function for creating 9679 /// TargetOpcode::INSERT_SUBREG nodes. 9680 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9681 SDValue Operand, SDValue Subreg) { 9682 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9683 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9684 VT, Operand, Subreg, SRIdxVal); 9685 return SDValue(Result, 0); 9686 } 9687 9688 /// getNodeIfExists - Get the specified node if it's already available, or 9689 /// else return NULL. 9690 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9691 ArrayRef<SDValue> Ops) { 9692 SDNodeFlags Flags; 9693 if (Inserter) 9694 Flags = Inserter->getFlags(); 9695 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9696 } 9697 9698 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9699 ArrayRef<SDValue> Ops, 9700 const SDNodeFlags Flags) { 9701 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9702 FoldingSetNodeID ID; 9703 AddNodeIDNode(ID, Opcode, VTList, Ops); 9704 void *IP = nullptr; 9705 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9706 E->intersectFlagsWith(Flags); 9707 return E; 9708 } 9709 } 9710 return nullptr; 9711 } 9712 9713 /// doesNodeExist - Check if a node exists without modifying its flags. 9714 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9715 ArrayRef<SDValue> Ops) { 9716 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9717 FoldingSetNodeID ID; 9718 AddNodeIDNode(ID, Opcode, VTList, Ops); 9719 void *IP = nullptr; 9720 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9721 return true; 9722 } 9723 return false; 9724 } 9725 9726 /// getDbgValue - Creates a SDDbgValue node. 9727 /// 9728 /// SDNode 9729 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9730 SDNode *N, unsigned R, bool IsIndirect, 9731 const DebugLoc &DL, unsigned O) { 9732 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9733 "Expected inlined-at fields to agree"); 9734 return new (DbgInfo->getAlloc()) 9735 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9736 {}, IsIndirect, DL, O, 9737 /*IsVariadic=*/false); 9738 } 9739 9740 /// Constant 9741 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9742 DIExpression *Expr, 9743 const Value *C, 9744 const DebugLoc &DL, unsigned O) { 9745 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9746 "Expected inlined-at fields to agree"); 9747 return new (DbgInfo->getAlloc()) 9748 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9749 /*IsIndirect=*/false, DL, O, 9750 /*IsVariadic=*/false); 9751 } 9752 9753 /// FrameIndex 9754 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9755 DIExpression *Expr, unsigned FI, 9756 bool IsIndirect, 9757 const DebugLoc &DL, 9758 unsigned O) { 9759 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9760 "Expected inlined-at fields to agree"); 9761 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9762 } 9763 9764 /// FrameIndex with dependencies 9765 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9766 DIExpression *Expr, unsigned FI, 9767 ArrayRef<SDNode *> Dependencies, 9768 bool IsIndirect, 9769 const DebugLoc &DL, 9770 unsigned O) { 9771 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9772 "Expected inlined-at fields to agree"); 9773 return new (DbgInfo->getAlloc()) 9774 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9775 Dependencies, IsIndirect, DL, O, 9776 /*IsVariadic=*/false); 9777 } 9778 9779 /// VReg 9780 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9781 unsigned VReg, bool IsIndirect, 9782 const DebugLoc &DL, unsigned O) { 9783 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9784 "Expected inlined-at fields to agree"); 9785 return new (DbgInfo->getAlloc()) 9786 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9787 {}, IsIndirect, DL, O, 9788 /*IsVariadic=*/false); 9789 } 9790 9791 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9792 ArrayRef<SDDbgOperand> Locs, 9793 ArrayRef<SDNode *> Dependencies, 9794 bool IsIndirect, const DebugLoc &DL, 9795 unsigned O, bool IsVariadic) { 9796 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9797 "Expected inlined-at fields to agree"); 9798 return new (DbgInfo->getAlloc()) 9799 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9800 DL, O, IsVariadic); 9801 } 9802 9803 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9804 unsigned OffsetInBits, unsigned SizeInBits, 9805 bool InvalidateDbg) { 9806 SDNode *FromNode = From.getNode(); 9807 SDNode *ToNode = To.getNode(); 9808 assert(FromNode && ToNode && "Can't modify dbg values"); 9809 9810 // PR35338 9811 // TODO: assert(From != To && "Redundant dbg value transfer"); 9812 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9813 if (From == To || FromNode == ToNode) 9814 return; 9815 9816 if (!FromNode->getHasDebugValue()) 9817 return; 9818 9819 SDDbgOperand FromLocOp = 9820 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9821 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9822 9823 SmallVector<SDDbgValue *, 2> ClonedDVs; 9824 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9825 if (Dbg->isInvalidated()) 9826 continue; 9827 9828 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9829 9830 // Create a new location ops vector that is equal to the old vector, but 9831 // with each instance of FromLocOp replaced with ToLocOp. 9832 bool Changed = false; 9833 auto NewLocOps = Dbg->copyLocationOps(); 9834 std::replace_if( 9835 NewLocOps.begin(), NewLocOps.end(), 9836 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9837 bool Match = Op == FromLocOp; 9838 Changed |= Match; 9839 return Match; 9840 }, 9841 ToLocOp); 9842 // Ignore this SDDbgValue if we didn't find a matching location. 9843 if (!Changed) 9844 continue; 9845 9846 DIVariable *Var = Dbg->getVariable(); 9847 auto *Expr = Dbg->getExpression(); 9848 // If a fragment is requested, update the expression. 9849 if (SizeInBits) { 9850 // When splitting a larger (e.g., sign-extended) value whose 9851 // lower bits are described with an SDDbgValue, do not attempt 9852 // to transfer the SDDbgValue to the upper bits. 9853 if (auto FI = Expr->getFragmentInfo()) 9854 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9855 continue; 9856 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9857 SizeInBits); 9858 if (!Fragment) 9859 continue; 9860 Expr = *Fragment; 9861 } 9862 9863 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9864 // Clone the SDDbgValue and move it to To. 9865 SDDbgValue *Clone = getDbgValueList( 9866 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9867 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9868 Dbg->isVariadic()); 9869 ClonedDVs.push_back(Clone); 9870 9871 if (InvalidateDbg) { 9872 // Invalidate value and indicate the SDDbgValue should not be emitted. 9873 Dbg->setIsInvalidated(); 9874 Dbg->setIsEmitted(); 9875 } 9876 } 9877 9878 for (SDDbgValue *Dbg : ClonedDVs) { 9879 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9880 "Transferred DbgValues should depend on the new SDNode"); 9881 AddDbgValue(Dbg, false); 9882 } 9883 } 9884 9885 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9886 if (!N.getHasDebugValue()) 9887 return; 9888 9889 SmallVector<SDDbgValue *, 2> ClonedDVs; 9890 for (auto DV : GetDbgValues(&N)) { 9891 if (DV->isInvalidated()) 9892 continue; 9893 switch (N.getOpcode()) { 9894 default: 9895 break; 9896 case ISD::ADD: 9897 SDValue N0 = N.getOperand(0); 9898 SDValue N1 = N.getOperand(1); 9899 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9900 isConstantIntBuildVectorOrConstantInt(N1)) { 9901 uint64_t Offset = N.getConstantOperandVal(1); 9902 9903 // Rewrite an ADD constant node into a DIExpression. Since we are 9904 // performing arithmetic to compute the variable's *value* in the 9905 // DIExpression, we need to mark the expression with a 9906 // DW_OP_stack_value. 9907 auto *DIExpr = DV->getExpression(); 9908 auto NewLocOps = DV->copyLocationOps(); 9909 bool Changed = false; 9910 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9911 // We're not given a ResNo to compare against because the whole 9912 // node is going away. We know that any ISD::ADD only has one 9913 // result, so we can assume any node match is using the result. 9914 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9915 NewLocOps[i].getSDNode() != &N) 9916 continue; 9917 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9918 SmallVector<uint64_t, 3> ExprOps; 9919 DIExpression::appendOffset(ExprOps, Offset); 9920 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9921 Changed = true; 9922 } 9923 (void)Changed; 9924 assert(Changed && "Salvage target doesn't use N"); 9925 9926 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9927 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9928 NewLocOps, AdditionalDependencies, 9929 DV->isIndirect(), DV->getDebugLoc(), 9930 DV->getOrder(), DV->isVariadic()); 9931 ClonedDVs.push_back(Clone); 9932 DV->setIsInvalidated(); 9933 DV->setIsEmitted(); 9934 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9935 N0.getNode()->dumprFull(this); 9936 dbgs() << " into " << *DIExpr << '\n'); 9937 } 9938 } 9939 } 9940 9941 for (SDDbgValue *Dbg : ClonedDVs) { 9942 assert(!Dbg->getSDNodes().empty() && 9943 "Salvaged DbgValue should depend on a new SDNode"); 9944 AddDbgValue(Dbg, false); 9945 } 9946 } 9947 9948 /// Creates a SDDbgLabel node. 9949 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9950 const DebugLoc &DL, unsigned O) { 9951 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9952 "Expected inlined-at fields to agree"); 9953 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9954 } 9955 9956 namespace { 9957 9958 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9959 /// pointed to by a use iterator is deleted, increment the use iterator 9960 /// so that it doesn't dangle. 9961 /// 9962 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9963 SDNode::use_iterator &UI; 9964 SDNode::use_iterator &UE; 9965 9966 void NodeDeleted(SDNode *N, SDNode *E) override { 9967 // Increment the iterator as needed. 9968 while (UI != UE && N == *UI) 9969 ++UI; 9970 } 9971 9972 public: 9973 RAUWUpdateListener(SelectionDAG &d, 9974 SDNode::use_iterator &ui, 9975 SDNode::use_iterator &ue) 9976 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9977 }; 9978 9979 } // end anonymous namespace 9980 9981 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9982 /// This can cause recursive merging of nodes in the DAG. 9983 /// 9984 /// This version assumes From has a single result value. 9985 /// 9986 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9987 SDNode *From = FromN.getNode(); 9988 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9989 "Cannot replace with this method!"); 9990 assert(From != To.getNode() && "Cannot replace uses of with self"); 9991 9992 // Preserve Debug Values 9993 transferDbgValues(FromN, To); 9994 9995 // Iterate over all the existing uses of From. New uses will be added 9996 // to the beginning of the use list, which we avoid visiting. 9997 // This specifically avoids visiting uses of From that arise while the 9998 // replacement is happening, because any such uses would be the result 9999 // of CSE: If an existing node looks like From after one of its operands 10000 // is replaced by To, we don't want to replace of all its users with To 10001 // too. See PR3018 for more info. 10002 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10003 RAUWUpdateListener Listener(*this, UI, UE); 10004 while (UI != UE) { 10005 SDNode *User = *UI; 10006 10007 // This node is about to morph, remove its old self from the CSE maps. 10008 RemoveNodeFromCSEMaps(User); 10009 10010 // A user can appear in a use list multiple times, and when this 10011 // happens the uses are usually next to each other in the list. 10012 // To help reduce the number of CSE recomputations, process all 10013 // the uses of this user that we can find this way. 10014 do { 10015 SDUse &Use = UI.getUse(); 10016 ++UI; 10017 Use.set(To); 10018 if (To->isDivergent() != From->isDivergent()) 10019 updateDivergence(User); 10020 } while (UI != UE && *UI == User); 10021 // Now that we have modified User, add it back to the CSE maps. If it 10022 // already exists there, recursively merge the results together. 10023 AddModifiedNodeToCSEMaps(User); 10024 } 10025 10026 // If we just RAUW'd the root, take note. 10027 if (FromN == getRoot()) 10028 setRoot(To); 10029 } 10030 10031 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10032 /// This can cause recursive merging of nodes in the DAG. 10033 /// 10034 /// This version assumes that for each value of From, there is a 10035 /// corresponding value in To in the same position with the same type. 10036 /// 10037 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10038 #ifndef NDEBUG 10039 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10040 assert((!From->hasAnyUseOfValue(i) || 10041 From->getValueType(i) == To->getValueType(i)) && 10042 "Cannot use this version of ReplaceAllUsesWith!"); 10043 #endif 10044 10045 // Handle the trivial case. 10046 if (From == To) 10047 return; 10048 10049 // Preserve Debug Info. Only do this if there's a use. 10050 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10051 if (From->hasAnyUseOfValue(i)) { 10052 assert((i < To->getNumValues()) && "Invalid To location"); 10053 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10054 } 10055 10056 // Iterate over just the existing users of From. See the comments in 10057 // the ReplaceAllUsesWith above. 10058 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10059 RAUWUpdateListener Listener(*this, UI, UE); 10060 while (UI != UE) { 10061 SDNode *User = *UI; 10062 10063 // This node is about to morph, remove its old self from the CSE maps. 10064 RemoveNodeFromCSEMaps(User); 10065 10066 // A user can appear in a use list multiple times, and when this 10067 // happens the uses are usually next to each other in the list. 10068 // To help reduce the number of CSE recomputations, process all 10069 // the uses of this user that we can find this way. 10070 do { 10071 SDUse &Use = UI.getUse(); 10072 ++UI; 10073 Use.setNode(To); 10074 if (To->isDivergent() != From->isDivergent()) 10075 updateDivergence(User); 10076 } while (UI != UE && *UI == User); 10077 10078 // Now that we have modified User, add it back to the CSE maps. If it 10079 // already exists there, recursively merge the results together. 10080 AddModifiedNodeToCSEMaps(User); 10081 } 10082 10083 // If we just RAUW'd the root, take note. 10084 if (From == getRoot().getNode()) 10085 setRoot(SDValue(To, getRoot().getResNo())); 10086 } 10087 10088 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10089 /// This can cause recursive merging of nodes in the DAG. 10090 /// 10091 /// This version can replace From with any result values. To must match the 10092 /// number and types of values returned by From. 10093 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10094 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10095 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10096 10097 // Preserve Debug Info. 10098 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10099 transferDbgValues(SDValue(From, i), To[i]); 10100 10101 // Iterate over just the existing users of From. See the comments in 10102 // the ReplaceAllUsesWith above. 10103 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10104 RAUWUpdateListener Listener(*this, UI, UE); 10105 while (UI != UE) { 10106 SDNode *User = *UI; 10107 10108 // This node is about to morph, remove its old self from the CSE maps. 10109 RemoveNodeFromCSEMaps(User); 10110 10111 // A user can appear in a use list multiple times, and when this happens the 10112 // uses are usually next to each other in the list. To help reduce the 10113 // number of CSE and divergence recomputations, process all the uses of this 10114 // user that we can find this way. 10115 bool To_IsDivergent = false; 10116 do { 10117 SDUse &Use = UI.getUse(); 10118 const SDValue &ToOp = To[Use.getResNo()]; 10119 ++UI; 10120 Use.set(ToOp); 10121 To_IsDivergent |= ToOp->isDivergent(); 10122 } while (UI != UE && *UI == User); 10123 10124 if (To_IsDivergent != From->isDivergent()) 10125 updateDivergence(User); 10126 10127 // Now that we have modified User, add it back to the CSE maps. If it 10128 // already exists there, recursively merge the results together. 10129 AddModifiedNodeToCSEMaps(User); 10130 } 10131 10132 // If we just RAUW'd the root, take note. 10133 if (From == getRoot().getNode()) 10134 setRoot(SDValue(To[getRoot().getResNo()])); 10135 } 10136 10137 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10138 /// uses of other values produced by From.getNode() alone. The Deleted 10139 /// vector is handled the same way as for ReplaceAllUsesWith. 10140 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10141 // Handle the really simple, really trivial case efficiently. 10142 if (From == To) return; 10143 10144 // Handle the simple, trivial, case efficiently. 10145 if (From.getNode()->getNumValues() == 1) { 10146 ReplaceAllUsesWith(From, To); 10147 return; 10148 } 10149 10150 // Preserve Debug Info. 10151 transferDbgValues(From, To); 10152 10153 // Iterate over just the existing users of From. See the comments in 10154 // the ReplaceAllUsesWith above. 10155 SDNode::use_iterator UI = From.getNode()->use_begin(), 10156 UE = From.getNode()->use_end(); 10157 RAUWUpdateListener Listener(*this, UI, UE); 10158 while (UI != UE) { 10159 SDNode *User = *UI; 10160 bool UserRemovedFromCSEMaps = false; 10161 10162 // A user can appear in a use list multiple times, and when this 10163 // happens the uses are usually next to each other in the list. 10164 // To help reduce the number of CSE recomputations, process all 10165 // the uses of this user that we can find this way. 10166 do { 10167 SDUse &Use = UI.getUse(); 10168 10169 // Skip uses of different values from the same node. 10170 if (Use.getResNo() != From.getResNo()) { 10171 ++UI; 10172 continue; 10173 } 10174 10175 // If this node hasn't been modified yet, it's still in the CSE maps, 10176 // so remove its old self from the CSE maps. 10177 if (!UserRemovedFromCSEMaps) { 10178 RemoveNodeFromCSEMaps(User); 10179 UserRemovedFromCSEMaps = true; 10180 } 10181 10182 ++UI; 10183 Use.set(To); 10184 if (To->isDivergent() != From->isDivergent()) 10185 updateDivergence(User); 10186 } while (UI != UE && *UI == User); 10187 // We are iterating over all uses of the From node, so if a use 10188 // doesn't use the specific value, no changes are made. 10189 if (!UserRemovedFromCSEMaps) 10190 continue; 10191 10192 // Now that we have modified User, add it back to the CSE maps. If it 10193 // already exists there, recursively merge the results together. 10194 AddModifiedNodeToCSEMaps(User); 10195 } 10196 10197 // If we just RAUW'd the root, take note. 10198 if (From == getRoot()) 10199 setRoot(To); 10200 } 10201 10202 namespace { 10203 10204 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10205 /// to record information about a use. 10206 struct UseMemo { 10207 SDNode *User; 10208 unsigned Index; 10209 SDUse *Use; 10210 }; 10211 10212 /// operator< - Sort Memos by User. 10213 bool operator<(const UseMemo &L, const UseMemo &R) { 10214 return (intptr_t)L.User < (intptr_t)R.User; 10215 } 10216 10217 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10218 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10219 /// the node already has been taken care of recursively. 10220 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10221 SmallVector<UseMemo, 4> &Uses; 10222 10223 void NodeDeleted(SDNode *N, SDNode *E) override { 10224 for (UseMemo &Memo : Uses) 10225 if (Memo.User == N) 10226 Memo.User = nullptr; 10227 } 10228 10229 public: 10230 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10231 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10232 }; 10233 10234 } // end anonymous namespace 10235 10236 bool SelectionDAG::calculateDivergence(SDNode *N) { 10237 if (TLI->isSDNodeAlwaysUniform(N)) { 10238 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10239 "Conflicting divergence information!"); 10240 return false; 10241 } 10242 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10243 return true; 10244 for (auto &Op : N->ops()) { 10245 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10246 return true; 10247 } 10248 return false; 10249 } 10250 10251 void SelectionDAG::updateDivergence(SDNode *N) { 10252 SmallVector<SDNode *, 16> Worklist(1, N); 10253 do { 10254 N = Worklist.pop_back_val(); 10255 bool IsDivergent = calculateDivergence(N); 10256 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10257 N->SDNodeBits.IsDivergent = IsDivergent; 10258 llvm::append_range(Worklist, N->uses()); 10259 } 10260 } while (!Worklist.empty()); 10261 } 10262 10263 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10264 DenseMap<SDNode *, unsigned> Degree; 10265 Order.reserve(AllNodes.size()); 10266 for (auto &N : allnodes()) { 10267 unsigned NOps = N.getNumOperands(); 10268 Degree[&N] = NOps; 10269 if (0 == NOps) 10270 Order.push_back(&N); 10271 } 10272 for (size_t I = 0; I != Order.size(); ++I) { 10273 SDNode *N = Order[I]; 10274 for (auto U : N->uses()) { 10275 unsigned &UnsortedOps = Degree[U]; 10276 if (0 == --UnsortedOps) 10277 Order.push_back(U); 10278 } 10279 } 10280 } 10281 10282 #ifndef NDEBUG 10283 void SelectionDAG::VerifyDAGDivergence() { 10284 std::vector<SDNode *> TopoOrder; 10285 CreateTopologicalOrder(TopoOrder); 10286 for (auto *N : TopoOrder) { 10287 assert(calculateDivergence(N) == N->isDivergent() && 10288 "Divergence bit inconsistency detected"); 10289 } 10290 } 10291 #endif 10292 10293 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10294 /// uses of other values produced by From.getNode() alone. The same value 10295 /// may appear in both the From and To list. The Deleted vector is 10296 /// handled the same way as for ReplaceAllUsesWith. 10297 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10298 const SDValue *To, 10299 unsigned Num){ 10300 // Handle the simple, trivial case efficiently. 10301 if (Num == 1) 10302 return ReplaceAllUsesOfValueWith(*From, *To); 10303 10304 transferDbgValues(*From, *To); 10305 10306 // Read up all the uses and make records of them. This helps 10307 // processing new uses that are introduced during the 10308 // replacement process. 10309 SmallVector<UseMemo, 4> Uses; 10310 for (unsigned i = 0; i != Num; ++i) { 10311 unsigned FromResNo = From[i].getResNo(); 10312 SDNode *FromNode = From[i].getNode(); 10313 for (SDNode::use_iterator UI = FromNode->use_begin(), 10314 E = FromNode->use_end(); UI != E; ++UI) { 10315 SDUse &Use = UI.getUse(); 10316 if (Use.getResNo() == FromResNo) { 10317 UseMemo Memo = { *UI, i, &Use }; 10318 Uses.push_back(Memo); 10319 } 10320 } 10321 } 10322 10323 // Sort the uses, so that all the uses from a given User are together. 10324 llvm::sort(Uses); 10325 RAUOVWUpdateListener Listener(*this, Uses); 10326 10327 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10328 UseIndex != UseIndexEnd; ) { 10329 // We know that this user uses some value of From. If it is the right 10330 // value, update it. 10331 SDNode *User = Uses[UseIndex].User; 10332 // If the node has been deleted by recursive CSE updates when updating 10333 // another node, then just skip this entry. 10334 if (User == nullptr) { 10335 ++UseIndex; 10336 continue; 10337 } 10338 10339 // This node is about to morph, remove its old self from the CSE maps. 10340 RemoveNodeFromCSEMaps(User); 10341 10342 // The Uses array is sorted, so all the uses for a given User 10343 // are next to each other in the list. 10344 // To help reduce the number of CSE recomputations, process all 10345 // the uses of this user that we can find this way. 10346 do { 10347 unsigned i = Uses[UseIndex].Index; 10348 SDUse &Use = *Uses[UseIndex].Use; 10349 ++UseIndex; 10350 10351 Use.set(To[i]); 10352 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10353 10354 // Now that we have modified User, add it back to the CSE maps. If it 10355 // already exists there, recursively merge the results together. 10356 AddModifiedNodeToCSEMaps(User); 10357 } 10358 } 10359 10360 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10361 /// based on their topological order. It returns the maximum id and a vector 10362 /// of the SDNodes* in assigned order by reference. 10363 unsigned SelectionDAG::AssignTopologicalOrder() { 10364 unsigned DAGSize = 0; 10365 10366 // SortedPos tracks the progress of the algorithm. Nodes before it are 10367 // sorted, nodes after it are unsorted. When the algorithm completes 10368 // it is at the end of the list. 10369 allnodes_iterator SortedPos = allnodes_begin(); 10370 10371 // Visit all the nodes. Move nodes with no operands to the front of 10372 // the list immediately. Annotate nodes that do have operands with their 10373 // operand count. Before we do this, the Node Id fields of the nodes 10374 // may contain arbitrary values. After, the Node Id fields for nodes 10375 // before SortedPos will contain the topological sort index, and the 10376 // Node Id fields for nodes At SortedPos and after will contain the 10377 // count of outstanding operands. 10378 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10379 checkForCycles(&N, this); 10380 unsigned Degree = N.getNumOperands(); 10381 if (Degree == 0) { 10382 // A node with no uses, add it to the result array immediately. 10383 N.setNodeId(DAGSize++); 10384 allnodes_iterator Q(&N); 10385 if (Q != SortedPos) 10386 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10387 assert(SortedPos != AllNodes.end() && "Overran node list"); 10388 ++SortedPos; 10389 } else { 10390 // Temporarily use the Node Id as scratch space for the degree count. 10391 N.setNodeId(Degree); 10392 } 10393 } 10394 10395 // Visit all the nodes. As we iterate, move nodes into sorted order, 10396 // such that by the time the end is reached all nodes will be sorted. 10397 for (SDNode &Node : allnodes()) { 10398 SDNode *N = &Node; 10399 checkForCycles(N, this); 10400 // N is in sorted position, so all its uses have one less operand 10401 // that needs to be sorted. 10402 for (SDNode *P : N->uses()) { 10403 unsigned Degree = P->getNodeId(); 10404 assert(Degree != 0 && "Invalid node degree"); 10405 --Degree; 10406 if (Degree == 0) { 10407 // All of P's operands are sorted, so P may sorted now. 10408 P->setNodeId(DAGSize++); 10409 if (P->getIterator() != SortedPos) 10410 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10411 assert(SortedPos != AllNodes.end() && "Overran node list"); 10412 ++SortedPos; 10413 } else { 10414 // Update P's outstanding operand count. 10415 P->setNodeId(Degree); 10416 } 10417 } 10418 if (Node.getIterator() == SortedPos) { 10419 #ifndef NDEBUG 10420 allnodes_iterator I(N); 10421 SDNode *S = &*++I; 10422 dbgs() << "Overran sorted position:\n"; 10423 S->dumprFull(this); dbgs() << "\n"; 10424 dbgs() << "Checking if this is due to cycles\n"; 10425 checkForCycles(this, true); 10426 #endif 10427 llvm_unreachable(nullptr); 10428 } 10429 } 10430 10431 assert(SortedPos == AllNodes.end() && 10432 "Topological sort incomplete!"); 10433 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10434 "First node in topological sort is not the entry token!"); 10435 assert(AllNodes.front().getNodeId() == 0 && 10436 "First node in topological sort has non-zero id!"); 10437 assert(AllNodes.front().getNumOperands() == 0 && 10438 "First node in topological sort has operands!"); 10439 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10440 "Last node in topologic sort has unexpected id!"); 10441 assert(AllNodes.back().use_empty() && 10442 "Last node in topologic sort has users!"); 10443 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10444 return DAGSize; 10445 } 10446 10447 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10448 /// value is produced by SD. 10449 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10450 for (SDNode *SD : DB->getSDNodes()) { 10451 if (!SD) 10452 continue; 10453 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10454 SD->setHasDebugValue(true); 10455 } 10456 DbgInfo->add(DB, isParameter); 10457 } 10458 10459 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10460 10461 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10462 SDValue NewMemOpChain) { 10463 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10464 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10465 // The new memory operation must have the same position as the old load in 10466 // terms of memory dependency. Create a TokenFactor for the old load and new 10467 // memory operation and update uses of the old load's output chain to use that 10468 // TokenFactor. 10469 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10470 return NewMemOpChain; 10471 10472 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10473 OldChain, NewMemOpChain); 10474 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10475 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10476 return TokenFactor; 10477 } 10478 10479 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10480 SDValue NewMemOp) { 10481 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10482 SDValue OldChain = SDValue(OldLoad, 1); 10483 SDValue NewMemOpChain = NewMemOp.getValue(1); 10484 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10485 } 10486 10487 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10488 Function **OutFunction) { 10489 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10490 10491 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10492 auto *Module = MF->getFunction().getParent(); 10493 auto *Function = Module->getFunction(Symbol); 10494 10495 if (OutFunction != nullptr) 10496 *OutFunction = Function; 10497 10498 if (Function != nullptr) { 10499 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10500 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10501 } 10502 10503 std::string ErrorStr; 10504 raw_string_ostream ErrorFormatter(ErrorStr); 10505 ErrorFormatter << "Undefined external symbol "; 10506 ErrorFormatter << '"' << Symbol << '"'; 10507 report_fatal_error(Twine(ErrorFormatter.str())); 10508 } 10509 10510 //===----------------------------------------------------------------------===// 10511 // SDNode Class 10512 //===----------------------------------------------------------------------===// 10513 10514 bool llvm::isNullConstant(SDValue V) { 10515 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10516 return Const != nullptr && Const->isZero(); 10517 } 10518 10519 bool llvm::isNullFPConstant(SDValue V) { 10520 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10521 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10522 } 10523 10524 bool llvm::isAllOnesConstant(SDValue V) { 10525 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10526 return Const != nullptr && Const->isAllOnes(); 10527 } 10528 10529 bool llvm::isOneConstant(SDValue V) { 10530 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10531 return Const != nullptr && Const->isOne(); 10532 } 10533 10534 bool llvm::isMinSignedConstant(SDValue V) { 10535 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10536 return Const != nullptr && Const->isMinSignedValue(); 10537 } 10538 10539 SDValue llvm::peekThroughBitcasts(SDValue V) { 10540 while (V.getOpcode() == ISD::BITCAST) 10541 V = V.getOperand(0); 10542 return V; 10543 } 10544 10545 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10546 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10547 V = V.getOperand(0); 10548 return V; 10549 } 10550 10551 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10552 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10553 V = V.getOperand(0); 10554 return V; 10555 } 10556 10557 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10558 if (V.getOpcode() != ISD::XOR) 10559 return false; 10560 V = peekThroughBitcasts(V.getOperand(1)); 10561 unsigned NumBits = V.getScalarValueSizeInBits(); 10562 ConstantSDNode *C = 10563 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10564 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10565 } 10566 10567 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10568 bool AllowTruncation) { 10569 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10570 return CN; 10571 10572 // SplatVectors can truncate their operands. Ignore that case here unless 10573 // AllowTruncation is set. 10574 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10575 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10576 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10577 EVT CVT = CN->getValueType(0); 10578 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10579 if (AllowTruncation || CVT == VecEltVT) 10580 return CN; 10581 } 10582 } 10583 10584 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10585 BitVector UndefElements; 10586 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10587 10588 // BuildVectors can truncate their operands. Ignore that case here unless 10589 // AllowTruncation is set. 10590 if (CN && (UndefElements.none() || AllowUndefs)) { 10591 EVT CVT = CN->getValueType(0); 10592 EVT NSVT = N.getValueType().getScalarType(); 10593 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10594 if (AllowTruncation || (CVT == NSVT)) 10595 return CN; 10596 } 10597 } 10598 10599 return nullptr; 10600 } 10601 10602 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10603 bool AllowUndefs, 10604 bool AllowTruncation) { 10605 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10606 return CN; 10607 10608 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10609 BitVector UndefElements; 10610 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10611 10612 // BuildVectors can truncate their operands. Ignore that case here unless 10613 // AllowTruncation is set. 10614 if (CN && (UndefElements.none() || AllowUndefs)) { 10615 EVT CVT = CN->getValueType(0); 10616 EVT NSVT = N.getValueType().getScalarType(); 10617 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10618 if (AllowTruncation || (CVT == NSVT)) 10619 return CN; 10620 } 10621 } 10622 10623 return nullptr; 10624 } 10625 10626 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10627 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10628 return CN; 10629 10630 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10631 BitVector UndefElements; 10632 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10633 if (CN && (UndefElements.none() || AllowUndefs)) 10634 return CN; 10635 } 10636 10637 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10638 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10639 return CN; 10640 10641 return nullptr; 10642 } 10643 10644 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10645 const APInt &DemandedElts, 10646 bool AllowUndefs) { 10647 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10648 return CN; 10649 10650 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10651 BitVector UndefElements; 10652 ConstantFPSDNode *CN = 10653 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10654 if (CN && (UndefElements.none() || AllowUndefs)) 10655 return CN; 10656 } 10657 10658 return nullptr; 10659 } 10660 10661 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10662 // TODO: may want to use peekThroughBitcast() here. 10663 ConstantSDNode *C = 10664 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10665 return C && C->isZero(); 10666 } 10667 10668 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10669 ConstantSDNode *C = 10670 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10671 return C && C->isOne(); 10672 } 10673 10674 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10675 N = peekThroughBitcasts(N); 10676 unsigned BitWidth = N.getScalarValueSizeInBits(); 10677 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10678 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10679 } 10680 10681 HandleSDNode::~HandleSDNode() { 10682 DropOperands(); 10683 } 10684 10685 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10686 const DebugLoc &DL, 10687 const GlobalValue *GA, EVT VT, 10688 int64_t o, unsigned TF) 10689 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10690 TheGlobal = GA; 10691 } 10692 10693 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10694 EVT VT, unsigned SrcAS, 10695 unsigned DestAS) 10696 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10697 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10698 10699 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10700 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10701 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10702 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10703 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10704 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10705 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10706 10707 // We check here that the size of the memory operand fits within the size of 10708 // the MMO. This is because the MMO might indicate only a possible address 10709 // range instead of specifying the affected memory addresses precisely. 10710 // TODO: Make MachineMemOperands aware of scalable vectors. 10711 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10712 "Size mismatch!"); 10713 } 10714 10715 /// Profile - Gather unique data for the node. 10716 /// 10717 void SDNode::Profile(FoldingSetNodeID &ID) const { 10718 AddNodeIDNode(ID, this); 10719 } 10720 10721 namespace { 10722 10723 struct EVTArray { 10724 std::vector<EVT> VTs; 10725 10726 EVTArray() { 10727 VTs.reserve(MVT::VALUETYPE_SIZE); 10728 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10729 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10730 } 10731 }; 10732 10733 } // end anonymous namespace 10734 10735 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10736 static ManagedStatic<EVTArray> SimpleVTArray; 10737 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10738 10739 /// getValueTypeList - Return a pointer to the specified value type. 10740 /// 10741 const EVT *SDNode::getValueTypeList(EVT VT) { 10742 if (VT.isExtended()) { 10743 sys::SmartScopedLock<true> Lock(*VTMutex); 10744 return &(*EVTs->insert(VT).first); 10745 } 10746 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10747 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10748 } 10749 10750 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10751 /// indicated value. This method ignores uses of other values defined by this 10752 /// operation. 10753 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10754 assert(Value < getNumValues() && "Bad value!"); 10755 10756 // TODO: Only iterate over uses of a given value of the node 10757 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10758 if (UI.getUse().getResNo() == Value) { 10759 if (NUses == 0) 10760 return false; 10761 --NUses; 10762 } 10763 } 10764 10765 // Found exactly the right number of uses? 10766 return NUses == 0; 10767 } 10768 10769 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10770 /// value. This method ignores uses of other values defined by this operation. 10771 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10772 assert(Value < getNumValues() && "Bad value!"); 10773 10774 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10775 if (UI.getUse().getResNo() == Value) 10776 return true; 10777 10778 return false; 10779 } 10780 10781 /// isOnlyUserOf - Return true if this node is the only use of N. 10782 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10783 bool Seen = false; 10784 for (const SDNode *User : N->uses()) { 10785 if (User == this) 10786 Seen = true; 10787 else 10788 return false; 10789 } 10790 10791 return Seen; 10792 } 10793 10794 /// Return true if the only users of N are contained in Nodes. 10795 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10796 bool Seen = false; 10797 for (const SDNode *User : N->uses()) { 10798 if (llvm::is_contained(Nodes, User)) 10799 Seen = true; 10800 else 10801 return false; 10802 } 10803 10804 return Seen; 10805 } 10806 10807 /// isOperand - Return true if this node is an operand of N. 10808 bool SDValue::isOperandOf(const SDNode *N) const { 10809 return is_contained(N->op_values(), *this); 10810 } 10811 10812 bool SDNode::isOperandOf(const SDNode *N) const { 10813 return any_of(N->op_values(), 10814 [this](SDValue Op) { return this == Op.getNode(); }); 10815 } 10816 10817 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10818 /// be a chain) reaches the specified operand without crossing any 10819 /// side-effecting instructions on any chain path. In practice, this looks 10820 /// through token factors and non-volatile loads. In order to remain efficient, 10821 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10822 /// 10823 /// Note that we only need to examine chains when we're searching for 10824 /// side-effects; SelectionDAG requires that all side-effects are represented 10825 /// by chains, even if another operand would force a specific ordering. This 10826 /// constraint is necessary to allow transformations like splitting loads. 10827 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10828 unsigned Depth) const { 10829 if (*this == Dest) return true; 10830 10831 // Don't search too deeply, we just want to be able to see through 10832 // TokenFactor's etc. 10833 if (Depth == 0) return false; 10834 10835 // If this is a token factor, all inputs to the TF happen in parallel. 10836 if (getOpcode() == ISD::TokenFactor) { 10837 // First, try a shallow search. 10838 if (is_contained((*this)->ops(), Dest)) { 10839 // We found the chain we want as an operand of this TokenFactor. 10840 // Essentially, we reach the chain without side-effects if we could 10841 // serialize the TokenFactor into a simple chain of operations with 10842 // Dest as the last operation. This is automatically true if the 10843 // chain has one use: there are no other ordering constraints. 10844 // If the chain has more than one use, we give up: some other 10845 // use of Dest might force a side-effect between Dest and the current 10846 // node. 10847 if (Dest.hasOneUse()) 10848 return true; 10849 } 10850 // Next, try a deep search: check whether every operand of the TokenFactor 10851 // reaches Dest. 10852 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10853 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10854 }); 10855 } 10856 10857 // Loads don't have side effects, look through them. 10858 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10859 if (Ld->isUnordered()) 10860 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10861 } 10862 return false; 10863 } 10864 10865 bool SDNode::hasPredecessor(const SDNode *N) const { 10866 SmallPtrSet<const SDNode *, 32> Visited; 10867 SmallVector<const SDNode *, 16> Worklist; 10868 Worklist.push_back(this); 10869 return hasPredecessorHelper(N, Visited, Worklist); 10870 } 10871 10872 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10873 this->Flags.intersectWith(Flags); 10874 } 10875 10876 SDValue 10877 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10878 ArrayRef<ISD::NodeType> CandidateBinOps, 10879 bool AllowPartials) { 10880 // The pattern must end in an extract from index 0. 10881 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10882 !isNullConstant(Extract->getOperand(1))) 10883 return SDValue(); 10884 10885 // Match against one of the candidate binary ops. 10886 SDValue Op = Extract->getOperand(0); 10887 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10888 return Op.getOpcode() == unsigned(BinOp); 10889 })) 10890 return SDValue(); 10891 10892 // Floating-point reductions may require relaxed constraints on the final step 10893 // of the reduction because they may reorder intermediate operations. 10894 unsigned CandidateBinOp = Op.getOpcode(); 10895 if (Op.getValueType().isFloatingPoint()) { 10896 SDNodeFlags Flags = Op->getFlags(); 10897 switch (CandidateBinOp) { 10898 case ISD::FADD: 10899 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10900 return SDValue(); 10901 break; 10902 default: 10903 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10904 } 10905 } 10906 10907 // Matching failed - attempt to see if we did enough stages that a partial 10908 // reduction from a subvector is possible. 10909 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10910 if (!AllowPartials || !Op) 10911 return SDValue(); 10912 EVT OpVT = Op.getValueType(); 10913 EVT OpSVT = OpVT.getScalarType(); 10914 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10915 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10916 return SDValue(); 10917 BinOp = (ISD::NodeType)CandidateBinOp; 10918 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10919 getVectorIdxConstant(0, SDLoc(Op))); 10920 }; 10921 10922 // At each stage, we're looking for something that looks like: 10923 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10924 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10925 // i32 undef, i32 undef, i32 undef, i32 undef> 10926 // %a = binop <8 x i32> %op, %s 10927 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10928 // we expect something like: 10929 // <4,5,6,7,u,u,u,u> 10930 // <2,3,u,u,u,u,u,u> 10931 // <1,u,u,u,u,u,u,u> 10932 // While a partial reduction match would be: 10933 // <2,3,u,u,u,u,u,u> 10934 // <1,u,u,u,u,u,u,u> 10935 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10936 SDValue PrevOp; 10937 for (unsigned i = 0; i < Stages; ++i) { 10938 unsigned MaskEnd = (1 << i); 10939 10940 if (Op.getOpcode() != CandidateBinOp) 10941 return PartialReduction(PrevOp, MaskEnd); 10942 10943 SDValue Op0 = Op.getOperand(0); 10944 SDValue Op1 = Op.getOperand(1); 10945 10946 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10947 if (Shuffle) { 10948 Op = Op1; 10949 } else { 10950 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10951 Op = Op0; 10952 } 10953 10954 // The first operand of the shuffle should be the same as the other operand 10955 // of the binop. 10956 if (!Shuffle || Shuffle->getOperand(0) != Op) 10957 return PartialReduction(PrevOp, MaskEnd); 10958 10959 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10960 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10961 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10962 return PartialReduction(PrevOp, MaskEnd); 10963 10964 PrevOp = Op; 10965 } 10966 10967 // Handle subvector reductions, which tend to appear after the shuffle 10968 // reduction stages. 10969 while (Op.getOpcode() == CandidateBinOp) { 10970 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10971 SDValue Op0 = Op.getOperand(0); 10972 SDValue Op1 = Op.getOperand(1); 10973 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10974 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10975 Op0.getOperand(0) != Op1.getOperand(0)) 10976 break; 10977 SDValue Src = Op0.getOperand(0); 10978 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10979 if (NumSrcElts != (2 * NumElts)) 10980 break; 10981 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10982 Op1.getConstantOperandAPInt(1) == NumElts) && 10983 !(Op1.getConstantOperandAPInt(1) == 0 && 10984 Op0.getConstantOperandAPInt(1) == NumElts)) 10985 break; 10986 Op = Src; 10987 } 10988 10989 BinOp = (ISD::NodeType)CandidateBinOp; 10990 return Op; 10991 } 10992 10993 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10994 assert(N->getNumValues() == 1 && 10995 "Can't unroll a vector with multiple results!"); 10996 10997 EVT VT = N->getValueType(0); 10998 unsigned NE = VT.getVectorNumElements(); 10999 EVT EltVT = VT.getVectorElementType(); 11000 SDLoc dl(N); 11001 11002 SmallVector<SDValue, 8> Scalars; 11003 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11004 11005 // If ResNE is 0, fully unroll the vector op. 11006 if (ResNE == 0) 11007 ResNE = NE; 11008 else if (NE > ResNE) 11009 NE = ResNE; 11010 11011 unsigned i; 11012 for (i= 0; i != NE; ++i) { 11013 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11014 SDValue Operand = N->getOperand(j); 11015 EVT OperandVT = Operand.getValueType(); 11016 if (OperandVT.isVector()) { 11017 // A vector operand; extract a single element. 11018 EVT OperandEltVT = OperandVT.getVectorElementType(); 11019 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11020 Operand, getVectorIdxConstant(i, dl)); 11021 } else { 11022 // A scalar operand; just use it as is. 11023 Operands[j] = Operand; 11024 } 11025 } 11026 11027 switch (N->getOpcode()) { 11028 default: { 11029 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11030 N->getFlags())); 11031 break; 11032 } 11033 case ISD::VSELECT: 11034 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11035 break; 11036 case ISD::SHL: 11037 case ISD::SRA: 11038 case ISD::SRL: 11039 case ISD::ROTL: 11040 case ISD::ROTR: 11041 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11042 getShiftAmountOperand(Operands[0].getValueType(), 11043 Operands[1]))); 11044 break; 11045 case ISD::SIGN_EXTEND_INREG: { 11046 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11047 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11048 Operands[0], 11049 getValueType(ExtVT))); 11050 } 11051 } 11052 } 11053 11054 for (; i < ResNE; ++i) 11055 Scalars.push_back(getUNDEF(EltVT)); 11056 11057 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11058 return getBuildVector(VecVT, dl, Scalars); 11059 } 11060 11061 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11062 SDNode *N, unsigned ResNE) { 11063 unsigned Opcode = N->getOpcode(); 11064 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11065 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11066 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11067 "Expected an overflow opcode"); 11068 11069 EVT ResVT = N->getValueType(0); 11070 EVT OvVT = N->getValueType(1); 11071 EVT ResEltVT = ResVT.getVectorElementType(); 11072 EVT OvEltVT = OvVT.getVectorElementType(); 11073 SDLoc dl(N); 11074 11075 // If ResNE is 0, fully unroll the vector op. 11076 unsigned NE = ResVT.getVectorNumElements(); 11077 if (ResNE == 0) 11078 ResNE = NE; 11079 else if (NE > ResNE) 11080 NE = ResNE; 11081 11082 SmallVector<SDValue, 8> LHSScalars; 11083 SmallVector<SDValue, 8> RHSScalars; 11084 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11085 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11086 11087 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11088 SDVTList VTs = getVTList(ResEltVT, SVT); 11089 SmallVector<SDValue, 8> ResScalars; 11090 SmallVector<SDValue, 8> OvScalars; 11091 for (unsigned i = 0; i < NE; ++i) { 11092 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11093 SDValue Ov = 11094 getSelect(dl, OvEltVT, Res.getValue(1), 11095 getBoolConstant(true, dl, OvEltVT, ResVT), 11096 getConstant(0, dl, OvEltVT)); 11097 11098 ResScalars.push_back(Res); 11099 OvScalars.push_back(Ov); 11100 } 11101 11102 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11103 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11104 11105 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11106 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11107 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11108 getBuildVector(NewOvVT, dl, OvScalars)); 11109 } 11110 11111 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11112 LoadSDNode *Base, 11113 unsigned Bytes, 11114 int Dist) const { 11115 if (LD->isVolatile() || Base->isVolatile()) 11116 return false; 11117 // TODO: probably too restrictive for atomics, revisit 11118 if (!LD->isSimple()) 11119 return false; 11120 if (LD->isIndexed() || Base->isIndexed()) 11121 return false; 11122 if (LD->getChain() != Base->getChain()) 11123 return false; 11124 EVT VT = LD->getValueType(0); 11125 if (VT.getSizeInBits() / 8 != Bytes) 11126 return false; 11127 11128 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11129 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11130 11131 int64_t Offset = 0; 11132 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11133 return (Dist * Bytes == Offset); 11134 return false; 11135 } 11136 11137 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11138 /// if it cannot be inferred. 11139 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11140 // If this is a GlobalAddress + cst, return the alignment. 11141 const GlobalValue *GV = nullptr; 11142 int64_t GVOffset = 0; 11143 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11144 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11145 KnownBits Known(PtrWidth); 11146 llvm::computeKnownBits(GV, Known, getDataLayout()); 11147 unsigned AlignBits = Known.countMinTrailingZeros(); 11148 if (AlignBits) 11149 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11150 } 11151 11152 // If this is a direct reference to a stack slot, use information about the 11153 // stack slot's alignment. 11154 int FrameIdx = INT_MIN; 11155 int64_t FrameOffset = 0; 11156 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11157 FrameIdx = FI->getIndex(); 11158 } else if (isBaseWithConstantOffset(Ptr) && 11159 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11160 // Handle FI+Cst 11161 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11162 FrameOffset = Ptr.getConstantOperandVal(1); 11163 } 11164 11165 if (FrameIdx != INT_MIN) { 11166 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11167 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11168 } 11169 11170 return None; 11171 } 11172 11173 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11174 /// which is split (or expanded) into two not necessarily identical pieces. 11175 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11176 // Currently all types are split in half. 11177 EVT LoVT, HiVT; 11178 if (!VT.isVector()) 11179 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11180 else 11181 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11182 11183 return std::make_pair(LoVT, HiVT); 11184 } 11185 11186 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11187 /// type, dependent on an enveloping VT that has been split into two identical 11188 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11189 std::pair<EVT, EVT> 11190 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11191 bool *HiIsEmpty) const { 11192 EVT EltTp = VT.getVectorElementType(); 11193 // Examples: 11194 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11195 // custom VL=9 with enveloping VL=8/8 yields 8/1 11196 // custom VL=10 with enveloping VL=8/8 yields 8/2 11197 // etc. 11198 ElementCount VTNumElts = VT.getVectorElementCount(); 11199 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11200 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11201 "Mixing fixed width and scalable vectors when enveloping a type"); 11202 EVT LoVT, HiVT; 11203 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11204 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11205 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11206 *HiIsEmpty = false; 11207 } else { 11208 // Flag that hi type has zero storage size, but return split envelop type 11209 // (this would be easier if vector types with zero elements were allowed). 11210 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11211 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11212 *HiIsEmpty = true; 11213 } 11214 return std::make_pair(LoVT, HiVT); 11215 } 11216 11217 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11218 /// low/high part. 11219 std::pair<SDValue, SDValue> 11220 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11221 const EVT &HiVT) { 11222 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11223 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11224 "Splitting vector with an invalid mixture of fixed and scalable " 11225 "vector types"); 11226 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11227 N.getValueType().getVectorMinNumElements() && 11228 "More vector elements requested than available!"); 11229 SDValue Lo, Hi; 11230 Lo = 11231 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11232 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11233 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11234 // IDX with the runtime scaling factor of the result vector type. For 11235 // fixed-width result vectors, that runtime scaling factor is 1. 11236 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11237 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11238 return std::make_pair(Lo, Hi); 11239 } 11240 11241 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11242 const SDLoc &DL) { 11243 // Split the vector length parameter. 11244 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11245 EVT VT = N.getValueType(); 11246 assert(VecVT.getVectorElementCount().isKnownEven() && 11247 "Expecting the mask to be an evenly-sized vector"); 11248 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11249 SDValue HalfNumElts = 11250 VecVT.isFixedLengthVector() 11251 ? getConstant(HalfMinNumElts, DL, VT) 11252 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11253 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11254 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11255 return std::make_pair(Lo, Hi); 11256 } 11257 11258 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11259 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11260 EVT VT = N.getValueType(); 11261 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11262 NextPowerOf2(VT.getVectorNumElements())); 11263 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11264 getVectorIdxConstant(0, DL)); 11265 } 11266 11267 void SelectionDAG::ExtractVectorElements(SDValue Op, 11268 SmallVectorImpl<SDValue> &Args, 11269 unsigned Start, unsigned Count, 11270 EVT EltVT) { 11271 EVT VT = Op.getValueType(); 11272 if (Count == 0) 11273 Count = VT.getVectorNumElements(); 11274 if (EltVT == EVT()) 11275 EltVT = VT.getVectorElementType(); 11276 SDLoc SL(Op); 11277 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11278 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11279 getVectorIdxConstant(i, SL))); 11280 } 11281 } 11282 11283 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11284 unsigned GlobalAddressSDNode::getAddressSpace() const { 11285 return getGlobal()->getType()->getAddressSpace(); 11286 } 11287 11288 Type *ConstantPoolSDNode::getType() const { 11289 if (isMachineConstantPoolEntry()) 11290 return Val.MachineCPVal->getType(); 11291 return Val.ConstVal->getType(); 11292 } 11293 11294 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11295 unsigned &SplatBitSize, 11296 bool &HasAnyUndefs, 11297 unsigned MinSplatBits, 11298 bool IsBigEndian) const { 11299 EVT VT = getValueType(0); 11300 assert(VT.isVector() && "Expected a vector type"); 11301 unsigned VecWidth = VT.getSizeInBits(); 11302 if (MinSplatBits > VecWidth) 11303 return false; 11304 11305 // FIXME: The widths are based on this node's type, but build vectors can 11306 // truncate their operands. 11307 SplatValue = APInt(VecWidth, 0); 11308 SplatUndef = APInt(VecWidth, 0); 11309 11310 // Get the bits. Bits with undefined values (when the corresponding element 11311 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11312 // in SplatValue. If any of the values are not constant, give up and return 11313 // false. 11314 unsigned int NumOps = getNumOperands(); 11315 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11316 unsigned EltWidth = VT.getScalarSizeInBits(); 11317 11318 for (unsigned j = 0; j < NumOps; ++j) { 11319 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11320 SDValue OpVal = getOperand(i); 11321 unsigned BitPos = j * EltWidth; 11322 11323 if (OpVal.isUndef()) 11324 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11325 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11326 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11327 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11328 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11329 else 11330 return false; 11331 } 11332 11333 // The build_vector is all constants or undefs. Find the smallest element 11334 // size that splats the vector. 11335 HasAnyUndefs = (SplatUndef != 0); 11336 11337 // FIXME: This does not work for vectors with elements less than 8 bits. 11338 while (VecWidth > 8) { 11339 unsigned HalfSize = VecWidth / 2; 11340 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11341 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11342 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11343 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11344 11345 // If the two halves do not match (ignoring undef bits), stop here. 11346 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11347 MinSplatBits > HalfSize) 11348 break; 11349 11350 SplatValue = HighValue | LowValue; 11351 SplatUndef = HighUndef & LowUndef; 11352 11353 VecWidth = HalfSize; 11354 } 11355 11356 SplatBitSize = VecWidth; 11357 return true; 11358 } 11359 11360 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11361 BitVector *UndefElements) const { 11362 unsigned NumOps = getNumOperands(); 11363 if (UndefElements) { 11364 UndefElements->clear(); 11365 UndefElements->resize(NumOps); 11366 } 11367 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11368 if (!DemandedElts) 11369 return SDValue(); 11370 SDValue Splatted; 11371 for (unsigned i = 0; i != NumOps; ++i) { 11372 if (!DemandedElts[i]) 11373 continue; 11374 SDValue Op = getOperand(i); 11375 if (Op.isUndef()) { 11376 if (UndefElements) 11377 (*UndefElements)[i] = true; 11378 } else if (!Splatted) { 11379 Splatted = Op; 11380 } else if (Splatted != Op) { 11381 return SDValue(); 11382 } 11383 } 11384 11385 if (!Splatted) { 11386 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11387 assert(getOperand(FirstDemandedIdx).isUndef() && 11388 "Can only have a splat without a constant for all undefs."); 11389 return getOperand(FirstDemandedIdx); 11390 } 11391 11392 return Splatted; 11393 } 11394 11395 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11396 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11397 return getSplatValue(DemandedElts, UndefElements); 11398 } 11399 11400 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11401 SmallVectorImpl<SDValue> &Sequence, 11402 BitVector *UndefElements) const { 11403 unsigned NumOps = getNumOperands(); 11404 Sequence.clear(); 11405 if (UndefElements) { 11406 UndefElements->clear(); 11407 UndefElements->resize(NumOps); 11408 } 11409 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11410 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11411 return false; 11412 11413 // Set the undefs even if we don't find a sequence (like getSplatValue). 11414 if (UndefElements) 11415 for (unsigned I = 0; I != NumOps; ++I) 11416 if (DemandedElts[I] && getOperand(I).isUndef()) 11417 (*UndefElements)[I] = true; 11418 11419 // Iteratively widen the sequence length looking for repetitions. 11420 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11421 Sequence.append(SeqLen, SDValue()); 11422 for (unsigned I = 0; I != NumOps; ++I) { 11423 if (!DemandedElts[I]) 11424 continue; 11425 SDValue &SeqOp = Sequence[I % SeqLen]; 11426 SDValue Op = getOperand(I); 11427 if (Op.isUndef()) { 11428 if (!SeqOp) 11429 SeqOp = Op; 11430 continue; 11431 } 11432 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11433 Sequence.clear(); 11434 break; 11435 } 11436 SeqOp = Op; 11437 } 11438 if (!Sequence.empty()) 11439 return true; 11440 } 11441 11442 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11443 return false; 11444 } 11445 11446 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11447 BitVector *UndefElements) const { 11448 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11449 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11450 } 11451 11452 ConstantSDNode * 11453 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11454 BitVector *UndefElements) const { 11455 return dyn_cast_or_null<ConstantSDNode>( 11456 getSplatValue(DemandedElts, UndefElements)); 11457 } 11458 11459 ConstantSDNode * 11460 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11461 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11462 } 11463 11464 ConstantFPSDNode * 11465 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11466 BitVector *UndefElements) const { 11467 return dyn_cast_or_null<ConstantFPSDNode>( 11468 getSplatValue(DemandedElts, UndefElements)); 11469 } 11470 11471 ConstantFPSDNode * 11472 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11473 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11474 } 11475 11476 int32_t 11477 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11478 uint32_t BitWidth) const { 11479 if (ConstantFPSDNode *CN = 11480 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11481 bool IsExact; 11482 APSInt IntVal(BitWidth); 11483 const APFloat &APF = CN->getValueAPF(); 11484 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11485 APFloat::opOK || 11486 !IsExact) 11487 return -1; 11488 11489 return IntVal.exactLogBase2(); 11490 } 11491 return -1; 11492 } 11493 11494 bool BuildVectorSDNode::getConstantRawBits( 11495 bool IsLittleEndian, unsigned DstEltSizeInBits, 11496 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11497 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11498 if (!isConstant()) 11499 return false; 11500 11501 unsigned NumSrcOps = getNumOperands(); 11502 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11503 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11504 "Invalid bitcast scale"); 11505 11506 // Extract raw src bits. 11507 SmallVector<APInt> SrcBitElements(NumSrcOps, 11508 APInt::getNullValue(SrcEltSizeInBits)); 11509 BitVector SrcUndeElements(NumSrcOps, false); 11510 11511 for (unsigned I = 0; I != NumSrcOps; ++I) { 11512 SDValue Op = getOperand(I); 11513 if (Op.isUndef()) { 11514 SrcUndeElements.set(I); 11515 continue; 11516 } 11517 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11518 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11519 assert((CInt || CFP) && "Unknown constant"); 11520 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11521 : CFP->getValueAPF().bitcastToAPInt(); 11522 } 11523 11524 // Recast to dst width. 11525 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11526 SrcBitElements, UndefElements, SrcUndeElements); 11527 return true; 11528 } 11529 11530 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11531 unsigned DstEltSizeInBits, 11532 SmallVectorImpl<APInt> &DstBitElements, 11533 ArrayRef<APInt> SrcBitElements, 11534 BitVector &DstUndefElements, 11535 const BitVector &SrcUndefElements) { 11536 unsigned NumSrcOps = SrcBitElements.size(); 11537 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11538 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11539 "Invalid bitcast scale"); 11540 assert(NumSrcOps == SrcUndefElements.size() && 11541 "Vector size mismatch"); 11542 11543 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11544 DstUndefElements.clear(); 11545 DstUndefElements.resize(NumDstOps, false); 11546 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11547 11548 // Concatenate src elements constant bits together into dst element. 11549 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11550 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11551 for (unsigned I = 0; I != NumDstOps; ++I) { 11552 DstUndefElements.set(I); 11553 APInt &DstBits = DstBitElements[I]; 11554 for (unsigned J = 0; J != Scale; ++J) { 11555 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11556 if (SrcUndefElements[Idx]) 11557 continue; 11558 DstUndefElements.reset(I); 11559 const APInt &SrcBits = SrcBitElements[Idx]; 11560 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11561 "Illegal constant bitwidths"); 11562 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11563 } 11564 } 11565 return; 11566 } 11567 11568 // Split src element constant bits into dst elements. 11569 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11570 for (unsigned I = 0; I != NumSrcOps; ++I) { 11571 if (SrcUndefElements[I]) { 11572 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11573 continue; 11574 } 11575 const APInt &SrcBits = SrcBitElements[I]; 11576 for (unsigned J = 0; J != Scale; ++J) { 11577 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11578 APInt &DstBits = DstBitElements[Idx]; 11579 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11580 } 11581 } 11582 } 11583 11584 bool BuildVectorSDNode::isConstant() const { 11585 for (const SDValue &Op : op_values()) { 11586 unsigned Opc = Op.getOpcode(); 11587 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11588 return false; 11589 } 11590 return true; 11591 } 11592 11593 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11594 // Find the first non-undef value in the shuffle mask. 11595 unsigned i, e; 11596 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11597 /* search */; 11598 11599 // If all elements are undefined, this shuffle can be considered a splat 11600 // (although it should eventually get simplified away completely). 11601 if (i == e) 11602 return true; 11603 11604 // Make sure all remaining elements are either undef or the same as the first 11605 // non-undef value. 11606 for (int Idx = Mask[i]; i != e; ++i) 11607 if (Mask[i] >= 0 && Mask[i] != Idx) 11608 return false; 11609 return true; 11610 } 11611 11612 // Returns the SDNode if it is a constant integer BuildVector 11613 // or constant integer. 11614 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11615 if (isa<ConstantSDNode>(N)) 11616 return N.getNode(); 11617 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11618 return N.getNode(); 11619 // Treat a GlobalAddress supporting constant offset folding as a 11620 // constant integer. 11621 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11622 if (GA->getOpcode() == ISD::GlobalAddress && 11623 TLI->isOffsetFoldingLegal(GA)) 11624 return GA; 11625 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11626 isa<ConstantSDNode>(N.getOperand(0))) 11627 return N.getNode(); 11628 return nullptr; 11629 } 11630 11631 // Returns the SDNode if it is a constant float BuildVector 11632 // or constant float. 11633 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11634 if (isa<ConstantFPSDNode>(N)) 11635 return N.getNode(); 11636 11637 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11638 return N.getNode(); 11639 11640 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11641 isa<ConstantFPSDNode>(N.getOperand(0))) 11642 return N.getNode(); 11643 11644 return nullptr; 11645 } 11646 11647 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11648 assert(!Node->OperandList && "Node already has operands"); 11649 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11650 "too many operands to fit into SDNode"); 11651 SDUse *Ops = OperandRecycler.allocate( 11652 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11653 11654 bool IsDivergent = false; 11655 for (unsigned I = 0; I != Vals.size(); ++I) { 11656 Ops[I].setUser(Node); 11657 Ops[I].setInitial(Vals[I]); 11658 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11659 IsDivergent |= Ops[I].getNode()->isDivergent(); 11660 } 11661 Node->NumOperands = Vals.size(); 11662 Node->OperandList = Ops; 11663 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11664 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11665 Node->SDNodeBits.IsDivergent = IsDivergent; 11666 } 11667 checkForCycles(Node); 11668 } 11669 11670 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11671 SmallVectorImpl<SDValue> &Vals) { 11672 size_t Limit = SDNode::getMaxNumOperands(); 11673 while (Vals.size() > Limit) { 11674 unsigned SliceIdx = Vals.size() - Limit; 11675 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11676 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11677 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11678 Vals.emplace_back(NewTF); 11679 } 11680 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11681 } 11682 11683 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11684 EVT VT, SDNodeFlags Flags) { 11685 switch (Opcode) { 11686 default: 11687 return SDValue(); 11688 case ISD::ADD: 11689 case ISD::OR: 11690 case ISD::XOR: 11691 case ISD::UMAX: 11692 return getConstant(0, DL, VT); 11693 case ISD::MUL: 11694 return getConstant(1, DL, VT); 11695 case ISD::AND: 11696 case ISD::UMIN: 11697 return getAllOnesConstant(DL, VT); 11698 case ISD::SMAX: 11699 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11700 case ISD::SMIN: 11701 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11702 case ISD::FADD: 11703 return getConstantFP(-0.0, DL, VT); 11704 case ISD::FMUL: 11705 return getConstantFP(1.0, DL, VT); 11706 case ISD::FMINNUM: 11707 case ISD::FMAXNUM: { 11708 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11709 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11710 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11711 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11712 APFloat::getLargest(Semantics); 11713 if (Opcode == ISD::FMAXNUM) 11714 NeutralAF.changeSign(); 11715 11716 return getConstantFP(NeutralAF, DL, VT); 11717 } 11718 } 11719 } 11720 11721 #ifndef NDEBUG 11722 static void checkForCyclesHelper(const SDNode *N, 11723 SmallPtrSetImpl<const SDNode*> &Visited, 11724 SmallPtrSetImpl<const SDNode*> &Checked, 11725 const llvm::SelectionDAG *DAG) { 11726 // If this node has already been checked, don't check it again. 11727 if (Checked.count(N)) 11728 return; 11729 11730 // If a node has already been visited on this depth-first walk, reject it as 11731 // a cycle. 11732 if (!Visited.insert(N).second) { 11733 errs() << "Detected cycle in SelectionDAG\n"; 11734 dbgs() << "Offending node:\n"; 11735 N->dumprFull(DAG); dbgs() << "\n"; 11736 abort(); 11737 } 11738 11739 for (const SDValue &Op : N->op_values()) 11740 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11741 11742 Checked.insert(N); 11743 Visited.erase(N); 11744 } 11745 #endif 11746 11747 void llvm::checkForCycles(const llvm::SDNode *N, 11748 const llvm::SelectionDAG *DAG, 11749 bool force) { 11750 #ifndef NDEBUG 11751 bool check = force; 11752 #ifdef EXPENSIVE_CHECKS 11753 check = true; 11754 #endif // EXPENSIVE_CHECKS 11755 if (check) { 11756 assert(N && "Checking nonexistent SDNode"); 11757 SmallPtrSet<const SDNode*, 32> visited; 11758 SmallPtrSet<const SDNode*, 32> checked; 11759 checkForCyclesHelper(N, visited, checked, DAG); 11760 } 11761 #endif // !NDEBUG 11762 } 11763 11764 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11765 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11766 } 11767