1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   assert(VT.isInteger() && "Shift amount is not an integer type!");
1336   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1337   return getConstant(Val, DL, ShiftVT);
1338 }
1339 
1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1341                                            bool isTarget) {
1342   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1343 }
1344 
1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1346                                     bool isTarget) {
1347   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1348 }
1349 
1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1351                                     EVT VT, bool isTarget) {
1352   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1353 
1354   EVT EltVT = VT.getScalarType();
1355 
1356   // Do the map lookup using the actual bit pattern for the floating point
1357   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1358   // we don't have issues with SNANs.
1359   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1360   FoldingSetNodeID ID;
1361   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1362   ID.AddPointer(&V);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373   }
1374 
1375   SDValue Result(N, 0);
1376   if (VT.isVector())
1377     Result = getSplatBuildVector(VT, DL, Result);
1378   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1379   return Result;
1380 }
1381 
1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1383                                     bool isTarget) {
1384   EVT EltVT = VT.getScalarType();
1385   if (EltVT == MVT::f32)
1386     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1387   else if (EltVT == MVT::f64)
1388     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1389   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1390            EltVT == MVT::f16) {
1391     bool Ignored;
1392     APFloat APF = APFloat(Val);
1393     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1394                 &Ignored);
1395     return getConstantFP(APF, DL, VT, isTarget);
1396   } else
1397     llvm_unreachable("Unsupported type in getConstantFP");
1398 }
1399 
1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1401                                        EVT VT, int64_t Offset, bool isTargetGA,
1402                                        unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTargetGA) &&
1404          "Cannot set target flags on target-independent globals");
1405 
1406   // Truncate (with sign-extension) the offset value to the pointer size.
1407   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1408   if (BitWidth < 64)
1409     Offset = SignExtend64(Offset, BitWidth);
1410 
1411   unsigned Opc;
1412   if (GV->isThreadLocal())
1413     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1414   else
1415     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1416 
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1419   ID.AddPointer(GV);
1420   ID.AddInteger(Offset);
1421   ID.AddInteger(TargetFlags);
1422   void *IP = nullptr;
1423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1424     return SDValue(E, 0);
1425 
1426   auto *N = newSDNode<GlobalAddressSDNode>(
1427       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1428   CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   return SDValue(N, 0);
1431 }
1432 
1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1434   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(FI);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1449                                    unsigned TargetFlags) {
1450   assert((TargetFlags == 0 || isTarget) &&
1451          "Cannot set target flags on target-independent jump tables");
1452   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1455   ID.AddInteger(JTI);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1462   CSEMap.InsertNode(N, IP);
1463   InsertNode(N);
1464   return SDValue(N, 0);
1465 }
1466 
1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1468                                       unsigned Alignment, int Offset,
1469                                       bool isTarget,
1470                                       unsigned TargetFlags) {
1471   assert((TargetFlags == 0 || isTarget) &&
1472          "Cannot set target flags on target-independent globals");
1473   if (Alignment == 0)
1474     Alignment = shouldOptForSize()
1475                     ? getDataLayout().getABITypeAlignment(C->getType())
1476                     : getDataLayout().getPrefTypeAlignment(C->getType());
1477   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(Alignment);
1481   ID.AddInteger(Offset);
1482   ID.AddPointer(C);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1489                                           TargetFlags);
1490   CSEMap.InsertNode(N, IP);
1491   InsertNode(N);
1492   return SDValue(N, 0);
1493 }
1494 
1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1496                                       unsigned Alignment, int Offset,
1497                                       bool isTarget,
1498                                       unsigned TargetFlags) {
1499   assert((TargetFlags == 0 || isTarget) &&
1500          "Cannot set target flags on target-independent globals");
1501   if (Alignment == 0)
1502     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1503   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1504   FoldingSetNodeID ID;
1505   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1506   ID.AddInteger(Alignment);
1507   ID.AddInteger(Offset);
1508   C->addSelectionDAGCSEId(ID);
1509   ID.AddInteger(TargetFlags);
1510   void *IP = nullptr;
1511   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1512     return SDValue(E, 0);
1513 
1514   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1515                                           TargetFlags);
1516   CSEMap.InsertNode(N, IP);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1522                                      unsigned TargetFlags) {
1523   FoldingSetNodeID ID;
1524   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1525   ID.AddInteger(Index);
1526   ID.AddInteger(Offset);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   return SDValue(N, 0);
1536 }
1537 
1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1539   FoldingSetNodeID ID;
1540   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1541   ID.AddPointer(MBB);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1547   CSEMap.InsertNode(N, IP);
1548   InsertNode(N);
1549   return SDValue(N, 0);
1550 }
1551 
1552 SDValue SelectionDAG::getValueType(EVT VT) {
1553   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1554       ValueTypeNodes.size())
1555     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1556 
1557   SDNode *&N = VT.isExtended() ?
1558     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1559 
1560   if (N) return SDValue(N, 0);
1561   N = newSDNode<VTSDNode>(VT);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1567   SDNode *&N = ExternalSymbols[Sym];
1568   if (N) return SDValue(N, 0);
1569   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1570   InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1575   SDNode *&N = MCSymbols[Sym];
1576   if (N)
1577     return SDValue(N, 0);
1578   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1584                                               unsigned TargetFlags) {
1585   SDNode *&N =
1586       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1587   if (N) return SDValue(N, 0);
1588   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1594   if ((unsigned)Cond >= CondCodeNodes.size())
1595     CondCodeNodes.resize(Cond+1);
1596 
1597   if (!CondCodeNodes[Cond]) {
1598     auto *N = newSDNode<CondCodeSDNode>(Cond);
1599     CondCodeNodes[Cond] = N;
1600     InsertNode(N);
1601   }
1602 
1603   return SDValue(CondCodeNodes[Cond], 0);
1604 }
1605 
1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1609   std::swap(N1, N2);
1610   ShuffleVectorSDNode::commuteMask(M);
1611 }
1612 
1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1614                                        SDValue N2, ArrayRef<int> Mask) {
1615   assert(VT.getVectorNumElements() == Mask.size() &&
1616            "Must have the same number of vector elements as mask elements!");
1617   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1618          "Invalid VECTOR_SHUFFLE");
1619 
1620   // Canonicalize shuffle undef, undef -> undef
1621   if (N1.isUndef() && N2.isUndef())
1622     return getUNDEF(VT);
1623 
1624   // Validate that all indices in Mask are within the range of the elements
1625   // input to the shuffle.
1626   int NElts = Mask.size();
1627   assert(llvm::all_of(Mask,
1628                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1629          "Index out of range");
1630 
1631   // Copy the mask so we can do any needed cleanup.
1632   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1633 
1634   // Canonicalize shuffle v, v -> v, undef
1635   if (N1 == N2) {
1636     N2 = getUNDEF(VT);
1637     for (int i = 0; i != NElts; ++i)
1638       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1639   }
1640 
1641   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1642   if (N1.isUndef())
1643     commuteShuffle(N1, N2, MaskVec);
1644 
1645   if (TLI->hasVectorBlend()) {
1646     // If shuffling a splat, try to blend the splat instead. We do this here so
1647     // that even when this arises during lowering we don't have to re-handle it.
1648     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1649       BitVector UndefElements;
1650       SDValue Splat = BV->getSplatValue(&UndefElements);
1651       if (!Splat)
1652         return;
1653 
1654       for (int i = 0; i < NElts; ++i) {
1655         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1656           continue;
1657 
1658         // If this input comes from undef, mark it as such.
1659         if (UndefElements[MaskVec[i] - Offset]) {
1660           MaskVec[i] = -1;
1661           continue;
1662         }
1663 
1664         // If we can blend a non-undef lane, use that instead.
1665         if (!UndefElements[i])
1666           MaskVec[i] = i + Offset;
1667       }
1668     };
1669     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1670       BlendSplat(N1BV, 0);
1671     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1672       BlendSplat(N2BV, NElts);
1673   }
1674 
1675   // Canonicalize all index into lhs, -> shuffle lhs, undef
1676   // Canonicalize all index into rhs, -> shuffle rhs, undef
1677   bool AllLHS = true, AllRHS = true;
1678   bool N2Undef = N2.isUndef();
1679   for (int i = 0; i != NElts; ++i) {
1680     if (MaskVec[i] >= NElts) {
1681       if (N2Undef)
1682         MaskVec[i] = -1;
1683       else
1684         AllLHS = false;
1685     } else if (MaskVec[i] >= 0) {
1686       AllRHS = false;
1687     }
1688   }
1689   if (AllLHS && AllRHS)
1690     return getUNDEF(VT);
1691   if (AllLHS && !N2Undef)
1692     N2 = getUNDEF(VT);
1693   if (AllRHS) {
1694     N1 = getUNDEF(VT);
1695     commuteShuffle(N1, N2, MaskVec);
1696   }
1697   // Reset our undef status after accounting for the mask.
1698   N2Undef = N2.isUndef();
1699   // Re-check whether both sides ended up undef.
1700   if (N1.isUndef() && N2Undef)
1701     return getUNDEF(VT);
1702 
1703   // If Identity shuffle return that node.
1704   bool Identity = true, AllSame = true;
1705   for (int i = 0; i != NElts; ++i) {
1706     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1707     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1708   }
1709   if (Identity && NElts)
1710     return N1;
1711 
1712   // Shuffling a constant splat doesn't change the result.
1713   if (N2Undef) {
1714     SDValue V = N1;
1715 
1716     // Look through any bitcasts. We check that these don't change the number
1717     // (and size) of elements and just changes their types.
1718     while (V.getOpcode() == ISD::BITCAST)
1719       V = V->getOperand(0);
1720 
1721     // A splat should always show up as a build vector node.
1722     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1723       BitVector UndefElements;
1724       SDValue Splat = BV->getSplatValue(&UndefElements);
1725       // If this is a splat of an undef, shuffling it is also undef.
1726       if (Splat && Splat.isUndef())
1727         return getUNDEF(VT);
1728 
1729       bool SameNumElts =
1730           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1731 
1732       // We only have a splat which can skip shuffles if there is a splatted
1733       // value and no undef lanes rearranged by the shuffle.
1734       if (Splat && UndefElements.none()) {
1735         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1736         // number of elements match or the value splatted is a zero constant.
1737         if (SameNumElts)
1738           return N1;
1739         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1740           if (C->isNullValue())
1741             return N1;
1742       }
1743 
1744       // If the shuffle itself creates a splat, build the vector directly.
1745       if (AllSame && SameNumElts) {
1746         EVT BuildVT = BV->getValueType(0);
1747         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1748         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1749 
1750         // We may have jumped through bitcasts, so the type of the
1751         // BUILD_VECTOR may not match the type of the shuffle.
1752         if (BuildVT != VT)
1753           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1754         return NewBV;
1755       }
1756     }
1757   }
1758 
1759   FoldingSetNodeID ID;
1760   SDValue Ops[2] = { N1, N2 };
1761   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1762   for (int i = 0; i != NElts; ++i)
1763     ID.AddInteger(MaskVec[i]);
1764 
1765   void* IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1767     return SDValue(E, 0);
1768 
1769   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1770   // SDNode doesn't have access to it.  This memory will be "leaked" when
1771   // the node is deallocated, but recovered when the NodeAllocator is released.
1772   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1773   llvm::copy(MaskVec, MaskAlloc);
1774 
1775   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1776                                            dl.getDebugLoc(), MaskAlloc);
1777   createOperands(N, Ops);
1778 
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   SDValue V = SDValue(N, 0);
1782   NewSDValueDbgMsg(V, "Creating new node: ", this);
1783   return V;
1784 }
1785 
1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1787   EVT VT = SV.getValueType(0);
1788   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1789   ShuffleVectorSDNode::commuteMask(MaskVec);
1790 
1791   SDValue Op0 = SV.getOperand(0);
1792   SDValue Op1 = SV.getOperand(1);
1793   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1794 }
1795 
1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1797   FoldingSetNodeID ID;
1798   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1799   ID.AddInteger(RegNo);
1800   void *IP = nullptr;
1801   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1802     return SDValue(E, 0);
1803 
1804   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1805   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1806   CSEMap.InsertNode(N, IP);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1812   FoldingSetNodeID ID;
1813   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1814   ID.AddPointer(RegMask);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1826                                  MCSymbol *Label) {
1827   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1828 }
1829 
1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1831                                    SDValue Root, MCSymbol *Label) {
1832   FoldingSetNodeID ID;
1833   SDValue Ops[] = { Root };
1834   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1835   ID.AddPointer(Label);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N =
1841       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1842   createOperands(N, Ops);
1843 
1844   CSEMap.InsertNode(N, IP);
1845   InsertNode(N);
1846   return SDValue(N, 0);
1847 }
1848 
1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1850                                       int64_t Offset, bool isTarget,
1851                                       unsigned TargetFlags) {
1852   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1853 
1854   FoldingSetNodeID ID;
1855   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1856   ID.AddPointer(BA);
1857   ID.AddInteger(Offset);
1858   ID.AddInteger(TargetFlags);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getSrcValue(const Value *V) {
1870   assert((!V || V->getType()->isPointerTy()) &&
1871          "SrcValue is not a pointer?");
1872 
1873   FoldingSetNodeID ID;
1874   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1875   ID.AddPointer(V);
1876 
1877   void *IP = nullptr;
1878   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879     return SDValue(E, 0);
1880 
1881   auto *N = newSDNode<SrcValueSDNode>(V);
1882   CSEMap.InsertNode(N, IP);
1883   InsertNode(N);
1884   return SDValue(N, 0);
1885 }
1886 
1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1888   FoldingSetNodeID ID;
1889   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1890   ID.AddPointer(MD);
1891 
1892   void *IP = nullptr;
1893   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1894     return SDValue(E, 0);
1895 
1896   auto *N = newSDNode<MDNodeSDNode>(MD);
1897   CSEMap.InsertNode(N, IP);
1898   InsertNode(N);
1899   return SDValue(N, 0);
1900 }
1901 
1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1903   if (VT == V.getValueType())
1904     return V;
1905 
1906   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1907 }
1908 
1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1910                                        unsigned SrcAS, unsigned DestAS) {
1911   SDValue Ops[] = {Ptr};
1912   FoldingSetNodeID ID;
1913   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1914   ID.AddInteger(SrcAS);
1915   ID.AddInteger(DestAS);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1922                                            VT, SrcAS, DestAS);
1923   createOperands(N, Ops);
1924 
1925   CSEMap.InsertNode(N, IP);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 /// getShiftAmountOperand - Return the specified value casted to
1931 /// the target's desired shift amount type.
1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1933   EVT OpTy = Op.getValueType();
1934   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1935   if (OpTy == ShTy || OpTy.isVector()) return Op;
1936 
1937   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1938 }
1939 
1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1941   SDLoc dl(Node);
1942   const TargetLowering &TLI = getTargetLoweringInfo();
1943   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1944   EVT VT = Node->getValueType(0);
1945   SDValue Tmp1 = Node->getOperand(0);
1946   SDValue Tmp2 = Node->getOperand(1);
1947   const MaybeAlign MA(Node->getConstantOperandVal(3));
1948 
1949   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1950                                Tmp2, MachinePointerInfo(V));
1951   SDValue VAList = VAListLoad;
1952 
1953   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1954     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1955                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1956 
1957     VAList =
1958         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1959                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1960   }
1961 
1962   // Increment the pointer, VAList, to the next vaarg
1963   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1964                  getConstant(getDataLayout().getTypeAllocSize(
1965                                                VT.getTypeForEVT(*getContext())),
1966                              dl, VAList.getValueType()));
1967   // Store the incremented VAList to the legalized pointer
1968   Tmp1 =
1969       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1970   // Load the actual argument out of the pointer VAList
1971   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1972 }
1973 
1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1975   SDLoc dl(Node);
1976   const TargetLowering &TLI = getTargetLoweringInfo();
1977   // This defaults to loading a pointer from the input and storing it to the
1978   // output, returning the chain.
1979   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1980   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1981   SDValue Tmp1 =
1982       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1983               Node->getOperand(2), MachinePointerInfo(VS));
1984   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1985                   MachinePointerInfo(VD));
1986 }
1987 
1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1989   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1990   unsigned ByteSize = VT.getStoreSize();
1991   Type *Ty = VT.getTypeForEVT(*getContext());
1992   unsigned StackAlign =
1993       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1994 
1995   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1996   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1997 }
1998 
1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2000   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2001   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2002   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2003   const DataLayout &DL = getDataLayout();
2004   unsigned Align =
2005       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2006 
2007   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2008   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2009   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2010 }
2011 
2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2013                                 ISD::CondCode Cond, const SDLoc &dl) {
2014   EVT OpVT = N1.getValueType();
2015 
2016   // These setcc operations always fold.
2017   switch (Cond) {
2018   default: break;
2019   case ISD::SETFALSE:
2020   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2021   case ISD::SETTRUE:
2022   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2023 
2024   case ISD::SETOEQ:
2025   case ISD::SETOGT:
2026   case ISD::SETOGE:
2027   case ISD::SETOLT:
2028   case ISD::SETOLE:
2029   case ISD::SETONE:
2030   case ISD::SETO:
2031   case ISD::SETUO:
2032   case ISD::SETUEQ:
2033   case ISD::SETUNE:
2034     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2035     break;
2036   }
2037 
2038   if (OpVT.isInteger()) {
2039     // For EQ and NE, we can always pick a value for the undef to make the
2040     // predicate pass or fail, so we can return undef.
2041     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2042     // icmp eq/ne X, undef -> undef.
2043     if ((N1.isUndef() || N2.isUndef()) &&
2044         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2045       return getUNDEF(VT);
2046 
2047     // If both operands are undef, we can return undef for int comparison.
2048     // icmp undef, undef -> undef.
2049     if (N1.isUndef() && N2.isUndef())
2050       return getUNDEF(VT);
2051 
2052     // icmp X, X -> true/false
2053     // icmp X, undef -> true/false because undef could be X.
2054     if (N1 == N2)
2055       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2056   }
2057 
2058   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2059     const APInt &C2 = N2C->getAPIntValue();
2060     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2061       const APInt &C1 = N1C->getAPIntValue();
2062 
2063       switch (Cond) {
2064       default: llvm_unreachable("Unknown integer setcc!");
2065       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2066       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2067       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2068       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2069       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2070       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2071       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2072       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2073       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2074       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2075       }
2076     }
2077   }
2078 
2079   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2080   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2081 
2082   if (N1CFP && N2CFP) {
2083     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2084     switch (Cond) {
2085     default: break;
2086     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2087                         return getUNDEF(VT);
2088                       LLVM_FALLTHROUGH;
2089     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2090                                              OpVT);
2091     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2095                                              R==APFloat::cmpLessThan, dl, VT,
2096                                              OpVT);
2097     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2098                         return getUNDEF(VT);
2099                       LLVM_FALLTHROUGH;
2100     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2101                                              OpVT);
2102     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2103                         return getUNDEF(VT);
2104                       LLVM_FALLTHROUGH;
2105     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2106                                              VT, OpVT);
2107     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2111                                              R==APFloat::cmpEqual, dl, VT,
2112                                              OpVT);
2113     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2114                         return getUNDEF(VT);
2115                       LLVM_FALLTHROUGH;
2116     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2117                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2118     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2119                                              OpVT);
2120     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2121                                              OpVT);
2122     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2123                                              R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2128                                              R==APFloat::cmpLessThan, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2131                                              R==APFloat::cmpUnordered, dl, VT,
2132                                              OpVT);
2133     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2134                                              VT, OpVT);
2135     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2136                                              OpVT);
2137     }
2138   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2139     // Ensure that the constant occurs on the RHS.
2140     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2141     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2142       return SDValue();
2143     return getSetCC(dl, VT, N2, N1, SwappedCond);
2144   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2145              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2146     // If an operand is known to be a nan (or undef that could be a nan), we can
2147     // fold it.
2148     // Choosing NaN for the undef will always make unordered comparison succeed
2149     // and ordered comparison fails.
2150     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2151     switch (ISD::getUnorderedFlavor(Cond)) {
2152     default:
2153       llvm_unreachable("Unknown flavor!");
2154     case 0: // Known false.
2155       return getBoolConstant(false, dl, VT, OpVT);
2156     case 1: // Known true.
2157       return getBoolConstant(true, dl, VT, OpVT);
2158     case 2: // Undefined.
2159       return getUNDEF(VT);
2160     }
2161   }
2162 
2163   // Could not fold it.
2164   return SDValue();
2165 }
2166 
2167 /// See if the specified operand can be simplified with the knowledge that only
2168 /// the bits specified by DemandedBits are used.
2169 /// TODO: really we should be making this into the DAG equivalent of
2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2172   EVT VT = V.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   return GetDemandedBits(V, DemandedBits, DemandedElts);
2177 }
2178 
2179 /// See if the specified operand can be simplified with the knowledge that only
2180 /// the bits specified by DemandedBits are used in the elements specified by
2181 /// DemandedElts.
2182 /// TODO: really we should be making this into the DAG equivalent of
2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2185                                       const APInt &DemandedElts) {
2186   switch (V.getOpcode()) {
2187   default:
2188     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2189                                                 *this, 0);
2190     break;
2191   case ISD::Constant: {
2192     auto *CV = cast<ConstantSDNode>(V.getNode());
2193     assert(CV && "Const value should be ConstSDNode.");
2194     const APInt &CVal = CV->getAPIntValue();
2195     APInt NewVal = CVal & DemandedBits;
2196     if (NewVal != CVal)
2197       return getConstant(NewVal, SDLoc(V), V.getValueType());
2198     break;
2199   }
2200   case ISD::SRL:
2201     // Only look at single-use SRLs.
2202     if (!V.getNode()->hasOneUse())
2203       break;
2204     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2205       // See if we can recursively simplify the LHS.
2206       unsigned Amt = RHSC->getZExtValue();
2207 
2208       // Watch out for shift count overflow though.
2209       if (Amt >= DemandedBits.getBitWidth())
2210         break;
2211       APInt SrcDemandedBits = DemandedBits << Amt;
2212       if (SDValue SimplifyLHS =
2213               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2214         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2215                        V.getOperand(1));
2216     }
2217     break;
2218   case ISD::AND: {
2219     // X & -1 -> X (ignoring bits which aren't demanded).
2220     // Also handle the case where masked out bits in X are known to be zero.
2221     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2222       const APInt &AndVal = RHSC->getAPIntValue();
2223       if (DemandedBits.isSubsetOf(AndVal) ||
2224           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2225                                   AndVal))
2226         return V.getOperand(0);
2227     }
2228     break;
2229   }
2230   }
2231   return SDValue();
2232 }
2233 
2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2235 /// use this predicate to simplify operations downstream.
2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2237   unsigned BitWidth = Op.getScalarValueSizeInBits();
2238   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2239 }
2240 
2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2242 /// this predicate to simplify operations downstream.  Mask is known to be zero
2243 /// for bits that V cannot have.
2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2245                                      unsigned Depth) const {
2246   EVT VT = V.getValueType();
2247   APInt DemandedElts = VT.isVector()
2248                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2249                            : APInt(1, 1);
2250   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2251 }
2252 
2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2254 /// DemandedElts.  We use this predicate to simplify operations downstream.
2255 /// Mask is known to be zero for bits that V cannot have.
2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2257                                      const APInt &DemandedElts,
2258                                      unsigned Depth) const {
2259   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2260 }
2261 
2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2264                                         unsigned Depth) const {
2265   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2266 }
2267 
2268 /// isSplatValue - Return true if the vector V has the same value
2269 /// across all DemandedElts.
2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2271                                 APInt &UndefElts) {
2272   if (!DemandedElts)
2273     return false; // No demanded elts, better to assume we don't know anything.
2274 
2275   EVT VT = V.getValueType();
2276   assert(VT.isVector() && "Vector type expected");
2277 
2278   unsigned NumElts = VT.getVectorNumElements();
2279   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2280   UndefElts = APInt::getNullValue(NumElts);
2281 
2282   switch (V.getOpcode()) {
2283   case ISD::BUILD_VECTOR: {
2284     SDValue Scl;
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       SDValue Op = V.getOperand(i);
2287       if (Op.isUndef()) {
2288         UndefElts.setBit(i);
2289         continue;
2290       }
2291       if (!DemandedElts[i])
2292         continue;
2293       if (Scl && Scl != Op)
2294         return false;
2295       Scl = Op;
2296     }
2297     return true;
2298   }
2299   case ISD::VECTOR_SHUFFLE: {
2300     // Check if this is a shuffle node doing a splat.
2301     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2302     int SplatIndex = -1;
2303     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2304     for (int i = 0; i != (int)NumElts; ++i) {
2305       int M = Mask[i];
2306       if (M < 0) {
2307         UndefElts.setBit(i);
2308         continue;
2309       }
2310       if (!DemandedElts[i])
2311         continue;
2312       if (0 <= SplatIndex && SplatIndex != M)
2313         return false;
2314       SplatIndex = M;
2315     }
2316     return true;
2317   }
2318   case ISD::EXTRACT_SUBVECTOR: {
2319     SDValue Src = V.getOperand(0);
2320     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2321     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2322     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2323       // Offset the demanded elts by the subvector index.
2324       uint64_t Idx = SubIdx->getZExtValue();
2325       APInt UndefSrcElts;
2326       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2327       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2328         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2329         return true;
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::ADD:
2335   case ISD::SUB:
2336   case ISD::AND: {
2337     APInt UndefLHS, UndefRHS;
2338     SDValue LHS = V.getOperand(0);
2339     SDValue RHS = V.getOperand(1);
2340     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2341         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2342       UndefElts = UndefLHS | UndefRHS;
2343       return true;
2344     }
2345     break;
2346   }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 /// Helper wrapper to main isSplatValue function.
2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2354   EVT VT = V.getValueType();
2355   assert(VT.isVector() && "Vector type expected");
2356   unsigned NumElts = VT.getVectorNumElements();
2357 
2358   APInt UndefElts;
2359   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2360   return isSplatValue(V, DemandedElts, UndefElts) &&
2361          (AllowUndefs || !UndefElts);
2362 }
2363 
2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2365   V = peekThroughExtractSubvectors(V);
2366 
2367   EVT VT = V.getValueType();
2368   unsigned Opcode = V.getOpcode();
2369   switch (Opcode) {
2370   default: {
2371     APInt UndefElts;
2372     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2373     if (isSplatValue(V, DemandedElts, UndefElts)) {
2374       // Handle case where all demanded elements are UNDEF.
2375       if (DemandedElts.isSubsetOf(UndefElts)) {
2376         SplatIdx = 0;
2377         return getUNDEF(VT);
2378       }
2379       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2380       return V;
2381     }
2382     break;
2383   }
2384   case ISD::VECTOR_SHUFFLE: {
2385     // Check if this is a shuffle node doing a splat.
2386     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2387     // getTargetVShiftNode currently struggles without the splat source.
2388     auto *SVN = cast<ShuffleVectorSDNode>(V);
2389     if (!SVN->isSplat())
2390       break;
2391     int Idx = SVN->getSplatIndex();
2392     int NumElts = V.getValueType().getVectorNumElements();
2393     SplatIdx = Idx % NumElts;
2394     return V.getOperand(Idx / NumElts);
2395   }
2396   }
2397 
2398   return SDValue();
2399 }
2400 
2401 SDValue SelectionDAG::getSplatValue(SDValue V) {
2402   int SplatIdx;
2403   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2404     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2405                    SrcVector.getValueType().getScalarType(), SrcVector,
2406                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2407   return SDValue();
2408 }
2409 
2410 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2411 /// is less than the element bit-width of the shift node, return it.
2412 static const APInt *getValidShiftAmountConstant(SDValue V,
2413                                                 const APInt &DemandedElts) {
2414   unsigned BitWidth = V.getScalarValueSizeInBits();
2415   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2416     // Shifting more than the bitwidth is not valid.
2417     const APInt &ShAmt = SA->getAPIntValue();
2418     if (ShAmt.ult(BitWidth))
2419       return &ShAmt;
2420   }
2421   return nullptr;
2422 }
2423 
2424 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2425 /// than the element bit-width of the shift node, return the minimum value.
2426 static const APInt *
2427 getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2428   unsigned BitWidth = V.getScalarValueSizeInBits();
2429   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2430   if (!BV)
2431     return nullptr;
2432   const APInt *MinShAmt = nullptr;
2433   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2434     if (!DemandedElts[i])
2435       continue;
2436     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2437     if (!SA)
2438       return nullptr;
2439     // Shifting more than the bitwidth is not valid.
2440     const APInt &ShAmt = SA->getAPIntValue();
2441     if (ShAmt.uge(BitWidth))
2442       return nullptr;
2443     if (MinShAmt && MinShAmt->ule(ShAmt))
2444       continue;
2445     MinShAmt = &ShAmt;
2446   }
2447   return MinShAmt;
2448 }
2449 
2450 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2451 /// than the element bit-width of the shift node, return the maximum value.
2452 static const APInt *
2453 getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2454   unsigned BitWidth = V.getScalarValueSizeInBits();
2455   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2456   if (!BV)
2457     return nullptr;
2458   const APInt *MaxShAmt = nullptr;
2459   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2460     if (!DemandedElts[i])
2461       continue;
2462     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2463     if (!SA)
2464       return nullptr;
2465     // Shifting more than the bitwidth is not valid.
2466     const APInt &ShAmt = SA->getAPIntValue();
2467     if (ShAmt.uge(BitWidth))
2468       return nullptr;
2469     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2470       continue;
2471     MaxShAmt = &ShAmt;
2472   }
2473   return MaxShAmt;
2474 }
2475 
2476 /// Determine which bits of Op are known to be either zero or one and return
2477 /// them in Known. For vectors, the known bits are those that are shared by
2478 /// every vector element.
2479 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2480   EVT VT = Op.getValueType();
2481   APInt DemandedElts = VT.isVector()
2482                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2483                            : APInt(1, 1);
2484   return computeKnownBits(Op, DemandedElts, Depth);
2485 }
2486 
2487 /// Determine which bits of Op are known to be either zero or one and return
2488 /// them in Known. The DemandedElts argument allows us to only collect the known
2489 /// bits that are shared by the requested vector elements.
2490 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2491                                          unsigned Depth) const {
2492   unsigned BitWidth = Op.getScalarValueSizeInBits();
2493 
2494   KnownBits Known(BitWidth);   // Don't know anything.
2495 
2496   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2497     // We know all of the bits for a constant!
2498     Known.One = C->getAPIntValue();
2499     Known.Zero = ~Known.One;
2500     return Known;
2501   }
2502   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2503     // We know all of the bits for a constant fp!
2504     Known.One = C->getValueAPF().bitcastToAPInt();
2505     Known.Zero = ~Known.One;
2506     return Known;
2507   }
2508 
2509   if (Depth >= MaxRecursionDepth)
2510     return Known;  // Limit search depth.
2511 
2512   KnownBits Known2;
2513   unsigned NumElts = DemandedElts.getBitWidth();
2514   assert((!Op.getValueType().isVector() ||
2515           NumElts == Op.getValueType().getVectorNumElements()) &&
2516          "Unexpected vector size");
2517 
2518   if (!DemandedElts)
2519     return Known;  // No demanded elts, better to assume we don't know anything.
2520 
2521   unsigned Opcode = Op.getOpcode();
2522   switch (Opcode) {
2523   case ISD::BUILD_VECTOR:
2524     // Collect the known bits that are shared by every demanded vector element.
2525     Known.Zero.setAllBits(); Known.One.setAllBits();
2526     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2527       if (!DemandedElts[i])
2528         continue;
2529 
2530       SDValue SrcOp = Op.getOperand(i);
2531       Known2 = computeKnownBits(SrcOp, Depth + 1);
2532 
2533       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2534       if (SrcOp.getValueSizeInBits() != BitWidth) {
2535         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2536                "Expected BUILD_VECTOR implicit truncation");
2537         Known2 = Known2.trunc(BitWidth);
2538       }
2539 
2540       // Known bits are the values that are shared by every demanded element.
2541       Known.One &= Known2.One;
2542       Known.Zero &= Known2.Zero;
2543 
2544       // If we don't know any bits, early out.
2545       if (Known.isUnknown())
2546         break;
2547     }
2548     break;
2549   case ISD::VECTOR_SHUFFLE: {
2550     // Collect the known bits that are shared by every vector element referenced
2551     // by the shuffle.
2552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2553     Known.Zero.setAllBits(); Known.One.setAllBits();
2554     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2555     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2556     for (unsigned i = 0; i != NumElts; ++i) {
2557       if (!DemandedElts[i])
2558         continue;
2559 
2560       int M = SVN->getMaskElt(i);
2561       if (M < 0) {
2562         // For UNDEF elements, we don't know anything about the common state of
2563         // the shuffle result.
2564         Known.resetAll();
2565         DemandedLHS.clearAllBits();
2566         DemandedRHS.clearAllBits();
2567         break;
2568       }
2569 
2570       if ((unsigned)M < NumElts)
2571         DemandedLHS.setBit((unsigned)M % NumElts);
2572       else
2573         DemandedRHS.setBit((unsigned)M % NumElts);
2574     }
2575     // Known bits are the values that are shared by every demanded element.
2576     if (!!DemandedLHS) {
2577       SDValue LHS = Op.getOperand(0);
2578       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2579       Known.One &= Known2.One;
2580       Known.Zero &= Known2.Zero;
2581     }
2582     // If we don't know any bits, early out.
2583     if (Known.isUnknown())
2584       break;
2585     if (!!DemandedRHS) {
2586       SDValue RHS = Op.getOperand(1);
2587       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2588       Known.One &= Known2.One;
2589       Known.Zero &= Known2.Zero;
2590     }
2591     break;
2592   }
2593   case ISD::CONCAT_VECTORS: {
2594     // Split DemandedElts and test each of the demanded subvectors.
2595     Known.Zero.setAllBits(); Known.One.setAllBits();
2596     EVT SubVectorVT = Op.getOperand(0).getValueType();
2597     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2598     unsigned NumSubVectors = Op.getNumOperands();
2599     for (unsigned i = 0; i != NumSubVectors; ++i) {
2600       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2601       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2602       if (!!DemandedSub) {
2603         SDValue Sub = Op.getOperand(i);
2604         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2605         Known.One &= Known2.One;
2606         Known.Zero &= Known2.Zero;
2607       }
2608       // If we don't know any bits, early out.
2609       if (Known.isUnknown())
2610         break;
2611     }
2612     break;
2613   }
2614   case ISD::INSERT_SUBVECTOR: {
2615     // If we know the element index, demand any elements from the subvector and
2616     // the remainder from the src its inserted into, otherwise assume we need
2617     // the original demanded base elements and ALL the inserted subvector
2618     // elements.
2619     SDValue Src = Op.getOperand(0);
2620     SDValue Sub = Op.getOperand(1);
2621     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2622     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2623     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
2624     APInt DemandedSrcElts = DemandedElts;
2625     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2626       uint64_t Idx = SubIdx->getZExtValue();
2627       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2628       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2629     }
2630     Known.One.setAllBits();
2631     Known.Zero.setAllBits();
2632     if (!!DemandedSubElts) {
2633       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2634       if (Known.isUnknown())
2635         break; // early-out.
2636     }
2637     if (!!DemandedSrcElts) {
2638       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2639       Known.One &= Known2.One;
2640       Known.Zero &= Known2.Zero;
2641     }
2642     break;
2643   }
2644   case ISD::EXTRACT_SUBVECTOR: {
2645     // If we know the element index, just demand that subvector elements,
2646     // otherwise demand them all.
2647     SDValue Src = Op.getOperand(0);
2648     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2649     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2650     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2651     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2652       // Offset the demanded elts by the subvector index.
2653       uint64_t Idx = SubIdx->getZExtValue();
2654       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2655     }
2656     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2657     break;
2658   }
2659   case ISD::SCALAR_TO_VECTOR: {
2660     // We know about scalar_to_vector as much as we know about it source,
2661     // which becomes the first element of otherwise unknown vector.
2662     if (DemandedElts != 1)
2663       break;
2664 
2665     SDValue N0 = Op.getOperand(0);
2666     Known = computeKnownBits(N0, Depth + 1);
2667     if (N0.getValueSizeInBits() != BitWidth)
2668       Known = Known.trunc(BitWidth);
2669 
2670     break;
2671   }
2672   case ISD::BITCAST: {
2673     SDValue N0 = Op.getOperand(0);
2674     EVT SubVT = N0.getValueType();
2675     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2676 
2677     // Ignore bitcasts from unsupported types.
2678     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2679       break;
2680 
2681     // Fast handling of 'identity' bitcasts.
2682     if (BitWidth == SubBitWidth) {
2683       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2684       break;
2685     }
2686 
2687     bool IsLE = getDataLayout().isLittleEndian();
2688 
2689     // Bitcast 'small element' vector to 'large element' scalar/vector.
2690     if ((BitWidth % SubBitWidth) == 0) {
2691       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2692 
2693       // Collect known bits for the (larger) output by collecting the known
2694       // bits from each set of sub elements and shift these into place.
2695       // We need to separately call computeKnownBits for each set of
2696       // sub elements as the knownbits for each is likely to be different.
2697       unsigned SubScale = BitWidth / SubBitWidth;
2698       APInt SubDemandedElts(NumElts * SubScale, 0);
2699       for (unsigned i = 0; i != NumElts; ++i)
2700         if (DemandedElts[i])
2701           SubDemandedElts.setBit(i * SubScale);
2702 
2703       for (unsigned i = 0; i != SubScale; ++i) {
2704         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2705                          Depth + 1);
2706         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2707         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2708         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2709       }
2710     }
2711 
2712     // Bitcast 'large element' scalar/vector to 'small element' vector.
2713     if ((SubBitWidth % BitWidth) == 0) {
2714       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2715 
2716       // Collect known bits for the (smaller) output by collecting the known
2717       // bits from the overlapping larger input elements and extracting the
2718       // sub sections we actually care about.
2719       unsigned SubScale = SubBitWidth / BitWidth;
2720       APInt SubDemandedElts(NumElts / SubScale, 0);
2721       for (unsigned i = 0; i != NumElts; ++i)
2722         if (DemandedElts[i])
2723           SubDemandedElts.setBit(i / SubScale);
2724 
2725       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2726 
2727       Known.Zero.setAllBits(); Known.One.setAllBits();
2728       for (unsigned i = 0; i != NumElts; ++i)
2729         if (DemandedElts[i]) {
2730           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2731           unsigned Offset = (Shifts % SubScale) * BitWidth;
2732           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2733           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2734           // If we don't know any bits, early out.
2735           if (Known.isUnknown())
2736             break;
2737         }
2738     }
2739     break;
2740   }
2741   case ISD::AND:
2742     // If either the LHS or the RHS are Zero, the result is zero.
2743     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2744     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2745 
2746     // Output known-1 bits are only known if set in both the LHS & RHS.
2747     Known.One &= Known2.One;
2748     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2749     Known.Zero |= Known2.Zero;
2750     break;
2751   case ISD::OR:
2752     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2753     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2754 
2755     // Output known-0 bits are only known if clear in both the LHS & RHS.
2756     Known.Zero &= Known2.Zero;
2757     // Output known-1 are known to be set if set in either the LHS | RHS.
2758     Known.One |= Known2.One;
2759     break;
2760   case ISD::XOR: {
2761     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2762     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2763 
2764     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2765     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2766     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2767     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2768     Known.Zero = KnownZeroOut;
2769     break;
2770   }
2771   case ISD::MUL: {
2772     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2773     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2774 
2775     // If low bits are zero in either operand, output low known-0 bits.
2776     // Also compute a conservative estimate for high known-0 bits.
2777     // More trickiness is possible, but this is sufficient for the
2778     // interesting case of alignment computation.
2779     unsigned TrailZ = Known.countMinTrailingZeros() +
2780                       Known2.countMinTrailingZeros();
2781     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2782                                Known2.countMinLeadingZeros(),
2783                                BitWidth) - BitWidth;
2784 
2785     Known.resetAll();
2786     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2787     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2788     break;
2789   }
2790   case ISD::UDIV: {
2791     // For the purposes of computing leading zeros we can conservatively
2792     // treat a udiv as a logical right shift by the power of 2 known to
2793     // be less than the denominator.
2794     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2795     unsigned LeadZ = Known2.countMinLeadingZeros();
2796 
2797     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2798     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2799     if (RHSMaxLeadingZeros != BitWidth)
2800       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2801 
2802     Known.Zero.setHighBits(LeadZ);
2803     break;
2804   }
2805   case ISD::SELECT:
2806   case ISD::VSELECT:
2807     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2808     // If we don't know any bits, early out.
2809     if (Known.isUnknown())
2810       break;
2811     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2812 
2813     // Only known if known in both the LHS and RHS.
2814     Known.One &= Known2.One;
2815     Known.Zero &= Known2.Zero;
2816     break;
2817   case ISD::SELECT_CC:
2818     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2819     // If we don't know any bits, early out.
2820     if (Known.isUnknown())
2821       break;
2822     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2823 
2824     // Only known if known in both the LHS and RHS.
2825     Known.One &= Known2.One;
2826     Known.Zero &= Known2.Zero;
2827     break;
2828   case ISD::SMULO:
2829   case ISD::UMULO:
2830   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2831     if (Op.getResNo() != 1)
2832       break;
2833     // The boolean result conforms to getBooleanContents.
2834     // If we know the result of a setcc has the top bits zero, use this info.
2835     // We know that we have an integer-based boolean since these operations
2836     // are only available for integer.
2837     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2838             TargetLowering::ZeroOrOneBooleanContent &&
2839         BitWidth > 1)
2840       Known.Zero.setBitsFrom(1);
2841     break;
2842   case ISD::SETCC:
2843   case ISD::STRICT_FSETCC:
2844   case ISD::STRICT_FSETCCS: {
2845     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2846     // If we know the result of a setcc has the top bits zero, use this info.
2847     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2848             TargetLowering::ZeroOrOneBooleanContent &&
2849         BitWidth > 1)
2850       Known.Zero.setBitsFrom(1);
2851     break;
2852   }
2853   case ISD::SHL:
2854     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2855 
2856     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2857       unsigned Shift = ShAmt->getZExtValue();
2858       Known.Zero <<= Shift;
2859       Known.One <<= Shift;
2860       // Low bits are known zero.
2861       Known.Zero.setLowBits(Shift);
2862       break;
2863     }
2864 
2865     // No matter the shift amount, the trailing zeros will stay zero.
2866     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2867     Known.One.clearAllBits();
2868 
2869     // Minimum shift low bits are known zero.
2870     if (const APInt *ShMinAmt =
2871             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2872       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2873     break;
2874   case ISD::SRL:
2875     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2876 
2877     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2878       unsigned Shift = ShAmt->getZExtValue();
2879       Known.Zero.lshrInPlace(Shift);
2880       Known.One.lshrInPlace(Shift);
2881       // High bits are known zero.
2882       Known.Zero.setHighBits(Shift);
2883       break;
2884     }
2885 
2886     // No matter the shift amount, the leading zeros will stay zero.
2887     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2888     Known.One.clearAllBits();
2889 
2890     // Minimum shift high bits are known zero.
2891     if (const APInt *ShMinAmt =
2892             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2893       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2894     break;
2895   case ISD::SRA:
2896     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2897       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2898       unsigned Shift = ShAmt->getZExtValue();
2899       // Sign extend known zero/one bit (else is unknown).
2900       Known.Zero.ashrInPlace(Shift);
2901       Known.One.ashrInPlace(Shift);
2902     }
2903     break;
2904   case ISD::FSHL:
2905   case ISD::FSHR:
2906     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2907       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2908 
2909       // For fshl, 0-shift returns the 1st arg.
2910       // For fshr, 0-shift returns the 2nd arg.
2911       if (Amt == 0) {
2912         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2913                                  DemandedElts, Depth + 1);
2914         break;
2915       }
2916 
2917       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2918       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2919       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2920       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2921       if (Opcode == ISD::FSHL) {
2922         Known.One <<= Amt;
2923         Known.Zero <<= Amt;
2924         Known2.One.lshrInPlace(BitWidth - Amt);
2925         Known2.Zero.lshrInPlace(BitWidth - Amt);
2926       } else {
2927         Known.One <<= BitWidth - Amt;
2928         Known.Zero <<= BitWidth - Amt;
2929         Known2.One.lshrInPlace(Amt);
2930         Known2.Zero.lshrInPlace(Amt);
2931       }
2932       Known.One |= Known2.One;
2933       Known.Zero |= Known2.Zero;
2934     }
2935     break;
2936   case ISD::SIGN_EXTEND_INREG: {
2937     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2938     unsigned EBits = EVT.getScalarSizeInBits();
2939 
2940     // Sign extension.  Compute the demanded bits in the result that are not
2941     // present in the input.
2942     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2943 
2944     APInt InSignMask = APInt::getSignMask(EBits);
2945     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2946 
2947     // If the sign extended bits are demanded, we know that the sign
2948     // bit is demanded.
2949     InSignMask = InSignMask.zext(BitWidth);
2950     if (NewBits.getBoolValue())
2951       InputDemandedBits |= InSignMask;
2952 
2953     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2954     Known.One &= InputDemandedBits;
2955     Known.Zero &= InputDemandedBits;
2956 
2957     // If the sign bit of the input is known set or clear, then we know the
2958     // top bits of the result.
2959     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2960       Known.Zero |= NewBits;
2961       Known.One  &= ~NewBits;
2962     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2963       Known.One  |= NewBits;
2964       Known.Zero &= ~NewBits;
2965     } else {                              // Input sign bit unknown
2966       Known.Zero &= ~NewBits;
2967       Known.One  &= ~NewBits;
2968     }
2969     break;
2970   }
2971   case ISD::CTTZ:
2972   case ISD::CTTZ_ZERO_UNDEF: {
2973     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2974     // If we have a known 1, its position is our upper bound.
2975     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2976     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2977     Known.Zero.setBitsFrom(LowBits);
2978     break;
2979   }
2980   case ISD::CTLZ:
2981   case ISD::CTLZ_ZERO_UNDEF: {
2982     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983     // If we have a known 1, its position is our upper bound.
2984     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2985     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2986     Known.Zero.setBitsFrom(LowBits);
2987     break;
2988   }
2989   case ISD::CTPOP: {
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     // If we know some of the bits are zero, they can't be one.
2992     unsigned PossibleOnes = Known2.countMaxPopulation();
2993     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2994     break;
2995   }
2996   case ISD::LOAD: {
2997     LoadSDNode *LD = cast<LoadSDNode>(Op);
2998     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2999     if (ISD::isNON_EXTLoad(LD) && Cst) {
3000       // Determine any common known bits from the loaded constant pool value.
3001       Type *CstTy = Cst->getType();
3002       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3003         // If its a vector splat, then we can (quickly) reuse the scalar path.
3004         // NOTE: We assume all elements match and none are UNDEF.
3005         if (CstTy->isVectorTy()) {
3006           if (const Constant *Splat = Cst->getSplatValue()) {
3007             Cst = Splat;
3008             CstTy = Cst->getType();
3009           }
3010         }
3011         // TODO - do we need to handle different bitwidths?
3012         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3013           // Iterate across all vector elements finding common known bits.
3014           Known.One.setAllBits();
3015           Known.Zero.setAllBits();
3016           for (unsigned i = 0; i != NumElts; ++i) {
3017             if (!DemandedElts[i])
3018               continue;
3019             if (Constant *Elt = Cst->getAggregateElement(i)) {
3020               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3021                 const APInt &Value = CInt->getValue();
3022                 Known.One &= Value;
3023                 Known.Zero &= ~Value;
3024                 continue;
3025               }
3026               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3027                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3028                 Known.One &= Value;
3029                 Known.Zero &= ~Value;
3030                 continue;
3031               }
3032             }
3033             Known.One.clearAllBits();
3034             Known.Zero.clearAllBits();
3035             break;
3036           }
3037         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3038           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3039             const APInt &Value = CInt->getValue();
3040             Known.One = Value;
3041             Known.Zero = ~Value;
3042           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3043             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3044             Known.One = Value;
3045             Known.Zero = ~Value;
3046           }
3047         }
3048       }
3049     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3050       // If this is a ZEXTLoad and we are looking at the loaded value.
3051       EVT VT = LD->getMemoryVT();
3052       unsigned MemBits = VT.getScalarSizeInBits();
3053       Known.Zero.setBitsFrom(MemBits);
3054     } else if (const MDNode *Ranges = LD->getRanges()) {
3055       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3056         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3057     }
3058     break;
3059   }
3060   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3061     EVT InVT = Op.getOperand(0).getValueType();
3062     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3063     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3064     Known = Known.zext(BitWidth);
3065     break;
3066   }
3067   case ISD::ZERO_EXTEND: {
3068     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3069     Known = Known.zext(BitWidth);
3070     break;
3071   }
3072   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3073     EVT InVT = Op.getOperand(0).getValueType();
3074     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3075     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3076     // If the sign bit is known to be zero or one, then sext will extend
3077     // it to the top bits, else it will just zext.
3078     Known = Known.sext(BitWidth);
3079     break;
3080   }
3081   case ISD::SIGN_EXTEND: {
3082     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     // If the sign bit is known to be zero or one, then sext will extend
3084     // it to the top bits, else it will just zext.
3085     Known = Known.sext(BitWidth);
3086     break;
3087   }
3088   case ISD::ANY_EXTEND_VECTOR_INREG: {
3089     EVT InVT = Op.getOperand(0).getValueType();
3090     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3091     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3092     Known = Known.anyext(BitWidth);
3093     break;
3094   }
3095   case ISD::ANY_EXTEND: {
3096     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     Known = Known.anyext(BitWidth);
3098     break;
3099   }
3100   case ISD::TRUNCATE: {
3101     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3102     Known = Known.trunc(BitWidth);
3103     break;
3104   }
3105   case ISD::AssertZext: {
3106     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3107     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3108     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3109     Known.Zero |= (~InMask);
3110     Known.One  &= (~Known.Zero);
3111     break;
3112   }
3113   case ISD::FGETSIGN:
3114     // All bits are zero except the low bit.
3115     Known.Zero.setBitsFrom(1);
3116     break;
3117   case ISD::USUBO:
3118   case ISD::SSUBO:
3119     if (Op.getResNo() == 1) {
3120       // If we know the result of a setcc has the top bits zero, use this info.
3121       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3122               TargetLowering::ZeroOrOneBooleanContent &&
3123           BitWidth > 1)
3124         Known.Zero.setBitsFrom(1);
3125       break;
3126     }
3127     LLVM_FALLTHROUGH;
3128   case ISD::SUB:
3129   case ISD::SUBC: {
3130     assert(Op.getResNo() == 0 &&
3131            "We only compute knownbits for the difference here.");
3132 
3133     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3134     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3135     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3136                                         Known, Known2);
3137     break;
3138   }
3139   case ISD::UADDO:
3140   case ISD::SADDO:
3141   case ISD::ADDCARRY:
3142     if (Op.getResNo() == 1) {
3143       // If we know the result of a setcc has the top bits zero, use this info.
3144       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3145               TargetLowering::ZeroOrOneBooleanContent &&
3146           BitWidth > 1)
3147         Known.Zero.setBitsFrom(1);
3148       break;
3149     }
3150     LLVM_FALLTHROUGH;
3151   case ISD::ADD:
3152   case ISD::ADDC:
3153   case ISD::ADDE: {
3154     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3155 
3156     // With ADDE and ADDCARRY, a carry bit may be added in.
3157     KnownBits Carry(1);
3158     if (Opcode == ISD::ADDE)
3159       // Can't track carry from glue, set carry to unknown.
3160       Carry.resetAll();
3161     else if (Opcode == ISD::ADDCARRY)
3162       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3163       // the trouble (how often will we find a known carry bit). And I haven't
3164       // tested this very much yet, but something like this might work:
3165       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3166       //   Carry = Carry.zextOrTrunc(1, false);
3167       Carry.resetAll();
3168     else
3169       Carry.setAllZero();
3170 
3171     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3173     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3174     break;
3175   }
3176   case ISD::SREM:
3177     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3178       const APInt &RA = Rem->getAPIntValue().abs();
3179       if (RA.isPowerOf2()) {
3180         APInt LowBits = RA - 1;
3181         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3182 
3183         // The low bits of the first operand are unchanged by the srem.
3184         Known.Zero = Known2.Zero & LowBits;
3185         Known.One = Known2.One & LowBits;
3186 
3187         // If the first operand is non-negative or has all low bits zero, then
3188         // the upper bits are all zero.
3189         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3190           Known.Zero |= ~LowBits;
3191 
3192         // If the first operand is negative and not all low bits are zero, then
3193         // the upper bits are all one.
3194         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3195           Known.One |= ~LowBits;
3196         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3197       }
3198     }
3199     break;
3200   case ISD::UREM: {
3201     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3202       const APInt &RA = Rem->getAPIntValue();
3203       if (RA.isPowerOf2()) {
3204         APInt LowBits = (RA - 1);
3205         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3206 
3207         // The upper bits are all zero, the lower ones are unchanged.
3208         Known.Zero = Known2.Zero | ~LowBits;
3209         Known.One = Known2.One & LowBits;
3210         break;
3211       }
3212     }
3213 
3214     // Since the result is less than or equal to either operand, any leading
3215     // zero bits in either operand must also exist in the result.
3216     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3217     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3218 
3219     uint32_t Leaders =
3220         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3221     Known.resetAll();
3222     Known.Zero.setHighBits(Leaders);
3223     break;
3224   }
3225   case ISD::EXTRACT_ELEMENT: {
3226     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3227     const unsigned Index = Op.getConstantOperandVal(1);
3228     const unsigned EltBitWidth = Op.getValueSizeInBits();
3229 
3230     // Remove low part of known bits mask
3231     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3232     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3233 
3234     // Remove high part of known bit mask
3235     Known = Known.trunc(EltBitWidth);
3236     break;
3237   }
3238   case ISD::EXTRACT_VECTOR_ELT: {
3239     SDValue InVec = Op.getOperand(0);
3240     SDValue EltNo = Op.getOperand(1);
3241     EVT VecVT = InVec.getValueType();
3242     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3243     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3244 
3245     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3246     // anything about the extended bits.
3247     if (BitWidth > EltBitWidth)
3248       Known = Known.trunc(EltBitWidth);
3249 
3250     // If we know the element index, just demand that vector element, else for
3251     // an unknown element index, ignore DemandedElts and demand them all.
3252     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3253     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3254     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3255       DemandedSrcElts =
3256           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3257 
3258     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3259     if (BitWidth > EltBitWidth)
3260       Known = Known.anyext(BitWidth);
3261     break;
3262   }
3263   case ISD::INSERT_VECTOR_ELT: {
3264     // If we know the element index, split the demand between the
3265     // source vector and the inserted element, otherwise assume we need
3266     // the original demanded vector elements and the value.
3267     SDValue InVec = Op.getOperand(0);
3268     SDValue InVal = Op.getOperand(1);
3269     SDValue EltNo = Op.getOperand(2);
3270     bool DemandedVal = true;
3271     APInt DemandedVecElts = DemandedElts;
3272     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3273     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3274       unsigned EltIdx = CEltNo->getZExtValue();
3275       DemandedVal = !!DemandedElts[EltIdx];
3276       DemandedVecElts.clearBit(EltIdx);
3277     }
3278     Known.One.setAllBits();
3279     Known.Zero.setAllBits();
3280     if (DemandedVal) {
3281       Known2 = computeKnownBits(InVal, Depth + 1);
3282       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3283       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3284     }
3285     if (!!DemandedVecElts) {
3286       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3287       Known.One &= Known2.One;
3288       Known.Zero &= Known2.Zero;
3289     }
3290     break;
3291   }
3292   case ISD::BITREVERSE: {
3293     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3294     Known.Zero = Known2.Zero.reverseBits();
3295     Known.One = Known2.One.reverseBits();
3296     break;
3297   }
3298   case ISD::BSWAP: {
3299     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3300     Known.Zero = Known2.Zero.byteSwap();
3301     Known.One = Known2.One.byteSwap();
3302     break;
3303   }
3304   case ISD::ABS: {
3305     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3306 
3307     // If the source's MSB is zero then we know the rest of the bits already.
3308     if (Known2.isNonNegative()) {
3309       Known.Zero = Known2.Zero;
3310       Known.One = Known2.One;
3311       break;
3312     }
3313 
3314     // We only know that the absolute values's MSB will be zero iff there is
3315     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3316     Known2.One.clearSignBit();
3317     if (Known2.One.getBoolValue()) {
3318       Known.Zero = APInt::getSignMask(BitWidth);
3319       break;
3320     }
3321     break;
3322   }
3323   case ISD::UMIN: {
3324     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3325     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3326 
3327     // UMIN - we know that the result will have the maximum of the
3328     // known zero leading bits of the inputs.
3329     unsigned LeadZero = Known.countMinLeadingZeros();
3330     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3331 
3332     Known.Zero &= Known2.Zero;
3333     Known.One &= Known2.One;
3334     Known.Zero.setHighBits(LeadZero);
3335     break;
3336   }
3337   case ISD::UMAX: {
3338     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3339     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3340 
3341     // UMAX - we know that the result will have the maximum of the
3342     // known one leading bits of the inputs.
3343     unsigned LeadOne = Known.countMinLeadingOnes();
3344     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3345 
3346     Known.Zero &= Known2.Zero;
3347     Known.One &= Known2.One;
3348     Known.One.setHighBits(LeadOne);
3349     break;
3350   }
3351   case ISD::SMIN:
3352   case ISD::SMAX: {
3353     // If we have a clamp pattern, we know that the number of sign bits will be
3354     // the minimum of the clamp min/max range.
3355     bool IsMax = (Opcode == ISD::SMAX);
3356     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3357     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3358       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3359         CstHigh =
3360             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3361     if (CstLow && CstHigh) {
3362       if (!IsMax)
3363         std::swap(CstLow, CstHigh);
3364 
3365       const APInt &ValueLow = CstLow->getAPIntValue();
3366       const APInt &ValueHigh = CstHigh->getAPIntValue();
3367       if (ValueLow.sle(ValueHigh)) {
3368         unsigned LowSignBits = ValueLow.getNumSignBits();
3369         unsigned HighSignBits = ValueHigh.getNumSignBits();
3370         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3371         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3372           Known.One.setHighBits(MinSignBits);
3373           break;
3374         }
3375         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3376           Known.Zero.setHighBits(MinSignBits);
3377           break;
3378         }
3379       }
3380     }
3381 
3382     // Fallback - just get the shared known bits of the operands.
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     if (Known.isUnknown()) break; // Early-out
3385     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3386     Known.Zero &= Known2.Zero;
3387     Known.One &= Known2.One;
3388     break;
3389   }
3390   case ISD::FrameIndex:
3391   case ISD::TargetFrameIndex:
3392     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3393     break;
3394 
3395   default:
3396     if (Opcode < ISD::BUILTIN_OP_END)
3397       break;
3398     LLVM_FALLTHROUGH;
3399   case ISD::INTRINSIC_WO_CHAIN:
3400   case ISD::INTRINSIC_W_CHAIN:
3401   case ISD::INTRINSIC_VOID:
3402     // Allow the target to implement this method for its nodes.
3403     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3404     break;
3405   }
3406 
3407   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3408   return Known;
3409 }
3410 
3411 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3412                                                              SDValue N1) const {
3413   // X + 0 never overflow
3414   if (isNullConstant(N1))
3415     return OFK_Never;
3416 
3417   KnownBits N1Known = computeKnownBits(N1);
3418   if (N1Known.Zero.getBoolValue()) {
3419     KnownBits N0Known = computeKnownBits(N0);
3420 
3421     bool overflow;
3422     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3423     if (!overflow)
3424       return OFK_Never;
3425   }
3426 
3427   // mulhi + 1 never overflow
3428   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3429       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3430     return OFK_Never;
3431 
3432   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3433     KnownBits N0Known = computeKnownBits(N0);
3434 
3435     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3436       return OFK_Never;
3437   }
3438 
3439   return OFK_Sometime;
3440 }
3441 
3442 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3443   EVT OpVT = Val.getValueType();
3444   unsigned BitWidth = OpVT.getScalarSizeInBits();
3445 
3446   // Is the constant a known power of 2?
3447   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3448     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3449 
3450   // A left-shift of a constant one will have exactly one bit set because
3451   // shifting the bit off the end is undefined.
3452   if (Val.getOpcode() == ISD::SHL) {
3453     auto *C = isConstOrConstSplat(Val.getOperand(0));
3454     if (C && C->getAPIntValue() == 1)
3455       return true;
3456   }
3457 
3458   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3459   // one bit set.
3460   if (Val.getOpcode() == ISD::SRL) {
3461     auto *C = isConstOrConstSplat(Val.getOperand(0));
3462     if (C && C->getAPIntValue().isSignMask())
3463       return true;
3464   }
3465 
3466   // Are all operands of a build vector constant powers of two?
3467   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3468     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3469           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3470             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3471           return false;
3472         }))
3473       return true;
3474 
3475   // More could be done here, though the above checks are enough
3476   // to handle some common cases.
3477 
3478   // Fall back to computeKnownBits to catch other known cases.
3479   KnownBits Known = computeKnownBits(Val);
3480   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3481 }
3482 
3483 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3484   EVT VT = Op.getValueType();
3485   APInt DemandedElts = VT.isVector()
3486                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3487                            : APInt(1, 1);
3488   return ComputeNumSignBits(Op, DemandedElts, Depth);
3489 }
3490 
3491 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3492                                           unsigned Depth) const {
3493   EVT VT = Op.getValueType();
3494   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3495   unsigned VTBits = VT.getScalarSizeInBits();
3496   unsigned NumElts = DemandedElts.getBitWidth();
3497   unsigned Tmp, Tmp2;
3498   unsigned FirstAnswer = 1;
3499 
3500   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3501     const APInt &Val = C->getAPIntValue();
3502     return Val.getNumSignBits();
3503   }
3504 
3505   if (Depth >= MaxRecursionDepth)
3506     return 1;  // Limit search depth.
3507 
3508   if (!DemandedElts)
3509     return 1;  // No demanded elts, better to assume we don't know anything.
3510 
3511   unsigned Opcode = Op.getOpcode();
3512   switch (Opcode) {
3513   default: break;
3514   case ISD::AssertSext:
3515     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3516     return VTBits-Tmp+1;
3517   case ISD::AssertZext:
3518     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3519     return VTBits-Tmp;
3520 
3521   case ISD::BUILD_VECTOR:
3522     Tmp = VTBits;
3523     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3524       if (!DemandedElts[i])
3525         continue;
3526 
3527       SDValue SrcOp = Op.getOperand(i);
3528       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3529 
3530       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3531       if (SrcOp.getValueSizeInBits() != VTBits) {
3532         assert(SrcOp.getValueSizeInBits() > VTBits &&
3533                "Expected BUILD_VECTOR implicit truncation");
3534         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3535         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3536       }
3537       Tmp = std::min(Tmp, Tmp2);
3538     }
3539     return Tmp;
3540 
3541   case ISD::VECTOR_SHUFFLE: {
3542     // Collect the minimum number of sign bits that are shared by every vector
3543     // element referenced by the shuffle.
3544     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3545     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3546     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3547     for (unsigned i = 0; i != NumElts; ++i) {
3548       int M = SVN->getMaskElt(i);
3549       if (!DemandedElts[i])
3550         continue;
3551       // For UNDEF elements, we don't know anything about the common state of
3552       // the shuffle result.
3553       if (M < 0)
3554         return 1;
3555       if ((unsigned)M < NumElts)
3556         DemandedLHS.setBit((unsigned)M % NumElts);
3557       else
3558         DemandedRHS.setBit((unsigned)M % NumElts);
3559     }
3560     Tmp = std::numeric_limits<unsigned>::max();
3561     if (!!DemandedLHS)
3562       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3563     if (!!DemandedRHS) {
3564       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3565       Tmp = std::min(Tmp, Tmp2);
3566     }
3567     // If we don't know anything, early out and try computeKnownBits fall-back.
3568     if (Tmp == 1)
3569       break;
3570     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3571     return Tmp;
3572   }
3573 
3574   case ISD::BITCAST: {
3575     SDValue N0 = Op.getOperand(0);
3576     EVT SrcVT = N0.getValueType();
3577     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3578 
3579     // Ignore bitcasts from unsupported types..
3580     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3581       break;
3582 
3583     // Fast handling of 'identity' bitcasts.
3584     if (VTBits == SrcBits)
3585       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3586 
3587     bool IsLE = getDataLayout().isLittleEndian();
3588 
3589     // Bitcast 'large element' scalar/vector to 'small element' vector.
3590     if ((SrcBits % VTBits) == 0) {
3591       assert(VT.isVector() && "Expected bitcast to vector");
3592 
3593       unsigned Scale = SrcBits / VTBits;
3594       APInt SrcDemandedElts(NumElts / Scale, 0);
3595       for (unsigned i = 0; i != NumElts; ++i)
3596         if (DemandedElts[i])
3597           SrcDemandedElts.setBit(i / Scale);
3598 
3599       // Fast case - sign splat can be simply split across the small elements.
3600       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3601       if (Tmp == SrcBits)
3602         return VTBits;
3603 
3604       // Slow case - determine how far the sign extends into each sub-element.
3605       Tmp2 = VTBits;
3606       for (unsigned i = 0; i != NumElts; ++i)
3607         if (DemandedElts[i]) {
3608           unsigned SubOffset = i % Scale;
3609           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3610           SubOffset = SubOffset * VTBits;
3611           if (Tmp <= SubOffset)
3612             return 1;
3613           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3614         }
3615       return Tmp2;
3616     }
3617     break;
3618   }
3619 
3620   case ISD::SIGN_EXTEND:
3621     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3622     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3623   case ISD::SIGN_EXTEND_INREG:
3624     // Max of the input and what this extends.
3625     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3626     Tmp = VTBits-Tmp+1;
3627     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3628     return std::max(Tmp, Tmp2);
3629   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3630     SDValue Src = Op.getOperand(0);
3631     EVT SrcVT = Src.getValueType();
3632     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3633     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3634     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3635   }
3636   case ISD::SRA:
3637     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3638     // SRA X, C -> adds C sign bits.
3639     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3640       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3641     else if (const APInt *ShAmt =
3642                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3643       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3644     return Tmp;
3645   case ISD::SHL:
3646     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3647       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3648       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3649       if (ShAmt->ult(Tmp))
3650         return Tmp - ShAmt->getZExtValue();
3651     } else if (const APInt *ShAmt =
3652                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3653       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3654       if (ShAmt->ult(Tmp))
3655         return Tmp - ShAmt->getZExtValue();
3656     }
3657     break;
3658   case ISD::AND:
3659   case ISD::OR:
3660   case ISD::XOR:    // NOT is handled here.
3661     // Logical binary ops preserve the number of sign bits at the worst.
3662     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3663     if (Tmp != 1) {
3664       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3665       FirstAnswer = std::min(Tmp, Tmp2);
3666       // We computed what we know about the sign bits as our first
3667       // answer. Now proceed to the generic code that uses
3668       // computeKnownBits, and pick whichever answer is better.
3669     }
3670     break;
3671 
3672   case ISD::SELECT:
3673   case ISD::VSELECT:
3674     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3675     if (Tmp == 1) return 1;  // Early out.
3676     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3677     return std::min(Tmp, Tmp2);
3678   case ISD::SELECT_CC:
3679     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3680     if (Tmp == 1) return 1;  // Early out.
3681     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3682     return std::min(Tmp, Tmp2);
3683 
3684   case ISD::SMIN:
3685   case ISD::SMAX: {
3686     // If we have a clamp pattern, we know that the number of sign bits will be
3687     // the minimum of the clamp min/max range.
3688     bool IsMax = (Opcode == ISD::SMAX);
3689     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3690     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3691       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3692         CstHigh =
3693             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3694     if (CstLow && CstHigh) {
3695       if (!IsMax)
3696         std::swap(CstLow, CstHigh);
3697       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3698         Tmp = CstLow->getAPIntValue().getNumSignBits();
3699         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3700         return std::min(Tmp, Tmp2);
3701       }
3702     }
3703 
3704     // Fallback - just get the minimum number of sign bits of the operands.
3705     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3706     if (Tmp == 1)
3707       return 1;  // Early out.
3708     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3709     return std::min(Tmp, Tmp2);
3710   }
3711   case ISD::UMIN:
3712   case ISD::UMAX:
3713     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3714     if (Tmp == 1)
3715       return 1;  // Early out.
3716     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3717     return std::min(Tmp, Tmp2);
3718   case ISD::SADDO:
3719   case ISD::UADDO:
3720   case ISD::SSUBO:
3721   case ISD::USUBO:
3722   case ISD::SMULO:
3723   case ISD::UMULO:
3724     if (Op.getResNo() != 1)
3725       break;
3726     // The boolean result conforms to getBooleanContents.  Fall through.
3727     // If setcc returns 0/-1, all bits are sign bits.
3728     // We know that we have an integer-based boolean since these operations
3729     // are only available for integer.
3730     if (TLI->getBooleanContents(VT.isVector(), false) ==
3731         TargetLowering::ZeroOrNegativeOneBooleanContent)
3732       return VTBits;
3733     break;
3734   case ISD::SETCC:
3735   case ISD::STRICT_FSETCC:
3736   case ISD::STRICT_FSETCCS: {
3737     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3738     // If setcc returns 0/-1, all bits are sign bits.
3739     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3740         TargetLowering::ZeroOrNegativeOneBooleanContent)
3741       return VTBits;
3742     break;
3743   }
3744   case ISD::ROTL:
3745   case ISD::ROTR:
3746     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3747 
3748     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3749     if (Tmp == VTBits)
3750       return VTBits;
3751 
3752     if (ConstantSDNode *C =
3753             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3754       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3755 
3756       // Handle rotate right by N like a rotate left by 32-N.
3757       if (Opcode == ISD::ROTR)
3758         RotAmt = (VTBits - RotAmt) % VTBits;
3759 
3760       // If we aren't rotating out all of the known-in sign bits, return the
3761       // number that are left.  This handles rotl(sext(x), 1) for example.
3762       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3763     }
3764     break;
3765   case ISD::ADD:
3766   case ISD::ADDC:
3767     // Add can have at most one carry bit.  Thus we know that the output
3768     // is, at worst, one more bit than the inputs.
3769     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3770     if (Tmp == 1) return 1; // Early out.
3771 
3772     // Special case decrementing a value (ADD X, -1):
3773     if (ConstantSDNode *CRHS =
3774             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3775       if (CRHS->isAllOnesValue()) {
3776         KnownBits Known =
3777             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3778 
3779         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3780         // sign bits set.
3781         if ((Known.Zero | 1).isAllOnesValue())
3782           return VTBits;
3783 
3784         // If we are subtracting one from a positive number, there is no carry
3785         // out of the result.
3786         if (Known.isNonNegative())
3787           return Tmp;
3788       }
3789 
3790     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3791     if (Tmp2 == 1) return 1; // Early out.
3792     return std::min(Tmp, Tmp2) - 1;
3793   case ISD::SUB:
3794     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3795     if (Tmp2 == 1) return 1; // Early out.
3796 
3797     // Handle NEG.
3798     if (ConstantSDNode *CLHS =
3799             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3800       if (CLHS->isNullValue()) {
3801         KnownBits Known =
3802             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3803         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3804         // sign bits set.
3805         if ((Known.Zero | 1).isAllOnesValue())
3806           return VTBits;
3807 
3808         // If the input is known to be positive (the sign bit is known clear),
3809         // the output of the NEG has the same number of sign bits as the input.
3810         if (Known.isNonNegative())
3811           return Tmp2;
3812 
3813         // Otherwise, we treat this like a SUB.
3814       }
3815 
3816     // Sub can have at most one carry bit.  Thus we know that the output
3817     // is, at worst, one more bit than the inputs.
3818     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3819     if (Tmp == 1) return 1; // Early out.
3820     return std::min(Tmp, Tmp2) - 1;
3821   case ISD::MUL: {
3822     // The output of the Mul can be at most twice the valid bits in the inputs.
3823     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3824     if (SignBitsOp0 == 1)
3825       break;
3826     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3827     if (SignBitsOp1 == 1)
3828       break;
3829     unsigned OutValidBits =
3830         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3831     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3832   }
3833   case ISD::TRUNCATE: {
3834     // Check if the sign bits of source go down as far as the truncated value.
3835     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3836     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3837     if (NumSrcSignBits > (NumSrcBits - VTBits))
3838       return NumSrcSignBits - (NumSrcBits - VTBits);
3839     break;
3840   }
3841   case ISD::EXTRACT_ELEMENT: {
3842     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3843     const int BitWidth = Op.getValueSizeInBits();
3844     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3845 
3846     // Get reverse index (starting from 1), Op1 value indexes elements from
3847     // little end. Sign starts at big end.
3848     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3849 
3850     // If the sign portion ends in our element the subtraction gives correct
3851     // result. Otherwise it gives either negative or > bitwidth result
3852     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3853   }
3854   case ISD::INSERT_VECTOR_ELT: {
3855     // If we know the element index, split the demand between the
3856     // source vector and the inserted element, otherwise assume we need
3857     // the original demanded vector elements and the value.
3858     SDValue InVec = Op.getOperand(0);
3859     SDValue InVal = Op.getOperand(1);
3860     SDValue EltNo = Op.getOperand(2);
3861     bool DemandedVal = true;
3862     APInt DemandedVecElts = DemandedElts;
3863     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3864     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3865       unsigned EltIdx = CEltNo->getZExtValue();
3866       DemandedVal = !!DemandedElts[EltIdx];
3867       DemandedVecElts.clearBit(EltIdx);
3868     }
3869     Tmp = std::numeric_limits<unsigned>::max();
3870     if (DemandedVal) {
3871       // TODO - handle implicit truncation of inserted elements.
3872       if (InVal.getScalarValueSizeInBits() != VTBits)
3873         break;
3874       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3875       Tmp = std::min(Tmp, Tmp2);
3876     }
3877     if (!!DemandedVecElts) {
3878       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3879       Tmp = std::min(Tmp, Tmp2);
3880     }
3881     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3882     return Tmp;
3883   }
3884   case ISD::EXTRACT_VECTOR_ELT: {
3885     SDValue InVec = Op.getOperand(0);
3886     SDValue EltNo = Op.getOperand(1);
3887     EVT VecVT = InVec.getValueType();
3888     const unsigned BitWidth = Op.getValueSizeInBits();
3889     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3890     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3891 
3892     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3893     // anything about sign bits. But if the sizes match we can derive knowledge
3894     // about sign bits from the vector operand.
3895     if (BitWidth != EltBitWidth)
3896       break;
3897 
3898     // If we know the element index, just demand that vector element, else for
3899     // an unknown element index, ignore DemandedElts and demand them all.
3900     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3901     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3902     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3903       DemandedSrcElts =
3904           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3905 
3906     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3907   }
3908   case ISD::EXTRACT_SUBVECTOR: {
3909     // If we know the element index, just demand that subvector elements,
3910     // otherwise demand them all.
3911     SDValue Src = Op.getOperand(0);
3912     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3913     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3914     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3915     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3916       // Offset the demanded elts by the subvector index.
3917       uint64_t Idx = SubIdx->getZExtValue();
3918       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3919     }
3920     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3921   }
3922   case ISD::CONCAT_VECTORS: {
3923     // Determine the minimum number of sign bits across all demanded
3924     // elts of the input vectors. Early out if the result is already 1.
3925     Tmp = std::numeric_limits<unsigned>::max();
3926     EVT SubVectorVT = Op.getOperand(0).getValueType();
3927     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3928     unsigned NumSubVectors = Op.getNumOperands();
3929     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3930       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3931       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3932       if (!DemandedSub)
3933         continue;
3934       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3935       Tmp = std::min(Tmp, Tmp2);
3936     }
3937     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3938     return Tmp;
3939   }
3940   case ISD::INSERT_SUBVECTOR: {
3941     // If we know the element index, demand any elements from the subvector and
3942     // the remainder from the src its inserted into, otherwise assume we need
3943     // the original demanded base elements and ALL the inserted subvector
3944     // elements.
3945     SDValue Src = Op.getOperand(0);
3946     SDValue Sub = Op.getOperand(1);
3947     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3948     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3949     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
3950     APInt DemandedSrcElts = DemandedElts;
3951     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3952       uint64_t Idx = SubIdx->getZExtValue();
3953       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3954       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3955     }
3956     Tmp = std::numeric_limits<unsigned>::max();
3957     if (!!DemandedSubElts) {
3958       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3959       if (Tmp == 1)
3960         return 1; // early-out
3961     }
3962     if (!!DemandedSrcElts) {
3963       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3964       Tmp = std::min(Tmp, Tmp2);
3965     }
3966     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3967     return Tmp;
3968   }
3969   }
3970 
3971   // If we are looking at the loaded value of the SDNode.
3972   if (Op.getResNo() == 0) {
3973     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3974     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3975       unsigned ExtType = LD->getExtensionType();
3976       switch (ExtType) {
3977       default: break;
3978       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3979         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3980         return VTBits - Tmp + 1;
3981       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3982         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3983         return VTBits - Tmp;
3984       case ISD::NON_EXTLOAD:
3985         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3986           // We only need to handle vectors - computeKnownBits should handle
3987           // scalar cases.
3988           Type *CstTy = Cst->getType();
3989           if (CstTy->isVectorTy() &&
3990               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3991             Tmp = VTBits;
3992             for (unsigned i = 0; i != NumElts; ++i) {
3993               if (!DemandedElts[i])
3994                 continue;
3995               if (Constant *Elt = Cst->getAggregateElement(i)) {
3996                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3997                   const APInt &Value = CInt->getValue();
3998                   Tmp = std::min(Tmp, Value.getNumSignBits());
3999                   continue;
4000                 }
4001                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4002                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4003                   Tmp = std::min(Tmp, Value.getNumSignBits());
4004                   continue;
4005                 }
4006               }
4007               // Unknown type. Conservatively assume no bits match sign bit.
4008               return 1;
4009             }
4010             return Tmp;
4011           }
4012         }
4013         break;
4014       }
4015     }
4016   }
4017 
4018   // Allow the target to implement this method for its nodes.
4019   if (Opcode >= ISD::BUILTIN_OP_END ||
4020       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4021       Opcode == ISD::INTRINSIC_W_CHAIN ||
4022       Opcode == ISD::INTRINSIC_VOID) {
4023     unsigned NumBits =
4024         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4025     if (NumBits > 1)
4026       FirstAnswer = std::max(FirstAnswer, NumBits);
4027   }
4028 
4029   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4030   // use this information.
4031   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4032 
4033   APInt Mask;
4034   if (Known.isNonNegative()) {        // sign bit is 0
4035     Mask = Known.Zero;
4036   } else if (Known.isNegative()) {  // sign bit is 1;
4037     Mask = Known.One;
4038   } else {
4039     // Nothing known.
4040     return FirstAnswer;
4041   }
4042 
4043   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4044   // the number of identical bits in the top of the input value.
4045   Mask = ~Mask;
4046   Mask <<= Mask.getBitWidth()-VTBits;
4047   // Return # leading zeros.  We use 'min' here in case Val was zero before
4048   // shifting.  We don't want to return '64' as for an i32 "0".
4049   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4050 }
4051 
4052 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4053   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4054       !isa<ConstantSDNode>(Op.getOperand(1)))
4055     return false;
4056 
4057   if (Op.getOpcode() == ISD::OR &&
4058       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4059     return false;
4060 
4061   return true;
4062 }
4063 
4064 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4065   // If we're told that NaNs won't happen, assume they won't.
4066   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4067     return true;
4068 
4069   if (Depth >= MaxRecursionDepth)
4070     return false; // Limit search depth.
4071 
4072   // TODO: Handle vectors.
4073   // If the value is a constant, we can obviously see if it is a NaN or not.
4074   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4075     return !C->getValueAPF().isNaN() ||
4076            (SNaN && !C->getValueAPF().isSignaling());
4077   }
4078 
4079   unsigned Opcode = Op.getOpcode();
4080   switch (Opcode) {
4081   case ISD::FADD:
4082   case ISD::FSUB:
4083   case ISD::FMUL:
4084   case ISD::FDIV:
4085   case ISD::FREM:
4086   case ISD::FSIN:
4087   case ISD::FCOS: {
4088     if (SNaN)
4089       return true;
4090     // TODO: Need isKnownNeverInfinity
4091     return false;
4092   }
4093   case ISD::FCANONICALIZE:
4094   case ISD::FEXP:
4095   case ISD::FEXP2:
4096   case ISD::FTRUNC:
4097   case ISD::FFLOOR:
4098   case ISD::FCEIL:
4099   case ISD::FROUND:
4100   case ISD::FRINT:
4101   case ISD::FNEARBYINT: {
4102     if (SNaN)
4103       return true;
4104     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4105   }
4106   case ISD::FABS:
4107   case ISD::FNEG:
4108   case ISD::FCOPYSIGN: {
4109     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4110   }
4111   case ISD::SELECT:
4112     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4113            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4114   case ISD::FP_EXTEND:
4115   case ISD::FP_ROUND: {
4116     if (SNaN)
4117       return true;
4118     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4119   }
4120   case ISD::SINT_TO_FP:
4121   case ISD::UINT_TO_FP:
4122     return true;
4123   case ISD::FMA:
4124   case ISD::FMAD: {
4125     if (SNaN)
4126       return true;
4127     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4128            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4129            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4130   }
4131   case ISD::FSQRT: // Need is known positive
4132   case ISD::FLOG:
4133   case ISD::FLOG2:
4134   case ISD::FLOG10:
4135   case ISD::FPOWI:
4136   case ISD::FPOW: {
4137     if (SNaN)
4138       return true;
4139     // TODO: Refine on operand
4140     return false;
4141   }
4142   case ISD::FMINNUM:
4143   case ISD::FMAXNUM: {
4144     // Only one needs to be known not-nan, since it will be returned if the
4145     // other ends up being one.
4146     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4147            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4148   }
4149   case ISD::FMINNUM_IEEE:
4150   case ISD::FMAXNUM_IEEE: {
4151     if (SNaN)
4152       return true;
4153     // This can return a NaN if either operand is an sNaN, or if both operands
4154     // are NaN.
4155     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4156             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4157            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4158             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4159   }
4160   case ISD::FMINIMUM:
4161   case ISD::FMAXIMUM: {
4162     // TODO: Does this quiet or return the origina NaN as-is?
4163     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4164            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4165   }
4166   case ISD::EXTRACT_VECTOR_ELT: {
4167     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4168   }
4169   default:
4170     if (Opcode >= ISD::BUILTIN_OP_END ||
4171         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4172         Opcode == ISD::INTRINSIC_W_CHAIN ||
4173         Opcode == ISD::INTRINSIC_VOID) {
4174       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4175     }
4176 
4177     return false;
4178   }
4179 }
4180 
4181 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4182   assert(Op.getValueType().isFloatingPoint() &&
4183          "Floating point type expected");
4184 
4185   // If the value is a constant, we can obviously see if it is a zero or not.
4186   // TODO: Add BuildVector support.
4187   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4188     return !C->isZero();
4189   return false;
4190 }
4191 
4192 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4193   assert(!Op.getValueType().isFloatingPoint() &&
4194          "Floating point types unsupported - use isKnownNeverZeroFloat");
4195 
4196   // If the value is a constant, we can obviously see if it is a zero or not.
4197   if (ISD::matchUnaryPredicate(
4198           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4199     return true;
4200 
4201   // TODO: Recognize more cases here.
4202   switch (Op.getOpcode()) {
4203   default: break;
4204   case ISD::OR:
4205     if (isKnownNeverZero(Op.getOperand(1)) ||
4206         isKnownNeverZero(Op.getOperand(0)))
4207       return true;
4208     break;
4209   }
4210 
4211   return false;
4212 }
4213 
4214 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4215   // Check the obvious case.
4216   if (A == B) return true;
4217 
4218   // For for negative and positive zero.
4219   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4220     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4221       if (CA->isZero() && CB->isZero()) return true;
4222 
4223   // Otherwise they may not be equal.
4224   return false;
4225 }
4226 
4227 // FIXME: unify with llvm::haveNoCommonBitsSet.
4228 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4229 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4230   assert(A.getValueType() == B.getValueType() &&
4231          "Values must have the same type");
4232   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4233 }
4234 
4235 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4236                                 ArrayRef<SDValue> Ops,
4237                                 SelectionDAG &DAG) {
4238   int NumOps = Ops.size();
4239   assert(NumOps != 0 && "Can't build an empty vector!");
4240   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4241          "Incorrect element count in BUILD_VECTOR!");
4242 
4243   // BUILD_VECTOR of UNDEFs is UNDEF.
4244   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4245     return DAG.getUNDEF(VT);
4246 
4247   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4248   SDValue IdentitySrc;
4249   bool IsIdentity = true;
4250   for (int i = 0; i != NumOps; ++i) {
4251     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4252         Ops[i].getOperand(0).getValueType() != VT ||
4253         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4254         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4255         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4256       IsIdentity = false;
4257       break;
4258     }
4259     IdentitySrc = Ops[i].getOperand(0);
4260   }
4261   if (IsIdentity)
4262     return IdentitySrc;
4263 
4264   return SDValue();
4265 }
4266 
4267 /// Try to simplify vector concatenation to an input value, undef, or build
4268 /// vector.
4269 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4270                                   ArrayRef<SDValue> Ops,
4271                                   SelectionDAG &DAG) {
4272   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4273   assert(llvm::all_of(Ops,
4274                       [Ops](SDValue Op) {
4275                         return Ops[0].getValueType() == Op.getValueType();
4276                       }) &&
4277          "Concatenation of vectors with inconsistent value types!");
4278   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4279              VT.getVectorNumElements() &&
4280          "Incorrect element count in vector concatenation!");
4281 
4282   if (Ops.size() == 1)
4283     return Ops[0];
4284 
4285   // Concat of UNDEFs is UNDEF.
4286   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4287     return DAG.getUNDEF(VT);
4288 
4289   // Scan the operands and look for extract operations from a single source
4290   // that correspond to insertion at the same location via this concatenation:
4291   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4292   SDValue IdentitySrc;
4293   bool IsIdentity = true;
4294   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4295     SDValue Op = Ops[i];
4296     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4297     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4298         Op.getOperand(0).getValueType() != VT ||
4299         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4300         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4301         Op.getConstantOperandVal(1) != IdentityIndex) {
4302       IsIdentity = false;
4303       break;
4304     }
4305     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4306            "Unexpected identity source vector for concat of extracts");
4307     IdentitySrc = Op.getOperand(0);
4308   }
4309   if (IsIdentity) {
4310     assert(IdentitySrc && "Failed to set source vector of extracts");
4311     return IdentitySrc;
4312   }
4313 
4314   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4315   // simplified to one big BUILD_VECTOR.
4316   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4317   EVT SVT = VT.getScalarType();
4318   SmallVector<SDValue, 16> Elts;
4319   for (SDValue Op : Ops) {
4320     EVT OpVT = Op.getValueType();
4321     if (Op.isUndef())
4322       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4323     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4324       Elts.append(Op->op_begin(), Op->op_end());
4325     else
4326       return SDValue();
4327   }
4328 
4329   // BUILD_VECTOR requires all inputs to be of the same type, find the
4330   // maximum type and extend them all.
4331   for (SDValue Op : Elts)
4332     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4333 
4334   if (SVT.bitsGT(VT.getScalarType()))
4335     for (SDValue &Op : Elts)
4336       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4337                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4338                : DAG.getSExtOrTrunc(Op, DL, SVT);
4339 
4340   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4341   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4342   return V;
4343 }
4344 
4345 /// Gets or creates the specified node.
4346 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4347   FoldingSetNodeID ID;
4348   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4349   void *IP = nullptr;
4350   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4351     return SDValue(E, 0);
4352 
4353   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4354                               getVTList(VT));
4355   CSEMap.InsertNode(N, IP);
4356 
4357   InsertNode(N);
4358   SDValue V = SDValue(N, 0);
4359   NewSDValueDbgMsg(V, "Creating new node: ", this);
4360   return V;
4361 }
4362 
4363 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4364                               SDValue Operand, const SDNodeFlags Flags) {
4365   // Constant fold unary operations with an integer constant operand. Even
4366   // opaque constant will be folded, because the folding of unary operations
4367   // doesn't create new constants with different values. Nevertheless, the
4368   // opaque flag is preserved during folding to prevent future folding with
4369   // other constants.
4370   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4371     const APInt &Val = C->getAPIntValue();
4372     switch (Opcode) {
4373     default: break;
4374     case ISD::SIGN_EXTEND:
4375       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4376                          C->isTargetOpcode(), C->isOpaque());
4377     case ISD::TRUNCATE:
4378       if (C->isOpaque())
4379         break;
4380       LLVM_FALLTHROUGH;
4381     case ISD::ANY_EXTEND:
4382     case ISD::ZERO_EXTEND:
4383       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4384                          C->isTargetOpcode(), C->isOpaque());
4385     case ISD::UINT_TO_FP:
4386     case ISD::SINT_TO_FP: {
4387       APFloat apf(EVTToAPFloatSemantics(VT),
4388                   APInt::getNullValue(VT.getSizeInBits()));
4389       (void)apf.convertFromAPInt(Val,
4390                                  Opcode==ISD::SINT_TO_FP,
4391                                  APFloat::rmNearestTiesToEven);
4392       return getConstantFP(apf, DL, VT);
4393     }
4394     case ISD::BITCAST:
4395       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4396         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4397       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4398         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4399       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4400         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4401       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4402         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4403       break;
4404     case ISD::ABS:
4405       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4406                          C->isOpaque());
4407     case ISD::BITREVERSE:
4408       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4409                          C->isOpaque());
4410     case ISD::BSWAP:
4411       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4412                          C->isOpaque());
4413     case ISD::CTPOP:
4414       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4415                          C->isOpaque());
4416     case ISD::CTLZ:
4417     case ISD::CTLZ_ZERO_UNDEF:
4418       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4419                          C->isOpaque());
4420     case ISD::CTTZ:
4421     case ISD::CTTZ_ZERO_UNDEF:
4422       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4423                          C->isOpaque());
4424     case ISD::FP16_TO_FP: {
4425       bool Ignored;
4426       APFloat FPV(APFloat::IEEEhalf(),
4427                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4428 
4429       // This can return overflow, underflow, or inexact; we don't care.
4430       // FIXME need to be more flexible about rounding mode.
4431       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4432                         APFloat::rmNearestTiesToEven, &Ignored);
4433       return getConstantFP(FPV, DL, VT);
4434     }
4435     }
4436   }
4437 
4438   // Constant fold unary operations with a floating point constant operand.
4439   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4440     APFloat V = C->getValueAPF();    // make copy
4441     switch (Opcode) {
4442     case ISD::FNEG:
4443       V.changeSign();
4444       return getConstantFP(V, DL, VT);
4445     case ISD::FABS:
4446       V.clearSign();
4447       return getConstantFP(V, DL, VT);
4448     case ISD::FCEIL: {
4449       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4450       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4451         return getConstantFP(V, DL, VT);
4452       break;
4453     }
4454     case ISD::FTRUNC: {
4455       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4456       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4457         return getConstantFP(V, DL, VT);
4458       break;
4459     }
4460     case ISD::FFLOOR: {
4461       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4462       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4463         return getConstantFP(V, DL, VT);
4464       break;
4465     }
4466     case ISD::FP_EXTEND: {
4467       bool ignored;
4468       // This can return overflow, underflow, or inexact; we don't care.
4469       // FIXME need to be more flexible about rounding mode.
4470       (void)V.convert(EVTToAPFloatSemantics(VT),
4471                       APFloat::rmNearestTiesToEven, &ignored);
4472       return getConstantFP(V, DL, VT);
4473     }
4474     case ISD::FP_TO_SINT:
4475     case ISD::FP_TO_UINT: {
4476       bool ignored;
4477       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4478       // FIXME need to be more flexible about rounding mode.
4479       APFloat::opStatus s =
4480           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4481       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4482         break;
4483       return getConstant(IntVal, DL, VT);
4484     }
4485     case ISD::BITCAST:
4486       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4487         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4488       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4489         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4490       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4491         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4492       break;
4493     case ISD::FP_TO_FP16: {
4494       bool Ignored;
4495       // This can return overflow, underflow, or inexact; we don't care.
4496       // FIXME need to be more flexible about rounding mode.
4497       (void)V.convert(APFloat::IEEEhalf(),
4498                       APFloat::rmNearestTiesToEven, &Ignored);
4499       return getConstant(V.bitcastToAPInt(), DL, VT);
4500     }
4501     }
4502   }
4503 
4504   // Constant fold unary operations with a vector integer or float operand.
4505   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4506     if (BV->isConstant()) {
4507       switch (Opcode) {
4508       default:
4509         // FIXME: Entirely reasonable to perform folding of other unary
4510         // operations here as the need arises.
4511         break;
4512       case ISD::FNEG:
4513       case ISD::FABS:
4514       case ISD::FCEIL:
4515       case ISD::FTRUNC:
4516       case ISD::FFLOOR:
4517       case ISD::FP_EXTEND:
4518       case ISD::FP_TO_SINT:
4519       case ISD::FP_TO_UINT:
4520       case ISD::TRUNCATE:
4521       case ISD::ANY_EXTEND:
4522       case ISD::ZERO_EXTEND:
4523       case ISD::SIGN_EXTEND:
4524       case ISD::UINT_TO_FP:
4525       case ISD::SINT_TO_FP:
4526       case ISD::ABS:
4527       case ISD::BITREVERSE:
4528       case ISD::BSWAP:
4529       case ISD::CTLZ:
4530       case ISD::CTLZ_ZERO_UNDEF:
4531       case ISD::CTTZ:
4532       case ISD::CTTZ_ZERO_UNDEF:
4533       case ISD::CTPOP: {
4534         SDValue Ops = { Operand };
4535         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4536           return Fold;
4537       }
4538       }
4539     }
4540   }
4541 
4542   unsigned OpOpcode = Operand.getNode()->getOpcode();
4543   switch (Opcode) {
4544   case ISD::TokenFactor:
4545   case ISD::MERGE_VALUES:
4546   case ISD::CONCAT_VECTORS:
4547     return Operand;         // Factor, merge or concat of one node?  No need.
4548   case ISD::BUILD_VECTOR: {
4549     // Attempt to simplify BUILD_VECTOR.
4550     SDValue Ops[] = {Operand};
4551     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4552       return V;
4553     break;
4554   }
4555   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4556   case ISD::FP_EXTEND:
4557     assert(VT.isFloatingPoint() &&
4558            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4559     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4560     assert((!VT.isVector() ||
4561             VT.getVectorNumElements() ==
4562             Operand.getValueType().getVectorNumElements()) &&
4563            "Vector element count mismatch!");
4564     assert(Operand.getValueType().bitsLT(VT) &&
4565            "Invalid fpext node, dst < src!");
4566     if (Operand.isUndef())
4567       return getUNDEF(VT);
4568     break;
4569   case ISD::FP_TO_SINT:
4570   case ISD::FP_TO_UINT:
4571     if (Operand.isUndef())
4572       return getUNDEF(VT);
4573     break;
4574   case ISD::SINT_TO_FP:
4575   case ISD::UINT_TO_FP:
4576     // [us]itofp(undef) = 0, because the result value is bounded.
4577     if (Operand.isUndef())
4578       return getConstantFP(0.0, DL, VT);
4579     break;
4580   case ISD::SIGN_EXTEND:
4581     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4582            "Invalid SIGN_EXTEND!");
4583     assert(VT.isVector() == Operand.getValueType().isVector() &&
4584            "SIGN_EXTEND result type type should be vector iff the operand "
4585            "type is vector!");
4586     if (Operand.getValueType() == VT) return Operand;   // noop extension
4587     assert((!VT.isVector() ||
4588             VT.getVectorNumElements() ==
4589             Operand.getValueType().getVectorNumElements()) &&
4590            "Vector element count mismatch!");
4591     assert(Operand.getValueType().bitsLT(VT) &&
4592            "Invalid sext node, dst < src!");
4593     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4594       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4595     else if (OpOpcode == ISD::UNDEF)
4596       // sext(undef) = 0, because the top bits will all be the same.
4597       return getConstant(0, DL, VT);
4598     break;
4599   case ISD::ZERO_EXTEND:
4600     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4601            "Invalid ZERO_EXTEND!");
4602     assert(VT.isVector() == Operand.getValueType().isVector() &&
4603            "ZERO_EXTEND result type type should be vector iff the operand "
4604            "type is vector!");
4605     if (Operand.getValueType() == VT) return Operand;   // noop extension
4606     assert((!VT.isVector() ||
4607             VT.getVectorNumElements() ==
4608             Operand.getValueType().getVectorNumElements()) &&
4609            "Vector element count mismatch!");
4610     assert(Operand.getValueType().bitsLT(VT) &&
4611            "Invalid zext node, dst < src!");
4612     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4613       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4614     else if (OpOpcode == ISD::UNDEF)
4615       // zext(undef) = 0, because the top bits will be zero.
4616       return getConstant(0, DL, VT);
4617     break;
4618   case ISD::ANY_EXTEND:
4619     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4620            "Invalid ANY_EXTEND!");
4621     assert(VT.isVector() == Operand.getValueType().isVector() &&
4622            "ANY_EXTEND result type type should be vector iff the operand "
4623            "type is vector!");
4624     if (Operand.getValueType() == VT) return Operand;   // noop extension
4625     assert((!VT.isVector() ||
4626             VT.getVectorNumElements() ==
4627             Operand.getValueType().getVectorNumElements()) &&
4628            "Vector element count mismatch!");
4629     assert(Operand.getValueType().bitsLT(VT) &&
4630            "Invalid anyext node, dst < src!");
4631 
4632     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4633         OpOpcode == ISD::ANY_EXTEND)
4634       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4635       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4636     else if (OpOpcode == ISD::UNDEF)
4637       return getUNDEF(VT);
4638 
4639     // (ext (trunc x)) -> x
4640     if (OpOpcode == ISD::TRUNCATE) {
4641       SDValue OpOp = Operand.getOperand(0);
4642       if (OpOp.getValueType() == VT) {
4643         transferDbgValues(Operand, OpOp);
4644         return OpOp;
4645       }
4646     }
4647     break;
4648   case ISD::TRUNCATE:
4649     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4650            "Invalid TRUNCATE!");
4651     assert(VT.isVector() == Operand.getValueType().isVector() &&
4652            "TRUNCATE result type type should be vector iff the operand "
4653            "type is vector!");
4654     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4655     assert((!VT.isVector() ||
4656             VT.getVectorNumElements() ==
4657             Operand.getValueType().getVectorNumElements()) &&
4658            "Vector element count mismatch!");
4659     assert(Operand.getValueType().bitsGT(VT) &&
4660            "Invalid truncate node, src < dst!");
4661     if (OpOpcode == ISD::TRUNCATE)
4662       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4663     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4664         OpOpcode == ISD::ANY_EXTEND) {
4665       // If the source is smaller than the dest, we still need an extend.
4666       if (Operand.getOperand(0).getValueType().getScalarType()
4667             .bitsLT(VT.getScalarType()))
4668         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4669       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4670         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4671       return Operand.getOperand(0);
4672     }
4673     if (OpOpcode == ISD::UNDEF)
4674       return getUNDEF(VT);
4675     break;
4676   case ISD::ANY_EXTEND_VECTOR_INREG:
4677   case ISD::ZERO_EXTEND_VECTOR_INREG:
4678   case ISD::SIGN_EXTEND_VECTOR_INREG:
4679     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4680     assert(Operand.getValueType().bitsLE(VT) &&
4681            "The input must be the same size or smaller than the result.");
4682     assert(VT.getVectorNumElements() <
4683              Operand.getValueType().getVectorNumElements() &&
4684            "The destination vector type must have fewer lanes than the input.");
4685     break;
4686   case ISD::ABS:
4687     assert(VT.isInteger() && VT == Operand.getValueType() &&
4688            "Invalid ABS!");
4689     if (OpOpcode == ISD::UNDEF)
4690       return getUNDEF(VT);
4691     break;
4692   case ISD::BSWAP:
4693     assert(VT.isInteger() && VT == Operand.getValueType() &&
4694            "Invalid BSWAP!");
4695     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4696            "BSWAP types must be a multiple of 16 bits!");
4697     if (OpOpcode == ISD::UNDEF)
4698       return getUNDEF(VT);
4699     break;
4700   case ISD::BITREVERSE:
4701     assert(VT.isInteger() && VT == Operand.getValueType() &&
4702            "Invalid BITREVERSE!");
4703     if (OpOpcode == ISD::UNDEF)
4704       return getUNDEF(VT);
4705     break;
4706   case ISD::BITCAST:
4707     // Basic sanity checking.
4708     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4709            "Cannot BITCAST between types of different sizes!");
4710     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4711     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4712       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4713     if (OpOpcode == ISD::UNDEF)
4714       return getUNDEF(VT);
4715     break;
4716   case ISD::SCALAR_TO_VECTOR:
4717     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4718            (VT.getVectorElementType() == Operand.getValueType() ||
4719             (VT.getVectorElementType().isInteger() &&
4720              Operand.getValueType().isInteger() &&
4721              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4722            "Illegal SCALAR_TO_VECTOR node!");
4723     if (OpOpcode == ISD::UNDEF)
4724       return getUNDEF(VT);
4725     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4726     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4727         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4728         Operand.getConstantOperandVal(1) == 0 &&
4729         Operand.getOperand(0).getValueType() == VT)
4730       return Operand.getOperand(0);
4731     break;
4732   case ISD::FNEG:
4733     // Negation of an unknown bag of bits is still completely undefined.
4734     if (OpOpcode == ISD::UNDEF)
4735       return getUNDEF(VT);
4736 
4737     if (OpOpcode == ISD::FNEG)  // --X -> X
4738       return Operand.getOperand(0);
4739     break;
4740   case ISD::FABS:
4741     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4742       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4743     break;
4744   }
4745 
4746   SDNode *N;
4747   SDVTList VTs = getVTList(VT);
4748   SDValue Ops[] = {Operand};
4749   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4750     FoldingSetNodeID ID;
4751     AddNodeIDNode(ID, Opcode, VTs, Ops);
4752     void *IP = nullptr;
4753     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4754       E->intersectFlagsWith(Flags);
4755       return SDValue(E, 0);
4756     }
4757 
4758     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4759     N->setFlags(Flags);
4760     createOperands(N, Ops);
4761     CSEMap.InsertNode(N, IP);
4762   } else {
4763     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4764     createOperands(N, Ops);
4765   }
4766 
4767   InsertNode(N);
4768   SDValue V = SDValue(N, 0);
4769   NewSDValueDbgMsg(V, "Creating new node: ", this);
4770   return V;
4771 }
4772 
4773 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4774                                        const APInt &C2) {
4775   switch (Opcode) {
4776   case ISD::ADD:  return C1 + C2;
4777   case ISD::SUB:  return C1 - C2;
4778   case ISD::MUL:  return C1 * C2;
4779   case ISD::AND:  return C1 & C2;
4780   case ISD::OR:   return C1 | C2;
4781   case ISD::XOR:  return C1 ^ C2;
4782   case ISD::SHL:  return C1 << C2;
4783   case ISD::SRL:  return C1.lshr(C2);
4784   case ISD::SRA:  return C1.ashr(C2);
4785   case ISD::ROTL: return C1.rotl(C2);
4786   case ISD::ROTR: return C1.rotr(C2);
4787   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4788   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4789   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4790   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4791   case ISD::SADDSAT: return C1.sadd_sat(C2);
4792   case ISD::UADDSAT: return C1.uadd_sat(C2);
4793   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4794   case ISD::USUBSAT: return C1.usub_sat(C2);
4795   case ISD::UDIV:
4796     if (!C2.getBoolValue())
4797       break;
4798     return C1.udiv(C2);
4799   case ISD::UREM:
4800     if (!C2.getBoolValue())
4801       break;
4802     return C1.urem(C2);
4803   case ISD::SDIV:
4804     if (!C2.getBoolValue())
4805       break;
4806     return C1.sdiv(C2);
4807   case ISD::SREM:
4808     if (!C2.getBoolValue())
4809       break;
4810     return C1.srem(C2);
4811   }
4812   return llvm::None;
4813 }
4814 
4815 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4816                                              EVT VT, const ConstantSDNode *C1,
4817                                              const ConstantSDNode *C2) {
4818   if (C1->isOpaque() || C2->isOpaque())
4819     return SDValue();
4820   if (Optional<APInt> Folded =
4821           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4822     return getConstant(Folded.getValue(), DL, VT);
4823   return SDValue();
4824 }
4825 
4826 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4827                                        const GlobalAddressSDNode *GA,
4828                                        const SDNode *N2) {
4829   if (GA->getOpcode() != ISD::GlobalAddress)
4830     return SDValue();
4831   if (!TLI->isOffsetFoldingLegal(GA))
4832     return SDValue();
4833   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4834   if (!C2)
4835     return SDValue();
4836   int64_t Offset = C2->getSExtValue();
4837   switch (Opcode) {
4838   case ISD::ADD: break;
4839   case ISD::SUB: Offset = -uint64_t(Offset); break;
4840   default: return SDValue();
4841   }
4842   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4843                           GA->getOffset() + uint64_t(Offset));
4844 }
4845 
4846 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4847   switch (Opcode) {
4848   case ISD::SDIV:
4849   case ISD::UDIV:
4850   case ISD::SREM:
4851   case ISD::UREM: {
4852     // If a divisor is zero/undef or any element of a divisor vector is
4853     // zero/undef, the whole op is undef.
4854     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4855     SDValue Divisor = Ops[1];
4856     if (Divisor.isUndef() || isNullConstant(Divisor))
4857       return true;
4858 
4859     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4860            llvm::any_of(Divisor->op_values(),
4861                         [](SDValue V) { return V.isUndef() ||
4862                                         isNullConstant(V); });
4863     // TODO: Handle signed overflow.
4864   }
4865   // TODO: Handle oversized shifts.
4866   default:
4867     return false;
4868   }
4869 }
4870 
4871 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4872                                              EVT VT, ArrayRef<SDValue> Ops) {
4873   // If the opcode is a target-specific ISD node, there's nothing we can
4874   // do here and the operand rules may not line up with the below, so
4875   // bail early.
4876   if (Opcode >= ISD::BUILTIN_OP_END)
4877     return SDValue();
4878 
4879   // For now, the array Ops should only contain two values.
4880   // This enforcement will be removed once this function is merged with
4881   // FoldConstantVectorArithmetic
4882   if (Ops.size() != 2)
4883     return SDValue();
4884 
4885   if (isUndef(Opcode, Ops))
4886     return getUNDEF(VT);
4887 
4888   SDNode *N1 = Ops[0].getNode();
4889   SDNode *N2 = Ops[1].getNode();
4890 
4891   // Handle the case of two scalars.
4892   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4893     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4894       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4895       assert((!Folded || !VT.isVector()) &&
4896              "Can't fold vectors ops with scalar operands");
4897       return Folded;
4898     }
4899   }
4900 
4901   // fold (add Sym, c) -> Sym+c
4902   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4903     return FoldSymbolOffset(Opcode, VT, GA, N2);
4904   if (TLI->isCommutativeBinOp(Opcode))
4905     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4906       return FoldSymbolOffset(Opcode, VT, GA, N1);
4907 
4908   // For vectors, extract each constant element and fold them individually.
4909   // Either input may be an undef value.
4910   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4911   if (!BV1 && !N1->isUndef())
4912     return SDValue();
4913   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4914   if (!BV2 && !N2->isUndef())
4915     return SDValue();
4916   // If both operands are undef, that's handled the same way as scalars.
4917   if (!BV1 && !BV2)
4918     return SDValue();
4919 
4920   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4921          "Vector binop with different number of elements in operands?");
4922 
4923   EVT SVT = VT.getScalarType();
4924   EVT LegalSVT = SVT;
4925   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4926     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4927     if (LegalSVT.bitsLT(SVT))
4928       return SDValue();
4929   }
4930   SmallVector<SDValue, 4> Outputs;
4931   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4932   for (unsigned I = 0; I != NumOps; ++I) {
4933     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4934     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4935     if (SVT.isInteger()) {
4936       if (V1->getValueType(0).bitsGT(SVT))
4937         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4938       if (V2->getValueType(0).bitsGT(SVT))
4939         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4940     }
4941 
4942     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4943       return SDValue();
4944 
4945     // Fold one vector element.
4946     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4947     if (LegalSVT != SVT)
4948       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4949 
4950     // Scalar folding only succeeded if the result is a constant or UNDEF.
4951     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4952         ScalarResult.getOpcode() != ISD::ConstantFP)
4953       return SDValue();
4954     Outputs.push_back(ScalarResult);
4955   }
4956 
4957   assert(VT.getVectorNumElements() == Outputs.size() &&
4958          "Vector size mismatch!");
4959 
4960   // We may have a vector type but a scalar result. Create a splat.
4961   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4962 
4963   // Build a big vector out of the scalar elements we generated.
4964   return getBuildVector(VT, SDLoc(), Outputs);
4965 }
4966 
4967 // TODO: Merge with FoldConstantArithmetic
4968 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4969                                                    const SDLoc &DL, EVT VT,
4970                                                    ArrayRef<SDValue> Ops,
4971                                                    const SDNodeFlags Flags) {
4972   // If the opcode is a target-specific ISD node, there's nothing we can
4973   // do here and the operand rules may not line up with the below, so
4974   // bail early.
4975   if (Opcode >= ISD::BUILTIN_OP_END)
4976     return SDValue();
4977 
4978   if (isUndef(Opcode, Ops))
4979     return getUNDEF(VT);
4980 
4981   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4982   if (!VT.isVector())
4983     return SDValue();
4984 
4985   unsigned NumElts = VT.getVectorNumElements();
4986 
4987   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4988     return !Op.getValueType().isVector() ||
4989            Op.getValueType().getVectorNumElements() == NumElts;
4990   };
4991 
4992   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4993     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4994     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4995            (BV && BV->isConstant());
4996   };
4997 
4998   // All operands must be vector types with the same number of elements as
4999   // the result type and must be either UNDEF or a build vector of constant
5000   // or UNDEF scalars.
5001   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5002       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5003     return SDValue();
5004 
5005   // If we are comparing vectors, then the result needs to be a i1 boolean
5006   // that is then sign-extended back to the legal result type.
5007   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5008 
5009   // Find legal integer scalar type for constant promotion and
5010   // ensure that its scalar size is at least as large as source.
5011   EVT LegalSVT = VT.getScalarType();
5012   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5013     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5014     if (LegalSVT.bitsLT(VT.getScalarType()))
5015       return SDValue();
5016   }
5017 
5018   // Constant fold each scalar lane separately.
5019   SmallVector<SDValue, 4> ScalarResults;
5020   for (unsigned i = 0; i != NumElts; i++) {
5021     SmallVector<SDValue, 4> ScalarOps;
5022     for (SDValue Op : Ops) {
5023       EVT InSVT = Op.getValueType().getScalarType();
5024       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5025       if (!InBV) {
5026         // We've checked that this is UNDEF or a constant of some kind.
5027         if (Op.isUndef())
5028           ScalarOps.push_back(getUNDEF(InSVT));
5029         else
5030           ScalarOps.push_back(Op);
5031         continue;
5032       }
5033 
5034       SDValue ScalarOp = InBV->getOperand(i);
5035       EVT ScalarVT = ScalarOp.getValueType();
5036 
5037       // Build vector (integer) scalar operands may need implicit
5038       // truncation - do this before constant folding.
5039       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5040         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5041 
5042       ScalarOps.push_back(ScalarOp);
5043     }
5044 
5045     // Constant fold the scalar operands.
5046     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5047 
5048     // Legalize the (integer) scalar constant if necessary.
5049     if (LegalSVT != SVT)
5050       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5051 
5052     // Scalar folding only succeeded if the result is a constant or UNDEF.
5053     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5054         ScalarResult.getOpcode() != ISD::ConstantFP)
5055       return SDValue();
5056     ScalarResults.push_back(ScalarResult);
5057   }
5058 
5059   SDValue V = getBuildVector(VT, DL, ScalarResults);
5060   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5061   return V;
5062 }
5063 
5064 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5065                                          EVT VT, SDValue N1, SDValue N2) {
5066   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5067   //       should. That will require dealing with a potentially non-default
5068   //       rounding mode, checking the "opStatus" return value from the APFloat
5069   //       math calculations, and possibly other variations.
5070   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5071   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5072   if (N1CFP && N2CFP) {
5073     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5074     switch (Opcode) {
5075     case ISD::FADD:
5076       C1.add(C2, APFloat::rmNearestTiesToEven);
5077       return getConstantFP(C1, DL, VT);
5078     case ISD::FSUB:
5079       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5080       return getConstantFP(C1, DL, VT);
5081     case ISD::FMUL:
5082       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5083       return getConstantFP(C1, DL, VT);
5084     case ISD::FDIV:
5085       C1.divide(C2, APFloat::rmNearestTiesToEven);
5086       return getConstantFP(C1, DL, VT);
5087     case ISD::FREM:
5088       C1.mod(C2);
5089       return getConstantFP(C1, DL, VT);
5090     case ISD::FCOPYSIGN:
5091       C1.copySign(C2);
5092       return getConstantFP(C1, DL, VT);
5093     default: break;
5094     }
5095   }
5096   if (N1CFP && Opcode == ISD::FP_ROUND) {
5097     APFloat C1 = N1CFP->getValueAPF();    // make copy
5098     bool Unused;
5099     // This can return overflow, underflow, or inexact; we don't care.
5100     // FIXME need to be more flexible about rounding mode.
5101     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5102                       &Unused);
5103     return getConstantFP(C1, DL, VT);
5104   }
5105 
5106   switch (Opcode) {
5107   case ISD::FADD:
5108   case ISD::FSUB:
5109   case ISD::FMUL:
5110   case ISD::FDIV:
5111   case ISD::FREM:
5112     // If both operands are undef, the result is undef. If 1 operand is undef,
5113     // the result is NaN. This should match the behavior of the IR optimizer.
5114     if (N1.isUndef() && N2.isUndef())
5115       return getUNDEF(VT);
5116     if (N1.isUndef() || N2.isUndef())
5117       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5118   }
5119   return SDValue();
5120 }
5121 
5122 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5123                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5124   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5125   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5126   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5127   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5128 
5129   // Canonicalize constant to RHS if commutative.
5130   if (TLI->isCommutativeBinOp(Opcode)) {
5131     if (N1C && !N2C) {
5132       std::swap(N1C, N2C);
5133       std::swap(N1, N2);
5134     } else if (N1CFP && !N2CFP) {
5135       std::swap(N1CFP, N2CFP);
5136       std::swap(N1, N2);
5137     }
5138   }
5139 
5140   switch (Opcode) {
5141   default: break;
5142   case ISD::TokenFactor:
5143     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5144            N2.getValueType() == MVT::Other && "Invalid token factor!");
5145     // Fold trivial token factors.
5146     if (N1.getOpcode() == ISD::EntryToken) return N2;
5147     if (N2.getOpcode() == ISD::EntryToken) return N1;
5148     if (N1 == N2) return N1;
5149     break;
5150   case ISD::BUILD_VECTOR: {
5151     // Attempt to simplify BUILD_VECTOR.
5152     SDValue Ops[] = {N1, N2};
5153     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5154       return V;
5155     break;
5156   }
5157   case ISD::CONCAT_VECTORS: {
5158     SDValue Ops[] = {N1, N2};
5159     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5160       return V;
5161     break;
5162   }
5163   case ISD::AND:
5164     assert(VT.isInteger() && "This operator does not apply to FP types!");
5165     assert(N1.getValueType() == N2.getValueType() &&
5166            N1.getValueType() == VT && "Binary operator types must match!");
5167     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5168     // worth handling here.
5169     if (N2C && N2C->isNullValue())
5170       return N2;
5171     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5172       return N1;
5173     break;
5174   case ISD::OR:
5175   case ISD::XOR:
5176   case ISD::ADD:
5177   case ISD::SUB:
5178     assert(VT.isInteger() && "This operator does not apply to FP types!");
5179     assert(N1.getValueType() == N2.getValueType() &&
5180            N1.getValueType() == VT && "Binary operator types must match!");
5181     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5182     // it's worth handling here.
5183     if (N2C && N2C->isNullValue())
5184       return N1;
5185     break;
5186   case ISD::MUL:
5187     assert(VT.isInteger() && "This operator does not apply to FP types!");
5188     assert(N1.getValueType() == N2.getValueType() &&
5189            N1.getValueType() == VT && "Binary operator types must match!");
5190     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5191       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5192       APInt N2CImm = N2C->getAPIntValue();
5193       return getVScale(DL, VT, MulImm * N2CImm);
5194     }
5195     break;
5196   case ISD::UDIV:
5197   case ISD::UREM:
5198   case ISD::MULHU:
5199   case ISD::MULHS:
5200   case ISD::SDIV:
5201   case ISD::SREM:
5202   case ISD::SMIN:
5203   case ISD::SMAX:
5204   case ISD::UMIN:
5205   case ISD::UMAX:
5206   case ISD::SADDSAT:
5207   case ISD::SSUBSAT:
5208   case ISD::UADDSAT:
5209   case ISD::USUBSAT:
5210     assert(VT.isInteger() && "This operator does not apply to FP types!");
5211     assert(N1.getValueType() == N2.getValueType() &&
5212            N1.getValueType() == VT && "Binary operator types must match!");
5213     break;
5214   case ISD::FADD:
5215   case ISD::FSUB:
5216   case ISD::FMUL:
5217   case ISD::FDIV:
5218   case ISD::FREM:
5219     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5220     assert(N1.getValueType() == N2.getValueType() &&
5221            N1.getValueType() == VT && "Binary operator types must match!");
5222     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5223       return V;
5224     break;
5225   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5226     assert(N1.getValueType() == VT &&
5227            N1.getValueType().isFloatingPoint() &&
5228            N2.getValueType().isFloatingPoint() &&
5229            "Invalid FCOPYSIGN!");
5230     break;
5231   case ISD::SHL:
5232     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5233       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5234       APInt ShiftImm = N2C->getAPIntValue();
5235       return getVScale(DL, VT, MulImm << ShiftImm);
5236     }
5237     LLVM_FALLTHROUGH;
5238   case ISD::SRA:
5239   case ISD::SRL:
5240     if (SDValue V = simplifyShift(N1, N2))
5241       return V;
5242     LLVM_FALLTHROUGH;
5243   case ISD::ROTL:
5244   case ISD::ROTR:
5245     assert(VT == N1.getValueType() &&
5246            "Shift operators return type must be the same as their first arg");
5247     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5248            "Shifts only work on integers");
5249     assert((!VT.isVector() || VT == N2.getValueType()) &&
5250            "Vector shift amounts must be in the same as their first arg");
5251     // Verify that the shift amount VT is big enough to hold valid shift
5252     // amounts.  This catches things like trying to shift an i1024 value by an
5253     // i8, which is easy to fall into in generic code that uses
5254     // TLI.getShiftAmount().
5255     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5256            "Invalid use of small shift amount with oversized value!");
5257 
5258     // Always fold shifts of i1 values so the code generator doesn't need to
5259     // handle them.  Since we know the size of the shift has to be less than the
5260     // size of the value, the shift/rotate count is guaranteed to be zero.
5261     if (VT == MVT::i1)
5262       return N1;
5263     if (N2C && N2C->isNullValue())
5264       return N1;
5265     break;
5266   case ISD::FP_ROUND:
5267     assert(VT.isFloatingPoint() &&
5268            N1.getValueType().isFloatingPoint() &&
5269            VT.bitsLE(N1.getValueType()) &&
5270            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5271            "Invalid FP_ROUND!");
5272     if (N1.getValueType() == VT) return N1;  // noop conversion.
5273     break;
5274   case ISD::AssertSext:
5275   case ISD::AssertZext: {
5276     EVT EVT = cast<VTSDNode>(N2)->getVT();
5277     assert(VT == N1.getValueType() && "Not an inreg extend!");
5278     assert(VT.isInteger() && EVT.isInteger() &&
5279            "Cannot *_EXTEND_INREG FP types");
5280     assert(!EVT.isVector() &&
5281            "AssertSExt/AssertZExt type should be the vector element type "
5282            "rather than the vector type!");
5283     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5284     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5285     break;
5286   }
5287   case ISD::SIGN_EXTEND_INREG: {
5288     EVT EVT = cast<VTSDNode>(N2)->getVT();
5289     assert(VT == N1.getValueType() && "Not an inreg extend!");
5290     assert(VT.isInteger() && EVT.isInteger() &&
5291            "Cannot *_EXTEND_INREG FP types");
5292     assert(EVT.isVector() == VT.isVector() &&
5293            "SIGN_EXTEND_INREG type should be vector iff the operand "
5294            "type is vector!");
5295     assert((!EVT.isVector() ||
5296             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5297            "Vector element counts must match in SIGN_EXTEND_INREG");
5298     assert(EVT.bitsLE(VT) && "Not extending!");
5299     if (EVT == VT) return N1;  // Not actually extending
5300 
5301     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5302       unsigned FromBits = EVT.getScalarSizeInBits();
5303       Val <<= Val.getBitWidth() - FromBits;
5304       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5305       return getConstant(Val, DL, ConstantVT);
5306     };
5307 
5308     if (N1C) {
5309       const APInt &Val = N1C->getAPIntValue();
5310       return SignExtendInReg(Val, VT);
5311     }
5312     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5313       SmallVector<SDValue, 8> Ops;
5314       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5315       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5316         SDValue Op = N1.getOperand(i);
5317         if (Op.isUndef()) {
5318           Ops.push_back(getUNDEF(OpVT));
5319           continue;
5320         }
5321         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5322         APInt Val = C->getAPIntValue();
5323         Ops.push_back(SignExtendInReg(Val, OpVT));
5324       }
5325       return getBuildVector(VT, DL, Ops);
5326     }
5327     break;
5328   }
5329   case ISD::EXTRACT_VECTOR_ELT:
5330     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5331            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5332              element type of the vector.");
5333 
5334     // Extract from an undefined value or using an undefined index is undefined.
5335     if (N1.isUndef() || N2.isUndef())
5336       return getUNDEF(VT);
5337 
5338     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5339     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5340       return getUNDEF(VT);
5341 
5342     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5343     // expanding copies of large vectors from registers.
5344     if (N2C &&
5345         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5346         N1.getNumOperands() > 0) {
5347       unsigned Factor =
5348         N1.getOperand(0).getValueType().getVectorNumElements();
5349       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5350                      N1.getOperand(N2C->getZExtValue() / Factor),
5351                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5352     }
5353 
5354     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5355     // expanding large vector constants.
5356     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5357       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5358 
5359       if (VT != Elt.getValueType())
5360         // If the vector element type is not legal, the BUILD_VECTOR operands
5361         // are promoted and implicitly truncated, and the result implicitly
5362         // extended. Make that explicit here.
5363         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5364 
5365       return Elt;
5366     }
5367 
5368     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5369     // operations are lowered to scalars.
5370     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5371       // If the indices are the same, return the inserted element else
5372       // if the indices are known different, extract the element from
5373       // the original vector.
5374       SDValue N1Op2 = N1.getOperand(2);
5375       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5376 
5377       if (N1Op2C && N2C) {
5378         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5379           if (VT == N1.getOperand(1).getValueType())
5380             return N1.getOperand(1);
5381           else
5382             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5383         }
5384 
5385         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5386       }
5387     }
5388 
5389     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5390     // when vector types are scalarized and v1iX is legal.
5391     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5392     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5393         N1.getValueType().getVectorNumElements() == 1) {
5394       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5395                      N1.getOperand(1));
5396     }
5397     break;
5398   case ISD::EXTRACT_ELEMENT:
5399     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5400     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5401            (N1.getValueType().isInteger() == VT.isInteger()) &&
5402            N1.getValueType() != VT &&
5403            "Wrong types for EXTRACT_ELEMENT!");
5404 
5405     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5406     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5407     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5408     if (N1.getOpcode() == ISD::BUILD_PAIR)
5409       return N1.getOperand(N2C->getZExtValue());
5410 
5411     // EXTRACT_ELEMENT of a constant int is also very common.
5412     if (N1C) {
5413       unsigned ElementSize = VT.getSizeInBits();
5414       unsigned Shift = ElementSize * N2C->getZExtValue();
5415       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5416       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5417     }
5418     break;
5419   case ISD::EXTRACT_SUBVECTOR:
5420     if (VT.isSimple() && N1.getValueType().isSimple()) {
5421       assert(VT.isVector() && N1.getValueType().isVector() &&
5422              "Extract subvector VTs must be a vectors!");
5423       assert(VT.getVectorElementType() ==
5424              N1.getValueType().getVectorElementType() &&
5425              "Extract subvector VTs must have the same element type!");
5426       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5427              "Extract subvector must be from larger vector to smaller vector!");
5428 
5429       if (N2C) {
5430         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5431                 <= N1.getValueType().getVectorNumElements())
5432                && "Extract subvector overflow!");
5433       }
5434 
5435       // Trivial extraction.
5436       if (VT.getSimpleVT() == N1.getSimpleValueType())
5437         return N1;
5438 
5439       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5440       if (N1.isUndef())
5441         return getUNDEF(VT);
5442 
5443       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5444       // the concat have the same type as the extract.
5445       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5446           N1.getNumOperands() > 0 &&
5447           VT == N1.getOperand(0).getValueType()) {
5448         unsigned Factor = VT.getVectorNumElements();
5449         return N1.getOperand(N2C->getZExtValue() / Factor);
5450       }
5451 
5452       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5453       // during shuffle legalization.
5454       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5455           VT == N1.getOperand(1).getValueType())
5456         return N1.getOperand(1);
5457     }
5458     break;
5459   }
5460 
5461   // Perform trivial constant folding.
5462   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5463     return SV;
5464 
5465   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5466     return V;
5467 
5468   // Canonicalize an UNDEF to the RHS, even over a constant.
5469   if (N1.isUndef()) {
5470     if (TLI->isCommutativeBinOp(Opcode)) {
5471       std::swap(N1, N2);
5472     } else {
5473       switch (Opcode) {
5474       case ISD::SIGN_EXTEND_INREG:
5475       case ISD::SUB:
5476         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5477       case ISD::UDIV:
5478       case ISD::SDIV:
5479       case ISD::UREM:
5480       case ISD::SREM:
5481       case ISD::SSUBSAT:
5482       case ISD::USUBSAT:
5483         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5484       }
5485     }
5486   }
5487 
5488   // Fold a bunch of operators when the RHS is undef.
5489   if (N2.isUndef()) {
5490     switch (Opcode) {
5491     case ISD::XOR:
5492       if (N1.isUndef())
5493         // Handle undef ^ undef -> 0 special case. This is a common
5494         // idiom (misuse).
5495         return getConstant(0, DL, VT);
5496       LLVM_FALLTHROUGH;
5497     case ISD::ADD:
5498     case ISD::SUB:
5499     case ISD::UDIV:
5500     case ISD::SDIV:
5501     case ISD::UREM:
5502     case ISD::SREM:
5503       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5504     case ISD::MUL:
5505     case ISD::AND:
5506     case ISD::SSUBSAT:
5507     case ISD::USUBSAT:
5508       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5509     case ISD::OR:
5510     case ISD::SADDSAT:
5511     case ISD::UADDSAT:
5512       return getAllOnesConstant(DL, VT);
5513     }
5514   }
5515 
5516   // Memoize this node if possible.
5517   SDNode *N;
5518   SDVTList VTs = getVTList(VT);
5519   SDValue Ops[] = {N1, N2};
5520   if (VT != MVT::Glue) {
5521     FoldingSetNodeID ID;
5522     AddNodeIDNode(ID, Opcode, VTs, Ops);
5523     void *IP = nullptr;
5524     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5525       E->intersectFlagsWith(Flags);
5526       return SDValue(E, 0);
5527     }
5528 
5529     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5530     N->setFlags(Flags);
5531     createOperands(N, Ops);
5532     CSEMap.InsertNode(N, IP);
5533   } else {
5534     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5535     createOperands(N, Ops);
5536   }
5537 
5538   InsertNode(N);
5539   SDValue V = SDValue(N, 0);
5540   NewSDValueDbgMsg(V, "Creating new node: ", this);
5541   return V;
5542 }
5543 
5544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5545                               SDValue N1, SDValue N2, SDValue N3,
5546                               const SDNodeFlags Flags) {
5547   // Perform various simplifications.
5548   switch (Opcode) {
5549   case ISD::FMA: {
5550     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5551     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5552            N3.getValueType() == VT && "FMA types must match!");
5553     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5554     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5555     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5556     if (N1CFP && N2CFP && N3CFP) {
5557       APFloat  V1 = N1CFP->getValueAPF();
5558       const APFloat &V2 = N2CFP->getValueAPF();
5559       const APFloat &V3 = N3CFP->getValueAPF();
5560       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5561       return getConstantFP(V1, DL, VT);
5562     }
5563     break;
5564   }
5565   case ISD::BUILD_VECTOR: {
5566     // Attempt to simplify BUILD_VECTOR.
5567     SDValue Ops[] = {N1, N2, N3};
5568     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5569       return V;
5570     break;
5571   }
5572   case ISD::CONCAT_VECTORS: {
5573     SDValue Ops[] = {N1, N2, N3};
5574     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5575       return V;
5576     break;
5577   }
5578   case ISD::SETCC: {
5579     assert(VT.isInteger() && "SETCC result type must be an integer!");
5580     assert(N1.getValueType() == N2.getValueType() &&
5581            "SETCC operands must have the same type!");
5582     assert(VT.isVector() == N1.getValueType().isVector() &&
5583            "SETCC type should be vector iff the operand type is vector!");
5584     assert((!VT.isVector() ||
5585             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5586            "SETCC vector element counts must match!");
5587     // Use FoldSetCC to simplify SETCC's.
5588     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5589       return V;
5590     // Vector constant folding.
5591     SDValue Ops[] = {N1, N2, N3};
5592     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5593       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5594       return V;
5595     }
5596     break;
5597   }
5598   case ISD::SELECT:
5599   case ISD::VSELECT:
5600     if (SDValue V = simplifySelect(N1, N2, N3))
5601       return V;
5602     break;
5603   case ISD::VECTOR_SHUFFLE:
5604     llvm_unreachable("should use getVectorShuffle constructor!");
5605   case ISD::INSERT_VECTOR_ELT: {
5606     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5607     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5608     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5609       return getUNDEF(VT);
5610 
5611     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5612     if (N3.isUndef())
5613       return getUNDEF(VT);
5614 
5615     // If the inserted element is an UNDEF, just use the input vector.
5616     if (N2.isUndef())
5617       return N1;
5618 
5619     break;
5620   }
5621   case ISD::INSERT_SUBVECTOR: {
5622     // Inserting undef into undef is still undef.
5623     if (N1.isUndef() && N2.isUndef())
5624       return getUNDEF(VT);
5625     SDValue Index = N3;
5626     if (VT.isSimple() && N1.getValueType().isSimple()
5627         && N2.getValueType().isSimple()) {
5628       assert(VT.isVector() && N1.getValueType().isVector() &&
5629              N2.getValueType().isVector() &&
5630              "Insert subvector VTs must be a vectors");
5631       assert(VT == N1.getValueType() &&
5632              "Dest and insert subvector source types must match!");
5633       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5634              "Insert subvector must be from smaller vector to larger vector!");
5635       if (isa<ConstantSDNode>(Index)) {
5636         assert((N2.getValueType().getVectorNumElements() +
5637                 cast<ConstantSDNode>(Index)->getZExtValue()
5638                 <= VT.getVectorNumElements())
5639                && "Insert subvector overflow!");
5640       }
5641 
5642       // Trivial insertion.
5643       if (VT.getSimpleVT() == N2.getSimpleValueType())
5644         return N2;
5645 
5646       // If this is an insert of an extracted vector into an undef vector, we
5647       // can just use the input to the extract.
5648       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5649           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5650         return N2.getOperand(0);
5651     }
5652     break;
5653   }
5654   case ISD::BITCAST:
5655     // Fold bit_convert nodes from a type to themselves.
5656     if (N1.getValueType() == VT)
5657       return N1;
5658     break;
5659   }
5660 
5661   // Memoize node if it doesn't produce a flag.
5662   SDNode *N;
5663   SDVTList VTs = getVTList(VT);
5664   SDValue Ops[] = {N1, N2, N3};
5665   if (VT != MVT::Glue) {
5666     FoldingSetNodeID ID;
5667     AddNodeIDNode(ID, Opcode, VTs, Ops);
5668     void *IP = nullptr;
5669     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5670       E->intersectFlagsWith(Flags);
5671       return SDValue(E, 0);
5672     }
5673 
5674     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5675     N->setFlags(Flags);
5676     createOperands(N, Ops);
5677     CSEMap.InsertNode(N, IP);
5678   } else {
5679     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5680     createOperands(N, Ops);
5681   }
5682 
5683   InsertNode(N);
5684   SDValue V = SDValue(N, 0);
5685   NewSDValueDbgMsg(V, "Creating new node: ", this);
5686   return V;
5687 }
5688 
5689 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5690                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5691   SDValue Ops[] = { N1, N2, N3, N4 };
5692   return getNode(Opcode, DL, VT, Ops);
5693 }
5694 
5695 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5696                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5697                               SDValue N5) {
5698   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5699   return getNode(Opcode, DL, VT, Ops);
5700 }
5701 
5702 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5703 /// the incoming stack arguments to be loaded from the stack.
5704 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5705   SmallVector<SDValue, 8> ArgChains;
5706 
5707   // Include the original chain at the beginning of the list. When this is
5708   // used by target LowerCall hooks, this helps legalize find the
5709   // CALLSEQ_BEGIN node.
5710   ArgChains.push_back(Chain);
5711 
5712   // Add a chain value for each stack argument.
5713   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5714        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5715     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5716       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5717         if (FI->getIndex() < 0)
5718           ArgChains.push_back(SDValue(L, 1));
5719 
5720   // Build a tokenfactor for all the chains.
5721   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5722 }
5723 
5724 /// getMemsetValue - Vectorized representation of the memset value
5725 /// operand.
5726 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5727                               const SDLoc &dl) {
5728   assert(!Value.isUndef());
5729 
5730   unsigned NumBits = VT.getScalarSizeInBits();
5731   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5732     assert(C->getAPIntValue().getBitWidth() == 8);
5733     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5734     if (VT.isInteger()) {
5735       bool IsOpaque = VT.getSizeInBits() > 64 ||
5736           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5737       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5738     }
5739     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5740                              VT);
5741   }
5742 
5743   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5744   EVT IntVT = VT.getScalarType();
5745   if (!IntVT.isInteger())
5746     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5747 
5748   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5749   if (NumBits > 8) {
5750     // Use a multiplication with 0x010101... to extend the input to the
5751     // required length.
5752     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5753     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5754                         DAG.getConstant(Magic, dl, IntVT));
5755   }
5756 
5757   if (VT != Value.getValueType() && !VT.isInteger())
5758     Value = DAG.getBitcast(VT.getScalarType(), Value);
5759   if (VT != Value.getValueType())
5760     Value = DAG.getSplatBuildVector(VT, dl, Value);
5761 
5762   return Value;
5763 }
5764 
5765 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5766 /// used when a memcpy is turned into a memset when the source is a constant
5767 /// string ptr.
5768 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5769                                   const TargetLowering &TLI,
5770                                   const ConstantDataArraySlice &Slice) {
5771   // Handle vector with all elements zero.
5772   if (Slice.Array == nullptr) {
5773     if (VT.isInteger())
5774       return DAG.getConstant(0, dl, VT);
5775     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5776       return DAG.getConstantFP(0.0, dl, VT);
5777     else if (VT.isVector()) {
5778       unsigned NumElts = VT.getVectorNumElements();
5779       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5780       return DAG.getNode(ISD::BITCAST, dl, VT,
5781                          DAG.getConstant(0, dl,
5782                                          EVT::getVectorVT(*DAG.getContext(),
5783                                                           EltVT, NumElts)));
5784     } else
5785       llvm_unreachable("Expected type!");
5786   }
5787 
5788   assert(!VT.isVector() && "Can't handle vector type here!");
5789   unsigned NumVTBits = VT.getSizeInBits();
5790   unsigned NumVTBytes = NumVTBits / 8;
5791   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5792 
5793   APInt Val(NumVTBits, 0);
5794   if (DAG.getDataLayout().isLittleEndian()) {
5795     for (unsigned i = 0; i != NumBytes; ++i)
5796       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5797   } else {
5798     for (unsigned i = 0; i != NumBytes; ++i)
5799       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5800   }
5801 
5802   // If the "cost" of materializing the integer immediate is less than the cost
5803   // of a load, then it is cost effective to turn the load into the immediate.
5804   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5805   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5806     return DAG.getConstant(Val, dl, VT);
5807   return SDValue(nullptr, 0);
5808 }
5809 
5810 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5811                                            const SDLoc &DL,
5812                                            const SDNodeFlags Flags) {
5813   EVT VT = Base.getValueType();
5814   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5815 }
5816 
5817 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5818                                            const SDLoc &DL,
5819                                            const SDNodeFlags Flags) {
5820   assert(Offset.getValueType().isInteger());
5821   EVT BasePtrVT = Ptr.getValueType();
5822   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5823 }
5824 
5825 /// Returns true if memcpy source is constant data.
5826 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5827   uint64_t SrcDelta = 0;
5828   GlobalAddressSDNode *G = nullptr;
5829   if (Src.getOpcode() == ISD::GlobalAddress)
5830     G = cast<GlobalAddressSDNode>(Src);
5831   else if (Src.getOpcode() == ISD::ADD &&
5832            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5833            Src.getOperand(1).getOpcode() == ISD::Constant) {
5834     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5835     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5836   }
5837   if (!G)
5838     return false;
5839 
5840   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5841                                   SrcDelta + G->getOffset());
5842 }
5843 
5844 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5845                                       SelectionDAG &DAG) {
5846   // On Darwin, -Os means optimize for size without hurting performance, so
5847   // only really optimize for size when -Oz (MinSize) is used.
5848   if (MF.getTarget().getTargetTriple().isOSDarwin())
5849     return MF.getFunction().hasMinSize();
5850   return DAG.shouldOptForSize();
5851 }
5852 
5853 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5854                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5855                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5856                           SmallVector<SDValue, 16> &OutStoreChains) {
5857   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5858   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5859   SmallVector<SDValue, 16> GluedLoadChains;
5860   for (unsigned i = From; i < To; ++i) {
5861     OutChains.push_back(OutLoadChains[i]);
5862     GluedLoadChains.push_back(OutLoadChains[i]);
5863   }
5864 
5865   // Chain for all loads.
5866   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5867                                   GluedLoadChains);
5868 
5869   for (unsigned i = From; i < To; ++i) {
5870     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5871     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5872                                   ST->getBasePtr(), ST->getMemoryVT(),
5873                                   ST->getMemOperand());
5874     OutChains.push_back(NewStore);
5875   }
5876 }
5877 
5878 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5879                                        SDValue Chain, SDValue Dst, SDValue Src,
5880                                        uint64_t Size, Align Alignment,
5881                                        bool isVol, bool AlwaysInline,
5882                                        MachinePointerInfo DstPtrInfo,
5883                                        MachinePointerInfo SrcPtrInfo) {
5884   // Turn a memcpy of undef to nop.
5885   // FIXME: We need to honor volatile even is Src is undef.
5886   if (Src.isUndef())
5887     return Chain;
5888 
5889   // Expand memcpy to a series of load and store ops if the size operand falls
5890   // below a certain threshold.
5891   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5892   // rather than maybe a humongous number of loads and stores.
5893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5894   const DataLayout &DL = DAG.getDataLayout();
5895   LLVMContext &C = *DAG.getContext();
5896   std::vector<EVT> MemOps;
5897   bool DstAlignCanChange = false;
5898   MachineFunction &MF = DAG.getMachineFunction();
5899   MachineFrameInfo &MFI = MF.getFrameInfo();
5900   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5901   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5902   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5903     DstAlignCanChange = true;
5904   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
5905   if (!SrcAlign || Alignment > *SrcAlign)
5906     SrcAlign = Alignment;
5907   assert(SrcAlign && "SrcAlign must be set");
5908   ConstantDataArraySlice Slice;
5909   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5910   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5911   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5912   const MemOp Op = isZeroConstant
5913                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
5914                                     /*IsZeroMemset*/ true, isVol)
5915                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
5916                                      *SrcAlign, isVol, CopyFromConstant);
5917   if (!TLI.findOptimalMemOpLowering(
5918           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
5919           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5920     return SDValue();
5921 
5922   if (DstAlignCanChange) {
5923     Type *Ty = MemOps[0].getTypeForEVT(C);
5924     Align NewAlign = DL.getABITypeAlign(Ty);
5925 
5926     // Don't promote to an alignment that would require dynamic stack
5927     // realignment.
5928     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5929     if (!TRI->needsStackRealignment(MF))
5930       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
5931         NewAlign = NewAlign / 2;
5932 
5933     if (NewAlign > Alignment) {
5934       // Give the stack frame object a larger alignment if needed.
5935       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
5936         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5937       Alignment = NewAlign;
5938     }
5939   }
5940 
5941   MachineMemOperand::Flags MMOFlags =
5942       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5943   SmallVector<SDValue, 16> OutLoadChains;
5944   SmallVector<SDValue, 16> OutStoreChains;
5945   SmallVector<SDValue, 32> OutChains;
5946   unsigned NumMemOps = MemOps.size();
5947   uint64_t SrcOff = 0, DstOff = 0;
5948   for (unsigned i = 0; i != NumMemOps; ++i) {
5949     EVT VT = MemOps[i];
5950     unsigned VTSize = VT.getSizeInBits() / 8;
5951     SDValue Value, Store;
5952 
5953     if (VTSize > Size) {
5954       // Issuing an unaligned load / store pair  that overlaps with the previous
5955       // pair. Adjust the offset accordingly.
5956       assert(i == NumMemOps-1 && i != 0);
5957       SrcOff -= VTSize - Size;
5958       DstOff -= VTSize - Size;
5959     }
5960 
5961     if (CopyFromConstant &&
5962         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5963       // It's unlikely a store of a vector immediate can be done in a single
5964       // instruction. It would require a load from a constantpool first.
5965       // We only handle zero vectors here.
5966       // FIXME: Handle other cases where store of vector immediate is done in
5967       // a single instruction.
5968       ConstantDataArraySlice SubSlice;
5969       if (SrcOff < Slice.Length) {
5970         SubSlice = Slice;
5971         SubSlice.move(SrcOff);
5972       } else {
5973         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5974         SubSlice.Array = nullptr;
5975         SubSlice.Offset = 0;
5976         SubSlice.Length = VTSize;
5977       }
5978       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5979       if (Value.getNode()) {
5980         Store = DAG.getStore(
5981             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5982             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
5983         OutChains.push_back(Store);
5984       }
5985     }
5986 
5987     if (!Store.getNode()) {
5988       // The type might not be legal for the target.  This should only happen
5989       // if the type is smaller than a legal type, as on PPC, so the right
5990       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5991       // to Load/Store if NVT==VT.
5992       // FIXME does the case above also need this?
5993       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5994       assert(NVT.bitsGE(VT));
5995 
5996       bool isDereferenceable =
5997         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5998       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5999       if (isDereferenceable)
6000         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6001 
6002       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6003                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6004                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6005                              commonAlignment(*SrcAlign, SrcOff).value(),
6006                              SrcMMOFlags);
6007       OutLoadChains.push_back(Value.getValue(1));
6008 
6009       Store = DAG.getTruncStore(
6010           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6011           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6012       OutStoreChains.push_back(Store);
6013     }
6014     SrcOff += VTSize;
6015     DstOff += VTSize;
6016     Size -= VTSize;
6017   }
6018 
6019   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6020                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6021   unsigned NumLdStInMemcpy = OutStoreChains.size();
6022 
6023   if (NumLdStInMemcpy) {
6024     // It may be that memcpy might be converted to memset if it's memcpy
6025     // of constants. In such a case, we won't have loads and stores, but
6026     // just stores. In the absence of loads, there is nothing to gang up.
6027     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6028       // If target does not care, just leave as it.
6029       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6030         OutChains.push_back(OutLoadChains[i]);
6031         OutChains.push_back(OutStoreChains[i]);
6032       }
6033     } else {
6034       // Ld/St less than/equal limit set by target.
6035       if (NumLdStInMemcpy <= GluedLdStLimit) {
6036           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6037                                         NumLdStInMemcpy, OutLoadChains,
6038                                         OutStoreChains);
6039       } else {
6040         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6041         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6042         unsigned GlueIter = 0;
6043 
6044         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6045           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6046           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6047 
6048           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6049                                        OutLoadChains, OutStoreChains);
6050           GlueIter += GluedLdStLimit;
6051         }
6052 
6053         // Residual ld/st.
6054         if (RemainingLdStInMemcpy) {
6055           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6056                                         RemainingLdStInMemcpy, OutLoadChains,
6057                                         OutStoreChains);
6058         }
6059       }
6060     }
6061   }
6062   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6063 }
6064 
6065 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6066                                         SDValue Chain, SDValue Dst, SDValue Src,
6067                                         uint64_t Size, Align Alignment,
6068                                         bool isVol, bool AlwaysInline,
6069                                         MachinePointerInfo DstPtrInfo,
6070                                         MachinePointerInfo SrcPtrInfo) {
6071   // Turn a memmove of undef to nop.
6072   // FIXME: We need to honor volatile even is Src is undef.
6073   if (Src.isUndef())
6074     return Chain;
6075 
6076   // Expand memmove to a series of load and store ops if the size operand falls
6077   // below a certain threshold.
6078   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6079   const DataLayout &DL = DAG.getDataLayout();
6080   LLVMContext &C = *DAG.getContext();
6081   std::vector<EVT> MemOps;
6082   bool DstAlignCanChange = false;
6083   MachineFunction &MF = DAG.getMachineFunction();
6084   MachineFrameInfo &MFI = MF.getFrameInfo();
6085   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6086   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6087   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6088     DstAlignCanChange = true;
6089   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
6090   if (!SrcAlign || Alignment > *SrcAlign)
6091     SrcAlign = Alignment;
6092   assert(SrcAlign && "SrcAlign must be set");
6093   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6094   if (!TLI.findOptimalMemOpLowering(
6095           MemOps, Limit,
6096           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6097                       /*IsVolatile*/ true),
6098           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6099           MF.getFunction().getAttributes()))
6100     return SDValue();
6101 
6102   if (DstAlignCanChange) {
6103     Type *Ty = MemOps[0].getTypeForEVT(C);
6104     Align NewAlign = DL.getABITypeAlign(Ty);
6105     if (NewAlign > Alignment) {
6106       // Give the stack frame object a larger alignment if needed.
6107       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6108         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6109       Alignment = NewAlign;
6110     }
6111   }
6112 
6113   MachineMemOperand::Flags MMOFlags =
6114       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6115   uint64_t SrcOff = 0, DstOff = 0;
6116   SmallVector<SDValue, 8> LoadValues;
6117   SmallVector<SDValue, 8> LoadChains;
6118   SmallVector<SDValue, 8> OutChains;
6119   unsigned NumMemOps = MemOps.size();
6120   for (unsigned i = 0; i < NumMemOps; i++) {
6121     EVT VT = MemOps[i];
6122     unsigned VTSize = VT.getSizeInBits() / 8;
6123     SDValue Value;
6124 
6125     bool isDereferenceable =
6126       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6127     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6128     if (isDereferenceable)
6129       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6130 
6131     Value = DAG.getLoad(
6132         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6133         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6134     LoadValues.push_back(Value);
6135     LoadChains.push_back(Value.getValue(1));
6136     SrcOff += VTSize;
6137   }
6138   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6139   OutChains.clear();
6140   for (unsigned i = 0; i < NumMemOps; i++) {
6141     EVT VT = MemOps[i];
6142     unsigned VTSize = VT.getSizeInBits() / 8;
6143     SDValue Store;
6144 
6145     Store = DAG.getStore(
6146         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6147         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6148     OutChains.push_back(Store);
6149     DstOff += VTSize;
6150   }
6151 
6152   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6153 }
6154 
6155 /// Lower the call to 'memset' intrinsic function into a series of store
6156 /// operations.
6157 ///
6158 /// \param DAG Selection DAG where lowered code is placed.
6159 /// \param dl Link to corresponding IR location.
6160 /// \param Chain Control flow dependency.
6161 /// \param Dst Pointer to destination memory location.
6162 /// \param Src Value of byte to write into the memory.
6163 /// \param Size Number of bytes to write.
6164 /// \param Alignment Alignment of the destination in bytes.
6165 /// \param isVol True if destination is volatile.
6166 /// \param DstPtrInfo IR information on the memory pointer.
6167 /// \returns New head in the control flow, if lowering was successful, empty
6168 /// SDValue otherwise.
6169 ///
6170 /// The function tries to replace 'llvm.memset' intrinsic with several store
6171 /// operations and value calculation code. This is usually profitable for small
6172 /// memory size.
6173 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6174                                SDValue Chain, SDValue Dst, SDValue Src,
6175                                uint64_t Size, Align Alignment, bool isVol,
6176                                MachinePointerInfo DstPtrInfo) {
6177   // Turn a memset of undef to nop.
6178   // FIXME: We need to honor volatile even is Src is undef.
6179   if (Src.isUndef())
6180     return Chain;
6181 
6182   // Expand memset to a series of load/store ops if the size operand
6183   // falls below a certain threshold.
6184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6185   std::vector<EVT> MemOps;
6186   bool DstAlignCanChange = false;
6187   MachineFunction &MF = DAG.getMachineFunction();
6188   MachineFrameInfo &MFI = MF.getFrameInfo();
6189   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6190   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6191   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6192     DstAlignCanChange = true;
6193   bool IsZeroVal =
6194     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6195   if (!TLI.findOptimalMemOpLowering(
6196           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6197           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6198           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6199     return SDValue();
6200 
6201   if (DstAlignCanChange) {
6202     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6203     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6204     if (NewAlign > Alignment) {
6205       // Give the stack frame object a larger alignment if needed.
6206       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6207         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6208       Alignment = NewAlign;
6209     }
6210   }
6211 
6212   SmallVector<SDValue, 8> OutChains;
6213   uint64_t DstOff = 0;
6214   unsigned NumMemOps = MemOps.size();
6215 
6216   // Find the largest store and generate the bit pattern for it.
6217   EVT LargestVT = MemOps[0];
6218   for (unsigned i = 1; i < NumMemOps; i++)
6219     if (MemOps[i].bitsGT(LargestVT))
6220       LargestVT = MemOps[i];
6221   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6222 
6223   for (unsigned i = 0; i < NumMemOps; i++) {
6224     EVT VT = MemOps[i];
6225     unsigned VTSize = VT.getSizeInBits() / 8;
6226     if (VTSize > Size) {
6227       // Issuing an unaligned load / store pair  that overlaps with the previous
6228       // pair. Adjust the offset accordingly.
6229       assert(i == NumMemOps-1 && i != 0);
6230       DstOff -= VTSize - Size;
6231     }
6232 
6233     // If this store is smaller than the largest store see whether we can get
6234     // the smaller value for free with a truncate.
6235     SDValue Value = MemSetValue;
6236     if (VT.bitsLT(LargestVT)) {
6237       if (!LargestVT.isVector() && !VT.isVector() &&
6238           TLI.isTruncateFree(LargestVT, VT))
6239         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6240       else
6241         Value = getMemsetValue(Src, VT, DAG, dl);
6242     }
6243     assert(Value.getValueType() == VT && "Value with wrong type.");
6244     SDValue Store = DAG.getStore(
6245         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6246         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6247         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6248     OutChains.push_back(Store);
6249     DstOff += VT.getSizeInBits() / 8;
6250     Size -= VTSize;
6251   }
6252 
6253   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6254 }
6255 
6256 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6257                                             unsigned AS) {
6258   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6259   // pointer operands can be losslessly bitcasted to pointers of address space 0
6260   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6261     report_fatal_error("cannot lower memory intrinsic in address space " +
6262                        Twine(AS));
6263   }
6264 }
6265 
6266 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6267                                 SDValue Src, SDValue Size, Align Alignment,
6268                                 bool isVol, bool AlwaysInline, bool isTailCall,
6269                                 MachinePointerInfo DstPtrInfo,
6270                                 MachinePointerInfo SrcPtrInfo) {
6271   // Check to see if we should lower the memcpy to loads and stores first.
6272   // For cases within the target-specified limits, this is the best choice.
6273   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6274   if (ConstantSize) {
6275     // Memcpy with size zero? Just return the original chain.
6276     if (ConstantSize->isNullValue())
6277       return Chain;
6278 
6279     SDValue Result = getMemcpyLoadsAndStores(
6280         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6281         isVol, false, DstPtrInfo, SrcPtrInfo);
6282     if (Result.getNode())
6283       return Result;
6284   }
6285 
6286   // Then check to see if we should lower the memcpy with target-specific
6287   // code. If the target chooses to do this, this is the next best.
6288   if (TSI) {
6289     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6290         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6291         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6292     if (Result.getNode())
6293       return Result;
6294   }
6295 
6296   // If we really need inline code and the target declined to provide it,
6297   // use a (potentially long) sequence of loads and stores.
6298   if (AlwaysInline) {
6299     assert(ConstantSize && "AlwaysInline requires a constant size!");
6300     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6301                                    ConstantSize->getZExtValue(), Alignment,
6302                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6303   }
6304 
6305   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6306   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6307 
6308   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6309   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6310   // respect volatile, so they may do things like read or write memory
6311   // beyond the given memory regions. But fixing this isn't easy, and most
6312   // people don't care.
6313 
6314   // Emit a library call.
6315   TargetLowering::ArgListTy Args;
6316   TargetLowering::ArgListEntry Entry;
6317   Entry.Ty = Type::getInt8PtrTy(*getContext());
6318   Entry.Node = Dst; Args.push_back(Entry);
6319   Entry.Node = Src; Args.push_back(Entry);
6320 
6321   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6322   Entry.Node = Size; Args.push_back(Entry);
6323   // FIXME: pass in SDLoc
6324   TargetLowering::CallLoweringInfo CLI(*this);
6325   CLI.setDebugLoc(dl)
6326       .setChain(Chain)
6327       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6328                     Dst.getValueType().getTypeForEVT(*getContext()),
6329                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6330                                       TLI->getPointerTy(getDataLayout())),
6331                     std::move(Args))
6332       .setDiscardResult()
6333       .setTailCall(isTailCall);
6334 
6335   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6336   return CallResult.second;
6337 }
6338 
6339 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6340                                       SDValue Dst, unsigned DstAlign,
6341                                       SDValue Src, unsigned SrcAlign,
6342                                       SDValue Size, Type *SizeTy,
6343                                       unsigned ElemSz, bool isTailCall,
6344                                       MachinePointerInfo DstPtrInfo,
6345                                       MachinePointerInfo SrcPtrInfo) {
6346   // Emit a library call.
6347   TargetLowering::ArgListTy Args;
6348   TargetLowering::ArgListEntry Entry;
6349   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6350   Entry.Node = Dst;
6351   Args.push_back(Entry);
6352 
6353   Entry.Node = Src;
6354   Args.push_back(Entry);
6355 
6356   Entry.Ty = SizeTy;
6357   Entry.Node = Size;
6358   Args.push_back(Entry);
6359 
6360   RTLIB::Libcall LibraryCall =
6361       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6362   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6363     report_fatal_error("Unsupported element size");
6364 
6365   TargetLowering::CallLoweringInfo CLI(*this);
6366   CLI.setDebugLoc(dl)
6367       .setChain(Chain)
6368       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6369                     Type::getVoidTy(*getContext()),
6370                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6371                                       TLI->getPointerTy(getDataLayout())),
6372                     std::move(Args))
6373       .setDiscardResult()
6374       .setTailCall(isTailCall);
6375 
6376   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6377   return CallResult.second;
6378 }
6379 
6380 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6381                                  SDValue Src, SDValue Size, Align Alignment,
6382                                  bool isVol, bool isTailCall,
6383                                  MachinePointerInfo DstPtrInfo,
6384                                  MachinePointerInfo SrcPtrInfo) {
6385   // Check to see if we should lower the memmove to loads and stores first.
6386   // For cases within the target-specified limits, this is the best choice.
6387   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6388   if (ConstantSize) {
6389     // Memmove with size zero? Just return the original chain.
6390     if (ConstantSize->isNullValue())
6391       return Chain;
6392 
6393     SDValue Result = getMemmoveLoadsAndStores(
6394         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6395         isVol, false, DstPtrInfo, SrcPtrInfo);
6396     if (Result.getNode())
6397       return Result;
6398   }
6399 
6400   // Then check to see if we should lower the memmove with target-specific
6401   // code. If the target chooses to do this, this is the next best.
6402   if (TSI) {
6403     SDValue Result = TSI->EmitTargetCodeForMemmove(
6404         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6405         SrcPtrInfo);
6406     if (Result.getNode())
6407       return Result;
6408   }
6409 
6410   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6411   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6412 
6413   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6414   // not be safe.  See memcpy above for more details.
6415 
6416   // Emit a library call.
6417   TargetLowering::ArgListTy Args;
6418   TargetLowering::ArgListEntry Entry;
6419   Entry.Ty = Type::getInt8PtrTy(*getContext());
6420   Entry.Node = Dst; Args.push_back(Entry);
6421   Entry.Node = Src; Args.push_back(Entry);
6422 
6423   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6424   Entry.Node = Size; Args.push_back(Entry);
6425   // FIXME:  pass in SDLoc
6426   TargetLowering::CallLoweringInfo CLI(*this);
6427   CLI.setDebugLoc(dl)
6428       .setChain(Chain)
6429       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6430                     Dst.getValueType().getTypeForEVT(*getContext()),
6431                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6432                                       TLI->getPointerTy(getDataLayout())),
6433                     std::move(Args))
6434       .setDiscardResult()
6435       .setTailCall(isTailCall);
6436 
6437   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6438   return CallResult.second;
6439 }
6440 
6441 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6442                                        SDValue Dst, unsigned DstAlign,
6443                                        SDValue Src, unsigned SrcAlign,
6444                                        SDValue Size, Type *SizeTy,
6445                                        unsigned ElemSz, bool isTailCall,
6446                                        MachinePointerInfo DstPtrInfo,
6447                                        MachinePointerInfo SrcPtrInfo) {
6448   // Emit a library call.
6449   TargetLowering::ArgListTy Args;
6450   TargetLowering::ArgListEntry Entry;
6451   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6452   Entry.Node = Dst;
6453   Args.push_back(Entry);
6454 
6455   Entry.Node = Src;
6456   Args.push_back(Entry);
6457 
6458   Entry.Ty = SizeTy;
6459   Entry.Node = Size;
6460   Args.push_back(Entry);
6461 
6462   RTLIB::Libcall LibraryCall =
6463       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6464   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6465     report_fatal_error("Unsupported element size");
6466 
6467   TargetLowering::CallLoweringInfo CLI(*this);
6468   CLI.setDebugLoc(dl)
6469       .setChain(Chain)
6470       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6471                     Type::getVoidTy(*getContext()),
6472                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6473                                       TLI->getPointerTy(getDataLayout())),
6474                     std::move(Args))
6475       .setDiscardResult()
6476       .setTailCall(isTailCall);
6477 
6478   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6479   return CallResult.second;
6480 }
6481 
6482 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6483                                 SDValue Src, SDValue Size, Align Alignment,
6484                                 bool isVol, bool isTailCall,
6485                                 MachinePointerInfo DstPtrInfo) {
6486   // Check to see if we should lower the memset to stores first.
6487   // For cases within the target-specified limits, this is the best choice.
6488   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6489   if (ConstantSize) {
6490     // Memset with size zero? Just return the original chain.
6491     if (ConstantSize->isNullValue())
6492       return Chain;
6493 
6494     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6495                                      ConstantSize->getZExtValue(), Alignment,
6496                                      isVol, DstPtrInfo);
6497 
6498     if (Result.getNode())
6499       return Result;
6500   }
6501 
6502   // Then check to see if we should lower the memset with target-specific
6503   // code. If the target chooses to do this, this is the next best.
6504   if (TSI) {
6505     SDValue Result = TSI->EmitTargetCodeForMemset(
6506         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6507     if (Result.getNode())
6508       return Result;
6509   }
6510 
6511   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6512 
6513   // Emit a library call.
6514   TargetLowering::ArgListTy Args;
6515   TargetLowering::ArgListEntry Entry;
6516   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6517   Args.push_back(Entry);
6518   Entry.Node = Src;
6519   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6520   Args.push_back(Entry);
6521   Entry.Node = Size;
6522   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6523   Args.push_back(Entry);
6524 
6525   // FIXME: pass in SDLoc
6526   TargetLowering::CallLoweringInfo CLI(*this);
6527   CLI.setDebugLoc(dl)
6528       .setChain(Chain)
6529       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6530                     Dst.getValueType().getTypeForEVT(*getContext()),
6531                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6532                                       TLI->getPointerTy(getDataLayout())),
6533                     std::move(Args))
6534       .setDiscardResult()
6535       .setTailCall(isTailCall);
6536 
6537   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6538   return CallResult.second;
6539 }
6540 
6541 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6542                                       SDValue Dst, unsigned DstAlign,
6543                                       SDValue Value, SDValue Size, Type *SizeTy,
6544                                       unsigned ElemSz, bool isTailCall,
6545                                       MachinePointerInfo DstPtrInfo) {
6546   // Emit a library call.
6547   TargetLowering::ArgListTy Args;
6548   TargetLowering::ArgListEntry Entry;
6549   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6550   Entry.Node = Dst;
6551   Args.push_back(Entry);
6552 
6553   Entry.Ty = Type::getInt8Ty(*getContext());
6554   Entry.Node = Value;
6555   Args.push_back(Entry);
6556 
6557   Entry.Ty = SizeTy;
6558   Entry.Node = Size;
6559   Args.push_back(Entry);
6560 
6561   RTLIB::Libcall LibraryCall =
6562       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6563   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6564     report_fatal_error("Unsupported element size");
6565 
6566   TargetLowering::CallLoweringInfo CLI(*this);
6567   CLI.setDebugLoc(dl)
6568       .setChain(Chain)
6569       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6570                     Type::getVoidTy(*getContext()),
6571                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6572                                       TLI->getPointerTy(getDataLayout())),
6573                     std::move(Args))
6574       .setDiscardResult()
6575       .setTailCall(isTailCall);
6576 
6577   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6578   return CallResult.second;
6579 }
6580 
6581 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6582                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6583                                 MachineMemOperand *MMO) {
6584   FoldingSetNodeID ID;
6585   ID.AddInteger(MemVT.getRawBits());
6586   AddNodeIDNode(ID, Opcode, VTList, Ops);
6587   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6588   void* IP = nullptr;
6589   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6590     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6591     return SDValue(E, 0);
6592   }
6593 
6594   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6595                                     VTList, MemVT, MMO);
6596   createOperands(N, Ops);
6597 
6598   CSEMap.InsertNode(N, IP);
6599   InsertNode(N);
6600   return SDValue(N, 0);
6601 }
6602 
6603 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6604                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6605                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6606                                        MachineMemOperand *MMO) {
6607   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6608          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6609   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6610 
6611   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6612   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6613 }
6614 
6615 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6616                                 SDValue Chain, SDValue Ptr, SDValue Val,
6617                                 MachineMemOperand *MMO) {
6618   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6619           Opcode == ISD::ATOMIC_LOAD_SUB ||
6620           Opcode == ISD::ATOMIC_LOAD_AND ||
6621           Opcode == ISD::ATOMIC_LOAD_CLR ||
6622           Opcode == ISD::ATOMIC_LOAD_OR ||
6623           Opcode == ISD::ATOMIC_LOAD_XOR ||
6624           Opcode == ISD::ATOMIC_LOAD_NAND ||
6625           Opcode == ISD::ATOMIC_LOAD_MIN ||
6626           Opcode == ISD::ATOMIC_LOAD_MAX ||
6627           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6628           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6629           Opcode == ISD::ATOMIC_LOAD_FADD ||
6630           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6631           Opcode == ISD::ATOMIC_SWAP ||
6632           Opcode == ISD::ATOMIC_STORE) &&
6633          "Invalid Atomic Op");
6634 
6635   EVT VT = Val.getValueType();
6636 
6637   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6638                                                getVTList(VT, MVT::Other);
6639   SDValue Ops[] = {Chain, Ptr, Val};
6640   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6641 }
6642 
6643 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6644                                 EVT VT, SDValue Chain, SDValue Ptr,
6645                                 MachineMemOperand *MMO) {
6646   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6647 
6648   SDVTList VTs = getVTList(VT, MVT::Other);
6649   SDValue Ops[] = {Chain, Ptr};
6650   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6651 }
6652 
6653 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6654 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6655   if (Ops.size() == 1)
6656     return Ops[0];
6657 
6658   SmallVector<EVT, 4> VTs;
6659   VTs.reserve(Ops.size());
6660   for (unsigned i = 0; i < Ops.size(); ++i)
6661     VTs.push_back(Ops[i].getValueType());
6662   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6663 }
6664 
6665 SDValue SelectionDAG::getMemIntrinsicNode(
6666     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6667     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6668     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6669   if (Align == 0)  // Ensure that codegen never sees alignment 0
6670     Align = getEVTAlignment(MemVT);
6671 
6672   if (!Size && MemVT.isScalableVector())
6673     Size = MemoryLocation::UnknownSize;
6674   else if (!Size)
6675     Size = MemVT.getStoreSize();
6676 
6677   MachineFunction &MF = getMachineFunction();
6678   MachineMemOperand *MMO =
6679       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6680 
6681   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6682 }
6683 
6684 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6685                                           SDVTList VTList,
6686                                           ArrayRef<SDValue> Ops, EVT MemVT,
6687                                           MachineMemOperand *MMO) {
6688   assert((Opcode == ISD::INTRINSIC_VOID ||
6689           Opcode == ISD::INTRINSIC_W_CHAIN ||
6690           Opcode == ISD::PREFETCH ||
6691           Opcode == ISD::LIFETIME_START ||
6692           Opcode == ISD::LIFETIME_END ||
6693           ((int)Opcode <= std::numeric_limits<int>::max() &&
6694            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6695          "Opcode is not a memory-accessing opcode!");
6696 
6697   // Memoize the node unless it returns a flag.
6698   MemIntrinsicSDNode *N;
6699   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6700     FoldingSetNodeID ID;
6701     AddNodeIDNode(ID, Opcode, VTList, Ops);
6702     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6703         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6704     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6705     void *IP = nullptr;
6706     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6707       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6708       return SDValue(E, 0);
6709     }
6710 
6711     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6712                                       VTList, MemVT, MMO);
6713     createOperands(N, Ops);
6714 
6715   CSEMap.InsertNode(N, IP);
6716   } else {
6717     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6718                                       VTList, MemVT, MMO);
6719     createOperands(N, Ops);
6720   }
6721   InsertNode(N);
6722   SDValue V(N, 0);
6723   NewSDValueDbgMsg(V, "Creating new node: ", this);
6724   return V;
6725 }
6726 
6727 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6728                                       SDValue Chain, int FrameIndex,
6729                                       int64_t Size, int64_t Offset) {
6730   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6731   const auto VTs = getVTList(MVT::Other);
6732   SDValue Ops[2] = {
6733       Chain,
6734       getFrameIndex(FrameIndex,
6735                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6736                     true)};
6737 
6738   FoldingSetNodeID ID;
6739   AddNodeIDNode(ID, Opcode, VTs, Ops);
6740   ID.AddInteger(FrameIndex);
6741   ID.AddInteger(Size);
6742   ID.AddInteger(Offset);
6743   void *IP = nullptr;
6744   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6745     return SDValue(E, 0);
6746 
6747   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6748       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6749   createOperands(N, Ops);
6750   CSEMap.InsertNode(N, IP);
6751   InsertNode(N);
6752   SDValue V(N, 0);
6753   NewSDValueDbgMsg(V, "Creating new node: ", this);
6754   return V;
6755 }
6756 
6757 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6758 /// MachinePointerInfo record from it.  This is particularly useful because the
6759 /// code generator has many cases where it doesn't bother passing in a
6760 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6761 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6762                                            SelectionDAG &DAG, SDValue Ptr,
6763                                            int64_t Offset = 0) {
6764   // If this is FI+Offset, we can model it.
6765   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6766     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6767                                              FI->getIndex(), Offset);
6768 
6769   // If this is (FI+Offset1)+Offset2, we can model it.
6770   if (Ptr.getOpcode() != ISD::ADD ||
6771       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6772       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6773     return Info;
6774 
6775   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6776   return MachinePointerInfo::getFixedStack(
6777       DAG.getMachineFunction(), FI,
6778       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6779 }
6780 
6781 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6782 /// MachinePointerInfo record from it.  This is particularly useful because the
6783 /// code generator has many cases where it doesn't bother passing in a
6784 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6785 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6786                                            SelectionDAG &DAG, SDValue Ptr,
6787                                            SDValue OffsetOp) {
6788   // If the 'Offset' value isn't a constant, we can't handle this.
6789   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6790     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6791   if (OffsetOp.isUndef())
6792     return InferPointerInfo(Info, DAG, Ptr);
6793   return Info;
6794 }
6795 
6796 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6797                               EVT VT, const SDLoc &dl, SDValue Chain,
6798                               SDValue Ptr, SDValue Offset,
6799                               MachinePointerInfo PtrInfo, EVT MemVT,
6800                               unsigned Alignment,
6801                               MachineMemOperand::Flags MMOFlags,
6802                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6803   assert(Chain.getValueType() == MVT::Other &&
6804         "Invalid chain type");
6805   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6806     Alignment = getEVTAlignment(MemVT);
6807 
6808   MMOFlags |= MachineMemOperand::MOLoad;
6809   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6810   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6811   // clients.
6812   if (PtrInfo.V.isNull())
6813     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6814 
6815   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6816   MachineFunction &MF = getMachineFunction();
6817   MachineMemOperand *MMO = MF.getMachineMemOperand(
6818       PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges);
6819   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6820 }
6821 
6822 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6823                               EVT VT, const SDLoc &dl, SDValue Chain,
6824                               SDValue Ptr, SDValue Offset, EVT MemVT,
6825                               MachineMemOperand *MMO) {
6826   if (VT == MemVT) {
6827     ExtType = ISD::NON_EXTLOAD;
6828   } else if (ExtType == ISD::NON_EXTLOAD) {
6829     assert(VT == MemVT && "Non-extending load from different memory type!");
6830   } else {
6831     // Extending load.
6832     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6833            "Should only be an extending load, not truncating!");
6834     assert(VT.isInteger() == MemVT.isInteger() &&
6835            "Cannot convert from FP to Int or Int -> FP!");
6836     assert(VT.isVector() == MemVT.isVector() &&
6837            "Cannot use an ext load to convert to or from a vector!");
6838     assert((!VT.isVector() ||
6839             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6840            "Cannot use an ext load to change the number of vector elements!");
6841   }
6842 
6843   bool Indexed = AM != ISD::UNINDEXED;
6844   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6845 
6846   SDVTList VTs = Indexed ?
6847     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6848   SDValue Ops[] = { Chain, Ptr, Offset };
6849   FoldingSetNodeID ID;
6850   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6851   ID.AddInteger(MemVT.getRawBits());
6852   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6853       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6854   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6855   void *IP = nullptr;
6856   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6857     cast<LoadSDNode>(E)->refineAlignment(MMO);
6858     return SDValue(E, 0);
6859   }
6860   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6861                                   ExtType, MemVT, MMO);
6862   createOperands(N, Ops);
6863 
6864   CSEMap.InsertNode(N, IP);
6865   InsertNode(N);
6866   SDValue V(N, 0);
6867   NewSDValueDbgMsg(V, "Creating new node: ", this);
6868   return V;
6869 }
6870 
6871 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6872                               SDValue Ptr, MachinePointerInfo PtrInfo,
6873                               unsigned Alignment,
6874                               MachineMemOperand::Flags MMOFlags,
6875                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6876   SDValue Undef = getUNDEF(Ptr.getValueType());
6877   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6878                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6879 }
6880 
6881 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6882                               SDValue Ptr, MachineMemOperand *MMO) {
6883   SDValue Undef = getUNDEF(Ptr.getValueType());
6884   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6885                  VT, MMO);
6886 }
6887 
6888 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6889                                  EVT VT, SDValue Chain, SDValue Ptr,
6890                                  MachinePointerInfo PtrInfo, EVT MemVT,
6891                                  unsigned Alignment,
6892                                  MachineMemOperand::Flags MMOFlags,
6893                                  const AAMDNodes &AAInfo) {
6894   SDValue Undef = getUNDEF(Ptr.getValueType());
6895   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6896                  MemVT, Alignment, MMOFlags, AAInfo);
6897 }
6898 
6899 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6900                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6901                                  MachineMemOperand *MMO) {
6902   SDValue Undef = getUNDEF(Ptr.getValueType());
6903   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6904                  MemVT, MMO);
6905 }
6906 
6907 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6908                                      SDValue Base, SDValue Offset,
6909                                      ISD::MemIndexedMode AM) {
6910   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6911   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6912   // Don't propagate the invariant or dereferenceable flags.
6913   auto MMOFlags =
6914       LD->getMemOperand()->getFlags() &
6915       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6916   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6917                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6918                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6919                  LD->getAAInfo());
6920 }
6921 
6922 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6923                                SDValue Ptr, MachinePointerInfo PtrInfo,
6924                                unsigned Alignment,
6925                                MachineMemOperand::Flags MMOFlags,
6926                                const AAMDNodes &AAInfo) {
6927   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6928   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6929     Alignment = getEVTAlignment(Val.getValueType());
6930 
6931   MMOFlags |= MachineMemOperand::MOStore;
6932   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6933 
6934   if (PtrInfo.V.isNull())
6935     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6936 
6937   MachineFunction &MF = getMachineFunction();
6938   uint64_t Size =
6939       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6940   MachineMemOperand *MMO =
6941       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6942   return getStore(Chain, dl, Val, Ptr, MMO);
6943 }
6944 
6945 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6946                                SDValue Ptr, MachineMemOperand *MMO) {
6947   assert(Chain.getValueType() == MVT::Other &&
6948         "Invalid chain type");
6949   EVT VT = Val.getValueType();
6950   SDVTList VTs = getVTList(MVT::Other);
6951   SDValue Undef = getUNDEF(Ptr.getValueType());
6952   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6953   FoldingSetNodeID ID;
6954   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6955   ID.AddInteger(VT.getRawBits());
6956   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6957       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6958   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6959   void *IP = nullptr;
6960   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6961     cast<StoreSDNode>(E)->refineAlignment(MMO);
6962     return SDValue(E, 0);
6963   }
6964   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6965                                    ISD::UNINDEXED, false, VT, MMO);
6966   createOperands(N, Ops);
6967 
6968   CSEMap.InsertNode(N, IP);
6969   InsertNode(N);
6970   SDValue V(N, 0);
6971   NewSDValueDbgMsg(V, "Creating new node: ", this);
6972   return V;
6973 }
6974 
6975 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6976                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6977                                     EVT SVT, unsigned Alignment,
6978                                     MachineMemOperand::Flags MMOFlags,
6979                                     const AAMDNodes &AAInfo) {
6980   assert(Chain.getValueType() == MVT::Other &&
6981         "Invalid chain type");
6982   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6983     Alignment = getEVTAlignment(SVT);
6984 
6985   MMOFlags |= MachineMemOperand::MOStore;
6986   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6987 
6988   if (PtrInfo.V.isNull())
6989     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6990 
6991   MachineFunction &MF = getMachineFunction();
6992   MachineMemOperand *MMO = MF.getMachineMemOperand(
6993       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6994   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6995 }
6996 
6997 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6998                                     SDValue Ptr, EVT SVT,
6999                                     MachineMemOperand *MMO) {
7000   EVT VT = Val.getValueType();
7001 
7002   assert(Chain.getValueType() == MVT::Other &&
7003         "Invalid chain type");
7004   if (VT == SVT)
7005     return getStore(Chain, dl, Val, Ptr, MMO);
7006 
7007   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7008          "Should only be a truncating store, not extending!");
7009   assert(VT.isInteger() == SVT.isInteger() &&
7010          "Can't do FP-INT conversion!");
7011   assert(VT.isVector() == SVT.isVector() &&
7012          "Cannot use trunc store to convert to or from a vector!");
7013   assert((!VT.isVector() ||
7014           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7015          "Cannot use trunc store to change the number of vector elements!");
7016 
7017   SDVTList VTs = getVTList(MVT::Other);
7018   SDValue Undef = getUNDEF(Ptr.getValueType());
7019   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7020   FoldingSetNodeID ID;
7021   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7022   ID.AddInteger(SVT.getRawBits());
7023   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7024       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7025   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7026   void *IP = nullptr;
7027   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7028     cast<StoreSDNode>(E)->refineAlignment(MMO);
7029     return SDValue(E, 0);
7030   }
7031   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7032                                    ISD::UNINDEXED, true, SVT, MMO);
7033   createOperands(N, Ops);
7034 
7035   CSEMap.InsertNode(N, IP);
7036   InsertNode(N);
7037   SDValue V(N, 0);
7038   NewSDValueDbgMsg(V, "Creating new node: ", this);
7039   return V;
7040 }
7041 
7042 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7043                                       SDValue Base, SDValue Offset,
7044                                       ISD::MemIndexedMode AM) {
7045   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7046   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7047   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7048   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7049   FoldingSetNodeID ID;
7050   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7051   ID.AddInteger(ST->getMemoryVT().getRawBits());
7052   ID.AddInteger(ST->getRawSubclassData());
7053   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7054   void *IP = nullptr;
7055   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7056     return SDValue(E, 0);
7057 
7058   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7059                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7060                                    ST->getMemOperand());
7061   createOperands(N, Ops);
7062 
7063   CSEMap.InsertNode(N, IP);
7064   InsertNode(N);
7065   SDValue V(N, 0);
7066   NewSDValueDbgMsg(V, "Creating new node: ", this);
7067   return V;
7068 }
7069 
7070 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7071                                     SDValue Base, SDValue Offset, SDValue Mask,
7072                                     SDValue PassThru, EVT MemVT,
7073                                     MachineMemOperand *MMO,
7074                                     ISD::MemIndexedMode AM,
7075                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7076   bool Indexed = AM != ISD::UNINDEXED;
7077   assert((Indexed || Offset.isUndef()) &&
7078          "Unindexed masked load with an offset!");
7079   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7080                          : getVTList(VT, MVT::Other);
7081   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7082   FoldingSetNodeID ID;
7083   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7084   ID.AddInteger(MemVT.getRawBits());
7085   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7086       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7087   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7088   void *IP = nullptr;
7089   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7090     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7091     return SDValue(E, 0);
7092   }
7093   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7094                                         AM, ExtTy, isExpanding, MemVT, MMO);
7095   createOperands(N, Ops);
7096 
7097   CSEMap.InsertNode(N, IP);
7098   InsertNode(N);
7099   SDValue V(N, 0);
7100   NewSDValueDbgMsg(V, "Creating new node: ", this);
7101   return V;
7102 }
7103 
7104 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7105                                            SDValue Base, SDValue Offset,
7106                                            ISD::MemIndexedMode AM) {
7107   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7108   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7109   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7110                        Offset, LD->getMask(), LD->getPassThru(),
7111                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7112                        LD->getExtensionType(), LD->isExpandingLoad());
7113 }
7114 
7115 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7116                                      SDValue Val, SDValue Base, SDValue Offset,
7117                                      SDValue Mask, EVT MemVT,
7118                                      MachineMemOperand *MMO,
7119                                      ISD::MemIndexedMode AM, bool IsTruncating,
7120                                      bool IsCompressing) {
7121   assert(Chain.getValueType() == MVT::Other &&
7122         "Invalid chain type");
7123   bool Indexed = AM != ISD::UNINDEXED;
7124   assert((Indexed || Offset.isUndef()) &&
7125          "Unindexed masked store with an offset!");
7126   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7127                          : getVTList(MVT::Other);
7128   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7129   FoldingSetNodeID ID;
7130   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7131   ID.AddInteger(MemVT.getRawBits());
7132   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7133       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7134   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7135   void *IP = nullptr;
7136   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7137     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7138     return SDValue(E, 0);
7139   }
7140   auto *N =
7141       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7142                                    IsTruncating, IsCompressing, MemVT, MMO);
7143   createOperands(N, Ops);
7144 
7145   CSEMap.InsertNode(N, IP);
7146   InsertNode(N);
7147   SDValue V(N, 0);
7148   NewSDValueDbgMsg(V, "Creating new node: ", this);
7149   return V;
7150 }
7151 
7152 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7153                                             SDValue Base, SDValue Offset,
7154                                             ISD::MemIndexedMode AM) {
7155   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7156   assert(ST->getOffset().isUndef() &&
7157          "Masked store is already a indexed store!");
7158   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7159                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7160                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7161 }
7162 
7163 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7164                                       ArrayRef<SDValue> Ops,
7165                                       MachineMemOperand *MMO,
7166                                       ISD::MemIndexType IndexType) {
7167   assert(Ops.size() == 6 && "Incompatible number of operands");
7168 
7169   FoldingSetNodeID ID;
7170   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7171   ID.AddInteger(VT.getRawBits());
7172   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7173       dl.getIROrder(), VTs, VT, MMO, IndexType));
7174   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7175   void *IP = nullptr;
7176   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7177     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7178     return SDValue(E, 0);
7179   }
7180 
7181   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7182                                           VTs, VT, MMO, IndexType);
7183   createOperands(N, Ops);
7184 
7185   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7186          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7187   assert(N->getMask().getValueType().getVectorNumElements() ==
7188              N->getValueType(0).getVectorNumElements() &&
7189          "Vector width mismatch between mask and data");
7190   assert(N->getIndex().getValueType().getVectorNumElements() >=
7191              N->getValueType(0).getVectorNumElements() &&
7192          "Vector width mismatch between index and data");
7193   assert(isa<ConstantSDNode>(N->getScale()) &&
7194          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7195          "Scale should be a constant power of 2");
7196 
7197   CSEMap.InsertNode(N, IP);
7198   InsertNode(N);
7199   SDValue V(N, 0);
7200   NewSDValueDbgMsg(V, "Creating new node: ", this);
7201   return V;
7202 }
7203 
7204 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7205                                        ArrayRef<SDValue> Ops,
7206                                        MachineMemOperand *MMO,
7207                                        ISD::MemIndexType IndexType) {
7208   assert(Ops.size() == 6 && "Incompatible number of operands");
7209 
7210   FoldingSetNodeID ID;
7211   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7212   ID.AddInteger(VT.getRawBits());
7213   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7214       dl.getIROrder(), VTs, VT, MMO, IndexType));
7215   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7216   void *IP = nullptr;
7217   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7218     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7219     return SDValue(E, 0);
7220   }
7221   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7222                                            VTs, VT, MMO, IndexType);
7223   createOperands(N, Ops);
7224 
7225   assert(N->getMask().getValueType().getVectorNumElements() ==
7226              N->getValue().getValueType().getVectorNumElements() &&
7227          "Vector width mismatch between mask and data");
7228   assert(N->getIndex().getValueType().getVectorNumElements() >=
7229              N->getValue().getValueType().getVectorNumElements() &&
7230          "Vector width mismatch between index and data");
7231   assert(isa<ConstantSDNode>(N->getScale()) &&
7232          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7233          "Scale should be a constant power of 2");
7234 
7235   CSEMap.InsertNode(N, IP);
7236   InsertNode(N);
7237   SDValue V(N, 0);
7238   NewSDValueDbgMsg(V, "Creating new node: ", this);
7239   return V;
7240 }
7241 
7242 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7243   // select undef, T, F --> T (if T is a constant), otherwise F
7244   // select, ?, undef, F --> F
7245   // select, ?, T, undef --> T
7246   if (Cond.isUndef())
7247     return isConstantValueOfAnyType(T) ? T : F;
7248   if (T.isUndef())
7249     return F;
7250   if (F.isUndef())
7251     return T;
7252 
7253   // select true, T, F --> T
7254   // select false, T, F --> F
7255   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7256     return CondC->isNullValue() ? F : T;
7257 
7258   // TODO: This should simplify VSELECT with constant condition using something
7259   // like this (but check boolean contents to be complete?):
7260   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7261   //    return T;
7262   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7263   //    return F;
7264 
7265   // select ?, T, T --> T
7266   if (T == F)
7267     return T;
7268 
7269   return SDValue();
7270 }
7271 
7272 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7273   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7274   if (X.isUndef())
7275     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7276   // shift X, undef --> undef (because it may shift by the bitwidth)
7277   if (Y.isUndef())
7278     return getUNDEF(X.getValueType());
7279 
7280   // shift 0, Y --> 0
7281   // shift X, 0 --> X
7282   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7283     return X;
7284 
7285   // shift X, C >= bitwidth(X) --> undef
7286   // All vector elements must be too big (or undef) to avoid partial undefs.
7287   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7288     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7289   };
7290   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7291     return getUNDEF(X.getValueType());
7292 
7293   return SDValue();
7294 }
7295 
7296 // TODO: Use fast-math-flags to enable more simplifications.
7297 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7298   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7299   if (!YC)
7300     return SDValue();
7301 
7302   // X + -0.0 --> X
7303   if (Opcode == ISD::FADD)
7304     if (YC->getValueAPF().isNegZero())
7305       return X;
7306 
7307   // X - +0.0 --> X
7308   if (Opcode == ISD::FSUB)
7309     if (YC->getValueAPF().isPosZero())
7310       return X;
7311 
7312   // X * 1.0 --> X
7313   // X / 1.0 --> X
7314   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7315     if (YC->getValueAPF().isExactlyValue(1.0))
7316       return X;
7317 
7318   return SDValue();
7319 }
7320 
7321 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7322                                SDValue Ptr, SDValue SV, unsigned Align) {
7323   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7324   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7325 }
7326 
7327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7328                               ArrayRef<SDUse> Ops) {
7329   switch (Ops.size()) {
7330   case 0: return getNode(Opcode, DL, VT);
7331   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7332   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7333   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7334   default: break;
7335   }
7336 
7337   // Copy from an SDUse array into an SDValue array for use with
7338   // the regular getNode logic.
7339   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7340   return getNode(Opcode, DL, VT, NewOps);
7341 }
7342 
7343 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7344                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7345   unsigned NumOps = Ops.size();
7346   switch (NumOps) {
7347   case 0: return getNode(Opcode, DL, VT);
7348   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7349   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7350   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7351   default: break;
7352   }
7353 
7354   switch (Opcode) {
7355   default: break;
7356   case ISD::BUILD_VECTOR:
7357     // Attempt to simplify BUILD_VECTOR.
7358     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7359       return V;
7360     break;
7361   case ISD::CONCAT_VECTORS:
7362     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7363       return V;
7364     break;
7365   case ISD::SELECT_CC:
7366     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7367     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7368            "LHS and RHS of condition must have same type!");
7369     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7370            "True and False arms of SelectCC must have same type!");
7371     assert(Ops[2].getValueType() == VT &&
7372            "select_cc node must be of same type as true and false value!");
7373     break;
7374   case ISD::BR_CC:
7375     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7376     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7377            "LHS/RHS of comparison should match types!");
7378     break;
7379   }
7380 
7381   // Memoize nodes.
7382   SDNode *N;
7383   SDVTList VTs = getVTList(VT);
7384 
7385   if (VT != MVT::Glue) {
7386     FoldingSetNodeID ID;
7387     AddNodeIDNode(ID, Opcode, VTs, Ops);
7388     void *IP = nullptr;
7389 
7390     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7391       return SDValue(E, 0);
7392 
7393     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7394     createOperands(N, Ops);
7395 
7396     CSEMap.InsertNode(N, IP);
7397   } else {
7398     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7399     createOperands(N, Ops);
7400   }
7401 
7402   InsertNode(N);
7403   SDValue V(N, 0);
7404   NewSDValueDbgMsg(V, "Creating new node: ", this);
7405   return V;
7406 }
7407 
7408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7409                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7410   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7411 }
7412 
7413 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7414                               ArrayRef<SDValue> Ops) {
7415   if (VTList.NumVTs == 1)
7416     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7417 
7418   switch (Opcode) {
7419   case ISD::STRICT_FP_EXTEND:
7420     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7421            "Invalid STRICT_FP_EXTEND!");
7422     assert(VTList.VTs[0].isFloatingPoint() &&
7423            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7424     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7425            "STRICT_FP_EXTEND result type should be vector iff the operand "
7426            "type is vector!");
7427     assert((!VTList.VTs[0].isVector() ||
7428             VTList.VTs[0].getVectorNumElements() ==
7429             Ops[1].getValueType().getVectorNumElements()) &&
7430            "Vector element count mismatch!");
7431     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7432            "Invalid fpext node, dst <= src!");
7433     break;
7434   case ISD::STRICT_FP_ROUND:
7435     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7436     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7437            "STRICT_FP_ROUND result type should be vector iff the operand "
7438            "type is vector!");
7439     assert((!VTList.VTs[0].isVector() ||
7440             VTList.VTs[0].getVectorNumElements() ==
7441             Ops[1].getValueType().getVectorNumElements()) &&
7442            "Vector element count mismatch!");
7443     assert(VTList.VTs[0].isFloatingPoint() &&
7444            Ops[1].getValueType().isFloatingPoint() &&
7445            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7446            isa<ConstantSDNode>(Ops[2]) &&
7447            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7448             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7449            "Invalid STRICT_FP_ROUND!");
7450     break;
7451 #if 0
7452   // FIXME: figure out how to safely handle things like
7453   // int foo(int x) { return 1 << (x & 255); }
7454   // int bar() { return foo(256); }
7455   case ISD::SRA_PARTS:
7456   case ISD::SRL_PARTS:
7457   case ISD::SHL_PARTS:
7458     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7459         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7460       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7461     else if (N3.getOpcode() == ISD::AND)
7462       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7463         // If the and is only masking out bits that cannot effect the shift,
7464         // eliminate the and.
7465         unsigned NumBits = VT.getScalarSizeInBits()*2;
7466         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7467           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7468       }
7469     break;
7470 #endif
7471   }
7472 
7473   // Memoize the node unless it returns a flag.
7474   SDNode *N;
7475   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7476     FoldingSetNodeID ID;
7477     AddNodeIDNode(ID, Opcode, VTList, Ops);
7478     void *IP = nullptr;
7479     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7480       return SDValue(E, 0);
7481 
7482     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7483     createOperands(N, Ops);
7484     CSEMap.InsertNode(N, IP);
7485   } else {
7486     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7487     createOperands(N, Ops);
7488   }
7489   InsertNode(N);
7490   SDValue V(N, 0);
7491   NewSDValueDbgMsg(V, "Creating new node: ", this);
7492   return V;
7493 }
7494 
7495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7496                               SDVTList VTList) {
7497   return getNode(Opcode, DL, VTList, None);
7498 }
7499 
7500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7501                               SDValue N1) {
7502   SDValue Ops[] = { N1 };
7503   return getNode(Opcode, DL, VTList, Ops);
7504 }
7505 
7506 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7507                               SDValue N1, SDValue N2) {
7508   SDValue Ops[] = { N1, N2 };
7509   return getNode(Opcode, DL, VTList, Ops);
7510 }
7511 
7512 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7513                               SDValue N1, SDValue N2, SDValue N3) {
7514   SDValue Ops[] = { N1, N2, N3 };
7515   return getNode(Opcode, DL, VTList, Ops);
7516 }
7517 
7518 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7519                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7520   SDValue Ops[] = { N1, N2, N3, N4 };
7521   return getNode(Opcode, DL, VTList, Ops);
7522 }
7523 
7524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7525                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7526                               SDValue N5) {
7527   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7528   return getNode(Opcode, DL, VTList, Ops);
7529 }
7530 
7531 SDVTList SelectionDAG::getVTList(EVT VT) {
7532   return makeVTList(SDNode::getValueTypeList(VT), 1);
7533 }
7534 
7535 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7536   FoldingSetNodeID ID;
7537   ID.AddInteger(2U);
7538   ID.AddInteger(VT1.getRawBits());
7539   ID.AddInteger(VT2.getRawBits());
7540 
7541   void *IP = nullptr;
7542   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7543   if (!Result) {
7544     EVT *Array = Allocator.Allocate<EVT>(2);
7545     Array[0] = VT1;
7546     Array[1] = VT2;
7547     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7548     VTListMap.InsertNode(Result, IP);
7549   }
7550   return Result->getSDVTList();
7551 }
7552 
7553 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7554   FoldingSetNodeID ID;
7555   ID.AddInteger(3U);
7556   ID.AddInteger(VT1.getRawBits());
7557   ID.AddInteger(VT2.getRawBits());
7558   ID.AddInteger(VT3.getRawBits());
7559 
7560   void *IP = nullptr;
7561   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7562   if (!Result) {
7563     EVT *Array = Allocator.Allocate<EVT>(3);
7564     Array[0] = VT1;
7565     Array[1] = VT2;
7566     Array[2] = VT3;
7567     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7568     VTListMap.InsertNode(Result, IP);
7569   }
7570   return Result->getSDVTList();
7571 }
7572 
7573 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7574   FoldingSetNodeID ID;
7575   ID.AddInteger(4U);
7576   ID.AddInteger(VT1.getRawBits());
7577   ID.AddInteger(VT2.getRawBits());
7578   ID.AddInteger(VT3.getRawBits());
7579   ID.AddInteger(VT4.getRawBits());
7580 
7581   void *IP = nullptr;
7582   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7583   if (!Result) {
7584     EVT *Array = Allocator.Allocate<EVT>(4);
7585     Array[0] = VT1;
7586     Array[1] = VT2;
7587     Array[2] = VT3;
7588     Array[3] = VT4;
7589     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7590     VTListMap.InsertNode(Result, IP);
7591   }
7592   return Result->getSDVTList();
7593 }
7594 
7595 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7596   unsigned NumVTs = VTs.size();
7597   FoldingSetNodeID ID;
7598   ID.AddInteger(NumVTs);
7599   for (unsigned index = 0; index < NumVTs; index++) {
7600     ID.AddInteger(VTs[index].getRawBits());
7601   }
7602 
7603   void *IP = nullptr;
7604   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7605   if (!Result) {
7606     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7607     llvm::copy(VTs, Array);
7608     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7609     VTListMap.InsertNode(Result, IP);
7610   }
7611   return Result->getSDVTList();
7612 }
7613 
7614 
7615 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7616 /// specified operands.  If the resultant node already exists in the DAG,
7617 /// this does not modify the specified node, instead it returns the node that
7618 /// already exists.  If the resultant node does not exist in the DAG, the
7619 /// input node is returned.  As a degenerate case, if you specify the same
7620 /// input operands as the node already has, the input node is returned.
7621 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7622   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7623 
7624   // Check to see if there is no change.
7625   if (Op == N->getOperand(0)) return N;
7626 
7627   // See if the modified node already exists.
7628   void *InsertPos = nullptr;
7629   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7630     return Existing;
7631 
7632   // Nope it doesn't.  Remove the node from its current place in the maps.
7633   if (InsertPos)
7634     if (!RemoveNodeFromCSEMaps(N))
7635       InsertPos = nullptr;
7636 
7637   // Now we update the operands.
7638   N->OperandList[0].set(Op);
7639 
7640   updateDivergence(N);
7641   // If this gets put into a CSE map, add it.
7642   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7643   return N;
7644 }
7645 
7646 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7647   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7648 
7649   // Check to see if there is no change.
7650   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7651     return N;   // No operands changed, just return the input node.
7652 
7653   // See if the modified node already exists.
7654   void *InsertPos = nullptr;
7655   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7656     return Existing;
7657 
7658   // Nope it doesn't.  Remove the node from its current place in the maps.
7659   if (InsertPos)
7660     if (!RemoveNodeFromCSEMaps(N))
7661       InsertPos = nullptr;
7662 
7663   // Now we update the operands.
7664   if (N->OperandList[0] != Op1)
7665     N->OperandList[0].set(Op1);
7666   if (N->OperandList[1] != Op2)
7667     N->OperandList[1].set(Op2);
7668 
7669   updateDivergence(N);
7670   // If this gets put into a CSE map, add it.
7671   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7672   return N;
7673 }
7674 
7675 SDNode *SelectionDAG::
7676 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7677   SDValue Ops[] = { Op1, Op2, Op3 };
7678   return UpdateNodeOperands(N, Ops);
7679 }
7680 
7681 SDNode *SelectionDAG::
7682 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7683                    SDValue Op3, SDValue Op4) {
7684   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7685   return UpdateNodeOperands(N, Ops);
7686 }
7687 
7688 SDNode *SelectionDAG::
7689 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7690                    SDValue Op3, SDValue Op4, SDValue Op5) {
7691   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7692   return UpdateNodeOperands(N, Ops);
7693 }
7694 
7695 SDNode *SelectionDAG::
7696 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7697   unsigned NumOps = Ops.size();
7698   assert(N->getNumOperands() == NumOps &&
7699          "Update with wrong number of operands");
7700 
7701   // If no operands changed just return the input node.
7702   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7703     return N;
7704 
7705   // See if the modified node already exists.
7706   void *InsertPos = nullptr;
7707   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7708     return Existing;
7709 
7710   // Nope it doesn't.  Remove the node from its current place in the maps.
7711   if (InsertPos)
7712     if (!RemoveNodeFromCSEMaps(N))
7713       InsertPos = nullptr;
7714 
7715   // Now we update the operands.
7716   for (unsigned i = 0; i != NumOps; ++i)
7717     if (N->OperandList[i] != Ops[i])
7718       N->OperandList[i].set(Ops[i]);
7719 
7720   updateDivergence(N);
7721   // If this gets put into a CSE map, add it.
7722   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7723   return N;
7724 }
7725 
7726 /// DropOperands - Release the operands and set this node to have
7727 /// zero operands.
7728 void SDNode::DropOperands() {
7729   // Unlike the code in MorphNodeTo that does this, we don't need to
7730   // watch for dead nodes here.
7731   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7732     SDUse &Use = *I++;
7733     Use.set(SDValue());
7734   }
7735 }
7736 
7737 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7738                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7739   if (NewMemRefs.empty()) {
7740     N->clearMemRefs();
7741     return;
7742   }
7743 
7744   // Check if we can avoid allocating by storing a single reference directly.
7745   if (NewMemRefs.size() == 1) {
7746     N->MemRefs = NewMemRefs[0];
7747     N->NumMemRefs = 1;
7748     return;
7749   }
7750 
7751   MachineMemOperand **MemRefsBuffer =
7752       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7753   llvm::copy(NewMemRefs, MemRefsBuffer);
7754   N->MemRefs = MemRefsBuffer;
7755   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7756 }
7757 
7758 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7759 /// machine opcode.
7760 ///
7761 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7762                                    EVT VT) {
7763   SDVTList VTs = getVTList(VT);
7764   return SelectNodeTo(N, MachineOpc, VTs, None);
7765 }
7766 
7767 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7768                                    EVT VT, SDValue Op1) {
7769   SDVTList VTs = getVTList(VT);
7770   SDValue Ops[] = { Op1 };
7771   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7772 }
7773 
7774 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7775                                    EVT VT, SDValue Op1,
7776                                    SDValue Op2) {
7777   SDVTList VTs = getVTList(VT);
7778   SDValue Ops[] = { Op1, Op2 };
7779   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7780 }
7781 
7782 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7783                                    EVT VT, SDValue Op1,
7784                                    SDValue Op2, SDValue Op3) {
7785   SDVTList VTs = getVTList(VT);
7786   SDValue Ops[] = { Op1, Op2, Op3 };
7787   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7788 }
7789 
7790 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7791                                    EVT VT, ArrayRef<SDValue> Ops) {
7792   SDVTList VTs = getVTList(VT);
7793   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7794 }
7795 
7796 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7797                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7798   SDVTList VTs = getVTList(VT1, VT2);
7799   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7800 }
7801 
7802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7803                                    EVT VT1, EVT VT2) {
7804   SDVTList VTs = getVTList(VT1, VT2);
7805   return SelectNodeTo(N, MachineOpc, VTs, None);
7806 }
7807 
7808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7809                                    EVT VT1, EVT VT2, EVT VT3,
7810                                    ArrayRef<SDValue> Ops) {
7811   SDVTList VTs = getVTList(VT1, VT2, VT3);
7812   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7813 }
7814 
7815 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7816                                    EVT VT1, EVT VT2,
7817                                    SDValue Op1, SDValue Op2) {
7818   SDVTList VTs = getVTList(VT1, VT2);
7819   SDValue Ops[] = { Op1, Op2 };
7820   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7821 }
7822 
7823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7824                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7825   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7826   // Reset the NodeID to -1.
7827   New->setNodeId(-1);
7828   if (New != N) {
7829     ReplaceAllUsesWith(N, New);
7830     RemoveDeadNode(N);
7831   }
7832   return New;
7833 }
7834 
7835 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7836 /// the line number information on the merged node since it is not possible to
7837 /// preserve the information that operation is associated with multiple lines.
7838 /// This will make the debugger working better at -O0, were there is a higher
7839 /// probability having other instructions associated with that line.
7840 ///
7841 /// For IROrder, we keep the smaller of the two
7842 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7843   DebugLoc NLoc = N->getDebugLoc();
7844   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7845     N->setDebugLoc(DebugLoc());
7846   }
7847   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7848   N->setIROrder(Order);
7849   return N;
7850 }
7851 
7852 /// MorphNodeTo - This *mutates* the specified node to have the specified
7853 /// return type, opcode, and operands.
7854 ///
7855 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7856 /// node of the specified opcode and operands, it returns that node instead of
7857 /// the current one.  Note that the SDLoc need not be the same.
7858 ///
7859 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7860 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7861 /// node, and because it doesn't require CSE recalculation for any of
7862 /// the node's users.
7863 ///
7864 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7865 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7866 /// the legalizer which maintain worklists that would need to be updated when
7867 /// deleting things.
7868 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7869                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7870   // If an identical node already exists, use it.
7871   void *IP = nullptr;
7872   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7873     FoldingSetNodeID ID;
7874     AddNodeIDNode(ID, Opc, VTs, Ops);
7875     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7876       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7877   }
7878 
7879   if (!RemoveNodeFromCSEMaps(N))
7880     IP = nullptr;
7881 
7882   // Start the morphing.
7883   N->NodeType = Opc;
7884   N->ValueList = VTs.VTs;
7885   N->NumValues = VTs.NumVTs;
7886 
7887   // Clear the operands list, updating used nodes to remove this from their
7888   // use list.  Keep track of any operands that become dead as a result.
7889   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7890   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7891     SDUse &Use = *I++;
7892     SDNode *Used = Use.getNode();
7893     Use.set(SDValue());
7894     if (Used->use_empty())
7895       DeadNodeSet.insert(Used);
7896   }
7897 
7898   // For MachineNode, initialize the memory references information.
7899   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7900     MN->clearMemRefs();
7901 
7902   // Swap for an appropriately sized array from the recycler.
7903   removeOperands(N);
7904   createOperands(N, Ops);
7905 
7906   // Delete any nodes that are still dead after adding the uses for the
7907   // new operands.
7908   if (!DeadNodeSet.empty()) {
7909     SmallVector<SDNode *, 16> DeadNodes;
7910     for (SDNode *N : DeadNodeSet)
7911       if (N->use_empty())
7912         DeadNodes.push_back(N);
7913     RemoveDeadNodes(DeadNodes);
7914   }
7915 
7916   if (IP)
7917     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7918   return N;
7919 }
7920 
7921 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7922   unsigned OrigOpc = Node->getOpcode();
7923   unsigned NewOpc;
7924   switch (OrigOpc) {
7925   default:
7926     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7927 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7928   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7929 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7930   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7931 #include "llvm/IR/ConstrainedOps.def"
7932   }
7933 
7934   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7935 
7936   // We're taking this node out of the chain, so we need to re-link things.
7937   SDValue InputChain = Node->getOperand(0);
7938   SDValue OutputChain = SDValue(Node, 1);
7939   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7940 
7941   SmallVector<SDValue, 3> Ops;
7942   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7943     Ops.push_back(Node->getOperand(i));
7944 
7945   SDVTList VTs = getVTList(Node->getValueType(0));
7946   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7947 
7948   // MorphNodeTo can operate in two ways: if an existing node with the
7949   // specified operands exists, it can just return it.  Otherwise, it
7950   // updates the node in place to have the requested operands.
7951   if (Res == Node) {
7952     // If we updated the node in place, reset the node ID.  To the isel,
7953     // this should be just like a newly allocated machine node.
7954     Res->setNodeId(-1);
7955   } else {
7956     ReplaceAllUsesWith(Node, Res);
7957     RemoveDeadNode(Node);
7958   }
7959 
7960   return Res;
7961 }
7962 
7963 /// getMachineNode - These are used for target selectors to create a new node
7964 /// with specified return type(s), MachineInstr opcode, and operands.
7965 ///
7966 /// Note that getMachineNode returns the resultant node.  If there is already a
7967 /// node of the specified opcode and operands, it returns that node instead of
7968 /// the current one.
7969 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7970                                             EVT VT) {
7971   SDVTList VTs = getVTList(VT);
7972   return getMachineNode(Opcode, dl, VTs, None);
7973 }
7974 
7975 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7976                                             EVT VT, SDValue Op1) {
7977   SDVTList VTs = getVTList(VT);
7978   SDValue Ops[] = { Op1 };
7979   return getMachineNode(Opcode, dl, VTs, Ops);
7980 }
7981 
7982 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7983                                             EVT VT, SDValue Op1, SDValue Op2) {
7984   SDVTList VTs = getVTList(VT);
7985   SDValue Ops[] = { Op1, Op2 };
7986   return getMachineNode(Opcode, dl, VTs, Ops);
7987 }
7988 
7989 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7990                                             EVT VT, SDValue Op1, SDValue Op2,
7991                                             SDValue Op3) {
7992   SDVTList VTs = getVTList(VT);
7993   SDValue Ops[] = { Op1, Op2, Op3 };
7994   return getMachineNode(Opcode, dl, VTs, Ops);
7995 }
7996 
7997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7998                                             EVT VT, ArrayRef<SDValue> Ops) {
7999   SDVTList VTs = getVTList(VT);
8000   return getMachineNode(Opcode, dl, VTs, Ops);
8001 }
8002 
8003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8004                                             EVT VT1, EVT VT2, SDValue Op1,
8005                                             SDValue Op2) {
8006   SDVTList VTs = getVTList(VT1, VT2);
8007   SDValue Ops[] = { Op1, Op2 };
8008   return getMachineNode(Opcode, dl, VTs, Ops);
8009 }
8010 
8011 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8012                                             EVT VT1, EVT VT2, SDValue Op1,
8013                                             SDValue Op2, SDValue Op3) {
8014   SDVTList VTs = getVTList(VT1, VT2);
8015   SDValue Ops[] = { Op1, Op2, Op3 };
8016   return getMachineNode(Opcode, dl, VTs, Ops);
8017 }
8018 
8019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8020                                             EVT VT1, EVT VT2,
8021                                             ArrayRef<SDValue> Ops) {
8022   SDVTList VTs = getVTList(VT1, VT2);
8023   return getMachineNode(Opcode, dl, VTs, Ops);
8024 }
8025 
8026 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8027                                             EVT VT1, EVT VT2, EVT VT3,
8028                                             SDValue Op1, SDValue Op2) {
8029   SDVTList VTs = getVTList(VT1, VT2, VT3);
8030   SDValue Ops[] = { Op1, Op2 };
8031   return getMachineNode(Opcode, dl, VTs, Ops);
8032 }
8033 
8034 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8035                                             EVT VT1, EVT VT2, EVT VT3,
8036                                             SDValue Op1, SDValue Op2,
8037                                             SDValue Op3) {
8038   SDVTList VTs = getVTList(VT1, VT2, VT3);
8039   SDValue Ops[] = { Op1, Op2, Op3 };
8040   return getMachineNode(Opcode, dl, VTs, Ops);
8041 }
8042 
8043 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8044                                             EVT VT1, EVT VT2, EVT VT3,
8045                                             ArrayRef<SDValue> Ops) {
8046   SDVTList VTs = getVTList(VT1, VT2, VT3);
8047   return getMachineNode(Opcode, dl, VTs, Ops);
8048 }
8049 
8050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8051                                             ArrayRef<EVT> ResultTys,
8052                                             ArrayRef<SDValue> Ops) {
8053   SDVTList VTs = getVTList(ResultTys);
8054   return getMachineNode(Opcode, dl, VTs, Ops);
8055 }
8056 
8057 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8058                                             SDVTList VTs,
8059                                             ArrayRef<SDValue> Ops) {
8060   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8061   MachineSDNode *N;
8062   void *IP = nullptr;
8063 
8064   if (DoCSE) {
8065     FoldingSetNodeID ID;
8066     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8067     IP = nullptr;
8068     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8069       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8070     }
8071   }
8072 
8073   // Allocate a new MachineSDNode.
8074   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8075   createOperands(N, Ops);
8076 
8077   if (DoCSE)
8078     CSEMap.InsertNode(N, IP);
8079 
8080   InsertNode(N);
8081   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8082   return N;
8083 }
8084 
8085 /// getTargetExtractSubreg - A convenience function for creating
8086 /// TargetOpcode::EXTRACT_SUBREG nodes.
8087 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8088                                              SDValue Operand) {
8089   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8090   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8091                                   VT, Operand, SRIdxVal);
8092   return SDValue(Subreg, 0);
8093 }
8094 
8095 /// getTargetInsertSubreg - A convenience function for creating
8096 /// TargetOpcode::INSERT_SUBREG nodes.
8097 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8098                                             SDValue Operand, SDValue Subreg) {
8099   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8100   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8101                                   VT, Operand, Subreg, SRIdxVal);
8102   return SDValue(Result, 0);
8103 }
8104 
8105 /// getNodeIfExists - Get the specified node if it's already available, or
8106 /// else return NULL.
8107 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8108                                       ArrayRef<SDValue> Ops,
8109                                       const SDNodeFlags Flags) {
8110   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8111     FoldingSetNodeID ID;
8112     AddNodeIDNode(ID, Opcode, VTList, Ops);
8113     void *IP = nullptr;
8114     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8115       E->intersectFlagsWith(Flags);
8116       return E;
8117     }
8118   }
8119   return nullptr;
8120 }
8121 
8122 /// getDbgValue - Creates a SDDbgValue node.
8123 ///
8124 /// SDNode
8125 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8126                                       SDNode *N, unsigned R, bool IsIndirect,
8127                                       const DebugLoc &DL, unsigned O) {
8128   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8129          "Expected inlined-at fields to agree");
8130   return new (DbgInfo->getAlloc())
8131       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8132 }
8133 
8134 /// Constant
8135 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8136                                               DIExpression *Expr,
8137                                               const Value *C,
8138                                               const DebugLoc &DL, unsigned O) {
8139   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8140          "Expected inlined-at fields to agree");
8141   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8142 }
8143 
8144 /// FrameIndex
8145 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8146                                                 DIExpression *Expr, unsigned FI,
8147                                                 bool IsIndirect,
8148                                                 const DebugLoc &DL,
8149                                                 unsigned O) {
8150   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8151          "Expected inlined-at fields to agree");
8152   return new (DbgInfo->getAlloc())
8153       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8154 }
8155 
8156 /// VReg
8157 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8158                                           DIExpression *Expr,
8159                                           unsigned VReg, bool IsIndirect,
8160                                           const DebugLoc &DL, unsigned O) {
8161   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8162          "Expected inlined-at fields to agree");
8163   return new (DbgInfo->getAlloc())
8164       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8165 }
8166 
8167 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8168                                      unsigned OffsetInBits, unsigned SizeInBits,
8169                                      bool InvalidateDbg) {
8170   SDNode *FromNode = From.getNode();
8171   SDNode *ToNode = To.getNode();
8172   assert(FromNode && ToNode && "Can't modify dbg values");
8173 
8174   // PR35338
8175   // TODO: assert(From != To && "Redundant dbg value transfer");
8176   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8177   if (From == To || FromNode == ToNode)
8178     return;
8179 
8180   if (!FromNode->getHasDebugValue())
8181     return;
8182 
8183   SmallVector<SDDbgValue *, 2> ClonedDVs;
8184   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8185     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8186       continue;
8187 
8188     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8189 
8190     // Just transfer the dbg value attached to From.
8191     if (Dbg->getResNo() != From.getResNo())
8192       continue;
8193 
8194     DIVariable *Var = Dbg->getVariable();
8195     auto *Expr = Dbg->getExpression();
8196     // If a fragment is requested, update the expression.
8197     if (SizeInBits) {
8198       // When splitting a larger (e.g., sign-extended) value whose
8199       // lower bits are described with an SDDbgValue, do not attempt
8200       // to transfer the SDDbgValue to the upper bits.
8201       if (auto FI = Expr->getFragmentInfo())
8202         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8203           continue;
8204       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8205                                                              SizeInBits);
8206       if (!Fragment)
8207         continue;
8208       Expr = *Fragment;
8209     }
8210     // Clone the SDDbgValue and move it to To.
8211     SDDbgValue *Clone = getDbgValue(
8212         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8213         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8214     ClonedDVs.push_back(Clone);
8215 
8216     if (InvalidateDbg) {
8217       // Invalidate value and indicate the SDDbgValue should not be emitted.
8218       Dbg->setIsInvalidated();
8219       Dbg->setIsEmitted();
8220     }
8221   }
8222 
8223   for (SDDbgValue *Dbg : ClonedDVs)
8224     AddDbgValue(Dbg, ToNode, false);
8225 }
8226 
8227 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8228   if (!N.getHasDebugValue())
8229     return;
8230 
8231   SmallVector<SDDbgValue *, 2> ClonedDVs;
8232   for (auto DV : GetDbgValues(&N)) {
8233     if (DV->isInvalidated())
8234       continue;
8235     switch (N.getOpcode()) {
8236     default:
8237       break;
8238     case ISD::ADD:
8239       SDValue N0 = N.getOperand(0);
8240       SDValue N1 = N.getOperand(1);
8241       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8242           isConstantIntBuildVectorOrConstantInt(N1)) {
8243         uint64_t Offset = N.getConstantOperandVal(1);
8244         // Rewrite an ADD constant node into a DIExpression. Since we are
8245         // performing arithmetic to compute the variable's *value* in the
8246         // DIExpression, we need to mark the expression with a
8247         // DW_OP_stack_value.
8248         auto *DIExpr = DV->getExpression();
8249         DIExpr =
8250             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8251         SDDbgValue *Clone =
8252             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8253                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8254         ClonedDVs.push_back(Clone);
8255         DV->setIsInvalidated();
8256         DV->setIsEmitted();
8257         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8258                    N0.getNode()->dumprFull(this);
8259                    dbgs() << " into " << *DIExpr << '\n');
8260       }
8261     }
8262   }
8263 
8264   for (SDDbgValue *Dbg : ClonedDVs)
8265     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8266 }
8267 
8268 /// Creates a SDDbgLabel node.
8269 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8270                                       const DebugLoc &DL, unsigned O) {
8271   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8272          "Expected inlined-at fields to agree");
8273   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8274 }
8275 
8276 namespace {
8277 
8278 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8279 /// pointed to by a use iterator is deleted, increment the use iterator
8280 /// so that it doesn't dangle.
8281 ///
8282 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8283   SDNode::use_iterator &UI;
8284   SDNode::use_iterator &UE;
8285 
8286   void NodeDeleted(SDNode *N, SDNode *E) override {
8287     // Increment the iterator as needed.
8288     while (UI != UE && N == *UI)
8289       ++UI;
8290   }
8291 
8292 public:
8293   RAUWUpdateListener(SelectionDAG &d,
8294                      SDNode::use_iterator &ui,
8295                      SDNode::use_iterator &ue)
8296     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8297 };
8298 
8299 } // end anonymous namespace
8300 
8301 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8302 /// This can cause recursive merging of nodes in the DAG.
8303 ///
8304 /// This version assumes From has a single result value.
8305 ///
8306 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8307   SDNode *From = FromN.getNode();
8308   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8309          "Cannot replace with this method!");
8310   assert(From != To.getNode() && "Cannot replace uses of with self");
8311 
8312   // Preserve Debug Values
8313   transferDbgValues(FromN, To);
8314 
8315   // Iterate over all the existing uses of From. New uses will be added
8316   // to the beginning of the use list, which we avoid visiting.
8317   // This specifically avoids visiting uses of From that arise while the
8318   // replacement is happening, because any such uses would be the result
8319   // of CSE: If an existing node looks like From after one of its operands
8320   // is replaced by To, we don't want to replace of all its users with To
8321   // too. See PR3018 for more info.
8322   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8323   RAUWUpdateListener Listener(*this, UI, UE);
8324   while (UI != UE) {
8325     SDNode *User = *UI;
8326 
8327     // This node is about to morph, remove its old self from the CSE maps.
8328     RemoveNodeFromCSEMaps(User);
8329 
8330     // A user can appear in a use list multiple times, and when this
8331     // happens the uses are usually next to each other in the list.
8332     // To help reduce the number of CSE recomputations, process all
8333     // the uses of this user that we can find this way.
8334     do {
8335       SDUse &Use = UI.getUse();
8336       ++UI;
8337       Use.set(To);
8338       if (To->isDivergent() != From->isDivergent())
8339         updateDivergence(User);
8340     } while (UI != UE && *UI == User);
8341     // Now that we have modified User, add it back to the CSE maps.  If it
8342     // already exists there, recursively merge the results together.
8343     AddModifiedNodeToCSEMaps(User);
8344   }
8345 
8346   // If we just RAUW'd the root, take note.
8347   if (FromN == getRoot())
8348     setRoot(To);
8349 }
8350 
8351 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8352 /// This can cause recursive merging of nodes in the DAG.
8353 ///
8354 /// This version assumes that for each value of From, there is a
8355 /// corresponding value in To in the same position with the same type.
8356 ///
8357 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8358 #ifndef NDEBUG
8359   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8360     assert((!From->hasAnyUseOfValue(i) ||
8361             From->getValueType(i) == To->getValueType(i)) &&
8362            "Cannot use this version of ReplaceAllUsesWith!");
8363 #endif
8364 
8365   // Handle the trivial case.
8366   if (From == To)
8367     return;
8368 
8369   // Preserve Debug Info. Only do this if there's a use.
8370   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8371     if (From->hasAnyUseOfValue(i)) {
8372       assert((i < To->getNumValues()) && "Invalid To location");
8373       transferDbgValues(SDValue(From, i), SDValue(To, i));
8374     }
8375 
8376   // Iterate over just the existing users of From. See the comments in
8377   // the ReplaceAllUsesWith above.
8378   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8379   RAUWUpdateListener Listener(*this, UI, UE);
8380   while (UI != UE) {
8381     SDNode *User = *UI;
8382 
8383     // This node is about to morph, remove its old self from the CSE maps.
8384     RemoveNodeFromCSEMaps(User);
8385 
8386     // A user can appear in a use list multiple times, and when this
8387     // happens the uses are usually next to each other in the list.
8388     // To help reduce the number of CSE recomputations, process all
8389     // the uses of this user that we can find this way.
8390     do {
8391       SDUse &Use = UI.getUse();
8392       ++UI;
8393       Use.setNode(To);
8394       if (To->isDivergent() != From->isDivergent())
8395         updateDivergence(User);
8396     } while (UI != UE && *UI == User);
8397 
8398     // Now that we have modified User, add it back to the CSE maps.  If it
8399     // already exists there, recursively merge the results together.
8400     AddModifiedNodeToCSEMaps(User);
8401   }
8402 
8403   // If we just RAUW'd the root, take note.
8404   if (From == getRoot().getNode())
8405     setRoot(SDValue(To, getRoot().getResNo()));
8406 }
8407 
8408 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8409 /// This can cause recursive merging of nodes in the DAG.
8410 ///
8411 /// This version can replace From with any result values.  To must match the
8412 /// number and types of values returned by From.
8413 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8414   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8415     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8416 
8417   // Preserve Debug Info.
8418   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8419     transferDbgValues(SDValue(From, i), To[i]);
8420 
8421   // Iterate over just the existing users of From. See the comments in
8422   // the ReplaceAllUsesWith above.
8423   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8424   RAUWUpdateListener Listener(*this, UI, UE);
8425   while (UI != UE) {
8426     SDNode *User = *UI;
8427 
8428     // This node is about to morph, remove its old self from the CSE maps.
8429     RemoveNodeFromCSEMaps(User);
8430 
8431     // A user can appear in a use list multiple times, and when this happens the
8432     // uses are usually next to each other in the list.  To help reduce the
8433     // number of CSE and divergence recomputations, process all the uses of this
8434     // user that we can find this way.
8435     bool To_IsDivergent = false;
8436     do {
8437       SDUse &Use = UI.getUse();
8438       const SDValue &ToOp = To[Use.getResNo()];
8439       ++UI;
8440       Use.set(ToOp);
8441       To_IsDivergent |= ToOp->isDivergent();
8442     } while (UI != UE && *UI == User);
8443 
8444     if (To_IsDivergent != From->isDivergent())
8445       updateDivergence(User);
8446 
8447     // Now that we have modified User, add it back to the CSE maps.  If it
8448     // already exists there, recursively merge the results together.
8449     AddModifiedNodeToCSEMaps(User);
8450   }
8451 
8452   // If we just RAUW'd the root, take note.
8453   if (From == getRoot().getNode())
8454     setRoot(SDValue(To[getRoot().getResNo()]));
8455 }
8456 
8457 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8458 /// uses of other values produced by From.getNode() alone.  The Deleted
8459 /// vector is handled the same way as for ReplaceAllUsesWith.
8460 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8461   // Handle the really simple, really trivial case efficiently.
8462   if (From == To) return;
8463 
8464   // Handle the simple, trivial, case efficiently.
8465   if (From.getNode()->getNumValues() == 1) {
8466     ReplaceAllUsesWith(From, To);
8467     return;
8468   }
8469 
8470   // Preserve Debug Info.
8471   transferDbgValues(From, To);
8472 
8473   // Iterate over just the existing users of From. See the comments in
8474   // the ReplaceAllUsesWith above.
8475   SDNode::use_iterator UI = From.getNode()->use_begin(),
8476                        UE = From.getNode()->use_end();
8477   RAUWUpdateListener Listener(*this, UI, UE);
8478   while (UI != UE) {
8479     SDNode *User = *UI;
8480     bool UserRemovedFromCSEMaps = false;
8481 
8482     // A user can appear in a use list multiple times, and when this
8483     // happens the uses are usually next to each other in the list.
8484     // To help reduce the number of CSE recomputations, process all
8485     // the uses of this user that we can find this way.
8486     do {
8487       SDUse &Use = UI.getUse();
8488 
8489       // Skip uses of different values from the same node.
8490       if (Use.getResNo() != From.getResNo()) {
8491         ++UI;
8492         continue;
8493       }
8494 
8495       // If this node hasn't been modified yet, it's still in the CSE maps,
8496       // so remove its old self from the CSE maps.
8497       if (!UserRemovedFromCSEMaps) {
8498         RemoveNodeFromCSEMaps(User);
8499         UserRemovedFromCSEMaps = true;
8500       }
8501 
8502       ++UI;
8503       Use.set(To);
8504       if (To->isDivergent() != From->isDivergent())
8505         updateDivergence(User);
8506     } while (UI != UE && *UI == User);
8507     // We are iterating over all uses of the From node, so if a use
8508     // doesn't use the specific value, no changes are made.
8509     if (!UserRemovedFromCSEMaps)
8510       continue;
8511 
8512     // Now that we have modified User, add it back to the CSE maps.  If it
8513     // already exists there, recursively merge the results together.
8514     AddModifiedNodeToCSEMaps(User);
8515   }
8516 
8517   // If we just RAUW'd the root, take note.
8518   if (From == getRoot())
8519     setRoot(To);
8520 }
8521 
8522 namespace {
8523 
8524   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8525   /// to record information about a use.
8526   struct UseMemo {
8527     SDNode *User;
8528     unsigned Index;
8529     SDUse *Use;
8530   };
8531 
8532   /// operator< - Sort Memos by User.
8533   bool operator<(const UseMemo &L, const UseMemo &R) {
8534     return (intptr_t)L.User < (intptr_t)R.User;
8535   }
8536 
8537 } // end anonymous namespace
8538 
8539 void SelectionDAG::updateDivergence(SDNode * N)
8540 {
8541   if (TLI->isSDNodeAlwaysUniform(N))
8542     return;
8543   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8544   for (auto &Op : N->ops()) {
8545     if (Op.Val.getValueType() != MVT::Other)
8546       IsDivergent |= Op.getNode()->isDivergent();
8547   }
8548   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8549     N->SDNodeBits.IsDivergent = IsDivergent;
8550     for (auto U : N->uses()) {
8551       updateDivergence(U);
8552     }
8553   }
8554 }
8555 
8556 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8557   DenseMap<SDNode *, unsigned> Degree;
8558   Order.reserve(AllNodes.size());
8559   for (auto &N : allnodes()) {
8560     unsigned NOps = N.getNumOperands();
8561     Degree[&N] = NOps;
8562     if (0 == NOps)
8563       Order.push_back(&N);
8564   }
8565   for (size_t I = 0; I != Order.size(); ++I) {
8566     SDNode *N = Order[I];
8567     for (auto U : N->uses()) {
8568       unsigned &UnsortedOps = Degree[U];
8569       if (0 == --UnsortedOps)
8570         Order.push_back(U);
8571     }
8572   }
8573 }
8574 
8575 #ifndef NDEBUG
8576 void SelectionDAG::VerifyDAGDiverence() {
8577   std::vector<SDNode *> TopoOrder;
8578   CreateTopologicalOrder(TopoOrder);
8579   const TargetLowering &TLI = getTargetLoweringInfo();
8580   DenseMap<const SDNode *, bool> DivergenceMap;
8581   for (auto &N : allnodes()) {
8582     DivergenceMap[&N] = false;
8583   }
8584   for (auto N : TopoOrder) {
8585     bool IsDivergent = DivergenceMap[N];
8586     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8587     for (auto &Op : N->ops()) {
8588       if (Op.Val.getValueType() != MVT::Other)
8589         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8590     }
8591     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8592       DivergenceMap[N] = true;
8593     }
8594   }
8595   for (auto &N : allnodes()) {
8596     (void)N;
8597     assert(DivergenceMap[&N] == N.isDivergent() &&
8598            "Divergence bit inconsistency detected\n");
8599   }
8600 }
8601 #endif
8602 
8603 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8604 /// uses of other values produced by From.getNode() alone.  The same value
8605 /// may appear in both the From and To list.  The Deleted vector is
8606 /// handled the same way as for ReplaceAllUsesWith.
8607 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8608                                               const SDValue *To,
8609                                               unsigned Num){
8610   // Handle the simple, trivial case efficiently.
8611   if (Num == 1)
8612     return ReplaceAllUsesOfValueWith(*From, *To);
8613 
8614   transferDbgValues(*From, *To);
8615 
8616   // Read up all the uses and make records of them. This helps
8617   // processing new uses that are introduced during the
8618   // replacement process.
8619   SmallVector<UseMemo, 4> Uses;
8620   for (unsigned i = 0; i != Num; ++i) {
8621     unsigned FromResNo = From[i].getResNo();
8622     SDNode *FromNode = From[i].getNode();
8623     for (SDNode::use_iterator UI = FromNode->use_begin(),
8624          E = FromNode->use_end(); UI != E; ++UI) {
8625       SDUse &Use = UI.getUse();
8626       if (Use.getResNo() == FromResNo) {
8627         UseMemo Memo = { *UI, i, &Use };
8628         Uses.push_back(Memo);
8629       }
8630     }
8631   }
8632 
8633   // Sort the uses, so that all the uses from a given User are together.
8634   llvm::sort(Uses);
8635 
8636   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8637        UseIndex != UseIndexEnd; ) {
8638     // We know that this user uses some value of From.  If it is the right
8639     // value, update it.
8640     SDNode *User = Uses[UseIndex].User;
8641 
8642     // This node is about to morph, remove its old self from the CSE maps.
8643     RemoveNodeFromCSEMaps(User);
8644 
8645     // The Uses array is sorted, so all the uses for a given User
8646     // are next to each other in the list.
8647     // To help reduce the number of CSE recomputations, process all
8648     // the uses of this user that we can find this way.
8649     do {
8650       unsigned i = Uses[UseIndex].Index;
8651       SDUse &Use = *Uses[UseIndex].Use;
8652       ++UseIndex;
8653 
8654       Use.set(To[i]);
8655     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8656 
8657     // Now that we have modified User, add it back to the CSE maps.  If it
8658     // already exists there, recursively merge the results together.
8659     AddModifiedNodeToCSEMaps(User);
8660   }
8661 }
8662 
8663 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8664 /// based on their topological order. It returns the maximum id and a vector
8665 /// of the SDNodes* in assigned order by reference.
8666 unsigned SelectionDAG::AssignTopologicalOrder() {
8667   unsigned DAGSize = 0;
8668 
8669   // SortedPos tracks the progress of the algorithm. Nodes before it are
8670   // sorted, nodes after it are unsorted. When the algorithm completes
8671   // it is at the end of the list.
8672   allnodes_iterator SortedPos = allnodes_begin();
8673 
8674   // Visit all the nodes. Move nodes with no operands to the front of
8675   // the list immediately. Annotate nodes that do have operands with their
8676   // operand count. Before we do this, the Node Id fields of the nodes
8677   // may contain arbitrary values. After, the Node Id fields for nodes
8678   // before SortedPos will contain the topological sort index, and the
8679   // Node Id fields for nodes At SortedPos and after will contain the
8680   // count of outstanding operands.
8681   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8682     SDNode *N = &*I++;
8683     checkForCycles(N, this);
8684     unsigned Degree = N->getNumOperands();
8685     if (Degree == 0) {
8686       // A node with no uses, add it to the result array immediately.
8687       N->setNodeId(DAGSize++);
8688       allnodes_iterator Q(N);
8689       if (Q != SortedPos)
8690         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8691       assert(SortedPos != AllNodes.end() && "Overran node list");
8692       ++SortedPos;
8693     } else {
8694       // Temporarily use the Node Id as scratch space for the degree count.
8695       N->setNodeId(Degree);
8696     }
8697   }
8698 
8699   // Visit all the nodes. As we iterate, move nodes into sorted order,
8700   // such that by the time the end is reached all nodes will be sorted.
8701   for (SDNode &Node : allnodes()) {
8702     SDNode *N = &Node;
8703     checkForCycles(N, this);
8704     // N is in sorted position, so all its uses have one less operand
8705     // that needs to be sorted.
8706     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8707          UI != UE; ++UI) {
8708       SDNode *P = *UI;
8709       unsigned Degree = P->getNodeId();
8710       assert(Degree != 0 && "Invalid node degree");
8711       --Degree;
8712       if (Degree == 0) {
8713         // All of P's operands are sorted, so P may sorted now.
8714         P->setNodeId(DAGSize++);
8715         if (P->getIterator() != SortedPos)
8716           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8717         assert(SortedPos != AllNodes.end() && "Overran node list");
8718         ++SortedPos;
8719       } else {
8720         // Update P's outstanding operand count.
8721         P->setNodeId(Degree);
8722       }
8723     }
8724     if (Node.getIterator() == SortedPos) {
8725 #ifndef NDEBUG
8726       allnodes_iterator I(N);
8727       SDNode *S = &*++I;
8728       dbgs() << "Overran sorted position:\n";
8729       S->dumprFull(this); dbgs() << "\n";
8730       dbgs() << "Checking if this is due to cycles\n";
8731       checkForCycles(this, true);
8732 #endif
8733       llvm_unreachable(nullptr);
8734     }
8735   }
8736 
8737   assert(SortedPos == AllNodes.end() &&
8738          "Topological sort incomplete!");
8739   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8740          "First node in topological sort is not the entry token!");
8741   assert(AllNodes.front().getNodeId() == 0 &&
8742          "First node in topological sort has non-zero id!");
8743   assert(AllNodes.front().getNumOperands() == 0 &&
8744          "First node in topological sort has operands!");
8745   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8746          "Last node in topologic sort has unexpected id!");
8747   assert(AllNodes.back().use_empty() &&
8748          "Last node in topologic sort has users!");
8749   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8750   return DAGSize;
8751 }
8752 
8753 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8754 /// value is produced by SD.
8755 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8756   if (SD) {
8757     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8758     SD->setHasDebugValue(true);
8759   }
8760   DbgInfo->add(DB, SD, isParameter);
8761 }
8762 
8763 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8764   DbgInfo->add(DB);
8765 }
8766 
8767 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8768                                                    SDValue NewMemOp) {
8769   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8770   // The new memory operation must have the same position as the old load in
8771   // terms of memory dependency. Create a TokenFactor for the old load and new
8772   // memory operation and update uses of the old load's output chain to use that
8773   // TokenFactor.
8774   SDValue OldChain = SDValue(OldLoad, 1);
8775   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8776   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8777     return NewChain;
8778 
8779   SDValue TokenFactor =
8780       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8781   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8782   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8783   return TokenFactor;
8784 }
8785 
8786 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8787                                                      Function **OutFunction) {
8788   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8789 
8790   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8791   auto *Module = MF->getFunction().getParent();
8792   auto *Function = Module->getFunction(Symbol);
8793 
8794   if (OutFunction != nullptr)
8795       *OutFunction = Function;
8796 
8797   if (Function != nullptr) {
8798     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8799     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8800   }
8801 
8802   std::string ErrorStr;
8803   raw_string_ostream ErrorFormatter(ErrorStr);
8804 
8805   ErrorFormatter << "Undefined external symbol ";
8806   ErrorFormatter << '"' << Symbol << '"';
8807   ErrorFormatter.flush();
8808 
8809   report_fatal_error(ErrorStr);
8810 }
8811 
8812 //===----------------------------------------------------------------------===//
8813 //                              SDNode Class
8814 //===----------------------------------------------------------------------===//
8815 
8816 bool llvm::isNullConstant(SDValue V) {
8817   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8818   return Const != nullptr && Const->isNullValue();
8819 }
8820 
8821 bool llvm::isNullFPConstant(SDValue V) {
8822   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8823   return Const != nullptr && Const->isZero() && !Const->isNegative();
8824 }
8825 
8826 bool llvm::isAllOnesConstant(SDValue V) {
8827   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8828   return Const != nullptr && Const->isAllOnesValue();
8829 }
8830 
8831 bool llvm::isOneConstant(SDValue V) {
8832   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8833   return Const != nullptr && Const->isOne();
8834 }
8835 
8836 SDValue llvm::peekThroughBitcasts(SDValue V) {
8837   while (V.getOpcode() == ISD::BITCAST)
8838     V = V.getOperand(0);
8839   return V;
8840 }
8841 
8842 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8843   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8844     V = V.getOperand(0);
8845   return V;
8846 }
8847 
8848 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8849   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8850     V = V.getOperand(0);
8851   return V;
8852 }
8853 
8854 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8855   if (V.getOpcode() != ISD::XOR)
8856     return false;
8857   V = peekThroughBitcasts(V.getOperand(1));
8858   unsigned NumBits = V.getScalarValueSizeInBits();
8859   ConstantSDNode *C =
8860       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8861   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8862 }
8863 
8864 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8865                                           bool AllowTruncation) {
8866   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8867     return CN;
8868 
8869   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8870     BitVector UndefElements;
8871     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8872 
8873     // BuildVectors can truncate their operands. Ignore that case here unless
8874     // AllowTruncation is set.
8875     if (CN && (UndefElements.none() || AllowUndefs)) {
8876       EVT CVT = CN->getValueType(0);
8877       EVT NSVT = N.getValueType().getScalarType();
8878       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8879       if (AllowTruncation || (CVT == NSVT))
8880         return CN;
8881     }
8882   }
8883 
8884   return nullptr;
8885 }
8886 
8887 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8888                                           bool AllowUndefs,
8889                                           bool AllowTruncation) {
8890   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8891     return CN;
8892 
8893   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8894     BitVector UndefElements;
8895     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8896 
8897     // BuildVectors can truncate their operands. Ignore that case here unless
8898     // AllowTruncation is set.
8899     if (CN && (UndefElements.none() || AllowUndefs)) {
8900       EVT CVT = CN->getValueType(0);
8901       EVT NSVT = N.getValueType().getScalarType();
8902       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8903       if (AllowTruncation || (CVT == NSVT))
8904         return CN;
8905     }
8906   }
8907 
8908   return nullptr;
8909 }
8910 
8911 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8912   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8913     return CN;
8914 
8915   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8916     BitVector UndefElements;
8917     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8918     if (CN && (UndefElements.none() || AllowUndefs))
8919       return CN;
8920   }
8921 
8922   return nullptr;
8923 }
8924 
8925 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8926                                               const APInt &DemandedElts,
8927                                               bool AllowUndefs) {
8928   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8929     return CN;
8930 
8931   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8932     BitVector UndefElements;
8933     ConstantFPSDNode *CN =
8934         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8935     if (CN && (UndefElements.none() || AllowUndefs))
8936       return CN;
8937   }
8938 
8939   return nullptr;
8940 }
8941 
8942 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8943   // TODO: may want to use peekThroughBitcast() here.
8944   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8945   return C && C->isNullValue();
8946 }
8947 
8948 bool llvm::isOneOrOneSplat(SDValue N) {
8949   // TODO: may want to use peekThroughBitcast() here.
8950   unsigned BitWidth = N.getScalarValueSizeInBits();
8951   ConstantSDNode *C = isConstOrConstSplat(N);
8952   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8953 }
8954 
8955 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8956   N = peekThroughBitcasts(N);
8957   unsigned BitWidth = N.getScalarValueSizeInBits();
8958   ConstantSDNode *C = isConstOrConstSplat(N);
8959   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8960 }
8961 
8962 HandleSDNode::~HandleSDNode() {
8963   DropOperands();
8964 }
8965 
8966 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8967                                          const DebugLoc &DL,
8968                                          const GlobalValue *GA, EVT VT,
8969                                          int64_t o, unsigned TF)
8970     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8971   TheGlobal = GA;
8972 }
8973 
8974 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8975                                          EVT VT, unsigned SrcAS,
8976                                          unsigned DestAS)
8977     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8978       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8979 
8980 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8981                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8982     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8983   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8984   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8985   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8986   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8987 
8988   // We check here that the size of the memory operand fits within the size of
8989   // the MMO. This is because the MMO might indicate only a possible address
8990   // range instead of specifying the affected memory addresses precisely.
8991   // TODO: Make MachineMemOperands aware of scalable vectors.
8992   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
8993          "Size mismatch!");
8994 }
8995 
8996 /// Profile - Gather unique data for the node.
8997 ///
8998 void SDNode::Profile(FoldingSetNodeID &ID) const {
8999   AddNodeIDNode(ID, this);
9000 }
9001 
9002 namespace {
9003 
9004   struct EVTArray {
9005     std::vector<EVT> VTs;
9006 
9007     EVTArray() {
9008       VTs.reserve(MVT::LAST_VALUETYPE);
9009       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9010         VTs.push_back(MVT((MVT::SimpleValueType)i));
9011     }
9012   };
9013 
9014 } // end anonymous namespace
9015 
9016 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9017 static ManagedStatic<EVTArray> SimpleVTArray;
9018 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9019 
9020 /// getValueTypeList - Return a pointer to the specified value type.
9021 ///
9022 const EVT *SDNode::getValueTypeList(EVT VT) {
9023   if (VT.isExtended()) {
9024     sys::SmartScopedLock<true> Lock(*VTMutex);
9025     return &(*EVTs->insert(VT).first);
9026   } else {
9027     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9028            "Value type out of range!");
9029     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9030   }
9031 }
9032 
9033 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9034 /// indicated value.  This method ignores uses of other values defined by this
9035 /// operation.
9036 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9037   assert(Value < getNumValues() && "Bad value!");
9038 
9039   // TODO: Only iterate over uses of a given value of the node
9040   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9041     if (UI.getUse().getResNo() == Value) {
9042       if (NUses == 0)
9043         return false;
9044       --NUses;
9045     }
9046   }
9047 
9048   // Found exactly the right number of uses?
9049   return NUses == 0;
9050 }
9051 
9052 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9053 /// value. This method ignores uses of other values defined by this operation.
9054 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9055   assert(Value < getNumValues() && "Bad value!");
9056 
9057   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9058     if (UI.getUse().getResNo() == Value)
9059       return true;
9060 
9061   return false;
9062 }
9063 
9064 /// isOnlyUserOf - Return true if this node is the only use of N.
9065 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9066   bool Seen = false;
9067   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9068     SDNode *User = *I;
9069     if (User == this)
9070       Seen = true;
9071     else
9072       return false;
9073   }
9074 
9075   return Seen;
9076 }
9077 
9078 /// Return true if the only users of N are contained in Nodes.
9079 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9080   bool Seen = false;
9081   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9082     SDNode *User = *I;
9083     if (llvm::any_of(Nodes,
9084                      [&User](const SDNode *Node) { return User == Node; }))
9085       Seen = true;
9086     else
9087       return false;
9088   }
9089 
9090   return Seen;
9091 }
9092 
9093 /// isOperand - Return true if this node is an operand of N.
9094 bool SDValue::isOperandOf(const SDNode *N) const {
9095   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9096 }
9097 
9098 bool SDNode::isOperandOf(const SDNode *N) const {
9099   return any_of(N->op_values(),
9100                 [this](SDValue Op) { return this == Op.getNode(); });
9101 }
9102 
9103 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9104 /// be a chain) reaches the specified operand without crossing any
9105 /// side-effecting instructions on any chain path.  In practice, this looks
9106 /// through token factors and non-volatile loads.  In order to remain efficient,
9107 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9108 ///
9109 /// Note that we only need to examine chains when we're searching for
9110 /// side-effects; SelectionDAG requires that all side-effects are represented
9111 /// by chains, even if another operand would force a specific ordering. This
9112 /// constraint is necessary to allow transformations like splitting loads.
9113 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9114                                              unsigned Depth) const {
9115   if (*this == Dest) return true;
9116 
9117   // Don't search too deeply, we just want to be able to see through
9118   // TokenFactor's etc.
9119   if (Depth == 0) return false;
9120 
9121   // If this is a token factor, all inputs to the TF happen in parallel.
9122   if (getOpcode() == ISD::TokenFactor) {
9123     // First, try a shallow search.
9124     if (is_contained((*this)->ops(), Dest)) {
9125       // We found the chain we want as an operand of this TokenFactor.
9126       // Essentially, we reach the chain without side-effects if we could
9127       // serialize the TokenFactor into a simple chain of operations with
9128       // Dest as the last operation. This is automatically true if the
9129       // chain has one use: there are no other ordering constraints.
9130       // If the chain has more than one use, we give up: some other
9131       // use of Dest might force a side-effect between Dest and the current
9132       // node.
9133       if (Dest.hasOneUse())
9134         return true;
9135     }
9136     // Next, try a deep search: check whether every operand of the TokenFactor
9137     // reaches Dest.
9138     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9139       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9140     });
9141   }
9142 
9143   // Loads don't have side effects, look through them.
9144   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9145     if (Ld->isUnordered())
9146       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9147   }
9148   return false;
9149 }
9150 
9151 bool SDNode::hasPredecessor(const SDNode *N) const {
9152   SmallPtrSet<const SDNode *, 32> Visited;
9153   SmallVector<const SDNode *, 16> Worklist;
9154   Worklist.push_back(this);
9155   return hasPredecessorHelper(N, Visited, Worklist);
9156 }
9157 
9158 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9159   this->Flags.intersectWith(Flags);
9160 }
9161 
9162 SDValue
9163 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9164                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9165                                   bool AllowPartials) {
9166   // The pattern must end in an extract from index 0.
9167   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9168       !isNullConstant(Extract->getOperand(1)))
9169     return SDValue();
9170 
9171   // Match against one of the candidate binary ops.
9172   SDValue Op = Extract->getOperand(0);
9173   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9174         return Op.getOpcode() == unsigned(BinOp);
9175       }))
9176     return SDValue();
9177 
9178   // Floating-point reductions may require relaxed constraints on the final step
9179   // of the reduction because they may reorder intermediate operations.
9180   unsigned CandidateBinOp = Op.getOpcode();
9181   if (Op.getValueType().isFloatingPoint()) {
9182     SDNodeFlags Flags = Op->getFlags();
9183     switch (CandidateBinOp) {
9184     case ISD::FADD:
9185       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9186         return SDValue();
9187       break;
9188     default:
9189       llvm_unreachable("Unhandled FP opcode for binop reduction");
9190     }
9191   }
9192 
9193   // Matching failed - attempt to see if we did enough stages that a partial
9194   // reduction from a subvector is possible.
9195   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9196     if (!AllowPartials || !Op)
9197       return SDValue();
9198     EVT OpVT = Op.getValueType();
9199     EVT OpSVT = OpVT.getScalarType();
9200     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9201     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9202       return SDValue();
9203     BinOp = (ISD::NodeType)CandidateBinOp;
9204     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9205                    getVectorIdxConstant(0, SDLoc(Op)));
9206   };
9207 
9208   // At each stage, we're looking for something that looks like:
9209   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9210   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9211   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9212   // %a = binop <8 x i32> %op, %s
9213   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9214   // we expect something like:
9215   // <4,5,6,7,u,u,u,u>
9216   // <2,3,u,u,u,u,u,u>
9217   // <1,u,u,u,u,u,u,u>
9218   // While a partial reduction match would be:
9219   // <2,3,u,u,u,u,u,u>
9220   // <1,u,u,u,u,u,u,u>
9221   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9222   SDValue PrevOp;
9223   for (unsigned i = 0; i < Stages; ++i) {
9224     unsigned MaskEnd = (1 << i);
9225 
9226     if (Op.getOpcode() != CandidateBinOp)
9227       return PartialReduction(PrevOp, MaskEnd);
9228 
9229     SDValue Op0 = Op.getOperand(0);
9230     SDValue Op1 = Op.getOperand(1);
9231 
9232     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9233     if (Shuffle) {
9234       Op = Op1;
9235     } else {
9236       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9237       Op = Op0;
9238     }
9239 
9240     // The first operand of the shuffle should be the same as the other operand
9241     // of the binop.
9242     if (!Shuffle || Shuffle->getOperand(0) != Op)
9243       return PartialReduction(PrevOp, MaskEnd);
9244 
9245     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9246     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9247       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9248         return PartialReduction(PrevOp, MaskEnd);
9249 
9250     PrevOp = Op;
9251   }
9252 
9253   BinOp = (ISD::NodeType)CandidateBinOp;
9254   return Op;
9255 }
9256 
9257 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9258   assert(N->getNumValues() == 1 &&
9259          "Can't unroll a vector with multiple results!");
9260 
9261   EVT VT = N->getValueType(0);
9262   unsigned NE = VT.getVectorNumElements();
9263   EVT EltVT = VT.getVectorElementType();
9264   SDLoc dl(N);
9265 
9266   SmallVector<SDValue, 8> Scalars;
9267   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9268 
9269   // If ResNE is 0, fully unroll the vector op.
9270   if (ResNE == 0)
9271     ResNE = NE;
9272   else if (NE > ResNE)
9273     NE = ResNE;
9274 
9275   unsigned i;
9276   for (i= 0; i != NE; ++i) {
9277     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9278       SDValue Operand = N->getOperand(j);
9279       EVT OperandVT = Operand.getValueType();
9280       if (OperandVT.isVector()) {
9281         // A vector operand; extract a single element.
9282         EVT OperandEltVT = OperandVT.getVectorElementType();
9283         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9284                               Operand, getVectorIdxConstant(i, dl));
9285       } else {
9286         // A scalar operand; just use it as is.
9287         Operands[j] = Operand;
9288       }
9289     }
9290 
9291     switch (N->getOpcode()) {
9292     default: {
9293       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9294                                 N->getFlags()));
9295       break;
9296     }
9297     case ISD::VSELECT:
9298       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9299       break;
9300     case ISD::SHL:
9301     case ISD::SRA:
9302     case ISD::SRL:
9303     case ISD::ROTL:
9304     case ISD::ROTR:
9305       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9306                                getShiftAmountOperand(Operands[0].getValueType(),
9307                                                      Operands[1])));
9308       break;
9309     case ISD::SIGN_EXTEND_INREG: {
9310       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9311       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9312                                 Operands[0],
9313                                 getValueType(ExtVT)));
9314     }
9315     }
9316   }
9317 
9318   for (; i < ResNE; ++i)
9319     Scalars.push_back(getUNDEF(EltVT));
9320 
9321   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9322   return getBuildVector(VecVT, dl, Scalars);
9323 }
9324 
9325 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9326     SDNode *N, unsigned ResNE) {
9327   unsigned Opcode = N->getOpcode();
9328   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9329           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9330           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9331          "Expected an overflow opcode");
9332 
9333   EVT ResVT = N->getValueType(0);
9334   EVT OvVT = N->getValueType(1);
9335   EVT ResEltVT = ResVT.getVectorElementType();
9336   EVT OvEltVT = OvVT.getVectorElementType();
9337   SDLoc dl(N);
9338 
9339   // If ResNE is 0, fully unroll the vector op.
9340   unsigned NE = ResVT.getVectorNumElements();
9341   if (ResNE == 0)
9342     ResNE = NE;
9343   else if (NE > ResNE)
9344     NE = ResNE;
9345 
9346   SmallVector<SDValue, 8> LHSScalars;
9347   SmallVector<SDValue, 8> RHSScalars;
9348   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9349   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9350 
9351   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9352   SDVTList VTs = getVTList(ResEltVT, SVT);
9353   SmallVector<SDValue, 8> ResScalars;
9354   SmallVector<SDValue, 8> OvScalars;
9355   for (unsigned i = 0; i < NE; ++i) {
9356     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9357     SDValue Ov =
9358         getSelect(dl, OvEltVT, Res.getValue(1),
9359                   getBoolConstant(true, dl, OvEltVT, ResVT),
9360                   getConstant(0, dl, OvEltVT));
9361 
9362     ResScalars.push_back(Res);
9363     OvScalars.push_back(Ov);
9364   }
9365 
9366   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9367   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9368 
9369   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9370   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9371   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9372                         getBuildVector(NewOvVT, dl, OvScalars));
9373 }
9374 
9375 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9376                                                   LoadSDNode *Base,
9377                                                   unsigned Bytes,
9378                                                   int Dist) const {
9379   if (LD->isVolatile() || Base->isVolatile())
9380     return false;
9381   // TODO: probably too restrictive for atomics, revisit
9382   if (!LD->isSimple())
9383     return false;
9384   if (LD->isIndexed() || Base->isIndexed())
9385     return false;
9386   if (LD->getChain() != Base->getChain())
9387     return false;
9388   EVT VT = LD->getValueType(0);
9389   if (VT.getSizeInBits() / 8 != Bytes)
9390     return false;
9391 
9392   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9393   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9394 
9395   int64_t Offset = 0;
9396   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9397     return (Dist * Bytes == Offset);
9398   return false;
9399 }
9400 
9401 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9402 /// it cannot be inferred.
9403 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9404   // If this is a GlobalAddress + cst, return the alignment.
9405   const GlobalValue *GV = nullptr;
9406   int64_t GVOffset = 0;
9407   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9408     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9409     KnownBits Known(PtrWidth);
9410     llvm::computeKnownBits(GV, Known, getDataLayout());
9411     unsigned AlignBits = Known.countMinTrailingZeros();
9412     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9413     if (Align)
9414       return MinAlign(Align, GVOffset);
9415   }
9416 
9417   // If this is a direct reference to a stack slot, use information about the
9418   // stack slot's alignment.
9419   int FrameIdx = INT_MIN;
9420   int64_t FrameOffset = 0;
9421   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9422     FrameIdx = FI->getIndex();
9423   } else if (isBaseWithConstantOffset(Ptr) &&
9424              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9425     // Handle FI+Cst
9426     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9427     FrameOffset = Ptr.getConstantOperandVal(1);
9428   }
9429 
9430   if (FrameIdx != INT_MIN) {
9431     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9432     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9433                                     FrameOffset);
9434     return FIInfoAlign;
9435   }
9436 
9437   return 0;
9438 }
9439 
9440 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9441 /// which is split (or expanded) into two not necessarily identical pieces.
9442 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9443   // Currently all types are split in half.
9444   EVT LoVT, HiVT;
9445   if (!VT.isVector())
9446     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9447   else
9448     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9449 
9450   return std::make_pair(LoVT, HiVT);
9451 }
9452 
9453 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9454 /// low/high part.
9455 std::pair<SDValue, SDValue>
9456 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9457                           const EVT &HiVT) {
9458   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9459          N.getValueType().getVectorNumElements() &&
9460          "More vector elements requested than available!");
9461   SDValue Lo, Hi;
9462   Lo =
9463       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9464   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9465                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9466   return std::make_pair(Lo, Hi);
9467 }
9468 
9469 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9470 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9471   EVT VT = N.getValueType();
9472   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9473                                 NextPowerOf2(VT.getVectorNumElements()));
9474   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9475                  getVectorIdxConstant(0, DL));
9476 }
9477 
9478 void SelectionDAG::ExtractVectorElements(SDValue Op,
9479                                          SmallVectorImpl<SDValue> &Args,
9480                                          unsigned Start, unsigned Count) {
9481   EVT VT = Op.getValueType();
9482   if (Count == 0)
9483     Count = VT.getVectorNumElements();
9484 
9485   EVT EltVT = VT.getVectorElementType();
9486   SDLoc SL(Op);
9487   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9488     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9489                            getVectorIdxConstant(i, SL)));
9490   }
9491 }
9492 
9493 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9494 unsigned GlobalAddressSDNode::getAddressSpace() const {
9495   return getGlobal()->getType()->getAddressSpace();
9496 }
9497 
9498 Type *ConstantPoolSDNode::getType() const {
9499   if (isMachineConstantPoolEntry())
9500     return Val.MachineCPVal->getType();
9501   return Val.ConstVal->getType();
9502 }
9503 
9504 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9505                                         unsigned &SplatBitSize,
9506                                         bool &HasAnyUndefs,
9507                                         unsigned MinSplatBits,
9508                                         bool IsBigEndian) const {
9509   EVT VT = getValueType(0);
9510   assert(VT.isVector() && "Expected a vector type");
9511   unsigned VecWidth = VT.getSizeInBits();
9512   if (MinSplatBits > VecWidth)
9513     return false;
9514 
9515   // FIXME: The widths are based on this node's type, but build vectors can
9516   // truncate their operands.
9517   SplatValue = APInt(VecWidth, 0);
9518   SplatUndef = APInt(VecWidth, 0);
9519 
9520   // Get the bits. Bits with undefined values (when the corresponding element
9521   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9522   // in SplatValue. If any of the values are not constant, give up and return
9523   // false.
9524   unsigned int NumOps = getNumOperands();
9525   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9526   unsigned EltWidth = VT.getScalarSizeInBits();
9527 
9528   for (unsigned j = 0; j < NumOps; ++j) {
9529     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9530     SDValue OpVal = getOperand(i);
9531     unsigned BitPos = j * EltWidth;
9532 
9533     if (OpVal.isUndef())
9534       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9535     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9536       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9537     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9538       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9539     else
9540       return false;
9541   }
9542 
9543   // The build_vector is all constants or undefs. Find the smallest element
9544   // size that splats the vector.
9545   HasAnyUndefs = (SplatUndef != 0);
9546 
9547   // FIXME: This does not work for vectors with elements less than 8 bits.
9548   while (VecWidth > 8) {
9549     unsigned HalfSize = VecWidth / 2;
9550     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9551     APInt LowValue = SplatValue.trunc(HalfSize);
9552     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9553     APInt LowUndef = SplatUndef.trunc(HalfSize);
9554 
9555     // If the two halves do not match (ignoring undef bits), stop here.
9556     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9557         MinSplatBits > HalfSize)
9558       break;
9559 
9560     SplatValue = HighValue | LowValue;
9561     SplatUndef = HighUndef & LowUndef;
9562 
9563     VecWidth = HalfSize;
9564   }
9565 
9566   SplatBitSize = VecWidth;
9567   return true;
9568 }
9569 
9570 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9571                                          BitVector *UndefElements) const {
9572   if (UndefElements) {
9573     UndefElements->clear();
9574     UndefElements->resize(getNumOperands());
9575   }
9576   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9577          "Unexpected vector size");
9578   if (!DemandedElts)
9579     return SDValue();
9580   SDValue Splatted;
9581   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9582     if (!DemandedElts[i])
9583       continue;
9584     SDValue Op = getOperand(i);
9585     if (Op.isUndef()) {
9586       if (UndefElements)
9587         (*UndefElements)[i] = true;
9588     } else if (!Splatted) {
9589       Splatted = Op;
9590     } else if (Splatted != Op) {
9591       return SDValue();
9592     }
9593   }
9594 
9595   if (!Splatted) {
9596     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9597     assert(getOperand(FirstDemandedIdx).isUndef() &&
9598            "Can only have a splat without a constant for all undefs.");
9599     return getOperand(FirstDemandedIdx);
9600   }
9601 
9602   return Splatted;
9603 }
9604 
9605 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9606   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9607   return getSplatValue(DemandedElts, UndefElements);
9608 }
9609 
9610 ConstantSDNode *
9611 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9612                                         BitVector *UndefElements) const {
9613   return dyn_cast_or_null<ConstantSDNode>(
9614       getSplatValue(DemandedElts, UndefElements));
9615 }
9616 
9617 ConstantSDNode *
9618 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9619   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9620 }
9621 
9622 ConstantFPSDNode *
9623 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9624                                           BitVector *UndefElements) const {
9625   return dyn_cast_or_null<ConstantFPSDNode>(
9626       getSplatValue(DemandedElts, UndefElements));
9627 }
9628 
9629 ConstantFPSDNode *
9630 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9631   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9632 }
9633 
9634 int32_t
9635 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9636                                                    uint32_t BitWidth) const {
9637   if (ConstantFPSDNode *CN =
9638           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9639     bool IsExact;
9640     APSInt IntVal(BitWidth);
9641     const APFloat &APF = CN->getValueAPF();
9642     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9643             APFloat::opOK ||
9644         !IsExact)
9645       return -1;
9646 
9647     return IntVal.exactLogBase2();
9648   }
9649   return -1;
9650 }
9651 
9652 bool BuildVectorSDNode::isConstant() const {
9653   for (const SDValue &Op : op_values()) {
9654     unsigned Opc = Op.getOpcode();
9655     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9656       return false;
9657   }
9658   return true;
9659 }
9660 
9661 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9662   // Find the first non-undef value in the shuffle mask.
9663   unsigned i, e;
9664   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9665     /* search */;
9666 
9667   // If all elements are undefined, this shuffle can be considered a splat
9668   // (although it should eventually get simplified away completely).
9669   if (i == e)
9670     return true;
9671 
9672   // Make sure all remaining elements are either undef or the same as the first
9673   // non-undef value.
9674   for (int Idx = Mask[i]; i != e; ++i)
9675     if (Mask[i] >= 0 && Mask[i] != Idx)
9676       return false;
9677   return true;
9678 }
9679 
9680 // Returns the SDNode if it is a constant integer BuildVector
9681 // or constant integer.
9682 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9683   if (isa<ConstantSDNode>(N))
9684     return N.getNode();
9685   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9686     return N.getNode();
9687   // Treat a GlobalAddress supporting constant offset folding as a
9688   // constant integer.
9689   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9690     if (GA->getOpcode() == ISD::GlobalAddress &&
9691         TLI->isOffsetFoldingLegal(GA))
9692       return GA;
9693   return nullptr;
9694 }
9695 
9696 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9697   if (isa<ConstantFPSDNode>(N))
9698     return N.getNode();
9699 
9700   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9701     return N.getNode();
9702 
9703   return nullptr;
9704 }
9705 
9706 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9707   assert(!Node->OperandList && "Node already has operands");
9708   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9709          "too many operands to fit into SDNode");
9710   SDUse *Ops = OperandRecycler.allocate(
9711       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9712 
9713   bool IsDivergent = false;
9714   for (unsigned I = 0; I != Vals.size(); ++I) {
9715     Ops[I].setUser(Node);
9716     Ops[I].setInitial(Vals[I]);
9717     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9718       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9719   }
9720   Node->NumOperands = Vals.size();
9721   Node->OperandList = Ops;
9722   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9723   if (!TLI->isSDNodeAlwaysUniform(Node))
9724     Node->SDNodeBits.IsDivergent = IsDivergent;
9725   checkForCycles(Node);
9726 }
9727 
9728 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9729                                      SmallVectorImpl<SDValue> &Vals) {
9730   size_t Limit = SDNode::getMaxNumOperands();
9731   while (Vals.size() > Limit) {
9732     unsigned SliceIdx = Vals.size() - Limit;
9733     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9734     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9735     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9736     Vals.emplace_back(NewTF);
9737   }
9738   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9739 }
9740 
9741 #ifndef NDEBUG
9742 static void checkForCyclesHelper(const SDNode *N,
9743                                  SmallPtrSetImpl<const SDNode*> &Visited,
9744                                  SmallPtrSetImpl<const SDNode*> &Checked,
9745                                  const llvm::SelectionDAG *DAG) {
9746   // If this node has already been checked, don't check it again.
9747   if (Checked.count(N))
9748     return;
9749 
9750   // If a node has already been visited on this depth-first walk, reject it as
9751   // a cycle.
9752   if (!Visited.insert(N).second) {
9753     errs() << "Detected cycle in SelectionDAG\n";
9754     dbgs() << "Offending node:\n";
9755     N->dumprFull(DAG); dbgs() << "\n";
9756     abort();
9757   }
9758 
9759   for (const SDValue &Op : N->op_values())
9760     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9761 
9762   Checked.insert(N);
9763   Visited.erase(N);
9764 }
9765 #endif
9766 
9767 void llvm::checkForCycles(const llvm::SDNode *N,
9768                           const llvm::SelectionDAG *DAG,
9769                           bool force) {
9770 #ifndef NDEBUG
9771   bool check = force;
9772 #ifdef EXPENSIVE_CHECKS
9773   check = true;
9774 #endif  // EXPENSIVE_CHECKS
9775   if (check) {
9776     assert(N && "Checking nonexistent SDNode");
9777     SmallPtrSet<const SDNode*, 32> visited;
9778     SmallPtrSet<const SDNode*, 32> checked;
9779     checkForCyclesHelper(N, visited, checked, DAG);
9780   }
9781 #endif  // !NDEBUG
9782 }
9783 
9784 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9785   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9786 }
9787