1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 150 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 151 return true; 152 } 153 } 154 155 auto *BV = dyn_cast<BuildVectorSDNode>(N); 156 if (!BV) 157 return false; 158 159 APInt SplatUndef; 160 unsigned SplatBitSize; 161 bool HasUndefs; 162 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 163 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 164 EltSize) && 165 EltSize == SplatBitSize; 166 } 167 168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 169 // specializations of the more general isConstantSplatVector()? 170 171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 172 // Look through a bit convert. 173 while (N->getOpcode() == ISD::BITCAST) 174 N = N->getOperand(0).getNode(); 175 176 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 177 APInt SplatVal; 178 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 179 } 180 181 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 182 183 unsigned i = 0, e = N->getNumOperands(); 184 185 // Skip over all of the undef values. 186 while (i != e && N->getOperand(i).isUndef()) 187 ++i; 188 189 // Do not accept an all-undef vector. 190 if (i == e) return false; 191 192 // Do not accept build_vectors that aren't all constants or which have non-~0 193 // elements. We have to be a bit careful here, as the type of the constant 194 // may not be the same as the type of the vector elements due to type 195 // legalization (the elements are promoted to a legal type for the target and 196 // a vector of a type may be legal when the base element type is not). 197 // We only want to check enough bits to cover the vector elements, because 198 // we care if the resultant vector is all ones, not whether the individual 199 // constants are. 200 SDValue NotZero = N->getOperand(i); 201 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 203 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 204 return false; 205 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 206 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 207 return false; 208 } else 209 return false; 210 211 // Okay, we have at least one ~0 value, check to see if the rest match or are 212 // undefs. Even with the above element type twiddling, this should be OK, as 213 // the same type legalization should have applied to all the elements. 214 for (++i; i != e; ++i) 215 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 216 return false; 217 return true; 218 } 219 220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 221 // Look through a bit convert. 222 while (N->getOpcode() == ISD::BITCAST) 223 N = N->getOperand(0).getNode(); 224 225 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 226 APInt SplatVal; 227 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 228 } 229 230 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 231 232 bool IsAllUndef = true; 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 IsAllUndef = false; 237 // Do not accept build_vectors that aren't all constants or which have non-0 238 // elements. We have to be a bit careful here, as the type of the constant 239 // may not be the same as the type of the vector elements due to type 240 // legalization (the elements are promoted to a legal type for the target 241 // and a vector of a type may be legal when the base element type is not). 242 // We only want to check enough bits to cover the vector elements, because 243 // we care if the resultant vector is all zeros, not whether the individual 244 // constants are. 245 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 246 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 247 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 248 return false; 249 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 250 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 251 return false; 252 } else 253 return false; 254 } 255 256 // Do not accept an all-undef vector. 257 if (IsAllUndef) 258 return false; 259 return true; 260 } 261 262 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 263 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 267 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 268 } 269 270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 271 if (N->getOpcode() != ISD::BUILD_VECTOR) 272 return false; 273 274 for (const SDValue &Op : N->op_values()) { 275 if (Op.isUndef()) 276 continue; 277 if (!isa<ConstantSDNode>(Op)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 284 if (N->getOpcode() != ISD::BUILD_VECTOR) 285 return false; 286 287 for (const SDValue &Op : N->op_values()) { 288 if (Op.isUndef()) 289 continue; 290 if (!isa<ConstantFPSDNode>(Op)) 291 return false; 292 } 293 return true; 294 } 295 296 bool ISD::allOperandsUndef(const SDNode *N) { 297 // Return false if the node has no operands. 298 // This is "logically inconsistent" with the definition of "all" but 299 // is probably the desired behavior. 300 if (N->getNumOperands() == 0) 301 return false; 302 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 303 } 304 305 bool ISD::matchUnaryPredicate(SDValue Op, 306 std::function<bool(ConstantSDNode *)> Match, 307 bool AllowUndefs) { 308 // FIXME: Add support for scalar UNDEF cases? 309 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 310 return Match(Cst); 311 312 // FIXME: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != Op.getOpcode() && 314 ISD::SPLAT_VECTOR != Op.getOpcode()) 315 return false; 316 317 EVT SVT = Op.getValueType().getScalarType(); 318 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 319 if (AllowUndefs && Op.getOperand(i).isUndef()) { 320 if (!Match(nullptr)) 321 return false; 322 continue; 323 } 324 325 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 326 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 327 return false; 328 } 329 return true; 330 } 331 332 bool ISD::matchBinaryPredicate( 333 SDValue LHS, SDValue RHS, 334 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 335 bool AllowUndefs, bool AllowTypeMismatch) { 336 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 337 return false; 338 339 // TODO: Add support for scalar UNDEF cases? 340 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 341 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 342 return Match(LHSCst, RHSCst); 343 344 // TODO: Add support for vector UNDEF cases? 345 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 346 ISD::BUILD_VECTOR != RHS.getOpcode()) 347 return false; 348 349 EVT SVT = LHS.getValueType().getScalarType(); 350 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 351 SDValue LHSOp = LHS.getOperand(i); 352 SDValue RHSOp = RHS.getOperand(i); 353 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 354 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 355 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 356 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 357 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 358 return false; 359 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 360 LHSOp.getValueType() != RHSOp.getValueType())) 361 return false; 362 if (!Match(LHSCst, RHSCst)) 363 return false; 364 } 365 return true; 366 } 367 368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 369 switch (VecReduceOpcode) { 370 default: 371 llvm_unreachable("Expected VECREDUCE opcode"); 372 case ISD::VECREDUCE_FADD: 373 case ISD::VECREDUCE_SEQ_FADD: 374 return ISD::FADD; 375 case ISD::VECREDUCE_FMUL: 376 case ISD::VECREDUCE_SEQ_FMUL: 377 return ISD::FMUL; 378 case ISD::VECREDUCE_ADD: 379 return ISD::ADD; 380 case ISD::VECREDUCE_MUL: 381 return ISD::MUL; 382 case ISD::VECREDUCE_AND: 383 return ISD::AND; 384 case ISD::VECREDUCE_OR: 385 return ISD::OR; 386 case ISD::VECREDUCE_XOR: 387 return ISD::XOR; 388 case ISD::VECREDUCE_SMAX: 389 return ISD::SMAX; 390 case ISD::VECREDUCE_SMIN: 391 return ISD::SMIN; 392 case ISD::VECREDUCE_UMAX: 393 return ISD::UMAX; 394 case ISD::VECREDUCE_UMIN: 395 return ISD::UMIN; 396 case ISD::VECREDUCE_FMAX: 397 return ISD::FMAXNUM; 398 case ISD::VECREDUCE_FMIN: 399 return ISD::FMINNUM; 400 } 401 } 402 403 bool ISD::isVPOpcode(unsigned Opcode) { 404 switch (Opcode) { 405 default: 406 return false; 407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 408 case ISD::SDOPC: \ 409 return true; 410 #include "llvm/IR/VPIntrinsics.def" 411 } 412 } 413 414 /// The operand position of the vector mask. 415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 416 switch (Opcode) { 417 default: 418 return None; 419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 420 case ISD::SDOPC: \ 421 return MASKPOS; 422 #include "llvm/IR/VPIntrinsics.def" 423 } 424 } 425 426 /// The operand position of the explicit vector length parameter. 427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 return None; 431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 432 case ISD::SDOPC: \ 433 return EVLPOS; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 } 437 438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 439 switch (ExtType) { 440 case ISD::EXTLOAD: 441 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 442 case ISD::SEXTLOAD: 443 return ISD::SIGN_EXTEND; 444 case ISD::ZEXTLOAD: 445 return ISD::ZERO_EXTEND; 446 default: 447 break; 448 } 449 450 llvm_unreachable("Invalid LoadExtType"); 451 } 452 453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 454 // To perform this operation, we just need to swap the L and G bits of the 455 // operation. 456 unsigned OldL = (Operation >> 2) & 1; 457 unsigned OldG = (Operation >> 1) & 1; 458 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 459 (OldL << 1) | // New G bit 460 (OldG << 2)); // New L bit. 461 } 462 463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 464 unsigned Operation = Op; 465 if (isIntegerLike) 466 Operation ^= 7; // Flip L, G, E bits, but not U. 467 else 468 Operation ^= 15; // Flip all of the condition bits. 469 470 if (Operation > ISD::SETTRUE2) 471 Operation &= ~8; // Don't let N and U bits get set. 472 473 return ISD::CondCode(Operation); 474 } 475 476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 477 return getSetCCInverseImpl(Op, Type.isInteger()); 478 } 479 480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 481 bool isIntegerLike) { 482 return getSetCCInverseImpl(Op, isIntegerLike); 483 } 484 485 /// For an integer comparison, return 1 if the comparison is a signed operation 486 /// and 2 if the result is an unsigned comparison. Return zero if the operation 487 /// does not depend on the sign of the input (setne and seteq). 488 static int isSignedOp(ISD::CondCode Opcode) { 489 switch (Opcode) { 490 default: llvm_unreachable("Illegal integer setcc operation!"); 491 case ISD::SETEQ: 492 case ISD::SETNE: return 0; 493 case ISD::SETLT: 494 case ISD::SETLE: 495 case ISD::SETGT: 496 case ISD::SETGE: return 1; 497 case ISD::SETULT: 498 case ISD::SETULE: 499 case ISD::SETUGT: 500 case ISD::SETUGE: return 2; 501 } 502 } 503 504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 505 EVT Type) { 506 bool IsInteger = Type.isInteger(); 507 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 508 // Cannot fold a signed integer setcc with an unsigned integer setcc. 509 return ISD::SETCC_INVALID; 510 511 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 512 513 // If the N and U bits get set, then the resultant comparison DOES suddenly 514 // care about orderedness, and it is true when ordered. 515 if (Op > ISD::SETTRUE2) 516 Op &= ~16; // Clear the U bit if the N bit is set. 517 518 // Canonicalize illegal integer setcc's. 519 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 520 Op = ISD::SETNE; 521 522 return ISD::CondCode(Op); 523 } 524 525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 526 EVT Type) { 527 bool IsInteger = Type.isInteger(); 528 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 529 // Cannot fold a signed setcc with an unsigned setcc. 530 return ISD::SETCC_INVALID; 531 532 // Combine all of the condition bits. 533 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 534 535 // Canonicalize illegal integer setcc's. 536 if (IsInteger) { 537 switch (Result) { 538 default: break; 539 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 540 case ISD::SETOEQ: // SETEQ & SETU[LG]E 541 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 542 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 543 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 544 } 545 } 546 547 return Result; 548 } 549 550 //===----------------------------------------------------------------------===// 551 // SDNode Profile Support 552 //===----------------------------------------------------------------------===// 553 554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 556 ID.AddInteger(OpC); 557 } 558 559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 560 /// solely with their pointer. 561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 562 ID.AddPointer(VTList.VTs); 563 } 564 565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 566 static void AddNodeIDOperands(FoldingSetNodeID &ID, 567 ArrayRef<SDValue> Ops) { 568 for (auto& Op : Ops) { 569 ID.AddPointer(Op.getNode()); 570 ID.AddInteger(Op.getResNo()); 571 } 572 } 573 574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 575 static void AddNodeIDOperands(FoldingSetNodeID &ID, 576 ArrayRef<SDUse> Ops) { 577 for (auto& Op : Ops) { 578 ID.AddPointer(Op.getNode()); 579 ID.AddInteger(Op.getResNo()); 580 } 581 } 582 583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 584 SDVTList VTList, ArrayRef<SDValue> OpList) { 585 AddNodeIDOpcode(ID, OpC); 586 AddNodeIDValueTypes(ID, VTList); 587 AddNodeIDOperands(ID, OpList); 588 } 589 590 /// If this is an SDNode with special info, add this info to the NodeID data. 591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 592 switch (N->getOpcode()) { 593 case ISD::TargetExternalSymbol: 594 case ISD::ExternalSymbol: 595 case ISD::MCSymbol: 596 llvm_unreachable("Should only be used on nodes with operands"); 597 default: break; // Normal nodes don't need extra info. 598 case ISD::TargetConstant: 599 case ISD::Constant: { 600 const ConstantSDNode *C = cast<ConstantSDNode>(N); 601 ID.AddPointer(C->getConstantIntValue()); 602 ID.AddBoolean(C->isOpaque()); 603 break; 604 } 605 case ISD::TargetConstantFP: 606 case ISD::ConstantFP: 607 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 608 break; 609 case ISD::TargetGlobalAddress: 610 case ISD::GlobalAddress: 611 case ISD::TargetGlobalTLSAddress: 612 case ISD::GlobalTLSAddress: { 613 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 614 ID.AddPointer(GA->getGlobal()); 615 ID.AddInteger(GA->getOffset()); 616 ID.AddInteger(GA->getTargetFlags()); 617 break; 618 } 619 case ISD::BasicBlock: 620 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 621 break; 622 case ISD::Register: 623 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 624 break; 625 case ISD::RegisterMask: 626 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 627 break; 628 case ISD::SRCVALUE: 629 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 630 break; 631 case ISD::FrameIndex: 632 case ISD::TargetFrameIndex: 633 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 634 break; 635 case ISD::LIFETIME_START: 636 case ISD::LIFETIME_END: 637 if (cast<LifetimeSDNode>(N)->hasOffset()) { 638 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 639 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 640 } 641 break; 642 case ISD::PSEUDO_PROBE: 643 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 645 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 646 break; 647 case ISD::JumpTable: 648 case ISD::TargetJumpTable: 649 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 650 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 651 break; 652 case ISD::ConstantPool: 653 case ISD::TargetConstantPool: { 654 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 655 ID.AddInteger(CP->getAlign().value()); 656 ID.AddInteger(CP->getOffset()); 657 if (CP->isMachineConstantPoolEntry()) 658 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 659 else 660 ID.AddPointer(CP->getConstVal()); 661 ID.AddInteger(CP->getTargetFlags()); 662 break; 663 } 664 case ISD::TargetIndex: { 665 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 666 ID.AddInteger(TI->getIndex()); 667 ID.AddInteger(TI->getOffset()); 668 ID.AddInteger(TI->getTargetFlags()); 669 break; 670 } 671 case ISD::LOAD: { 672 const LoadSDNode *LD = cast<LoadSDNode>(N); 673 ID.AddInteger(LD->getMemoryVT().getRawBits()); 674 ID.AddInteger(LD->getRawSubclassData()); 675 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 676 break; 677 } 678 case ISD::STORE: { 679 const StoreSDNode *ST = cast<StoreSDNode>(N); 680 ID.AddInteger(ST->getMemoryVT().getRawBits()); 681 ID.AddInteger(ST->getRawSubclassData()); 682 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 683 break; 684 } 685 case ISD::MLOAD: { 686 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 687 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 688 ID.AddInteger(MLD->getRawSubclassData()); 689 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 690 break; 691 } 692 case ISD::MSTORE: { 693 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 694 ID.AddInteger(MST->getMemoryVT().getRawBits()); 695 ID.AddInteger(MST->getRawSubclassData()); 696 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 697 break; 698 } 699 case ISD::MGATHER: { 700 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 701 ID.AddInteger(MG->getMemoryVT().getRawBits()); 702 ID.AddInteger(MG->getRawSubclassData()); 703 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 704 break; 705 } 706 case ISD::MSCATTER: { 707 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 708 ID.AddInteger(MS->getMemoryVT().getRawBits()); 709 ID.AddInteger(MS->getRawSubclassData()); 710 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 711 break; 712 } 713 case ISD::ATOMIC_CMP_SWAP: 714 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 715 case ISD::ATOMIC_SWAP: 716 case ISD::ATOMIC_LOAD_ADD: 717 case ISD::ATOMIC_LOAD_SUB: 718 case ISD::ATOMIC_LOAD_AND: 719 case ISD::ATOMIC_LOAD_CLR: 720 case ISD::ATOMIC_LOAD_OR: 721 case ISD::ATOMIC_LOAD_XOR: 722 case ISD::ATOMIC_LOAD_NAND: 723 case ISD::ATOMIC_LOAD_MIN: 724 case ISD::ATOMIC_LOAD_MAX: 725 case ISD::ATOMIC_LOAD_UMIN: 726 case ISD::ATOMIC_LOAD_UMAX: 727 case ISD::ATOMIC_LOAD: 728 case ISD::ATOMIC_STORE: { 729 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 730 ID.AddInteger(AT->getMemoryVT().getRawBits()); 731 ID.AddInteger(AT->getRawSubclassData()); 732 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 733 break; 734 } 735 case ISD::PREFETCH: { 736 const MemSDNode *PF = cast<MemSDNode>(N); 737 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VECTOR_SHUFFLE: { 741 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 742 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 743 i != e; ++i) 744 ID.AddInteger(SVN->getMaskElt(i)); 745 break; 746 } 747 case ISD::TargetBlockAddress: 748 case ISD::BlockAddress: { 749 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 750 ID.AddPointer(BA->getBlockAddress()); 751 ID.AddInteger(BA->getOffset()); 752 ID.AddInteger(BA->getTargetFlags()); 753 break; 754 } 755 } // end switch (N->getOpcode()) 756 757 // Target specific memory nodes could also have address spaces to check. 758 if (N->isTargetMemoryOpcode()) 759 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 760 } 761 762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 763 /// data. 764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 765 AddNodeIDOpcode(ID, N->getOpcode()); 766 // Add the return value info. 767 AddNodeIDValueTypes(ID, N->getVTList()); 768 // Add the operand info. 769 AddNodeIDOperands(ID, N->ops()); 770 771 // Handle SDNode leafs with special info. 772 AddNodeIDCustom(ID, N); 773 } 774 775 //===----------------------------------------------------------------------===// 776 // SelectionDAG Class 777 //===----------------------------------------------------------------------===// 778 779 /// doNotCSE - Return true if CSE should not be performed for this node. 780 static bool doNotCSE(SDNode *N) { 781 if (N->getValueType(0) == MVT::Glue) 782 return true; // Never CSE anything that produces a flag. 783 784 switch (N->getOpcode()) { 785 default: break; 786 case ISD::HANDLENODE: 787 case ISD::EH_LABEL: 788 return true; // Never CSE these nodes. 789 } 790 791 // Check that remaining values produced are not flags. 792 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 793 if (N->getValueType(i) == MVT::Glue) 794 return true; // Never CSE anything that produces a flag. 795 796 return false; 797 } 798 799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 800 /// SelectionDAG. 801 void SelectionDAG::RemoveDeadNodes() { 802 // Create a dummy node (which is not added to allnodes), that adds a reference 803 // to the root node, preventing it from being deleted. 804 HandleSDNode Dummy(getRoot()); 805 806 SmallVector<SDNode*, 128> DeadNodes; 807 808 // Add all obviously-dead nodes to the DeadNodes worklist. 809 for (SDNode &Node : allnodes()) 810 if (Node.use_empty()) 811 DeadNodes.push_back(&Node); 812 813 RemoveDeadNodes(DeadNodes); 814 815 // If the root changed (e.g. it was a dead load, update the root). 816 setRoot(Dummy.getValue()); 817 } 818 819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 820 /// given list, and any nodes that become unreachable as a result. 821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 822 823 // Process the worklist, deleting the nodes and adding their uses to the 824 // worklist. 825 while (!DeadNodes.empty()) { 826 SDNode *N = DeadNodes.pop_back_val(); 827 // Skip to next node if we've already managed to delete the node. This could 828 // happen if replacing a node causes a node previously added to the node to 829 // be deleted. 830 if (N->getOpcode() == ISD::DELETED_NODE) 831 continue; 832 833 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 834 DUL->NodeDeleted(N, nullptr); 835 836 // Take the node out of the appropriate CSE map. 837 RemoveNodeFromCSEMaps(N); 838 839 // Next, brutally remove the operand list. This is safe to do, as there are 840 // no cycles in the graph. 841 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 842 SDUse &Use = *I++; 843 SDNode *Operand = Use.getNode(); 844 Use.set(SDValue()); 845 846 // Now that we removed this operand, see if there are no uses of it left. 847 if (Operand->use_empty()) 848 DeadNodes.push_back(Operand); 849 } 850 851 DeallocateNode(N); 852 } 853 } 854 855 void SelectionDAG::RemoveDeadNode(SDNode *N){ 856 SmallVector<SDNode*, 16> DeadNodes(1, N); 857 858 // Create a dummy node that adds a reference to the root node, preventing 859 // it from being deleted. (This matters if the root is an operand of the 860 // dead node.) 861 HandleSDNode Dummy(getRoot()); 862 863 RemoveDeadNodes(DeadNodes); 864 } 865 866 void SelectionDAG::DeleteNode(SDNode *N) { 867 // First take this out of the appropriate CSE map. 868 RemoveNodeFromCSEMaps(N); 869 870 // Finally, remove uses due to operands of this node, remove from the 871 // AllNodes list, and delete the node. 872 DeleteNodeNotInCSEMaps(N); 873 } 874 875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 876 assert(N->getIterator() != AllNodes.begin() && 877 "Cannot delete the entry node!"); 878 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 879 880 // Drop all of the operands and decrement used node's use counts. 881 N->DropOperands(); 882 883 DeallocateNode(N); 884 } 885 886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 887 assert(!(V->isVariadic() && isParameter)); 888 if (isParameter) 889 ByvalParmDbgValues.push_back(V); 890 else 891 DbgValues.push_back(V); 892 for (const SDNode *Node : V->getSDNodes()) 893 if (Node) 894 DbgValMap[Node].push_back(V); 895 } 896 897 void SDDbgInfo::erase(const SDNode *Node) { 898 DbgValMapType::iterator I = DbgValMap.find(Node); 899 if (I == DbgValMap.end()) 900 return; 901 for (auto &Val: I->second) 902 Val->setIsInvalidated(); 903 DbgValMap.erase(I); 904 } 905 906 void SelectionDAG::DeallocateNode(SDNode *N) { 907 // If we have operands, deallocate them. 908 removeOperands(N); 909 910 NodeAllocator.Deallocate(AllNodes.remove(N)); 911 912 // Set the opcode to DELETED_NODE to help catch bugs when node 913 // memory is reallocated. 914 // FIXME: There are places in SDag that have grown a dependency on the opcode 915 // value in the released node. 916 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 917 N->NodeType = ISD::DELETED_NODE; 918 919 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 920 // them and forget about that node. 921 DbgInfo->erase(N); 922 } 923 924 #ifndef NDEBUG 925 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 926 static void VerifySDNode(SDNode *N) { 927 switch (N->getOpcode()) { 928 default: 929 break; 930 case ISD::BUILD_PAIR: { 931 EVT VT = N->getValueType(0); 932 assert(N->getNumValues() == 1 && "Too many results!"); 933 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 934 "Wrong return type!"); 935 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 936 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 937 "Mismatched operand types!"); 938 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 939 "Wrong operand type!"); 940 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 941 "Wrong return type size"); 942 break; 943 } 944 case ISD::BUILD_VECTOR: { 945 assert(N->getNumValues() == 1 && "Too many results!"); 946 assert(N->getValueType(0).isVector() && "Wrong return type!"); 947 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 948 "Wrong number of operands!"); 949 EVT EltVT = N->getValueType(0).getVectorElementType(); 950 for (const SDUse &Op : N->ops()) { 951 assert((Op.getValueType() == EltVT || 952 (EltVT.isInteger() && Op.getValueType().isInteger() && 953 EltVT.bitsLE(Op.getValueType()))) && 954 "Wrong operand type!"); 955 assert(Op.getValueType() == N->getOperand(0).getValueType() && 956 "Operands must all have the same type"); 957 } 958 break; 959 } 960 } 961 } 962 #endif // NDEBUG 963 964 /// Insert a newly allocated node into the DAG. 965 /// 966 /// Handles insertion into the all nodes list and CSE map, as well as 967 /// verification and other common operations when a new node is allocated. 968 void SelectionDAG::InsertNode(SDNode *N) { 969 AllNodes.push_back(N); 970 #ifndef NDEBUG 971 N->PersistentId = NextPersistentId++; 972 VerifySDNode(N); 973 #endif 974 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 975 DUL->NodeInserted(N); 976 } 977 978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 979 /// correspond to it. This is useful when we're about to delete or repurpose 980 /// the node. We don't want future request for structurally identical nodes 981 /// to return N anymore. 982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 983 bool Erased = false; 984 switch (N->getOpcode()) { 985 case ISD::HANDLENODE: return false; // noop. 986 case ISD::CONDCODE: 987 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 988 "Cond code doesn't exist!"); 989 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 990 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 991 break; 992 case ISD::ExternalSymbol: 993 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 994 break; 995 case ISD::TargetExternalSymbol: { 996 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 997 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 998 ESN->getSymbol(), ESN->getTargetFlags())); 999 break; 1000 } 1001 case ISD::MCSymbol: { 1002 auto *MCSN = cast<MCSymbolSDNode>(N); 1003 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1004 break; 1005 } 1006 case ISD::VALUETYPE: { 1007 EVT VT = cast<VTSDNode>(N)->getVT(); 1008 if (VT.isExtended()) { 1009 Erased = ExtendedValueTypeNodes.erase(VT); 1010 } else { 1011 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1012 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1013 } 1014 break; 1015 } 1016 default: 1017 // Remove it from the CSE Map. 1018 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1019 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1020 Erased = CSEMap.RemoveNode(N); 1021 break; 1022 } 1023 #ifndef NDEBUG 1024 // Verify that the node was actually in one of the CSE maps, unless it has a 1025 // flag result (which cannot be CSE'd) or is one of the special cases that are 1026 // not subject to CSE. 1027 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1028 !N->isMachineOpcode() && !doNotCSE(N)) { 1029 N->dump(this); 1030 dbgs() << "\n"; 1031 llvm_unreachable("Node is not in map!"); 1032 } 1033 #endif 1034 return Erased; 1035 } 1036 1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1039 /// node already exists, in which case transfer all its users to the existing 1040 /// node. This transfer can potentially trigger recursive merging. 1041 void 1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1043 // For node types that aren't CSE'd, just act as if no identical node 1044 // already exists. 1045 if (!doNotCSE(N)) { 1046 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1047 if (Existing != N) { 1048 // If there was already an existing matching node, use ReplaceAllUsesWith 1049 // to replace the dead one with the existing one. This can cause 1050 // recursive merging of other unrelated nodes down the line. 1051 ReplaceAllUsesWith(N, Existing); 1052 1053 // N is now dead. Inform the listeners and delete it. 1054 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1055 DUL->NodeDeleted(N, Existing); 1056 DeleteNodeNotInCSEMaps(N); 1057 return; 1058 } 1059 } 1060 1061 // If the node doesn't already exist, we updated it. Inform listeners. 1062 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1063 DUL->NodeUpdated(N); 1064 } 1065 1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1067 /// were replaced with those specified. If this node is never memoized, 1068 /// return null, otherwise return a pointer to the slot it would take. If a 1069 /// node already exists with these operands, the slot will be non-null. 1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1071 void *&InsertPos) { 1072 if (doNotCSE(N)) 1073 return nullptr; 1074 1075 SDValue Ops[] = { Op }; 1076 FoldingSetNodeID ID; 1077 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1078 AddNodeIDCustom(ID, N); 1079 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1080 if (Node) 1081 Node->intersectFlagsWith(N->getFlags()); 1082 return Node; 1083 } 1084 1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1086 /// were replaced with those specified. If this node is never memoized, 1087 /// return null, otherwise return a pointer to the slot it would take. If a 1088 /// node already exists with these operands, the slot will be non-null. 1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1090 SDValue Op1, SDValue Op2, 1091 void *&InsertPos) { 1092 if (doNotCSE(N)) 1093 return nullptr; 1094 1095 SDValue Ops[] = { Op1, Op2 }; 1096 FoldingSetNodeID ID; 1097 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1098 AddNodeIDCustom(ID, N); 1099 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1100 if (Node) 1101 Node->intersectFlagsWith(N->getFlags()); 1102 return Node; 1103 } 1104 1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1106 /// were replaced with those specified. If this node is never memoized, 1107 /// return null, otherwise return a pointer to the slot it would take. If a 1108 /// node already exists with these operands, the slot will be non-null. 1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1110 void *&InsertPos) { 1111 if (doNotCSE(N)) 1112 return nullptr; 1113 1114 FoldingSetNodeID ID; 1115 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1116 AddNodeIDCustom(ID, N); 1117 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1118 if (Node) 1119 Node->intersectFlagsWith(N->getFlags()); 1120 return Node; 1121 } 1122 1123 Align SelectionDAG::getEVTAlign(EVT VT) const { 1124 Type *Ty = VT == MVT::iPTR ? 1125 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1126 VT.getTypeForEVT(*getContext()); 1127 1128 return getDataLayout().getABITypeAlign(Ty); 1129 } 1130 1131 // EntryNode could meaningfully have debug info if we can find it... 1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1133 : TM(tm), OptLevel(OL), 1134 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1135 Root(getEntryNode()) { 1136 InsertNode(&EntryNode); 1137 DbgInfo = new SDDbgInfo(); 1138 } 1139 1140 void SelectionDAG::init(MachineFunction &NewMF, 1141 OptimizationRemarkEmitter &NewORE, 1142 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1143 LegacyDivergenceAnalysis * Divergence, 1144 ProfileSummaryInfo *PSIin, 1145 BlockFrequencyInfo *BFIin) { 1146 MF = &NewMF; 1147 SDAGISelPass = PassPtr; 1148 ORE = &NewORE; 1149 TLI = getSubtarget().getTargetLowering(); 1150 TSI = getSubtarget().getSelectionDAGInfo(); 1151 LibInfo = LibraryInfo; 1152 Context = &MF->getFunction().getContext(); 1153 DA = Divergence; 1154 PSI = PSIin; 1155 BFI = BFIin; 1156 } 1157 1158 SelectionDAG::~SelectionDAG() { 1159 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1160 allnodes_clear(); 1161 OperandRecycler.clear(OperandAllocator); 1162 delete DbgInfo; 1163 } 1164 1165 bool SelectionDAG::shouldOptForSize() const { 1166 return MF->getFunction().hasOptSize() || 1167 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1168 } 1169 1170 void SelectionDAG::allnodes_clear() { 1171 assert(&*AllNodes.begin() == &EntryNode); 1172 AllNodes.remove(AllNodes.begin()); 1173 while (!AllNodes.empty()) 1174 DeallocateNode(&AllNodes.front()); 1175 #ifndef NDEBUG 1176 NextPersistentId = 0; 1177 #endif 1178 } 1179 1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1181 void *&InsertPos) { 1182 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1183 if (N) { 1184 switch (N->getOpcode()) { 1185 default: break; 1186 case ISD::Constant: 1187 case ISD::ConstantFP: 1188 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1189 "debug location. Use another overload."); 1190 } 1191 } 1192 return N; 1193 } 1194 1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1196 const SDLoc &DL, void *&InsertPos) { 1197 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1198 if (N) { 1199 switch (N->getOpcode()) { 1200 case ISD::Constant: 1201 case ISD::ConstantFP: 1202 // Erase debug location from the node if the node is used at several 1203 // different places. Do not propagate one location to all uses as it 1204 // will cause a worse single stepping debugging experience. 1205 if (N->getDebugLoc() != DL.getDebugLoc()) 1206 N->setDebugLoc(DebugLoc()); 1207 break; 1208 default: 1209 // When the node's point of use is located earlier in the instruction 1210 // sequence than its prior point of use, update its debug info to the 1211 // earlier location. 1212 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1213 N->setDebugLoc(DL.getDebugLoc()); 1214 break; 1215 } 1216 } 1217 return N; 1218 } 1219 1220 void SelectionDAG::clear() { 1221 allnodes_clear(); 1222 OperandRecycler.clear(OperandAllocator); 1223 OperandAllocator.Reset(); 1224 CSEMap.clear(); 1225 1226 ExtendedValueTypeNodes.clear(); 1227 ExternalSymbols.clear(); 1228 TargetExternalSymbols.clear(); 1229 MCSymbols.clear(); 1230 SDCallSiteDbgInfo.clear(); 1231 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1232 static_cast<CondCodeSDNode*>(nullptr)); 1233 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1234 static_cast<SDNode*>(nullptr)); 1235 1236 EntryNode.UseList = nullptr; 1237 InsertNode(&EntryNode); 1238 Root = getEntryNode(); 1239 DbgInfo->clear(); 1240 } 1241 1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1243 return VT.bitsGT(Op.getValueType()) 1244 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1245 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1246 } 1247 1248 std::pair<SDValue, SDValue> 1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1250 const SDLoc &DL, EVT VT) { 1251 assert(!VT.bitsEq(Op.getValueType()) && 1252 "Strict no-op FP extend/round not allowed."); 1253 SDValue Res = 1254 VT.bitsGT(Op.getValueType()) 1255 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1256 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1257 {Chain, Op, getIntPtrConstant(0, DL)}); 1258 1259 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1260 } 1261 1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1263 return VT.bitsGT(Op.getValueType()) ? 1264 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1265 getNode(ISD::TRUNCATE, DL, VT, Op); 1266 } 1267 1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1269 return VT.bitsGT(Op.getValueType()) ? 1270 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1271 getNode(ISD::TRUNCATE, DL, VT, Op); 1272 } 1273 1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1275 return VT.bitsGT(Op.getValueType()) ? 1276 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1277 getNode(ISD::TRUNCATE, DL, VT, Op); 1278 } 1279 1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1281 EVT OpVT) { 1282 if (VT.bitsLE(Op.getValueType())) 1283 return getNode(ISD::TRUNCATE, SL, VT, Op); 1284 1285 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1286 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1287 } 1288 1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1290 EVT OpVT = Op.getValueType(); 1291 assert(VT.isInteger() && OpVT.isInteger() && 1292 "Cannot getZeroExtendInReg FP types"); 1293 assert(VT.isVector() == OpVT.isVector() && 1294 "getZeroExtendInReg type should be vector iff the operand " 1295 "type is vector!"); 1296 assert((!VT.isVector() || 1297 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1298 "Vector element counts must match in getZeroExtendInReg"); 1299 assert(VT.bitsLE(OpVT) && "Not extending!"); 1300 if (OpVT == VT) 1301 return Op; 1302 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1303 VT.getScalarSizeInBits()); 1304 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1305 } 1306 1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1308 // Only unsigned pointer semantics are supported right now. In the future this 1309 // might delegate to TLI to check pointer signedness. 1310 return getZExtOrTrunc(Op, DL, VT); 1311 } 1312 1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1314 // Only unsigned pointer semantics are supported right now. In the future this 1315 // might delegate to TLI to check pointer signedness. 1316 return getZeroExtendInReg(Op, DL, VT); 1317 } 1318 1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1321 EVT EltVT = VT.getScalarType(); 1322 SDValue NegOne = 1323 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1324 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1325 } 1326 1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1328 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1329 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1330 } 1331 1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1333 EVT OpVT) { 1334 if (!V) 1335 return getConstant(0, DL, VT); 1336 1337 switch (TLI->getBooleanContents(OpVT)) { 1338 case TargetLowering::ZeroOrOneBooleanContent: 1339 case TargetLowering::UndefinedBooleanContent: 1340 return getConstant(1, DL, VT); 1341 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1342 return getAllOnesConstant(DL, VT); 1343 } 1344 llvm_unreachable("Unexpected boolean content enum!"); 1345 } 1346 1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1348 bool isT, bool isO) { 1349 EVT EltVT = VT.getScalarType(); 1350 assert((EltVT.getSizeInBits() >= 64 || 1351 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1352 "getConstant with a uint64_t value that doesn't fit in the type!"); 1353 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1354 } 1355 1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1357 bool isT, bool isO) { 1358 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1359 } 1360 1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1362 EVT VT, bool isT, bool isO) { 1363 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1364 1365 EVT EltVT = VT.getScalarType(); 1366 const ConstantInt *Elt = &Val; 1367 1368 // In some cases the vector type is legal but the element type is illegal and 1369 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1370 // inserted value (the type does not need to match the vector element type). 1371 // Any extra bits introduced will be truncated away. 1372 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1373 TargetLowering::TypePromoteInteger) { 1374 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1375 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1376 Elt = ConstantInt::get(*getContext(), NewVal); 1377 } 1378 // In other cases the element type is illegal and needs to be expanded, for 1379 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1380 // the value into n parts and use a vector type with n-times the elements. 1381 // Then bitcast to the type requested. 1382 // Legalizing constants too early makes the DAGCombiner's job harder so we 1383 // only legalize if the DAG tells us we must produce legal types. 1384 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1385 TLI->getTypeAction(*getContext(), EltVT) == 1386 TargetLowering::TypeExpandInteger) { 1387 const APInt &NewVal = Elt->getValue(); 1388 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1389 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1390 1391 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1392 if (VT.isScalableVector()) { 1393 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1394 "Can only handle an even split!"); 1395 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1396 1397 SmallVector<SDValue, 2> ScalarParts; 1398 for (unsigned i = 0; i != Parts; ++i) 1399 ScalarParts.push_back(getConstant( 1400 NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL, 1401 ViaEltVT, isT, isO)); 1402 1403 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1404 } 1405 1406 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1407 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1408 1409 // Check the temporary vector is the correct size. If this fails then 1410 // getTypeToTransformTo() probably returned a type whose size (in bits) 1411 // isn't a power-of-2 factor of the requested type size. 1412 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1413 1414 SmallVector<SDValue, 2> EltParts; 1415 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1416 EltParts.push_back(getConstant( 1417 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1418 ViaEltVT, isT, isO)); 1419 } 1420 1421 // EltParts is currently in little endian order. If we actually want 1422 // big-endian order then reverse it now. 1423 if (getDataLayout().isBigEndian()) 1424 std::reverse(EltParts.begin(), EltParts.end()); 1425 1426 // The elements must be reversed when the element order is different 1427 // to the endianness of the elements (because the BITCAST is itself a 1428 // vector shuffle in this situation). However, we do not need any code to 1429 // perform this reversal because getConstant() is producing a vector 1430 // splat. 1431 // This situation occurs in MIPS MSA. 1432 1433 SmallVector<SDValue, 8> Ops; 1434 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1435 llvm::append_range(Ops, EltParts); 1436 1437 SDValue V = 1438 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1439 return V; 1440 } 1441 1442 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1443 "APInt size does not match type size!"); 1444 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1445 FoldingSetNodeID ID; 1446 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1447 ID.AddPointer(Elt); 1448 ID.AddBoolean(isO); 1449 void *IP = nullptr; 1450 SDNode *N = nullptr; 1451 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1452 if (!VT.isVector()) 1453 return SDValue(N, 0); 1454 1455 if (!N) { 1456 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1457 CSEMap.InsertNode(N, IP); 1458 InsertNode(N); 1459 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1460 } 1461 1462 SDValue Result(N, 0); 1463 if (VT.isScalableVector()) 1464 Result = getSplatVector(VT, DL, Result); 1465 else if (VT.isVector()) 1466 Result = getSplatBuildVector(VT, DL, Result); 1467 1468 return Result; 1469 } 1470 1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1472 bool isTarget) { 1473 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1474 } 1475 1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1477 const SDLoc &DL, bool LegalTypes) { 1478 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1479 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1480 return getConstant(Val, DL, ShiftVT); 1481 } 1482 1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1484 bool isTarget) { 1485 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1486 } 1487 1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1489 bool isTarget) { 1490 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1491 } 1492 1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1494 EVT VT, bool isTarget) { 1495 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1496 1497 EVT EltVT = VT.getScalarType(); 1498 1499 // Do the map lookup using the actual bit pattern for the floating point 1500 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1501 // we don't have issues with SNANs. 1502 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1503 FoldingSetNodeID ID; 1504 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1505 ID.AddPointer(&V); 1506 void *IP = nullptr; 1507 SDNode *N = nullptr; 1508 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1509 if (!VT.isVector()) 1510 return SDValue(N, 0); 1511 1512 if (!N) { 1513 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1514 CSEMap.InsertNode(N, IP); 1515 InsertNode(N); 1516 } 1517 1518 SDValue Result(N, 0); 1519 if (VT.isScalableVector()) 1520 Result = getSplatVector(VT, DL, Result); 1521 else if (VT.isVector()) 1522 Result = getSplatBuildVector(VT, DL, Result); 1523 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1524 return Result; 1525 } 1526 1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1528 bool isTarget) { 1529 EVT EltVT = VT.getScalarType(); 1530 if (EltVT == MVT::f32) 1531 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1532 if (EltVT == MVT::f64) 1533 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1534 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1535 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1536 bool Ignored; 1537 APFloat APF = APFloat(Val); 1538 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1539 &Ignored); 1540 return getConstantFP(APF, DL, VT, isTarget); 1541 } 1542 llvm_unreachable("Unsupported type in getConstantFP"); 1543 } 1544 1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1546 EVT VT, int64_t Offset, bool isTargetGA, 1547 unsigned TargetFlags) { 1548 assert((TargetFlags == 0 || isTargetGA) && 1549 "Cannot set target flags on target-independent globals"); 1550 1551 // Truncate (with sign-extension) the offset value to the pointer size. 1552 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1553 if (BitWidth < 64) 1554 Offset = SignExtend64(Offset, BitWidth); 1555 1556 unsigned Opc; 1557 if (GV->isThreadLocal()) 1558 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1559 else 1560 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1561 1562 FoldingSetNodeID ID; 1563 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1564 ID.AddPointer(GV); 1565 ID.AddInteger(Offset); 1566 ID.AddInteger(TargetFlags); 1567 void *IP = nullptr; 1568 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1569 return SDValue(E, 0); 1570 1571 auto *N = newSDNode<GlobalAddressSDNode>( 1572 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1573 CSEMap.InsertNode(N, IP); 1574 InsertNode(N); 1575 return SDValue(N, 0); 1576 } 1577 1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1579 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1580 FoldingSetNodeID ID; 1581 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1582 ID.AddInteger(FI); 1583 void *IP = nullptr; 1584 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1585 return SDValue(E, 0); 1586 1587 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1588 CSEMap.InsertNode(N, IP); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1594 unsigned TargetFlags) { 1595 assert((TargetFlags == 0 || isTarget) && 1596 "Cannot set target flags on target-independent jump tables"); 1597 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1598 FoldingSetNodeID ID; 1599 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1600 ID.AddInteger(JTI); 1601 ID.AddInteger(TargetFlags); 1602 void *IP = nullptr; 1603 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1604 return SDValue(E, 0); 1605 1606 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1607 CSEMap.InsertNode(N, IP); 1608 InsertNode(N); 1609 return SDValue(N, 0); 1610 } 1611 1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1613 MaybeAlign Alignment, int Offset, 1614 bool isTarget, unsigned TargetFlags) { 1615 assert((TargetFlags == 0 || isTarget) && 1616 "Cannot set target flags on target-independent globals"); 1617 if (!Alignment) 1618 Alignment = shouldOptForSize() 1619 ? getDataLayout().getABITypeAlign(C->getType()) 1620 : getDataLayout().getPrefTypeAlign(C->getType()); 1621 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1622 FoldingSetNodeID ID; 1623 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1624 ID.AddInteger(Alignment->value()); 1625 ID.AddInteger(Offset); 1626 ID.AddPointer(C); 1627 ID.AddInteger(TargetFlags); 1628 void *IP = nullptr; 1629 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1630 return SDValue(E, 0); 1631 1632 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1633 TargetFlags); 1634 CSEMap.InsertNode(N, IP); 1635 InsertNode(N); 1636 SDValue V = SDValue(N, 0); 1637 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1638 return V; 1639 } 1640 1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1642 MaybeAlign Alignment, int Offset, 1643 bool isTarget, unsigned TargetFlags) { 1644 assert((TargetFlags == 0 || isTarget) && 1645 "Cannot set target flags on target-independent globals"); 1646 if (!Alignment) 1647 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1648 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1649 FoldingSetNodeID ID; 1650 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1651 ID.AddInteger(Alignment->value()); 1652 ID.AddInteger(Offset); 1653 C->addSelectionDAGCSEId(ID); 1654 ID.AddInteger(TargetFlags); 1655 void *IP = nullptr; 1656 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1657 return SDValue(E, 0); 1658 1659 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1660 TargetFlags); 1661 CSEMap.InsertNode(N, IP); 1662 InsertNode(N); 1663 return SDValue(N, 0); 1664 } 1665 1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1667 unsigned TargetFlags) { 1668 FoldingSetNodeID ID; 1669 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1670 ID.AddInteger(Index); 1671 ID.AddInteger(Offset); 1672 ID.AddInteger(TargetFlags); 1673 void *IP = nullptr; 1674 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1675 return SDValue(E, 0); 1676 1677 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1678 CSEMap.InsertNode(N, IP); 1679 InsertNode(N); 1680 return SDValue(N, 0); 1681 } 1682 1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1686 ID.AddPointer(MBB); 1687 void *IP = nullptr; 1688 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1689 return SDValue(E, 0); 1690 1691 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1692 CSEMap.InsertNode(N, IP); 1693 InsertNode(N); 1694 return SDValue(N, 0); 1695 } 1696 1697 SDValue SelectionDAG::getValueType(EVT VT) { 1698 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1699 ValueTypeNodes.size()) 1700 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1701 1702 SDNode *&N = VT.isExtended() ? 1703 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1704 1705 if (N) return SDValue(N, 0); 1706 N = newSDNode<VTSDNode>(VT); 1707 InsertNode(N); 1708 return SDValue(N, 0); 1709 } 1710 1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1712 SDNode *&N = ExternalSymbols[Sym]; 1713 if (N) return SDValue(N, 0); 1714 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1715 InsertNode(N); 1716 return SDValue(N, 0); 1717 } 1718 1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1720 SDNode *&N = MCSymbols[Sym]; 1721 if (N) 1722 return SDValue(N, 0); 1723 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1724 InsertNode(N); 1725 return SDValue(N, 0); 1726 } 1727 1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1729 unsigned TargetFlags) { 1730 SDNode *&N = 1731 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1732 if (N) return SDValue(N, 0); 1733 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1734 InsertNode(N); 1735 return SDValue(N, 0); 1736 } 1737 1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1739 if ((unsigned)Cond >= CondCodeNodes.size()) 1740 CondCodeNodes.resize(Cond+1); 1741 1742 if (!CondCodeNodes[Cond]) { 1743 auto *N = newSDNode<CondCodeSDNode>(Cond); 1744 CondCodeNodes[Cond] = N; 1745 InsertNode(N); 1746 } 1747 1748 return SDValue(CondCodeNodes[Cond], 0); 1749 } 1750 1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) { 1752 if (ResVT.isScalableVector()) 1753 return getNode(ISD::STEP_VECTOR, DL, ResVT, Step); 1754 1755 EVT OpVT = Step.getValueType(); 1756 APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue(); 1757 SmallVector<SDValue, 16> OpsStepConstants; 1758 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1759 OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT)); 1760 return getBuildVector(ResVT, DL, OpsStepConstants); 1761 } 1762 1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1766 std::swap(N1, N2); 1767 ShuffleVectorSDNode::commuteMask(M); 1768 } 1769 1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1771 SDValue N2, ArrayRef<int> Mask) { 1772 assert(VT.getVectorNumElements() == Mask.size() && 1773 "Must have the same number of vector elements as mask elements!"); 1774 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1775 "Invalid VECTOR_SHUFFLE"); 1776 1777 // Canonicalize shuffle undef, undef -> undef 1778 if (N1.isUndef() && N2.isUndef()) 1779 return getUNDEF(VT); 1780 1781 // Validate that all indices in Mask are within the range of the elements 1782 // input to the shuffle. 1783 int NElts = Mask.size(); 1784 assert(llvm::all_of(Mask, 1785 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1786 "Index out of range"); 1787 1788 // Copy the mask so we can do any needed cleanup. 1789 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1790 1791 // Canonicalize shuffle v, v -> v, undef 1792 if (N1 == N2) { 1793 N2 = getUNDEF(VT); 1794 for (int i = 0; i != NElts; ++i) 1795 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1796 } 1797 1798 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1799 if (N1.isUndef()) 1800 commuteShuffle(N1, N2, MaskVec); 1801 1802 if (TLI->hasVectorBlend()) { 1803 // If shuffling a splat, try to blend the splat instead. We do this here so 1804 // that even when this arises during lowering we don't have to re-handle it. 1805 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1806 BitVector UndefElements; 1807 SDValue Splat = BV->getSplatValue(&UndefElements); 1808 if (!Splat) 1809 return; 1810 1811 for (int i = 0; i < NElts; ++i) { 1812 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1813 continue; 1814 1815 // If this input comes from undef, mark it as such. 1816 if (UndefElements[MaskVec[i] - Offset]) { 1817 MaskVec[i] = -1; 1818 continue; 1819 } 1820 1821 // If we can blend a non-undef lane, use that instead. 1822 if (!UndefElements[i]) 1823 MaskVec[i] = i + Offset; 1824 } 1825 }; 1826 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1827 BlendSplat(N1BV, 0); 1828 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1829 BlendSplat(N2BV, NElts); 1830 } 1831 1832 // Canonicalize all index into lhs, -> shuffle lhs, undef 1833 // Canonicalize all index into rhs, -> shuffle rhs, undef 1834 bool AllLHS = true, AllRHS = true; 1835 bool N2Undef = N2.isUndef(); 1836 for (int i = 0; i != NElts; ++i) { 1837 if (MaskVec[i] >= NElts) { 1838 if (N2Undef) 1839 MaskVec[i] = -1; 1840 else 1841 AllLHS = false; 1842 } else if (MaskVec[i] >= 0) { 1843 AllRHS = false; 1844 } 1845 } 1846 if (AllLHS && AllRHS) 1847 return getUNDEF(VT); 1848 if (AllLHS && !N2Undef) 1849 N2 = getUNDEF(VT); 1850 if (AllRHS) { 1851 N1 = getUNDEF(VT); 1852 commuteShuffle(N1, N2, MaskVec); 1853 } 1854 // Reset our undef status after accounting for the mask. 1855 N2Undef = N2.isUndef(); 1856 // Re-check whether both sides ended up undef. 1857 if (N1.isUndef() && N2Undef) 1858 return getUNDEF(VT); 1859 1860 // If Identity shuffle return that node. 1861 bool Identity = true, AllSame = true; 1862 for (int i = 0; i != NElts; ++i) { 1863 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1864 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1865 } 1866 if (Identity && NElts) 1867 return N1; 1868 1869 // Shuffling a constant splat doesn't change the result. 1870 if (N2Undef) { 1871 SDValue V = N1; 1872 1873 // Look through any bitcasts. We check that these don't change the number 1874 // (and size) of elements and just changes their types. 1875 while (V.getOpcode() == ISD::BITCAST) 1876 V = V->getOperand(0); 1877 1878 // A splat should always show up as a build vector node. 1879 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1880 BitVector UndefElements; 1881 SDValue Splat = BV->getSplatValue(&UndefElements); 1882 // If this is a splat of an undef, shuffling it is also undef. 1883 if (Splat && Splat.isUndef()) 1884 return getUNDEF(VT); 1885 1886 bool SameNumElts = 1887 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1888 1889 // We only have a splat which can skip shuffles if there is a splatted 1890 // value and no undef lanes rearranged by the shuffle. 1891 if (Splat && UndefElements.none()) { 1892 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1893 // number of elements match or the value splatted is a zero constant. 1894 if (SameNumElts) 1895 return N1; 1896 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1897 if (C->isNullValue()) 1898 return N1; 1899 } 1900 1901 // If the shuffle itself creates a splat, build the vector directly. 1902 if (AllSame && SameNumElts) { 1903 EVT BuildVT = BV->getValueType(0); 1904 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1905 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1906 1907 // We may have jumped through bitcasts, so the type of the 1908 // BUILD_VECTOR may not match the type of the shuffle. 1909 if (BuildVT != VT) 1910 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1911 return NewBV; 1912 } 1913 } 1914 } 1915 1916 FoldingSetNodeID ID; 1917 SDValue Ops[2] = { N1, N2 }; 1918 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1919 for (int i = 0; i != NElts; ++i) 1920 ID.AddInteger(MaskVec[i]); 1921 1922 void* IP = nullptr; 1923 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1924 return SDValue(E, 0); 1925 1926 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1927 // SDNode doesn't have access to it. This memory will be "leaked" when 1928 // the node is deallocated, but recovered when the NodeAllocator is released. 1929 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1930 llvm::copy(MaskVec, MaskAlloc); 1931 1932 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1933 dl.getDebugLoc(), MaskAlloc); 1934 createOperands(N, Ops); 1935 1936 CSEMap.InsertNode(N, IP); 1937 InsertNode(N); 1938 SDValue V = SDValue(N, 0); 1939 NewSDValueDbgMsg(V, "Creating new node: ", this); 1940 return V; 1941 } 1942 1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1944 EVT VT = SV.getValueType(0); 1945 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1946 ShuffleVectorSDNode::commuteMask(MaskVec); 1947 1948 SDValue Op0 = SV.getOperand(0); 1949 SDValue Op1 = SV.getOperand(1); 1950 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1951 } 1952 1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1954 FoldingSetNodeID ID; 1955 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1956 ID.AddInteger(RegNo); 1957 void *IP = nullptr; 1958 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1959 return SDValue(E, 0); 1960 1961 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1962 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1963 CSEMap.InsertNode(N, IP); 1964 InsertNode(N); 1965 return SDValue(N, 0); 1966 } 1967 1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1969 FoldingSetNodeID ID; 1970 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1971 ID.AddPointer(RegMask); 1972 void *IP = nullptr; 1973 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1974 return SDValue(E, 0); 1975 1976 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1977 CSEMap.InsertNode(N, IP); 1978 InsertNode(N); 1979 return SDValue(N, 0); 1980 } 1981 1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1983 MCSymbol *Label) { 1984 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1985 } 1986 1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1988 SDValue Root, MCSymbol *Label) { 1989 FoldingSetNodeID ID; 1990 SDValue Ops[] = { Root }; 1991 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1992 ID.AddPointer(Label); 1993 void *IP = nullptr; 1994 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1995 return SDValue(E, 0); 1996 1997 auto *N = 1998 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1999 createOperands(N, Ops); 2000 2001 CSEMap.InsertNode(N, IP); 2002 InsertNode(N); 2003 return SDValue(N, 0); 2004 } 2005 2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2007 int64_t Offset, bool isTarget, 2008 unsigned TargetFlags) { 2009 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2010 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2013 ID.AddPointer(BA); 2014 ID.AddInteger(Offset); 2015 ID.AddInteger(TargetFlags); 2016 void *IP = nullptr; 2017 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2018 return SDValue(E, 0); 2019 2020 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2021 CSEMap.InsertNode(N, IP); 2022 InsertNode(N); 2023 return SDValue(N, 0); 2024 } 2025 2026 SDValue SelectionDAG::getSrcValue(const Value *V) { 2027 FoldingSetNodeID ID; 2028 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2029 ID.AddPointer(V); 2030 2031 void *IP = nullptr; 2032 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2033 return SDValue(E, 0); 2034 2035 auto *N = newSDNode<SrcValueSDNode>(V); 2036 CSEMap.InsertNode(N, IP); 2037 InsertNode(N); 2038 return SDValue(N, 0); 2039 } 2040 2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2042 FoldingSetNodeID ID; 2043 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2044 ID.AddPointer(MD); 2045 2046 void *IP = nullptr; 2047 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2048 return SDValue(E, 0); 2049 2050 auto *N = newSDNode<MDNodeSDNode>(MD); 2051 CSEMap.InsertNode(N, IP); 2052 InsertNode(N); 2053 return SDValue(N, 0); 2054 } 2055 2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2057 if (VT == V.getValueType()) 2058 return V; 2059 2060 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2061 } 2062 2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2064 unsigned SrcAS, unsigned DestAS) { 2065 SDValue Ops[] = {Ptr}; 2066 FoldingSetNodeID ID; 2067 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2068 ID.AddInteger(SrcAS); 2069 ID.AddInteger(DestAS); 2070 2071 void *IP = nullptr; 2072 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2073 return SDValue(E, 0); 2074 2075 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2076 VT, SrcAS, DestAS); 2077 createOperands(N, Ops); 2078 2079 CSEMap.InsertNode(N, IP); 2080 InsertNode(N); 2081 return SDValue(N, 0); 2082 } 2083 2084 SDValue SelectionDAG::getFreeze(SDValue V) { 2085 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2086 } 2087 2088 /// getShiftAmountOperand - Return the specified value casted to 2089 /// the target's desired shift amount type. 2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2091 EVT OpTy = Op.getValueType(); 2092 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2093 if (OpTy == ShTy || OpTy.isVector()) return Op; 2094 2095 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2096 } 2097 2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2099 SDLoc dl(Node); 2100 const TargetLowering &TLI = getTargetLoweringInfo(); 2101 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2102 EVT VT = Node->getValueType(0); 2103 SDValue Tmp1 = Node->getOperand(0); 2104 SDValue Tmp2 = Node->getOperand(1); 2105 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2106 2107 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2108 Tmp2, MachinePointerInfo(V)); 2109 SDValue VAList = VAListLoad; 2110 2111 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2112 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2113 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2114 2115 VAList = 2116 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2117 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2118 } 2119 2120 // Increment the pointer, VAList, to the next vaarg 2121 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2122 getConstant(getDataLayout().getTypeAllocSize( 2123 VT.getTypeForEVT(*getContext())), 2124 dl, VAList.getValueType())); 2125 // Store the incremented VAList to the legalized pointer 2126 Tmp1 = 2127 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2128 // Load the actual argument out of the pointer VAList 2129 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2130 } 2131 2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2133 SDLoc dl(Node); 2134 const TargetLowering &TLI = getTargetLoweringInfo(); 2135 // This defaults to loading a pointer from the input and storing it to the 2136 // output, returning the chain. 2137 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2138 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2139 SDValue Tmp1 = 2140 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2141 Node->getOperand(2), MachinePointerInfo(VS)); 2142 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2143 MachinePointerInfo(VD)); 2144 } 2145 2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2147 const DataLayout &DL = getDataLayout(); 2148 Type *Ty = VT.getTypeForEVT(*getContext()); 2149 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2150 2151 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2152 return RedAlign; 2153 2154 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2155 const Align StackAlign = TFI->getStackAlign(); 2156 2157 // See if we can choose a smaller ABI alignment in cases where it's an 2158 // illegal vector type that will get broken down. 2159 if (RedAlign > StackAlign) { 2160 EVT IntermediateVT; 2161 MVT RegisterVT; 2162 unsigned NumIntermediates; 2163 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2164 NumIntermediates, RegisterVT); 2165 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2166 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2167 if (RedAlign2 < RedAlign) 2168 RedAlign = RedAlign2; 2169 } 2170 2171 return RedAlign; 2172 } 2173 2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2175 MachineFrameInfo &MFI = MF->getFrameInfo(); 2176 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2177 int StackID = 0; 2178 if (Bytes.isScalable()) 2179 StackID = TFI->getStackIDForScalableVectors(); 2180 // The stack id gives an indication of whether the object is scalable or 2181 // not, so it's safe to pass in the minimum size here. 2182 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2183 false, nullptr, StackID); 2184 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2185 } 2186 2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2188 Type *Ty = VT.getTypeForEVT(*getContext()); 2189 Align StackAlign = 2190 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2191 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2192 } 2193 2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2195 TypeSize VT1Size = VT1.getStoreSize(); 2196 TypeSize VT2Size = VT2.getStoreSize(); 2197 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2198 "Don't know how to choose the maximum size when creating a stack " 2199 "temporary"); 2200 TypeSize Bytes = 2201 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2202 2203 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2204 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2205 const DataLayout &DL = getDataLayout(); 2206 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2207 return CreateStackTemporary(Bytes, Align); 2208 } 2209 2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2211 ISD::CondCode Cond, const SDLoc &dl) { 2212 EVT OpVT = N1.getValueType(); 2213 2214 // These setcc operations always fold. 2215 switch (Cond) { 2216 default: break; 2217 case ISD::SETFALSE: 2218 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2219 case ISD::SETTRUE: 2220 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2221 2222 case ISD::SETOEQ: 2223 case ISD::SETOGT: 2224 case ISD::SETOGE: 2225 case ISD::SETOLT: 2226 case ISD::SETOLE: 2227 case ISD::SETONE: 2228 case ISD::SETO: 2229 case ISD::SETUO: 2230 case ISD::SETUEQ: 2231 case ISD::SETUNE: 2232 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2233 break; 2234 } 2235 2236 if (OpVT.isInteger()) { 2237 // For EQ and NE, we can always pick a value for the undef to make the 2238 // predicate pass or fail, so we can return undef. 2239 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2240 // icmp eq/ne X, undef -> undef. 2241 if ((N1.isUndef() || N2.isUndef()) && 2242 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2243 return getUNDEF(VT); 2244 2245 // If both operands are undef, we can return undef for int comparison. 2246 // icmp undef, undef -> undef. 2247 if (N1.isUndef() && N2.isUndef()) 2248 return getUNDEF(VT); 2249 2250 // icmp X, X -> true/false 2251 // icmp X, undef -> true/false because undef could be X. 2252 if (N1 == N2) 2253 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2254 } 2255 2256 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2257 const APInt &C2 = N2C->getAPIntValue(); 2258 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2259 const APInt &C1 = N1C->getAPIntValue(); 2260 2261 switch (Cond) { 2262 default: llvm_unreachable("Unknown integer setcc!"); 2263 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2264 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2265 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2266 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2267 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2268 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2269 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2270 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2271 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2272 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2273 } 2274 } 2275 } 2276 2277 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2278 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2279 2280 if (N1CFP && N2CFP) { 2281 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2282 switch (Cond) { 2283 default: break; 2284 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2285 return getUNDEF(VT); 2286 LLVM_FALLTHROUGH; 2287 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2288 OpVT); 2289 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2290 return getUNDEF(VT); 2291 LLVM_FALLTHROUGH; 2292 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2293 R==APFloat::cmpLessThan, dl, VT, 2294 OpVT); 2295 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2296 return getUNDEF(VT); 2297 LLVM_FALLTHROUGH; 2298 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2299 OpVT); 2300 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2301 return getUNDEF(VT); 2302 LLVM_FALLTHROUGH; 2303 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2304 VT, OpVT); 2305 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2306 return getUNDEF(VT); 2307 LLVM_FALLTHROUGH; 2308 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2309 R==APFloat::cmpEqual, dl, VT, 2310 OpVT); 2311 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2312 return getUNDEF(VT); 2313 LLVM_FALLTHROUGH; 2314 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2315 R==APFloat::cmpEqual, dl, VT, OpVT); 2316 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2317 OpVT); 2318 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2319 OpVT); 2320 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2321 R==APFloat::cmpEqual, dl, VT, 2322 OpVT); 2323 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2324 OpVT); 2325 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2326 R==APFloat::cmpLessThan, dl, VT, 2327 OpVT); 2328 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2329 R==APFloat::cmpUnordered, dl, VT, 2330 OpVT); 2331 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2332 VT, OpVT); 2333 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2334 OpVT); 2335 } 2336 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2337 // Ensure that the constant occurs on the RHS. 2338 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2339 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2340 return SDValue(); 2341 return getSetCC(dl, VT, N2, N1, SwappedCond); 2342 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2343 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2344 // If an operand is known to be a nan (or undef that could be a nan), we can 2345 // fold it. 2346 // Choosing NaN for the undef will always make unordered comparison succeed 2347 // and ordered comparison fails. 2348 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2349 switch (ISD::getUnorderedFlavor(Cond)) { 2350 default: 2351 llvm_unreachable("Unknown flavor!"); 2352 case 0: // Known false. 2353 return getBoolConstant(false, dl, VT, OpVT); 2354 case 1: // Known true. 2355 return getBoolConstant(true, dl, VT, OpVT); 2356 case 2: // Undefined. 2357 return getUNDEF(VT); 2358 } 2359 } 2360 2361 // Could not fold it. 2362 return SDValue(); 2363 } 2364 2365 /// See if the specified operand can be simplified with the knowledge that only 2366 /// the bits specified by DemandedBits are used. 2367 /// TODO: really we should be making this into the DAG equivalent of 2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2370 EVT VT = V.getValueType(); 2371 2372 if (VT.isScalableVector()) 2373 return SDValue(); 2374 2375 APInt DemandedElts = VT.isVector() 2376 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2377 : APInt(1, 1); 2378 return GetDemandedBits(V, DemandedBits, DemandedElts); 2379 } 2380 2381 /// See if the specified operand can be simplified with the knowledge that only 2382 /// the bits specified by DemandedBits are used in the elements specified by 2383 /// DemandedElts. 2384 /// TODO: really we should be making this into the DAG equivalent of 2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2387 const APInt &DemandedElts) { 2388 switch (V.getOpcode()) { 2389 default: 2390 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2391 *this, 0); 2392 case ISD::Constant: { 2393 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2394 APInt NewVal = CVal & DemandedBits; 2395 if (NewVal != CVal) 2396 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2397 break; 2398 } 2399 case ISD::SRL: 2400 // Only look at single-use SRLs. 2401 if (!V.getNode()->hasOneUse()) 2402 break; 2403 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2404 // See if we can recursively simplify the LHS. 2405 unsigned Amt = RHSC->getZExtValue(); 2406 2407 // Watch out for shift count overflow though. 2408 if (Amt >= DemandedBits.getBitWidth()) 2409 break; 2410 APInt SrcDemandedBits = DemandedBits << Amt; 2411 if (SDValue SimplifyLHS = 2412 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2413 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2414 V.getOperand(1)); 2415 } 2416 break; 2417 } 2418 return SDValue(); 2419 } 2420 2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2422 /// use this predicate to simplify operations downstream. 2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2424 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2425 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2426 } 2427 2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2429 /// this predicate to simplify operations downstream. Mask is known to be zero 2430 /// for bits that V cannot have. 2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2432 unsigned Depth) const { 2433 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2434 } 2435 2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2437 /// DemandedElts. We use this predicate to simplify operations downstream. 2438 /// Mask is known to be zero for bits that V cannot have. 2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2440 const APInt &DemandedElts, 2441 unsigned Depth) const { 2442 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2443 } 2444 2445 /// Return true if the DemandedElts of the vector Op are all zero. We 2446 /// use this predicate to simplify operations downstream. 2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts, 2448 unsigned Depth) const { 2449 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2450 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 2451 return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth); 2452 } 2453 2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2456 unsigned Depth) const { 2457 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2458 } 2459 2460 /// isSplatValue - Return true if the vector V has the same value 2461 /// across all DemandedElts. For scalable vectors it does not make 2462 /// sense to specify which elements are demanded or undefined, therefore 2463 /// they are simply ignored. 2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2465 APInt &UndefElts, unsigned Depth) { 2466 EVT VT = V.getValueType(); 2467 assert(VT.isVector() && "Vector type expected"); 2468 2469 if (!VT.isScalableVector() && !DemandedElts) 2470 return false; // No demanded elts, better to assume we don't know anything. 2471 2472 if (Depth >= MaxRecursionDepth) 2473 return false; // Limit search depth. 2474 2475 // Deal with some common cases here that work for both fixed and scalable 2476 // vector types. 2477 switch (V.getOpcode()) { 2478 case ISD::SPLAT_VECTOR: 2479 UndefElts = V.getOperand(0).isUndef() 2480 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2481 : APInt(DemandedElts.getBitWidth(), 0); 2482 return true; 2483 case ISD::ADD: 2484 case ISD::SUB: 2485 case ISD::AND: 2486 case ISD::XOR: 2487 case ISD::OR: { 2488 APInt UndefLHS, UndefRHS; 2489 SDValue LHS = V.getOperand(0); 2490 SDValue RHS = V.getOperand(1); 2491 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2492 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2493 UndefElts = UndefLHS | UndefRHS; 2494 return true; 2495 } 2496 return false; 2497 } 2498 case ISD::ABS: 2499 case ISD::TRUNCATE: 2500 case ISD::SIGN_EXTEND: 2501 case ISD::ZERO_EXTEND: 2502 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2503 } 2504 2505 // We don't support other cases than those above for scalable vectors at 2506 // the moment. 2507 if (VT.isScalableVector()) 2508 return false; 2509 2510 unsigned NumElts = VT.getVectorNumElements(); 2511 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2512 UndefElts = APInt::getNullValue(NumElts); 2513 2514 switch (V.getOpcode()) { 2515 case ISD::BUILD_VECTOR: { 2516 SDValue Scl; 2517 for (unsigned i = 0; i != NumElts; ++i) { 2518 SDValue Op = V.getOperand(i); 2519 if (Op.isUndef()) { 2520 UndefElts.setBit(i); 2521 continue; 2522 } 2523 if (!DemandedElts[i]) 2524 continue; 2525 if (Scl && Scl != Op) 2526 return false; 2527 Scl = Op; 2528 } 2529 return true; 2530 } 2531 case ISD::VECTOR_SHUFFLE: { 2532 // Check if this is a shuffle node doing a splat. 2533 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2534 int SplatIndex = -1; 2535 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2536 for (int i = 0; i != (int)NumElts; ++i) { 2537 int M = Mask[i]; 2538 if (M < 0) { 2539 UndefElts.setBit(i); 2540 continue; 2541 } 2542 if (!DemandedElts[i]) 2543 continue; 2544 if (0 <= SplatIndex && SplatIndex != M) 2545 return false; 2546 SplatIndex = M; 2547 } 2548 return true; 2549 } 2550 case ISD::EXTRACT_SUBVECTOR: { 2551 // Offset the demanded elts by the subvector index. 2552 SDValue Src = V.getOperand(0); 2553 // We don't support scalable vectors at the moment. 2554 if (Src.getValueType().isScalableVector()) 2555 return false; 2556 uint64_t Idx = V.getConstantOperandVal(1); 2557 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2558 APInt UndefSrcElts; 2559 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2560 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2561 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2562 return true; 2563 } 2564 break; 2565 } 2566 } 2567 2568 return false; 2569 } 2570 2571 /// Helper wrapper to main isSplatValue function. 2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2573 EVT VT = V.getValueType(); 2574 assert(VT.isVector() && "Vector type expected"); 2575 2576 APInt UndefElts; 2577 APInt DemandedElts; 2578 2579 // For now we don't support this with scalable vectors. 2580 if (!VT.isScalableVector()) 2581 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2582 return isSplatValue(V, DemandedElts, UndefElts) && 2583 (AllowUndefs || !UndefElts); 2584 } 2585 2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2587 V = peekThroughExtractSubvectors(V); 2588 2589 EVT VT = V.getValueType(); 2590 unsigned Opcode = V.getOpcode(); 2591 switch (Opcode) { 2592 default: { 2593 APInt UndefElts; 2594 APInt DemandedElts; 2595 2596 if (!VT.isScalableVector()) 2597 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2598 2599 if (isSplatValue(V, DemandedElts, UndefElts)) { 2600 if (VT.isScalableVector()) { 2601 // DemandedElts and UndefElts are ignored for scalable vectors, since 2602 // the only supported cases are SPLAT_VECTOR nodes. 2603 SplatIdx = 0; 2604 } else { 2605 // Handle case where all demanded elements are UNDEF. 2606 if (DemandedElts.isSubsetOf(UndefElts)) { 2607 SplatIdx = 0; 2608 return getUNDEF(VT); 2609 } 2610 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2611 } 2612 return V; 2613 } 2614 break; 2615 } 2616 case ISD::SPLAT_VECTOR: 2617 SplatIdx = 0; 2618 return V; 2619 case ISD::VECTOR_SHUFFLE: { 2620 if (VT.isScalableVector()) 2621 return SDValue(); 2622 2623 // Check if this is a shuffle node doing a splat. 2624 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2625 // getTargetVShiftNode currently struggles without the splat source. 2626 auto *SVN = cast<ShuffleVectorSDNode>(V); 2627 if (!SVN->isSplat()) 2628 break; 2629 int Idx = SVN->getSplatIndex(); 2630 int NumElts = V.getValueType().getVectorNumElements(); 2631 SplatIdx = Idx % NumElts; 2632 return V.getOperand(Idx / NumElts); 2633 } 2634 } 2635 2636 return SDValue(); 2637 } 2638 2639 SDValue SelectionDAG::getSplatValue(SDValue V) { 2640 int SplatIdx; 2641 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2642 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2643 SrcVector.getValueType().getScalarType(), SrcVector, 2644 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2645 return SDValue(); 2646 } 2647 2648 const APInt * 2649 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2650 const APInt &DemandedElts) const { 2651 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2652 V.getOpcode() == ISD::SRA) && 2653 "Unknown shift node"); 2654 unsigned BitWidth = V.getScalarValueSizeInBits(); 2655 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2656 // Shifting more than the bitwidth is not valid. 2657 const APInt &ShAmt = SA->getAPIntValue(); 2658 if (ShAmt.ult(BitWidth)) 2659 return &ShAmt; 2660 } 2661 return nullptr; 2662 } 2663 2664 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2665 SDValue V, const APInt &DemandedElts) const { 2666 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2667 V.getOpcode() == ISD::SRA) && 2668 "Unknown shift node"); 2669 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2670 return ValidAmt; 2671 unsigned BitWidth = V.getScalarValueSizeInBits(); 2672 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2673 if (!BV) 2674 return nullptr; 2675 const APInt *MinShAmt = nullptr; 2676 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2677 if (!DemandedElts[i]) 2678 continue; 2679 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2680 if (!SA) 2681 return nullptr; 2682 // Shifting more than the bitwidth is not valid. 2683 const APInt &ShAmt = SA->getAPIntValue(); 2684 if (ShAmt.uge(BitWidth)) 2685 return nullptr; 2686 if (MinShAmt && MinShAmt->ule(ShAmt)) 2687 continue; 2688 MinShAmt = &ShAmt; 2689 } 2690 return MinShAmt; 2691 } 2692 2693 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2694 SDValue V, const APInt &DemandedElts) const { 2695 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2696 V.getOpcode() == ISD::SRA) && 2697 "Unknown shift node"); 2698 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2699 return ValidAmt; 2700 unsigned BitWidth = V.getScalarValueSizeInBits(); 2701 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2702 if (!BV) 2703 return nullptr; 2704 const APInt *MaxShAmt = nullptr; 2705 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2706 if (!DemandedElts[i]) 2707 continue; 2708 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2709 if (!SA) 2710 return nullptr; 2711 // Shifting more than the bitwidth is not valid. 2712 const APInt &ShAmt = SA->getAPIntValue(); 2713 if (ShAmt.uge(BitWidth)) 2714 return nullptr; 2715 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2716 continue; 2717 MaxShAmt = &ShAmt; 2718 } 2719 return MaxShAmt; 2720 } 2721 2722 /// Determine which bits of Op are known to be either zero or one and return 2723 /// them in Known. For vectors, the known bits are those that are shared by 2724 /// every vector element. 2725 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2726 EVT VT = Op.getValueType(); 2727 2728 // TOOD: Until we have a plan for how to represent demanded elements for 2729 // scalable vectors, we can just bail out for now. 2730 if (Op.getValueType().isScalableVector()) { 2731 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2732 return KnownBits(BitWidth); 2733 } 2734 2735 APInt DemandedElts = VT.isVector() 2736 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2737 : APInt(1, 1); 2738 return computeKnownBits(Op, DemandedElts, Depth); 2739 } 2740 2741 /// Determine which bits of Op are known to be either zero or one and return 2742 /// them in Known. The DemandedElts argument allows us to only collect the known 2743 /// bits that are shared by the requested vector elements. 2744 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2745 unsigned Depth) const { 2746 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2747 2748 KnownBits Known(BitWidth); // Don't know anything. 2749 2750 // TOOD: Until we have a plan for how to represent demanded elements for 2751 // scalable vectors, we can just bail out for now. 2752 if (Op.getValueType().isScalableVector()) 2753 return Known; 2754 2755 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2756 // We know all of the bits for a constant! 2757 return KnownBits::makeConstant(C->getAPIntValue()); 2758 } 2759 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2760 // We know all of the bits for a constant fp! 2761 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2762 } 2763 2764 if (Depth >= MaxRecursionDepth) 2765 return Known; // Limit search depth. 2766 2767 KnownBits Known2; 2768 unsigned NumElts = DemandedElts.getBitWidth(); 2769 assert((!Op.getValueType().isVector() || 2770 NumElts == Op.getValueType().getVectorNumElements()) && 2771 "Unexpected vector size"); 2772 2773 if (!DemandedElts) 2774 return Known; // No demanded elts, better to assume we don't know anything. 2775 2776 unsigned Opcode = Op.getOpcode(); 2777 switch (Opcode) { 2778 case ISD::BUILD_VECTOR: 2779 // Collect the known bits that are shared by every demanded vector element. 2780 Known.Zero.setAllBits(); Known.One.setAllBits(); 2781 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2782 if (!DemandedElts[i]) 2783 continue; 2784 2785 SDValue SrcOp = Op.getOperand(i); 2786 Known2 = computeKnownBits(SrcOp, Depth + 1); 2787 2788 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2789 if (SrcOp.getValueSizeInBits() != BitWidth) { 2790 assert(SrcOp.getValueSizeInBits() > BitWidth && 2791 "Expected BUILD_VECTOR implicit truncation"); 2792 Known2 = Known2.trunc(BitWidth); 2793 } 2794 2795 // Known bits are the values that are shared by every demanded element. 2796 Known = KnownBits::commonBits(Known, Known2); 2797 2798 // If we don't know any bits, early out. 2799 if (Known.isUnknown()) 2800 break; 2801 } 2802 break; 2803 case ISD::VECTOR_SHUFFLE: { 2804 // Collect the known bits that are shared by every vector element referenced 2805 // by the shuffle. 2806 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2807 Known.Zero.setAllBits(); Known.One.setAllBits(); 2808 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2809 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2810 for (unsigned i = 0; i != NumElts; ++i) { 2811 if (!DemandedElts[i]) 2812 continue; 2813 2814 int M = SVN->getMaskElt(i); 2815 if (M < 0) { 2816 // For UNDEF elements, we don't know anything about the common state of 2817 // the shuffle result. 2818 Known.resetAll(); 2819 DemandedLHS.clearAllBits(); 2820 DemandedRHS.clearAllBits(); 2821 break; 2822 } 2823 2824 if ((unsigned)M < NumElts) 2825 DemandedLHS.setBit((unsigned)M % NumElts); 2826 else 2827 DemandedRHS.setBit((unsigned)M % NumElts); 2828 } 2829 // Known bits are the values that are shared by every demanded element. 2830 if (!!DemandedLHS) { 2831 SDValue LHS = Op.getOperand(0); 2832 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2833 Known = KnownBits::commonBits(Known, Known2); 2834 } 2835 // If we don't know any bits, early out. 2836 if (Known.isUnknown()) 2837 break; 2838 if (!!DemandedRHS) { 2839 SDValue RHS = Op.getOperand(1); 2840 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2841 Known = KnownBits::commonBits(Known, Known2); 2842 } 2843 break; 2844 } 2845 case ISD::CONCAT_VECTORS: { 2846 // Split DemandedElts and test each of the demanded subvectors. 2847 Known.Zero.setAllBits(); Known.One.setAllBits(); 2848 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2849 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2850 unsigned NumSubVectors = Op.getNumOperands(); 2851 for (unsigned i = 0; i != NumSubVectors; ++i) { 2852 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2853 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2854 if (!!DemandedSub) { 2855 SDValue Sub = Op.getOperand(i); 2856 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2857 Known = KnownBits::commonBits(Known, Known2); 2858 } 2859 // If we don't know any bits, early out. 2860 if (Known.isUnknown()) 2861 break; 2862 } 2863 break; 2864 } 2865 case ISD::INSERT_SUBVECTOR: { 2866 // Demand any elements from the subvector and the remainder from the src its 2867 // inserted into. 2868 SDValue Src = Op.getOperand(0); 2869 SDValue Sub = Op.getOperand(1); 2870 uint64_t Idx = Op.getConstantOperandVal(2); 2871 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2872 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2873 APInt DemandedSrcElts = DemandedElts; 2874 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2875 2876 Known.One.setAllBits(); 2877 Known.Zero.setAllBits(); 2878 if (!!DemandedSubElts) { 2879 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2880 if (Known.isUnknown()) 2881 break; // early-out. 2882 } 2883 if (!!DemandedSrcElts) { 2884 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2885 Known = KnownBits::commonBits(Known, Known2); 2886 } 2887 break; 2888 } 2889 case ISD::EXTRACT_SUBVECTOR: { 2890 // Offset the demanded elts by the subvector index. 2891 SDValue Src = Op.getOperand(0); 2892 // Bail until we can represent demanded elements for scalable vectors. 2893 if (Src.getValueType().isScalableVector()) 2894 break; 2895 uint64_t Idx = Op.getConstantOperandVal(1); 2896 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2897 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2898 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2899 break; 2900 } 2901 case ISD::SCALAR_TO_VECTOR: { 2902 // We know about scalar_to_vector as much as we know about it source, 2903 // which becomes the first element of otherwise unknown vector. 2904 if (DemandedElts != 1) 2905 break; 2906 2907 SDValue N0 = Op.getOperand(0); 2908 Known = computeKnownBits(N0, Depth + 1); 2909 if (N0.getValueSizeInBits() != BitWidth) 2910 Known = Known.trunc(BitWidth); 2911 2912 break; 2913 } 2914 case ISD::BITCAST: { 2915 SDValue N0 = Op.getOperand(0); 2916 EVT SubVT = N0.getValueType(); 2917 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2918 2919 // Ignore bitcasts from unsupported types. 2920 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2921 break; 2922 2923 // Fast handling of 'identity' bitcasts. 2924 if (BitWidth == SubBitWidth) { 2925 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2926 break; 2927 } 2928 2929 bool IsLE = getDataLayout().isLittleEndian(); 2930 2931 // Bitcast 'small element' vector to 'large element' scalar/vector. 2932 if ((BitWidth % SubBitWidth) == 0) { 2933 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2934 2935 // Collect known bits for the (larger) output by collecting the known 2936 // bits from each set of sub elements and shift these into place. 2937 // We need to separately call computeKnownBits for each set of 2938 // sub elements as the knownbits for each is likely to be different. 2939 unsigned SubScale = BitWidth / SubBitWidth; 2940 APInt SubDemandedElts(NumElts * SubScale, 0); 2941 for (unsigned i = 0; i != NumElts; ++i) 2942 if (DemandedElts[i]) 2943 SubDemandedElts.setBit(i * SubScale); 2944 2945 for (unsigned i = 0; i != SubScale; ++i) { 2946 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2947 Depth + 1); 2948 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2949 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2950 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2951 } 2952 } 2953 2954 // Bitcast 'large element' scalar/vector to 'small element' vector. 2955 if ((SubBitWidth % BitWidth) == 0) { 2956 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2957 2958 // Collect known bits for the (smaller) output by collecting the known 2959 // bits from the overlapping larger input elements and extracting the 2960 // sub sections we actually care about. 2961 unsigned SubScale = SubBitWidth / BitWidth; 2962 APInt SubDemandedElts(NumElts / SubScale, 0); 2963 for (unsigned i = 0; i != NumElts; ++i) 2964 if (DemandedElts[i]) 2965 SubDemandedElts.setBit(i / SubScale); 2966 2967 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2968 2969 Known.Zero.setAllBits(); Known.One.setAllBits(); 2970 for (unsigned i = 0; i != NumElts; ++i) 2971 if (DemandedElts[i]) { 2972 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2973 unsigned Offset = (Shifts % SubScale) * BitWidth; 2974 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2975 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2976 // If we don't know any bits, early out. 2977 if (Known.isUnknown()) 2978 break; 2979 } 2980 } 2981 break; 2982 } 2983 case ISD::AND: 2984 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2985 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2986 2987 Known &= Known2; 2988 break; 2989 case ISD::OR: 2990 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2991 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2992 2993 Known |= Known2; 2994 break; 2995 case ISD::XOR: 2996 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2997 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2998 2999 Known ^= Known2; 3000 break; 3001 case ISD::MUL: { 3002 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3003 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3004 Known = KnownBits::mul(Known, Known2); 3005 break; 3006 } 3007 case ISD::MULHU: { 3008 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3009 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known = KnownBits::mulhu(Known, Known2); 3011 break; 3012 } 3013 case ISD::MULHS: { 3014 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3015 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3016 Known = KnownBits::mulhs(Known, Known2); 3017 break; 3018 } 3019 case ISD::UMUL_LOHI: { 3020 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3021 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3022 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 if (Op.getResNo() == 0) 3024 Known = KnownBits::mul(Known, Known2); 3025 else 3026 Known = KnownBits::mulhu(Known, Known2); 3027 break; 3028 } 3029 case ISD::SMUL_LOHI: { 3030 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3031 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3032 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3033 if (Op.getResNo() == 0) 3034 Known = KnownBits::mul(Known, Known2); 3035 else 3036 Known = KnownBits::mulhs(Known, Known2); 3037 break; 3038 } 3039 case ISD::UDIV: { 3040 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3041 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3042 Known = KnownBits::udiv(Known, Known2); 3043 break; 3044 } 3045 case ISD::SELECT: 3046 case ISD::VSELECT: 3047 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3048 // If we don't know any bits, early out. 3049 if (Known.isUnknown()) 3050 break; 3051 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3052 3053 // Only known if known in both the LHS and RHS. 3054 Known = KnownBits::commonBits(Known, Known2); 3055 break; 3056 case ISD::SELECT_CC: 3057 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3058 // If we don't know any bits, early out. 3059 if (Known.isUnknown()) 3060 break; 3061 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3062 3063 // Only known if known in both the LHS and RHS. 3064 Known = KnownBits::commonBits(Known, Known2); 3065 break; 3066 case ISD::SMULO: 3067 case ISD::UMULO: 3068 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3069 if (Op.getResNo() != 1) 3070 break; 3071 // The boolean result conforms to getBooleanContents. 3072 // If we know the result of a setcc has the top bits zero, use this info. 3073 // We know that we have an integer-based boolean since these operations 3074 // are only available for integer. 3075 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3076 TargetLowering::ZeroOrOneBooleanContent && 3077 BitWidth > 1) 3078 Known.Zero.setBitsFrom(1); 3079 break; 3080 case ISD::SETCC: 3081 case ISD::STRICT_FSETCC: 3082 case ISD::STRICT_FSETCCS: { 3083 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3084 // If we know the result of a setcc has the top bits zero, use this info. 3085 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3086 TargetLowering::ZeroOrOneBooleanContent && 3087 BitWidth > 1) 3088 Known.Zero.setBitsFrom(1); 3089 break; 3090 } 3091 case ISD::SHL: 3092 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3093 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3094 Known = KnownBits::shl(Known, Known2); 3095 3096 // Minimum shift low bits are known zero. 3097 if (const APInt *ShMinAmt = 3098 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3099 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3100 break; 3101 case ISD::SRL: 3102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3103 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3104 Known = KnownBits::lshr(Known, Known2); 3105 3106 // Minimum shift high bits are known zero. 3107 if (const APInt *ShMinAmt = 3108 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3109 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3110 break; 3111 case ISD::SRA: 3112 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3113 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3114 Known = KnownBits::ashr(Known, Known2); 3115 // TODO: Add minimum shift high known sign bits. 3116 break; 3117 case ISD::FSHL: 3118 case ISD::FSHR: 3119 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3120 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3121 3122 // For fshl, 0-shift returns the 1st arg. 3123 // For fshr, 0-shift returns the 2nd arg. 3124 if (Amt == 0) { 3125 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3126 DemandedElts, Depth + 1); 3127 break; 3128 } 3129 3130 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3131 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3134 if (Opcode == ISD::FSHL) { 3135 Known.One <<= Amt; 3136 Known.Zero <<= Amt; 3137 Known2.One.lshrInPlace(BitWidth - Amt); 3138 Known2.Zero.lshrInPlace(BitWidth - Amt); 3139 } else { 3140 Known.One <<= BitWidth - Amt; 3141 Known.Zero <<= BitWidth - Amt; 3142 Known2.One.lshrInPlace(Amt); 3143 Known2.Zero.lshrInPlace(Amt); 3144 } 3145 Known.One |= Known2.One; 3146 Known.Zero |= Known2.Zero; 3147 } 3148 break; 3149 case ISD::SIGN_EXTEND_INREG: { 3150 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3151 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3152 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3153 break; 3154 } 3155 case ISD::CTTZ: 3156 case ISD::CTTZ_ZERO_UNDEF: { 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 // If we have a known 1, its position is our upper bound. 3159 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3160 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3161 Known.Zero.setBitsFrom(LowBits); 3162 break; 3163 } 3164 case ISD::CTLZ: 3165 case ISD::CTLZ_ZERO_UNDEF: { 3166 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 // If we have a known 1, its position is our upper bound. 3168 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3169 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3170 Known.Zero.setBitsFrom(LowBits); 3171 break; 3172 } 3173 case ISD::CTPOP: { 3174 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3175 // If we know some of the bits are zero, they can't be one. 3176 unsigned PossibleOnes = Known2.countMaxPopulation(); 3177 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3178 break; 3179 } 3180 case ISD::PARITY: { 3181 // Parity returns 0 everywhere but the LSB. 3182 Known.Zero.setBitsFrom(1); 3183 break; 3184 } 3185 case ISD::LOAD: { 3186 LoadSDNode *LD = cast<LoadSDNode>(Op); 3187 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3188 if (ISD::isNON_EXTLoad(LD) && Cst) { 3189 // Determine any common known bits from the loaded constant pool value. 3190 Type *CstTy = Cst->getType(); 3191 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3192 // If its a vector splat, then we can (quickly) reuse the scalar path. 3193 // NOTE: We assume all elements match and none are UNDEF. 3194 if (CstTy->isVectorTy()) { 3195 if (const Constant *Splat = Cst->getSplatValue()) { 3196 Cst = Splat; 3197 CstTy = Cst->getType(); 3198 } 3199 } 3200 // TODO - do we need to handle different bitwidths? 3201 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3202 // Iterate across all vector elements finding common known bits. 3203 Known.One.setAllBits(); 3204 Known.Zero.setAllBits(); 3205 for (unsigned i = 0; i != NumElts; ++i) { 3206 if (!DemandedElts[i]) 3207 continue; 3208 if (Constant *Elt = Cst->getAggregateElement(i)) { 3209 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3210 const APInt &Value = CInt->getValue(); 3211 Known.One &= Value; 3212 Known.Zero &= ~Value; 3213 continue; 3214 } 3215 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3216 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3217 Known.One &= Value; 3218 Known.Zero &= ~Value; 3219 continue; 3220 } 3221 } 3222 Known.One.clearAllBits(); 3223 Known.Zero.clearAllBits(); 3224 break; 3225 } 3226 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3227 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3228 Known = KnownBits::makeConstant(CInt->getValue()); 3229 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3230 Known = 3231 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3232 } 3233 } 3234 } 3235 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3236 // If this is a ZEXTLoad and we are looking at the loaded value. 3237 EVT VT = LD->getMemoryVT(); 3238 unsigned MemBits = VT.getScalarSizeInBits(); 3239 Known.Zero.setBitsFrom(MemBits); 3240 } else if (const MDNode *Ranges = LD->getRanges()) { 3241 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3242 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3243 } 3244 break; 3245 } 3246 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3247 EVT InVT = Op.getOperand(0).getValueType(); 3248 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3249 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3250 Known = Known.zext(BitWidth); 3251 break; 3252 } 3253 case ISD::ZERO_EXTEND: { 3254 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3255 Known = Known.zext(BitWidth); 3256 break; 3257 } 3258 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3259 EVT InVT = Op.getOperand(0).getValueType(); 3260 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3261 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3262 // If the sign bit is known to be zero or one, then sext will extend 3263 // it to the top bits, else it will just zext. 3264 Known = Known.sext(BitWidth); 3265 break; 3266 } 3267 case ISD::SIGN_EXTEND: { 3268 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3269 // If the sign bit is known to be zero or one, then sext will extend 3270 // it to the top bits, else it will just zext. 3271 Known = Known.sext(BitWidth); 3272 break; 3273 } 3274 case ISD::ANY_EXTEND_VECTOR_INREG: { 3275 EVT InVT = Op.getOperand(0).getValueType(); 3276 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3277 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3278 Known = Known.anyext(BitWidth); 3279 break; 3280 } 3281 case ISD::ANY_EXTEND: { 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known = Known.anyext(BitWidth); 3284 break; 3285 } 3286 case ISD::TRUNCATE: { 3287 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3288 Known = Known.trunc(BitWidth); 3289 break; 3290 } 3291 case ISD::AssertZext: { 3292 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3293 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3294 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3295 Known.Zero |= (~InMask); 3296 Known.One &= (~Known.Zero); 3297 break; 3298 } 3299 case ISD::AssertAlign: { 3300 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3301 assert(LogOfAlign != 0); 3302 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3303 // well as clearing one bits. 3304 Known.Zero.setLowBits(LogOfAlign); 3305 Known.One.clearLowBits(LogOfAlign); 3306 break; 3307 } 3308 case ISD::FGETSIGN: 3309 // All bits are zero except the low bit. 3310 Known.Zero.setBitsFrom(1); 3311 break; 3312 case ISD::USUBO: 3313 case ISD::SSUBO: 3314 if (Op.getResNo() == 1) { 3315 // If we know the result of a setcc has the top bits zero, use this info. 3316 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3317 TargetLowering::ZeroOrOneBooleanContent && 3318 BitWidth > 1) 3319 Known.Zero.setBitsFrom(1); 3320 break; 3321 } 3322 LLVM_FALLTHROUGH; 3323 case ISD::SUB: 3324 case ISD::SUBC: { 3325 assert(Op.getResNo() == 0 && 3326 "We only compute knownbits for the difference here."); 3327 3328 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3329 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3330 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3331 Known, Known2); 3332 break; 3333 } 3334 case ISD::UADDO: 3335 case ISD::SADDO: 3336 case ISD::ADDCARRY: 3337 if (Op.getResNo() == 1) { 3338 // If we know the result of a setcc has the top bits zero, use this info. 3339 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3340 TargetLowering::ZeroOrOneBooleanContent && 3341 BitWidth > 1) 3342 Known.Zero.setBitsFrom(1); 3343 break; 3344 } 3345 LLVM_FALLTHROUGH; 3346 case ISD::ADD: 3347 case ISD::ADDC: 3348 case ISD::ADDE: { 3349 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3350 3351 // With ADDE and ADDCARRY, a carry bit may be added in. 3352 KnownBits Carry(1); 3353 if (Opcode == ISD::ADDE) 3354 // Can't track carry from glue, set carry to unknown. 3355 Carry.resetAll(); 3356 else if (Opcode == ISD::ADDCARRY) 3357 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3358 // the trouble (how often will we find a known carry bit). And I haven't 3359 // tested this very much yet, but something like this might work: 3360 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3361 // Carry = Carry.zextOrTrunc(1, false); 3362 Carry.resetAll(); 3363 else 3364 Carry.setAllZero(); 3365 3366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3367 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3368 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3369 break; 3370 } 3371 case ISD::SREM: { 3372 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3374 Known = KnownBits::srem(Known, Known2); 3375 break; 3376 } 3377 case ISD::UREM: { 3378 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3379 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3380 Known = KnownBits::urem(Known, Known2); 3381 break; 3382 } 3383 case ISD::EXTRACT_ELEMENT: { 3384 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3385 const unsigned Index = Op.getConstantOperandVal(1); 3386 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3387 3388 // Remove low part of known bits mask 3389 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3390 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3391 3392 // Remove high part of known bit mask 3393 Known = Known.trunc(EltBitWidth); 3394 break; 3395 } 3396 case ISD::EXTRACT_VECTOR_ELT: { 3397 SDValue InVec = Op.getOperand(0); 3398 SDValue EltNo = Op.getOperand(1); 3399 EVT VecVT = InVec.getValueType(); 3400 // computeKnownBits not yet implemented for scalable vectors. 3401 if (VecVT.isScalableVector()) 3402 break; 3403 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3404 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3405 3406 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3407 // anything about the extended bits. 3408 if (BitWidth > EltBitWidth) 3409 Known = Known.trunc(EltBitWidth); 3410 3411 // If we know the element index, just demand that vector element, else for 3412 // an unknown element index, ignore DemandedElts and demand them all. 3413 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3414 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3415 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3416 DemandedSrcElts = 3417 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3418 3419 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3420 if (BitWidth > EltBitWidth) 3421 Known = Known.anyext(BitWidth); 3422 break; 3423 } 3424 case ISD::INSERT_VECTOR_ELT: { 3425 // If we know the element index, split the demand between the 3426 // source vector and the inserted element, otherwise assume we need 3427 // the original demanded vector elements and the value. 3428 SDValue InVec = Op.getOperand(0); 3429 SDValue InVal = Op.getOperand(1); 3430 SDValue EltNo = Op.getOperand(2); 3431 bool DemandedVal = true; 3432 APInt DemandedVecElts = DemandedElts; 3433 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3434 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3435 unsigned EltIdx = CEltNo->getZExtValue(); 3436 DemandedVal = !!DemandedElts[EltIdx]; 3437 DemandedVecElts.clearBit(EltIdx); 3438 } 3439 Known.One.setAllBits(); 3440 Known.Zero.setAllBits(); 3441 if (DemandedVal) { 3442 Known2 = computeKnownBits(InVal, Depth + 1); 3443 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3444 } 3445 if (!!DemandedVecElts) { 3446 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3447 Known = KnownBits::commonBits(Known, Known2); 3448 } 3449 break; 3450 } 3451 case ISD::BITREVERSE: { 3452 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 Known = Known2.reverseBits(); 3454 break; 3455 } 3456 case ISD::BSWAP: { 3457 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3458 Known = Known2.byteSwap(); 3459 break; 3460 } 3461 case ISD::ABS: { 3462 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3463 Known = Known2.abs(); 3464 break; 3465 } 3466 case ISD::USUBSAT: { 3467 // The result of usubsat will never be larger than the LHS. 3468 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3469 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3470 break; 3471 } 3472 case ISD::UMIN: { 3473 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3474 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3475 Known = KnownBits::umin(Known, Known2); 3476 break; 3477 } 3478 case ISD::UMAX: { 3479 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3480 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3481 Known = KnownBits::umax(Known, Known2); 3482 break; 3483 } 3484 case ISD::SMIN: 3485 case ISD::SMAX: { 3486 // If we have a clamp pattern, we know that the number of sign bits will be 3487 // the minimum of the clamp min/max range. 3488 bool IsMax = (Opcode == ISD::SMAX); 3489 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3490 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3491 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3492 CstHigh = 3493 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3494 if (CstLow && CstHigh) { 3495 if (!IsMax) 3496 std::swap(CstLow, CstHigh); 3497 3498 const APInt &ValueLow = CstLow->getAPIntValue(); 3499 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3500 if (ValueLow.sle(ValueHigh)) { 3501 unsigned LowSignBits = ValueLow.getNumSignBits(); 3502 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3503 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3504 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3505 Known.One.setHighBits(MinSignBits); 3506 break; 3507 } 3508 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3509 Known.Zero.setHighBits(MinSignBits); 3510 break; 3511 } 3512 } 3513 } 3514 3515 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3516 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3517 if (IsMax) 3518 Known = KnownBits::smax(Known, Known2); 3519 else 3520 Known = KnownBits::smin(Known, Known2); 3521 break; 3522 } 3523 case ISD::FrameIndex: 3524 case ISD::TargetFrameIndex: 3525 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3526 Known, getMachineFunction()); 3527 break; 3528 3529 default: 3530 if (Opcode < ISD::BUILTIN_OP_END) 3531 break; 3532 LLVM_FALLTHROUGH; 3533 case ISD::INTRINSIC_WO_CHAIN: 3534 case ISD::INTRINSIC_W_CHAIN: 3535 case ISD::INTRINSIC_VOID: 3536 // Allow the target to implement this method for its nodes. 3537 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3538 break; 3539 } 3540 3541 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3542 return Known; 3543 } 3544 3545 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3546 SDValue N1) const { 3547 // X + 0 never overflow 3548 if (isNullConstant(N1)) 3549 return OFK_Never; 3550 3551 KnownBits N1Known = computeKnownBits(N1); 3552 if (N1Known.Zero.getBoolValue()) { 3553 KnownBits N0Known = computeKnownBits(N0); 3554 3555 bool overflow; 3556 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3557 if (!overflow) 3558 return OFK_Never; 3559 } 3560 3561 // mulhi + 1 never overflow 3562 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3563 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3564 return OFK_Never; 3565 3566 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3567 KnownBits N0Known = computeKnownBits(N0); 3568 3569 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3570 return OFK_Never; 3571 } 3572 3573 return OFK_Sometime; 3574 } 3575 3576 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3577 EVT OpVT = Val.getValueType(); 3578 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3579 3580 // Is the constant a known power of 2? 3581 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3582 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3583 3584 // A left-shift of a constant one will have exactly one bit set because 3585 // shifting the bit off the end is undefined. 3586 if (Val.getOpcode() == ISD::SHL) { 3587 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3588 if (C && C->getAPIntValue() == 1) 3589 return true; 3590 } 3591 3592 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3593 // one bit set. 3594 if (Val.getOpcode() == ISD::SRL) { 3595 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3596 if (C && C->getAPIntValue().isSignMask()) 3597 return true; 3598 } 3599 3600 // Are all operands of a build vector constant powers of two? 3601 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3602 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3603 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3604 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3605 return false; 3606 })) 3607 return true; 3608 3609 // More could be done here, though the above checks are enough 3610 // to handle some common cases. 3611 3612 // Fall back to computeKnownBits to catch other known cases. 3613 KnownBits Known = computeKnownBits(Val); 3614 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3615 } 3616 3617 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3618 EVT VT = Op.getValueType(); 3619 3620 // TODO: Assume we don't know anything for now. 3621 if (VT.isScalableVector()) 3622 return 1; 3623 3624 APInt DemandedElts = VT.isVector() 3625 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3626 : APInt(1, 1); 3627 return ComputeNumSignBits(Op, DemandedElts, Depth); 3628 } 3629 3630 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3631 unsigned Depth) const { 3632 EVT VT = Op.getValueType(); 3633 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3634 unsigned VTBits = VT.getScalarSizeInBits(); 3635 unsigned NumElts = DemandedElts.getBitWidth(); 3636 unsigned Tmp, Tmp2; 3637 unsigned FirstAnswer = 1; 3638 3639 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3640 const APInt &Val = C->getAPIntValue(); 3641 return Val.getNumSignBits(); 3642 } 3643 3644 if (Depth >= MaxRecursionDepth) 3645 return 1; // Limit search depth. 3646 3647 if (!DemandedElts || VT.isScalableVector()) 3648 return 1; // No demanded elts, better to assume we don't know anything. 3649 3650 unsigned Opcode = Op.getOpcode(); 3651 switch (Opcode) { 3652 default: break; 3653 case ISD::AssertSext: 3654 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3655 return VTBits-Tmp+1; 3656 case ISD::AssertZext: 3657 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3658 return VTBits-Tmp; 3659 3660 case ISD::BUILD_VECTOR: 3661 Tmp = VTBits; 3662 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3663 if (!DemandedElts[i]) 3664 continue; 3665 3666 SDValue SrcOp = Op.getOperand(i); 3667 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3668 3669 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3670 if (SrcOp.getValueSizeInBits() != VTBits) { 3671 assert(SrcOp.getValueSizeInBits() > VTBits && 3672 "Expected BUILD_VECTOR implicit truncation"); 3673 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3674 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3675 } 3676 Tmp = std::min(Tmp, Tmp2); 3677 } 3678 return Tmp; 3679 3680 case ISD::VECTOR_SHUFFLE: { 3681 // Collect the minimum number of sign bits that are shared by every vector 3682 // element referenced by the shuffle. 3683 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3684 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3685 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3686 for (unsigned i = 0; i != NumElts; ++i) { 3687 int M = SVN->getMaskElt(i); 3688 if (!DemandedElts[i]) 3689 continue; 3690 // For UNDEF elements, we don't know anything about the common state of 3691 // the shuffle result. 3692 if (M < 0) 3693 return 1; 3694 if ((unsigned)M < NumElts) 3695 DemandedLHS.setBit((unsigned)M % NumElts); 3696 else 3697 DemandedRHS.setBit((unsigned)M % NumElts); 3698 } 3699 Tmp = std::numeric_limits<unsigned>::max(); 3700 if (!!DemandedLHS) 3701 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3702 if (!!DemandedRHS) { 3703 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3704 Tmp = std::min(Tmp, Tmp2); 3705 } 3706 // If we don't know anything, early out and try computeKnownBits fall-back. 3707 if (Tmp == 1) 3708 break; 3709 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3710 return Tmp; 3711 } 3712 3713 case ISD::BITCAST: { 3714 SDValue N0 = Op.getOperand(0); 3715 EVT SrcVT = N0.getValueType(); 3716 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3717 3718 // Ignore bitcasts from unsupported types.. 3719 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3720 break; 3721 3722 // Fast handling of 'identity' bitcasts. 3723 if (VTBits == SrcBits) 3724 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3725 3726 bool IsLE = getDataLayout().isLittleEndian(); 3727 3728 // Bitcast 'large element' scalar/vector to 'small element' vector. 3729 if ((SrcBits % VTBits) == 0) { 3730 assert(VT.isVector() && "Expected bitcast to vector"); 3731 3732 unsigned Scale = SrcBits / VTBits; 3733 APInt SrcDemandedElts(NumElts / Scale, 0); 3734 for (unsigned i = 0; i != NumElts; ++i) 3735 if (DemandedElts[i]) 3736 SrcDemandedElts.setBit(i / Scale); 3737 3738 // Fast case - sign splat can be simply split across the small elements. 3739 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3740 if (Tmp == SrcBits) 3741 return VTBits; 3742 3743 // Slow case - determine how far the sign extends into each sub-element. 3744 Tmp2 = VTBits; 3745 for (unsigned i = 0; i != NumElts; ++i) 3746 if (DemandedElts[i]) { 3747 unsigned SubOffset = i % Scale; 3748 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3749 SubOffset = SubOffset * VTBits; 3750 if (Tmp <= SubOffset) 3751 return 1; 3752 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3753 } 3754 return Tmp2; 3755 } 3756 break; 3757 } 3758 3759 case ISD::SIGN_EXTEND: 3760 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3761 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3762 case ISD::SIGN_EXTEND_INREG: 3763 // Max of the input and what this extends. 3764 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3765 Tmp = VTBits-Tmp+1; 3766 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3767 return std::max(Tmp, Tmp2); 3768 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3769 SDValue Src = Op.getOperand(0); 3770 EVT SrcVT = Src.getValueType(); 3771 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3772 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3773 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3774 } 3775 case ISD::SRA: 3776 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3777 // SRA X, C -> adds C sign bits. 3778 if (const APInt *ShAmt = 3779 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3780 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3781 return Tmp; 3782 case ISD::SHL: 3783 if (const APInt *ShAmt = 3784 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3785 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3786 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3787 if (ShAmt->ult(Tmp)) 3788 return Tmp - ShAmt->getZExtValue(); 3789 } 3790 break; 3791 case ISD::AND: 3792 case ISD::OR: 3793 case ISD::XOR: // NOT is handled here. 3794 // Logical binary ops preserve the number of sign bits at the worst. 3795 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3796 if (Tmp != 1) { 3797 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3798 FirstAnswer = std::min(Tmp, Tmp2); 3799 // We computed what we know about the sign bits as our first 3800 // answer. Now proceed to the generic code that uses 3801 // computeKnownBits, and pick whichever answer is better. 3802 } 3803 break; 3804 3805 case ISD::SELECT: 3806 case ISD::VSELECT: 3807 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3808 if (Tmp == 1) return 1; // Early out. 3809 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3810 return std::min(Tmp, Tmp2); 3811 case ISD::SELECT_CC: 3812 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3813 if (Tmp == 1) return 1; // Early out. 3814 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3815 return std::min(Tmp, Tmp2); 3816 3817 case ISD::SMIN: 3818 case ISD::SMAX: { 3819 // If we have a clamp pattern, we know that the number of sign bits will be 3820 // the minimum of the clamp min/max range. 3821 bool IsMax = (Opcode == ISD::SMAX); 3822 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3823 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3824 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3825 CstHigh = 3826 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3827 if (CstLow && CstHigh) { 3828 if (!IsMax) 3829 std::swap(CstLow, CstHigh); 3830 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3831 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3832 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3833 return std::min(Tmp, Tmp2); 3834 } 3835 } 3836 3837 // Fallback - just get the minimum number of sign bits of the operands. 3838 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3839 if (Tmp == 1) 3840 return 1; // Early out. 3841 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3842 return std::min(Tmp, Tmp2); 3843 } 3844 case ISD::UMIN: 3845 case ISD::UMAX: 3846 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3847 if (Tmp == 1) 3848 return 1; // Early out. 3849 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3850 return std::min(Tmp, Tmp2); 3851 case ISD::SADDO: 3852 case ISD::UADDO: 3853 case ISD::SSUBO: 3854 case ISD::USUBO: 3855 case ISD::SMULO: 3856 case ISD::UMULO: 3857 if (Op.getResNo() != 1) 3858 break; 3859 // The boolean result conforms to getBooleanContents. Fall through. 3860 // If setcc returns 0/-1, all bits are sign bits. 3861 // We know that we have an integer-based boolean since these operations 3862 // are only available for integer. 3863 if (TLI->getBooleanContents(VT.isVector(), false) == 3864 TargetLowering::ZeroOrNegativeOneBooleanContent) 3865 return VTBits; 3866 break; 3867 case ISD::SETCC: 3868 case ISD::STRICT_FSETCC: 3869 case ISD::STRICT_FSETCCS: { 3870 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3871 // If setcc returns 0/-1, all bits are sign bits. 3872 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3873 TargetLowering::ZeroOrNegativeOneBooleanContent) 3874 return VTBits; 3875 break; 3876 } 3877 case ISD::ROTL: 3878 case ISD::ROTR: 3879 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3880 3881 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3882 if (Tmp == VTBits) 3883 return VTBits; 3884 3885 if (ConstantSDNode *C = 3886 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3887 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3888 3889 // Handle rotate right by N like a rotate left by 32-N. 3890 if (Opcode == ISD::ROTR) 3891 RotAmt = (VTBits - RotAmt) % VTBits; 3892 3893 // If we aren't rotating out all of the known-in sign bits, return the 3894 // number that are left. This handles rotl(sext(x), 1) for example. 3895 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3896 } 3897 break; 3898 case ISD::ADD: 3899 case ISD::ADDC: 3900 // Add can have at most one carry bit. Thus we know that the output 3901 // is, at worst, one more bit than the inputs. 3902 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3903 if (Tmp == 1) return 1; // Early out. 3904 3905 // Special case decrementing a value (ADD X, -1): 3906 if (ConstantSDNode *CRHS = 3907 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3908 if (CRHS->isAllOnesValue()) { 3909 KnownBits Known = 3910 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3911 3912 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3913 // sign bits set. 3914 if ((Known.Zero | 1).isAllOnesValue()) 3915 return VTBits; 3916 3917 // If we are subtracting one from a positive number, there is no carry 3918 // out of the result. 3919 if (Known.isNonNegative()) 3920 return Tmp; 3921 } 3922 3923 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3924 if (Tmp2 == 1) return 1; // Early out. 3925 return std::min(Tmp, Tmp2) - 1; 3926 case ISD::SUB: 3927 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3928 if (Tmp2 == 1) return 1; // Early out. 3929 3930 // Handle NEG. 3931 if (ConstantSDNode *CLHS = 3932 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3933 if (CLHS->isNullValue()) { 3934 KnownBits Known = 3935 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3936 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3937 // sign bits set. 3938 if ((Known.Zero | 1).isAllOnesValue()) 3939 return VTBits; 3940 3941 // If the input is known to be positive (the sign bit is known clear), 3942 // the output of the NEG has the same number of sign bits as the input. 3943 if (Known.isNonNegative()) 3944 return Tmp2; 3945 3946 // Otherwise, we treat this like a SUB. 3947 } 3948 3949 // Sub can have at most one carry bit. Thus we know that the output 3950 // is, at worst, one more bit than the inputs. 3951 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3952 if (Tmp == 1) return 1; // Early out. 3953 return std::min(Tmp, Tmp2) - 1; 3954 case ISD::MUL: { 3955 // The output of the Mul can be at most twice the valid bits in the inputs. 3956 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3957 if (SignBitsOp0 == 1) 3958 break; 3959 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3960 if (SignBitsOp1 == 1) 3961 break; 3962 unsigned OutValidBits = 3963 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3964 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3965 } 3966 case ISD::SREM: 3967 // The sign bit is the LHS's sign bit, except when the result of the 3968 // remainder is zero. The magnitude of the result should be less than or 3969 // equal to the magnitude of the LHS. Therefore, the result should have 3970 // at least as many sign bits as the left hand side. 3971 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3972 case ISD::TRUNCATE: { 3973 // Check if the sign bits of source go down as far as the truncated value. 3974 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3975 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3976 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3977 return NumSrcSignBits - (NumSrcBits - VTBits); 3978 break; 3979 } 3980 case ISD::EXTRACT_ELEMENT: { 3981 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3982 const int BitWidth = Op.getValueSizeInBits(); 3983 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3984 3985 // Get reverse index (starting from 1), Op1 value indexes elements from 3986 // little end. Sign starts at big end. 3987 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3988 3989 // If the sign portion ends in our element the subtraction gives correct 3990 // result. Otherwise it gives either negative or > bitwidth result 3991 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3992 } 3993 case ISD::INSERT_VECTOR_ELT: { 3994 // If we know the element index, split the demand between the 3995 // source vector and the inserted element, otherwise assume we need 3996 // the original demanded vector elements and the value. 3997 SDValue InVec = Op.getOperand(0); 3998 SDValue InVal = Op.getOperand(1); 3999 SDValue EltNo = Op.getOperand(2); 4000 bool DemandedVal = true; 4001 APInt DemandedVecElts = DemandedElts; 4002 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4003 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4004 unsigned EltIdx = CEltNo->getZExtValue(); 4005 DemandedVal = !!DemandedElts[EltIdx]; 4006 DemandedVecElts.clearBit(EltIdx); 4007 } 4008 Tmp = std::numeric_limits<unsigned>::max(); 4009 if (DemandedVal) { 4010 // TODO - handle implicit truncation of inserted elements. 4011 if (InVal.getScalarValueSizeInBits() != VTBits) 4012 break; 4013 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4014 Tmp = std::min(Tmp, Tmp2); 4015 } 4016 if (!!DemandedVecElts) { 4017 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4018 Tmp = std::min(Tmp, Tmp2); 4019 } 4020 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4021 return Tmp; 4022 } 4023 case ISD::EXTRACT_VECTOR_ELT: { 4024 SDValue InVec = Op.getOperand(0); 4025 SDValue EltNo = Op.getOperand(1); 4026 EVT VecVT = InVec.getValueType(); 4027 // ComputeNumSignBits not yet implemented for scalable vectors. 4028 if (VecVT.isScalableVector()) 4029 break; 4030 const unsigned BitWidth = Op.getValueSizeInBits(); 4031 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4032 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4033 4034 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4035 // anything about sign bits. But if the sizes match we can derive knowledge 4036 // about sign bits from the vector operand. 4037 if (BitWidth != EltBitWidth) 4038 break; 4039 4040 // If we know the element index, just demand that vector element, else for 4041 // an unknown element index, ignore DemandedElts and demand them all. 4042 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4043 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4044 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4045 DemandedSrcElts = 4046 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4047 4048 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4049 } 4050 case ISD::EXTRACT_SUBVECTOR: { 4051 // Offset the demanded elts by the subvector index. 4052 SDValue Src = Op.getOperand(0); 4053 // Bail until we can represent demanded elements for scalable vectors. 4054 if (Src.getValueType().isScalableVector()) 4055 break; 4056 uint64_t Idx = Op.getConstantOperandVal(1); 4057 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4058 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4059 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4060 } 4061 case ISD::CONCAT_VECTORS: { 4062 // Determine the minimum number of sign bits across all demanded 4063 // elts of the input vectors. Early out if the result is already 1. 4064 Tmp = std::numeric_limits<unsigned>::max(); 4065 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4066 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4067 unsigned NumSubVectors = Op.getNumOperands(); 4068 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4069 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4070 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4071 if (!DemandedSub) 4072 continue; 4073 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4074 Tmp = std::min(Tmp, Tmp2); 4075 } 4076 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4077 return Tmp; 4078 } 4079 case ISD::INSERT_SUBVECTOR: { 4080 // Demand any elements from the subvector and the remainder from the src its 4081 // inserted into. 4082 SDValue Src = Op.getOperand(0); 4083 SDValue Sub = Op.getOperand(1); 4084 uint64_t Idx = Op.getConstantOperandVal(2); 4085 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4086 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4087 APInt DemandedSrcElts = DemandedElts; 4088 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4089 4090 Tmp = std::numeric_limits<unsigned>::max(); 4091 if (!!DemandedSubElts) { 4092 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4093 if (Tmp == 1) 4094 return 1; // early-out 4095 } 4096 if (!!DemandedSrcElts) { 4097 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4098 Tmp = std::min(Tmp, Tmp2); 4099 } 4100 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4101 return Tmp; 4102 } 4103 } 4104 4105 // If we are looking at the loaded value of the SDNode. 4106 if (Op.getResNo() == 0) { 4107 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4108 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4109 unsigned ExtType = LD->getExtensionType(); 4110 switch (ExtType) { 4111 default: break; 4112 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4113 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4114 return VTBits - Tmp + 1; 4115 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4116 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4117 return VTBits - Tmp; 4118 case ISD::NON_EXTLOAD: 4119 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4120 // We only need to handle vectors - computeKnownBits should handle 4121 // scalar cases. 4122 Type *CstTy = Cst->getType(); 4123 if (CstTy->isVectorTy() && 4124 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4125 Tmp = VTBits; 4126 for (unsigned i = 0; i != NumElts; ++i) { 4127 if (!DemandedElts[i]) 4128 continue; 4129 if (Constant *Elt = Cst->getAggregateElement(i)) { 4130 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4131 const APInt &Value = CInt->getValue(); 4132 Tmp = std::min(Tmp, Value.getNumSignBits()); 4133 continue; 4134 } 4135 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4136 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4137 Tmp = std::min(Tmp, Value.getNumSignBits()); 4138 continue; 4139 } 4140 } 4141 // Unknown type. Conservatively assume no bits match sign bit. 4142 return 1; 4143 } 4144 return Tmp; 4145 } 4146 } 4147 break; 4148 } 4149 } 4150 } 4151 4152 // Allow the target to implement this method for its nodes. 4153 if (Opcode >= ISD::BUILTIN_OP_END || 4154 Opcode == ISD::INTRINSIC_WO_CHAIN || 4155 Opcode == ISD::INTRINSIC_W_CHAIN || 4156 Opcode == ISD::INTRINSIC_VOID) { 4157 unsigned NumBits = 4158 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4159 if (NumBits > 1) 4160 FirstAnswer = std::max(FirstAnswer, NumBits); 4161 } 4162 4163 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4164 // use this information. 4165 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4166 4167 APInt Mask; 4168 if (Known.isNonNegative()) { // sign bit is 0 4169 Mask = Known.Zero; 4170 } else if (Known.isNegative()) { // sign bit is 1; 4171 Mask = Known.One; 4172 } else { 4173 // Nothing known. 4174 return FirstAnswer; 4175 } 4176 4177 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4178 // the number of identical bits in the top of the input value. 4179 Mask <<= Mask.getBitWidth()-VTBits; 4180 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4181 } 4182 4183 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4184 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4185 !isa<ConstantSDNode>(Op.getOperand(1))) 4186 return false; 4187 4188 if (Op.getOpcode() == ISD::OR && 4189 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4190 return false; 4191 4192 return true; 4193 } 4194 4195 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4196 // If we're told that NaNs won't happen, assume they won't. 4197 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4198 return true; 4199 4200 if (Depth >= MaxRecursionDepth) 4201 return false; // Limit search depth. 4202 4203 // TODO: Handle vectors. 4204 // If the value is a constant, we can obviously see if it is a NaN or not. 4205 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4206 return !C->getValueAPF().isNaN() || 4207 (SNaN && !C->getValueAPF().isSignaling()); 4208 } 4209 4210 unsigned Opcode = Op.getOpcode(); 4211 switch (Opcode) { 4212 case ISD::FADD: 4213 case ISD::FSUB: 4214 case ISD::FMUL: 4215 case ISD::FDIV: 4216 case ISD::FREM: 4217 case ISD::FSIN: 4218 case ISD::FCOS: { 4219 if (SNaN) 4220 return true; 4221 // TODO: Need isKnownNeverInfinity 4222 return false; 4223 } 4224 case ISD::FCANONICALIZE: 4225 case ISD::FEXP: 4226 case ISD::FEXP2: 4227 case ISD::FTRUNC: 4228 case ISD::FFLOOR: 4229 case ISD::FCEIL: 4230 case ISD::FROUND: 4231 case ISD::FROUNDEVEN: 4232 case ISD::FRINT: 4233 case ISD::FNEARBYINT: { 4234 if (SNaN) 4235 return true; 4236 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4237 } 4238 case ISD::FABS: 4239 case ISD::FNEG: 4240 case ISD::FCOPYSIGN: { 4241 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4242 } 4243 case ISD::SELECT: 4244 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4245 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4246 case ISD::FP_EXTEND: 4247 case ISD::FP_ROUND: { 4248 if (SNaN) 4249 return true; 4250 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4251 } 4252 case ISD::SINT_TO_FP: 4253 case ISD::UINT_TO_FP: 4254 return true; 4255 case ISD::FMA: 4256 case ISD::FMAD: { 4257 if (SNaN) 4258 return true; 4259 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4260 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4261 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4262 } 4263 case ISD::FSQRT: // Need is known positive 4264 case ISD::FLOG: 4265 case ISD::FLOG2: 4266 case ISD::FLOG10: 4267 case ISD::FPOWI: 4268 case ISD::FPOW: { 4269 if (SNaN) 4270 return true; 4271 // TODO: Refine on operand 4272 return false; 4273 } 4274 case ISD::FMINNUM: 4275 case ISD::FMAXNUM: { 4276 // Only one needs to be known not-nan, since it will be returned if the 4277 // other ends up being one. 4278 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4279 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4280 } 4281 case ISD::FMINNUM_IEEE: 4282 case ISD::FMAXNUM_IEEE: { 4283 if (SNaN) 4284 return true; 4285 // This can return a NaN if either operand is an sNaN, or if both operands 4286 // are NaN. 4287 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4288 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4289 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4290 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4291 } 4292 case ISD::FMINIMUM: 4293 case ISD::FMAXIMUM: { 4294 // TODO: Does this quiet or return the origina NaN as-is? 4295 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4296 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4297 } 4298 case ISD::EXTRACT_VECTOR_ELT: { 4299 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4300 } 4301 default: 4302 if (Opcode >= ISD::BUILTIN_OP_END || 4303 Opcode == ISD::INTRINSIC_WO_CHAIN || 4304 Opcode == ISD::INTRINSIC_W_CHAIN || 4305 Opcode == ISD::INTRINSIC_VOID) { 4306 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4307 } 4308 4309 return false; 4310 } 4311 } 4312 4313 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4314 assert(Op.getValueType().isFloatingPoint() && 4315 "Floating point type expected"); 4316 4317 // If the value is a constant, we can obviously see if it is a zero or not. 4318 // TODO: Add BuildVector support. 4319 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4320 return !C->isZero(); 4321 return false; 4322 } 4323 4324 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4325 assert(!Op.getValueType().isFloatingPoint() && 4326 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4327 4328 // If the value is a constant, we can obviously see if it is a zero or not. 4329 if (ISD::matchUnaryPredicate( 4330 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4331 return true; 4332 4333 // TODO: Recognize more cases here. 4334 switch (Op.getOpcode()) { 4335 default: break; 4336 case ISD::OR: 4337 if (isKnownNeverZero(Op.getOperand(1)) || 4338 isKnownNeverZero(Op.getOperand(0))) 4339 return true; 4340 break; 4341 } 4342 4343 return false; 4344 } 4345 4346 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4347 // Check the obvious case. 4348 if (A == B) return true; 4349 4350 // For for negative and positive zero. 4351 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4352 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4353 if (CA->isZero() && CB->isZero()) return true; 4354 4355 // Otherwise they may not be equal. 4356 return false; 4357 } 4358 4359 // FIXME: unify with llvm::haveNoCommonBitsSet. 4360 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4361 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4362 assert(A.getValueType() == B.getValueType() && 4363 "Values must have the same type"); 4364 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4365 computeKnownBits(B)); 4366 } 4367 4368 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4369 SelectionDAG &DAG) { 4370 if (cast<ConstantSDNode>(Step)->isNullValue()) 4371 return DAG.getConstant(0, DL, VT); 4372 4373 return SDValue(); 4374 } 4375 4376 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4377 ArrayRef<SDValue> Ops, 4378 SelectionDAG &DAG) { 4379 int NumOps = Ops.size(); 4380 assert(NumOps != 0 && "Can't build an empty vector!"); 4381 assert(!VT.isScalableVector() && 4382 "BUILD_VECTOR cannot be used with scalable types"); 4383 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4384 "Incorrect element count in BUILD_VECTOR!"); 4385 4386 // BUILD_VECTOR of UNDEFs is UNDEF. 4387 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4388 return DAG.getUNDEF(VT); 4389 4390 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4391 SDValue IdentitySrc; 4392 bool IsIdentity = true; 4393 for (int i = 0; i != NumOps; ++i) { 4394 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4395 Ops[i].getOperand(0).getValueType() != VT || 4396 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4397 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4398 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4399 IsIdentity = false; 4400 break; 4401 } 4402 IdentitySrc = Ops[i].getOperand(0); 4403 } 4404 if (IsIdentity) 4405 return IdentitySrc; 4406 4407 return SDValue(); 4408 } 4409 4410 /// Try to simplify vector concatenation to an input value, undef, or build 4411 /// vector. 4412 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4413 ArrayRef<SDValue> Ops, 4414 SelectionDAG &DAG) { 4415 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4416 assert(llvm::all_of(Ops, 4417 [Ops](SDValue Op) { 4418 return Ops[0].getValueType() == Op.getValueType(); 4419 }) && 4420 "Concatenation of vectors with inconsistent value types!"); 4421 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4422 VT.getVectorElementCount() && 4423 "Incorrect element count in vector concatenation!"); 4424 4425 if (Ops.size() == 1) 4426 return Ops[0]; 4427 4428 // Concat of UNDEFs is UNDEF. 4429 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4430 return DAG.getUNDEF(VT); 4431 4432 // Scan the operands and look for extract operations from a single source 4433 // that correspond to insertion at the same location via this concatenation: 4434 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4435 SDValue IdentitySrc; 4436 bool IsIdentity = true; 4437 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4438 SDValue Op = Ops[i]; 4439 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4440 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4441 Op.getOperand(0).getValueType() != VT || 4442 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4443 Op.getConstantOperandVal(1) != IdentityIndex) { 4444 IsIdentity = false; 4445 break; 4446 } 4447 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4448 "Unexpected identity source vector for concat of extracts"); 4449 IdentitySrc = Op.getOperand(0); 4450 } 4451 if (IsIdentity) { 4452 assert(IdentitySrc && "Failed to set source vector of extracts"); 4453 return IdentitySrc; 4454 } 4455 4456 // The code below this point is only designed to work for fixed width 4457 // vectors, so we bail out for now. 4458 if (VT.isScalableVector()) 4459 return SDValue(); 4460 4461 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4462 // simplified to one big BUILD_VECTOR. 4463 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4464 EVT SVT = VT.getScalarType(); 4465 SmallVector<SDValue, 16> Elts; 4466 for (SDValue Op : Ops) { 4467 EVT OpVT = Op.getValueType(); 4468 if (Op.isUndef()) 4469 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4470 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4471 Elts.append(Op->op_begin(), Op->op_end()); 4472 else 4473 return SDValue(); 4474 } 4475 4476 // BUILD_VECTOR requires all inputs to be of the same type, find the 4477 // maximum type and extend them all. 4478 for (SDValue Op : Elts) 4479 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4480 4481 if (SVT.bitsGT(VT.getScalarType())) { 4482 for (SDValue &Op : Elts) { 4483 if (Op.isUndef()) 4484 Op = DAG.getUNDEF(SVT); 4485 else 4486 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4487 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4488 : DAG.getSExtOrTrunc(Op, DL, SVT); 4489 } 4490 } 4491 4492 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4493 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4494 return V; 4495 } 4496 4497 /// Gets or creates the specified node. 4498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4499 FoldingSetNodeID ID; 4500 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4501 void *IP = nullptr; 4502 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4503 return SDValue(E, 0); 4504 4505 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4506 getVTList(VT)); 4507 CSEMap.InsertNode(N, IP); 4508 4509 InsertNode(N); 4510 SDValue V = SDValue(N, 0); 4511 NewSDValueDbgMsg(V, "Creating new node: ", this); 4512 return V; 4513 } 4514 4515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4516 SDValue Operand) { 4517 SDNodeFlags Flags; 4518 if (Inserter) 4519 Flags = Inserter->getFlags(); 4520 return getNode(Opcode, DL, VT, Operand, Flags); 4521 } 4522 4523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4524 SDValue Operand, const SDNodeFlags Flags) { 4525 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4526 "Operand is DELETED_NODE!"); 4527 // Constant fold unary operations with an integer constant operand. Even 4528 // opaque constant will be folded, because the folding of unary operations 4529 // doesn't create new constants with different values. Nevertheless, the 4530 // opaque flag is preserved during folding to prevent future folding with 4531 // other constants. 4532 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4533 const APInt &Val = C->getAPIntValue(); 4534 switch (Opcode) { 4535 default: break; 4536 case ISD::SIGN_EXTEND: 4537 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4538 C->isTargetOpcode(), C->isOpaque()); 4539 case ISD::TRUNCATE: 4540 if (C->isOpaque()) 4541 break; 4542 LLVM_FALLTHROUGH; 4543 case ISD::ANY_EXTEND: 4544 case ISD::ZERO_EXTEND: 4545 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4546 C->isTargetOpcode(), C->isOpaque()); 4547 case ISD::UINT_TO_FP: 4548 case ISD::SINT_TO_FP: { 4549 APFloat apf(EVTToAPFloatSemantics(VT), 4550 APInt::getNullValue(VT.getSizeInBits())); 4551 (void)apf.convertFromAPInt(Val, 4552 Opcode==ISD::SINT_TO_FP, 4553 APFloat::rmNearestTiesToEven); 4554 return getConstantFP(apf, DL, VT); 4555 } 4556 case ISD::BITCAST: 4557 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4558 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4559 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4560 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4561 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4562 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4563 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4564 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4565 break; 4566 case ISD::ABS: 4567 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4568 C->isOpaque()); 4569 case ISD::BITREVERSE: 4570 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4571 C->isOpaque()); 4572 case ISD::BSWAP: 4573 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4574 C->isOpaque()); 4575 case ISD::CTPOP: 4576 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4577 C->isOpaque()); 4578 case ISD::CTLZ: 4579 case ISD::CTLZ_ZERO_UNDEF: 4580 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4581 C->isOpaque()); 4582 case ISD::CTTZ: 4583 case ISD::CTTZ_ZERO_UNDEF: 4584 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4585 C->isOpaque()); 4586 case ISD::FP16_TO_FP: { 4587 bool Ignored; 4588 APFloat FPV(APFloat::IEEEhalf(), 4589 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4590 4591 // This can return overflow, underflow, or inexact; we don't care. 4592 // FIXME need to be more flexible about rounding mode. 4593 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4594 APFloat::rmNearestTiesToEven, &Ignored); 4595 return getConstantFP(FPV, DL, VT); 4596 } 4597 case ISD::STEP_VECTOR: { 4598 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4599 return V; 4600 break; 4601 } 4602 } 4603 } 4604 4605 // Constant fold unary operations with a floating point constant operand. 4606 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4607 APFloat V = C->getValueAPF(); // make copy 4608 switch (Opcode) { 4609 case ISD::FNEG: 4610 V.changeSign(); 4611 return getConstantFP(V, DL, VT); 4612 case ISD::FABS: 4613 V.clearSign(); 4614 return getConstantFP(V, DL, VT); 4615 case ISD::FCEIL: { 4616 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4617 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4618 return getConstantFP(V, DL, VT); 4619 break; 4620 } 4621 case ISD::FTRUNC: { 4622 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4623 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4624 return getConstantFP(V, DL, VT); 4625 break; 4626 } 4627 case ISD::FFLOOR: { 4628 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4629 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4630 return getConstantFP(V, DL, VT); 4631 break; 4632 } 4633 case ISD::FP_EXTEND: { 4634 bool ignored; 4635 // This can return overflow, underflow, or inexact; we don't care. 4636 // FIXME need to be more flexible about rounding mode. 4637 (void)V.convert(EVTToAPFloatSemantics(VT), 4638 APFloat::rmNearestTiesToEven, &ignored); 4639 return getConstantFP(V, DL, VT); 4640 } 4641 case ISD::FP_TO_SINT: 4642 case ISD::FP_TO_UINT: { 4643 bool ignored; 4644 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4645 // FIXME need to be more flexible about rounding mode. 4646 APFloat::opStatus s = 4647 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4648 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4649 break; 4650 return getConstant(IntVal, DL, VT); 4651 } 4652 case ISD::BITCAST: 4653 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4654 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4655 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4656 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4657 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4658 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4659 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4660 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4661 break; 4662 case ISD::FP_TO_FP16: { 4663 bool Ignored; 4664 // This can return overflow, underflow, or inexact; we don't care. 4665 // FIXME need to be more flexible about rounding mode. 4666 (void)V.convert(APFloat::IEEEhalf(), 4667 APFloat::rmNearestTiesToEven, &Ignored); 4668 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4669 } 4670 } 4671 } 4672 4673 // Constant fold unary operations with a vector integer or float operand. 4674 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4675 if (BV->isConstant()) { 4676 switch (Opcode) { 4677 default: 4678 // FIXME: Entirely reasonable to perform folding of other unary 4679 // operations here as the need arises. 4680 break; 4681 case ISD::FNEG: 4682 case ISD::FABS: 4683 case ISD::FCEIL: 4684 case ISD::FTRUNC: 4685 case ISD::FFLOOR: 4686 case ISD::FP_EXTEND: 4687 case ISD::FP_TO_SINT: 4688 case ISD::FP_TO_UINT: 4689 case ISD::TRUNCATE: 4690 case ISD::ANY_EXTEND: 4691 case ISD::ZERO_EXTEND: 4692 case ISD::SIGN_EXTEND: 4693 case ISD::UINT_TO_FP: 4694 case ISD::SINT_TO_FP: 4695 case ISD::ABS: 4696 case ISD::BITREVERSE: 4697 case ISD::BSWAP: 4698 case ISD::CTLZ: 4699 case ISD::CTLZ_ZERO_UNDEF: 4700 case ISD::CTTZ: 4701 case ISD::CTTZ_ZERO_UNDEF: 4702 case ISD::CTPOP: { 4703 SDValue Ops = { Operand }; 4704 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4705 return Fold; 4706 } 4707 } 4708 } 4709 } 4710 4711 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4712 switch (Opcode) { 4713 case ISD::STEP_VECTOR: 4714 assert(VT.isScalableVector() && 4715 "STEP_VECTOR can only be used with scalable types"); 4716 assert(VT.getScalarSizeInBits() >= 8 && 4717 "STEP_VECTOR can only be used with vectors of integers that are at " 4718 "least 8 bits wide"); 4719 assert(isa<ConstantSDNode>(Operand) && 4720 cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN( 4721 VT.getScalarSizeInBits()) && 4722 "Expected STEP_VECTOR integer constant to fit in " 4723 "the vector element type"); 4724 break; 4725 case ISD::FREEZE: 4726 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4727 break; 4728 case ISD::TokenFactor: 4729 case ISD::MERGE_VALUES: 4730 case ISD::CONCAT_VECTORS: 4731 return Operand; // Factor, merge or concat of one node? No need. 4732 case ISD::BUILD_VECTOR: { 4733 // Attempt to simplify BUILD_VECTOR. 4734 SDValue Ops[] = {Operand}; 4735 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4736 return V; 4737 break; 4738 } 4739 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4740 case ISD::FP_EXTEND: 4741 assert(VT.isFloatingPoint() && 4742 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4743 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4744 assert((!VT.isVector() || 4745 VT.getVectorElementCount() == 4746 Operand.getValueType().getVectorElementCount()) && 4747 "Vector element count mismatch!"); 4748 assert(Operand.getValueType().bitsLT(VT) && 4749 "Invalid fpext node, dst < src!"); 4750 if (Operand.isUndef()) 4751 return getUNDEF(VT); 4752 break; 4753 case ISD::FP_TO_SINT: 4754 case ISD::FP_TO_UINT: 4755 if (Operand.isUndef()) 4756 return getUNDEF(VT); 4757 break; 4758 case ISD::SINT_TO_FP: 4759 case ISD::UINT_TO_FP: 4760 // [us]itofp(undef) = 0, because the result value is bounded. 4761 if (Operand.isUndef()) 4762 return getConstantFP(0.0, DL, VT); 4763 break; 4764 case ISD::SIGN_EXTEND: 4765 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4766 "Invalid SIGN_EXTEND!"); 4767 assert(VT.isVector() == Operand.getValueType().isVector() && 4768 "SIGN_EXTEND result type type should be vector iff the operand " 4769 "type is vector!"); 4770 if (Operand.getValueType() == VT) return Operand; // noop extension 4771 assert((!VT.isVector() || 4772 VT.getVectorElementCount() == 4773 Operand.getValueType().getVectorElementCount()) && 4774 "Vector element count mismatch!"); 4775 assert(Operand.getValueType().bitsLT(VT) && 4776 "Invalid sext node, dst < src!"); 4777 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4778 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4779 if (OpOpcode == ISD::UNDEF) 4780 // sext(undef) = 0, because the top bits will all be the same. 4781 return getConstant(0, DL, VT); 4782 break; 4783 case ISD::ZERO_EXTEND: 4784 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4785 "Invalid ZERO_EXTEND!"); 4786 assert(VT.isVector() == Operand.getValueType().isVector() && 4787 "ZERO_EXTEND result type type should be vector iff the operand " 4788 "type is vector!"); 4789 if (Operand.getValueType() == VT) return Operand; // noop extension 4790 assert((!VT.isVector() || 4791 VT.getVectorElementCount() == 4792 Operand.getValueType().getVectorElementCount()) && 4793 "Vector element count mismatch!"); 4794 assert(Operand.getValueType().bitsLT(VT) && 4795 "Invalid zext node, dst < src!"); 4796 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4797 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4798 if (OpOpcode == ISD::UNDEF) 4799 // zext(undef) = 0, because the top bits will be zero. 4800 return getConstant(0, DL, VT); 4801 break; 4802 case ISD::ANY_EXTEND: 4803 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4804 "Invalid ANY_EXTEND!"); 4805 assert(VT.isVector() == Operand.getValueType().isVector() && 4806 "ANY_EXTEND result type type should be vector iff the operand " 4807 "type is vector!"); 4808 if (Operand.getValueType() == VT) return Operand; // noop extension 4809 assert((!VT.isVector() || 4810 VT.getVectorElementCount() == 4811 Operand.getValueType().getVectorElementCount()) && 4812 "Vector element count mismatch!"); 4813 assert(Operand.getValueType().bitsLT(VT) && 4814 "Invalid anyext node, dst < src!"); 4815 4816 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4817 OpOpcode == ISD::ANY_EXTEND) 4818 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4819 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4820 if (OpOpcode == ISD::UNDEF) 4821 return getUNDEF(VT); 4822 4823 // (ext (trunc x)) -> x 4824 if (OpOpcode == ISD::TRUNCATE) { 4825 SDValue OpOp = Operand.getOperand(0); 4826 if (OpOp.getValueType() == VT) { 4827 transferDbgValues(Operand, OpOp); 4828 return OpOp; 4829 } 4830 } 4831 break; 4832 case ISD::TRUNCATE: 4833 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4834 "Invalid TRUNCATE!"); 4835 assert(VT.isVector() == Operand.getValueType().isVector() && 4836 "TRUNCATE result type type should be vector iff the operand " 4837 "type is vector!"); 4838 if (Operand.getValueType() == VT) return Operand; // noop truncate 4839 assert((!VT.isVector() || 4840 VT.getVectorElementCount() == 4841 Operand.getValueType().getVectorElementCount()) && 4842 "Vector element count mismatch!"); 4843 assert(Operand.getValueType().bitsGT(VT) && 4844 "Invalid truncate node, src < dst!"); 4845 if (OpOpcode == ISD::TRUNCATE) 4846 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4847 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4848 OpOpcode == ISD::ANY_EXTEND) { 4849 // If the source is smaller than the dest, we still need an extend. 4850 if (Operand.getOperand(0).getValueType().getScalarType() 4851 .bitsLT(VT.getScalarType())) 4852 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4853 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4854 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4855 return Operand.getOperand(0); 4856 } 4857 if (OpOpcode == ISD::UNDEF) 4858 return getUNDEF(VT); 4859 break; 4860 case ISD::ANY_EXTEND_VECTOR_INREG: 4861 case ISD::ZERO_EXTEND_VECTOR_INREG: 4862 case ISD::SIGN_EXTEND_VECTOR_INREG: 4863 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4864 assert(Operand.getValueType().bitsLE(VT) && 4865 "The input must be the same size or smaller than the result."); 4866 assert(VT.getVectorMinNumElements() < 4867 Operand.getValueType().getVectorMinNumElements() && 4868 "The destination vector type must have fewer lanes than the input."); 4869 break; 4870 case ISD::ABS: 4871 assert(VT.isInteger() && VT == Operand.getValueType() && 4872 "Invalid ABS!"); 4873 if (OpOpcode == ISD::UNDEF) 4874 return getUNDEF(VT); 4875 break; 4876 case ISD::BSWAP: 4877 assert(VT.isInteger() && VT == Operand.getValueType() && 4878 "Invalid BSWAP!"); 4879 assert((VT.getScalarSizeInBits() % 16 == 0) && 4880 "BSWAP types must be a multiple of 16 bits!"); 4881 if (OpOpcode == ISD::UNDEF) 4882 return getUNDEF(VT); 4883 break; 4884 case ISD::BITREVERSE: 4885 assert(VT.isInteger() && VT == Operand.getValueType() && 4886 "Invalid BITREVERSE!"); 4887 if (OpOpcode == ISD::UNDEF) 4888 return getUNDEF(VT); 4889 break; 4890 case ISD::BITCAST: 4891 // Basic sanity checking. 4892 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4893 "Cannot BITCAST between types of different sizes!"); 4894 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4895 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4896 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4897 if (OpOpcode == ISD::UNDEF) 4898 return getUNDEF(VT); 4899 break; 4900 case ISD::SCALAR_TO_VECTOR: 4901 assert(VT.isVector() && !Operand.getValueType().isVector() && 4902 (VT.getVectorElementType() == Operand.getValueType() || 4903 (VT.getVectorElementType().isInteger() && 4904 Operand.getValueType().isInteger() && 4905 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4906 "Illegal SCALAR_TO_VECTOR node!"); 4907 if (OpOpcode == ISD::UNDEF) 4908 return getUNDEF(VT); 4909 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4910 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4911 isa<ConstantSDNode>(Operand.getOperand(1)) && 4912 Operand.getConstantOperandVal(1) == 0 && 4913 Operand.getOperand(0).getValueType() == VT) 4914 return Operand.getOperand(0); 4915 break; 4916 case ISD::FNEG: 4917 // Negation of an unknown bag of bits is still completely undefined. 4918 if (OpOpcode == ISD::UNDEF) 4919 return getUNDEF(VT); 4920 4921 if (OpOpcode == ISD::FNEG) // --X -> X 4922 return Operand.getOperand(0); 4923 break; 4924 case ISD::FABS: 4925 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4926 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4927 break; 4928 case ISD::VSCALE: 4929 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4930 break; 4931 case ISD::CTPOP: 4932 if (Operand.getValueType().getScalarType() == MVT::i1) 4933 return Operand; 4934 break; 4935 case ISD::CTLZ: 4936 case ISD::CTTZ: 4937 if (Operand.getValueType().getScalarType() == MVT::i1) 4938 return getNOT(DL, Operand, Operand.getValueType()); 4939 break; 4940 case ISD::VECREDUCE_SMIN: 4941 case ISD::VECREDUCE_UMAX: 4942 if (Operand.getValueType().getScalarType() == MVT::i1) 4943 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4944 break; 4945 case ISD::VECREDUCE_SMAX: 4946 case ISD::VECREDUCE_UMIN: 4947 if (Operand.getValueType().getScalarType() == MVT::i1) 4948 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4949 break; 4950 } 4951 4952 SDNode *N; 4953 SDVTList VTs = getVTList(VT); 4954 SDValue Ops[] = {Operand}; 4955 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4956 FoldingSetNodeID ID; 4957 AddNodeIDNode(ID, Opcode, VTs, Ops); 4958 void *IP = nullptr; 4959 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4960 E->intersectFlagsWith(Flags); 4961 return SDValue(E, 0); 4962 } 4963 4964 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4965 N->setFlags(Flags); 4966 createOperands(N, Ops); 4967 CSEMap.InsertNode(N, IP); 4968 } else { 4969 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4970 createOperands(N, Ops); 4971 } 4972 4973 InsertNode(N); 4974 SDValue V = SDValue(N, 0); 4975 NewSDValueDbgMsg(V, "Creating new node: ", this); 4976 return V; 4977 } 4978 4979 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4980 const APInt &C2) { 4981 switch (Opcode) { 4982 case ISD::ADD: return C1 + C2; 4983 case ISD::SUB: return C1 - C2; 4984 case ISD::MUL: return C1 * C2; 4985 case ISD::AND: return C1 & C2; 4986 case ISD::OR: return C1 | C2; 4987 case ISD::XOR: return C1 ^ C2; 4988 case ISD::SHL: return C1 << C2; 4989 case ISD::SRL: return C1.lshr(C2); 4990 case ISD::SRA: return C1.ashr(C2); 4991 case ISD::ROTL: return C1.rotl(C2); 4992 case ISD::ROTR: return C1.rotr(C2); 4993 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4994 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4995 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4996 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4997 case ISD::SADDSAT: return C1.sadd_sat(C2); 4998 case ISD::UADDSAT: return C1.uadd_sat(C2); 4999 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5000 case ISD::USUBSAT: return C1.usub_sat(C2); 5001 case ISD::UDIV: 5002 if (!C2.getBoolValue()) 5003 break; 5004 return C1.udiv(C2); 5005 case ISD::UREM: 5006 if (!C2.getBoolValue()) 5007 break; 5008 return C1.urem(C2); 5009 case ISD::SDIV: 5010 if (!C2.getBoolValue()) 5011 break; 5012 return C1.sdiv(C2); 5013 case ISD::SREM: 5014 if (!C2.getBoolValue()) 5015 break; 5016 return C1.srem(C2); 5017 } 5018 return llvm::None; 5019 } 5020 5021 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5022 const GlobalAddressSDNode *GA, 5023 const SDNode *N2) { 5024 if (GA->getOpcode() != ISD::GlobalAddress) 5025 return SDValue(); 5026 if (!TLI->isOffsetFoldingLegal(GA)) 5027 return SDValue(); 5028 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5029 if (!C2) 5030 return SDValue(); 5031 int64_t Offset = C2->getSExtValue(); 5032 switch (Opcode) { 5033 case ISD::ADD: break; 5034 case ISD::SUB: Offset = -uint64_t(Offset); break; 5035 default: return SDValue(); 5036 } 5037 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5038 GA->getOffset() + uint64_t(Offset)); 5039 } 5040 5041 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5042 switch (Opcode) { 5043 case ISD::SDIV: 5044 case ISD::UDIV: 5045 case ISD::SREM: 5046 case ISD::UREM: { 5047 // If a divisor is zero/undef or any element of a divisor vector is 5048 // zero/undef, the whole op is undef. 5049 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5050 SDValue Divisor = Ops[1]; 5051 if (Divisor.isUndef() || isNullConstant(Divisor)) 5052 return true; 5053 5054 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5055 llvm::any_of(Divisor->op_values(), 5056 [](SDValue V) { return V.isUndef() || 5057 isNullConstant(V); }); 5058 // TODO: Handle signed overflow. 5059 } 5060 // TODO: Handle oversized shifts. 5061 default: 5062 return false; 5063 } 5064 } 5065 5066 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5067 EVT VT, ArrayRef<SDValue> Ops) { 5068 // If the opcode is a target-specific ISD node, there's nothing we can 5069 // do here and the operand rules may not line up with the below, so 5070 // bail early. 5071 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5072 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5073 // foldCONCAT_VECTORS in getNode before this is called. 5074 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5075 return SDValue(); 5076 5077 // For now, the array Ops should only contain two values. 5078 // This enforcement will be removed once this function is merged with 5079 // FoldConstantVectorArithmetic 5080 if (Ops.size() != 2) 5081 return SDValue(); 5082 5083 if (isUndef(Opcode, Ops)) 5084 return getUNDEF(VT); 5085 5086 SDNode *N1 = Ops[0].getNode(); 5087 SDNode *N2 = Ops[1].getNode(); 5088 5089 // Handle the case of two scalars. 5090 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5091 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5092 if (C1->isOpaque() || C2->isOpaque()) 5093 return SDValue(); 5094 5095 Optional<APInt> FoldAttempt = 5096 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5097 if (!FoldAttempt) 5098 return SDValue(); 5099 5100 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5101 assert((!Folded || !VT.isVector()) && 5102 "Can't fold vectors ops with scalar operands"); 5103 return Folded; 5104 } 5105 } 5106 5107 // fold (add Sym, c) -> Sym+c 5108 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5109 return FoldSymbolOffset(Opcode, VT, GA, N2); 5110 if (TLI->isCommutativeBinOp(Opcode)) 5111 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5112 return FoldSymbolOffset(Opcode, VT, GA, N1); 5113 5114 // For fixed width vectors, extract each constant element and fold them 5115 // individually. Either input may be an undef value. 5116 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5117 N1->getOpcode() == ISD::SPLAT_VECTOR; 5118 if (!IsBVOrSV1 && !N1->isUndef()) 5119 return SDValue(); 5120 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5121 N2->getOpcode() == ISD::SPLAT_VECTOR; 5122 if (!IsBVOrSV2 && !N2->isUndef()) 5123 return SDValue(); 5124 // If both operands are undef, that's handled the same way as scalars. 5125 if (!IsBVOrSV1 && !IsBVOrSV2) 5126 return SDValue(); 5127 5128 EVT SVT = VT.getScalarType(); 5129 EVT LegalSVT = SVT; 5130 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5131 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5132 if (LegalSVT.bitsLT(SVT)) 5133 return SDValue(); 5134 } 5135 5136 SmallVector<SDValue, 4> Outputs; 5137 unsigned NumOps = 0; 5138 if (IsBVOrSV1) 5139 NumOps = std::max(NumOps, N1->getNumOperands()); 5140 if (IsBVOrSV2) 5141 NumOps = std::max(NumOps, N2->getNumOperands()); 5142 assert(NumOps != 0 && "Expected non-zero operands"); 5143 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5144 // one iteration for that. 5145 assert((!VT.isScalableVector() || NumOps == 1) && 5146 "Scalar vector should only have one scalar"); 5147 5148 for (unsigned I = 0; I != NumOps; ++I) { 5149 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5150 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5151 SDValue V1; 5152 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5153 V1 = N1->getOperand(I); 5154 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5155 V1 = N1->getOperand(0); 5156 else 5157 V1 = getUNDEF(SVT); 5158 5159 SDValue V2; 5160 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5161 V2 = N2->getOperand(I); 5162 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5163 V2 = N2->getOperand(0); 5164 else 5165 V2 = getUNDEF(SVT); 5166 5167 if (SVT.isInteger()) { 5168 if (V1.getValueType().bitsGT(SVT)) 5169 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5170 if (V2.getValueType().bitsGT(SVT)) 5171 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5172 } 5173 5174 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5175 return SDValue(); 5176 5177 // Fold one vector element. 5178 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5179 if (LegalSVT != SVT) 5180 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5181 5182 // Scalar folding only succeeded if the result is a constant or UNDEF. 5183 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5184 ScalarResult.getOpcode() != ISD::ConstantFP) 5185 return SDValue(); 5186 Outputs.push_back(ScalarResult); 5187 } 5188 5189 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5190 N2->getOpcode() == ISD::BUILD_VECTOR) { 5191 assert(VT.getVectorNumElements() == Outputs.size() && 5192 "Vector size mismatch!"); 5193 5194 // Build a big vector out of the scalar elements we generated. 5195 return getBuildVector(VT, SDLoc(), Outputs); 5196 } 5197 5198 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5199 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5200 "One operand should be a splat vector"); 5201 5202 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5203 return getSplatVector(VT, SDLoc(), Outputs[0]); 5204 } 5205 5206 // TODO: Merge with FoldConstantArithmetic 5207 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5208 const SDLoc &DL, EVT VT, 5209 ArrayRef<SDValue> Ops, 5210 const SDNodeFlags Flags) { 5211 // If the opcode is a target-specific ISD node, there's nothing we can 5212 // do here and the operand rules may not line up with the below, so 5213 // bail early. 5214 if (Opcode >= ISD::BUILTIN_OP_END) 5215 return SDValue(); 5216 5217 if (isUndef(Opcode, Ops)) 5218 return getUNDEF(VT); 5219 5220 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5221 if (!VT.isVector()) 5222 return SDValue(); 5223 5224 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5225 // vector width, however we should be able to do constant folds involving 5226 // splat vector nodes too. 5227 if (VT.isScalableVector()) 5228 return SDValue(); 5229 5230 // From this point onwards all vectors are assumed to be fixed width. 5231 unsigned NumElts = VT.getVectorNumElements(); 5232 5233 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5234 return !Op.getValueType().isVector() || 5235 Op.getValueType().getVectorNumElements() == NumElts; 5236 }; 5237 5238 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5239 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5240 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5241 (BV && BV->isConstant()); 5242 }; 5243 5244 // All operands must be vector types with the same number of elements as 5245 // the result type and must be either UNDEF or a build vector of constant 5246 // or UNDEF scalars. 5247 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5248 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5249 return SDValue(); 5250 5251 // If we are comparing vectors, then the result needs to be a i1 boolean 5252 // that is then sign-extended back to the legal result type. 5253 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5254 5255 // Find legal integer scalar type for constant promotion and 5256 // ensure that its scalar size is at least as large as source. 5257 EVT LegalSVT = VT.getScalarType(); 5258 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5259 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5260 if (LegalSVT.bitsLT(VT.getScalarType())) 5261 return SDValue(); 5262 } 5263 5264 // Constant fold each scalar lane separately. 5265 SmallVector<SDValue, 4> ScalarResults; 5266 for (unsigned i = 0; i != NumElts; i++) { 5267 SmallVector<SDValue, 4> ScalarOps; 5268 for (SDValue Op : Ops) { 5269 EVT InSVT = Op.getValueType().getScalarType(); 5270 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5271 if (!InBV) { 5272 // We've checked that this is UNDEF or a constant of some kind. 5273 if (Op.isUndef()) 5274 ScalarOps.push_back(getUNDEF(InSVT)); 5275 else 5276 ScalarOps.push_back(Op); 5277 continue; 5278 } 5279 5280 SDValue ScalarOp = InBV->getOperand(i); 5281 EVT ScalarVT = ScalarOp.getValueType(); 5282 5283 // Build vector (integer) scalar operands may need implicit 5284 // truncation - do this before constant folding. 5285 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5286 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5287 5288 ScalarOps.push_back(ScalarOp); 5289 } 5290 5291 // Constant fold the scalar operands. 5292 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5293 5294 // Legalize the (integer) scalar constant if necessary. 5295 if (LegalSVT != SVT) 5296 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5297 5298 // Scalar folding only succeeded if the result is a constant or UNDEF. 5299 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5300 ScalarResult.getOpcode() != ISD::ConstantFP) 5301 return SDValue(); 5302 ScalarResults.push_back(ScalarResult); 5303 } 5304 5305 SDValue V = getBuildVector(VT, DL, ScalarResults); 5306 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5307 return V; 5308 } 5309 5310 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5311 EVT VT, SDValue N1, SDValue N2) { 5312 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5313 // should. That will require dealing with a potentially non-default 5314 // rounding mode, checking the "opStatus" return value from the APFloat 5315 // math calculations, and possibly other variations. 5316 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5317 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5318 if (N1CFP && N2CFP) { 5319 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5320 switch (Opcode) { 5321 case ISD::FADD: 5322 C1.add(C2, APFloat::rmNearestTiesToEven); 5323 return getConstantFP(C1, DL, VT); 5324 case ISD::FSUB: 5325 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5326 return getConstantFP(C1, DL, VT); 5327 case ISD::FMUL: 5328 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5329 return getConstantFP(C1, DL, VT); 5330 case ISD::FDIV: 5331 C1.divide(C2, APFloat::rmNearestTiesToEven); 5332 return getConstantFP(C1, DL, VT); 5333 case ISD::FREM: 5334 C1.mod(C2); 5335 return getConstantFP(C1, DL, VT); 5336 case ISD::FCOPYSIGN: 5337 C1.copySign(C2); 5338 return getConstantFP(C1, DL, VT); 5339 default: break; 5340 } 5341 } 5342 if (N1CFP && Opcode == ISD::FP_ROUND) { 5343 APFloat C1 = N1CFP->getValueAPF(); // make copy 5344 bool Unused; 5345 // This can return overflow, underflow, or inexact; we don't care. 5346 // FIXME need to be more flexible about rounding mode. 5347 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5348 &Unused); 5349 return getConstantFP(C1, DL, VT); 5350 } 5351 5352 switch (Opcode) { 5353 case ISD::FSUB: 5354 // -0.0 - undef --> undef (consistent with "fneg undef") 5355 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5356 return getUNDEF(VT); 5357 LLVM_FALLTHROUGH; 5358 5359 case ISD::FADD: 5360 case ISD::FMUL: 5361 case ISD::FDIV: 5362 case ISD::FREM: 5363 // If both operands are undef, the result is undef. If 1 operand is undef, 5364 // the result is NaN. This should match the behavior of the IR optimizer. 5365 if (N1.isUndef() && N2.isUndef()) 5366 return getUNDEF(VT); 5367 if (N1.isUndef() || N2.isUndef()) 5368 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5369 } 5370 return SDValue(); 5371 } 5372 5373 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5374 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5375 5376 // There's no need to assert on a byte-aligned pointer. All pointers are at 5377 // least byte aligned. 5378 if (A == Align(1)) 5379 return Val; 5380 5381 FoldingSetNodeID ID; 5382 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5383 ID.AddInteger(A.value()); 5384 5385 void *IP = nullptr; 5386 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5387 return SDValue(E, 0); 5388 5389 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5390 Val.getValueType(), A); 5391 createOperands(N, {Val}); 5392 5393 CSEMap.InsertNode(N, IP); 5394 InsertNode(N); 5395 5396 SDValue V(N, 0); 5397 NewSDValueDbgMsg(V, "Creating new node: ", this); 5398 return V; 5399 } 5400 5401 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5402 SDValue N1, SDValue N2) { 5403 SDNodeFlags Flags; 5404 if (Inserter) 5405 Flags = Inserter->getFlags(); 5406 return getNode(Opcode, DL, VT, N1, N2, Flags); 5407 } 5408 5409 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5410 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5411 assert(N1.getOpcode() != ISD::DELETED_NODE && 5412 N2.getOpcode() != ISD::DELETED_NODE && 5413 "Operand is DELETED_NODE!"); 5414 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5415 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5416 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5417 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5418 5419 // Canonicalize constant to RHS if commutative. 5420 if (TLI->isCommutativeBinOp(Opcode)) { 5421 if (N1C && !N2C) { 5422 std::swap(N1C, N2C); 5423 std::swap(N1, N2); 5424 } else if (N1CFP && !N2CFP) { 5425 std::swap(N1CFP, N2CFP); 5426 std::swap(N1, N2); 5427 } 5428 } 5429 5430 switch (Opcode) { 5431 default: break; 5432 case ISD::TokenFactor: 5433 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5434 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5435 // Fold trivial token factors. 5436 if (N1.getOpcode() == ISD::EntryToken) return N2; 5437 if (N2.getOpcode() == ISD::EntryToken) return N1; 5438 if (N1 == N2) return N1; 5439 break; 5440 case ISD::BUILD_VECTOR: { 5441 // Attempt to simplify BUILD_VECTOR. 5442 SDValue Ops[] = {N1, N2}; 5443 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5444 return V; 5445 break; 5446 } 5447 case ISD::CONCAT_VECTORS: { 5448 SDValue Ops[] = {N1, N2}; 5449 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5450 return V; 5451 break; 5452 } 5453 case ISD::AND: 5454 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5455 assert(N1.getValueType() == N2.getValueType() && 5456 N1.getValueType() == VT && "Binary operator types must match!"); 5457 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5458 // worth handling here. 5459 if (N2C && N2C->isNullValue()) 5460 return N2; 5461 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5462 return N1; 5463 break; 5464 case ISD::OR: 5465 case ISD::XOR: 5466 case ISD::ADD: 5467 case ISD::SUB: 5468 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5469 assert(N1.getValueType() == N2.getValueType() && 5470 N1.getValueType() == VT && "Binary operator types must match!"); 5471 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5472 // it's worth handling here. 5473 if (N2C && N2C->isNullValue()) 5474 return N1; 5475 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5476 VT.getVectorElementType() == MVT::i1) 5477 return getNode(ISD::XOR, DL, VT, N1, N2); 5478 break; 5479 case ISD::MUL: 5480 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5481 assert(N1.getValueType() == N2.getValueType() && 5482 N1.getValueType() == VT && "Binary operator types must match!"); 5483 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5484 return getNode(ISD::AND, DL, VT, N1, N2); 5485 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5486 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5487 const APInt &N2CImm = N2C->getAPIntValue(); 5488 return getVScale(DL, VT, MulImm * N2CImm); 5489 } 5490 break; 5491 case ISD::UDIV: 5492 case ISD::UREM: 5493 case ISD::MULHU: 5494 case ISD::MULHS: 5495 case ISD::SDIV: 5496 case ISD::SREM: 5497 case ISD::SADDSAT: 5498 case ISD::SSUBSAT: 5499 case ISD::UADDSAT: 5500 case ISD::USUBSAT: 5501 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5502 assert(N1.getValueType() == N2.getValueType() && 5503 N1.getValueType() == VT && "Binary operator types must match!"); 5504 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5505 // fold (add_sat x, y) -> (or x, y) for bool types. 5506 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5507 return getNode(ISD::OR, DL, VT, N1, N2); 5508 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5509 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5510 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5511 } 5512 break; 5513 case ISD::SMIN: 5514 case ISD::UMAX: 5515 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5516 assert(N1.getValueType() == N2.getValueType() && 5517 N1.getValueType() == VT && "Binary operator types must match!"); 5518 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5519 return getNode(ISD::OR, DL, VT, N1, N2); 5520 break; 5521 case ISD::SMAX: 5522 case ISD::UMIN: 5523 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5524 assert(N1.getValueType() == N2.getValueType() && 5525 N1.getValueType() == VT && "Binary operator types must match!"); 5526 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5527 return getNode(ISD::AND, DL, VT, N1, N2); 5528 break; 5529 case ISD::FADD: 5530 case ISD::FSUB: 5531 case ISD::FMUL: 5532 case ISD::FDIV: 5533 case ISD::FREM: 5534 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5535 assert(N1.getValueType() == N2.getValueType() && 5536 N1.getValueType() == VT && "Binary operator types must match!"); 5537 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5538 return V; 5539 break; 5540 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5541 assert(N1.getValueType() == VT && 5542 N1.getValueType().isFloatingPoint() && 5543 N2.getValueType().isFloatingPoint() && 5544 "Invalid FCOPYSIGN!"); 5545 break; 5546 case ISD::SHL: 5547 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5548 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5549 const APInt &ShiftImm = N2C->getAPIntValue(); 5550 return getVScale(DL, VT, MulImm << ShiftImm); 5551 } 5552 LLVM_FALLTHROUGH; 5553 case ISD::SRA: 5554 case ISD::SRL: 5555 if (SDValue V = simplifyShift(N1, N2)) 5556 return V; 5557 LLVM_FALLTHROUGH; 5558 case ISD::ROTL: 5559 case ISD::ROTR: 5560 assert(VT == N1.getValueType() && 5561 "Shift operators return type must be the same as their first arg"); 5562 assert(VT.isInteger() && N2.getValueType().isInteger() && 5563 "Shifts only work on integers"); 5564 assert((!VT.isVector() || VT == N2.getValueType()) && 5565 "Vector shift amounts must be in the same as their first arg"); 5566 // Verify that the shift amount VT is big enough to hold valid shift 5567 // amounts. This catches things like trying to shift an i1024 value by an 5568 // i8, which is easy to fall into in generic code that uses 5569 // TLI.getShiftAmount(). 5570 assert(N2.getValueType().getScalarSizeInBits() >= 5571 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5572 "Invalid use of small shift amount with oversized value!"); 5573 5574 // Always fold shifts of i1 values so the code generator doesn't need to 5575 // handle them. Since we know the size of the shift has to be less than the 5576 // size of the value, the shift/rotate count is guaranteed to be zero. 5577 if (VT == MVT::i1) 5578 return N1; 5579 if (N2C && N2C->isNullValue()) 5580 return N1; 5581 break; 5582 case ISD::FP_ROUND: 5583 assert(VT.isFloatingPoint() && 5584 N1.getValueType().isFloatingPoint() && 5585 VT.bitsLE(N1.getValueType()) && 5586 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5587 "Invalid FP_ROUND!"); 5588 if (N1.getValueType() == VT) return N1; // noop conversion. 5589 break; 5590 case ISD::AssertSext: 5591 case ISD::AssertZext: { 5592 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5593 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5594 assert(VT.isInteger() && EVT.isInteger() && 5595 "Cannot *_EXTEND_INREG FP types"); 5596 assert(!EVT.isVector() && 5597 "AssertSExt/AssertZExt type should be the vector element type " 5598 "rather than the vector type!"); 5599 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5600 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5601 break; 5602 } 5603 case ISD::SIGN_EXTEND_INREG: { 5604 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5605 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5606 assert(VT.isInteger() && EVT.isInteger() && 5607 "Cannot *_EXTEND_INREG FP types"); 5608 assert(EVT.isVector() == VT.isVector() && 5609 "SIGN_EXTEND_INREG type should be vector iff the operand " 5610 "type is vector!"); 5611 assert((!EVT.isVector() || 5612 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5613 "Vector element counts must match in SIGN_EXTEND_INREG"); 5614 assert(EVT.bitsLE(VT) && "Not extending!"); 5615 if (EVT == VT) return N1; // Not actually extending 5616 5617 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5618 unsigned FromBits = EVT.getScalarSizeInBits(); 5619 Val <<= Val.getBitWidth() - FromBits; 5620 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5621 return getConstant(Val, DL, ConstantVT); 5622 }; 5623 5624 if (N1C) { 5625 const APInt &Val = N1C->getAPIntValue(); 5626 return SignExtendInReg(Val, VT); 5627 } 5628 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5629 SmallVector<SDValue, 8> Ops; 5630 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5631 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5632 SDValue Op = N1.getOperand(i); 5633 if (Op.isUndef()) { 5634 Ops.push_back(getUNDEF(OpVT)); 5635 continue; 5636 } 5637 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5638 APInt Val = C->getAPIntValue(); 5639 Ops.push_back(SignExtendInReg(Val, OpVT)); 5640 } 5641 return getBuildVector(VT, DL, Ops); 5642 } 5643 break; 5644 } 5645 case ISD::FP_TO_SINT_SAT: 5646 case ISD::FP_TO_UINT_SAT: { 5647 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5648 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5649 assert(N1.getValueType().isVector() == VT.isVector() && 5650 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5651 "vector!"); 5652 assert((!VT.isVector() || VT.getVectorNumElements() == 5653 N1.getValueType().getVectorNumElements()) && 5654 "Vector element counts must match in FP_TO_*INT_SAT"); 5655 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5656 "Type to saturate to must be a scalar."); 5657 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5658 "Not extending!"); 5659 break; 5660 } 5661 case ISD::EXTRACT_VECTOR_ELT: 5662 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5663 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5664 element type of the vector."); 5665 5666 // Extract from an undefined value or using an undefined index is undefined. 5667 if (N1.isUndef() || N2.isUndef()) 5668 return getUNDEF(VT); 5669 5670 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5671 // vectors. For scalable vectors we will provide appropriate support for 5672 // dealing with arbitrary indices. 5673 if (N2C && N1.getValueType().isFixedLengthVector() && 5674 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5675 return getUNDEF(VT); 5676 5677 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5678 // expanding copies of large vectors from registers. This only works for 5679 // fixed length vectors, since we need to know the exact number of 5680 // elements. 5681 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5682 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5683 unsigned Factor = 5684 N1.getOperand(0).getValueType().getVectorNumElements(); 5685 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5686 N1.getOperand(N2C->getZExtValue() / Factor), 5687 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5688 } 5689 5690 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5691 // lowering is expanding large vector constants. 5692 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5693 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5694 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5695 N1.getValueType().isFixedLengthVector()) && 5696 "BUILD_VECTOR used for scalable vectors"); 5697 unsigned Index = 5698 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5699 SDValue Elt = N1.getOperand(Index); 5700 5701 if (VT != Elt.getValueType()) 5702 // If the vector element type is not legal, the BUILD_VECTOR operands 5703 // are promoted and implicitly truncated, and the result implicitly 5704 // extended. Make that explicit here. 5705 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5706 5707 return Elt; 5708 } 5709 5710 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5711 // operations are lowered to scalars. 5712 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5713 // If the indices are the same, return the inserted element else 5714 // if the indices are known different, extract the element from 5715 // the original vector. 5716 SDValue N1Op2 = N1.getOperand(2); 5717 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5718 5719 if (N1Op2C && N2C) { 5720 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5721 if (VT == N1.getOperand(1).getValueType()) 5722 return N1.getOperand(1); 5723 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5724 } 5725 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5726 } 5727 } 5728 5729 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5730 // when vector types are scalarized and v1iX is legal. 5731 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5732 // Here we are completely ignoring the extract element index (N2), 5733 // which is fine for fixed width vectors, since any index other than 0 5734 // is undefined anyway. However, this cannot be ignored for scalable 5735 // vectors - in theory we could support this, but we don't want to do this 5736 // without a profitability check. 5737 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5738 N1.getValueType().isFixedLengthVector() && 5739 N1.getValueType().getVectorNumElements() == 1) { 5740 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5741 N1.getOperand(1)); 5742 } 5743 break; 5744 case ISD::EXTRACT_ELEMENT: 5745 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5746 assert(!N1.getValueType().isVector() && !VT.isVector() && 5747 (N1.getValueType().isInteger() == VT.isInteger()) && 5748 N1.getValueType() != VT && 5749 "Wrong types for EXTRACT_ELEMENT!"); 5750 5751 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5752 // 64-bit integers into 32-bit parts. Instead of building the extract of 5753 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5754 if (N1.getOpcode() == ISD::BUILD_PAIR) 5755 return N1.getOperand(N2C->getZExtValue()); 5756 5757 // EXTRACT_ELEMENT of a constant int is also very common. 5758 if (N1C) { 5759 unsigned ElementSize = VT.getSizeInBits(); 5760 unsigned Shift = ElementSize * N2C->getZExtValue(); 5761 const APInt &Val = N1C->getAPIntValue(); 5762 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5763 } 5764 break; 5765 case ISD::EXTRACT_SUBVECTOR: 5766 EVT N1VT = N1.getValueType(); 5767 assert(VT.isVector() && N1VT.isVector() && 5768 "Extract subvector VTs must be vectors!"); 5769 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5770 "Extract subvector VTs must have the same element type!"); 5771 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5772 "Cannot extract a scalable vector from a fixed length vector!"); 5773 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5774 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5775 "Extract subvector must be from larger vector to smaller vector!"); 5776 assert(N2C && "Extract subvector index must be a constant"); 5777 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5778 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5779 N1VT.getVectorMinNumElements()) && 5780 "Extract subvector overflow!"); 5781 assert(N2C->getAPIntValue().getBitWidth() == 5782 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5783 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5784 5785 // Trivial extraction. 5786 if (VT == N1VT) 5787 return N1; 5788 5789 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5790 if (N1.isUndef()) 5791 return getUNDEF(VT); 5792 5793 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5794 // the concat have the same type as the extract. 5795 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5796 VT == N1.getOperand(0).getValueType()) { 5797 unsigned Factor = VT.getVectorMinNumElements(); 5798 return N1.getOperand(N2C->getZExtValue() / Factor); 5799 } 5800 5801 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5802 // during shuffle legalization. 5803 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5804 VT == N1.getOperand(1).getValueType()) 5805 return N1.getOperand(1); 5806 break; 5807 } 5808 5809 // Perform trivial constant folding. 5810 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5811 return SV; 5812 5813 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5814 return V; 5815 5816 // Canonicalize an UNDEF to the RHS, even over a constant. 5817 if (N1.isUndef()) { 5818 if (TLI->isCommutativeBinOp(Opcode)) { 5819 std::swap(N1, N2); 5820 } else { 5821 switch (Opcode) { 5822 case ISD::SIGN_EXTEND_INREG: 5823 case ISD::SUB: 5824 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5825 case ISD::UDIV: 5826 case ISD::SDIV: 5827 case ISD::UREM: 5828 case ISD::SREM: 5829 case ISD::SSUBSAT: 5830 case ISD::USUBSAT: 5831 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5832 } 5833 } 5834 } 5835 5836 // Fold a bunch of operators when the RHS is undef. 5837 if (N2.isUndef()) { 5838 switch (Opcode) { 5839 case ISD::XOR: 5840 if (N1.isUndef()) 5841 // Handle undef ^ undef -> 0 special case. This is a common 5842 // idiom (misuse). 5843 return getConstant(0, DL, VT); 5844 LLVM_FALLTHROUGH; 5845 case ISD::ADD: 5846 case ISD::SUB: 5847 case ISD::UDIV: 5848 case ISD::SDIV: 5849 case ISD::UREM: 5850 case ISD::SREM: 5851 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5852 case ISD::MUL: 5853 case ISD::AND: 5854 case ISD::SSUBSAT: 5855 case ISD::USUBSAT: 5856 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5857 case ISD::OR: 5858 case ISD::SADDSAT: 5859 case ISD::UADDSAT: 5860 return getAllOnesConstant(DL, VT); 5861 } 5862 } 5863 5864 // Memoize this node if possible. 5865 SDNode *N; 5866 SDVTList VTs = getVTList(VT); 5867 SDValue Ops[] = {N1, N2}; 5868 if (VT != MVT::Glue) { 5869 FoldingSetNodeID ID; 5870 AddNodeIDNode(ID, Opcode, VTs, Ops); 5871 void *IP = nullptr; 5872 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5873 E->intersectFlagsWith(Flags); 5874 return SDValue(E, 0); 5875 } 5876 5877 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5878 N->setFlags(Flags); 5879 createOperands(N, Ops); 5880 CSEMap.InsertNode(N, IP); 5881 } else { 5882 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5883 createOperands(N, Ops); 5884 } 5885 5886 InsertNode(N); 5887 SDValue V = SDValue(N, 0); 5888 NewSDValueDbgMsg(V, "Creating new node: ", this); 5889 return V; 5890 } 5891 5892 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5893 SDValue N1, SDValue N2, SDValue N3) { 5894 SDNodeFlags Flags; 5895 if (Inserter) 5896 Flags = Inserter->getFlags(); 5897 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5898 } 5899 5900 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5901 SDValue N1, SDValue N2, SDValue N3, 5902 const SDNodeFlags Flags) { 5903 assert(N1.getOpcode() != ISD::DELETED_NODE && 5904 N2.getOpcode() != ISD::DELETED_NODE && 5905 N3.getOpcode() != ISD::DELETED_NODE && 5906 "Operand is DELETED_NODE!"); 5907 // Perform various simplifications. 5908 switch (Opcode) { 5909 case ISD::FMA: { 5910 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5911 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5912 N3.getValueType() == VT && "FMA types must match!"); 5913 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5914 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5915 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5916 if (N1CFP && N2CFP && N3CFP) { 5917 APFloat V1 = N1CFP->getValueAPF(); 5918 const APFloat &V2 = N2CFP->getValueAPF(); 5919 const APFloat &V3 = N3CFP->getValueAPF(); 5920 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5921 return getConstantFP(V1, DL, VT); 5922 } 5923 break; 5924 } 5925 case ISD::BUILD_VECTOR: { 5926 // Attempt to simplify BUILD_VECTOR. 5927 SDValue Ops[] = {N1, N2, N3}; 5928 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5929 return V; 5930 break; 5931 } 5932 case ISD::CONCAT_VECTORS: { 5933 SDValue Ops[] = {N1, N2, N3}; 5934 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5935 return V; 5936 break; 5937 } 5938 case ISD::SETCC: { 5939 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5940 assert(N1.getValueType() == N2.getValueType() && 5941 "SETCC operands must have the same type!"); 5942 assert(VT.isVector() == N1.getValueType().isVector() && 5943 "SETCC type should be vector iff the operand type is vector!"); 5944 assert((!VT.isVector() || VT.getVectorElementCount() == 5945 N1.getValueType().getVectorElementCount()) && 5946 "SETCC vector element counts must match!"); 5947 // Use FoldSetCC to simplify SETCC's. 5948 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5949 return V; 5950 // Vector constant folding. 5951 SDValue Ops[] = {N1, N2, N3}; 5952 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5953 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5954 return V; 5955 } 5956 break; 5957 } 5958 case ISD::SELECT: 5959 case ISD::VSELECT: 5960 if (SDValue V = simplifySelect(N1, N2, N3)) 5961 return V; 5962 break; 5963 case ISD::VECTOR_SHUFFLE: 5964 llvm_unreachable("should use getVectorShuffle constructor!"); 5965 case ISD::INSERT_VECTOR_ELT: { 5966 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5967 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5968 // for scalable vectors where we will generate appropriate code to 5969 // deal with out-of-bounds cases correctly. 5970 if (N3C && N1.getValueType().isFixedLengthVector() && 5971 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5972 return getUNDEF(VT); 5973 5974 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5975 if (N3.isUndef()) 5976 return getUNDEF(VT); 5977 5978 // If the inserted element is an UNDEF, just use the input vector. 5979 if (N2.isUndef()) 5980 return N1; 5981 5982 break; 5983 } 5984 case ISD::INSERT_SUBVECTOR: { 5985 // Inserting undef into undef is still undef. 5986 if (N1.isUndef() && N2.isUndef()) 5987 return getUNDEF(VT); 5988 5989 EVT N2VT = N2.getValueType(); 5990 assert(VT == N1.getValueType() && 5991 "Dest and insert subvector source types must match!"); 5992 assert(VT.isVector() && N2VT.isVector() && 5993 "Insert subvector VTs must be vectors!"); 5994 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5995 "Cannot insert a scalable vector into a fixed length vector!"); 5996 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5997 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5998 "Insert subvector must be from smaller vector to larger vector!"); 5999 assert(isa<ConstantSDNode>(N3) && 6000 "Insert subvector index must be constant"); 6001 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6002 (N2VT.getVectorMinNumElements() + 6003 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6004 VT.getVectorMinNumElements()) && 6005 "Insert subvector overflow!"); 6006 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6007 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6008 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6009 6010 // Trivial insertion. 6011 if (VT == N2VT) 6012 return N2; 6013 6014 // If this is an insert of an extracted vector into an undef vector, we 6015 // can just use the input to the extract. 6016 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6017 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6018 return N2.getOperand(0); 6019 break; 6020 } 6021 case ISD::BITCAST: 6022 // Fold bit_convert nodes from a type to themselves. 6023 if (N1.getValueType() == VT) 6024 return N1; 6025 break; 6026 } 6027 6028 // Memoize node if it doesn't produce a flag. 6029 SDNode *N; 6030 SDVTList VTs = getVTList(VT); 6031 SDValue Ops[] = {N1, N2, N3}; 6032 if (VT != MVT::Glue) { 6033 FoldingSetNodeID ID; 6034 AddNodeIDNode(ID, Opcode, VTs, Ops); 6035 void *IP = nullptr; 6036 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6037 E->intersectFlagsWith(Flags); 6038 return SDValue(E, 0); 6039 } 6040 6041 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6042 N->setFlags(Flags); 6043 createOperands(N, Ops); 6044 CSEMap.InsertNode(N, IP); 6045 } else { 6046 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6047 createOperands(N, Ops); 6048 } 6049 6050 InsertNode(N); 6051 SDValue V = SDValue(N, 0); 6052 NewSDValueDbgMsg(V, "Creating new node: ", this); 6053 return V; 6054 } 6055 6056 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6057 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6058 SDValue Ops[] = { N1, N2, N3, N4 }; 6059 return getNode(Opcode, DL, VT, Ops); 6060 } 6061 6062 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6063 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6064 SDValue N5) { 6065 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6066 return getNode(Opcode, DL, VT, Ops); 6067 } 6068 6069 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6070 /// the incoming stack arguments to be loaded from the stack. 6071 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6072 SmallVector<SDValue, 8> ArgChains; 6073 6074 // Include the original chain at the beginning of the list. When this is 6075 // used by target LowerCall hooks, this helps legalize find the 6076 // CALLSEQ_BEGIN node. 6077 ArgChains.push_back(Chain); 6078 6079 // Add a chain value for each stack argument. 6080 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6081 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6082 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6083 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6084 if (FI->getIndex() < 0) 6085 ArgChains.push_back(SDValue(L, 1)); 6086 6087 // Build a tokenfactor for all the chains. 6088 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6089 } 6090 6091 /// getMemsetValue - Vectorized representation of the memset value 6092 /// operand. 6093 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6094 const SDLoc &dl) { 6095 assert(!Value.isUndef()); 6096 6097 unsigned NumBits = VT.getScalarSizeInBits(); 6098 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6099 assert(C->getAPIntValue().getBitWidth() == 8); 6100 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6101 if (VT.isInteger()) { 6102 bool IsOpaque = VT.getSizeInBits() > 64 || 6103 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6104 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6105 } 6106 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6107 VT); 6108 } 6109 6110 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6111 EVT IntVT = VT.getScalarType(); 6112 if (!IntVT.isInteger()) 6113 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6114 6115 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6116 if (NumBits > 8) { 6117 // Use a multiplication with 0x010101... to extend the input to the 6118 // required length. 6119 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6120 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6121 DAG.getConstant(Magic, dl, IntVT)); 6122 } 6123 6124 if (VT != Value.getValueType() && !VT.isInteger()) 6125 Value = DAG.getBitcast(VT.getScalarType(), Value); 6126 if (VT != Value.getValueType()) 6127 Value = DAG.getSplatBuildVector(VT, dl, Value); 6128 6129 return Value; 6130 } 6131 6132 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6133 /// used when a memcpy is turned into a memset when the source is a constant 6134 /// string ptr. 6135 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6136 const TargetLowering &TLI, 6137 const ConstantDataArraySlice &Slice) { 6138 // Handle vector with all elements zero. 6139 if (Slice.Array == nullptr) { 6140 if (VT.isInteger()) 6141 return DAG.getConstant(0, dl, VT); 6142 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6143 return DAG.getConstantFP(0.0, dl, VT); 6144 if (VT.isVector()) { 6145 unsigned NumElts = VT.getVectorNumElements(); 6146 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6147 return DAG.getNode(ISD::BITCAST, dl, VT, 6148 DAG.getConstant(0, dl, 6149 EVT::getVectorVT(*DAG.getContext(), 6150 EltVT, NumElts))); 6151 } 6152 llvm_unreachable("Expected type!"); 6153 } 6154 6155 assert(!VT.isVector() && "Can't handle vector type here!"); 6156 unsigned NumVTBits = VT.getSizeInBits(); 6157 unsigned NumVTBytes = NumVTBits / 8; 6158 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6159 6160 APInt Val(NumVTBits, 0); 6161 if (DAG.getDataLayout().isLittleEndian()) { 6162 for (unsigned i = 0; i != NumBytes; ++i) 6163 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6164 } else { 6165 for (unsigned i = 0; i != NumBytes; ++i) 6166 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6167 } 6168 6169 // If the "cost" of materializing the integer immediate is less than the cost 6170 // of a load, then it is cost effective to turn the load into the immediate. 6171 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6172 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6173 return DAG.getConstant(Val, dl, VT); 6174 return SDValue(nullptr, 0); 6175 } 6176 6177 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6178 const SDLoc &DL, 6179 const SDNodeFlags Flags) { 6180 EVT VT = Base.getValueType(); 6181 SDValue Index; 6182 6183 if (Offset.isScalable()) 6184 Index = getVScale(DL, Base.getValueType(), 6185 APInt(Base.getValueSizeInBits().getFixedSize(), 6186 Offset.getKnownMinSize())); 6187 else 6188 Index = getConstant(Offset.getFixedSize(), DL, VT); 6189 6190 return getMemBasePlusOffset(Base, Index, DL, Flags); 6191 } 6192 6193 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6194 const SDLoc &DL, 6195 const SDNodeFlags Flags) { 6196 assert(Offset.getValueType().isInteger()); 6197 EVT BasePtrVT = Ptr.getValueType(); 6198 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6199 } 6200 6201 /// Returns true if memcpy source is constant data. 6202 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6203 uint64_t SrcDelta = 0; 6204 GlobalAddressSDNode *G = nullptr; 6205 if (Src.getOpcode() == ISD::GlobalAddress) 6206 G = cast<GlobalAddressSDNode>(Src); 6207 else if (Src.getOpcode() == ISD::ADD && 6208 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6209 Src.getOperand(1).getOpcode() == ISD::Constant) { 6210 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6211 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6212 } 6213 if (!G) 6214 return false; 6215 6216 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6217 SrcDelta + G->getOffset()); 6218 } 6219 6220 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6221 SelectionDAG &DAG) { 6222 // On Darwin, -Os means optimize for size without hurting performance, so 6223 // only really optimize for size when -Oz (MinSize) is used. 6224 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6225 return MF.getFunction().hasMinSize(); 6226 return DAG.shouldOptForSize(); 6227 } 6228 6229 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6230 SmallVector<SDValue, 32> &OutChains, unsigned From, 6231 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6232 SmallVector<SDValue, 16> &OutStoreChains) { 6233 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6234 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6235 SmallVector<SDValue, 16> GluedLoadChains; 6236 for (unsigned i = From; i < To; ++i) { 6237 OutChains.push_back(OutLoadChains[i]); 6238 GluedLoadChains.push_back(OutLoadChains[i]); 6239 } 6240 6241 // Chain for all loads. 6242 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6243 GluedLoadChains); 6244 6245 for (unsigned i = From; i < To; ++i) { 6246 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6247 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6248 ST->getBasePtr(), ST->getMemoryVT(), 6249 ST->getMemOperand()); 6250 OutChains.push_back(NewStore); 6251 } 6252 } 6253 6254 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6255 SDValue Chain, SDValue Dst, SDValue Src, 6256 uint64_t Size, Align Alignment, 6257 bool isVol, bool AlwaysInline, 6258 MachinePointerInfo DstPtrInfo, 6259 MachinePointerInfo SrcPtrInfo) { 6260 // Turn a memcpy of undef to nop. 6261 // FIXME: We need to honor volatile even is Src is undef. 6262 if (Src.isUndef()) 6263 return Chain; 6264 6265 // Expand memcpy to a series of load and store ops if the size operand falls 6266 // below a certain threshold. 6267 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6268 // rather than maybe a humongous number of loads and stores. 6269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6270 const DataLayout &DL = DAG.getDataLayout(); 6271 LLVMContext &C = *DAG.getContext(); 6272 std::vector<EVT> MemOps; 6273 bool DstAlignCanChange = false; 6274 MachineFunction &MF = DAG.getMachineFunction(); 6275 MachineFrameInfo &MFI = MF.getFrameInfo(); 6276 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6277 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6278 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6279 DstAlignCanChange = true; 6280 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6281 if (!SrcAlign || Alignment > *SrcAlign) 6282 SrcAlign = Alignment; 6283 assert(SrcAlign && "SrcAlign must be set"); 6284 ConstantDataArraySlice Slice; 6285 // If marked as volatile, perform a copy even when marked as constant. 6286 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6287 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6288 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6289 const MemOp Op = isZeroConstant 6290 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6291 /*IsZeroMemset*/ true, isVol) 6292 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6293 *SrcAlign, isVol, CopyFromConstant); 6294 if (!TLI.findOptimalMemOpLowering( 6295 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6296 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6297 return SDValue(); 6298 6299 if (DstAlignCanChange) { 6300 Type *Ty = MemOps[0].getTypeForEVT(C); 6301 Align NewAlign = DL.getABITypeAlign(Ty); 6302 6303 // Don't promote to an alignment that would require dynamic stack 6304 // realignment. 6305 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6306 if (!TRI->hasStackRealignment(MF)) 6307 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6308 NewAlign = NewAlign / 2; 6309 6310 if (NewAlign > Alignment) { 6311 // Give the stack frame object a larger alignment if needed. 6312 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6313 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6314 Alignment = NewAlign; 6315 } 6316 } 6317 6318 MachineMemOperand::Flags MMOFlags = 6319 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6320 SmallVector<SDValue, 16> OutLoadChains; 6321 SmallVector<SDValue, 16> OutStoreChains; 6322 SmallVector<SDValue, 32> OutChains; 6323 unsigned NumMemOps = MemOps.size(); 6324 uint64_t SrcOff = 0, DstOff = 0; 6325 for (unsigned i = 0; i != NumMemOps; ++i) { 6326 EVT VT = MemOps[i]; 6327 unsigned VTSize = VT.getSizeInBits() / 8; 6328 SDValue Value, Store; 6329 6330 if (VTSize > Size) { 6331 // Issuing an unaligned load / store pair that overlaps with the previous 6332 // pair. Adjust the offset accordingly. 6333 assert(i == NumMemOps-1 && i != 0); 6334 SrcOff -= VTSize - Size; 6335 DstOff -= VTSize - Size; 6336 } 6337 6338 if (CopyFromConstant && 6339 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6340 // It's unlikely a store of a vector immediate can be done in a single 6341 // instruction. It would require a load from a constantpool first. 6342 // We only handle zero vectors here. 6343 // FIXME: Handle other cases where store of vector immediate is done in 6344 // a single instruction. 6345 ConstantDataArraySlice SubSlice; 6346 if (SrcOff < Slice.Length) { 6347 SubSlice = Slice; 6348 SubSlice.move(SrcOff); 6349 } else { 6350 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6351 SubSlice.Array = nullptr; 6352 SubSlice.Offset = 0; 6353 SubSlice.Length = VTSize; 6354 } 6355 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6356 if (Value.getNode()) { 6357 Store = DAG.getStore( 6358 Chain, dl, Value, 6359 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6360 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6361 OutChains.push_back(Store); 6362 } 6363 } 6364 6365 if (!Store.getNode()) { 6366 // The type might not be legal for the target. This should only happen 6367 // if the type is smaller than a legal type, as on PPC, so the right 6368 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6369 // to Load/Store if NVT==VT. 6370 // FIXME does the case above also need this? 6371 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6372 assert(NVT.bitsGE(VT)); 6373 6374 bool isDereferenceable = 6375 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6376 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6377 if (isDereferenceable) 6378 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6379 6380 Value = DAG.getExtLoad( 6381 ISD::EXTLOAD, dl, NVT, Chain, 6382 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6383 SrcPtrInfo.getWithOffset(SrcOff), VT, 6384 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6385 OutLoadChains.push_back(Value.getValue(1)); 6386 6387 Store = DAG.getTruncStore( 6388 Chain, dl, Value, 6389 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6390 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6391 OutStoreChains.push_back(Store); 6392 } 6393 SrcOff += VTSize; 6394 DstOff += VTSize; 6395 Size -= VTSize; 6396 } 6397 6398 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6399 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6400 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6401 6402 if (NumLdStInMemcpy) { 6403 // It may be that memcpy might be converted to memset if it's memcpy 6404 // of constants. In such a case, we won't have loads and stores, but 6405 // just stores. In the absence of loads, there is nothing to gang up. 6406 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6407 // If target does not care, just leave as it. 6408 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6409 OutChains.push_back(OutLoadChains[i]); 6410 OutChains.push_back(OutStoreChains[i]); 6411 } 6412 } else { 6413 // Ld/St less than/equal limit set by target. 6414 if (NumLdStInMemcpy <= GluedLdStLimit) { 6415 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6416 NumLdStInMemcpy, OutLoadChains, 6417 OutStoreChains); 6418 } else { 6419 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6420 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6421 unsigned GlueIter = 0; 6422 6423 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6424 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6425 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6426 6427 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6428 OutLoadChains, OutStoreChains); 6429 GlueIter += GluedLdStLimit; 6430 } 6431 6432 // Residual ld/st. 6433 if (RemainingLdStInMemcpy) { 6434 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6435 RemainingLdStInMemcpy, OutLoadChains, 6436 OutStoreChains); 6437 } 6438 } 6439 } 6440 } 6441 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6442 } 6443 6444 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6445 SDValue Chain, SDValue Dst, SDValue Src, 6446 uint64_t Size, Align Alignment, 6447 bool isVol, bool AlwaysInline, 6448 MachinePointerInfo DstPtrInfo, 6449 MachinePointerInfo SrcPtrInfo) { 6450 // Turn a memmove of undef to nop. 6451 // FIXME: We need to honor volatile even is Src is undef. 6452 if (Src.isUndef()) 6453 return Chain; 6454 6455 // Expand memmove to a series of load and store ops if the size operand falls 6456 // below a certain threshold. 6457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6458 const DataLayout &DL = DAG.getDataLayout(); 6459 LLVMContext &C = *DAG.getContext(); 6460 std::vector<EVT> MemOps; 6461 bool DstAlignCanChange = false; 6462 MachineFunction &MF = DAG.getMachineFunction(); 6463 MachineFrameInfo &MFI = MF.getFrameInfo(); 6464 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6465 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6466 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6467 DstAlignCanChange = true; 6468 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6469 if (!SrcAlign || Alignment > *SrcAlign) 6470 SrcAlign = Alignment; 6471 assert(SrcAlign && "SrcAlign must be set"); 6472 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6473 if (!TLI.findOptimalMemOpLowering( 6474 MemOps, Limit, 6475 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6476 /*IsVolatile*/ true), 6477 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6478 MF.getFunction().getAttributes())) 6479 return SDValue(); 6480 6481 if (DstAlignCanChange) { 6482 Type *Ty = MemOps[0].getTypeForEVT(C); 6483 Align NewAlign = DL.getABITypeAlign(Ty); 6484 if (NewAlign > Alignment) { 6485 // Give the stack frame object a larger alignment if needed. 6486 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6487 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6488 Alignment = NewAlign; 6489 } 6490 } 6491 6492 MachineMemOperand::Flags MMOFlags = 6493 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6494 uint64_t SrcOff = 0, DstOff = 0; 6495 SmallVector<SDValue, 8> LoadValues; 6496 SmallVector<SDValue, 8> LoadChains; 6497 SmallVector<SDValue, 8> OutChains; 6498 unsigned NumMemOps = MemOps.size(); 6499 for (unsigned i = 0; i < NumMemOps; i++) { 6500 EVT VT = MemOps[i]; 6501 unsigned VTSize = VT.getSizeInBits() / 8; 6502 SDValue Value; 6503 6504 bool isDereferenceable = 6505 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6506 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6507 if (isDereferenceable) 6508 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6509 6510 Value = 6511 DAG.getLoad(VT, dl, Chain, 6512 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6513 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6514 LoadValues.push_back(Value); 6515 LoadChains.push_back(Value.getValue(1)); 6516 SrcOff += VTSize; 6517 } 6518 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6519 OutChains.clear(); 6520 for (unsigned i = 0; i < NumMemOps; i++) { 6521 EVT VT = MemOps[i]; 6522 unsigned VTSize = VT.getSizeInBits() / 8; 6523 SDValue Store; 6524 6525 Store = 6526 DAG.getStore(Chain, dl, LoadValues[i], 6527 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6528 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6529 OutChains.push_back(Store); 6530 DstOff += VTSize; 6531 } 6532 6533 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6534 } 6535 6536 /// Lower the call to 'memset' intrinsic function into a series of store 6537 /// operations. 6538 /// 6539 /// \param DAG Selection DAG where lowered code is placed. 6540 /// \param dl Link to corresponding IR location. 6541 /// \param Chain Control flow dependency. 6542 /// \param Dst Pointer to destination memory location. 6543 /// \param Src Value of byte to write into the memory. 6544 /// \param Size Number of bytes to write. 6545 /// \param Alignment Alignment of the destination in bytes. 6546 /// \param isVol True if destination is volatile. 6547 /// \param DstPtrInfo IR information on the memory pointer. 6548 /// \returns New head in the control flow, if lowering was successful, empty 6549 /// SDValue otherwise. 6550 /// 6551 /// The function tries to replace 'llvm.memset' intrinsic with several store 6552 /// operations and value calculation code. This is usually profitable for small 6553 /// memory size. 6554 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6555 SDValue Chain, SDValue Dst, SDValue Src, 6556 uint64_t Size, Align Alignment, bool isVol, 6557 MachinePointerInfo DstPtrInfo) { 6558 // Turn a memset of undef to nop. 6559 // FIXME: We need to honor volatile even is Src is undef. 6560 if (Src.isUndef()) 6561 return Chain; 6562 6563 // Expand memset to a series of load/store ops if the size operand 6564 // falls below a certain threshold. 6565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6566 std::vector<EVT> MemOps; 6567 bool DstAlignCanChange = false; 6568 MachineFunction &MF = DAG.getMachineFunction(); 6569 MachineFrameInfo &MFI = MF.getFrameInfo(); 6570 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6571 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6572 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6573 DstAlignCanChange = true; 6574 bool IsZeroVal = 6575 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6576 if (!TLI.findOptimalMemOpLowering( 6577 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6578 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6579 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6580 return SDValue(); 6581 6582 if (DstAlignCanChange) { 6583 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6584 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6585 if (NewAlign > Alignment) { 6586 // Give the stack frame object a larger alignment if needed. 6587 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6588 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6589 Alignment = NewAlign; 6590 } 6591 } 6592 6593 SmallVector<SDValue, 8> OutChains; 6594 uint64_t DstOff = 0; 6595 unsigned NumMemOps = MemOps.size(); 6596 6597 // Find the largest store and generate the bit pattern for it. 6598 EVT LargestVT = MemOps[0]; 6599 for (unsigned i = 1; i < NumMemOps; i++) 6600 if (MemOps[i].bitsGT(LargestVT)) 6601 LargestVT = MemOps[i]; 6602 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6603 6604 for (unsigned i = 0; i < NumMemOps; i++) { 6605 EVT VT = MemOps[i]; 6606 unsigned VTSize = VT.getSizeInBits() / 8; 6607 if (VTSize > Size) { 6608 // Issuing an unaligned load / store pair that overlaps with the previous 6609 // pair. Adjust the offset accordingly. 6610 assert(i == NumMemOps-1 && i != 0); 6611 DstOff -= VTSize - Size; 6612 } 6613 6614 // If this store is smaller than the largest store see whether we can get 6615 // the smaller value for free with a truncate. 6616 SDValue Value = MemSetValue; 6617 if (VT.bitsLT(LargestVT)) { 6618 if (!LargestVT.isVector() && !VT.isVector() && 6619 TLI.isTruncateFree(LargestVT, VT)) 6620 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6621 else 6622 Value = getMemsetValue(Src, VT, DAG, dl); 6623 } 6624 assert(Value.getValueType() == VT && "Value with wrong type."); 6625 SDValue Store = DAG.getStore( 6626 Chain, dl, Value, 6627 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6628 DstPtrInfo.getWithOffset(DstOff), Alignment, 6629 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6630 OutChains.push_back(Store); 6631 DstOff += VT.getSizeInBits() / 8; 6632 Size -= VTSize; 6633 } 6634 6635 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6636 } 6637 6638 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6639 unsigned AS) { 6640 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6641 // pointer operands can be losslessly bitcasted to pointers of address space 0 6642 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6643 report_fatal_error("cannot lower memory intrinsic in address space " + 6644 Twine(AS)); 6645 } 6646 } 6647 6648 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6649 SDValue Src, SDValue Size, Align Alignment, 6650 bool isVol, bool AlwaysInline, bool isTailCall, 6651 MachinePointerInfo DstPtrInfo, 6652 MachinePointerInfo SrcPtrInfo) { 6653 // Check to see if we should lower the memcpy to loads and stores first. 6654 // For cases within the target-specified limits, this is the best choice. 6655 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6656 if (ConstantSize) { 6657 // Memcpy with size zero? Just return the original chain. 6658 if (ConstantSize->isNullValue()) 6659 return Chain; 6660 6661 SDValue Result = getMemcpyLoadsAndStores( 6662 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6663 isVol, false, DstPtrInfo, SrcPtrInfo); 6664 if (Result.getNode()) 6665 return Result; 6666 } 6667 6668 // Then check to see if we should lower the memcpy with target-specific 6669 // code. If the target chooses to do this, this is the next best. 6670 if (TSI) { 6671 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6672 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6673 DstPtrInfo, SrcPtrInfo); 6674 if (Result.getNode()) 6675 return Result; 6676 } 6677 6678 // If we really need inline code and the target declined to provide it, 6679 // use a (potentially long) sequence of loads and stores. 6680 if (AlwaysInline) { 6681 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6682 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6683 ConstantSize->getZExtValue(), Alignment, 6684 isVol, true, DstPtrInfo, SrcPtrInfo); 6685 } 6686 6687 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6688 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6689 6690 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6691 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6692 // respect volatile, so they may do things like read or write memory 6693 // beyond the given memory regions. But fixing this isn't easy, and most 6694 // people don't care. 6695 6696 // Emit a library call. 6697 TargetLowering::ArgListTy Args; 6698 TargetLowering::ArgListEntry Entry; 6699 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6700 Entry.Node = Dst; Args.push_back(Entry); 6701 Entry.Node = Src; Args.push_back(Entry); 6702 6703 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6704 Entry.Node = Size; Args.push_back(Entry); 6705 // FIXME: pass in SDLoc 6706 TargetLowering::CallLoweringInfo CLI(*this); 6707 CLI.setDebugLoc(dl) 6708 .setChain(Chain) 6709 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6710 Dst.getValueType().getTypeForEVT(*getContext()), 6711 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6712 TLI->getPointerTy(getDataLayout())), 6713 std::move(Args)) 6714 .setDiscardResult() 6715 .setTailCall(isTailCall); 6716 6717 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6718 return CallResult.second; 6719 } 6720 6721 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6722 SDValue Dst, unsigned DstAlign, 6723 SDValue Src, unsigned SrcAlign, 6724 SDValue Size, Type *SizeTy, 6725 unsigned ElemSz, bool isTailCall, 6726 MachinePointerInfo DstPtrInfo, 6727 MachinePointerInfo SrcPtrInfo) { 6728 // Emit a library call. 6729 TargetLowering::ArgListTy Args; 6730 TargetLowering::ArgListEntry Entry; 6731 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6732 Entry.Node = Dst; 6733 Args.push_back(Entry); 6734 6735 Entry.Node = Src; 6736 Args.push_back(Entry); 6737 6738 Entry.Ty = SizeTy; 6739 Entry.Node = Size; 6740 Args.push_back(Entry); 6741 6742 RTLIB::Libcall LibraryCall = 6743 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6744 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6745 report_fatal_error("Unsupported element size"); 6746 6747 TargetLowering::CallLoweringInfo CLI(*this); 6748 CLI.setDebugLoc(dl) 6749 .setChain(Chain) 6750 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6751 Type::getVoidTy(*getContext()), 6752 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6753 TLI->getPointerTy(getDataLayout())), 6754 std::move(Args)) 6755 .setDiscardResult() 6756 .setTailCall(isTailCall); 6757 6758 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6759 return CallResult.second; 6760 } 6761 6762 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6763 SDValue Src, SDValue Size, Align Alignment, 6764 bool isVol, bool isTailCall, 6765 MachinePointerInfo DstPtrInfo, 6766 MachinePointerInfo SrcPtrInfo) { 6767 // Check to see if we should lower the memmove to loads and stores first. 6768 // For cases within the target-specified limits, this is the best choice. 6769 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6770 if (ConstantSize) { 6771 // Memmove with size zero? Just return the original chain. 6772 if (ConstantSize->isNullValue()) 6773 return Chain; 6774 6775 SDValue Result = getMemmoveLoadsAndStores( 6776 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6777 isVol, false, DstPtrInfo, SrcPtrInfo); 6778 if (Result.getNode()) 6779 return Result; 6780 } 6781 6782 // Then check to see if we should lower the memmove with target-specific 6783 // code. If the target chooses to do this, this is the next best. 6784 if (TSI) { 6785 SDValue Result = 6786 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6787 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6788 if (Result.getNode()) 6789 return Result; 6790 } 6791 6792 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6793 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6794 6795 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6796 // not be safe. See memcpy above for more details. 6797 6798 // Emit a library call. 6799 TargetLowering::ArgListTy Args; 6800 TargetLowering::ArgListEntry Entry; 6801 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6802 Entry.Node = Dst; Args.push_back(Entry); 6803 Entry.Node = Src; Args.push_back(Entry); 6804 6805 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6806 Entry.Node = Size; Args.push_back(Entry); 6807 // FIXME: pass in SDLoc 6808 TargetLowering::CallLoweringInfo CLI(*this); 6809 CLI.setDebugLoc(dl) 6810 .setChain(Chain) 6811 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6812 Dst.getValueType().getTypeForEVT(*getContext()), 6813 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6814 TLI->getPointerTy(getDataLayout())), 6815 std::move(Args)) 6816 .setDiscardResult() 6817 .setTailCall(isTailCall); 6818 6819 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6820 return CallResult.second; 6821 } 6822 6823 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6824 SDValue Dst, unsigned DstAlign, 6825 SDValue Src, unsigned SrcAlign, 6826 SDValue Size, Type *SizeTy, 6827 unsigned ElemSz, bool isTailCall, 6828 MachinePointerInfo DstPtrInfo, 6829 MachinePointerInfo SrcPtrInfo) { 6830 // Emit a library call. 6831 TargetLowering::ArgListTy Args; 6832 TargetLowering::ArgListEntry Entry; 6833 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6834 Entry.Node = Dst; 6835 Args.push_back(Entry); 6836 6837 Entry.Node = Src; 6838 Args.push_back(Entry); 6839 6840 Entry.Ty = SizeTy; 6841 Entry.Node = Size; 6842 Args.push_back(Entry); 6843 6844 RTLIB::Libcall LibraryCall = 6845 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6846 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6847 report_fatal_error("Unsupported element size"); 6848 6849 TargetLowering::CallLoweringInfo CLI(*this); 6850 CLI.setDebugLoc(dl) 6851 .setChain(Chain) 6852 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6853 Type::getVoidTy(*getContext()), 6854 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6855 TLI->getPointerTy(getDataLayout())), 6856 std::move(Args)) 6857 .setDiscardResult() 6858 .setTailCall(isTailCall); 6859 6860 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6861 return CallResult.second; 6862 } 6863 6864 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6865 SDValue Src, SDValue Size, Align Alignment, 6866 bool isVol, bool isTailCall, 6867 MachinePointerInfo DstPtrInfo) { 6868 // Check to see if we should lower the memset to stores first. 6869 // For cases within the target-specified limits, this is the best choice. 6870 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6871 if (ConstantSize) { 6872 // Memset with size zero? Just return the original chain. 6873 if (ConstantSize->isNullValue()) 6874 return Chain; 6875 6876 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6877 ConstantSize->getZExtValue(), Alignment, 6878 isVol, DstPtrInfo); 6879 6880 if (Result.getNode()) 6881 return Result; 6882 } 6883 6884 // Then check to see if we should lower the memset with target-specific 6885 // code. If the target chooses to do this, this is the next best. 6886 if (TSI) { 6887 SDValue Result = TSI->EmitTargetCodeForMemset( 6888 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6889 if (Result.getNode()) 6890 return Result; 6891 } 6892 6893 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6894 6895 // Emit a library call. 6896 TargetLowering::ArgListTy Args; 6897 TargetLowering::ArgListEntry Entry; 6898 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6899 Args.push_back(Entry); 6900 Entry.Node = Src; 6901 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6902 Args.push_back(Entry); 6903 Entry.Node = Size; 6904 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6905 Args.push_back(Entry); 6906 6907 // FIXME: pass in SDLoc 6908 TargetLowering::CallLoweringInfo CLI(*this); 6909 CLI.setDebugLoc(dl) 6910 .setChain(Chain) 6911 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6912 Dst.getValueType().getTypeForEVT(*getContext()), 6913 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6914 TLI->getPointerTy(getDataLayout())), 6915 std::move(Args)) 6916 .setDiscardResult() 6917 .setTailCall(isTailCall); 6918 6919 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6920 return CallResult.second; 6921 } 6922 6923 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6924 SDValue Dst, unsigned DstAlign, 6925 SDValue Value, SDValue Size, Type *SizeTy, 6926 unsigned ElemSz, bool isTailCall, 6927 MachinePointerInfo DstPtrInfo) { 6928 // Emit a library call. 6929 TargetLowering::ArgListTy Args; 6930 TargetLowering::ArgListEntry Entry; 6931 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6932 Entry.Node = Dst; 6933 Args.push_back(Entry); 6934 6935 Entry.Ty = Type::getInt8Ty(*getContext()); 6936 Entry.Node = Value; 6937 Args.push_back(Entry); 6938 6939 Entry.Ty = SizeTy; 6940 Entry.Node = Size; 6941 Args.push_back(Entry); 6942 6943 RTLIB::Libcall LibraryCall = 6944 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6945 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6946 report_fatal_error("Unsupported element size"); 6947 6948 TargetLowering::CallLoweringInfo CLI(*this); 6949 CLI.setDebugLoc(dl) 6950 .setChain(Chain) 6951 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6952 Type::getVoidTy(*getContext()), 6953 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6954 TLI->getPointerTy(getDataLayout())), 6955 std::move(Args)) 6956 .setDiscardResult() 6957 .setTailCall(isTailCall); 6958 6959 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6960 return CallResult.second; 6961 } 6962 6963 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6964 SDVTList VTList, ArrayRef<SDValue> Ops, 6965 MachineMemOperand *MMO) { 6966 FoldingSetNodeID ID; 6967 ID.AddInteger(MemVT.getRawBits()); 6968 AddNodeIDNode(ID, Opcode, VTList, Ops); 6969 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6970 void* IP = nullptr; 6971 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6972 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6973 return SDValue(E, 0); 6974 } 6975 6976 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6977 VTList, MemVT, MMO); 6978 createOperands(N, Ops); 6979 6980 CSEMap.InsertNode(N, IP); 6981 InsertNode(N); 6982 return SDValue(N, 0); 6983 } 6984 6985 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6986 EVT MemVT, SDVTList VTs, SDValue Chain, 6987 SDValue Ptr, SDValue Cmp, SDValue Swp, 6988 MachineMemOperand *MMO) { 6989 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6990 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6991 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6992 6993 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6994 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6995 } 6996 6997 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6998 SDValue Chain, SDValue Ptr, SDValue Val, 6999 MachineMemOperand *MMO) { 7000 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7001 Opcode == ISD::ATOMIC_LOAD_SUB || 7002 Opcode == ISD::ATOMIC_LOAD_AND || 7003 Opcode == ISD::ATOMIC_LOAD_CLR || 7004 Opcode == ISD::ATOMIC_LOAD_OR || 7005 Opcode == ISD::ATOMIC_LOAD_XOR || 7006 Opcode == ISD::ATOMIC_LOAD_NAND || 7007 Opcode == ISD::ATOMIC_LOAD_MIN || 7008 Opcode == ISD::ATOMIC_LOAD_MAX || 7009 Opcode == ISD::ATOMIC_LOAD_UMIN || 7010 Opcode == ISD::ATOMIC_LOAD_UMAX || 7011 Opcode == ISD::ATOMIC_LOAD_FADD || 7012 Opcode == ISD::ATOMIC_LOAD_FSUB || 7013 Opcode == ISD::ATOMIC_SWAP || 7014 Opcode == ISD::ATOMIC_STORE) && 7015 "Invalid Atomic Op"); 7016 7017 EVT VT = Val.getValueType(); 7018 7019 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7020 getVTList(VT, MVT::Other); 7021 SDValue Ops[] = {Chain, Ptr, Val}; 7022 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7023 } 7024 7025 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7026 EVT VT, SDValue Chain, SDValue Ptr, 7027 MachineMemOperand *MMO) { 7028 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7029 7030 SDVTList VTs = getVTList(VT, MVT::Other); 7031 SDValue Ops[] = {Chain, Ptr}; 7032 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7033 } 7034 7035 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7036 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7037 if (Ops.size() == 1) 7038 return Ops[0]; 7039 7040 SmallVector<EVT, 4> VTs; 7041 VTs.reserve(Ops.size()); 7042 for (const SDValue &Op : Ops) 7043 VTs.push_back(Op.getValueType()); 7044 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7045 } 7046 7047 SDValue SelectionDAG::getMemIntrinsicNode( 7048 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7049 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7050 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7051 if (!Size && MemVT.isScalableVector()) 7052 Size = MemoryLocation::UnknownSize; 7053 else if (!Size) 7054 Size = MemVT.getStoreSize(); 7055 7056 MachineFunction &MF = getMachineFunction(); 7057 MachineMemOperand *MMO = 7058 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7059 7060 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7061 } 7062 7063 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7064 SDVTList VTList, 7065 ArrayRef<SDValue> Ops, EVT MemVT, 7066 MachineMemOperand *MMO) { 7067 assert((Opcode == ISD::INTRINSIC_VOID || 7068 Opcode == ISD::INTRINSIC_W_CHAIN || 7069 Opcode == ISD::PREFETCH || 7070 ((int)Opcode <= std::numeric_limits<int>::max() && 7071 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7072 "Opcode is not a memory-accessing opcode!"); 7073 7074 // Memoize the node unless it returns a flag. 7075 MemIntrinsicSDNode *N; 7076 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7077 FoldingSetNodeID ID; 7078 AddNodeIDNode(ID, Opcode, VTList, Ops); 7079 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7080 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7081 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7082 void *IP = nullptr; 7083 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7084 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7085 return SDValue(E, 0); 7086 } 7087 7088 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7089 VTList, MemVT, MMO); 7090 createOperands(N, Ops); 7091 7092 CSEMap.InsertNode(N, IP); 7093 } else { 7094 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7095 VTList, MemVT, MMO); 7096 createOperands(N, Ops); 7097 } 7098 InsertNode(N); 7099 SDValue V(N, 0); 7100 NewSDValueDbgMsg(V, "Creating new node: ", this); 7101 return V; 7102 } 7103 7104 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7105 SDValue Chain, int FrameIndex, 7106 int64_t Size, int64_t Offset) { 7107 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7108 const auto VTs = getVTList(MVT::Other); 7109 SDValue Ops[2] = { 7110 Chain, 7111 getFrameIndex(FrameIndex, 7112 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7113 true)}; 7114 7115 FoldingSetNodeID ID; 7116 AddNodeIDNode(ID, Opcode, VTs, Ops); 7117 ID.AddInteger(FrameIndex); 7118 ID.AddInteger(Size); 7119 ID.AddInteger(Offset); 7120 void *IP = nullptr; 7121 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7122 return SDValue(E, 0); 7123 7124 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7125 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7126 createOperands(N, Ops); 7127 CSEMap.InsertNode(N, IP); 7128 InsertNode(N); 7129 SDValue V(N, 0); 7130 NewSDValueDbgMsg(V, "Creating new node: ", this); 7131 return V; 7132 } 7133 7134 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7135 uint64_t Guid, uint64_t Index, 7136 uint32_t Attr) { 7137 const unsigned Opcode = ISD::PSEUDO_PROBE; 7138 const auto VTs = getVTList(MVT::Other); 7139 SDValue Ops[] = {Chain}; 7140 FoldingSetNodeID ID; 7141 AddNodeIDNode(ID, Opcode, VTs, Ops); 7142 ID.AddInteger(Guid); 7143 ID.AddInteger(Index); 7144 void *IP = nullptr; 7145 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7146 return SDValue(E, 0); 7147 7148 auto *N = newSDNode<PseudoProbeSDNode>( 7149 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7150 createOperands(N, Ops); 7151 CSEMap.InsertNode(N, IP); 7152 InsertNode(N); 7153 SDValue V(N, 0); 7154 NewSDValueDbgMsg(V, "Creating new node: ", this); 7155 return V; 7156 } 7157 7158 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7159 /// MachinePointerInfo record from it. This is particularly useful because the 7160 /// code generator has many cases where it doesn't bother passing in a 7161 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7162 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7163 SelectionDAG &DAG, SDValue Ptr, 7164 int64_t Offset = 0) { 7165 // If this is FI+Offset, we can model it. 7166 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7167 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7168 FI->getIndex(), Offset); 7169 7170 // If this is (FI+Offset1)+Offset2, we can model it. 7171 if (Ptr.getOpcode() != ISD::ADD || 7172 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7173 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7174 return Info; 7175 7176 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7177 return MachinePointerInfo::getFixedStack( 7178 DAG.getMachineFunction(), FI, 7179 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7180 } 7181 7182 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7183 /// MachinePointerInfo record from it. This is particularly useful because the 7184 /// code generator has many cases where it doesn't bother passing in a 7185 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7186 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7187 SelectionDAG &DAG, SDValue Ptr, 7188 SDValue OffsetOp) { 7189 // If the 'Offset' value isn't a constant, we can't handle this. 7190 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7191 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7192 if (OffsetOp.isUndef()) 7193 return InferPointerInfo(Info, DAG, Ptr); 7194 return Info; 7195 } 7196 7197 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7198 EVT VT, const SDLoc &dl, SDValue Chain, 7199 SDValue Ptr, SDValue Offset, 7200 MachinePointerInfo PtrInfo, EVT MemVT, 7201 Align Alignment, 7202 MachineMemOperand::Flags MMOFlags, 7203 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7204 assert(Chain.getValueType() == MVT::Other && 7205 "Invalid chain type"); 7206 7207 MMOFlags |= MachineMemOperand::MOLoad; 7208 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7209 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7210 // clients. 7211 if (PtrInfo.V.isNull()) 7212 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7213 7214 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7215 MachineFunction &MF = getMachineFunction(); 7216 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7217 Alignment, AAInfo, Ranges); 7218 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7219 } 7220 7221 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7222 EVT VT, const SDLoc &dl, SDValue Chain, 7223 SDValue Ptr, SDValue Offset, EVT MemVT, 7224 MachineMemOperand *MMO) { 7225 if (VT == MemVT) { 7226 ExtType = ISD::NON_EXTLOAD; 7227 } else if (ExtType == ISD::NON_EXTLOAD) { 7228 assert(VT == MemVT && "Non-extending load from different memory type!"); 7229 } else { 7230 // Extending load. 7231 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7232 "Should only be an extending load, not truncating!"); 7233 assert(VT.isInteger() == MemVT.isInteger() && 7234 "Cannot convert from FP to Int or Int -> FP!"); 7235 assert(VT.isVector() == MemVT.isVector() && 7236 "Cannot use an ext load to convert to or from a vector!"); 7237 assert((!VT.isVector() || 7238 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7239 "Cannot use an ext load to change the number of vector elements!"); 7240 } 7241 7242 bool Indexed = AM != ISD::UNINDEXED; 7243 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7244 7245 SDVTList VTs = Indexed ? 7246 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7247 SDValue Ops[] = { Chain, Ptr, Offset }; 7248 FoldingSetNodeID ID; 7249 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7250 ID.AddInteger(MemVT.getRawBits()); 7251 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7252 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7253 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7254 void *IP = nullptr; 7255 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7256 cast<LoadSDNode>(E)->refineAlignment(MMO); 7257 return SDValue(E, 0); 7258 } 7259 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7260 ExtType, MemVT, MMO); 7261 createOperands(N, Ops); 7262 7263 CSEMap.InsertNode(N, IP); 7264 InsertNode(N); 7265 SDValue V(N, 0); 7266 NewSDValueDbgMsg(V, "Creating new node: ", this); 7267 return V; 7268 } 7269 7270 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7271 SDValue Ptr, MachinePointerInfo PtrInfo, 7272 MaybeAlign Alignment, 7273 MachineMemOperand::Flags MMOFlags, 7274 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7275 SDValue Undef = getUNDEF(Ptr.getValueType()); 7276 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7277 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7278 } 7279 7280 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7281 SDValue Ptr, MachineMemOperand *MMO) { 7282 SDValue Undef = getUNDEF(Ptr.getValueType()); 7283 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7284 VT, MMO); 7285 } 7286 7287 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7288 EVT VT, SDValue Chain, SDValue Ptr, 7289 MachinePointerInfo PtrInfo, EVT MemVT, 7290 MaybeAlign Alignment, 7291 MachineMemOperand::Flags MMOFlags, 7292 const AAMDNodes &AAInfo) { 7293 SDValue Undef = getUNDEF(Ptr.getValueType()); 7294 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7295 MemVT, Alignment, MMOFlags, AAInfo); 7296 } 7297 7298 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7299 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7300 MachineMemOperand *MMO) { 7301 SDValue Undef = getUNDEF(Ptr.getValueType()); 7302 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7303 MemVT, MMO); 7304 } 7305 7306 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7307 SDValue Base, SDValue Offset, 7308 ISD::MemIndexedMode AM) { 7309 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7310 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7311 // Don't propagate the invariant or dereferenceable flags. 7312 auto MMOFlags = 7313 LD->getMemOperand()->getFlags() & 7314 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7315 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7316 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7317 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7318 } 7319 7320 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7321 SDValue Ptr, MachinePointerInfo PtrInfo, 7322 Align Alignment, 7323 MachineMemOperand::Flags MMOFlags, 7324 const AAMDNodes &AAInfo) { 7325 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7326 7327 MMOFlags |= MachineMemOperand::MOStore; 7328 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7329 7330 if (PtrInfo.V.isNull()) 7331 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7332 7333 MachineFunction &MF = getMachineFunction(); 7334 uint64_t Size = 7335 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7336 MachineMemOperand *MMO = 7337 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7338 return getStore(Chain, dl, Val, Ptr, MMO); 7339 } 7340 7341 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7342 SDValue Ptr, MachineMemOperand *MMO) { 7343 assert(Chain.getValueType() == MVT::Other && 7344 "Invalid chain type"); 7345 EVT VT = Val.getValueType(); 7346 SDVTList VTs = getVTList(MVT::Other); 7347 SDValue Undef = getUNDEF(Ptr.getValueType()); 7348 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7349 FoldingSetNodeID ID; 7350 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7351 ID.AddInteger(VT.getRawBits()); 7352 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7353 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7354 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7355 void *IP = nullptr; 7356 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7357 cast<StoreSDNode>(E)->refineAlignment(MMO); 7358 return SDValue(E, 0); 7359 } 7360 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7361 ISD::UNINDEXED, false, VT, MMO); 7362 createOperands(N, Ops); 7363 7364 CSEMap.InsertNode(N, IP); 7365 InsertNode(N); 7366 SDValue V(N, 0); 7367 NewSDValueDbgMsg(V, "Creating new node: ", this); 7368 return V; 7369 } 7370 7371 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7372 SDValue Ptr, MachinePointerInfo PtrInfo, 7373 EVT SVT, Align Alignment, 7374 MachineMemOperand::Flags MMOFlags, 7375 const AAMDNodes &AAInfo) { 7376 assert(Chain.getValueType() == MVT::Other && 7377 "Invalid chain type"); 7378 7379 MMOFlags |= MachineMemOperand::MOStore; 7380 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7381 7382 if (PtrInfo.V.isNull()) 7383 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7384 7385 MachineFunction &MF = getMachineFunction(); 7386 MachineMemOperand *MMO = MF.getMachineMemOperand( 7387 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7388 Alignment, AAInfo); 7389 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7390 } 7391 7392 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7393 SDValue Ptr, EVT SVT, 7394 MachineMemOperand *MMO) { 7395 EVT VT = Val.getValueType(); 7396 7397 assert(Chain.getValueType() == MVT::Other && 7398 "Invalid chain type"); 7399 if (VT == SVT) 7400 return getStore(Chain, dl, Val, Ptr, MMO); 7401 7402 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7403 "Should only be a truncating store, not extending!"); 7404 assert(VT.isInteger() == SVT.isInteger() && 7405 "Can't do FP-INT conversion!"); 7406 assert(VT.isVector() == SVT.isVector() && 7407 "Cannot use trunc store to convert to or from a vector!"); 7408 assert((!VT.isVector() || 7409 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7410 "Cannot use trunc store to change the number of vector elements!"); 7411 7412 SDVTList VTs = getVTList(MVT::Other); 7413 SDValue Undef = getUNDEF(Ptr.getValueType()); 7414 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7415 FoldingSetNodeID ID; 7416 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7417 ID.AddInteger(SVT.getRawBits()); 7418 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7419 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7420 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7421 void *IP = nullptr; 7422 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7423 cast<StoreSDNode>(E)->refineAlignment(MMO); 7424 return SDValue(E, 0); 7425 } 7426 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7427 ISD::UNINDEXED, true, SVT, MMO); 7428 createOperands(N, Ops); 7429 7430 CSEMap.InsertNode(N, IP); 7431 InsertNode(N); 7432 SDValue V(N, 0); 7433 NewSDValueDbgMsg(V, "Creating new node: ", this); 7434 return V; 7435 } 7436 7437 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7438 SDValue Base, SDValue Offset, 7439 ISD::MemIndexedMode AM) { 7440 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7441 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7442 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7443 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7444 FoldingSetNodeID ID; 7445 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7446 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7447 ID.AddInteger(ST->getRawSubclassData()); 7448 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7449 void *IP = nullptr; 7450 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7451 return SDValue(E, 0); 7452 7453 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7454 ST->isTruncatingStore(), ST->getMemoryVT(), 7455 ST->getMemOperand()); 7456 createOperands(N, Ops); 7457 7458 CSEMap.InsertNode(N, IP); 7459 InsertNode(N); 7460 SDValue V(N, 0); 7461 NewSDValueDbgMsg(V, "Creating new node: ", this); 7462 return V; 7463 } 7464 7465 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7466 SDValue Base, SDValue Offset, SDValue Mask, 7467 SDValue PassThru, EVT MemVT, 7468 MachineMemOperand *MMO, 7469 ISD::MemIndexedMode AM, 7470 ISD::LoadExtType ExtTy, bool isExpanding) { 7471 bool Indexed = AM != ISD::UNINDEXED; 7472 assert((Indexed || Offset.isUndef()) && 7473 "Unindexed masked load with an offset!"); 7474 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7475 : getVTList(VT, MVT::Other); 7476 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7477 FoldingSetNodeID ID; 7478 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7479 ID.AddInteger(MemVT.getRawBits()); 7480 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7481 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7482 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7483 void *IP = nullptr; 7484 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7485 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7486 return SDValue(E, 0); 7487 } 7488 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7489 AM, ExtTy, isExpanding, MemVT, MMO); 7490 createOperands(N, Ops); 7491 7492 CSEMap.InsertNode(N, IP); 7493 InsertNode(N); 7494 SDValue V(N, 0); 7495 NewSDValueDbgMsg(V, "Creating new node: ", this); 7496 return V; 7497 } 7498 7499 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7500 SDValue Base, SDValue Offset, 7501 ISD::MemIndexedMode AM) { 7502 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7503 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7504 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7505 Offset, LD->getMask(), LD->getPassThru(), 7506 LD->getMemoryVT(), LD->getMemOperand(), AM, 7507 LD->getExtensionType(), LD->isExpandingLoad()); 7508 } 7509 7510 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7511 SDValue Val, SDValue Base, SDValue Offset, 7512 SDValue Mask, EVT MemVT, 7513 MachineMemOperand *MMO, 7514 ISD::MemIndexedMode AM, bool IsTruncating, 7515 bool IsCompressing) { 7516 assert(Chain.getValueType() == MVT::Other && 7517 "Invalid chain type"); 7518 bool Indexed = AM != ISD::UNINDEXED; 7519 assert((Indexed || Offset.isUndef()) && 7520 "Unindexed masked store with an offset!"); 7521 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7522 : getVTList(MVT::Other); 7523 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7524 FoldingSetNodeID ID; 7525 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7526 ID.AddInteger(MemVT.getRawBits()); 7527 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7528 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7529 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7530 void *IP = nullptr; 7531 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7532 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7533 return SDValue(E, 0); 7534 } 7535 auto *N = 7536 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7537 IsTruncating, IsCompressing, MemVT, MMO); 7538 createOperands(N, Ops); 7539 7540 CSEMap.InsertNode(N, IP); 7541 InsertNode(N); 7542 SDValue V(N, 0); 7543 NewSDValueDbgMsg(V, "Creating new node: ", this); 7544 return V; 7545 } 7546 7547 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7548 SDValue Base, SDValue Offset, 7549 ISD::MemIndexedMode AM) { 7550 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7551 assert(ST->getOffset().isUndef() && 7552 "Masked store is already a indexed store!"); 7553 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7554 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7555 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7556 } 7557 7558 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7559 ArrayRef<SDValue> Ops, 7560 MachineMemOperand *MMO, 7561 ISD::MemIndexType IndexType, 7562 ISD::LoadExtType ExtTy) { 7563 assert(Ops.size() == 6 && "Incompatible number of operands"); 7564 7565 FoldingSetNodeID ID; 7566 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7567 ID.AddInteger(VT.getRawBits()); 7568 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7569 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7570 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7571 void *IP = nullptr; 7572 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7573 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7574 return SDValue(E, 0); 7575 } 7576 7577 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7578 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7579 VTs, VT, MMO, IndexType, ExtTy); 7580 createOperands(N, Ops); 7581 7582 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7583 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7584 assert(N->getMask().getValueType().getVectorElementCount() == 7585 N->getValueType(0).getVectorElementCount() && 7586 "Vector width mismatch between mask and data"); 7587 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7588 N->getValueType(0).getVectorElementCount().isScalable() && 7589 "Scalable flags of index and data do not match"); 7590 assert(ElementCount::isKnownGE( 7591 N->getIndex().getValueType().getVectorElementCount(), 7592 N->getValueType(0).getVectorElementCount()) && 7593 "Vector width mismatch between index and data"); 7594 assert(isa<ConstantSDNode>(N->getScale()) && 7595 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7596 "Scale should be a constant power of 2"); 7597 7598 CSEMap.InsertNode(N, IP); 7599 InsertNode(N); 7600 SDValue V(N, 0); 7601 NewSDValueDbgMsg(V, "Creating new node: ", this); 7602 return V; 7603 } 7604 7605 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7606 ArrayRef<SDValue> Ops, 7607 MachineMemOperand *MMO, 7608 ISD::MemIndexType IndexType, 7609 bool IsTrunc) { 7610 assert(Ops.size() == 6 && "Incompatible number of operands"); 7611 7612 FoldingSetNodeID ID; 7613 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7614 ID.AddInteger(VT.getRawBits()); 7615 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7616 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7617 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7618 void *IP = nullptr; 7619 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7620 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7621 return SDValue(E, 0); 7622 } 7623 7624 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7625 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7626 VTs, VT, MMO, IndexType, IsTrunc); 7627 createOperands(N, Ops); 7628 7629 assert(N->getMask().getValueType().getVectorElementCount() == 7630 N->getValue().getValueType().getVectorElementCount() && 7631 "Vector width mismatch between mask and data"); 7632 assert( 7633 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7634 N->getValue().getValueType().getVectorElementCount().isScalable() && 7635 "Scalable flags of index and data do not match"); 7636 assert(ElementCount::isKnownGE( 7637 N->getIndex().getValueType().getVectorElementCount(), 7638 N->getValue().getValueType().getVectorElementCount()) && 7639 "Vector width mismatch between index and data"); 7640 assert(isa<ConstantSDNode>(N->getScale()) && 7641 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7642 "Scale should be a constant power of 2"); 7643 7644 CSEMap.InsertNode(N, IP); 7645 InsertNode(N); 7646 SDValue V(N, 0); 7647 NewSDValueDbgMsg(V, "Creating new node: ", this); 7648 return V; 7649 } 7650 7651 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7652 // select undef, T, F --> T (if T is a constant), otherwise F 7653 // select, ?, undef, F --> F 7654 // select, ?, T, undef --> T 7655 if (Cond.isUndef()) 7656 return isConstantValueOfAnyType(T) ? T : F; 7657 if (T.isUndef()) 7658 return F; 7659 if (F.isUndef()) 7660 return T; 7661 7662 // select true, T, F --> T 7663 // select false, T, F --> F 7664 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7665 return CondC->isNullValue() ? F : T; 7666 7667 // TODO: This should simplify VSELECT with constant condition using something 7668 // like this (but check boolean contents to be complete?): 7669 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7670 // return T; 7671 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7672 // return F; 7673 7674 // select ?, T, T --> T 7675 if (T == F) 7676 return T; 7677 7678 return SDValue(); 7679 } 7680 7681 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7682 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7683 if (X.isUndef()) 7684 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7685 // shift X, undef --> undef (because it may shift by the bitwidth) 7686 if (Y.isUndef()) 7687 return getUNDEF(X.getValueType()); 7688 7689 // shift 0, Y --> 0 7690 // shift X, 0 --> X 7691 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7692 return X; 7693 7694 // shift X, C >= bitwidth(X) --> undef 7695 // All vector elements must be too big (or undef) to avoid partial undefs. 7696 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7697 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7698 }; 7699 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7700 return getUNDEF(X.getValueType()); 7701 7702 return SDValue(); 7703 } 7704 7705 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7706 SDNodeFlags Flags) { 7707 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7708 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7709 // operation is poison. That result can be relaxed to undef. 7710 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7711 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7712 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7713 (YC && YC->getValueAPF().isNaN()); 7714 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7715 (YC && YC->getValueAPF().isInfinity()); 7716 7717 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7718 return getUNDEF(X.getValueType()); 7719 7720 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7721 return getUNDEF(X.getValueType()); 7722 7723 if (!YC) 7724 return SDValue(); 7725 7726 // X + -0.0 --> X 7727 if (Opcode == ISD::FADD) 7728 if (YC->getValueAPF().isNegZero()) 7729 return X; 7730 7731 // X - +0.0 --> X 7732 if (Opcode == ISD::FSUB) 7733 if (YC->getValueAPF().isPosZero()) 7734 return X; 7735 7736 // X * 1.0 --> X 7737 // X / 1.0 --> X 7738 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7739 if (YC->getValueAPF().isExactlyValue(1.0)) 7740 return X; 7741 7742 // X * 0.0 --> 0.0 7743 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7744 if (YC->getValueAPF().isZero()) 7745 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7746 7747 return SDValue(); 7748 } 7749 7750 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7751 SDValue Ptr, SDValue SV, unsigned Align) { 7752 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7753 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7754 } 7755 7756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7757 ArrayRef<SDUse> Ops) { 7758 switch (Ops.size()) { 7759 case 0: return getNode(Opcode, DL, VT); 7760 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7761 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7762 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7763 default: break; 7764 } 7765 7766 // Copy from an SDUse array into an SDValue array for use with 7767 // the regular getNode logic. 7768 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7769 return getNode(Opcode, DL, VT, NewOps); 7770 } 7771 7772 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7773 ArrayRef<SDValue> Ops) { 7774 SDNodeFlags Flags; 7775 if (Inserter) 7776 Flags = Inserter->getFlags(); 7777 return getNode(Opcode, DL, VT, Ops, Flags); 7778 } 7779 7780 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7781 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7782 unsigned NumOps = Ops.size(); 7783 switch (NumOps) { 7784 case 0: return getNode(Opcode, DL, VT); 7785 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7786 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7787 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7788 default: break; 7789 } 7790 7791 #ifndef NDEBUG 7792 for (auto &Op : Ops) 7793 assert(Op.getOpcode() != ISD::DELETED_NODE && 7794 "Operand is DELETED_NODE!"); 7795 #endif 7796 7797 switch (Opcode) { 7798 default: break; 7799 case ISD::BUILD_VECTOR: 7800 // Attempt to simplify BUILD_VECTOR. 7801 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7802 return V; 7803 break; 7804 case ISD::CONCAT_VECTORS: 7805 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7806 return V; 7807 break; 7808 case ISD::SELECT_CC: 7809 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7810 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7811 "LHS and RHS of condition must have same type!"); 7812 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7813 "True and False arms of SelectCC must have same type!"); 7814 assert(Ops[2].getValueType() == VT && 7815 "select_cc node must be of same type as true and false value!"); 7816 break; 7817 case ISD::BR_CC: 7818 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7819 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7820 "LHS/RHS of comparison should match types!"); 7821 break; 7822 } 7823 7824 // Memoize nodes. 7825 SDNode *N; 7826 SDVTList VTs = getVTList(VT); 7827 7828 if (VT != MVT::Glue) { 7829 FoldingSetNodeID ID; 7830 AddNodeIDNode(ID, Opcode, VTs, Ops); 7831 void *IP = nullptr; 7832 7833 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7834 return SDValue(E, 0); 7835 7836 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7837 createOperands(N, Ops); 7838 7839 CSEMap.InsertNode(N, IP); 7840 } else { 7841 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7842 createOperands(N, Ops); 7843 } 7844 7845 N->setFlags(Flags); 7846 InsertNode(N); 7847 SDValue V(N, 0); 7848 NewSDValueDbgMsg(V, "Creating new node: ", this); 7849 return V; 7850 } 7851 7852 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7853 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7854 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7855 } 7856 7857 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7858 ArrayRef<SDValue> Ops) { 7859 SDNodeFlags Flags; 7860 if (Inserter) 7861 Flags = Inserter->getFlags(); 7862 return getNode(Opcode, DL, VTList, Ops, Flags); 7863 } 7864 7865 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7866 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7867 if (VTList.NumVTs == 1) 7868 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7869 7870 #ifndef NDEBUG 7871 for (auto &Op : Ops) 7872 assert(Op.getOpcode() != ISD::DELETED_NODE && 7873 "Operand is DELETED_NODE!"); 7874 #endif 7875 7876 switch (Opcode) { 7877 case ISD::STRICT_FP_EXTEND: 7878 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7879 "Invalid STRICT_FP_EXTEND!"); 7880 assert(VTList.VTs[0].isFloatingPoint() && 7881 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7882 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7883 "STRICT_FP_EXTEND result type should be vector iff the operand " 7884 "type is vector!"); 7885 assert((!VTList.VTs[0].isVector() || 7886 VTList.VTs[0].getVectorNumElements() == 7887 Ops[1].getValueType().getVectorNumElements()) && 7888 "Vector element count mismatch!"); 7889 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7890 "Invalid fpext node, dst <= src!"); 7891 break; 7892 case ISD::STRICT_FP_ROUND: 7893 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7894 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7895 "STRICT_FP_ROUND result type should be vector iff the operand " 7896 "type is vector!"); 7897 assert((!VTList.VTs[0].isVector() || 7898 VTList.VTs[0].getVectorNumElements() == 7899 Ops[1].getValueType().getVectorNumElements()) && 7900 "Vector element count mismatch!"); 7901 assert(VTList.VTs[0].isFloatingPoint() && 7902 Ops[1].getValueType().isFloatingPoint() && 7903 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7904 isa<ConstantSDNode>(Ops[2]) && 7905 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7906 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7907 "Invalid STRICT_FP_ROUND!"); 7908 break; 7909 #if 0 7910 // FIXME: figure out how to safely handle things like 7911 // int foo(int x) { return 1 << (x & 255); } 7912 // int bar() { return foo(256); } 7913 case ISD::SRA_PARTS: 7914 case ISD::SRL_PARTS: 7915 case ISD::SHL_PARTS: 7916 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7917 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7918 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7919 else if (N3.getOpcode() == ISD::AND) 7920 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7921 // If the and is only masking out bits that cannot effect the shift, 7922 // eliminate the and. 7923 unsigned NumBits = VT.getScalarSizeInBits()*2; 7924 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7925 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7926 } 7927 break; 7928 #endif 7929 } 7930 7931 // Memoize the node unless it returns a flag. 7932 SDNode *N; 7933 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7934 FoldingSetNodeID ID; 7935 AddNodeIDNode(ID, Opcode, VTList, Ops); 7936 void *IP = nullptr; 7937 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7938 return SDValue(E, 0); 7939 7940 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7941 createOperands(N, Ops); 7942 CSEMap.InsertNode(N, IP); 7943 } else { 7944 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7945 createOperands(N, Ops); 7946 } 7947 7948 N->setFlags(Flags); 7949 InsertNode(N); 7950 SDValue V(N, 0); 7951 NewSDValueDbgMsg(V, "Creating new node: ", this); 7952 return V; 7953 } 7954 7955 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7956 SDVTList VTList) { 7957 return getNode(Opcode, DL, VTList, None); 7958 } 7959 7960 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7961 SDValue N1) { 7962 SDValue Ops[] = { N1 }; 7963 return getNode(Opcode, DL, VTList, Ops); 7964 } 7965 7966 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7967 SDValue N1, SDValue N2) { 7968 SDValue Ops[] = { N1, N2 }; 7969 return getNode(Opcode, DL, VTList, Ops); 7970 } 7971 7972 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7973 SDValue N1, SDValue N2, SDValue N3) { 7974 SDValue Ops[] = { N1, N2, N3 }; 7975 return getNode(Opcode, DL, VTList, Ops); 7976 } 7977 7978 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7979 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7980 SDValue Ops[] = { N1, N2, N3, N4 }; 7981 return getNode(Opcode, DL, VTList, Ops); 7982 } 7983 7984 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7985 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7986 SDValue N5) { 7987 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7988 return getNode(Opcode, DL, VTList, Ops); 7989 } 7990 7991 SDVTList SelectionDAG::getVTList(EVT VT) { 7992 return makeVTList(SDNode::getValueTypeList(VT), 1); 7993 } 7994 7995 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7996 FoldingSetNodeID ID; 7997 ID.AddInteger(2U); 7998 ID.AddInteger(VT1.getRawBits()); 7999 ID.AddInteger(VT2.getRawBits()); 8000 8001 void *IP = nullptr; 8002 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8003 if (!Result) { 8004 EVT *Array = Allocator.Allocate<EVT>(2); 8005 Array[0] = VT1; 8006 Array[1] = VT2; 8007 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8008 VTListMap.InsertNode(Result, IP); 8009 } 8010 return Result->getSDVTList(); 8011 } 8012 8013 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8014 FoldingSetNodeID ID; 8015 ID.AddInteger(3U); 8016 ID.AddInteger(VT1.getRawBits()); 8017 ID.AddInteger(VT2.getRawBits()); 8018 ID.AddInteger(VT3.getRawBits()); 8019 8020 void *IP = nullptr; 8021 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8022 if (!Result) { 8023 EVT *Array = Allocator.Allocate<EVT>(3); 8024 Array[0] = VT1; 8025 Array[1] = VT2; 8026 Array[2] = VT3; 8027 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8028 VTListMap.InsertNode(Result, IP); 8029 } 8030 return Result->getSDVTList(); 8031 } 8032 8033 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8034 FoldingSetNodeID ID; 8035 ID.AddInteger(4U); 8036 ID.AddInteger(VT1.getRawBits()); 8037 ID.AddInteger(VT2.getRawBits()); 8038 ID.AddInteger(VT3.getRawBits()); 8039 ID.AddInteger(VT4.getRawBits()); 8040 8041 void *IP = nullptr; 8042 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8043 if (!Result) { 8044 EVT *Array = Allocator.Allocate<EVT>(4); 8045 Array[0] = VT1; 8046 Array[1] = VT2; 8047 Array[2] = VT3; 8048 Array[3] = VT4; 8049 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8050 VTListMap.InsertNode(Result, IP); 8051 } 8052 return Result->getSDVTList(); 8053 } 8054 8055 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8056 unsigned NumVTs = VTs.size(); 8057 FoldingSetNodeID ID; 8058 ID.AddInteger(NumVTs); 8059 for (unsigned index = 0; index < NumVTs; index++) { 8060 ID.AddInteger(VTs[index].getRawBits()); 8061 } 8062 8063 void *IP = nullptr; 8064 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8065 if (!Result) { 8066 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8067 llvm::copy(VTs, Array); 8068 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8069 VTListMap.InsertNode(Result, IP); 8070 } 8071 return Result->getSDVTList(); 8072 } 8073 8074 8075 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8076 /// specified operands. If the resultant node already exists in the DAG, 8077 /// this does not modify the specified node, instead it returns the node that 8078 /// already exists. If the resultant node does not exist in the DAG, the 8079 /// input node is returned. As a degenerate case, if you specify the same 8080 /// input operands as the node already has, the input node is returned. 8081 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8082 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8083 8084 // Check to see if there is no change. 8085 if (Op == N->getOperand(0)) return N; 8086 8087 // See if the modified node already exists. 8088 void *InsertPos = nullptr; 8089 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8090 return Existing; 8091 8092 // Nope it doesn't. Remove the node from its current place in the maps. 8093 if (InsertPos) 8094 if (!RemoveNodeFromCSEMaps(N)) 8095 InsertPos = nullptr; 8096 8097 // Now we update the operands. 8098 N->OperandList[0].set(Op); 8099 8100 updateDivergence(N); 8101 // If this gets put into a CSE map, add it. 8102 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8103 return N; 8104 } 8105 8106 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8107 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8108 8109 // Check to see if there is no change. 8110 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8111 return N; // No operands changed, just return the input node. 8112 8113 // See if the modified node already exists. 8114 void *InsertPos = nullptr; 8115 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8116 return Existing; 8117 8118 // Nope it doesn't. Remove the node from its current place in the maps. 8119 if (InsertPos) 8120 if (!RemoveNodeFromCSEMaps(N)) 8121 InsertPos = nullptr; 8122 8123 // Now we update the operands. 8124 if (N->OperandList[0] != Op1) 8125 N->OperandList[0].set(Op1); 8126 if (N->OperandList[1] != Op2) 8127 N->OperandList[1].set(Op2); 8128 8129 updateDivergence(N); 8130 // If this gets put into a CSE map, add it. 8131 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8132 return N; 8133 } 8134 8135 SDNode *SelectionDAG:: 8136 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8137 SDValue Ops[] = { Op1, Op2, Op3 }; 8138 return UpdateNodeOperands(N, Ops); 8139 } 8140 8141 SDNode *SelectionDAG:: 8142 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8143 SDValue Op3, SDValue Op4) { 8144 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8145 return UpdateNodeOperands(N, Ops); 8146 } 8147 8148 SDNode *SelectionDAG:: 8149 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8150 SDValue Op3, SDValue Op4, SDValue Op5) { 8151 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8152 return UpdateNodeOperands(N, Ops); 8153 } 8154 8155 SDNode *SelectionDAG:: 8156 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8157 unsigned NumOps = Ops.size(); 8158 assert(N->getNumOperands() == NumOps && 8159 "Update with wrong number of operands"); 8160 8161 // If no operands changed just return the input node. 8162 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8163 return N; 8164 8165 // See if the modified node already exists. 8166 void *InsertPos = nullptr; 8167 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8168 return Existing; 8169 8170 // Nope it doesn't. Remove the node from its current place in the maps. 8171 if (InsertPos) 8172 if (!RemoveNodeFromCSEMaps(N)) 8173 InsertPos = nullptr; 8174 8175 // Now we update the operands. 8176 for (unsigned i = 0; i != NumOps; ++i) 8177 if (N->OperandList[i] != Ops[i]) 8178 N->OperandList[i].set(Ops[i]); 8179 8180 updateDivergence(N); 8181 // If this gets put into a CSE map, add it. 8182 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8183 return N; 8184 } 8185 8186 /// DropOperands - Release the operands and set this node to have 8187 /// zero operands. 8188 void SDNode::DropOperands() { 8189 // Unlike the code in MorphNodeTo that does this, we don't need to 8190 // watch for dead nodes here. 8191 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8192 SDUse &Use = *I++; 8193 Use.set(SDValue()); 8194 } 8195 } 8196 8197 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8198 ArrayRef<MachineMemOperand *> NewMemRefs) { 8199 if (NewMemRefs.empty()) { 8200 N->clearMemRefs(); 8201 return; 8202 } 8203 8204 // Check if we can avoid allocating by storing a single reference directly. 8205 if (NewMemRefs.size() == 1) { 8206 N->MemRefs = NewMemRefs[0]; 8207 N->NumMemRefs = 1; 8208 return; 8209 } 8210 8211 MachineMemOperand **MemRefsBuffer = 8212 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8213 llvm::copy(NewMemRefs, MemRefsBuffer); 8214 N->MemRefs = MemRefsBuffer; 8215 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8216 } 8217 8218 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8219 /// machine opcode. 8220 /// 8221 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8222 EVT VT) { 8223 SDVTList VTs = getVTList(VT); 8224 return SelectNodeTo(N, MachineOpc, VTs, None); 8225 } 8226 8227 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8228 EVT VT, SDValue Op1) { 8229 SDVTList VTs = getVTList(VT); 8230 SDValue Ops[] = { Op1 }; 8231 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8232 } 8233 8234 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8235 EVT VT, SDValue Op1, 8236 SDValue Op2) { 8237 SDVTList VTs = getVTList(VT); 8238 SDValue Ops[] = { Op1, Op2 }; 8239 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8240 } 8241 8242 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8243 EVT VT, SDValue Op1, 8244 SDValue Op2, SDValue Op3) { 8245 SDVTList VTs = getVTList(VT); 8246 SDValue Ops[] = { Op1, Op2, Op3 }; 8247 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8248 } 8249 8250 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8251 EVT VT, ArrayRef<SDValue> Ops) { 8252 SDVTList VTs = getVTList(VT); 8253 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8254 } 8255 8256 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8257 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8258 SDVTList VTs = getVTList(VT1, VT2); 8259 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8260 } 8261 8262 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8263 EVT VT1, EVT VT2) { 8264 SDVTList VTs = getVTList(VT1, VT2); 8265 return SelectNodeTo(N, MachineOpc, VTs, None); 8266 } 8267 8268 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8269 EVT VT1, EVT VT2, EVT VT3, 8270 ArrayRef<SDValue> Ops) { 8271 SDVTList VTs = getVTList(VT1, VT2, VT3); 8272 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8273 } 8274 8275 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8276 EVT VT1, EVT VT2, 8277 SDValue Op1, SDValue Op2) { 8278 SDVTList VTs = getVTList(VT1, VT2); 8279 SDValue Ops[] = { Op1, Op2 }; 8280 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8281 } 8282 8283 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8284 SDVTList VTs,ArrayRef<SDValue> Ops) { 8285 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8286 // Reset the NodeID to -1. 8287 New->setNodeId(-1); 8288 if (New != N) { 8289 ReplaceAllUsesWith(N, New); 8290 RemoveDeadNode(N); 8291 } 8292 return New; 8293 } 8294 8295 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8296 /// the line number information on the merged node since it is not possible to 8297 /// preserve the information that operation is associated with multiple lines. 8298 /// This will make the debugger working better at -O0, were there is a higher 8299 /// probability having other instructions associated with that line. 8300 /// 8301 /// For IROrder, we keep the smaller of the two 8302 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8303 DebugLoc NLoc = N->getDebugLoc(); 8304 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8305 N->setDebugLoc(DebugLoc()); 8306 } 8307 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8308 N->setIROrder(Order); 8309 return N; 8310 } 8311 8312 /// MorphNodeTo - This *mutates* the specified node to have the specified 8313 /// return type, opcode, and operands. 8314 /// 8315 /// Note that MorphNodeTo returns the resultant node. If there is already a 8316 /// node of the specified opcode and operands, it returns that node instead of 8317 /// the current one. Note that the SDLoc need not be the same. 8318 /// 8319 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8320 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8321 /// node, and because it doesn't require CSE recalculation for any of 8322 /// the node's users. 8323 /// 8324 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8325 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8326 /// the legalizer which maintain worklists that would need to be updated when 8327 /// deleting things. 8328 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8329 SDVTList VTs, ArrayRef<SDValue> Ops) { 8330 // If an identical node already exists, use it. 8331 void *IP = nullptr; 8332 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8333 FoldingSetNodeID ID; 8334 AddNodeIDNode(ID, Opc, VTs, Ops); 8335 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8336 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8337 } 8338 8339 if (!RemoveNodeFromCSEMaps(N)) 8340 IP = nullptr; 8341 8342 // Start the morphing. 8343 N->NodeType = Opc; 8344 N->ValueList = VTs.VTs; 8345 N->NumValues = VTs.NumVTs; 8346 8347 // Clear the operands list, updating used nodes to remove this from their 8348 // use list. Keep track of any operands that become dead as a result. 8349 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8350 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8351 SDUse &Use = *I++; 8352 SDNode *Used = Use.getNode(); 8353 Use.set(SDValue()); 8354 if (Used->use_empty()) 8355 DeadNodeSet.insert(Used); 8356 } 8357 8358 // For MachineNode, initialize the memory references information. 8359 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8360 MN->clearMemRefs(); 8361 8362 // Swap for an appropriately sized array from the recycler. 8363 removeOperands(N); 8364 createOperands(N, Ops); 8365 8366 // Delete any nodes that are still dead after adding the uses for the 8367 // new operands. 8368 if (!DeadNodeSet.empty()) { 8369 SmallVector<SDNode *, 16> DeadNodes; 8370 for (SDNode *N : DeadNodeSet) 8371 if (N->use_empty()) 8372 DeadNodes.push_back(N); 8373 RemoveDeadNodes(DeadNodes); 8374 } 8375 8376 if (IP) 8377 CSEMap.InsertNode(N, IP); // Memoize the new node. 8378 return N; 8379 } 8380 8381 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8382 unsigned OrigOpc = Node->getOpcode(); 8383 unsigned NewOpc; 8384 switch (OrigOpc) { 8385 default: 8386 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8387 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8388 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8389 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8390 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8391 #include "llvm/IR/ConstrainedOps.def" 8392 } 8393 8394 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8395 8396 // We're taking this node out of the chain, so we need to re-link things. 8397 SDValue InputChain = Node->getOperand(0); 8398 SDValue OutputChain = SDValue(Node, 1); 8399 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8400 8401 SmallVector<SDValue, 3> Ops; 8402 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8403 Ops.push_back(Node->getOperand(i)); 8404 8405 SDVTList VTs = getVTList(Node->getValueType(0)); 8406 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8407 8408 // MorphNodeTo can operate in two ways: if an existing node with the 8409 // specified operands exists, it can just return it. Otherwise, it 8410 // updates the node in place to have the requested operands. 8411 if (Res == Node) { 8412 // If we updated the node in place, reset the node ID. To the isel, 8413 // this should be just like a newly allocated machine node. 8414 Res->setNodeId(-1); 8415 } else { 8416 ReplaceAllUsesWith(Node, Res); 8417 RemoveDeadNode(Node); 8418 } 8419 8420 return Res; 8421 } 8422 8423 /// getMachineNode - These are used for target selectors to create a new node 8424 /// with specified return type(s), MachineInstr opcode, and operands. 8425 /// 8426 /// Note that getMachineNode returns the resultant node. If there is already a 8427 /// node of the specified opcode and operands, it returns that node instead of 8428 /// the current one. 8429 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8430 EVT VT) { 8431 SDVTList VTs = getVTList(VT); 8432 return getMachineNode(Opcode, dl, VTs, None); 8433 } 8434 8435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8436 EVT VT, SDValue Op1) { 8437 SDVTList VTs = getVTList(VT); 8438 SDValue Ops[] = { Op1 }; 8439 return getMachineNode(Opcode, dl, VTs, Ops); 8440 } 8441 8442 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8443 EVT VT, SDValue Op1, SDValue Op2) { 8444 SDVTList VTs = getVTList(VT); 8445 SDValue Ops[] = { Op1, Op2 }; 8446 return getMachineNode(Opcode, dl, VTs, Ops); 8447 } 8448 8449 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8450 EVT VT, SDValue Op1, SDValue Op2, 8451 SDValue Op3) { 8452 SDVTList VTs = getVTList(VT); 8453 SDValue Ops[] = { Op1, Op2, Op3 }; 8454 return getMachineNode(Opcode, dl, VTs, Ops); 8455 } 8456 8457 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8458 EVT VT, ArrayRef<SDValue> Ops) { 8459 SDVTList VTs = getVTList(VT); 8460 return getMachineNode(Opcode, dl, VTs, Ops); 8461 } 8462 8463 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8464 EVT VT1, EVT VT2, SDValue Op1, 8465 SDValue Op2) { 8466 SDVTList VTs = getVTList(VT1, VT2); 8467 SDValue Ops[] = { Op1, Op2 }; 8468 return getMachineNode(Opcode, dl, VTs, Ops); 8469 } 8470 8471 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8472 EVT VT1, EVT VT2, SDValue Op1, 8473 SDValue Op2, SDValue Op3) { 8474 SDVTList VTs = getVTList(VT1, VT2); 8475 SDValue Ops[] = { Op1, Op2, Op3 }; 8476 return getMachineNode(Opcode, dl, VTs, Ops); 8477 } 8478 8479 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8480 EVT VT1, EVT VT2, 8481 ArrayRef<SDValue> Ops) { 8482 SDVTList VTs = getVTList(VT1, VT2); 8483 return getMachineNode(Opcode, dl, VTs, Ops); 8484 } 8485 8486 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8487 EVT VT1, EVT VT2, EVT VT3, 8488 SDValue Op1, SDValue Op2) { 8489 SDVTList VTs = getVTList(VT1, VT2, VT3); 8490 SDValue Ops[] = { Op1, Op2 }; 8491 return getMachineNode(Opcode, dl, VTs, Ops); 8492 } 8493 8494 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8495 EVT VT1, EVT VT2, EVT VT3, 8496 SDValue Op1, SDValue Op2, 8497 SDValue Op3) { 8498 SDVTList VTs = getVTList(VT1, VT2, VT3); 8499 SDValue Ops[] = { Op1, Op2, Op3 }; 8500 return getMachineNode(Opcode, dl, VTs, Ops); 8501 } 8502 8503 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8504 EVT VT1, EVT VT2, EVT VT3, 8505 ArrayRef<SDValue> Ops) { 8506 SDVTList VTs = getVTList(VT1, VT2, VT3); 8507 return getMachineNode(Opcode, dl, VTs, Ops); 8508 } 8509 8510 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8511 ArrayRef<EVT> ResultTys, 8512 ArrayRef<SDValue> Ops) { 8513 SDVTList VTs = getVTList(ResultTys); 8514 return getMachineNode(Opcode, dl, VTs, Ops); 8515 } 8516 8517 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8518 SDVTList VTs, 8519 ArrayRef<SDValue> Ops) { 8520 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8521 MachineSDNode *N; 8522 void *IP = nullptr; 8523 8524 if (DoCSE) { 8525 FoldingSetNodeID ID; 8526 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8527 IP = nullptr; 8528 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8529 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8530 } 8531 } 8532 8533 // Allocate a new MachineSDNode. 8534 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8535 createOperands(N, Ops); 8536 8537 if (DoCSE) 8538 CSEMap.InsertNode(N, IP); 8539 8540 InsertNode(N); 8541 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8542 return N; 8543 } 8544 8545 /// getTargetExtractSubreg - A convenience function for creating 8546 /// TargetOpcode::EXTRACT_SUBREG nodes. 8547 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8548 SDValue Operand) { 8549 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8550 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8551 VT, Operand, SRIdxVal); 8552 return SDValue(Subreg, 0); 8553 } 8554 8555 /// getTargetInsertSubreg - A convenience function for creating 8556 /// TargetOpcode::INSERT_SUBREG nodes. 8557 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8558 SDValue Operand, SDValue Subreg) { 8559 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8560 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8561 VT, Operand, Subreg, SRIdxVal); 8562 return SDValue(Result, 0); 8563 } 8564 8565 /// getNodeIfExists - Get the specified node if it's already available, or 8566 /// else return NULL. 8567 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8568 ArrayRef<SDValue> Ops) { 8569 SDNodeFlags Flags; 8570 if (Inserter) 8571 Flags = Inserter->getFlags(); 8572 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8573 } 8574 8575 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8576 ArrayRef<SDValue> Ops, 8577 const SDNodeFlags Flags) { 8578 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8579 FoldingSetNodeID ID; 8580 AddNodeIDNode(ID, Opcode, VTList, Ops); 8581 void *IP = nullptr; 8582 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8583 E->intersectFlagsWith(Flags); 8584 return E; 8585 } 8586 } 8587 return nullptr; 8588 } 8589 8590 /// doesNodeExist - Check if a node exists without modifying its flags. 8591 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8592 ArrayRef<SDValue> Ops) { 8593 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8594 FoldingSetNodeID ID; 8595 AddNodeIDNode(ID, Opcode, VTList, Ops); 8596 void *IP = nullptr; 8597 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8598 return true; 8599 } 8600 return false; 8601 } 8602 8603 /// getDbgValue - Creates a SDDbgValue node. 8604 /// 8605 /// SDNode 8606 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8607 SDNode *N, unsigned R, bool IsIndirect, 8608 const DebugLoc &DL, unsigned O) { 8609 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8610 "Expected inlined-at fields to agree"); 8611 return new (DbgInfo->getAlloc()) 8612 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 8613 {}, IsIndirect, DL, O, 8614 /*IsVariadic=*/false); 8615 } 8616 8617 /// Constant 8618 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8619 DIExpression *Expr, 8620 const Value *C, 8621 const DebugLoc &DL, unsigned O) { 8622 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8623 "Expected inlined-at fields to agree"); 8624 return new (DbgInfo->getAlloc()) 8625 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 8626 /*IsIndirect=*/false, DL, O, 8627 /*IsVariadic=*/false); 8628 } 8629 8630 /// FrameIndex 8631 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8632 DIExpression *Expr, unsigned FI, 8633 bool IsIndirect, 8634 const DebugLoc &DL, 8635 unsigned O) { 8636 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8637 "Expected inlined-at fields to agree"); 8638 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8639 } 8640 8641 /// FrameIndex with dependencies 8642 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8643 DIExpression *Expr, unsigned FI, 8644 ArrayRef<SDNode *> Dependencies, 8645 bool IsIndirect, 8646 const DebugLoc &DL, 8647 unsigned O) { 8648 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8649 "Expected inlined-at fields to agree"); 8650 return new (DbgInfo->getAlloc()) 8651 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 8652 Dependencies, IsIndirect, DL, O, 8653 /*IsVariadic=*/false); 8654 } 8655 8656 /// VReg 8657 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8658 unsigned VReg, bool IsIndirect, 8659 const DebugLoc &DL, unsigned O) { 8660 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8661 "Expected inlined-at fields to agree"); 8662 return new (DbgInfo->getAlloc()) 8663 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 8664 {}, IsIndirect, DL, O, 8665 /*IsVariadic=*/false); 8666 } 8667 8668 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8669 ArrayRef<SDDbgOperand> Locs, 8670 ArrayRef<SDNode *> Dependencies, 8671 bool IsIndirect, const DebugLoc &DL, 8672 unsigned O, bool IsVariadic) { 8673 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8674 "Expected inlined-at fields to agree"); 8675 return new (DbgInfo->getAlloc()) 8676 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 8677 DL, O, IsVariadic); 8678 } 8679 8680 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8681 unsigned OffsetInBits, unsigned SizeInBits, 8682 bool InvalidateDbg) { 8683 SDNode *FromNode = From.getNode(); 8684 SDNode *ToNode = To.getNode(); 8685 assert(FromNode && ToNode && "Can't modify dbg values"); 8686 8687 // PR35338 8688 // TODO: assert(From != To && "Redundant dbg value transfer"); 8689 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8690 if (From == To || FromNode == ToNode) 8691 return; 8692 8693 if (!FromNode->getHasDebugValue()) 8694 return; 8695 8696 SDDbgOperand FromLocOp = 8697 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8698 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8699 8700 SmallVector<SDDbgValue *, 2> ClonedDVs; 8701 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8702 if (Dbg->isInvalidated()) 8703 continue; 8704 8705 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8706 8707 // Create a new location ops vector that is equal to the old vector, but 8708 // with each instance of FromLocOp replaced with ToLocOp. 8709 bool Changed = false; 8710 auto NewLocOps = Dbg->copyLocationOps(); 8711 std::replace_if( 8712 NewLocOps.begin(), NewLocOps.end(), 8713 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8714 bool Match = Op == FromLocOp; 8715 Changed |= Match; 8716 return Match; 8717 }, 8718 ToLocOp); 8719 // Ignore this SDDbgValue if we didn't find a matching location. 8720 if (!Changed) 8721 continue; 8722 8723 DIVariable *Var = Dbg->getVariable(); 8724 auto *Expr = Dbg->getExpression(); 8725 // If a fragment is requested, update the expression. 8726 if (SizeInBits) { 8727 // When splitting a larger (e.g., sign-extended) value whose 8728 // lower bits are described with an SDDbgValue, do not attempt 8729 // to transfer the SDDbgValue to the upper bits. 8730 if (auto FI = Expr->getFragmentInfo()) 8731 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8732 continue; 8733 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8734 SizeInBits); 8735 if (!Fragment) 8736 continue; 8737 Expr = *Fragment; 8738 } 8739 8740 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 8741 // Clone the SDDbgValue and move it to To. 8742 SDDbgValue *Clone = getDbgValueList( 8743 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 8744 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8745 Dbg->isVariadic()); 8746 ClonedDVs.push_back(Clone); 8747 8748 if (InvalidateDbg) { 8749 // Invalidate value and indicate the SDDbgValue should not be emitted. 8750 Dbg->setIsInvalidated(); 8751 Dbg->setIsEmitted(); 8752 } 8753 } 8754 8755 for (SDDbgValue *Dbg : ClonedDVs) { 8756 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8757 "Transferred DbgValues should depend on the new SDNode"); 8758 AddDbgValue(Dbg, false); 8759 } 8760 } 8761 8762 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8763 if (!N.getHasDebugValue()) 8764 return; 8765 8766 SmallVector<SDDbgValue *, 2> ClonedDVs; 8767 for (auto DV : GetDbgValues(&N)) { 8768 if (DV->isInvalidated()) 8769 continue; 8770 switch (N.getOpcode()) { 8771 default: 8772 break; 8773 case ISD::ADD: 8774 SDValue N0 = N.getOperand(0); 8775 SDValue N1 = N.getOperand(1); 8776 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8777 isConstantIntBuildVectorOrConstantInt(N1)) { 8778 uint64_t Offset = N.getConstantOperandVal(1); 8779 8780 // Rewrite an ADD constant node into a DIExpression. Since we are 8781 // performing arithmetic to compute the variable's *value* in the 8782 // DIExpression, we need to mark the expression with a 8783 // DW_OP_stack_value. 8784 auto *DIExpr = DV->getExpression(); 8785 auto NewLocOps = DV->copyLocationOps(); 8786 bool Changed = false; 8787 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8788 // We're not given a ResNo to compare against because the whole 8789 // node is going away. We know that any ISD::ADD only has one 8790 // result, so we can assume any node match is using the result. 8791 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8792 NewLocOps[i].getSDNode() != &N) 8793 continue; 8794 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8795 SmallVector<uint64_t, 3> ExprOps; 8796 DIExpression::appendOffset(ExprOps, Offset); 8797 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8798 Changed = true; 8799 } 8800 (void)Changed; 8801 assert(Changed && "Salvage target doesn't use N"); 8802 8803 auto AdditionalDependencies = DV->getAdditionalDependencies(); 8804 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8805 NewLocOps, AdditionalDependencies, 8806 DV->isIndirect(), DV->getDebugLoc(), 8807 DV->getOrder(), DV->isVariadic()); 8808 ClonedDVs.push_back(Clone); 8809 DV->setIsInvalidated(); 8810 DV->setIsEmitted(); 8811 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8812 N0.getNode()->dumprFull(this); 8813 dbgs() << " into " << *DIExpr << '\n'); 8814 } 8815 } 8816 } 8817 8818 for (SDDbgValue *Dbg : ClonedDVs) { 8819 assert(!Dbg->getSDNodes().empty() && 8820 "Salvaged DbgValue should depend on a new SDNode"); 8821 AddDbgValue(Dbg, false); 8822 } 8823 } 8824 8825 /// Creates a SDDbgLabel node. 8826 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8827 const DebugLoc &DL, unsigned O) { 8828 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8829 "Expected inlined-at fields to agree"); 8830 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8831 } 8832 8833 namespace { 8834 8835 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8836 /// pointed to by a use iterator is deleted, increment the use iterator 8837 /// so that it doesn't dangle. 8838 /// 8839 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8840 SDNode::use_iterator &UI; 8841 SDNode::use_iterator &UE; 8842 8843 void NodeDeleted(SDNode *N, SDNode *E) override { 8844 // Increment the iterator as needed. 8845 while (UI != UE && N == *UI) 8846 ++UI; 8847 } 8848 8849 public: 8850 RAUWUpdateListener(SelectionDAG &d, 8851 SDNode::use_iterator &ui, 8852 SDNode::use_iterator &ue) 8853 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8854 }; 8855 8856 } // end anonymous namespace 8857 8858 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8859 /// This can cause recursive merging of nodes in the DAG. 8860 /// 8861 /// This version assumes From has a single result value. 8862 /// 8863 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8864 SDNode *From = FromN.getNode(); 8865 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8866 "Cannot replace with this method!"); 8867 assert(From != To.getNode() && "Cannot replace uses of with self"); 8868 8869 // Preserve Debug Values 8870 transferDbgValues(FromN, To); 8871 8872 // Iterate over all the existing uses of From. New uses will be added 8873 // to the beginning of the use list, which we avoid visiting. 8874 // This specifically avoids visiting uses of From that arise while the 8875 // replacement is happening, because any such uses would be the result 8876 // of CSE: If an existing node looks like From after one of its operands 8877 // is replaced by To, we don't want to replace of all its users with To 8878 // too. See PR3018 for more info. 8879 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8880 RAUWUpdateListener Listener(*this, UI, UE); 8881 while (UI != UE) { 8882 SDNode *User = *UI; 8883 8884 // This node is about to morph, remove its old self from the CSE maps. 8885 RemoveNodeFromCSEMaps(User); 8886 8887 // A user can appear in a use list multiple times, and when this 8888 // happens the uses are usually next to each other in the list. 8889 // To help reduce the number of CSE recomputations, process all 8890 // the uses of this user that we can find this way. 8891 do { 8892 SDUse &Use = UI.getUse(); 8893 ++UI; 8894 Use.set(To); 8895 if (To->isDivergent() != From->isDivergent()) 8896 updateDivergence(User); 8897 } while (UI != UE && *UI == User); 8898 // Now that we have modified User, add it back to the CSE maps. If it 8899 // already exists there, recursively merge the results together. 8900 AddModifiedNodeToCSEMaps(User); 8901 } 8902 8903 // If we just RAUW'd the root, take note. 8904 if (FromN == getRoot()) 8905 setRoot(To); 8906 } 8907 8908 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8909 /// This can cause recursive merging of nodes in the DAG. 8910 /// 8911 /// This version assumes that for each value of From, there is a 8912 /// corresponding value in To in the same position with the same type. 8913 /// 8914 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8915 #ifndef NDEBUG 8916 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8917 assert((!From->hasAnyUseOfValue(i) || 8918 From->getValueType(i) == To->getValueType(i)) && 8919 "Cannot use this version of ReplaceAllUsesWith!"); 8920 #endif 8921 8922 // Handle the trivial case. 8923 if (From == To) 8924 return; 8925 8926 // Preserve Debug Info. Only do this if there's a use. 8927 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8928 if (From->hasAnyUseOfValue(i)) { 8929 assert((i < To->getNumValues()) && "Invalid To location"); 8930 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8931 } 8932 8933 // Iterate over just the existing users of From. See the comments in 8934 // the ReplaceAllUsesWith above. 8935 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8936 RAUWUpdateListener Listener(*this, UI, UE); 8937 while (UI != UE) { 8938 SDNode *User = *UI; 8939 8940 // This node is about to morph, remove its old self from the CSE maps. 8941 RemoveNodeFromCSEMaps(User); 8942 8943 // A user can appear in a use list multiple times, and when this 8944 // happens the uses are usually next to each other in the list. 8945 // To help reduce the number of CSE recomputations, process all 8946 // the uses of this user that we can find this way. 8947 do { 8948 SDUse &Use = UI.getUse(); 8949 ++UI; 8950 Use.setNode(To); 8951 if (To->isDivergent() != From->isDivergent()) 8952 updateDivergence(User); 8953 } while (UI != UE && *UI == User); 8954 8955 // Now that we have modified User, add it back to the CSE maps. If it 8956 // already exists there, recursively merge the results together. 8957 AddModifiedNodeToCSEMaps(User); 8958 } 8959 8960 // If we just RAUW'd the root, take note. 8961 if (From == getRoot().getNode()) 8962 setRoot(SDValue(To, getRoot().getResNo())); 8963 } 8964 8965 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8966 /// This can cause recursive merging of nodes in the DAG. 8967 /// 8968 /// This version can replace From with any result values. To must match the 8969 /// number and types of values returned by From. 8970 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8971 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8972 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8973 8974 // Preserve Debug Info. 8975 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8976 transferDbgValues(SDValue(From, i), To[i]); 8977 8978 // Iterate over just the existing users of From. See the comments in 8979 // the ReplaceAllUsesWith above. 8980 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8981 RAUWUpdateListener Listener(*this, UI, UE); 8982 while (UI != UE) { 8983 SDNode *User = *UI; 8984 8985 // This node is about to morph, remove its old self from the CSE maps. 8986 RemoveNodeFromCSEMaps(User); 8987 8988 // A user can appear in a use list multiple times, and when this happens the 8989 // uses are usually next to each other in the list. To help reduce the 8990 // number of CSE and divergence recomputations, process all the uses of this 8991 // user that we can find this way. 8992 bool To_IsDivergent = false; 8993 do { 8994 SDUse &Use = UI.getUse(); 8995 const SDValue &ToOp = To[Use.getResNo()]; 8996 ++UI; 8997 Use.set(ToOp); 8998 To_IsDivergent |= ToOp->isDivergent(); 8999 } while (UI != UE && *UI == User); 9000 9001 if (To_IsDivergent != From->isDivergent()) 9002 updateDivergence(User); 9003 9004 // Now that we have modified User, add it back to the CSE maps. If it 9005 // already exists there, recursively merge the results together. 9006 AddModifiedNodeToCSEMaps(User); 9007 } 9008 9009 // If we just RAUW'd the root, take note. 9010 if (From == getRoot().getNode()) 9011 setRoot(SDValue(To[getRoot().getResNo()])); 9012 } 9013 9014 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9015 /// uses of other values produced by From.getNode() alone. The Deleted 9016 /// vector is handled the same way as for ReplaceAllUsesWith. 9017 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9018 // Handle the really simple, really trivial case efficiently. 9019 if (From == To) return; 9020 9021 // Handle the simple, trivial, case efficiently. 9022 if (From.getNode()->getNumValues() == 1) { 9023 ReplaceAllUsesWith(From, To); 9024 return; 9025 } 9026 9027 // Preserve Debug Info. 9028 transferDbgValues(From, To); 9029 9030 // Iterate over just the existing users of From. See the comments in 9031 // the ReplaceAllUsesWith above. 9032 SDNode::use_iterator UI = From.getNode()->use_begin(), 9033 UE = From.getNode()->use_end(); 9034 RAUWUpdateListener Listener(*this, UI, UE); 9035 while (UI != UE) { 9036 SDNode *User = *UI; 9037 bool UserRemovedFromCSEMaps = false; 9038 9039 // A user can appear in a use list multiple times, and when this 9040 // happens the uses are usually next to each other in the list. 9041 // To help reduce the number of CSE recomputations, process all 9042 // the uses of this user that we can find this way. 9043 do { 9044 SDUse &Use = UI.getUse(); 9045 9046 // Skip uses of different values from the same node. 9047 if (Use.getResNo() != From.getResNo()) { 9048 ++UI; 9049 continue; 9050 } 9051 9052 // If this node hasn't been modified yet, it's still in the CSE maps, 9053 // so remove its old self from the CSE maps. 9054 if (!UserRemovedFromCSEMaps) { 9055 RemoveNodeFromCSEMaps(User); 9056 UserRemovedFromCSEMaps = true; 9057 } 9058 9059 ++UI; 9060 Use.set(To); 9061 if (To->isDivergent() != From->isDivergent()) 9062 updateDivergence(User); 9063 } while (UI != UE && *UI == User); 9064 // We are iterating over all uses of the From node, so if a use 9065 // doesn't use the specific value, no changes are made. 9066 if (!UserRemovedFromCSEMaps) 9067 continue; 9068 9069 // Now that we have modified User, add it back to the CSE maps. If it 9070 // already exists there, recursively merge the results together. 9071 AddModifiedNodeToCSEMaps(User); 9072 } 9073 9074 // If we just RAUW'd the root, take note. 9075 if (From == getRoot()) 9076 setRoot(To); 9077 } 9078 9079 namespace { 9080 9081 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9082 /// to record information about a use. 9083 struct UseMemo { 9084 SDNode *User; 9085 unsigned Index; 9086 SDUse *Use; 9087 }; 9088 9089 /// operator< - Sort Memos by User. 9090 bool operator<(const UseMemo &L, const UseMemo &R) { 9091 return (intptr_t)L.User < (intptr_t)R.User; 9092 } 9093 9094 } // end anonymous namespace 9095 9096 bool SelectionDAG::calculateDivergence(SDNode *N) { 9097 if (TLI->isSDNodeAlwaysUniform(N)) { 9098 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9099 "Conflicting divergence information!"); 9100 return false; 9101 } 9102 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9103 return true; 9104 for (auto &Op : N->ops()) { 9105 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9106 return true; 9107 } 9108 return false; 9109 } 9110 9111 void SelectionDAG::updateDivergence(SDNode *N) { 9112 SmallVector<SDNode *, 16> Worklist(1, N); 9113 do { 9114 N = Worklist.pop_back_val(); 9115 bool IsDivergent = calculateDivergence(N); 9116 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9117 N->SDNodeBits.IsDivergent = IsDivergent; 9118 llvm::append_range(Worklist, N->uses()); 9119 } 9120 } while (!Worklist.empty()); 9121 } 9122 9123 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9124 DenseMap<SDNode *, unsigned> Degree; 9125 Order.reserve(AllNodes.size()); 9126 for (auto &N : allnodes()) { 9127 unsigned NOps = N.getNumOperands(); 9128 Degree[&N] = NOps; 9129 if (0 == NOps) 9130 Order.push_back(&N); 9131 } 9132 for (size_t I = 0; I != Order.size(); ++I) { 9133 SDNode *N = Order[I]; 9134 for (auto U : N->uses()) { 9135 unsigned &UnsortedOps = Degree[U]; 9136 if (0 == --UnsortedOps) 9137 Order.push_back(U); 9138 } 9139 } 9140 } 9141 9142 #ifndef NDEBUG 9143 void SelectionDAG::VerifyDAGDiverence() { 9144 std::vector<SDNode *> TopoOrder; 9145 CreateTopologicalOrder(TopoOrder); 9146 for (auto *N : TopoOrder) { 9147 assert(calculateDivergence(N) == N->isDivergent() && 9148 "Divergence bit inconsistency detected"); 9149 } 9150 } 9151 #endif 9152 9153 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9154 /// uses of other values produced by From.getNode() alone. The same value 9155 /// may appear in both the From and To list. The Deleted vector is 9156 /// handled the same way as for ReplaceAllUsesWith. 9157 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9158 const SDValue *To, 9159 unsigned Num){ 9160 // Handle the simple, trivial case efficiently. 9161 if (Num == 1) 9162 return ReplaceAllUsesOfValueWith(*From, *To); 9163 9164 transferDbgValues(*From, *To); 9165 9166 // Read up all the uses and make records of them. This helps 9167 // processing new uses that are introduced during the 9168 // replacement process. 9169 SmallVector<UseMemo, 4> Uses; 9170 for (unsigned i = 0; i != Num; ++i) { 9171 unsigned FromResNo = From[i].getResNo(); 9172 SDNode *FromNode = From[i].getNode(); 9173 for (SDNode::use_iterator UI = FromNode->use_begin(), 9174 E = FromNode->use_end(); UI != E; ++UI) { 9175 SDUse &Use = UI.getUse(); 9176 if (Use.getResNo() == FromResNo) { 9177 UseMemo Memo = { *UI, i, &Use }; 9178 Uses.push_back(Memo); 9179 } 9180 } 9181 } 9182 9183 // Sort the uses, so that all the uses from a given User are together. 9184 llvm::sort(Uses); 9185 9186 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9187 UseIndex != UseIndexEnd; ) { 9188 // We know that this user uses some value of From. If it is the right 9189 // value, update it. 9190 SDNode *User = Uses[UseIndex].User; 9191 9192 // This node is about to morph, remove its old self from the CSE maps. 9193 RemoveNodeFromCSEMaps(User); 9194 9195 // The Uses array is sorted, so all the uses for a given User 9196 // are next to each other in the list. 9197 // To help reduce the number of CSE recomputations, process all 9198 // the uses of this user that we can find this way. 9199 do { 9200 unsigned i = Uses[UseIndex].Index; 9201 SDUse &Use = *Uses[UseIndex].Use; 9202 ++UseIndex; 9203 9204 Use.set(To[i]); 9205 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9206 9207 // Now that we have modified User, add it back to the CSE maps. If it 9208 // already exists there, recursively merge the results together. 9209 AddModifiedNodeToCSEMaps(User); 9210 } 9211 } 9212 9213 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9214 /// based on their topological order. It returns the maximum id and a vector 9215 /// of the SDNodes* in assigned order by reference. 9216 unsigned SelectionDAG::AssignTopologicalOrder() { 9217 unsigned DAGSize = 0; 9218 9219 // SortedPos tracks the progress of the algorithm. Nodes before it are 9220 // sorted, nodes after it are unsorted. When the algorithm completes 9221 // it is at the end of the list. 9222 allnodes_iterator SortedPos = allnodes_begin(); 9223 9224 // Visit all the nodes. Move nodes with no operands to the front of 9225 // the list immediately. Annotate nodes that do have operands with their 9226 // operand count. Before we do this, the Node Id fields of the nodes 9227 // may contain arbitrary values. After, the Node Id fields for nodes 9228 // before SortedPos will contain the topological sort index, and the 9229 // Node Id fields for nodes At SortedPos and after will contain the 9230 // count of outstanding operands. 9231 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9232 SDNode *N = &*I++; 9233 checkForCycles(N, this); 9234 unsigned Degree = N->getNumOperands(); 9235 if (Degree == 0) { 9236 // A node with no uses, add it to the result array immediately. 9237 N->setNodeId(DAGSize++); 9238 allnodes_iterator Q(N); 9239 if (Q != SortedPos) 9240 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9241 assert(SortedPos != AllNodes.end() && "Overran node list"); 9242 ++SortedPos; 9243 } else { 9244 // Temporarily use the Node Id as scratch space for the degree count. 9245 N->setNodeId(Degree); 9246 } 9247 } 9248 9249 // Visit all the nodes. As we iterate, move nodes into sorted order, 9250 // such that by the time the end is reached all nodes will be sorted. 9251 for (SDNode &Node : allnodes()) { 9252 SDNode *N = &Node; 9253 checkForCycles(N, this); 9254 // N is in sorted position, so all its uses have one less operand 9255 // that needs to be sorted. 9256 for (SDNode *P : N->uses()) { 9257 unsigned Degree = P->getNodeId(); 9258 assert(Degree != 0 && "Invalid node degree"); 9259 --Degree; 9260 if (Degree == 0) { 9261 // All of P's operands are sorted, so P may sorted now. 9262 P->setNodeId(DAGSize++); 9263 if (P->getIterator() != SortedPos) 9264 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9265 assert(SortedPos != AllNodes.end() && "Overran node list"); 9266 ++SortedPos; 9267 } else { 9268 // Update P's outstanding operand count. 9269 P->setNodeId(Degree); 9270 } 9271 } 9272 if (Node.getIterator() == SortedPos) { 9273 #ifndef NDEBUG 9274 allnodes_iterator I(N); 9275 SDNode *S = &*++I; 9276 dbgs() << "Overran sorted position:\n"; 9277 S->dumprFull(this); dbgs() << "\n"; 9278 dbgs() << "Checking if this is due to cycles\n"; 9279 checkForCycles(this, true); 9280 #endif 9281 llvm_unreachable(nullptr); 9282 } 9283 } 9284 9285 assert(SortedPos == AllNodes.end() && 9286 "Topological sort incomplete!"); 9287 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9288 "First node in topological sort is not the entry token!"); 9289 assert(AllNodes.front().getNodeId() == 0 && 9290 "First node in topological sort has non-zero id!"); 9291 assert(AllNodes.front().getNumOperands() == 0 && 9292 "First node in topological sort has operands!"); 9293 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9294 "Last node in topologic sort has unexpected id!"); 9295 assert(AllNodes.back().use_empty() && 9296 "Last node in topologic sort has users!"); 9297 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9298 return DAGSize; 9299 } 9300 9301 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9302 /// value is produced by SD. 9303 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9304 for (SDNode *SD : DB->getSDNodes()) { 9305 if (!SD) 9306 continue; 9307 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9308 SD->setHasDebugValue(true); 9309 } 9310 DbgInfo->add(DB, isParameter); 9311 } 9312 9313 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9314 9315 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9316 SDValue NewMemOpChain) { 9317 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9318 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9319 // The new memory operation must have the same position as the old load in 9320 // terms of memory dependency. Create a TokenFactor for the old load and new 9321 // memory operation and update uses of the old load's output chain to use that 9322 // TokenFactor. 9323 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9324 return NewMemOpChain; 9325 9326 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9327 OldChain, NewMemOpChain); 9328 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9329 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9330 return TokenFactor; 9331 } 9332 9333 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9334 SDValue NewMemOp) { 9335 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9336 SDValue OldChain = SDValue(OldLoad, 1); 9337 SDValue NewMemOpChain = NewMemOp.getValue(1); 9338 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9339 } 9340 9341 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9342 Function **OutFunction) { 9343 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9344 9345 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9346 auto *Module = MF->getFunction().getParent(); 9347 auto *Function = Module->getFunction(Symbol); 9348 9349 if (OutFunction != nullptr) 9350 *OutFunction = Function; 9351 9352 if (Function != nullptr) { 9353 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9354 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9355 } 9356 9357 std::string ErrorStr; 9358 raw_string_ostream ErrorFormatter(ErrorStr); 9359 9360 ErrorFormatter << "Undefined external symbol "; 9361 ErrorFormatter << '"' << Symbol << '"'; 9362 ErrorFormatter.flush(); 9363 9364 report_fatal_error(ErrorStr); 9365 } 9366 9367 //===----------------------------------------------------------------------===// 9368 // SDNode Class 9369 //===----------------------------------------------------------------------===// 9370 9371 bool llvm::isNullConstant(SDValue V) { 9372 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9373 return Const != nullptr && Const->isNullValue(); 9374 } 9375 9376 bool llvm::isNullFPConstant(SDValue V) { 9377 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9378 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9379 } 9380 9381 bool llvm::isAllOnesConstant(SDValue V) { 9382 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9383 return Const != nullptr && Const->isAllOnesValue(); 9384 } 9385 9386 bool llvm::isOneConstant(SDValue V) { 9387 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9388 return Const != nullptr && Const->isOne(); 9389 } 9390 9391 SDValue llvm::peekThroughBitcasts(SDValue V) { 9392 while (V.getOpcode() == ISD::BITCAST) 9393 V = V.getOperand(0); 9394 return V; 9395 } 9396 9397 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9398 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9399 V = V.getOperand(0); 9400 return V; 9401 } 9402 9403 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9404 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9405 V = V.getOperand(0); 9406 return V; 9407 } 9408 9409 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9410 if (V.getOpcode() != ISD::XOR) 9411 return false; 9412 V = peekThroughBitcasts(V.getOperand(1)); 9413 unsigned NumBits = V.getScalarValueSizeInBits(); 9414 ConstantSDNode *C = 9415 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9416 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9417 } 9418 9419 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9420 bool AllowTruncation) { 9421 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9422 return CN; 9423 9424 // SplatVectors can truncate their operands. Ignore that case here unless 9425 // AllowTruncation is set. 9426 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9427 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9428 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9429 EVT CVT = CN->getValueType(0); 9430 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9431 if (AllowTruncation || CVT == VecEltVT) 9432 return CN; 9433 } 9434 } 9435 9436 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9437 BitVector UndefElements; 9438 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9439 9440 // BuildVectors can truncate their operands. Ignore that case here unless 9441 // AllowTruncation is set. 9442 if (CN && (UndefElements.none() || AllowUndefs)) { 9443 EVT CVT = CN->getValueType(0); 9444 EVT NSVT = N.getValueType().getScalarType(); 9445 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9446 if (AllowTruncation || (CVT == NSVT)) 9447 return CN; 9448 } 9449 } 9450 9451 return nullptr; 9452 } 9453 9454 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9455 bool AllowUndefs, 9456 bool AllowTruncation) { 9457 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9458 return CN; 9459 9460 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9461 BitVector UndefElements; 9462 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9463 9464 // BuildVectors can truncate their operands. Ignore that case here unless 9465 // AllowTruncation is set. 9466 if (CN && (UndefElements.none() || AllowUndefs)) { 9467 EVT CVT = CN->getValueType(0); 9468 EVT NSVT = N.getValueType().getScalarType(); 9469 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9470 if (AllowTruncation || (CVT == NSVT)) 9471 return CN; 9472 } 9473 } 9474 9475 return nullptr; 9476 } 9477 9478 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9479 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9480 return CN; 9481 9482 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9483 BitVector UndefElements; 9484 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9485 if (CN && (UndefElements.none() || AllowUndefs)) 9486 return CN; 9487 } 9488 9489 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9490 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9491 return CN; 9492 9493 return nullptr; 9494 } 9495 9496 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9497 const APInt &DemandedElts, 9498 bool AllowUndefs) { 9499 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9500 return CN; 9501 9502 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9503 BitVector UndefElements; 9504 ConstantFPSDNode *CN = 9505 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9506 if (CN && (UndefElements.none() || AllowUndefs)) 9507 return CN; 9508 } 9509 9510 return nullptr; 9511 } 9512 9513 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9514 // TODO: may want to use peekThroughBitcast() here. 9515 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9516 return C && C->isNullValue(); 9517 } 9518 9519 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9520 // TODO: may want to use peekThroughBitcast() here. 9521 unsigned BitWidth = N.getScalarValueSizeInBits(); 9522 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9523 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9524 } 9525 9526 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9527 N = peekThroughBitcasts(N); 9528 unsigned BitWidth = N.getScalarValueSizeInBits(); 9529 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9530 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9531 } 9532 9533 HandleSDNode::~HandleSDNode() { 9534 DropOperands(); 9535 } 9536 9537 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9538 const DebugLoc &DL, 9539 const GlobalValue *GA, EVT VT, 9540 int64_t o, unsigned TF) 9541 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9542 TheGlobal = GA; 9543 } 9544 9545 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9546 EVT VT, unsigned SrcAS, 9547 unsigned DestAS) 9548 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9549 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9550 9551 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9552 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9553 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9554 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9555 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9556 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9557 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9558 9559 // We check here that the size of the memory operand fits within the size of 9560 // the MMO. This is because the MMO might indicate only a possible address 9561 // range instead of specifying the affected memory addresses precisely. 9562 // TODO: Make MachineMemOperands aware of scalable vectors. 9563 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9564 "Size mismatch!"); 9565 } 9566 9567 /// Profile - Gather unique data for the node. 9568 /// 9569 void SDNode::Profile(FoldingSetNodeID &ID) const { 9570 AddNodeIDNode(ID, this); 9571 } 9572 9573 namespace { 9574 9575 struct EVTArray { 9576 std::vector<EVT> VTs; 9577 9578 EVTArray() { 9579 VTs.reserve(MVT::LAST_VALUETYPE); 9580 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9581 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9582 } 9583 }; 9584 9585 } // end anonymous namespace 9586 9587 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9588 static ManagedStatic<EVTArray> SimpleVTArray; 9589 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9590 9591 /// getValueTypeList - Return a pointer to the specified value type. 9592 /// 9593 const EVT *SDNode::getValueTypeList(EVT VT) { 9594 if (VT.isExtended()) { 9595 sys::SmartScopedLock<true> Lock(*VTMutex); 9596 return &(*EVTs->insert(VT).first); 9597 } 9598 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!"); 9599 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9600 } 9601 9602 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9603 /// indicated value. This method ignores uses of other values defined by this 9604 /// operation. 9605 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9606 assert(Value < getNumValues() && "Bad value!"); 9607 9608 // TODO: Only iterate over uses of a given value of the node 9609 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9610 if (UI.getUse().getResNo() == Value) { 9611 if (NUses == 0) 9612 return false; 9613 --NUses; 9614 } 9615 } 9616 9617 // Found exactly the right number of uses? 9618 return NUses == 0; 9619 } 9620 9621 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9622 /// value. This method ignores uses of other values defined by this operation. 9623 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9624 assert(Value < getNumValues() && "Bad value!"); 9625 9626 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9627 if (UI.getUse().getResNo() == Value) 9628 return true; 9629 9630 return false; 9631 } 9632 9633 /// isOnlyUserOf - Return true if this node is the only use of N. 9634 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9635 bool Seen = false; 9636 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9637 SDNode *User = *I; 9638 if (User == this) 9639 Seen = true; 9640 else 9641 return false; 9642 } 9643 9644 return Seen; 9645 } 9646 9647 /// Return true if the only users of N are contained in Nodes. 9648 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9649 bool Seen = false; 9650 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9651 SDNode *User = *I; 9652 if (llvm::is_contained(Nodes, User)) 9653 Seen = true; 9654 else 9655 return false; 9656 } 9657 9658 return Seen; 9659 } 9660 9661 /// isOperand - Return true if this node is an operand of N. 9662 bool SDValue::isOperandOf(const SDNode *N) const { 9663 return is_contained(N->op_values(), *this); 9664 } 9665 9666 bool SDNode::isOperandOf(const SDNode *N) const { 9667 return any_of(N->op_values(), 9668 [this](SDValue Op) { return this == Op.getNode(); }); 9669 } 9670 9671 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9672 /// be a chain) reaches the specified operand without crossing any 9673 /// side-effecting instructions on any chain path. In practice, this looks 9674 /// through token factors and non-volatile loads. In order to remain efficient, 9675 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9676 /// 9677 /// Note that we only need to examine chains when we're searching for 9678 /// side-effects; SelectionDAG requires that all side-effects are represented 9679 /// by chains, even if another operand would force a specific ordering. This 9680 /// constraint is necessary to allow transformations like splitting loads. 9681 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9682 unsigned Depth) const { 9683 if (*this == Dest) return true; 9684 9685 // Don't search too deeply, we just want to be able to see through 9686 // TokenFactor's etc. 9687 if (Depth == 0) return false; 9688 9689 // If this is a token factor, all inputs to the TF happen in parallel. 9690 if (getOpcode() == ISD::TokenFactor) { 9691 // First, try a shallow search. 9692 if (is_contained((*this)->ops(), Dest)) { 9693 // We found the chain we want as an operand of this TokenFactor. 9694 // Essentially, we reach the chain without side-effects if we could 9695 // serialize the TokenFactor into a simple chain of operations with 9696 // Dest as the last operation. This is automatically true if the 9697 // chain has one use: there are no other ordering constraints. 9698 // If the chain has more than one use, we give up: some other 9699 // use of Dest might force a side-effect between Dest and the current 9700 // node. 9701 if (Dest.hasOneUse()) 9702 return true; 9703 } 9704 // Next, try a deep search: check whether every operand of the TokenFactor 9705 // reaches Dest. 9706 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9707 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9708 }); 9709 } 9710 9711 // Loads don't have side effects, look through them. 9712 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9713 if (Ld->isUnordered()) 9714 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9715 } 9716 return false; 9717 } 9718 9719 bool SDNode::hasPredecessor(const SDNode *N) const { 9720 SmallPtrSet<const SDNode *, 32> Visited; 9721 SmallVector<const SDNode *, 16> Worklist; 9722 Worklist.push_back(this); 9723 return hasPredecessorHelper(N, Visited, Worklist); 9724 } 9725 9726 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9727 this->Flags.intersectWith(Flags); 9728 } 9729 9730 SDValue 9731 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9732 ArrayRef<ISD::NodeType> CandidateBinOps, 9733 bool AllowPartials) { 9734 // The pattern must end in an extract from index 0. 9735 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9736 !isNullConstant(Extract->getOperand(1))) 9737 return SDValue(); 9738 9739 // Match against one of the candidate binary ops. 9740 SDValue Op = Extract->getOperand(0); 9741 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9742 return Op.getOpcode() == unsigned(BinOp); 9743 })) 9744 return SDValue(); 9745 9746 // Floating-point reductions may require relaxed constraints on the final step 9747 // of the reduction because they may reorder intermediate operations. 9748 unsigned CandidateBinOp = Op.getOpcode(); 9749 if (Op.getValueType().isFloatingPoint()) { 9750 SDNodeFlags Flags = Op->getFlags(); 9751 switch (CandidateBinOp) { 9752 case ISD::FADD: 9753 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9754 return SDValue(); 9755 break; 9756 default: 9757 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9758 } 9759 } 9760 9761 // Matching failed - attempt to see if we did enough stages that a partial 9762 // reduction from a subvector is possible. 9763 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9764 if (!AllowPartials || !Op) 9765 return SDValue(); 9766 EVT OpVT = Op.getValueType(); 9767 EVT OpSVT = OpVT.getScalarType(); 9768 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9769 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9770 return SDValue(); 9771 BinOp = (ISD::NodeType)CandidateBinOp; 9772 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9773 getVectorIdxConstant(0, SDLoc(Op))); 9774 }; 9775 9776 // At each stage, we're looking for something that looks like: 9777 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9778 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9779 // i32 undef, i32 undef, i32 undef, i32 undef> 9780 // %a = binop <8 x i32> %op, %s 9781 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9782 // we expect something like: 9783 // <4,5,6,7,u,u,u,u> 9784 // <2,3,u,u,u,u,u,u> 9785 // <1,u,u,u,u,u,u,u> 9786 // While a partial reduction match would be: 9787 // <2,3,u,u,u,u,u,u> 9788 // <1,u,u,u,u,u,u,u> 9789 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9790 SDValue PrevOp; 9791 for (unsigned i = 0; i < Stages; ++i) { 9792 unsigned MaskEnd = (1 << i); 9793 9794 if (Op.getOpcode() != CandidateBinOp) 9795 return PartialReduction(PrevOp, MaskEnd); 9796 9797 SDValue Op0 = Op.getOperand(0); 9798 SDValue Op1 = Op.getOperand(1); 9799 9800 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9801 if (Shuffle) { 9802 Op = Op1; 9803 } else { 9804 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9805 Op = Op0; 9806 } 9807 9808 // The first operand of the shuffle should be the same as the other operand 9809 // of the binop. 9810 if (!Shuffle || Shuffle->getOperand(0) != Op) 9811 return PartialReduction(PrevOp, MaskEnd); 9812 9813 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9814 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9815 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9816 return PartialReduction(PrevOp, MaskEnd); 9817 9818 PrevOp = Op; 9819 } 9820 9821 // Handle subvector reductions, which tend to appear after the shuffle 9822 // reduction stages. 9823 while (Op.getOpcode() == CandidateBinOp) { 9824 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9825 SDValue Op0 = Op.getOperand(0); 9826 SDValue Op1 = Op.getOperand(1); 9827 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9828 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9829 Op0.getOperand(0) != Op1.getOperand(0)) 9830 break; 9831 SDValue Src = Op0.getOperand(0); 9832 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9833 if (NumSrcElts != (2 * NumElts)) 9834 break; 9835 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9836 Op1.getConstantOperandAPInt(1) == NumElts) && 9837 !(Op1.getConstantOperandAPInt(1) == 0 && 9838 Op0.getConstantOperandAPInt(1) == NumElts)) 9839 break; 9840 Op = Src; 9841 } 9842 9843 BinOp = (ISD::NodeType)CandidateBinOp; 9844 return Op; 9845 } 9846 9847 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9848 assert(N->getNumValues() == 1 && 9849 "Can't unroll a vector with multiple results!"); 9850 9851 EVT VT = N->getValueType(0); 9852 unsigned NE = VT.getVectorNumElements(); 9853 EVT EltVT = VT.getVectorElementType(); 9854 SDLoc dl(N); 9855 9856 SmallVector<SDValue, 8> Scalars; 9857 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9858 9859 // If ResNE is 0, fully unroll the vector op. 9860 if (ResNE == 0) 9861 ResNE = NE; 9862 else if (NE > ResNE) 9863 NE = ResNE; 9864 9865 unsigned i; 9866 for (i= 0; i != NE; ++i) { 9867 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9868 SDValue Operand = N->getOperand(j); 9869 EVT OperandVT = Operand.getValueType(); 9870 if (OperandVT.isVector()) { 9871 // A vector operand; extract a single element. 9872 EVT OperandEltVT = OperandVT.getVectorElementType(); 9873 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9874 Operand, getVectorIdxConstant(i, dl)); 9875 } else { 9876 // A scalar operand; just use it as is. 9877 Operands[j] = Operand; 9878 } 9879 } 9880 9881 switch (N->getOpcode()) { 9882 default: { 9883 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9884 N->getFlags())); 9885 break; 9886 } 9887 case ISD::VSELECT: 9888 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9889 break; 9890 case ISD::SHL: 9891 case ISD::SRA: 9892 case ISD::SRL: 9893 case ISD::ROTL: 9894 case ISD::ROTR: 9895 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9896 getShiftAmountOperand(Operands[0].getValueType(), 9897 Operands[1]))); 9898 break; 9899 case ISD::SIGN_EXTEND_INREG: { 9900 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9901 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9902 Operands[0], 9903 getValueType(ExtVT))); 9904 } 9905 } 9906 } 9907 9908 for (; i < ResNE; ++i) 9909 Scalars.push_back(getUNDEF(EltVT)); 9910 9911 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9912 return getBuildVector(VecVT, dl, Scalars); 9913 } 9914 9915 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9916 SDNode *N, unsigned ResNE) { 9917 unsigned Opcode = N->getOpcode(); 9918 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9919 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9920 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9921 "Expected an overflow opcode"); 9922 9923 EVT ResVT = N->getValueType(0); 9924 EVT OvVT = N->getValueType(1); 9925 EVT ResEltVT = ResVT.getVectorElementType(); 9926 EVT OvEltVT = OvVT.getVectorElementType(); 9927 SDLoc dl(N); 9928 9929 // If ResNE is 0, fully unroll the vector op. 9930 unsigned NE = ResVT.getVectorNumElements(); 9931 if (ResNE == 0) 9932 ResNE = NE; 9933 else if (NE > ResNE) 9934 NE = ResNE; 9935 9936 SmallVector<SDValue, 8> LHSScalars; 9937 SmallVector<SDValue, 8> RHSScalars; 9938 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9939 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9940 9941 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9942 SDVTList VTs = getVTList(ResEltVT, SVT); 9943 SmallVector<SDValue, 8> ResScalars; 9944 SmallVector<SDValue, 8> OvScalars; 9945 for (unsigned i = 0; i < NE; ++i) { 9946 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9947 SDValue Ov = 9948 getSelect(dl, OvEltVT, Res.getValue(1), 9949 getBoolConstant(true, dl, OvEltVT, ResVT), 9950 getConstant(0, dl, OvEltVT)); 9951 9952 ResScalars.push_back(Res); 9953 OvScalars.push_back(Ov); 9954 } 9955 9956 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9957 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9958 9959 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9960 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9961 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9962 getBuildVector(NewOvVT, dl, OvScalars)); 9963 } 9964 9965 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9966 LoadSDNode *Base, 9967 unsigned Bytes, 9968 int Dist) const { 9969 if (LD->isVolatile() || Base->isVolatile()) 9970 return false; 9971 // TODO: probably too restrictive for atomics, revisit 9972 if (!LD->isSimple()) 9973 return false; 9974 if (LD->isIndexed() || Base->isIndexed()) 9975 return false; 9976 if (LD->getChain() != Base->getChain()) 9977 return false; 9978 EVT VT = LD->getValueType(0); 9979 if (VT.getSizeInBits() / 8 != Bytes) 9980 return false; 9981 9982 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9983 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9984 9985 int64_t Offset = 0; 9986 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9987 return (Dist * Bytes == Offset); 9988 return false; 9989 } 9990 9991 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9992 /// if it cannot be inferred. 9993 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9994 // If this is a GlobalAddress + cst, return the alignment. 9995 const GlobalValue *GV = nullptr; 9996 int64_t GVOffset = 0; 9997 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9998 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9999 KnownBits Known(PtrWidth); 10000 llvm::computeKnownBits(GV, Known, getDataLayout()); 10001 unsigned AlignBits = Known.countMinTrailingZeros(); 10002 if (AlignBits) 10003 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10004 } 10005 10006 // If this is a direct reference to a stack slot, use information about the 10007 // stack slot's alignment. 10008 int FrameIdx = INT_MIN; 10009 int64_t FrameOffset = 0; 10010 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10011 FrameIdx = FI->getIndex(); 10012 } else if (isBaseWithConstantOffset(Ptr) && 10013 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10014 // Handle FI+Cst 10015 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10016 FrameOffset = Ptr.getConstantOperandVal(1); 10017 } 10018 10019 if (FrameIdx != INT_MIN) { 10020 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10021 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10022 } 10023 10024 return None; 10025 } 10026 10027 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10028 /// which is split (or expanded) into two not necessarily identical pieces. 10029 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10030 // Currently all types are split in half. 10031 EVT LoVT, HiVT; 10032 if (!VT.isVector()) 10033 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10034 else 10035 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10036 10037 return std::make_pair(LoVT, HiVT); 10038 } 10039 10040 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10041 /// type, dependent on an enveloping VT that has been split into two identical 10042 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10043 std::pair<EVT, EVT> 10044 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10045 bool *HiIsEmpty) const { 10046 EVT EltTp = VT.getVectorElementType(); 10047 // Examples: 10048 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10049 // custom VL=9 with enveloping VL=8/8 yields 8/1 10050 // custom VL=10 with enveloping VL=8/8 yields 8/2 10051 // etc. 10052 ElementCount VTNumElts = VT.getVectorElementCount(); 10053 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10054 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10055 "Mixing fixed width and scalable vectors when enveloping a type"); 10056 EVT LoVT, HiVT; 10057 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10058 LoVT = EnvVT; 10059 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10060 *HiIsEmpty = false; 10061 } else { 10062 // Flag that hi type has zero storage size, but return split envelop type 10063 // (this would be easier if vector types with zero elements were allowed). 10064 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10065 HiVT = EnvVT; 10066 *HiIsEmpty = true; 10067 } 10068 return std::make_pair(LoVT, HiVT); 10069 } 10070 10071 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10072 /// low/high part. 10073 std::pair<SDValue, SDValue> 10074 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10075 const EVT &HiVT) { 10076 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10077 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10078 "Splitting vector with an invalid mixture of fixed and scalable " 10079 "vector types"); 10080 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10081 N.getValueType().getVectorMinNumElements() && 10082 "More vector elements requested than available!"); 10083 SDValue Lo, Hi; 10084 Lo = 10085 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10086 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10087 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10088 // IDX with the runtime scaling factor of the result vector type. For 10089 // fixed-width result vectors, that runtime scaling factor is 1. 10090 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10091 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10092 return std::make_pair(Lo, Hi); 10093 } 10094 10095 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10096 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10097 EVT VT = N.getValueType(); 10098 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10099 NextPowerOf2(VT.getVectorNumElements())); 10100 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10101 getVectorIdxConstant(0, DL)); 10102 } 10103 10104 void SelectionDAG::ExtractVectorElements(SDValue Op, 10105 SmallVectorImpl<SDValue> &Args, 10106 unsigned Start, unsigned Count, 10107 EVT EltVT) { 10108 EVT VT = Op.getValueType(); 10109 if (Count == 0) 10110 Count = VT.getVectorNumElements(); 10111 if (EltVT == EVT()) 10112 EltVT = VT.getVectorElementType(); 10113 SDLoc SL(Op); 10114 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10115 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10116 getVectorIdxConstant(i, SL))); 10117 } 10118 } 10119 10120 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10121 unsigned GlobalAddressSDNode::getAddressSpace() const { 10122 return getGlobal()->getType()->getAddressSpace(); 10123 } 10124 10125 Type *ConstantPoolSDNode::getType() const { 10126 if (isMachineConstantPoolEntry()) 10127 return Val.MachineCPVal->getType(); 10128 return Val.ConstVal->getType(); 10129 } 10130 10131 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10132 unsigned &SplatBitSize, 10133 bool &HasAnyUndefs, 10134 unsigned MinSplatBits, 10135 bool IsBigEndian) const { 10136 EVT VT = getValueType(0); 10137 assert(VT.isVector() && "Expected a vector type"); 10138 unsigned VecWidth = VT.getSizeInBits(); 10139 if (MinSplatBits > VecWidth) 10140 return false; 10141 10142 // FIXME: The widths are based on this node's type, but build vectors can 10143 // truncate their operands. 10144 SplatValue = APInt(VecWidth, 0); 10145 SplatUndef = APInt(VecWidth, 0); 10146 10147 // Get the bits. Bits with undefined values (when the corresponding element 10148 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10149 // in SplatValue. If any of the values are not constant, give up and return 10150 // false. 10151 unsigned int NumOps = getNumOperands(); 10152 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10153 unsigned EltWidth = VT.getScalarSizeInBits(); 10154 10155 for (unsigned j = 0; j < NumOps; ++j) { 10156 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10157 SDValue OpVal = getOperand(i); 10158 unsigned BitPos = j * EltWidth; 10159 10160 if (OpVal.isUndef()) 10161 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10162 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10163 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10164 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10165 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10166 else 10167 return false; 10168 } 10169 10170 // The build_vector is all constants or undefs. Find the smallest element 10171 // size that splats the vector. 10172 HasAnyUndefs = (SplatUndef != 0); 10173 10174 // FIXME: This does not work for vectors with elements less than 8 bits. 10175 while (VecWidth > 8) { 10176 unsigned HalfSize = VecWidth / 2; 10177 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 10178 APInt LowValue = SplatValue.trunc(HalfSize); 10179 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 10180 APInt LowUndef = SplatUndef.trunc(HalfSize); 10181 10182 // If the two halves do not match (ignoring undef bits), stop here. 10183 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10184 MinSplatBits > HalfSize) 10185 break; 10186 10187 SplatValue = HighValue | LowValue; 10188 SplatUndef = HighUndef & LowUndef; 10189 10190 VecWidth = HalfSize; 10191 } 10192 10193 SplatBitSize = VecWidth; 10194 return true; 10195 } 10196 10197 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10198 BitVector *UndefElements) const { 10199 unsigned NumOps = getNumOperands(); 10200 if (UndefElements) { 10201 UndefElements->clear(); 10202 UndefElements->resize(NumOps); 10203 } 10204 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10205 if (!DemandedElts) 10206 return SDValue(); 10207 SDValue Splatted; 10208 for (unsigned i = 0; i != NumOps; ++i) { 10209 if (!DemandedElts[i]) 10210 continue; 10211 SDValue Op = getOperand(i); 10212 if (Op.isUndef()) { 10213 if (UndefElements) 10214 (*UndefElements)[i] = true; 10215 } else if (!Splatted) { 10216 Splatted = Op; 10217 } else if (Splatted != Op) { 10218 return SDValue(); 10219 } 10220 } 10221 10222 if (!Splatted) { 10223 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10224 assert(getOperand(FirstDemandedIdx).isUndef() && 10225 "Can only have a splat without a constant for all undefs."); 10226 return getOperand(FirstDemandedIdx); 10227 } 10228 10229 return Splatted; 10230 } 10231 10232 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10233 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10234 return getSplatValue(DemandedElts, UndefElements); 10235 } 10236 10237 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10238 SmallVectorImpl<SDValue> &Sequence, 10239 BitVector *UndefElements) const { 10240 unsigned NumOps = getNumOperands(); 10241 Sequence.clear(); 10242 if (UndefElements) { 10243 UndefElements->clear(); 10244 UndefElements->resize(NumOps); 10245 } 10246 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10247 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10248 return false; 10249 10250 // Set the undefs even if we don't find a sequence (like getSplatValue). 10251 if (UndefElements) 10252 for (unsigned I = 0; I != NumOps; ++I) 10253 if (DemandedElts[I] && getOperand(I).isUndef()) 10254 (*UndefElements)[I] = true; 10255 10256 // Iteratively widen the sequence length looking for repetitions. 10257 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10258 Sequence.append(SeqLen, SDValue()); 10259 for (unsigned I = 0; I != NumOps; ++I) { 10260 if (!DemandedElts[I]) 10261 continue; 10262 SDValue &SeqOp = Sequence[I % SeqLen]; 10263 SDValue Op = getOperand(I); 10264 if (Op.isUndef()) { 10265 if (!SeqOp) 10266 SeqOp = Op; 10267 continue; 10268 } 10269 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10270 Sequence.clear(); 10271 break; 10272 } 10273 SeqOp = Op; 10274 } 10275 if (!Sequence.empty()) 10276 return true; 10277 } 10278 10279 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10280 return false; 10281 } 10282 10283 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10284 BitVector *UndefElements) const { 10285 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10286 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10287 } 10288 10289 ConstantSDNode * 10290 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10291 BitVector *UndefElements) const { 10292 return dyn_cast_or_null<ConstantSDNode>( 10293 getSplatValue(DemandedElts, UndefElements)); 10294 } 10295 10296 ConstantSDNode * 10297 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10298 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10299 } 10300 10301 ConstantFPSDNode * 10302 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10303 BitVector *UndefElements) const { 10304 return dyn_cast_or_null<ConstantFPSDNode>( 10305 getSplatValue(DemandedElts, UndefElements)); 10306 } 10307 10308 ConstantFPSDNode * 10309 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10310 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10311 } 10312 10313 int32_t 10314 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10315 uint32_t BitWidth) const { 10316 if (ConstantFPSDNode *CN = 10317 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10318 bool IsExact; 10319 APSInt IntVal(BitWidth); 10320 const APFloat &APF = CN->getValueAPF(); 10321 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10322 APFloat::opOK || 10323 !IsExact) 10324 return -1; 10325 10326 return IntVal.exactLogBase2(); 10327 } 10328 return -1; 10329 } 10330 10331 bool BuildVectorSDNode::isConstant() const { 10332 for (const SDValue &Op : op_values()) { 10333 unsigned Opc = Op.getOpcode(); 10334 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10335 return false; 10336 } 10337 return true; 10338 } 10339 10340 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10341 // Find the first non-undef value in the shuffle mask. 10342 unsigned i, e; 10343 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10344 /* search */; 10345 10346 // If all elements are undefined, this shuffle can be considered a splat 10347 // (although it should eventually get simplified away completely). 10348 if (i == e) 10349 return true; 10350 10351 // Make sure all remaining elements are either undef or the same as the first 10352 // non-undef value. 10353 for (int Idx = Mask[i]; i != e; ++i) 10354 if (Mask[i] >= 0 && Mask[i] != Idx) 10355 return false; 10356 return true; 10357 } 10358 10359 // Returns the SDNode if it is a constant integer BuildVector 10360 // or constant integer. 10361 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10362 if (isa<ConstantSDNode>(N)) 10363 return N.getNode(); 10364 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10365 return N.getNode(); 10366 // Treat a GlobalAddress supporting constant offset folding as a 10367 // constant integer. 10368 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10369 if (GA->getOpcode() == ISD::GlobalAddress && 10370 TLI->isOffsetFoldingLegal(GA)) 10371 return GA; 10372 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10373 isa<ConstantSDNode>(N.getOperand(0))) 10374 return N.getNode(); 10375 return nullptr; 10376 } 10377 10378 // Returns the SDNode if it is a constant float BuildVector 10379 // or constant float. 10380 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10381 if (isa<ConstantFPSDNode>(N)) 10382 return N.getNode(); 10383 10384 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10385 return N.getNode(); 10386 10387 return nullptr; 10388 } 10389 10390 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10391 assert(!Node->OperandList && "Node already has operands"); 10392 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10393 "too many operands to fit into SDNode"); 10394 SDUse *Ops = OperandRecycler.allocate( 10395 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10396 10397 bool IsDivergent = false; 10398 for (unsigned I = 0; I != Vals.size(); ++I) { 10399 Ops[I].setUser(Node); 10400 Ops[I].setInitial(Vals[I]); 10401 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10402 IsDivergent |= Ops[I].getNode()->isDivergent(); 10403 } 10404 Node->NumOperands = Vals.size(); 10405 Node->OperandList = Ops; 10406 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10407 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10408 Node->SDNodeBits.IsDivergent = IsDivergent; 10409 } 10410 checkForCycles(Node); 10411 } 10412 10413 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10414 SmallVectorImpl<SDValue> &Vals) { 10415 size_t Limit = SDNode::getMaxNumOperands(); 10416 while (Vals.size() > Limit) { 10417 unsigned SliceIdx = Vals.size() - Limit; 10418 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10419 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10420 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10421 Vals.emplace_back(NewTF); 10422 } 10423 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10424 } 10425 10426 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10427 EVT VT, SDNodeFlags Flags) { 10428 switch (Opcode) { 10429 default: 10430 return SDValue(); 10431 case ISD::ADD: 10432 case ISD::OR: 10433 case ISD::XOR: 10434 case ISD::UMAX: 10435 return getConstant(0, DL, VT); 10436 case ISD::MUL: 10437 return getConstant(1, DL, VT); 10438 case ISD::AND: 10439 case ISD::UMIN: 10440 return getAllOnesConstant(DL, VT); 10441 case ISD::SMAX: 10442 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10443 case ISD::SMIN: 10444 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10445 case ISD::FADD: 10446 return getConstantFP(-0.0, DL, VT); 10447 case ISD::FMUL: 10448 return getConstantFP(1.0, DL, VT); 10449 case ISD::FMINNUM: 10450 case ISD::FMAXNUM: { 10451 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10452 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10453 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10454 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10455 APFloat::getLargest(Semantics); 10456 if (Opcode == ISD::FMAXNUM) 10457 NeutralAF.changeSign(); 10458 10459 return getConstantFP(NeutralAF, DL, VT); 10460 } 10461 } 10462 } 10463 10464 #ifndef NDEBUG 10465 static void checkForCyclesHelper(const SDNode *N, 10466 SmallPtrSetImpl<const SDNode*> &Visited, 10467 SmallPtrSetImpl<const SDNode*> &Checked, 10468 const llvm::SelectionDAG *DAG) { 10469 // If this node has already been checked, don't check it again. 10470 if (Checked.count(N)) 10471 return; 10472 10473 // If a node has already been visited on this depth-first walk, reject it as 10474 // a cycle. 10475 if (!Visited.insert(N).second) { 10476 errs() << "Detected cycle in SelectionDAG\n"; 10477 dbgs() << "Offending node:\n"; 10478 N->dumprFull(DAG); dbgs() << "\n"; 10479 abort(); 10480 } 10481 10482 for (const SDValue &Op : N->op_values()) 10483 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10484 10485 Checked.insert(N); 10486 Visited.erase(N); 10487 } 10488 #endif 10489 10490 void llvm::checkForCycles(const llvm::SDNode *N, 10491 const llvm::SelectionDAG *DAG, 10492 bool force) { 10493 #ifndef NDEBUG 10494 bool check = force; 10495 #ifdef EXPENSIVE_CHECKS 10496 check = true; 10497 #endif // EXPENSIVE_CHECKS 10498 if (check) { 10499 assert(N && "Checking nonexistent SDNode"); 10500 SmallPtrSet<const SDNode*, 32> visited; 10501 SmallPtrSet<const SDNode*, 32> checked; 10502 checkForCyclesHelper(N, visited, checked, DAG); 10503 } 10504 #endif // !NDEBUG 10505 } 10506 10507 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10508 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10509 } 10510