1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
346       ISD::BUILD_VECTOR != RHS.getOpcode())
347     return false;
348 
349   EVT SVT = LHS.getValueType().getScalarType();
350   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
351     SDValue LHSOp = LHS.getOperand(i);
352     SDValue RHSOp = RHS.getOperand(i);
353     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
354     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
355     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
356     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
357     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
358       return false;
359     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
360                                LHSOp.getValueType() != RHSOp.getValueType()))
361       return false;
362     if (!Match(LHSCst, RHSCst))
363       return false;
364   }
365   return true;
366 }
367 
368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
369   switch (VecReduceOpcode) {
370   default:
371     llvm_unreachable("Expected VECREDUCE opcode");
372   case ISD::VECREDUCE_FADD:
373   case ISD::VECREDUCE_SEQ_FADD:
374     return ISD::FADD;
375   case ISD::VECREDUCE_FMUL:
376   case ISD::VECREDUCE_SEQ_FMUL:
377     return ISD::FMUL;
378   case ISD::VECREDUCE_ADD:
379     return ISD::ADD;
380   case ISD::VECREDUCE_MUL:
381     return ISD::MUL;
382   case ISD::VECREDUCE_AND:
383     return ISD::AND;
384   case ISD::VECREDUCE_OR:
385     return ISD::OR;
386   case ISD::VECREDUCE_XOR:
387     return ISD::XOR;
388   case ISD::VECREDUCE_SMAX:
389     return ISD::SMAX;
390   case ISD::VECREDUCE_SMIN:
391     return ISD::SMIN;
392   case ISD::VECREDUCE_UMAX:
393     return ISD::UMAX;
394   case ISD::VECREDUCE_UMIN:
395     return ISD::UMIN;
396   case ISD::VECREDUCE_FMAX:
397     return ISD::FMAXNUM;
398   case ISD::VECREDUCE_FMIN:
399     return ISD::FMINNUM;
400   }
401 }
402 
403 bool ISD::isVPOpcode(unsigned Opcode) {
404   switch (Opcode) {
405   default:
406     return false;
407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
408   case ISD::SDOPC:                                                             \
409     return true;
410 #include "llvm/IR/VPIntrinsics.def"
411   }
412 }
413 
414 /// The operand position of the vector mask.
415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return None;
419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
420   case ISD::SDOPC:                                                             \
421     return MASKPOS;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 /// The operand position of the explicit vector length parameter.
427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
428   switch (Opcode) {
429   default:
430     return None;
431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
432   case ISD::SDOPC:                                                             \
433     return EVLPOS;
434 #include "llvm/IR/VPIntrinsics.def"
435   }
436 }
437 
438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
439   switch (ExtType) {
440   case ISD::EXTLOAD:
441     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
442   case ISD::SEXTLOAD:
443     return ISD::SIGN_EXTEND;
444   case ISD::ZEXTLOAD:
445     return ISD::ZERO_EXTEND;
446   default:
447     break;
448   }
449 
450   llvm_unreachable("Invalid LoadExtType");
451 }
452 
453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
454   // To perform this operation, we just need to swap the L and G bits of the
455   // operation.
456   unsigned OldL = (Operation >> 2) & 1;
457   unsigned OldG = (Operation >> 1) & 1;
458   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
459                        (OldL << 1) |       // New G bit
460                        (OldG << 2));       // New L bit.
461 }
462 
463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
464   unsigned Operation = Op;
465   if (isIntegerLike)
466     Operation ^= 7;   // Flip L, G, E bits, but not U.
467   else
468     Operation ^= 15;  // Flip all of the condition bits.
469 
470   if (Operation > ISD::SETTRUE2)
471     Operation &= ~8;  // Don't let N and U bits get set.
472 
473   return ISD::CondCode(Operation);
474 }
475 
476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
477   return getSetCCInverseImpl(Op, Type.isInteger());
478 }
479 
480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
481                                                bool isIntegerLike) {
482   return getSetCCInverseImpl(Op, isIntegerLike);
483 }
484 
485 /// For an integer comparison, return 1 if the comparison is a signed operation
486 /// and 2 if the result is an unsigned comparison. Return zero if the operation
487 /// does not depend on the sign of the input (setne and seteq).
488 static int isSignedOp(ISD::CondCode Opcode) {
489   switch (Opcode) {
490   default: llvm_unreachable("Illegal integer setcc operation!");
491   case ISD::SETEQ:
492   case ISD::SETNE: return 0;
493   case ISD::SETLT:
494   case ISD::SETLE:
495   case ISD::SETGT:
496   case ISD::SETGE: return 1;
497   case ISD::SETULT:
498   case ISD::SETULE:
499   case ISD::SETUGT:
500   case ISD::SETUGE: return 2;
501   }
502 }
503 
504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
505                                        EVT Type) {
506   bool IsInteger = Type.isInteger();
507   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
508     // Cannot fold a signed integer setcc with an unsigned integer setcc.
509     return ISD::SETCC_INVALID;
510 
511   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
512 
513   // If the N and U bits get set, then the resultant comparison DOES suddenly
514   // care about orderedness, and it is true when ordered.
515   if (Op > ISD::SETTRUE2)
516     Op &= ~16;     // Clear the U bit if the N bit is set.
517 
518   // Canonicalize illegal integer setcc's.
519   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
520     Op = ISD::SETNE;
521 
522   return ISD::CondCode(Op);
523 }
524 
525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
526                                         EVT Type) {
527   bool IsInteger = Type.isInteger();
528   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
529     // Cannot fold a signed setcc with an unsigned setcc.
530     return ISD::SETCC_INVALID;
531 
532   // Combine all of the condition bits.
533   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
534 
535   // Canonicalize illegal integer setcc's.
536   if (IsInteger) {
537     switch (Result) {
538     default: break;
539     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
540     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
541     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
542     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
543     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
544     }
545   }
546 
547   return Result;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //                           SDNode Profile Support
552 //===----------------------------------------------------------------------===//
553 
554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
556   ID.AddInteger(OpC);
557 }
558 
559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
560 /// solely with their pointer.
561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
562   ID.AddPointer(VTList.VTs);
563 }
564 
565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
566 static void AddNodeIDOperands(FoldingSetNodeID &ID,
567                               ArrayRef<SDValue> Ops) {
568   for (auto& Op : Ops) {
569     ID.AddPointer(Op.getNode());
570     ID.AddInteger(Op.getResNo());
571   }
572 }
573 
574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
575 static void AddNodeIDOperands(FoldingSetNodeID &ID,
576                               ArrayRef<SDUse> Ops) {
577   for (auto& Op : Ops) {
578     ID.AddPointer(Op.getNode());
579     ID.AddInteger(Op.getResNo());
580   }
581 }
582 
583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
584                           SDVTList VTList, ArrayRef<SDValue> OpList) {
585   AddNodeIDOpcode(ID, OpC);
586   AddNodeIDValueTypes(ID, VTList);
587   AddNodeIDOperands(ID, OpList);
588 }
589 
590 /// If this is an SDNode with special info, add this info to the NodeID data.
591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
592   switch (N->getOpcode()) {
593   case ISD::TargetExternalSymbol:
594   case ISD::ExternalSymbol:
595   case ISD::MCSymbol:
596     llvm_unreachable("Should only be used on nodes with operands");
597   default: break;  // Normal nodes don't need extra info.
598   case ISD::TargetConstant:
599   case ISD::Constant: {
600     const ConstantSDNode *C = cast<ConstantSDNode>(N);
601     ID.AddPointer(C->getConstantIntValue());
602     ID.AddBoolean(C->isOpaque());
603     break;
604   }
605   case ISD::TargetConstantFP:
606   case ISD::ConstantFP:
607     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
608     break;
609   case ISD::TargetGlobalAddress:
610   case ISD::GlobalAddress:
611   case ISD::TargetGlobalTLSAddress:
612   case ISD::GlobalTLSAddress: {
613     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
614     ID.AddPointer(GA->getGlobal());
615     ID.AddInteger(GA->getOffset());
616     ID.AddInteger(GA->getTargetFlags());
617     break;
618   }
619   case ISD::BasicBlock:
620     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
621     break;
622   case ISD::Register:
623     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
624     break;
625   case ISD::RegisterMask:
626     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
627     break;
628   case ISD::SRCVALUE:
629     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
630     break;
631   case ISD::FrameIndex:
632   case ISD::TargetFrameIndex:
633     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
634     break;
635   case ISD::LIFETIME_START:
636   case ISD::LIFETIME_END:
637     if (cast<LifetimeSDNode>(N)->hasOffset()) {
638       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
640     }
641     break;
642   case ISD::PSEUDO_PROBE:
643     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
646     break;
647   case ISD::JumpTable:
648   case ISD::TargetJumpTable:
649     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
651     break;
652   case ISD::ConstantPool:
653   case ISD::TargetConstantPool: {
654     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
655     ID.AddInteger(CP->getAlign().value());
656     ID.AddInteger(CP->getOffset());
657     if (CP->isMachineConstantPoolEntry())
658       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
659     else
660       ID.AddPointer(CP->getConstVal());
661     ID.AddInteger(CP->getTargetFlags());
662     break;
663   }
664   case ISD::TargetIndex: {
665     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
666     ID.AddInteger(TI->getIndex());
667     ID.AddInteger(TI->getOffset());
668     ID.AddInteger(TI->getTargetFlags());
669     break;
670   }
671   case ISD::LOAD: {
672     const LoadSDNode *LD = cast<LoadSDNode>(N);
673     ID.AddInteger(LD->getMemoryVT().getRawBits());
674     ID.AddInteger(LD->getRawSubclassData());
675     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
676     break;
677   }
678   case ISD::STORE: {
679     const StoreSDNode *ST = cast<StoreSDNode>(N);
680     ID.AddInteger(ST->getMemoryVT().getRawBits());
681     ID.AddInteger(ST->getRawSubclassData());
682     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
683     break;
684   }
685   case ISD::MLOAD: {
686     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
687     ID.AddInteger(MLD->getMemoryVT().getRawBits());
688     ID.AddInteger(MLD->getRawSubclassData());
689     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
690     break;
691   }
692   case ISD::MSTORE: {
693     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
694     ID.AddInteger(MST->getMemoryVT().getRawBits());
695     ID.AddInteger(MST->getRawSubclassData());
696     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
697     break;
698   }
699   case ISD::MGATHER: {
700     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
701     ID.AddInteger(MG->getMemoryVT().getRawBits());
702     ID.AddInteger(MG->getRawSubclassData());
703     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
704     break;
705   }
706   case ISD::MSCATTER: {
707     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
708     ID.AddInteger(MS->getMemoryVT().getRawBits());
709     ID.AddInteger(MS->getRawSubclassData());
710     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
711     break;
712   }
713   case ISD::ATOMIC_CMP_SWAP:
714   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
715   case ISD::ATOMIC_SWAP:
716   case ISD::ATOMIC_LOAD_ADD:
717   case ISD::ATOMIC_LOAD_SUB:
718   case ISD::ATOMIC_LOAD_AND:
719   case ISD::ATOMIC_LOAD_CLR:
720   case ISD::ATOMIC_LOAD_OR:
721   case ISD::ATOMIC_LOAD_XOR:
722   case ISD::ATOMIC_LOAD_NAND:
723   case ISD::ATOMIC_LOAD_MIN:
724   case ISD::ATOMIC_LOAD_MAX:
725   case ISD::ATOMIC_LOAD_UMIN:
726   case ISD::ATOMIC_LOAD_UMAX:
727   case ISD::ATOMIC_LOAD:
728   case ISD::ATOMIC_STORE: {
729     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
730     ID.AddInteger(AT->getMemoryVT().getRawBits());
731     ID.AddInteger(AT->getRawSubclassData());
732     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::PREFETCH: {
736     const MemSDNode *PF = cast<MemSDNode>(N);
737     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VECTOR_SHUFFLE: {
741     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
742     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
743          i != e; ++i)
744       ID.AddInteger(SVN->getMaskElt(i));
745     break;
746   }
747   case ISD::TargetBlockAddress:
748   case ISD::BlockAddress: {
749     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
750     ID.AddPointer(BA->getBlockAddress());
751     ID.AddInteger(BA->getOffset());
752     ID.AddInteger(BA->getTargetFlags());
753     break;
754   }
755   } // end switch (N->getOpcode())
756 
757   // Target specific memory nodes could also have address spaces to check.
758   if (N->isTargetMemoryOpcode())
759     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
760 }
761 
762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
763 /// data.
764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
765   AddNodeIDOpcode(ID, N->getOpcode());
766   // Add the return value info.
767   AddNodeIDValueTypes(ID, N->getVTList());
768   // Add the operand info.
769   AddNodeIDOperands(ID, N->ops());
770 
771   // Handle SDNode leafs with special info.
772   AddNodeIDCustom(ID, N);
773 }
774 
775 //===----------------------------------------------------------------------===//
776 //                              SelectionDAG Class
777 //===----------------------------------------------------------------------===//
778 
779 /// doNotCSE - Return true if CSE should not be performed for this node.
780 static bool doNotCSE(SDNode *N) {
781   if (N->getValueType(0) == MVT::Glue)
782     return true; // Never CSE anything that produces a flag.
783 
784   switch (N->getOpcode()) {
785   default: break;
786   case ISD::HANDLENODE:
787   case ISD::EH_LABEL:
788     return true;   // Never CSE these nodes.
789   }
790 
791   // Check that remaining values produced are not flags.
792   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
793     if (N->getValueType(i) == MVT::Glue)
794       return true; // Never CSE anything that produces a flag.
795 
796   return false;
797 }
798 
799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
800 /// SelectionDAG.
801 void SelectionDAG::RemoveDeadNodes() {
802   // Create a dummy node (which is not added to allnodes), that adds a reference
803   // to the root node, preventing it from being deleted.
804   HandleSDNode Dummy(getRoot());
805 
806   SmallVector<SDNode*, 128> DeadNodes;
807 
808   // Add all obviously-dead nodes to the DeadNodes worklist.
809   for (SDNode &Node : allnodes())
810     if (Node.use_empty())
811       DeadNodes.push_back(&Node);
812 
813   RemoveDeadNodes(DeadNodes);
814 
815   // If the root changed (e.g. it was a dead load, update the root).
816   setRoot(Dummy.getValue());
817 }
818 
819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
820 /// given list, and any nodes that become unreachable as a result.
821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
822 
823   // Process the worklist, deleting the nodes and adding their uses to the
824   // worklist.
825   while (!DeadNodes.empty()) {
826     SDNode *N = DeadNodes.pop_back_val();
827     // Skip to next node if we've already managed to delete the node. This could
828     // happen if replacing a node causes a node previously added to the node to
829     // be deleted.
830     if (N->getOpcode() == ISD::DELETED_NODE)
831       continue;
832 
833     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
834       DUL->NodeDeleted(N, nullptr);
835 
836     // Take the node out of the appropriate CSE map.
837     RemoveNodeFromCSEMaps(N);
838 
839     // Next, brutally remove the operand list.  This is safe to do, as there are
840     // no cycles in the graph.
841     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
842       SDUse &Use = *I++;
843       SDNode *Operand = Use.getNode();
844       Use.set(SDValue());
845 
846       // Now that we removed this operand, see if there are no uses of it left.
847       if (Operand->use_empty())
848         DeadNodes.push_back(Operand);
849     }
850 
851     DeallocateNode(N);
852   }
853 }
854 
855 void SelectionDAG::RemoveDeadNode(SDNode *N){
856   SmallVector<SDNode*, 16> DeadNodes(1, N);
857 
858   // Create a dummy node that adds a reference to the root node, preventing
859   // it from being deleted.  (This matters if the root is an operand of the
860   // dead node.)
861   HandleSDNode Dummy(getRoot());
862 
863   RemoveDeadNodes(DeadNodes);
864 }
865 
866 void SelectionDAG::DeleteNode(SDNode *N) {
867   // First take this out of the appropriate CSE map.
868   RemoveNodeFromCSEMaps(N);
869 
870   // Finally, remove uses due to operands of this node, remove from the
871   // AllNodes list, and delete the node.
872   DeleteNodeNotInCSEMaps(N);
873 }
874 
875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
876   assert(N->getIterator() != AllNodes.begin() &&
877          "Cannot delete the entry node!");
878   assert(N->use_empty() && "Cannot delete a node that is not dead!");
879 
880   // Drop all of the operands and decrement used node's use counts.
881   N->DropOperands();
882 
883   DeallocateNode(N);
884 }
885 
886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
887   assert(!(V->isVariadic() && isParameter));
888   if (isParameter)
889     ByvalParmDbgValues.push_back(V);
890   else
891     DbgValues.push_back(V);
892   for (const SDNode *Node : V->getSDNodes())
893     if (Node)
894       DbgValMap[Node].push_back(V);
895 }
896 
897 void SDDbgInfo::erase(const SDNode *Node) {
898   DbgValMapType::iterator I = DbgValMap.find(Node);
899   if (I == DbgValMap.end())
900     return;
901   for (auto &Val: I->second)
902     Val->setIsInvalidated();
903   DbgValMap.erase(I);
904 }
905 
906 void SelectionDAG::DeallocateNode(SDNode *N) {
907   // If we have operands, deallocate them.
908   removeOperands(N);
909 
910   NodeAllocator.Deallocate(AllNodes.remove(N));
911 
912   // Set the opcode to DELETED_NODE to help catch bugs when node
913   // memory is reallocated.
914   // FIXME: There are places in SDag that have grown a dependency on the opcode
915   // value in the released node.
916   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
917   N->NodeType = ISD::DELETED_NODE;
918 
919   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
920   // them and forget about that node.
921   DbgInfo->erase(N);
922 }
923 
924 #ifndef NDEBUG
925 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
926 static void VerifySDNode(SDNode *N) {
927   switch (N->getOpcode()) {
928   default:
929     break;
930   case ISD::BUILD_PAIR: {
931     EVT VT = N->getValueType(0);
932     assert(N->getNumValues() == 1 && "Too many results!");
933     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
934            "Wrong return type!");
935     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
936     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
937            "Mismatched operand types!");
938     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
939            "Wrong operand type!");
940     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
941            "Wrong return type size");
942     break;
943   }
944   case ISD::BUILD_VECTOR: {
945     assert(N->getNumValues() == 1 && "Too many results!");
946     assert(N->getValueType(0).isVector() && "Wrong return type!");
947     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
948            "Wrong number of operands!");
949     EVT EltVT = N->getValueType(0).getVectorElementType();
950     for (const SDUse &Op : N->ops()) {
951       assert((Op.getValueType() == EltVT ||
952               (EltVT.isInteger() && Op.getValueType().isInteger() &&
953                EltVT.bitsLE(Op.getValueType()))) &&
954              "Wrong operand type!");
955       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
956              "Operands must all have the same type");
957     }
958     break;
959   }
960   }
961 }
962 #endif // NDEBUG
963 
964 /// Insert a newly allocated node into the DAG.
965 ///
966 /// Handles insertion into the all nodes list and CSE map, as well as
967 /// verification and other common operations when a new node is allocated.
968 void SelectionDAG::InsertNode(SDNode *N) {
969   AllNodes.push_back(N);
970 #ifndef NDEBUG
971   N->PersistentId = NextPersistentId++;
972   VerifySDNode(N);
973 #endif
974   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
975     DUL->NodeInserted(N);
976 }
977 
978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
979 /// correspond to it.  This is useful when we're about to delete or repurpose
980 /// the node.  We don't want future request for structurally identical nodes
981 /// to return N anymore.
982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
983   bool Erased = false;
984   switch (N->getOpcode()) {
985   case ISD::HANDLENODE: return false;  // noop.
986   case ISD::CONDCODE:
987     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
988            "Cond code doesn't exist!");
989     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
990     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
991     break;
992   case ISD::ExternalSymbol:
993     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
994     break;
995   case ISD::TargetExternalSymbol: {
996     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
997     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
998         ESN->getSymbol(), ESN->getTargetFlags()));
999     break;
1000   }
1001   case ISD::MCSymbol: {
1002     auto *MCSN = cast<MCSymbolSDNode>(N);
1003     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1004     break;
1005   }
1006   case ISD::VALUETYPE: {
1007     EVT VT = cast<VTSDNode>(N)->getVT();
1008     if (VT.isExtended()) {
1009       Erased = ExtendedValueTypeNodes.erase(VT);
1010     } else {
1011       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1012       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1013     }
1014     break;
1015   }
1016   default:
1017     // Remove it from the CSE Map.
1018     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1019     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1020     Erased = CSEMap.RemoveNode(N);
1021     break;
1022   }
1023 #ifndef NDEBUG
1024   // Verify that the node was actually in one of the CSE maps, unless it has a
1025   // flag result (which cannot be CSE'd) or is one of the special cases that are
1026   // not subject to CSE.
1027   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1028       !N->isMachineOpcode() && !doNotCSE(N)) {
1029     N->dump(this);
1030     dbgs() << "\n";
1031     llvm_unreachable("Node is not in map!");
1032   }
1033 #endif
1034   return Erased;
1035 }
1036 
1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1039 /// node already exists, in which case transfer all its users to the existing
1040 /// node. This transfer can potentially trigger recursive merging.
1041 void
1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1043   // For node types that aren't CSE'd, just act as if no identical node
1044   // already exists.
1045   if (!doNotCSE(N)) {
1046     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1047     if (Existing != N) {
1048       // If there was already an existing matching node, use ReplaceAllUsesWith
1049       // to replace the dead one with the existing one.  This can cause
1050       // recursive merging of other unrelated nodes down the line.
1051       ReplaceAllUsesWith(N, Existing);
1052 
1053       // N is now dead. Inform the listeners and delete it.
1054       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1055         DUL->NodeDeleted(N, Existing);
1056       DeleteNodeNotInCSEMaps(N);
1057       return;
1058     }
1059   }
1060 
1061   // If the node doesn't already exist, we updated it.  Inform listeners.
1062   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1063     DUL->NodeUpdated(N);
1064 }
1065 
1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1067 /// were replaced with those specified.  If this node is never memoized,
1068 /// return null, otherwise return a pointer to the slot it would take.  If a
1069 /// node already exists with these operands, the slot will be non-null.
1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1071                                            void *&InsertPos) {
1072   if (doNotCSE(N))
1073     return nullptr;
1074 
1075   SDValue Ops[] = { Op };
1076   FoldingSetNodeID ID;
1077   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1078   AddNodeIDCustom(ID, N);
1079   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1080   if (Node)
1081     Node->intersectFlagsWith(N->getFlags());
1082   return Node;
1083 }
1084 
1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1086 /// were replaced with those specified.  If this node is never memoized,
1087 /// return null, otherwise return a pointer to the slot it would take.  If a
1088 /// node already exists with these operands, the slot will be non-null.
1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1090                                            SDValue Op1, SDValue Op2,
1091                                            void *&InsertPos) {
1092   if (doNotCSE(N))
1093     return nullptr;
1094 
1095   SDValue Ops[] = { Op1, Op2 };
1096   FoldingSetNodeID ID;
1097   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1098   AddNodeIDCustom(ID, N);
1099   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1100   if (Node)
1101     Node->intersectFlagsWith(N->getFlags());
1102   return Node;
1103 }
1104 
1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1106 /// were replaced with those specified.  If this node is never memoized,
1107 /// return null, otherwise return a pointer to the slot it would take.  If a
1108 /// node already exists with these operands, the slot will be non-null.
1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1110                                            void *&InsertPos) {
1111   if (doNotCSE(N))
1112     return nullptr;
1113 
1114   FoldingSetNodeID ID;
1115   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1116   AddNodeIDCustom(ID, N);
1117   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1118   if (Node)
1119     Node->intersectFlagsWith(N->getFlags());
1120   return Node;
1121 }
1122 
1123 Align SelectionDAG::getEVTAlign(EVT VT) const {
1124   Type *Ty = VT == MVT::iPTR ?
1125                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1126                    VT.getTypeForEVT(*getContext());
1127 
1128   return getDataLayout().getABITypeAlign(Ty);
1129 }
1130 
1131 // EntryNode could meaningfully have debug info if we can find it...
1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1133     : TM(tm), OptLevel(OL),
1134       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1135       Root(getEntryNode()) {
1136   InsertNode(&EntryNode);
1137   DbgInfo = new SDDbgInfo();
1138 }
1139 
1140 void SelectionDAG::init(MachineFunction &NewMF,
1141                         OptimizationRemarkEmitter &NewORE,
1142                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1143                         LegacyDivergenceAnalysis * Divergence,
1144                         ProfileSummaryInfo *PSIin,
1145                         BlockFrequencyInfo *BFIin) {
1146   MF = &NewMF;
1147   SDAGISelPass = PassPtr;
1148   ORE = &NewORE;
1149   TLI = getSubtarget().getTargetLowering();
1150   TSI = getSubtarget().getSelectionDAGInfo();
1151   LibInfo = LibraryInfo;
1152   Context = &MF->getFunction().getContext();
1153   DA = Divergence;
1154   PSI = PSIin;
1155   BFI = BFIin;
1156 }
1157 
1158 SelectionDAG::~SelectionDAG() {
1159   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1160   allnodes_clear();
1161   OperandRecycler.clear(OperandAllocator);
1162   delete DbgInfo;
1163 }
1164 
1165 bool SelectionDAG::shouldOptForSize() const {
1166   return MF->getFunction().hasOptSize() ||
1167       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1168 }
1169 
1170 void SelectionDAG::allnodes_clear() {
1171   assert(&*AllNodes.begin() == &EntryNode);
1172   AllNodes.remove(AllNodes.begin());
1173   while (!AllNodes.empty())
1174     DeallocateNode(&AllNodes.front());
1175 #ifndef NDEBUG
1176   NextPersistentId = 0;
1177 #endif
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     default: break;
1186     case ISD::Constant:
1187     case ISD::ConstantFP:
1188       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1189                        "debug location.  Use another overload.");
1190     }
1191   }
1192   return N;
1193 }
1194 
1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1196                                           const SDLoc &DL, void *&InsertPos) {
1197   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1198   if (N) {
1199     switch (N->getOpcode()) {
1200     case ISD::Constant:
1201     case ISD::ConstantFP:
1202       // Erase debug location from the node if the node is used at several
1203       // different places. Do not propagate one location to all uses as it
1204       // will cause a worse single stepping debugging experience.
1205       if (N->getDebugLoc() != DL.getDebugLoc())
1206         N->setDebugLoc(DebugLoc());
1207       break;
1208     default:
1209       // When the node's point of use is located earlier in the instruction
1210       // sequence than its prior point of use, update its debug info to the
1211       // earlier location.
1212       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1213         N->setDebugLoc(DL.getDebugLoc());
1214       break;
1215     }
1216   }
1217   return N;
1218 }
1219 
1220 void SelectionDAG::clear() {
1221   allnodes_clear();
1222   OperandRecycler.clear(OperandAllocator);
1223   OperandAllocator.Reset();
1224   CSEMap.clear();
1225 
1226   ExtendedValueTypeNodes.clear();
1227   ExternalSymbols.clear();
1228   TargetExternalSymbols.clear();
1229   MCSymbols.clear();
1230   SDCallSiteDbgInfo.clear();
1231   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1232             static_cast<CondCodeSDNode*>(nullptr));
1233   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1234             static_cast<SDNode*>(nullptr));
1235 
1236   EntryNode.UseList = nullptr;
1237   InsertNode(&EntryNode);
1238   Root = getEntryNode();
1239   DbgInfo->clear();
1240 }
1241 
1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1243   return VT.bitsGT(Op.getValueType())
1244              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1245              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1246 }
1247 
1248 std::pair<SDValue, SDValue>
1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1250                                        const SDLoc &DL, EVT VT) {
1251   assert(!VT.bitsEq(Op.getValueType()) &&
1252          "Strict no-op FP extend/round not allowed.");
1253   SDValue Res =
1254       VT.bitsGT(Op.getValueType())
1255           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1256           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1257                     {Chain, Op, getIntPtrConstant(0, DL)});
1258 
1259   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1260 }
1261 
1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1263   return VT.bitsGT(Op.getValueType()) ?
1264     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1265     getNode(ISD::TRUNCATE, DL, VT, Op);
1266 }
1267 
1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1269   return VT.bitsGT(Op.getValueType()) ?
1270     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1271     getNode(ISD::TRUNCATE, DL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1275   return VT.bitsGT(Op.getValueType()) ?
1276     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1277     getNode(ISD::TRUNCATE, DL, VT, Op);
1278 }
1279 
1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1281                                         EVT OpVT) {
1282   if (VT.bitsLE(Op.getValueType()))
1283     return getNode(ISD::TRUNCATE, SL, VT, Op);
1284 
1285   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1286   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1287 }
1288 
1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1290   EVT OpVT = Op.getValueType();
1291   assert(VT.isInteger() && OpVT.isInteger() &&
1292          "Cannot getZeroExtendInReg FP types");
1293   assert(VT.isVector() == OpVT.isVector() &&
1294          "getZeroExtendInReg type should be vector iff the operand "
1295          "type is vector!");
1296   assert((!VT.isVector() ||
1297           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1298          "Vector element counts must match in getZeroExtendInReg");
1299   assert(VT.bitsLE(OpVT) && "Not extending!");
1300   if (OpVT == VT)
1301     return Op;
1302   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1303                                    VT.getScalarSizeInBits());
1304   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1305 }
1306 
1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1308   // Only unsigned pointer semantics are supported right now. In the future this
1309   // might delegate to TLI to check pointer signedness.
1310   return getZExtOrTrunc(Op, DL, VT);
1311 }
1312 
1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1314   // Only unsigned pointer semantics are supported right now. In the future this
1315   // might delegate to TLI to check pointer signedness.
1316   return getZeroExtendInReg(Op, DL, VT);
1317 }
1318 
1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1321   EVT EltVT = VT.getScalarType();
1322   SDValue NegOne =
1323     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1324   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1325 }
1326 
1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1328   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1329   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1330 }
1331 
1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1333                                       EVT OpVT) {
1334   if (!V)
1335     return getConstant(0, DL, VT);
1336 
1337   switch (TLI->getBooleanContents(OpVT)) {
1338   case TargetLowering::ZeroOrOneBooleanContent:
1339   case TargetLowering::UndefinedBooleanContent:
1340     return getConstant(1, DL, VT);
1341   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1342     return getAllOnesConstant(DL, VT);
1343   }
1344   llvm_unreachable("Unexpected boolean content enum!");
1345 }
1346 
1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1348                                   bool isT, bool isO) {
1349   EVT EltVT = VT.getScalarType();
1350   assert((EltVT.getSizeInBits() >= 64 ||
1351           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1352          "getConstant with a uint64_t value that doesn't fit in the type!");
1353   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1354 }
1355 
1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1357                                   bool isT, bool isO) {
1358   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1359 }
1360 
1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1362                                   EVT VT, bool isT, bool isO) {
1363   assert(VT.isInteger() && "Cannot create FP integer constant!");
1364 
1365   EVT EltVT = VT.getScalarType();
1366   const ConstantInt *Elt = &Val;
1367 
1368   // In some cases the vector type is legal but the element type is illegal and
1369   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1370   // inserted value (the type does not need to match the vector element type).
1371   // Any extra bits introduced will be truncated away.
1372   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1373                            TargetLowering::TypePromoteInteger) {
1374     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1375     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1376     Elt = ConstantInt::get(*getContext(), NewVal);
1377   }
1378   // In other cases the element type is illegal and needs to be expanded, for
1379   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1380   // the value into n parts and use a vector type with n-times the elements.
1381   // Then bitcast to the type requested.
1382   // Legalizing constants too early makes the DAGCombiner's job harder so we
1383   // only legalize if the DAG tells us we must produce legal types.
1384   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1385            TLI->getTypeAction(*getContext(), EltVT) ==
1386                TargetLowering::TypeExpandInteger) {
1387     const APInt &NewVal = Elt->getValue();
1388     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1389     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1390 
1391     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1392     if (VT.isScalableVector()) {
1393       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1394              "Can only handle an even split!");
1395       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1396 
1397       SmallVector<SDValue, 2> ScalarParts;
1398       for (unsigned i = 0; i != Parts; ++i)
1399         ScalarParts.push_back(getConstant(
1400             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1401             ViaEltVT, isT, isO));
1402 
1403       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1404     }
1405 
1406     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1407     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1408 
1409     // Check the temporary vector is the correct size. If this fails then
1410     // getTypeToTransformTo() probably returned a type whose size (in bits)
1411     // isn't a power-of-2 factor of the requested type size.
1412     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1413 
1414     SmallVector<SDValue, 2> EltParts;
1415     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1416       EltParts.push_back(getConstant(
1417           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1418           ViaEltVT, isT, isO));
1419     }
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1752   if (ResVT.isScalableVector())
1753     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1754 
1755   EVT OpVT = Step.getValueType();
1756   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1757   SmallVector<SDValue, 16> OpsStepConstants;
1758   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1759     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1760   return getBuildVector(ResVT, DL, OpsStepConstants);
1761 }
1762 
1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1766   std::swap(N1, N2);
1767   ShuffleVectorSDNode::commuteMask(M);
1768 }
1769 
1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1771                                        SDValue N2, ArrayRef<int> Mask) {
1772   assert(VT.getVectorNumElements() == Mask.size() &&
1773            "Must have the same number of vector elements as mask elements!");
1774   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1775          "Invalid VECTOR_SHUFFLE");
1776 
1777   // Canonicalize shuffle undef, undef -> undef
1778   if (N1.isUndef() && N2.isUndef())
1779     return getUNDEF(VT);
1780 
1781   // Validate that all indices in Mask are within the range of the elements
1782   // input to the shuffle.
1783   int NElts = Mask.size();
1784   assert(llvm::all_of(Mask,
1785                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1786          "Index out of range");
1787 
1788   // Copy the mask so we can do any needed cleanup.
1789   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1790 
1791   // Canonicalize shuffle v, v -> v, undef
1792   if (N1 == N2) {
1793     N2 = getUNDEF(VT);
1794     for (int i = 0; i != NElts; ++i)
1795       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1796   }
1797 
1798   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1799   if (N1.isUndef())
1800     commuteShuffle(N1, N2, MaskVec);
1801 
1802   if (TLI->hasVectorBlend()) {
1803     // If shuffling a splat, try to blend the splat instead. We do this here so
1804     // that even when this arises during lowering we don't have to re-handle it.
1805     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1806       BitVector UndefElements;
1807       SDValue Splat = BV->getSplatValue(&UndefElements);
1808       if (!Splat)
1809         return;
1810 
1811       for (int i = 0; i < NElts; ++i) {
1812         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1813           continue;
1814 
1815         // If this input comes from undef, mark it as such.
1816         if (UndefElements[MaskVec[i] - Offset]) {
1817           MaskVec[i] = -1;
1818           continue;
1819         }
1820 
1821         // If we can blend a non-undef lane, use that instead.
1822         if (!UndefElements[i])
1823           MaskVec[i] = i + Offset;
1824       }
1825     };
1826     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1827       BlendSplat(N1BV, 0);
1828     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1829       BlendSplat(N2BV, NElts);
1830   }
1831 
1832   // Canonicalize all index into lhs, -> shuffle lhs, undef
1833   // Canonicalize all index into rhs, -> shuffle rhs, undef
1834   bool AllLHS = true, AllRHS = true;
1835   bool N2Undef = N2.isUndef();
1836   for (int i = 0; i != NElts; ++i) {
1837     if (MaskVec[i] >= NElts) {
1838       if (N2Undef)
1839         MaskVec[i] = -1;
1840       else
1841         AllLHS = false;
1842     } else if (MaskVec[i] >= 0) {
1843       AllRHS = false;
1844     }
1845   }
1846   if (AllLHS && AllRHS)
1847     return getUNDEF(VT);
1848   if (AllLHS && !N2Undef)
1849     N2 = getUNDEF(VT);
1850   if (AllRHS) {
1851     N1 = getUNDEF(VT);
1852     commuteShuffle(N1, N2, MaskVec);
1853   }
1854   // Reset our undef status after accounting for the mask.
1855   N2Undef = N2.isUndef();
1856   // Re-check whether both sides ended up undef.
1857   if (N1.isUndef() && N2Undef)
1858     return getUNDEF(VT);
1859 
1860   // If Identity shuffle return that node.
1861   bool Identity = true, AllSame = true;
1862   for (int i = 0; i != NElts; ++i) {
1863     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1864     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1865   }
1866   if (Identity && NElts)
1867     return N1;
1868 
1869   // Shuffling a constant splat doesn't change the result.
1870   if (N2Undef) {
1871     SDValue V = N1;
1872 
1873     // Look through any bitcasts. We check that these don't change the number
1874     // (and size) of elements and just changes their types.
1875     while (V.getOpcode() == ISD::BITCAST)
1876       V = V->getOperand(0);
1877 
1878     // A splat should always show up as a build vector node.
1879     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1880       BitVector UndefElements;
1881       SDValue Splat = BV->getSplatValue(&UndefElements);
1882       // If this is a splat of an undef, shuffling it is also undef.
1883       if (Splat && Splat.isUndef())
1884         return getUNDEF(VT);
1885 
1886       bool SameNumElts =
1887           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1888 
1889       // We only have a splat which can skip shuffles if there is a splatted
1890       // value and no undef lanes rearranged by the shuffle.
1891       if (Splat && UndefElements.none()) {
1892         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1893         // number of elements match or the value splatted is a zero constant.
1894         if (SameNumElts)
1895           return N1;
1896         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1897           if (C->isNullValue())
1898             return N1;
1899       }
1900 
1901       // If the shuffle itself creates a splat, build the vector directly.
1902       if (AllSame && SameNumElts) {
1903         EVT BuildVT = BV->getValueType(0);
1904         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1905         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1906 
1907         // We may have jumped through bitcasts, so the type of the
1908         // BUILD_VECTOR may not match the type of the shuffle.
1909         if (BuildVT != VT)
1910           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1911         return NewBV;
1912       }
1913     }
1914   }
1915 
1916   FoldingSetNodeID ID;
1917   SDValue Ops[2] = { N1, N2 };
1918   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1919   for (int i = 0; i != NElts; ++i)
1920     ID.AddInteger(MaskVec[i]);
1921 
1922   void* IP = nullptr;
1923   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1924     return SDValue(E, 0);
1925 
1926   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1927   // SDNode doesn't have access to it.  This memory will be "leaked" when
1928   // the node is deallocated, but recovered when the NodeAllocator is released.
1929   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1930   llvm::copy(MaskVec, MaskAlloc);
1931 
1932   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1933                                            dl.getDebugLoc(), MaskAlloc);
1934   createOperands(N, Ops);
1935 
1936   CSEMap.InsertNode(N, IP);
1937   InsertNode(N);
1938   SDValue V = SDValue(N, 0);
1939   NewSDValueDbgMsg(V, "Creating new node: ", this);
1940   return V;
1941 }
1942 
1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1944   EVT VT = SV.getValueType(0);
1945   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1946   ShuffleVectorSDNode::commuteMask(MaskVec);
1947 
1948   SDValue Op0 = SV.getOperand(0);
1949   SDValue Op1 = SV.getOperand(1);
1950   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1951 }
1952 
1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1954   FoldingSetNodeID ID;
1955   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1956   ID.AddInteger(RegNo);
1957   void *IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1959     return SDValue(E, 0);
1960 
1961   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1962   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1963   CSEMap.InsertNode(N, IP);
1964   InsertNode(N);
1965   return SDValue(N, 0);
1966 }
1967 
1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1969   FoldingSetNodeID ID;
1970   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1971   ID.AddPointer(RegMask);
1972   void *IP = nullptr;
1973   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1974     return SDValue(E, 0);
1975 
1976   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1977   CSEMap.InsertNode(N, IP);
1978   InsertNode(N);
1979   return SDValue(N, 0);
1980 }
1981 
1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1983                                  MCSymbol *Label) {
1984   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1985 }
1986 
1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1988                                    SDValue Root, MCSymbol *Label) {
1989   FoldingSetNodeID ID;
1990   SDValue Ops[] = { Root };
1991   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1992   ID.AddPointer(Label);
1993   void *IP = nullptr;
1994   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1995     return SDValue(E, 0);
1996 
1997   auto *N =
1998       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1999   createOperands(N, Ops);
2000 
2001   CSEMap.InsertNode(N, IP);
2002   InsertNode(N);
2003   return SDValue(N, 0);
2004 }
2005 
2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2007                                       int64_t Offset, bool isTarget,
2008                                       unsigned TargetFlags) {
2009   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2010 
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2013   ID.AddPointer(BA);
2014   ID.AddInteger(Offset);
2015   ID.AddInteger(TargetFlags);
2016   void *IP = nullptr;
2017   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2018     return SDValue(E, 0);
2019 
2020   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2021   CSEMap.InsertNode(N, IP);
2022   InsertNode(N);
2023   return SDValue(N, 0);
2024 }
2025 
2026 SDValue SelectionDAG::getSrcValue(const Value *V) {
2027   FoldingSetNodeID ID;
2028   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2029   ID.AddPointer(V);
2030 
2031   void *IP = nullptr;
2032   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2033     return SDValue(E, 0);
2034 
2035   auto *N = newSDNode<SrcValueSDNode>(V);
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2042   FoldingSetNodeID ID;
2043   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2044   ID.AddPointer(MD);
2045 
2046   void *IP = nullptr;
2047   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2048     return SDValue(E, 0);
2049 
2050   auto *N = newSDNode<MDNodeSDNode>(MD);
2051   CSEMap.InsertNode(N, IP);
2052   InsertNode(N);
2053   return SDValue(N, 0);
2054 }
2055 
2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2057   if (VT == V.getValueType())
2058     return V;
2059 
2060   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2061 }
2062 
2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2064                                        unsigned SrcAS, unsigned DestAS) {
2065   SDValue Ops[] = {Ptr};
2066   FoldingSetNodeID ID;
2067   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2068   ID.AddInteger(SrcAS);
2069   ID.AddInteger(DestAS);
2070 
2071   void *IP = nullptr;
2072   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2073     return SDValue(E, 0);
2074 
2075   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2076                                            VT, SrcAS, DestAS);
2077   createOperands(N, Ops);
2078 
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
2084 SDValue SelectionDAG::getFreeze(SDValue V) {
2085   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2086 }
2087 
2088 /// getShiftAmountOperand - Return the specified value casted to
2089 /// the target's desired shift amount type.
2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2091   EVT OpTy = Op.getValueType();
2092   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2093   if (OpTy == ShTy || OpTy.isVector()) return Op;
2094 
2095   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2096 }
2097 
2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2099   SDLoc dl(Node);
2100   const TargetLowering &TLI = getTargetLoweringInfo();
2101   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2102   EVT VT = Node->getValueType(0);
2103   SDValue Tmp1 = Node->getOperand(0);
2104   SDValue Tmp2 = Node->getOperand(1);
2105   const MaybeAlign MA(Node->getConstantOperandVal(3));
2106 
2107   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2108                                Tmp2, MachinePointerInfo(V));
2109   SDValue VAList = VAListLoad;
2110 
2111   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2112     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2113                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2114 
2115     VAList =
2116         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2117                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2118   }
2119 
2120   // Increment the pointer, VAList, to the next vaarg
2121   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2122                  getConstant(getDataLayout().getTypeAllocSize(
2123                                                VT.getTypeForEVT(*getContext())),
2124                              dl, VAList.getValueType()));
2125   // Store the incremented VAList to the legalized pointer
2126   Tmp1 =
2127       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2128   // Load the actual argument out of the pointer VAList
2129   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2130 }
2131 
2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2133   SDLoc dl(Node);
2134   const TargetLowering &TLI = getTargetLoweringInfo();
2135   // This defaults to loading a pointer from the input and storing it to the
2136   // output, returning the chain.
2137   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2138   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2139   SDValue Tmp1 =
2140       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2141               Node->getOperand(2), MachinePointerInfo(VS));
2142   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2143                   MachinePointerInfo(VD));
2144 }
2145 
2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2147   const DataLayout &DL = getDataLayout();
2148   Type *Ty = VT.getTypeForEVT(*getContext());
2149   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2150 
2151   if (TLI->isTypeLegal(VT) || !VT.isVector())
2152     return RedAlign;
2153 
2154   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2155   const Align StackAlign = TFI->getStackAlign();
2156 
2157   // See if we can choose a smaller ABI alignment in cases where it's an
2158   // illegal vector type that will get broken down.
2159   if (RedAlign > StackAlign) {
2160     EVT IntermediateVT;
2161     MVT RegisterVT;
2162     unsigned NumIntermediates;
2163     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2164                                 NumIntermediates, RegisterVT);
2165     Ty = IntermediateVT.getTypeForEVT(*getContext());
2166     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2167     if (RedAlign2 < RedAlign)
2168       RedAlign = RedAlign2;
2169   }
2170 
2171   return RedAlign;
2172 }
2173 
2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2175   MachineFrameInfo &MFI = MF->getFrameInfo();
2176   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2177   int StackID = 0;
2178   if (Bytes.isScalable())
2179     StackID = TFI->getStackIDForScalableVectors();
2180   // The stack id gives an indication of whether the object is scalable or
2181   // not, so it's safe to pass in the minimum size here.
2182   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2183                                        false, nullptr, StackID);
2184   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2185 }
2186 
2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2188   Type *Ty = VT.getTypeForEVT(*getContext());
2189   Align StackAlign =
2190       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2191   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2192 }
2193 
2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2195   TypeSize VT1Size = VT1.getStoreSize();
2196   TypeSize VT2Size = VT2.getStoreSize();
2197   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2198          "Don't know how to choose the maximum size when creating a stack "
2199          "temporary");
2200   TypeSize Bytes =
2201       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2202 
2203   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2204   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2205   const DataLayout &DL = getDataLayout();
2206   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2207   return CreateStackTemporary(Bytes, Align);
2208 }
2209 
2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2211                                 ISD::CondCode Cond, const SDLoc &dl) {
2212   EVT OpVT = N1.getValueType();
2213 
2214   // These setcc operations always fold.
2215   switch (Cond) {
2216   default: break;
2217   case ISD::SETFALSE:
2218   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2219   case ISD::SETTRUE:
2220   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2221 
2222   case ISD::SETOEQ:
2223   case ISD::SETOGT:
2224   case ISD::SETOGE:
2225   case ISD::SETOLT:
2226   case ISD::SETOLE:
2227   case ISD::SETONE:
2228   case ISD::SETO:
2229   case ISD::SETUO:
2230   case ISD::SETUEQ:
2231   case ISD::SETUNE:
2232     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2233     break;
2234   }
2235 
2236   if (OpVT.isInteger()) {
2237     // For EQ and NE, we can always pick a value for the undef to make the
2238     // predicate pass or fail, so we can return undef.
2239     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2240     // icmp eq/ne X, undef -> undef.
2241     if ((N1.isUndef() || N2.isUndef()) &&
2242         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2243       return getUNDEF(VT);
2244 
2245     // If both operands are undef, we can return undef for int comparison.
2246     // icmp undef, undef -> undef.
2247     if (N1.isUndef() && N2.isUndef())
2248       return getUNDEF(VT);
2249 
2250     // icmp X, X -> true/false
2251     // icmp X, undef -> true/false because undef could be X.
2252     if (N1 == N2)
2253       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2254   }
2255 
2256   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2257     const APInt &C2 = N2C->getAPIntValue();
2258     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2259       const APInt &C1 = N1C->getAPIntValue();
2260 
2261       switch (Cond) {
2262       default: llvm_unreachable("Unknown integer setcc!");
2263       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2264       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2265       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2266       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2267       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2268       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2269       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2270       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2271       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2272       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2273       }
2274     }
2275   }
2276 
2277   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2278   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2279 
2280   if (N1CFP && N2CFP) {
2281     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2282     switch (Cond) {
2283     default: break;
2284     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2288                                              OpVT);
2289     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2293                                              R==APFloat::cmpLessThan, dl, VT,
2294                                              OpVT);
2295     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2299                                              OpVT);
2300     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2301                         return getUNDEF(VT);
2302                       LLVM_FALLTHROUGH;
2303     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2304                                              VT, OpVT);
2305     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2306                         return getUNDEF(VT);
2307                       LLVM_FALLTHROUGH;
2308     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2309                                              R==APFloat::cmpEqual, dl, VT,
2310                                              OpVT);
2311     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2312                         return getUNDEF(VT);
2313                       LLVM_FALLTHROUGH;
2314     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2315                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2316     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2317                                              OpVT);
2318     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2319                                              OpVT);
2320     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2321                                              R==APFloat::cmpEqual, dl, VT,
2322                                              OpVT);
2323     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2324                                              OpVT);
2325     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2326                                              R==APFloat::cmpLessThan, dl, VT,
2327                                              OpVT);
2328     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2329                                              R==APFloat::cmpUnordered, dl, VT,
2330                                              OpVT);
2331     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2332                                              VT, OpVT);
2333     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     }
2336   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2337     // Ensure that the constant occurs on the RHS.
2338     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2339     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2340       return SDValue();
2341     return getSetCC(dl, VT, N2, N1, SwappedCond);
2342   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2343              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2344     // If an operand is known to be a nan (or undef that could be a nan), we can
2345     // fold it.
2346     // Choosing NaN for the undef will always make unordered comparison succeed
2347     // and ordered comparison fails.
2348     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2349     switch (ISD::getUnorderedFlavor(Cond)) {
2350     default:
2351       llvm_unreachable("Unknown flavor!");
2352     case 0: // Known false.
2353       return getBoolConstant(false, dl, VT, OpVT);
2354     case 1: // Known true.
2355       return getBoolConstant(true, dl, VT, OpVT);
2356     case 2: // Undefined.
2357       return getUNDEF(VT);
2358     }
2359   }
2360 
2361   // Could not fold it.
2362   return SDValue();
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used.
2367 /// TODO: really we should be making this into the DAG equivalent of
2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2370   EVT VT = V.getValueType();
2371 
2372   if (VT.isScalableVector())
2373     return SDValue();
2374 
2375   APInt DemandedElts = VT.isVector()
2376                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2377                            : APInt(1, 1);
2378   return GetDemandedBits(V, DemandedBits, DemandedElts);
2379 }
2380 
2381 /// See if the specified operand can be simplified with the knowledge that only
2382 /// the bits specified by DemandedBits are used in the elements specified by
2383 /// DemandedElts.
2384 /// TODO: really we should be making this into the DAG equivalent of
2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2387                                       const APInt &DemandedElts) {
2388   switch (V.getOpcode()) {
2389   default:
2390     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2391                                                 *this, 0);
2392   case ISD::Constant: {
2393     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2394     APInt NewVal = CVal & DemandedBits;
2395     if (NewVal != CVal)
2396       return getConstant(NewVal, SDLoc(V), V.getValueType());
2397     break;
2398   }
2399   case ISD::SRL:
2400     // Only look at single-use SRLs.
2401     if (!V.getNode()->hasOneUse())
2402       break;
2403     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2404       // See if we can recursively simplify the LHS.
2405       unsigned Amt = RHSC->getZExtValue();
2406 
2407       // Watch out for shift count overflow though.
2408       if (Amt >= DemandedBits.getBitWidth())
2409         break;
2410       APInt SrcDemandedBits = DemandedBits << Amt;
2411       if (SDValue SimplifyLHS =
2412               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2413         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2414                        V.getOperand(1));
2415     }
2416     break;
2417   }
2418   return SDValue();
2419 }
2420 
2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2422 /// use this predicate to simplify operations downstream.
2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2424   unsigned BitWidth = Op.getScalarValueSizeInBits();
2425   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2426 }
2427 
2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2429 /// this predicate to simplify operations downstream.  Mask is known to be zero
2430 /// for bits that V cannot have.
2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2432                                      unsigned Depth) const {
2433   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2434 }
2435 
2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2437 /// DemandedElts.  We use this predicate to simplify operations downstream.
2438 /// Mask is known to be zero for bits that V cannot have.
2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2440                                      const APInt &DemandedElts,
2441                                      unsigned Depth) const {
2442   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2443 }
2444 
2445 /// Return true if the DemandedElts of the vector Op are all zero.  We
2446 /// use this predicate to simplify operations downstream.
2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts,
2448                                          unsigned Depth) const {
2449   unsigned BitWidth = Op.getScalarValueSizeInBits();
2450   APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
2451   return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth);
2452 }
2453 
2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2456                                         unsigned Depth) const {
2457   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2458 }
2459 
2460 /// isSplatValue - Return true if the vector V has the same value
2461 /// across all DemandedElts. For scalable vectors it does not make
2462 /// sense to specify which elements are demanded or undefined, therefore
2463 /// they are simply ignored.
2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2465                                 APInt &UndefElts, unsigned Depth) {
2466   EVT VT = V.getValueType();
2467   assert(VT.isVector() && "Vector type expected");
2468 
2469   if (!VT.isScalableVector() && !DemandedElts)
2470     return false; // No demanded elts, better to assume we don't know anything.
2471 
2472   if (Depth >= MaxRecursionDepth)
2473     return false; // Limit search depth.
2474 
2475   // Deal with some common cases here that work for both fixed and scalable
2476   // vector types.
2477   switch (V.getOpcode()) {
2478   case ISD::SPLAT_VECTOR:
2479     UndefElts = V.getOperand(0).isUndef()
2480                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2481                     : APInt(DemandedElts.getBitWidth(), 0);
2482     return true;
2483   case ISD::ADD:
2484   case ISD::SUB:
2485   case ISD::AND:
2486   case ISD::XOR:
2487   case ISD::OR: {
2488     APInt UndefLHS, UndefRHS;
2489     SDValue LHS = V.getOperand(0);
2490     SDValue RHS = V.getOperand(1);
2491     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2492         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2493       UndefElts = UndefLHS | UndefRHS;
2494       return true;
2495     }
2496     return false;
2497   }
2498   case ISD::ABS:
2499   case ISD::TRUNCATE:
2500   case ISD::SIGN_EXTEND:
2501   case ISD::ZERO_EXTEND:
2502     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2503   }
2504 
2505   // We don't support other cases than those above for scalable vectors at
2506   // the moment.
2507   if (VT.isScalableVector())
2508     return false;
2509 
2510   unsigned NumElts = VT.getVectorNumElements();
2511   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2512   UndefElts = APInt::getNullValue(NumElts);
2513 
2514   switch (V.getOpcode()) {
2515   case ISD::BUILD_VECTOR: {
2516     SDValue Scl;
2517     for (unsigned i = 0; i != NumElts; ++i) {
2518       SDValue Op = V.getOperand(i);
2519       if (Op.isUndef()) {
2520         UndefElts.setBit(i);
2521         continue;
2522       }
2523       if (!DemandedElts[i])
2524         continue;
2525       if (Scl && Scl != Op)
2526         return false;
2527       Scl = Op;
2528     }
2529     return true;
2530   }
2531   case ISD::VECTOR_SHUFFLE: {
2532     // Check if this is a shuffle node doing a splat.
2533     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2534     int SplatIndex = -1;
2535     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2536     for (int i = 0; i != (int)NumElts; ++i) {
2537       int M = Mask[i];
2538       if (M < 0) {
2539         UndefElts.setBit(i);
2540         continue;
2541       }
2542       if (!DemandedElts[i])
2543         continue;
2544       if (0 <= SplatIndex && SplatIndex != M)
2545         return false;
2546       SplatIndex = M;
2547     }
2548     return true;
2549   }
2550   case ISD::EXTRACT_SUBVECTOR: {
2551     // Offset the demanded elts by the subvector index.
2552     SDValue Src = V.getOperand(0);
2553     // We don't support scalable vectors at the moment.
2554     if (Src.getValueType().isScalableVector())
2555       return false;
2556     uint64_t Idx = V.getConstantOperandVal(1);
2557     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2558     APInt UndefSrcElts;
2559     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2560     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2561       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2562       return true;
2563     }
2564     break;
2565   }
2566   }
2567 
2568   return false;
2569 }
2570 
2571 /// Helper wrapper to main isSplatValue function.
2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2573   EVT VT = V.getValueType();
2574   assert(VT.isVector() && "Vector type expected");
2575 
2576   APInt UndefElts;
2577   APInt DemandedElts;
2578 
2579   // For now we don't support this with scalable vectors.
2580   if (!VT.isScalableVector())
2581     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2582   return isSplatValue(V, DemandedElts, UndefElts) &&
2583          (AllowUndefs || !UndefElts);
2584 }
2585 
2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2587   V = peekThroughExtractSubvectors(V);
2588 
2589   EVT VT = V.getValueType();
2590   unsigned Opcode = V.getOpcode();
2591   switch (Opcode) {
2592   default: {
2593     APInt UndefElts;
2594     APInt DemandedElts;
2595 
2596     if (!VT.isScalableVector())
2597       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2598 
2599     if (isSplatValue(V, DemandedElts, UndefElts)) {
2600       if (VT.isScalableVector()) {
2601         // DemandedElts and UndefElts are ignored for scalable vectors, since
2602         // the only supported cases are SPLAT_VECTOR nodes.
2603         SplatIdx = 0;
2604       } else {
2605         // Handle case where all demanded elements are UNDEF.
2606         if (DemandedElts.isSubsetOf(UndefElts)) {
2607           SplatIdx = 0;
2608           return getUNDEF(VT);
2609         }
2610         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2611       }
2612       return V;
2613     }
2614     break;
2615   }
2616   case ISD::SPLAT_VECTOR:
2617     SplatIdx = 0;
2618     return V;
2619   case ISD::VECTOR_SHUFFLE: {
2620     if (VT.isScalableVector())
2621       return SDValue();
2622 
2623     // Check if this is a shuffle node doing a splat.
2624     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2625     // getTargetVShiftNode currently struggles without the splat source.
2626     auto *SVN = cast<ShuffleVectorSDNode>(V);
2627     if (!SVN->isSplat())
2628       break;
2629     int Idx = SVN->getSplatIndex();
2630     int NumElts = V.getValueType().getVectorNumElements();
2631     SplatIdx = Idx % NumElts;
2632     return V.getOperand(Idx / NumElts);
2633   }
2634   }
2635 
2636   return SDValue();
2637 }
2638 
2639 SDValue SelectionDAG::getSplatValue(SDValue V) {
2640   int SplatIdx;
2641   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2642     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2643                    SrcVector.getValueType().getScalarType(), SrcVector,
2644                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2645   return SDValue();
2646 }
2647 
2648 const APInt *
2649 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2650                                           const APInt &DemandedElts) const {
2651   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2652           V.getOpcode() == ISD::SRA) &&
2653          "Unknown shift node");
2654   unsigned BitWidth = V.getScalarValueSizeInBits();
2655   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2656     // Shifting more than the bitwidth is not valid.
2657     const APInt &ShAmt = SA->getAPIntValue();
2658     if (ShAmt.ult(BitWidth))
2659       return &ShAmt;
2660   }
2661   return nullptr;
2662 }
2663 
2664 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2665     SDValue V, const APInt &DemandedElts) const {
2666   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2667           V.getOpcode() == ISD::SRA) &&
2668          "Unknown shift node");
2669   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2670     return ValidAmt;
2671   unsigned BitWidth = V.getScalarValueSizeInBits();
2672   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2673   if (!BV)
2674     return nullptr;
2675   const APInt *MinShAmt = nullptr;
2676   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2677     if (!DemandedElts[i])
2678       continue;
2679     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2680     if (!SA)
2681       return nullptr;
2682     // Shifting more than the bitwidth is not valid.
2683     const APInt &ShAmt = SA->getAPIntValue();
2684     if (ShAmt.uge(BitWidth))
2685       return nullptr;
2686     if (MinShAmt && MinShAmt->ule(ShAmt))
2687       continue;
2688     MinShAmt = &ShAmt;
2689   }
2690   return MinShAmt;
2691 }
2692 
2693 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2694     SDValue V, const APInt &DemandedElts) const {
2695   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2696           V.getOpcode() == ISD::SRA) &&
2697          "Unknown shift node");
2698   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2699     return ValidAmt;
2700   unsigned BitWidth = V.getScalarValueSizeInBits();
2701   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2702   if (!BV)
2703     return nullptr;
2704   const APInt *MaxShAmt = nullptr;
2705   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2706     if (!DemandedElts[i])
2707       continue;
2708     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2709     if (!SA)
2710       return nullptr;
2711     // Shifting more than the bitwidth is not valid.
2712     const APInt &ShAmt = SA->getAPIntValue();
2713     if (ShAmt.uge(BitWidth))
2714       return nullptr;
2715     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2716       continue;
2717     MaxShAmt = &ShAmt;
2718   }
2719   return MaxShAmt;
2720 }
2721 
2722 /// Determine which bits of Op are known to be either zero or one and return
2723 /// them in Known. For vectors, the known bits are those that are shared by
2724 /// every vector element.
2725 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2726   EVT VT = Op.getValueType();
2727 
2728   // TOOD: Until we have a plan for how to represent demanded elements for
2729   // scalable vectors, we can just bail out for now.
2730   if (Op.getValueType().isScalableVector()) {
2731     unsigned BitWidth = Op.getScalarValueSizeInBits();
2732     return KnownBits(BitWidth);
2733   }
2734 
2735   APInt DemandedElts = VT.isVector()
2736                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2737                            : APInt(1, 1);
2738   return computeKnownBits(Op, DemandedElts, Depth);
2739 }
2740 
2741 /// Determine which bits of Op are known to be either zero or one and return
2742 /// them in Known. The DemandedElts argument allows us to only collect the known
2743 /// bits that are shared by the requested vector elements.
2744 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2745                                          unsigned Depth) const {
2746   unsigned BitWidth = Op.getScalarValueSizeInBits();
2747 
2748   KnownBits Known(BitWidth);   // Don't know anything.
2749 
2750   // TOOD: Until we have a plan for how to represent demanded elements for
2751   // scalable vectors, we can just bail out for now.
2752   if (Op.getValueType().isScalableVector())
2753     return Known;
2754 
2755   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2756     // We know all of the bits for a constant!
2757     return KnownBits::makeConstant(C->getAPIntValue());
2758   }
2759   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2760     // We know all of the bits for a constant fp!
2761     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2762   }
2763 
2764   if (Depth >= MaxRecursionDepth)
2765     return Known;  // Limit search depth.
2766 
2767   KnownBits Known2;
2768   unsigned NumElts = DemandedElts.getBitWidth();
2769   assert((!Op.getValueType().isVector() ||
2770           NumElts == Op.getValueType().getVectorNumElements()) &&
2771          "Unexpected vector size");
2772 
2773   if (!DemandedElts)
2774     return Known;  // No demanded elts, better to assume we don't know anything.
2775 
2776   unsigned Opcode = Op.getOpcode();
2777   switch (Opcode) {
2778   case ISD::BUILD_VECTOR:
2779     // Collect the known bits that are shared by every demanded vector element.
2780     Known.Zero.setAllBits(); Known.One.setAllBits();
2781     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2782       if (!DemandedElts[i])
2783         continue;
2784 
2785       SDValue SrcOp = Op.getOperand(i);
2786       Known2 = computeKnownBits(SrcOp, Depth + 1);
2787 
2788       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2789       if (SrcOp.getValueSizeInBits() != BitWidth) {
2790         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2791                "Expected BUILD_VECTOR implicit truncation");
2792         Known2 = Known2.trunc(BitWidth);
2793       }
2794 
2795       // Known bits are the values that are shared by every demanded element.
2796       Known = KnownBits::commonBits(Known, Known2);
2797 
2798       // If we don't know any bits, early out.
2799       if (Known.isUnknown())
2800         break;
2801     }
2802     break;
2803   case ISD::VECTOR_SHUFFLE: {
2804     // Collect the known bits that are shared by every vector element referenced
2805     // by the shuffle.
2806     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2807     Known.Zero.setAllBits(); Known.One.setAllBits();
2808     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2809     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2810     for (unsigned i = 0; i != NumElts; ++i) {
2811       if (!DemandedElts[i])
2812         continue;
2813 
2814       int M = SVN->getMaskElt(i);
2815       if (M < 0) {
2816         // For UNDEF elements, we don't know anything about the common state of
2817         // the shuffle result.
2818         Known.resetAll();
2819         DemandedLHS.clearAllBits();
2820         DemandedRHS.clearAllBits();
2821         break;
2822       }
2823 
2824       if ((unsigned)M < NumElts)
2825         DemandedLHS.setBit((unsigned)M % NumElts);
2826       else
2827         DemandedRHS.setBit((unsigned)M % NumElts);
2828     }
2829     // Known bits are the values that are shared by every demanded element.
2830     if (!!DemandedLHS) {
2831       SDValue LHS = Op.getOperand(0);
2832       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2833       Known = KnownBits::commonBits(Known, Known2);
2834     }
2835     // If we don't know any bits, early out.
2836     if (Known.isUnknown())
2837       break;
2838     if (!!DemandedRHS) {
2839       SDValue RHS = Op.getOperand(1);
2840       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2841       Known = KnownBits::commonBits(Known, Known2);
2842     }
2843     break;
2844   }
2845   case ISD::CONCAT_VECTORS: {
2846     // Split DemandedElts and test each of the demanded subvectors.
2847     Known.Zero.setAllBits(); Known.One.setAllBits();
2848     EVT SubVectorVT = Op.getOperand(0).getValueType();
2849     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2850     unsigned NumSubVectors = Op.getNumOperands();
2851     for (unsigned i = 0; i != NumSubVectors; ++i) {
2852       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2853       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2854       if (!!DemandedSub) {
2855         SDValue Sub = Op.getOperand(i);
2856         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2857         Known = KnownBits::commonBits(Known, Known2);
2858       }
2859       // If we don't know any bits, early out.
2860       if (Known.isUnknown())
2861         break;
2862     }
2863     break;
2864   }
2865   case ISD::INSERT_SUBVECTOR: {
2866     // Demand any elements from the subvector and the remainder from the src its
2867     // inserted into.
2868     SDValue Src = Op.getOperand(0);
2869     SDValue Sub = Op.getOperand(1);
2870     uint64_t Idx = Op.getConstantOperandVal(2);
2871     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2872     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2873     APInt DemandedSrcElts = DemandedElts;
2874     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2875 
2876     Known.One.setAllBits();
2877     Known.Zero.setAllBits();
2878     if (!!DemandedSubElts) {
2879       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2880       if (Known.isUnknown())
2881         break; // early-out.
2882     }
2883     if (!!DemandedSrcElts) {
2884       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2885       Known = KnownBits::commonBits(Known, Known2);
2886     }
2887     break;
2888   }
2889   case ISD::EXTRACT_SUBVECTOR: {
2890     // Offset the demanded elts by the subvector index.
2891     SDValue Src = Op.getOperand(0);
2892     // Bail until we can represent demanded elements for scalable vectors.
2893     if (Src.getValueType().isScalableVector())
2894       break;
2895     uint64_t Idx = Op.getConstantOperandVal(1);
2896     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2897     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2898     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2899     break;
2900   }
2901   case ISD::SCALAR_TO_VECTOR: {
2902     // We know about scalar_to_vector as much as we know about it source,
2903     // which becomes the first element of otherwise unknown vector.
2904     if (DemandedElts != 1)
2905       break;
2906 
2907     SDValue N0 = Op.getOperand(0);
2908     Known = computeKnownBits(N0, Depth + 1);
2909     if (N0.getValueSizeInBits() != BitWidth)
2910       Known = Known.trunc(BitWidth);
2911 
2912     break;
2913   }
2914   case ISD::BITCAST: {
2915     SDValue N0 = Op.getOperand(0);
2916     EVT SubVT = N0.getValueType();
2917     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2918 
2919     // Ignore bitcasts from unsupported types.
2920     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2921       break;
2922 
2923     // Fast handling of 'identity' bitcasts.
2924     if (BitWidth == SubBitWidth) {
2925       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2926       break;
2927     }
2928 
2929     bool IsLE = getDataLayout().isLittleEndian();
2930 
2931     // Bitcast 'small element' vector to 'large element' scalar/vector.
2932     if ((BitWidth % SubBitWidth) == 0) {
2933       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2934 
2935       // Collect known bits for the (larger) output by collecting the known
2936       // bits from each set of sub elements and shift these into place.
2937       // We need to separately call computeKnownBits for each set of
2938       // sub elements as the knownbits for each is likely to be different.
2939       unsigned SubScale = BitWidth / SubBitWidth;
2940       APInt SubDemandedElts(NumElts * SubScale, 0);
2941       for (unsigned i = 0; i != NumElts; ++i)
2942         if (DemandedElts[i])
2943           SubDemandedElts.setBit(i * SubScale);
2944 
2945       for (unsigned i = 0; i != SubScale; ++i) {
2946         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2947                          Depth + 1);
2948         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2949         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2950         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2951       }
2952     }
2953 
2954     // Bitcast 'large element' scalar/vector to 'small element' vector.
2955     if ((SubBitWidth % BitWidth) == 0) {
2956       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2957 
2958       // Collect known bits for the (smaller) output by collecting the known
2959       // bits from the overlapping larger input elements and extracting the
2960       // sub sections we actually care about.
2961       unsigned SubScale = SubBitWidth / BitWidth;
2962       APInt SubDemandedElts(NumElts / SubScale, 0);
2963       for (unsigned i = 0; i != NumElts; ++i)
2964         if (DemandedElts[i])
2965           SubDemandedElts.setBit(i / SubScale);
2966 
2967       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2968 
2969       Known.Zero.setAllBits(); Known.One.setAllBits();
2970       for (unsigned i = 0; i != NumElts; ++i)
2971         if (DemandedElts[i]) {
2972           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2973           unsigned Offset = (Shifts % SubScale) * BitWidth;
2974           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2975           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2976           // If we don't know any bits, early out.
2977           if (Known.isUnknown())
2978             break;
2979         }
2980     }
2981     break;
2982   }
2983   case ISD::AND:
2984     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2985     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2986 
2987     Known &= Known2;
2988     break;
2989   case ISD::OR:
2990     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2991     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992 
2993     Known |= Known2;
2994     break;
2995   case ISD::XOR:
2996     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2997     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998 
2999     Known ^= Known2;
3000     break;
3001   case ISD::MUL: {
3002     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3003     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3004     Known = KnownBits::mul(Known, Known2);
3005     break;
3006   }
3007   case ISD::MULHU: {
3008     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3009     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = KnownBits::mulhu(Known, Known2);
3011     break;
3012   }
3013   case ISD::MULHS: {
3014     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3016     Known = KnownBits::mulhs(Known, Known2);
3017     break;
3018   }
3019   case ISD::UMUL_LOHI: {
3020     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3021     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3022     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3023     if (Op.getResNo() == 0)
3024       Known = KnownBits::mul(Known, Known2);
3025     else
3026       Known = KnownBits::mulhu(Known, Known2);
3027     break;
3028   }
3029   case ISD::SMUL_LOHI: {
3030     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3031     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3032     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3033     if (Op.getResNo() == 0)
3034       Known = KnownBits::mul(Known, Known2);
3035     else
3036       Known = KnownBits::mulhs(Known, Known2);
3037     break;
3038   }
3039   case ISD::UDIV: {
3040     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3042     Known = KnownBits::udiv(Known, Known2);
3043     break;
3044   }
3045   case ISD::SELECT:
3046   case ISD::VSELECT:
3047     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3048     // If we don't know any bits, early out.
3049     if (Known.isUnknown())
3050       break;
3051     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3052 
3053     // Only known if known in both the LHS and RHS.
3054     Known = KnownBits::commonBits(Known, Known2);
3055     break;
3056   case ISD::SELECT_CC:
3057     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3058     // If we don't know any bits, early out.
3059     if (Known.isUnknown())
3060       break;
3061     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3062 
3063     // Only known if known in both the LHS and RHS.
3064     Known = KnownBits::commonBits(Known, Known2);
3065     break;
3066   case ISD::SMULO:
3067   case ISD::UMULO:
3068   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3069     if (Op.getResNo() != 1)
3070       break;
3071     // The boolean result conforms to getBooleanContents.
3072     // If we know the result of a setcc has the top bits zero, use this info.
3073     // We know that we have an integer-based boolean since these operations
3074     // are only available for integer.
3075     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3076             TargetLowering::ZeroOrOneBooleanContent &&
3077         BitWidth > 1)
3078       Known.Zero.setBitsFrom(1);
3079     break;
3080   case ISD::SETCC:
3081   case ISD::STRICT_FSETCC:
3082   case ISD::STRICT_FSETCCS: {
3083     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3084     // If we know the result of a setcc has the top bits zero, use this info.
3085     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3086             TargetLowering::ZeroOrOneBooleanContent &&
3087         BitWidth > 1)
3088       Known.Zero.setBitsFrom(1);
3089     break;
3090   }
3091   case ISD::SHL:
3092     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3093     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3094     Known = KnownBits::shl(Known, Known2);
3095 
3096     // Minimum shift low bits are known zero.
3097     if (const APInt *ShMinAmt =
3098             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3099       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3100     break;
3101   case ISD::SRL:
3102     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3103     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3104     Known = KnownBits::lshr(Known, Known2);
3105 
3106     // Minimum shift high bits are known zero.
3107     if (const APInt *ShMinAmt =
3108             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3109       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3110     break;
3111   case ISD::SRA:
3112     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3113     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3114     Known = KnownBits::ashr(Known, Known2);
3115     // TODO: Add minimum shift high known sign bits.
3116     break;
3117   case ISD::FSHL:
3118   case ISD::FSHR:
3119     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3120       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3121 
3122       // For fshl, 0-shift returns the 1st arg.
3123       // For fshr, 0-shift returns the 2nd arg.
3124       if (Amt == 0) {
3125         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3126                                  DemandedElts, Depth + 1);
3127         break;
3128       }
3129 
3130       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3131       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3132       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3133       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3134       if (Opcode == ISD::FSHL) {
3135         Known.One <<= Amt;
3136         Known.Zero <<= Amt;
3137         Known2.One.lshrInPlace(BitWidth - Amt);
3138         Known2.Zero.lshrInPlace(BitWidth - Amt);
3139       } else {
3140         Known.One <<= BitWidth - Amt;
3141         Known.Zero <<= BitWidth - Amt;
3142         Known2.One.lshrInPlace(Amt);
3143         Known2.Zero.lshrInPlace(Amt);
3144       }
3145       Known.One |= Known2.One;
3146       Known.Zero |= Known2.Zero;
3147     }
3148     break;
3149   case ISD::SIGN_EXTEND_INREG: {
3150     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3151     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3152     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3153     break;
3154   }
3155   case ISD::CTTZ:
3156   case ISD::CTTZ_ZERO_UNDEF: {
3157     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3158     // If we have a known 1, its position is our upper bound.
3159     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3160     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3161     Known.Zero.setBitsFrom(LowBits);
3162     break;
3163   }
3164   case ISD::CTLZ:
3165   case ISD::CTLZ_ZERO_UNDEF: {
3166     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167     // If we have a known 1, its position is our upper bound.
3168     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3169     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3170     Known.Zero.setBitsFrom(LowBits);
3171     break;
3172   }
3173   case ISD::CTPOP: {
3174     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     // If we know some of the bits are zero, they can't be one.
3176     unsigned PossibleOnes = Known2.countMaxPopulation();
3177     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3178     break;
3179   }
3180   case ISD::PARITY: {
3181     // Parity returns 0 everywhere but the LSB.
3182     Known.Zero.setBitsFrom(1);
3183     break;
3184   }
3185   case ISD::LOAD: {
3186     LoadSDNode *LD = cast<LoadSDNode>(Op);
3187     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3188     if (ISD::isNON_EXTLoad(LD) && Cst) {
3189       // Determine any common known bits from the loaded constant pool value.
3190       Type *CstTy = Cst->getType();
3191       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3192         // If its a vector splat, then we can (quickly) reuse the scalar path.
3193         // NOTE: We assume all elements match and none are UNDEF.
3194         if (CstTy->isVectorTy()) {
3195           if (const Constant *Splat = Cst->getSplatValue()) {
3196             Cst = Splat;
3197             CstTy = Cst->getType();
3198           }
3199         }
3200         // TODO - do we need to handle different bitwidths?
3201         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3202           // Iterate across all vector elements finding common known bits.
3203           Known.One.setAllBits();
3204           Known.Zero.setAllBits();
3205           for (unsigned i = 0; i != NumElts; ++i) {
3206             if (!DemandedElts[i])
3207               continue;
3208             if (Constant *Elt = Cst->getAggregateElement(i)) {
3209               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3210                 const APInt &Value = CInt->getValue();
3211                 Known.One &= Value;
3212                 Known.Zero &= ~Value;
3213                 continue;
3214               }
3215               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3216                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3217                 Known.One &= Value;
3218                 Known.Zero &= ~Value;
3219                 continue;
3220               }
3221             }
3222             Known.One.clearAllBits();
3223             Known.Zero.clearAllBits();
3224             break;
3225           }
3226         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3227           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3228             Known = KnownBits::makeConstant(CInt->getValue());
3229           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3230             Known =
3231                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3232           }
3233         }
3234       }
3235     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3236       // If this is a ZEXTLoad and we are looking at the loaded value.
3237       EVT VT = LD->getMemoryVT();
3238       unsigned MemBits = VT.getScalarSizeInBits();
3239       Known.Zero.setBitsFrom(MemBits);
3240     } else if (const MDNode *Ranges = LD->getRanges()) {
3241       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3242         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3243     }
3244     break;
3245   }
3246   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3247     EVT InVT = Op.getOperand(0).getValueType();
3248     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3249     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3250     Known = Known.zext(BitWidth);
3251     break;
3252   }
3253   case ISD::ZERO_EXTEND: {
3254     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3255     Known = Known.zext(BitWidth);
3256     break;
3257   }
3258   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3259     EVT InVT = Op.getOperand(0).getValueType();
3260     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3261     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3262     // If the sign bit is known to be zero or one, then sext will extend
3263     // it to the top bits, else it will just zext.
3264     Known = Known.sext(BitWidth);
3265     break;
3266   }
3267   case ISD::SIGN_EXTEND: {
3268     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3269     // If the sign bit is known to be zero or one, then sext will extend
3270     // it to the top bits, else it will just zext.
3271     Known = Known.sext(BitWidth);
3272     break;
3273   }
3274   case ISD::ANY_EXTEND_VECTOR_INREG: {
3275     EVT InVT = Op.getOperand(0).getValueType();
3276     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3277     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3278     Known = Known.anyext(BitWidth);
3279     break;
3280   }
3281   case ISD::ANY_EXTEND: {
3282     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3283     Known = Known.anyext(BitWidth);
3284     break;
3285   }
3286   case ISD::TRUNCATE: {
3287     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3288     Known = Known.trunc(BitWidth);
3289     break;
3290   }
3291   case ISD::AssertZext: {
3292     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3293     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3294     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3295     Known.Zero |= (~InMask);
3296     Known.One  &= (~Known.Zero);
3297     break;
3298   }
3299   case ISD::AssertAlign: {
3300     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3301     assert(LogOfAlign != 0);
3302     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3303     // well as clearing one bits.
3304     Known.Zero.setLowBits(LogOfAlign);
3305     Known.One.clearLowBits(LogOfAlign);
3306     break;
3307   }
3308   case ISD::FGETSIGN:
3309     // All bits are zero except the low bit.
3310     Known.Zero.setBitsFrom(1);
3311     break;
3312   case ISD::USUBO:
3313   case ISD::SSUBO:
3314     if (Op.getResNo() == 1) {
3315       // If we know the result of a setcc has the top bits zero, use this info.
3316       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3317               TargetLowering::ZeroOrOneBooleanContent &&
3318           BitWidth > 1)
3319         Known.Zero.setBitsFrom(1);
3320       break;
3321     }
3322     LLVM_FALLTHROUGH;
3323   case ISD::SUB:
3324   case ISD::SUBC: {
3325     assert(Op.getResNo() == 0 &&
3326            "We only compute knownbits for the difference here.");
3327 
3328     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3329     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3330     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3331                                         Known, Known2);
3332     break;
3333   }
3334   case ISD::UADDO:
3335   case ISD::SADDO:
3336   case ISD::ADDCARRY:
3337     if (Op.getResNo() == 1) {
3338       // If we know the result of a setcc has the top bits zero, use this info.
3339       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3340               TargetLowering::ZeroOrOneBooleanContent &&
3341           BitWidth > 1)
3342         Known.Zero.setBitsFrom(1);
3343       break;
3344     }
3345     LLVM_FALLTHROUGH;
3346   case ISD::ADD:
3347   case ISD::ADDC:
3348   case ISD::ADDE: {
3349     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3350 
3351     // With ADDE and ADDCARRY, a carry bit may be added in.
3352     KnownBits Carry(1);
3353     if (Opcode == ISD::ADDE)
3354       // Can't track carry from glue, set carry to unknown.
3355       Carry.resetAll();
3356     else if (Opcode == ISD::ADDCARRY)
3357       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3358       // the trouble (how often will we find a known carry bit). And I haven't
3359       // tested this very much yet, but something like this might work:
3360       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3361       //   Carry = Carry.zextOrTrunc(1, false);
3362       Carry.resetAll();
3363     else
3364       Carry.setAllZero();
3365 
3366     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3367     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3368     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3369     break;
3370   }
3371   case ISD::SREM: {
3372     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3373     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3374     Known = KnownBits::srem(Known, Known2);
3375     break;
3376   }
3377   case ISD::UREM: {
3378     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3379     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3380     Known = KnownBits::urem(Known, Known2);
3381     break;
3382   }
3383   case ISD::EXTRACT_ELEMENT: {
3384     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3385     const unsigned Index = Op.getConstantOperandVal(1);
3386     const unsigned EltBitWidth = Op.getValueSizeInBits();
3387 
3388     // Remove low part of known bits mask
3389     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3390     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3391 
3392     // Remove high part of known bit mask
3393     Known = Known.trunc(EltBitWidth);
3394     break;
3395   }
3396   case ISD::EXTRACT_VECTOR_ELT: {
3397     SDValue InVec = Op.getOperand(0);
3398     SDValue EltNo = Op.getOperand(1);
3399     EVT VecVT = InVec.getValueType();
3400     // computeKnownBits not yet implemented for scalable vectors.
3401     if (VecVT.isScalableVector())
3402       break;
3403     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3404     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3405 
3406     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3407     // anything about the extended bits.
3408     if (BitWidth > EltBitWidth)
3409       Known = Known.trunc(EltBitWidth);
3410 
3411     // If we know the element index, just demand that vector element, else for
3412     // an unknown element index, ignore DemandedElts and demand them all.
3413     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3414     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3415     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3416       DemandedSrcElts =
3417           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3418 
3419     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3420     if (BitWidth > EltBitWidth)
3421       Known = Known.anyext(BitWidth);
3422     break;
3423   }
3424   case ISD::INSERT_VECTOR_ELT: {
3425     // If we know the element index, split the demand between the
3426     // source vector and the inserted element, otherwise assume we need
3427     // the original demanded vector elements and the value.
3428     SDValue InVec = Op.getOperand(0);
3429     SDValue InVal = Op.getOperand(1);
3430     SDValue EltNo = Op.getOperand(2);
3431     bool DemandedVal = true;
3432     APInt DemandedVecElts = DemandedElts;
3433     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3434     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3435       unsigned EltIdx = CEltNo->getZExtValue();
3436       DemandedVal = !!DemandedElts[EltIdx];
3437       DemandedVecElts.clearBit(EltIdx);
3438     }
3439     Known.One.setAllBits();
3440     Known.Zero.setAllBits();
3441     if (DemandedVal) {
3442       Known2 = computeKnownBits(InVal, Depth + 1);
3443       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3444     }
3445     if (!!DemandedVecElts) {
3446       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3447       Known = KnownBits::commonBits(Known, Known2);
3448     }
3449     break;
3450   }
3451   case ISD::BITREVERSE: {
3452     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3453     Known = Known2.reverseBits();
3454     break;
3455   }
3456   case ISD::BSWAP: {
3457     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known = Known2.byteSwap();
3459     break;
3460   }
3461   case ISD::ABS: {
3462     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known = Known2.abs();
3464     break;
3465   }
3466   case ISD::USUBSAT: {
3467     // The result of usubsat will never be larger than the LHS.
3468     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3469     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3470     break;
3471   }
3472   case ISD::UMIN: {
3473     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3474     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3475     Known = KnownBits::umin(Known, Known2);
3476     break;
3477   }
3478   case ISD::UMAX: {
3479     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3480     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3481     Known = KnownBits::umax(Known, Known2);
3482     break;
3483   }
3484   case ISD::SMIN:
3485   case ISD::SMAX: {
3486     // If we have a clamp pattern, we know that the number of sign bits will be
3487     // the minimum of the clamp min/max range.
3488     bool IsMax = (Opcode == ISD::SMAX);
3489     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3490     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3491       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3492         CstHigh =
3493             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3494     if (CstLow && CstHigh) {
3495       if (!IsMax)
3496         std::swap(CstLow, CstHigh);
3497 
3498       const APInt &ValueLow = CstLow->getAPIntValue();
3499       const APInt &ValueHigh = CstHigh->getAPIntValue();
3500       if (ValueLow.sle(ValueHigh)) {
3501         unsigned LowSignBits = ValueLow.getNumSignBits();
3502         unsigned HighSignBits = ValueHigh.getNumSignBits();
3503         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3504         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3505           Known.One.setHighBits(MinSignBits);
3506           break;
3507         }
3508         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3509           Known.Zero.setHighBits(MinSignBits);
3510           break;
3511         }
3512       }
3513     }
3514 
3515     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3516     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3517     if (IsMax)
3518       Known = KnownBits::smax(Known, Known2);
3519     else
3520       Known = KnownBits::smin(Known, Known2);
3521     break;
3522   }
3523   case ISD::FrameIndex:
3524   case ISD::TargetFrameIndex:
3525     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3526                                        Known, getMachineFunction());
3527     break;
3528 
3529   default:
3530     if (Opcode < ISD::BUILTIN_OP_END)
3531       break;
3532     LLVM_FALLTHROUGH;
3533   case ISD::INTRINSIC_WO_CHAIN:
3534   case ISD::INTRINSIC_W_CHAIN:
3535   case ISD::INTRINSIC_VOID:
3536     // Allow the target to implement this method for its nodes.
3537     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3538     break;
3539   }
3540 
3541   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3542   return Known;
3543 }
3544 
3545 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3546                                                              SDValue N1) const {
3547   // X + 0 never overflow
3548   if (isNullConstant(N1))
3549     return OFK_Never;
3550 
3551   KnownBits N1Known = computeKnownBits(N1);
3552   if (N1Known.Zero.getBoolValue()) {
3553     KnownBits N0Known = computeKnownBits(N0);
3554 
3555     bool overflow;
3556     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3557     if (!overflow)
3558       return OFK_Never;
3559   }
3560 
3561   // mulhi + 1 never overflow
3562   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3563       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3564     return OFK_Never;
3565 
3566   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3567     KnownBits N0Known = computeKnownBits(N0);
3568 
3569     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3570       return OFK_Never;
3571   }
3572 
3573   return OFK_Sometime;
3574 }
3575 
3576 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3577   EVT OpVT = Val.getValueType();
3578   unsigned BitWidth = OpVT.getScalarSizeInBits();
3579 
3580   // Is the constant a known power of 2?
3581   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3582     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3583 
3584   // A left-shift of a constant one will have exactly one bit set because
3585   // shifting the bit off the end is undefined.
3586   if (Val.getOpcode() == ISD::SHL) {
3587     auto *C = isConstOrConstSplat(Val.getOperand(0));
3588     if (C && C->getAPIntValue() == 1)
3589       return true;
3590   }
3591 
3592   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3593   // one bit set.
3594   if (Val.getOpcode() == ISD::SRL) {
3595     auto *C = isConstOrConstSplat(Val.getOperand(0));
3596     if (C && C->getAPIntValue().isSignMask())
3597       return true;
3598   }
3599 
3600   // Are all operands of a build vector constant powers of two?
3601   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3602     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3603           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3604             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3605           return false;
3606         }))
3607       return true;
3608 
3609   // More could be done here, though the above checks are enough
3610   // to handle some common cases.
3611 
3612   // Fall back to computeKnownBits to catch other known cases.
3613   KnownBits Known = computeKnownBits(Val);
3614   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3615 }
3616 
3617 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3618   EVT VT = Op.getValueType();
3619 
3620   // TODO: Assume we don't know anything for now.
3621   if (VT.isScalableVector())
3622     return 1;
3623 
3624   APInt DemandedElts = VT.isVector()
3625                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3626                            : APInt(1, 1);
3627   return ComputeNumSignBits(Op, DemandedElts, Depth);
3628 }
3629 
3630 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3631                                           unsigned Depth) const {
3632   EVT VT = Op.getValueType();
3633   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3634   unsigned VTBits = VT.getScalarSizeInBits();
3635   unsigned NumElts = DemandedElts.getBitWidth();
3636   unsigned Tmp, Tmp2;
3637   unsigned FirstAnswer = 1;
3638 
3639   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3640     const APInt &Val = C->getAPIntValue();
3641     return Val.getNumSignBits();
3642   }
3643 
3644   if (Depth >= MaxRecursionDepth)
3645     return 1;  // Limit search depth.
3646 
3647   if (!DemandedElts || VT.isScalableVector())
3648     return 1;  // No demanded elts, better to assume we don't know anything.
3649 
3650   unsigned Opcode = Op.getOpcode();
3651   switch (Opcode) {
3652   default: break;
3653   case ISD::AssertSext:
3654     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3655     return VTBits-Tmp+1;
3656   case ISD::AssertZext:
3657     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3658     return VTBits-Tmp;
3659 
3660   case ISD::BUILD_VECTOR:
3661     Tmp = VTBits;
3662     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3663       if (!DemandedElts[i])
3664         continue;
3665 
3666       SDValue SrcOp = Op.getOperand(i);
3667       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3668 
3669       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3670       if (SrcOp.getValueSizeInBits() != VTBits) {
3671         assert(SrcOp.getValueSizeInBits() > VTBits &&
3672                "Expected BUILD_VECTOR implicit truncation");
3673         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3674         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3675       }
3676       Tmp = std::min(Tmp, Tmp2);
3677     }
3678     return Tmp;
3679 
3680   case ISD::VECTOR_SHUFFLE: {
3681     // Collect the minimum number of sign bits that are shared by every vector
3682     // element referenced by the shuffle.
3683     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3684     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3685     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3686     for (unsigned i = 0; i != NumElts; ++i) {
3687       int M = SVN->getMaskElt(i);
3688       if (!DemandedElts[i])
3689         continue;
3690       // For UNDEF elements, we don't know anything about the common state of
3691       // the shuffle result.
3692       if (M < 0)
3693         return 1;
3694       if ((unsigned)M < NumElts)
3695         DemandedLHS.setBit((unsigned)M % NumElts);
3696       else
3697         DemandedRHS.setBit((unsigned)M % NumElts);
3698     }
3699     Tmp = std::numeric_limits<unsigned>::max();
3700     if (!!DemandedLHS)
3701       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3702     if (!!DemandedRHS) {
3703       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3704       Tmp = std::min(Tmp, Tmp2);
3705     }
3706     // If we don't know anything, early out and try computeKnownBits fall-back.
3707     if (Tmp == 1)
3708       break;
3709     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3710     return Tmp;
3711   }
3712 
3713   case ISD::BITCAST: {
3714     SDValue N0 = Op.getOperand(0);
3715     EVT SrcVT = N0.getValueType();
3716     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3717 
3718     // Ignore bitcasts from unsupported types..
3719     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3720       break;
3721 
3722     // Fast handling of 'identity' bitcasts.
3723     if (VTBits == SrcBits)
3724       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3725 
3726     bool IsLE = getDataLayout().isLittleEndian();
3727 
3728     // Bitcast 'large element' scalar/vector to 'small element' vector.
3729     if ((SrcBits % VTBits) == 0) {
3730       assert(VT.isVector() && "Expected bitcast to vector");
3731 
3732       unsigned Scale = SrcBits / VTBits;
3733       APInt SrcDemandedElts(NumElts / Scale, 0);
3734       for (unsigned i = 0; i != NumElts; ++i)
3735         if (DemandedElts[i])
3736           SrcDemandedElts.setBit(i / Scale);
3737 
3738       // Fast case - sign splat can be simply split across the small elements.
3739       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3740       if (Tmp == SrcBits)
3741         return VTBits;
3742 
3743       // Slow case - determine how far the sign extends into each sub-element.
3744       Tmp2 = VTBits;
3745       for (unsigned i = 0; i != NumElts; ++i)
3746         if (DemandedElts[i]) {
3747           unsigned SubOffset = i % Scale;
3748           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3749           SubOffset = SubOffset * VTBits;
3750           if (Tmp <= SubOffset)
3751             return 1;
3752           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3753         }
3754       return Tmp2;
3755     }
3756     break;
3757   }
3758 
3759   case ISD::SIGN_EXTEND:
3760     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3761     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3762   case ISD::SIGN_EXTEND_INREG:
3763     // Max of the input and what this extends.
3764     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3765     Tmp = VTBits-Tmp+1;
3766     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3767     return std::max(Tmp, Tmp2);
3768   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3769     SDValue Src = Op.getOperand(0);
3770     EVT SrcVT = Src.getValueType();
3771     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3772     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3773     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3774   }
3775   case ISD::SRA:
3776     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3777     // SRA X, C -> adds C sign bits.
3778     if (const APInt *ShAmt =
3779             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3780       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3781     return Tmp;
3782   case ISD::SHL:
3783     if (const APInt *ShAmt =
3784             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3785       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3786       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3787       if (ShAmt->ult(Tmp))
3788         return Tmp - ShAmt->getZExtValue();
3789     }
3790     break;
3791   case ISD::AND:
3792   case ISD::OR:
3793   case ISD::XOR:    // NOT is handled here.
3794     // Logical binary ops preserve the number of sign bits at the worst.
3795     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3796     if (Tmp != 1) {
3797       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3798       FirstAnswer = std::min(Tmp, Tmp2);
3799       // We computed what we know about the sign bits as our first
3800       // answer. Now proceed to the generic code that uses
3801       // computeKnownBits, and pick whichever answer is better.
3802     }
3803     break;
3804 
3805   case ISD::SELECT:
3806   case ISD::VSELECT:
3807     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3808     if (Tmp == 1) return 1;  // Early out.
3809     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3810     return std::min(Tmp, Tmp2);
3811   case ISD::SELECT_CC:
3812     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3813     if (Tmp == 1) return 1;  // Early out.
3814     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3815     return std::min(Tmp, Tmp2);
3816 
3817   case ISD::SMIN:
3818   case ISD::SMAX: {
3819     // If we have a clamp pattern, we know that the number of sign bits will be
3820     // the minimum of the clamp min/max range.
3821     bool IsMax = (Opcode == ISD::SMAX);
3822     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3823     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3824       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3825         CstHigh =
3826             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3827     if (CstLow && CstHigh) {
3828       if (!IsMax)
3829         std::swap(CstLow, CstHigh);
3830       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3831         Tmp = CstLow->getAPIntValue().getNumSignBits();
3832         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3833         return std::min(Tmp, Tmp2);
3834       }
3835     }
3836 
3837     // Fallback - just get the minimum number of sign bits of the operands.
3838     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3839     if (Tmp == 1)
3840       return 1;  // Early out.
3841     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3842     return std::min(Tmp, Tmp2);
3843   }
3844   case ISD::UMIN:
3845   case ISD::UMAX:
3846     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3847     if (Tmp == 1)
3848       return 1;  // Early out.
3849     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3850     return std::min(Tmp, Tmp2);
3851   case ISD::SADDO:
3852   case ISD::UADDO:
3853   case ISD::SSUBO:
3854   case ISD::USUBO:
3855   case ISD::SMULO:
3856   case ISD::UMULO:
3857     if (Op.getResNo() != 1)
3858       break;
3859     // The boolean result conforms to getBooleanContents.  Fall through.
3860     // If setcc returns 0/-1, all bits are sign bits.
3861     // We know that we have an integer-based boolean since these operations
3862     // are only available for integer.
3863     if (TLI->getBooleanContents(VT.isVector(), false) ==
3864         TargetLowering::ZeroOrNegativeOneBooleanContent)
3865       return VTBits;
3866     break;
3867   case ISD::SETCC:
3868   case ISD::STRICT_FSETCC:
3869   case ISD::STRICT_FSETCCS: {
3870     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3871     // If setcc returns 0/-1, all bits are sign bits.
3872     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3873         TargetLowering::ZeroOrNegativeOneBooleanContent)
3874       return VTBits;
3875     break;
3876   }
3877   case ISD::ROTL:
3878   case ISD::ROTR:
3879     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3880 
3881     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3882     if (Tmp == VTBits)
3883       return VTBits;
3884 
3885     if (ConstantSDNode *C =
3886             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3887       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3888 
3889       // Handle rotate right by N like a rotate left by 32-N.
3890       if (Opcode == ISD::ROTR)
3891         RotAmt = (VTBits - RotAmt) % VTBits;
3892 
3893       // If we aren't rotating out all of the known-in sign bits, return the
3894       // number that are left.  This handles rotl(sext(x), 1) for example.
3895       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3896     }
3897     break;
3898   case ISD::ADD:
3899   case ISD::ADDC:
3900     // Add can have at most one carry bit.  Thus we know that the output
3901     // is, at worst, one more bit than the inputs.
3902     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3903     if (Tmp == 1) return 1; // Early out.
3904 
3905     // Special case decrementing a value (ADD X, -1):
3906     if (ConstantSDNode *CRHS =
3907             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3908       if (CRHS->isAllOnesValue()) {
3909         KnownBits Known =
3910             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3911 
3912         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3913         // sign bits set.
3914         if ((Known.Zero | 1).isAllOnesValue())
3915           return VTBits;
3916 
3917         // If we are subtracting one from a positive number, there is no carry
3918         // out of the result.
3919         if (Known.isNonNegative())
3920           return Tmp;
3921       }
3922 
3923     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3924     if (Tmp2 == 1) return 1; // Early out.
3925     return std::min(Tmp, Tmp2) - 1;
3926   case ISD::SUB:
3927     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3928     if (Tmp2 == 1) return 1; // Early out.
3929 
3930     // Handle NEG.
3931     if (ConstantSDNode *CLHS =
3932             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3933       if (CLHS->isNullValue()) {
3934         KnownBits Known =
3935             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3936         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3937         // sign bits set.
3938         if ((Known.Zero | 1).isAllOnesValue())
3939           return VTBits;
3940 
3941         // If the input is known to be positive (the sign bit is known clear),
3942         // the output of the NEG has the same number of sign bits as the input.
3943         if (Known.isNonNegative())
3944           return Tmp2;
3945 
3946         // Otherwise, we treat this like a SUB.
3947       }
3948 
3949     // Sub can have at most one carry bit.  Thus we know that the output
3950     // is, at worst, one more bit than the inputs.
3951     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952     if (Tmp == 1) return 1; // Early out.
3953     return std::min(Tmp, Tmp2) - 1;
3954   case ISD::MUL: {
3955     // The output of the Mul can be at most twice the valid bits in the inputs.
3956     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3957     if (SignBitsOp0 == 1)
3958       break;
3959     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3960     if (SignBitsOp1 == 1)
3961       break;
3962     unsigned OutValidBits =
3963         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3964     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3965   }
3966   case ISD::SREM:
3967     // The sign bit is the LHS's sign bit, except when the result of the
3968     // remainder is zero. The magnitude of the result should be less than or
3969     // equal to the magnitude of the LHS. Therefore, the result should have
3970     // at least as many sign bits as the left hand side.
3971     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3972   case ISD::TRUNCATE: {
3973     // Check if the sign bits of source go down as far as the truncated value.
3974     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3975     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3976     if (NumSrcSignBits > (NumSrcBits - VTBits))
3977       return NumSrcSignBits - (NumSrcBits - VTBits);
3978     break;
3979   }
3980   case ISD::EXTRACT_ELEMENT: {
3981     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3982     const int BitWidth = Op.getValueSizeInBits();
3983     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3984 
3985     // Get reverse index (starting from 1), Op1 value indexes elements from
3986     // little end. Sign starts at big end.
3987     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3988 
3989     // If the sign portion ends in our element the subtraction gives correct
3990     // result. Otherwise it gives either negative or > bitwidth result
3991     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3992   }
3993   case ISD::INSERT_VECTOR_ELT: {
3994     // If we know the element index, split the demand between the
3995     // source vector and the inserted element, otherwise assume we need
3996     // the original demanded vector elements and the value.
3997     SDValue InVec = Op.getOperand(0);
3998     SDValue InVal = Op.getOperand(1);
3999     SDValue EltNo = Op.getOperand(2);
4000     bool DemandedVal = true;
4001     APInt DemandedVecElts = DemandedElts;
4002     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4003     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4004       unsigned EltIdx = CEltNo->getZExtValue();
4005       DemandedVal = !!DemandedElts[EltIdx];
4006       DemandedVecElts.clearBit(EltIdx);
4007     }
4008     Tmp = std::numeric_limits<unsigned>::max();
4009     if (DemandedVal) {
4010       // TODO - handle implicit truncation of inserted elements.
4011       if (InVal.getScalarValueSizeInBits() != VTBits)
4012         break;
4013       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4014       Tmp = std::min(Tmp, Tmp2);
4015     }
4016     if (!!DemandedVecElts) {
4017       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4018       Tmp = std::min(Tmp, Tmp2);
4019     }
4020     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4021     return Tmp;
4022   }
4023   case ISD::EXTRACT_VECTOR_ELT: {
4024     SDValue InVec = Op.getOperand(0);
4025     SDValue EltNo = Op.getOperand(1);
4026     EVT VecVT = InVec.getValueType();
4027     // ComputeNumSignBits not yet implemented for scalable vectors.
4028     if (VecVT.isScalableVector())
4029       break;
4030     const unsigned BitWidth = Op.getValueSizeInBits();
4031     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4032     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4033 
4034     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4035     // anything about sign bits. But if the sizes match we can derive knowledge
4036     // about sign bits from the vector operand.
4037     if (BitWidth != EltBitWidth)
4038       break;
4039 
4040     // If we know the element index, just demand that vector element, else for
4041     // an unknown element index, ignore DemandedElts and demand them all.
4042     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4043     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4044     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4045       DemandedSrcElts =
4046           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4047 
4048     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4049   }
4050   case ISD::EXTRACT_SUBVECTOR: {
4051     // Offset the demanded elts by the subvector index.
4052     SDValue Src = Op.getOperand(0);
4053     // Bail until we can represent demanded elements for scalable vectors.
4054     if (Src.getValueType().isScalableVector())
4055       break;
4056     uint64_t Idx = Op.getConstantOperandVal(1);
4057     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4058     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4059     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4060   }
4061   case ISD::CONCAT_VECTORS: {
4062     // Determine the minimum number of sign bits across all demanded
4063     // elts of the input vectors. Early out if the result is already 1.
4064     Tmp = std::numeric_limits<unsigned>::max();
4065     EVT SubVectorVT = Op.getOperand(0).getValueType();
4066     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4067     unsigned NumSubVectors = Op.getNumOperands();
4068     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4069       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4070       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4071       if (!DemandedSub)
4072         continue;
4073       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4074       Tmp = std::min(Tmp, Tmp2);
4075     }
4076     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4077     return Tmp;
4078   }
4079   case ISD::INSERT_SUBVECTOR: {
4080     // Demand any elements from the subvector and the remainder from the src its
4081     // inserted into.
4082     SDValue Src = Op.getOperand(0);
4083     SDValue Sub = Op.getOperand(1);
4084     uint64_t Idx = Op.getConstantOperandVal(2);
4085     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4086     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4087     APInt DemandedSrcElts = DemandedElts;
4088     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4089 
4090     Tmp = std::numeric_limits<unsigned>::max();
4091     if (!!DemandedSubElts) {
4092       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4093       if (Tmp == 1)
4094         return 1; // early-out
4095     }
4096     if (!!DemandedSrcElts) {
4097       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4098       Tmp = std::min(Tmp, Tmp2);
4099     }
4100     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4101     return Tmp;
4102   }
4103   }
4104 
4105   // If we are looking at the loaded value of the SDNode.
4106   if (Op.getResNo() == 0) {
4107     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4108     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4109       unsigned ExtType = LD->getExtensionType();
4110       switch (ExtType) {
4111       default: break;
4112       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4113         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4114         return VTBits - Tmp + 1;
4115       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4116         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4117         return VTBits - Tmp;
4118       case ISD::NON_EXTLOAD:
4119         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4120           // We only need to handle vectors - computeKnownBits should handle
4121           // scalar cases.
4122           Type *CstTy = Cst->getType();
4123           if (CstTy->isVectorTy() &&
4124               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4125             Tmp = VTBits;
4126             for (unsigned i = 0; i != NumElts; ++i) {
4127               if (!DemandedElts[i])
4128                 continue;
4129               if (Constant *Elt = Cst->getAggregateElement(i)) {
4130                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4131                   const APInt &Value = CInt->getValue();
4132                   Tmp = std::min(Tmp, Value.getNumSignBits());
4133                   continue;
4134                 }
4135                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4136                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4137                   Tmp = std::min(Tmp, Value.getNumSignBits());
4138                   continue;
4139                 }
4140               }
4141               // Unknown type. Conservatively assume no bits match sign bit.
4142               return 1;
4143             }
4144             return Tmp;
4145           }
4146         }
4147         break;
4148       }
4149     }
4150   }
4151 
4152   // Allow the target to implement this method for its nodes.
4153   if (Opcode >= ISD::BUILTIN_OP_END ||
4154       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4155       Opcode == ISD::INTRINSIC_W_CHAIN ||
4156       Opcode == ISD::INTRINSIC_VOID) {
4157     unsigned NumBits =
4158         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4159     if (NumBits > 1)
4160       FirstAnswer = std::max(FirstAnswer, NumBits);
4161   }
4162 
4163   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4164   // use this information.
4165   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4166 
4167   APInt Mask;
4168   if (Known.isNonNegative()) {        // sign bit is 0
4169     Mask = Known.Zero;
4170   } else if (Known.isNegative()) {  // sign bit is 1;
4171     Mask = Known.One;
4172   } else {
4173     // Nothing known.
4174     return FirstAnswer;
4175   }
4176 
4177   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4178   // the number of identical bits in the top of the input value.
4179   Mask <<= Mask.getBitWidth()-VTBits;
4180   return std::max(FirstAnswer, Mask.countLeadingOnes());
4181 }
4182 
4183 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4184   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4185       !isa<ConstantSDNode>(Op.getOperand(1)))
4186     return false;
4187 
4188   if (Op.getOpcode() == ISD::OR &&
4189       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4190     return false;
4191 
4192   return true;
4193 }
4194 
4195 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4196   // If we're told that NaNs won't happen, assume they won't.
4197   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4198     return true;
4199 
4200   if (Depth >= MaxRecursionDepth)
4201     return false; // Limit search depth.
4202 
4203   // TODO: Handle vectors.
4204   // If the value is a constant, we can obviously see if it is a NaN or not.
4205   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4206     return !C->getValueAPF().isNaN() ||
4207            (SNaN && !C->getValueAPF().isSignaling());
4208   }
4209 
4210   unsigned Opcode = Op.getOpcode();
4211   switch (Opcode) {
4212   case ISD::FADD:
4213   case ISD::FSUB:
4214   case ISD::FMUL:
4215   case ISD::FDIV:
4216   case ISD::FREM:
4217   case ISD::FSIN:
4218   case ISD::FCOS: {
4219     if (SNaN)
4220       return true;
4221     // TODO: Need isKnownNeverInfinity
4222     return false;
4223   }
4224   case ISD::FCANONICALIZE:
4225   case ISD::FEXP:
4226   case ISD::FEXP2:
4227   case ISD::FTRUNC:
4228   case ISD::FFLOOR:
4229   case ISD::FCEIL:
4230   case ISD::FROUND:
4231   case ISD::FROUNDEVEN:
4232   case ISD::FRINT:
4233   case ISD::FNEARBYINT: {
4234     if (SNaN)
4235       return true;
4236     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4237   }
4238   case ISD::FABS:
4239   case ISD::FNEG:
4240   case ISD::FCOPYSIGN: {
4241     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4242   }
4243   case ISD::SELECT:
4244     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4245            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4246   case ISD::FP_EXTEND:
4247   case ISD::FP_ROUND: {
4248     if (SNaN)
4249       return true;
4250     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4251   }
4252   case ISD::SINT_TO_FP:
4253   case ISD::UINT_TO_FP:
4254     return true;
4255   case ISD::FMA:
4256   case ISD::FMAD: {
4257     if (SNaN)
4258       return true;
4259     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4260            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4261            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4262   }
4263   case ISD::FSQRT: // Need is known positive
4264   case ISD::FLOG:
4265   case ISD::FLOG2:
4266   case ISD::FLOG10:
4267   case ISD::FPOWI:
4268   case ISD::FPOW: {
4269     if (SNaN)
4270       return true;
4271     // TODO: Refine on operand
4272     return false;
4273   }
4274   case ISD::FMINNUM:
4275   case ISD::FMAXNUM: {
4276     // Only one needs to be known not-nan, since it will be returned if the
4277     // other ends up being one.
4278     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4279            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4280   }
4281   case ISD::FMINNUM_IEEE:
4282   case ISD::FMAXNUM_IEEE: {
4283     if (SNaN)
4284       return true;
4285     // This can return a NaN if either operand is an sNaN, or if both operands
4286     // are NaN.
4287     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4288             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4289            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4290             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4291   }
4292   case ISD::FMINIMUM:
4293   case ISD::FMAXIMUM: {
4294     // TODO: Does this quiet or return the origina NaN as-is?
4295     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4296            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4297   }
4298   case ISD::EXTRACT_VECTOR_ELT: {
4299     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4300   }
4301   default:
4302     if (Opcode >= ISD::BUILTIN_OP_END ||
4303         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4304         Opcode == ISD::INTRINSIC_W_CHAIN ||
4305         Opcode == ISD::INTRINSIC_VOID) {
4306       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4307     }
4308 
4309     return false;
4310   }
4311 }
4312 
4313 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4314   assert(Op.getValueType().isFloatingPoint() &&
4315          "Floating point type expected");
4316 
4317   // If the value is a constant, we can obviously see if it is a zero or not.
4318   // TODO: Add BuildVector support.
4319   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4320     return !C->isZero();
4321   return false;
4322 }
4323 
4324 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4325   assert(!Op.getValueType().isFloatingPoint() &&
4326          "Floating point types unsupported - use isKnownNeverZeroFloat");
4327 
4328   // If the value is a constant, we can obviously see if it is a zero or not.
4329   if (ISD::matchUnaryPredicate(
4330           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4331     return true;
4332 
4333   // TODO: Recognize more cases here.
4334   switch (Op.getOpcode()) {
4335   default: break;
4336   case ISD::OR:
4337     if (isKnownNeverZero(Op.getOperand(1)) ||
4338         isKnownNeverZero(Op.getOperand(0)))
4339       return true;
4340     break;
4341   }
4342 
4343   return false;
4344 }
4345 
4346 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4347   // Check the obvious case.
4348   if (A == B) return true;
4349 
4350   // For for negative and positive zero.
4351   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4352     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4353       if (CA->isZero() && CB->isZero()) return true;
4354 
4355   // Otherwise they may not be equal.
4356   return false;
4357 }
4358 
4359 // FIXME: unify with llvm::haveNoCommonBitsSet.
4360 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4361 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4362   assert(A.getValueType() == B.getValueType() &&
4363          "Values must have the same type");
4364   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4365                                         computeKnownBits(B));
4366 }
4367 
4368 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4369                                SelectionDAG &DAG) {
4370   if (cast<ConstantSDNode>(Step)->isNullValue())
4371     return DAG.getConstant(0, DL, VT);
4372 
4373   return SDValue();
4374 }
4375 
4376 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4377                                 ArrayRef<SDValue> Ops,
4378                                 SelectionDAG &DAG) {
4379   int NumOps = Ops.size();
4380   assert(NumOps != 0 && "Can't build an empty vector!");
4381   assert(!VT.isScalableVector() &&
4382          "BUILD_VECTOR cannot be used with scalable types");
4383   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4384          "Incorrect element count in BUILD_VECTOR!");
4385 
4386   // BUILD_VECTOR of UNDEFs is UNDEF.
4387   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4388     return DAG.getUNDEF(VT);
4389 
4390   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4391   SDValue IdentitySrc;
4392   bool IsIdentity = true;
4393   for (int i = 0; i != NumOps; ++i) {
4394     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4395         Ops[i].getOperand(0).getValueType() != VT ||
4396         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4397         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4398         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4399       IsIdentity = false;
4400       break;
4401     }
4402     IdentitySrc = Ops[i].getOperand(0);
4403   }
4404   if (IsIdentity)
4405     return IdentitySrc;
4406 
4407   return SDValue();
4408 }
4409 
4410 /// Try to simplify vector concatenation to an input value, undef, or build
4411 /// vector.
4412 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4413                                   ArrayRef<SDValue> Ops,
4414                                   SelectionDAG &DAG) {
4415   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4416   assert(llvm::all_of(Ops,
4417                       [Ops](SDValue Op) {
4418                         return Ops[0].getValueType() == Op.getValueType();
4419                       }) &&
4420          "Concatenation of vectors with inconsistent value types!");
4421   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4422              VT.getVectorElementCount() &&
4423          "Incorrect element count in vector concatenation!");
4424 
4425   if (Ops.size() == 1)
4426     return Ops[0];
4427 
4428   // Concat of UNDEFs is UNDEF.
4429   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4430     return DAG.getUNDEF(VT);
4431 
4432   // Scan the operands and look for extract operations from a single source
4433   // that correspond to insertion at the same location via this concatenation:
4434   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4435   SDValue IdentitySrc;
4436   bool IsIdentity = true;
4437   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4438     SDValue Op = Ops[i];
4439     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4440     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4441         Op.getOperand(0).getValueType() != VT ||
4442         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4443         Op.getConstantOperandVal(1) != IdentityIndex) {
4444       IsIdentity = false;
4445       break;
4446     }
4447     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4448            "Unexpected identity source vector for concat of extracts");
4449     IdentitySrc = Op.getOperand(0);
4450   }
4451   if (IsIdentity) {
4452     assert(IdentitySrc && "Failed to set source vector of extracts");
4453     return IdentitySrc;
4454   }
4455 
4456   // The code below this point is only designed to work for fixed width
4457   // vectors, so we bail out for now.
4458   if (VT.isScalableVector())
4459     return SDValue();
4460 
4461   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4462   // simplified to one big BUILD_VECTOR.
4463   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4464   EVT SVT = VT.getScalarType();
4465   SmallVector<SDValue, 16> Elts;
4466   for (SDValue Op : Ops) {
4467     EVT OpVT = Op.getValueType();
4468     if (Op.isUndef())
4469       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4470     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4471       Elts.append(Op->op_begin(), Op->op_end());
4472     else
4473       return SDValue();
4474   }
4475 
4476   // BUILD_VECTOR requires all inputs to be of the same type, find the
4477   // maximum type and extend them all.
4478   for (SDValue Op : Elts)
4479     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4480 
4481   if (SVT.bitsGT(VT.getScalarType())) {
4482     for (SDValue &Op : Elts) {
4483       if (Op.isUndef())
4484         Op = DAG.getUNDEF(SVT);
4485       else
4486         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4487                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4488                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4489     }
4490   }
4491 
4492   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4493   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4494   return V;
4495 }
4496 
4497 /// Gets or creates the specified node.
4498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4499   FoldingSetNodeID ID;
4500   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4501   void *IP = nullptr;
4502   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4503     return SDValue(E, 0);
4504 
4505   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4506                               getVTList(VT));
4507   CSEMap.InsertNode(N, IP);
4508 
4509   InsertNode(N);
4510   SDValue V = SDValue(N, 0);
4511   NewSDValueDbgMsg(V, "Creating new node: ", this);
4512   return V;
4513 }
4514 
4515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4516                               SDValue Operand) {
4517   SDNodeFlags Flags;
4518   if (Inserter)
4519     Flags = Inserter->getFlags();
4520   return getNode(Opcode, DL, VT, Operand, Flags);
4521 }
4522 
4523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4524                               SDValue Operand, const SDNodeFlags Flags) {
4525   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4526          "Operand is DELETED_NODE!");
4527   // Constant fold unary operations with an integer constant operand. Even
4528   // opaque constant will be folded, because the folding of unary operations
4529   // doesn't create new constants with different values. Nevertheless, the
4530   // opaque flag is preserved during folding to prevent future folding with
4531   // other constants.
4532   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4533     const APInt &Val = C->getAPIntValue();
4534     switch (Opcode) {
4535     default: break;
4536     case ISD::SIGN_EXTEND:
4537       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4538                          C->isTargetOpcode(), C->isOpaque());
4539     case ISD::TRUNCATE:
4540       if (C->isOpaque())
4541         break;
4542       LLVM_FALLTHROUGH;
4543     case ISD::ANY_EXTEND:
4544     case ISD::ZERO_EXTEND:
4545       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4546                          C->isTargetOpcode(), C->isOpaque());
4547     case ISD::UINT_TO_FP:
4548     case ISD::SINT_TO_FP: {
4549       APFloat apf(EVTToAPFloatSemantics(VT),
4550                   APInt::getNullValue(VT.getSizeInBits()));
4551       (void)apf.convertFromAPInt(Val,
4552                                  Opcode==ISD::SINT_TO_FP,
4553                                  APFloat::rmNearestTiesToEven);
4554       return getConstantFP(apf, DL, VT);
4555     }
4556     case ISD::BITCAST:
4557       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4558         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4559       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4560         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4561       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4562         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4563       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4564         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4565       break;
4566     case ISD::ABS:
4567       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4568                          C->isOpaque());
4569     case ISD::BITREVERSE:
4570       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4571                          C->isOpaque());
4572     case ISD::BSWAP:
4573       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4574                          C->isOpaque());
4575     case ISD::CTPOP:
4576       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4577                          C->isOpaque());
4578     case ISD::CTLZ:
4579     case ISD::CTLZ_ZERO_UNDEF:
4580       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4581                          C->isOpaque());
4582     case ISD::CTTZ:
4583     case ISD::CTTZ_ZERO_UNDEF:
4584       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4585                          C->isOpaque());
4586     case ISD::FP16_TO_FP: {
4587       bool Ignored;
4588       APFloat FPV(APFloat::IEEEhalf(),
4589                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4590 
4591       // This can return overflow, underflow, or inexact; we don't care.
4592       // FIXME need to be more flexible about rounding mode.
4593       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4594                         APFloat::rmNearestTiesToEven, &Ignored);
4595       return getConstantFP(FPV, DL, VT);
4596     }
4597     case ISD::STEP_VECTOR: {
4598       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4599         return V;
4600       break;
4601     }
4602     }
4603   }
4604 
4605   // Constant fold unary operations with a floating point constant operand.
4606   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4607     APFloat V = C->getValueAPF();    // make copy
4608     switch (Opcode) {
4609     case ISD::FNEG:
4610       V.changeSign();
4611       return getConstantFP(V, DL, VT);
4612     case ISD::FABS:
4613       V.clearSign();
4614       return getConstantFP(V, DL, VT);
4615     case ISD::FCEIL: {
4616       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4617       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4618         return getConstantFP(V, DL, VT);
4619       break;
4620     }
4621     case ISD::FTRUNC: {
4622       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4623       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4624         return getConstantFP(V, DL, VT);
4625       break;
4626     }
4627     case ISD::FFLOOR: {
4628       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4629       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4630         return getConstantFP(V, DL, VT);
4631       break;
4632     }
4633     case ISD::FP_EXTEND: {
4634       bool ignored;
4635       // This can return overflow, underflow, or inexact; we don't care.
4636       // FIXME need to be more flexible about rounding mode.
4637       (void)V.convert(EVTToAPFloatSemantics(VT),
4638                       APFloat::rmNearestTiesToEven, &ignored);
4639       return getConstantFP(V, DL, VT);
4640     }
4641     case ISD::FP_TO_SINT:
4642     case ISD::FP_TO_UINT: {
4643       bool ignored;
4644       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4645       // FIXME need to be more flexible about rounding mode.
4646       APFloat::opStatus s =
4647           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4648       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4649         break;
4650       return getConstant(IntVal, DL, VT);
4651     }
4652     case ISD::BITCAST:
4653       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4654         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4655       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4656         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4657       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4658         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4659       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4660         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4661       break;
4662     case ISD::FP_TO_FP16: {
4663       bool Ignored;
4664       // This can return overflow, underflow, or inexact; we don't care.
4665       // FIXME need to be more flexible about rounding mode.
4666       (void)V.convert(APFloat::IEEEhalf(),
4667                       APFloat::rmNearestTiesToEven, &Ignored);
4668       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4669     }
4670     }
4671   }
4672 
4673   // Constant fold unary operations with a vector integer or float operand.
4674   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4675     if (BV->isConstant()) {
4676       switch (Opcode) {
4677       default:
4678         // FIXME: Entirely reasonable to perform folding of other unary
4679         // operations here as the need arises.
4680         break;
4681       case ISD::FNEG:
4682       case ISD::FABS:
4683       case ISD::FCEIL:
4684       case ISD::FTRUNC:
4685       case ISD::FFLOOR:
4686       case ISD::FP_EXTEND:
4687       case ISD::FP_TO_SINT:
4688       case ISD::FP_TO_UINT:
4689       case ISD::TRUNCATE:
4690       case ISD::ANY_EXTEND:
4691       case ISD::ZERO_EXTEND:
4692       case ISD::SIGN_EXTEND:
4693       case ISD::UINT_TO_FP:
4694       case ISD::SINT_TO_FP:
4695       case ISD::ABS:
4696       case ISD::BITREVERSE:
4697       case ISD::BSWAP:
4698       case ISD::CTLZ:
4699       case ISD::CTLZ_ZERO_UNDEF:
4700       case ISD::CTTZ:
4701       case ISD::CTTZ_ZERO_UNDEF:
4702       case ISD::CTPOP: {
4703         SDValue Ops = { Operand };
4704         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4705           return Fold;
4706       }
4707       }
4708     }
4709   }
4710 
4711   unsigned OpOpcode = Operand.getNode()->getOpcode();
4712   switch (Opcode) {
4713   case ISD::STEP_VECTOR:
4714     assert(VT.isScalableVector() &&
4715            "STEP_VECTOR can only be used with scalable types");
4716     assert(VT.getScalarSizeInBits() >= 8 &&
4717            "STEP_VECTOR can only be used with vectors of integers that are at "
4718            "least 8 bits wide");
4719     assert(isa<ConstantSDNode>(Operand) &&
4720            cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN(
4721                VT.getScalarSizeInBits()) &&
4722            "Expected STEP_VECTOR integer constant to fit in "
4723            "the vector element type");
4724     break;
4725   case ISD::FREEZE:
4726     assert(VT == Operand.getValueType() && "Unexpected VT!");
4727     break;
4728   case ISD::TokenFactor:
4729   case ISD::MERGE_VALUES:
4730   case ISD::CONCAT_VECTORS:
4731     return Operand;         // Factor, merge or concat of one node?  No need.
4732   case ISD::BUILD_VECTOR: {
4733     // Attempt to simplify BUILD_VECTOR.
4734     SDValue Ops[] = {Operand};
4735     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4736       return V;
4737     break;
4738   }
4739   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4740   case ISD::FP_EXTEND:
4741     assert(VT.isFloatingPoint() &&
4742            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4743     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4744     assert((!VT.isVector() ||
4745             VT.getVectorElementCount() ==
4746             Operand.getValueType().getVectorElementCount()) &&
4747            "Vector element count mismatch!");
4748     assert(Operand.getValueType().bitsLT(VT) &&
4749            "Invalid fpext node, dst < src!");
4750     if (Operand.isUndef())
4751       return getUNDEF(VT);
4752     break;
4753   case ISD::FP_TO_SINT:
4754   case ISD::FP_TO_UINT:
4755     if (Operand.isUndef())
4756       return getUNDEF(VT);
4757     break;
4758   case ISD::SINT_TO_FP:
4759   case ISD::UINT_TO_FP:
4760     // [us]itofp(undef) = 0, because the result value is bounded.
4761     if (Operand.isUndef())
4762       return getConstantFP(0.0, DL, VT);
4763     break;
4764   case ISD::SIGN_EXTEND:
4765     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4766            "Invalid SIGN_EXTEND!");
4767     assert(VT.isVector() == Operand.getValueType().isVector() &&
4768            "SIGN_EXTEND result type type should be vector iff the operand "
4769            "type is vector!");
4770     if (Operand.getValueType() == VT) return Operand;   // noop extension
4771     assert((!VT.isVector() ||
4772             VT.getVectorElementCount() ==
4773                 Operand.getValueType().getVectorElementCount()) &&
4774            "Vector element count mismatch!");
4775     assert(Operand.getValueType().bitsLT(VT) &&
4776            "Invalid sext node, dst < src!");
4777     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4778       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4779     if (OpOpcode == ISD::UNDEF)
4780       // sext(undef) = 0, because the top bits will all be the same.
4781       return getConstant(0, DL, VT);
4782     break;
4783   case ISD::ZERO_EXTEND:
4784     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4785            "Invalid ZERO_EXTEND!");
4786     assert(VT.isVector() == Operand.getValueType().isVector() &&
4787            "ZERO_EXTEND result type type should be vector iff the operand "
4788            "type is vector!");
4789     if (Operand.getValueType() == VT) return Operand;   // noop extension
4790     assert((!VT.isVector() ||
4791             VT.getVectorElementCount() ==
4792                 Operand.getValueType().getVectorElementCount()) &&
4793            "Vector element count mismatch!");
4794     assert(Operand.getValueType().bitsLT(VT) &&
4795            "Invalid zext node, dst < src!");
4796     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4797       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4798     if (OpOpcode == ISD::UNDEF)
4799       // zext(undef) = 0, because the top bits will be zero.
4800       return getConstant(0, DL, VT);
4801     break;
4802   case ISD::ANY_EXTEND:
4803     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4804            "Invalid ANY_EXTEND!");
4805     assert(VT.isVector() == Operand.getValueType().isVector() &&
4806            "ANY_EXTEND result type type should be vector iff the operand "
4807            "type is vector!");
4808     if (Operand.getValueType() == VT) return Operand;   // noop extension
4809     assert((!VT.isVector() ||
4810             VT.getVectorElementCount() ==
4811                 Operand.getValueType().getVectorElementCount()) &&
4812            "Vector element count mismatch!");
4813     assert(Operand.getValueType().bitsLT(VT) &&
4814            "Invalid anyext node, dst < src!");
4815 
4816     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4817         OpOpcode == ISD::ANY_EXTEND)
4818       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4819       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4820     if (OpOpcode == ISD::UNDEF)
4821       return getUNDEF(VT);
4822 
4823     // (ext (trunc x)) -> x
4824     if (OpOpcode == ISD::TRUNCATE) {
4825       SDValue OpOp = Operand.getOperand(0);
4826       if (OpOp.getValueType() == VT) {
4827         transferDbgValues(Operand, OpOp);
4828         return OpOp;
4829       }
4830     }
4831     break;
4832   case ISD::TRUNCATE:
4833     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4834            "Invalid TRUNCATE!");
4835     assert(VT.isVector() == Operand.getValueType().isVector() &&
4836            "TRUNCATE result type type should be vector iff the operand "
4837            "type is vector!");
4838     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4839     assert((!VT.isVector() ||
4840             VT.getVectorElementCount() ==
4841                 Operand.getValueType().getVectorElementCount()) &&
4842            "Vector element count mismatch!");
4843     assert(Operand.getValueType().bitsGT(VT) &&
4844            "Invalid truncate node, src < dst!");
4845     if (OpOpcode == ISD::TRUNCATE)
4846       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4847     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4848         OpOpcode == ISD::ANY_EXTEND) {
4849       // If the source is smaller than the dest, we still need an extend.
4850       if (Operand.getOperand(0).getValueType().getScalarType()
4851             .bitsLT(VT.getScalarType()))
4852         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4853       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4854         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4855       return Operand.getOperand(0);
4856     }
4857     if (OpOpcode == ISD::UNDEF)
4858       return getUNDEF(VT);
4859     break;
4860   case ISD::ANY_EXTEND_VECTOR_INREG:
4861   case ISD::ZERO_EXTEND_VECTOR_INREG:
4862   case ISD::SIGN_EXTEND_VECTOR_INREG:
4863     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4864     assert(Operand.getValueType().bitsLE(VT) &&
4865            "The input must be the same size or smaller than the result.");
4866     assert(VT.getVectorMinNumElements() <
4867                Operand.getValueType().getVectorMinNumElements() &&
4868            "The destination vector type must have fewer lanes than the input.");
4869     break;
4870   case ISD::ABS:
4871     assert(VT.isInteger() && VT == Operand.getValueType() &&
4872            "Invalid ABS!");
4873     if (OpOpcode == ISD::UNDEF)
4874       return getUNDEF(VT);
4875     break;
4876   case ISD::BSWAP:
4877     assert(VT.isInteger() && VT == Operand.getValueType() &&
4878            "Invalid BSWAP!");
4879     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4880            "BSWAP types must be a multiple of 16 bits!");
4881     if (OpOpcode == ISD::UNDEF)
4882       return getUNDEF(VT);
4883     break;
4884   case ISD::BITREVERSE:
4885     assert(VT.isInteger() && VT == Operand.getValueType() &&
4886            "Invalid BITREVERSE!");
4887     if (OpOpcode == ISD::UNDEF)
4888       return getUNDEF(VT);
4889     break;
4890   case ISD::BITCAST:
4891     // Basic sanity checking.
4892     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4893            "Cannot BITCAST between types of different sizes!");
4894     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4895     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4896       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4897     if (OpOpcode == ISD::UNDEF)
4898       return getUNDEF(VT);
4899     break;
4900   case ISD::SCALAR_TO_VECTOR:
4901     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4902            (VT.getVectorElementType() == Operand.getValueType() ||
4903             (VT.getVectorElementType().isInteger() &&
4904              Operand.getValueType().isInteger() &&
4905              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4906            "Illegal SCALAR_TO_VECTOR node!");
4907     if (OpOpcode == ISD::UNDEF)
4908       return getUNDEF(VT);
4909     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4910     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4911         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4912         Operand.getConstantOperandVal(1) == 0 &&
4913         Operand.getOperand(0).getValueType() == VT)
4914       return Operand.getOperand(0);
4915     break;
4916   case ISD::FNEG:
4917     // Negation of an unknown bag of bits is still completely undefined.
4918     if (OpOpcode == ISD::UNDEF)
4919       return getUNDEF(VT);
4920 
4921     if (OpOpcode == ISD::FNEG)  // --X -> X
4922       return Operand.getOperand(0);
4923     break;
4924   case ISD::FABS:
4925     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4926       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4927     break;
4928   case ISD::VSCALE:
4929     assert(VT == Operand.getValueType() && "Unexpected VT!");
4930     break;
4931   case ISD::CTPOP:
4932     if (Operand.getValueType().getScalarType() == MVT::i1)
4933       return Operand;
4934     break;
4935   case ISD::CTLZ:
4936   case ISD::CTTZ:
4937     if (Operand.getValueType().getScalarType() == MVT::i1)
4938       return getNOT(DL, Operand, Operand.getValueType());
4939     break;
4940   case ISD::VECREDUCE_SMIN:
4941   case ISD::VECREDUCE_UMAX:
4942     if (Operand.getValueType().getScalarType() == MVT::i1)
4943       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4944     break;
4945   case ISD::VECREDUCE_SMAX:
4946   case ISD::VECREDUCE_UMIN:
4947     if (Operand.getValueType().getScalarType() == MVT::i1)
4948       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4949     break;
4950   }
4951 
4952   SDNode *N;
4953   SDVTList VTs = getVTList(VT);
4954   SDValue Ops[] = {Operand};
4955   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4956     FoldingSetNodeID ID;
4957     AddNodeIDNode(ID, Opcode, VTs, Ops);
4958     void *IP = nullptr;
4959     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4960       E->intersectFlagsWith(Flags);
4961       return SDValue(E, 0);
4962     }
4963 
4964     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4965     N->setFlags(Flags);
4966     createOperands(N, Ops);
4967     CSEMap.InsertNode(N, IP);
4968   } else {
4969     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4970     createOperands(N, Ops);
4971   }
4972 
4973   InsertNode(N);
4974   SDValue V = SDValue(N, 0);
4975   NewSDValueDbgMsg(V, "Creating new node: ", this);
4976   return V;
4977 }
4978 
4979 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4980                                        const APInt &C2) {
4981   switch (Opcode) {
4982   case ISD::ADD:  return C1 + C2;
4983   case ISD::SUB:  return C1 - C2;
4984   case ISD::MUL:  return C1 * C2;
4985   case ISD::AND:  return C1 & C2;
4986   case ISD::OR:   return C1 | C2;
4987   case ISD::XOR:  return C1 ^ C2;
4988   case ISD::SHL:  return C1 << C2;
4989   case ISD::SRL:  return C1.lshr(C2);
4990   case ISD::SRA:  return C1.ashr(C2);
4991   case ISD::ROTL: return C1.rotl(C2);
4992   case ISD::ROTR: return C1.rotr(C2);
4993   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4994   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4995   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4996   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4997   case ISD::SADDSAT: return C1.sadd_sat(C2);
4998   case ISD::UADDSAT: return C1.uadd_sat(C2);
4999   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5000   case ISD::USUBSAT: return C1.usub_sat(C2);
5001   case ISD::UDIV:
5002     if (!C2.getBoolValue())
5003       break;
5004     return C1.udiv(C2);
5005   case ISD::UREM:
5006     if (!C2.getBoolValue())
5007       break;
5008     return C1.urem(C2);
5009   case ISD::SDIV:
5010     if (!C2.getBoolValue())
5011       break;
5012     return C1.sdiv(C2);
5013   case ISD::SREM:
5014     if (!C2.getBoolValue())
5015       break;
5016     return C1.srem(C2);
5017   }
5018   return llvm::None;
5019 }
5020 
5021 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5022                                        const GlobalAddressSDNode *GA,
5023                                        const SDNode *N2) {
5024   if (GA->getOpcode() != ISD::GlobalAddress)
5025     return SDValue();
5026   if (!TLI->isOffsetFoldingLegal(GA))
5027     return SDValue();
5028   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5029   if (!C2)
5030     return SDValue();
5031   int64_t Offset = C2->getSExtValue();
5032   switch (Opcode) {
5033   case ISD::ADD: break;
5034   case ISD::SUB: Offset = -uint64_t(Offset); break;
5035   default: return SDValue();
5036   }
5037   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5038                           GA->getOffset() + uint64_t(Offset));
5039 }
5040 
5041 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5042   switch (Opcode) {
5043   case ISD::SDIV:
5044   case ISD::UDIV:
5045   case ISD::SREM:
5046   case ISD::UREM: {
5047     // If a divisor is zero/undef or any element of a divisor vector is
5048     // zero/undef, the whole op is undef.
5049     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5050     SDValue Divisor = Ops[1];
5051     if (Divisor.isUndef() || isNullConstant(Divisor))
5052       return true;
5053 
5054     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5055            llvm::any_of(Divisor->op_values(),
5056                         [](SDValue V) { return V.isUndef() ||
5057                                         isNullConstant(V); });
5058     // TODO: Handle signed overflow.
5059   }
5060   // TODO: Handle oversized shifts.
5061   default:
5062     return false;
5063   }
5064 }
5065 
5066 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5067                                              EVT VT, ArrayRef<SDValue> Ops) {
5068   // If the opcode is a target-specific ISD node, there's nothing we can
5069   // do here and the operand rules may not line up with the below, so
5070   // bail early.
5071   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5072   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5073   // foldCONCAT_VECTORS in getNode before this is called.
5074   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5075     return SDValue();
5076 
5077   // For now, the array Ops should only contain two values.
5078   // This enforcement will be removed once this function is merged with
5079   // FoldConstantVectorArithmetic
5080   if (Ops.size() != 2)
5081     return SDValue();
5082 
5083   if (isUndef(Opcode, Ops))
5084     return getUNDEF(VT);
5085 
5086   SDNode *N1 = Ops[0].getNode();
5087   SDNode *N2 = Ops[1].getNode();
5088 
5089   // Handle the case of two scalars.
5090   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5091     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5092       if (C1->isOpaque() || C2->isOpaque())
5093         return SDValue();
5094 
5095       Optional<APInt> FoldAttempt =
5096           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5097       if (!FoldAttempt)
5098         return SDValue();
5099 
5100       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5101       assert((!Folded || !VT.isVector()) &&
5102              "Can't fold vectors ops with scalar operands");
5103       return Folded;
5104     }
5105   }
5106 
5107   // fold (add Sym, c) -> Sym+c
5108   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5109     return FoldSymbolOffset(Opcode, VT, GA, N2);
5110   if (TLI->isCommutativeBinOp(Opcode))
5111     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5112       return FoldSymbolOffset(Opcode, VT, GA, N1);
5113 
5114   // For fixed width vectors, extract each constant element and fold them
5115   // individually. Either input may be an undef value.
5116   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5117                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5118   if (!IsBVOrSV1 && !N1->isUndef())
5119     return SDValue();
5120   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5121                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5122   if (!IsBVOrSV2 && !N2->isUndef())
5123     return SDValue();
5124   // If both operands are undef, that's handled the same way as scalars.
5125   if (!IsBVOrSV1 && !IsBVOrSV2)
5126     return SDValue();
5127 
5128   EVT SVT = VT.getScalarType();
5129   EVT LegalSVT = SVT;
5130   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5131     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5132     if (LegalSVT.bitsLT(SVT))
5133       return SDValue();
5134   }
5135 
5136   SmallVector<SDValue, 4> Outputs;
5137   unsigned NumOps = 0;
5138   if (IsBVOrSV1)
5139     NumOps = std::max(NumOps, N1->getNumOperands());
5140   if (IsBVOrSV2)
5141     NumOps = std::max(NumOps, N2->getNumOperands());
5142   assert(NumOps != 0 && "Expected non-zero operands");
5143   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5144   // one iteration for that.
5145   assert((!VT.isScalableVector() || NumOps == 1) &&
5146          "Scalar vector should only have one scalar");
5147 
5148   for (unsigned I = 0; I != NumOps; ++I) {
5149     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5150     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5151     SDValue V1;
5152     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5153       V1 = N1->getOperand(I);
5154     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5155       V1 = N1->getOperand(0);
5156     else
5157       V1 = getUNDEF(SVT);
5158 
5159     SDValue V2;
5160     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5161       V2 = N2->getOperand(I);
5162     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5163       V2 = N2->getOperand(0);
5164     else
5165       V2 = getUNDEF(SVT);
5166 
5167     if (SVT.isInteger()) {
5168       if (V1.getValueType().bitsGT(SVT))
5169         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5170       if (V2.getValueType().bitsGT(SVT))
5171         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5172     }
5173 
5174     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5175       return SDValue();
5176 
5177     // Fold one vector element.
5178     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5179     if (LegalSVT != SVT)
5180       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5181 
5182     // Scalar folding only succeeded if the result is a constant or UNDEF.
5183     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5184         ScalarResult.getOpcode() != ISD::ConstantFP)
5185       return SDValue();
5186     Outputs.push_back(ScalarResult);
5187   }
5188 
5189   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5190       N2->getOpcode() == ISD::BUILD_VECTOR) {
5191     assert(VT.getVectorNumElements() == Outputs.size() &&
5192            "Vector size mismatch!");
5193 
5194     // Build a big vector out of the scalar elements we generated.
5195     return getBuildVector(VT, SDLoc(), Outputs);
5196   }
5197 
5198   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5199           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5200          "One operand should be a splat vector");
5201 
5202   assert(Outputs.size() == 1 && "Vector size mismatch!");
5203   return getSplatVector(VT, SDLoc(), Outputs[0]);
5204 }
5205 
5206 // TODO: Merge with FoldConstantArithmetic
5207 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5208                                                    const SDLoc &DL, EVT VT,
5209                                                    ArrayRef<SDValue> Ops,
5210                                                    const SDNodeFlags Flags) {
5211   // If the opcode is a target-specific ISD node, there's nothing we can
5212   // do here and the operand rules may not line up with the below, so
5213   // bail early.
5214   if (Opcode >= ISD::BUILTIN_OP_END)
5215     return SDValue();
5216 
5217   if (isUndef(Opcode, Ops))
5218     return getUNDEF(VT);
5219 
5220   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5221   if (!VT.isVector())
5222     return SDValue();
5223 
5224   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5225   // vector width, however we should be able to do constant folds involving
5226   // splat vector nodes too.
5227   if (VT.isScalableVector())
5228     return SDValue();
5229 
5230   // From this point onwards all vectors are assumed to be fixed width.
5231   unsigned NumElts = VT.getVectorNumElements();
5232 
5233   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5234     return !Op.getValueType().isVector() ||
5235            Op.getValueType().getVectorNumElements() == NumElts;
5236   };
5237 
5238   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5239     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5240     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5241            (BV && BV->isConstant());
5242   };
5243 
5244   // All operands must be vector types with the same number of elements as
5245   // the result type and must be either UNDEF or a build vector of constant
5246   // or UNDEF scalars.
5247   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5248       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5249     return SDValue();
5250 
5251   // If we are comparing vectors, then the result needs to be a i1 boolean
5252   // that is then sign-extended back to the legal result type.
5253   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5254 
5255   // Find legal integer scalar type for constant promotion and
5256   // ensure that its scalar size is at least as large as source.
5257   EVT LegalSVT = VT.getScalarType();
5258   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5259     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5260     if (LegalSVT.bitsLT(VT.getScalarType()))
5261       return SDValue();
5262   }
5263 
5264   // Constant fold each scalar lane separately.
5265   SmallVector<SDValue, 4> ScalarResults;
5266   for (unsigned i = 0; i != NumElts; i++) {
5267     SmallVector<SDValue, 4> ScalarOps;
5268     for (SDValue Op : Ops) {
5269       EVT InSVT = Op.getValueType().getScalarType();
5270       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5271       if (!InBV) {
5272         // We've checked that this is UNDEF or a constant of some kind.
5273         if (Op.isUndef())
5274           ScalarOps.push_back(getUNDEF(InSVT));
5275         else
5276           ScalarOps.push_back(Op);
5277         continue;
5278       }
5279 
5280       SDValue ScalarOp = InBV->getOperand(i);
5281       EVT ScalarVT = ScalarOp.getValueType();
5282 
5283       // Build vector (integer) scalar operands may need implicit
5284       // truncation - do this before constant folding.
5285       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5286         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5287 
5288       ScalarOps.push_back(ScalarOp);
5289     }
5290 
5291     // Constant fold the scalar operands.
5292     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5293 
5294     // Legalize the (integer) scalar constant if necessary.
5295     if (LegalSVT != SVT)
5296       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5297 
5298     // Scalar folding only succeeded if the result is a constant or UNDEF.
5299     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5300         ScalarResult.getOpcode() != ISD::ConstantFP)
5301       return SDValue();
5302     ScalarResults.push_back(ScalarResult);
5303   }
5304 
5305   SDValue V = getBuildVector(VT, DL, ScalarResults);
5306   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5307   return V;
5308 }
5309 
5310 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5311                                          EVT VT, SDValue N1, SDValue N2) {
5312   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5313   //       should. That will require dealing with a potentially non-default
5314   //       rounding mode, checking the "opStatus" return value from the APFloat
5315   //       math calculations, and possibly other variations.
5316   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5317   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5318   if (N1CFP && N2CFP) {
5319     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5320     switch (Opcode) {
5321     case ISD::FADD:
5322       C1.add(C2, APFloat::rmNearestTiesToEven);
5323       return getConstantFP(C1, DL, VT);
5324     case ISD::FSUB:
5325       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5326       return getConstantFP(C1, DL, VT);
5327     case ISD::FMUL:
5328       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5329       return getConstantFP(C1, DL, VT);
5330     case ISD::FDIV:
5331       C1.divide(C2, APFloat::rmNearestTiesToEven);
5332       return getConstantFP(C1, DL, VT);
5333     case ISD::FREM:
5334       C1.mod(C2);
5335       return getConstantFP(C1, DL, VT);
5336     case ISD::FCOPYSIGN:
5337       C1.copySign(C2);
5338       return getConstantFP(C1, DL, VT);
5339     default: break;
5340     }
5341   }
5342   if (N1CFP && Opcode == ISD::FP_ROUND) {
5343     APFloat C1 = N1CFP->getValueAPF();    // make copy
5344     bool Unused;
5345     // This can return overflow, underflow, or inexact; we don't care.
5346     // FIXME need to be more flexible about rounding mode.
5347     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5348                       &Unused);
5349     return getConstantFP(C1, DL, VT);
5350   }
5351 
5352   switch (Opcode) {
5353   case ISD::FSUB:
5354     // -0.0 - undef --> undef (consistent with "fneg undef")
5355     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5356       return getUNDEF(VT);
5357     LLVM_FALLTHROUGH;
5358 
5359   case ISD::FADD:
5360   case ISD::FMUL:
5361   case ISD::FDIV:
5362   case ISD::FREM:
5363     // If both operands are undef, the result is undef. If 1 operand is undef,
5364     // the result is NaN. This should match the behavior of the IR optimizer.
5365     if (N1.isUndef() && N2.isUndef())
5366       return getUNDEF(VT);
5367     if (N1.isUndef() || N2.isUndef())
5368       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5369   }
5370   return SDValue();
5371 }
5372 
5373 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5374   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5375 
5376   // There's no need to assert on a byte-aligned pointer. All pointers are at
5377   // least byte aligned.
5378   if (A == Align(1))
5379     return Val;
5380 
5381   FoldingSetNodeID ID;
5382   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5383   ID.AddInteger(A.value());
5384 
5385   void *IP = nullptr;
5386   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5387     return SDValue(E, 0);
5388 
5389   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5390                                          Val.getValueType(), A);
5391   createOperands(N, {Val});
5392 
5393   CSEMap.InsertNode(N, IP);
5394   InsertNode(N);
5395 
5396   SDValue V(N, 0);
5397   NewSDValueDbgMsg(V, "Creating new node: ", this);
5398   return V;
5399 }
5400 
5401 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5402                               SDValue N1, SDValue N2) {
5403   SDNodeFlags Flags;
5404   if (Inserter)
5405     Flags = Inserter->getFlags();
5406   return getNode(Opcode, DL, VT, N1, N2, Flags);
5407 }
5408 
5409 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5410                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5411   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5412          N2.getOpcode() != ISD::DELETED_NODE &&
5413          "Operand is DELETED_NODE!");
5414   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5415   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5416   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5417   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5418 
5419   // Canonicalize constant to RHS if commutative.
5420   if (TLI->isCommutativeBinOp(Opcode)) {
5421     if (N1C && !N2C) {
5422       std::swap(N1C, N2C);
5423       std::swap(N1, N2);
5424     } else if (N1CFP && !N2CFP) {
5425       std::swap(N1CFP, N2CFP);
5426       std::swap(N1, N2);
5427     }
5428   }
5429 
5430   switch (Opcode) {
5431   default: break;
5432   case ISD::TokenFactor:
5433     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5434            N2.getValueType() == MVT::Other && "Invalid token factor!");
5435     // Fold trivial token factors.
5436     if (N1.getOpcode() == ISD::EntryToken) return N2;
5437     if (N2.getOpcode() == ISD::EntryToken) return N1;
5438     if (N1 == N2) return N1;
5439     break;
5440   case ISD::BUILD_VECTOR: {
5441     // Attempt to simplify BUILD_VECTOR.
5442     SDValue Ops[] = {N1, N2};
5443     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5444       return V;
5445     break;
5446   }
5447   case ISD::CONCAT_VECTORS: {
5448     SDValue Ops[] = {N1, N2};
5449     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5450       return V;
5451     break;
5452   }
5453   case ISD::AND:
5454     assert(VT.isInteger() && "This operator does not apply to FP types!");
5455     assert(N1.getValueType() == N2.getValueType() &&
5456            N1.getValueType() == VT && "Binary operator types must match!");
5457     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5458     // worth handling here.
5459     if (N2C && N2C->isNullValue())
5460       return N2;
5461     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5462       return N1;
5463     break;
5464   case ISD::OR:
5465   case ISD::XOR:
5466   case ISD::ADD:
5467   case ISD::SUB:
5468     assert(VT.isInteger() && "This operator does not apply to FP types!");
5469     assert(N1.getValueType() == N2.getValueType() &&
5470            N1.getValueType() == VT && "Binary operator types must match!");
5471     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5472     // it's worth handling here.
5473     if (N2C && N2C->isNullValue())
5474       return N1;
5475     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5476         VT.getVectorElementType() == MVT::i1)
5477       return getNode(ISD::XOR, DL, VT, N1, N2);
5478     break;
5479   case ISD::MUL:
5480     assert(VT.isInteger() && "This operator does not apply to FP types!");
5481     assert(N1.getValueType() == N2.getValueType() &&
5482            N1.getValueType() == VT && "Binary operator types must match!");
5483     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5484       return getNode(ISD::AND, DL, VT, N1, N2);
5485     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5486       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5487       const APInt &N2CImm = N2C->getAPIntValue();
5488       return getVScale(DL, VT, MulImm * N2CImm);
5489     }
5490     break;
5491   case ISD::UDIV:
5492   case ISD::UREM:
5493   case ISD::MULHU:
5494   case ISD::MULHS:
5495   case ISD::SDIV:
5496   case ISD::SREM:
5497   case ISD::SADDSAT:
5498   case ISD::SSUBSAT:
5499   case ISD::UADDSAT:
5500   case ISD::USUBSAT:
5501     assert(VT.isInteger() && "This operator does not apply to FP types!");
5502     assert(N1.getValueType() == N2.getValueType() &&
5503            N1.getValueType() == VT && "Binary operator types must match!");
5504     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5505       // fold (add_sat x, y) -> (or x, y) for bool types.
5506       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5507         return getNode(ISD::OR, DL, VT, N1, N2);
5508       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5509       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5510         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5511     }
5512     break;
5513   case ISD::SMIN:
5514   case ISD::UMAX:
5515     assert(VT.isInteger() && "This operator does not apply to FP types!");
5516     assert(N1.getValueType() == N2.getValueType() &&
5517            N1.getValueType() == VT && "Binary operator types must match!");
5518     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5519       return getNode(ISD::OR, DL, VT, N1, N2);
5520     break;
5521   case ISD::SMAX:
5522   case ISD::UMIN:
5523     assert(VT.isInteger() && "This operator does not apply to FP types!");
5524     assert(N1.getValueType() == N2.getValueType() &&
5525            N1.getValueType() == VT && "Binary operator types must match!");
5526     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5527       return getNode(ISD::AND, DL, VT, N1, N2);
5528     break;
5529   case ISD::FADD:
5530   case ISD::FSUB:
5531   case ISD::FMUL:
5532   case ISD::FDIV:
5533   case ISD::FREM:
5534     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5535     assert(N1.getValueType() == N2.getValueType() &&
5536            N1.getValueType() == VT && "Binary operator types must match!");
5537     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5538       return V;
5539     break;
5540   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5541     assert(N1.getValueType() == VT &&
5542            N1.getValueType().isFloatingPoint() &&
5543            N2.getValueType().isFloatingPoint() &&
5544            "Invalid FCOPYSIGN!");
5545     break;
5546   case ISD::SHL:
5547     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5548       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5549       const APInt &ShiftImm = N2C->getAPIntValue();
5550       return getVScale(DL, VT, MulImm << ShiftImm);
5551     }
5552     LLVM_FALLTHROUGH;
5553   case ISD::SRA:
5554   case ISD::SRL:
5555     if (SDValue V = simplifyShift(N1, N2))
5556       return V;
5557     LLVM_FALLTHROUGH;
5558   case ISD::ROTL:
5559   case ISD::ROTR:
5560     assert(VT == N1.getValueType() &&
5561            "Shift operators return type must be the same as their first arg");
5562     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5563            "Shifts only work on integers");
5564     assert((!VT.isVector() || VT == N2.getValueType()) &&
5565            "Vector shift amounts must be in the same as their first arg");
5566     // Verify that the shift amount VT is big enough to hold valid shift
5567     // amounts.  This catches things like trying to shift an i1024 value by an
5568     // i8, which is easy to fall into in generic code that uses
5569     // TLI.getShiftAmount().
5570     assert(N2.getValueType().getScalarSizeInBits() >=
5571                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5572            "Invalid use of small shift amount with oversized value!");
5573 
5574     // Always fold shifts of i1 values so the code generator doesn't need to
5575     // handle them.  Since we know the size of the shift has to be less than the
5576     // size of the value, the shift/rotate count is guaranteed to be zero.
5577     if (VT == MVT::i1)
5578       return N1;
5579     if (N2C && N2C->isNullValue())
5580       return N1;
5581     break;
5582   case ISD::FP_ROUND:
5583     assert(VT.isFloatingPoint() &&
5584            N1.getValueType().isFloatingPoint() &&
5585            VT.bitsLE(N1.getValueType()) &&
5586            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5587            "Invalid FP_ROUND!");
5588     if (N1.getValueType() == VT) return N1;  // noop conversion.
5589     break;
5590   case ISD::AssertSext:
5591   case ISD::AssertZext: {
5592     EVT EVT = cast<VTSDNode>(N2)->getVT();
5593     assert(VT == N1.getValueType() && "Not an inreg extend!");
5594     assert(VT.isInteger() && EVT.isInteger() &&
5595            "Cannot *_EXTEND_INREG FP types");
5596     assert(!EVT.isVector() &&
5597            "AssertSExt/AssertZExt type should be the vector element type "
5598            "rather than the vector type!");
5599     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5600     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5601     break;
5602   }
5603   case ISD::SIGN_EXTEND_INREG: {
5604     EVT EVT = cast<VTSDNode>(N2)->getVT();
5605     assert(VT == N1.getValueType() && "Not an inreg extend!");
5606     assert(VT.isInteger() && EVT.isInteger() &&
5607            "Cannot *_EXTEND_INREG FP types");
5608     assert(EVT.isVector() == VT.isVector() &&
5609            "SIGN_EXTEND_INREG type should be vector iff the operand "
5610            "type is vector!");
5611     assert((!EVT.isVector() ||
5612             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5613            "Vector element counts must match in SIGN_EXTEND_INREG");
5614     assert(EVT.bitsLE(VT) && "Not extending!");
5615     if (EVT == VT) return N1;  // Not actually extending
5616 
5617     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5618       unsigned FromBits = EVT.getScalarSizeInBits();
5619       Val <<= Val.getBitWidth() - FromBits;
5620       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5621       return getConstant(Val, DL, ConstantVT);
5622     };
5623 
5624     if (N1C) {
5625       const APInt &Val = N1C->getAPIntValue();
5626       return SignExtendInReg(Val, VT);
5627     }
5628     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5629       SmallVector<SDValue, 8> Ops;
5630       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5631       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5632         SDValue Op = N1.getOperand(i);
5633         if (Op.isUndef()) {
5634           Ops.push_back(getUNDEF(OpVT));
5635           continue;
5636         }
5637         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5638         APInt Val = C->getAPIntValue();
5639         Ops.push_back(SignExtendInReg(Val, OpVT));
5640       }
5641       return getBuildVector(VT, DL, Ops);
5642     }
5643     break;
5644   }
5645   case ISD::FP_TO_SINT_SAT:
5646   case ISD::FP_TO_UINT_SAT: {
5647     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5648            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5649     assert(N1.getValueType().isVector() == VT.isVector() &&
5650            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5651            "vector!");
5652     assert((!VT.isVector() || VT.getVectorNumElements() ==
5653                                   N1.getValueType().getVectorNumElements()) &&
5654            "Vector element counts must match in FP_TO_*INT_SAT");
5655     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5656            "Type to saturate to must be a scalar.");
5657     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5658            "Not extending!");
5659     break;
5660   }
5661   case ISD::EXTRACT_VECTOR_ELT:
5662     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5663            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5664              element type of the vector.");
5665 
5666     // Extract from an undefined value or using an undefined index is undefined.
5667     if (N1.isUndef() || N2.isUndef())
5668       return getUNDEF(VT);
5669 
5670     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5671     // vectors. For scalable vectors we will provide appropriate support for
5672     // dealing with arbitrary indices.
5673     if (N2C && N1.getValueType().isFixedLengthVector() &&
5674         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5675       return getUNDEF(VT);
5676 
5677     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5678     // expanding copies of large vectors from registers. This only works for
5679     // fixed length vectors, since we need to know the exact number of
5680     // elements.
5681     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5682         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5683       unsigned Factor =
5684         N1.getOperand(0).getValueType().getVectorNumElements();
5685       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5686                      N1.getOperand(N2C->getZExtValue() / Factor),
5687                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5688     }
5689 
5690     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5691     // lowering is expanding large vector constants.
5692     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5693                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5694       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5695               N1.getValueType().isFixedLengthVector()) &&
5696              "BUILD_VECTOR used for scalable vectors");
5697       unsigned Index =
5698           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5699       SDValue Elt = N1.getOperand(Index);
5700 
5701       if (VT != Elt.getValueType())
5702         // If the vector element type is not legal, the BUILD_VECTOR operands
5703         // are promoted and implicitly truncated, and the result implicitly
5704         // extended. Make that explicit here.
5705         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5706 
5707       return Elt;
5708     }
5709 
5710     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5711     // operations are lowered to scalars.
5712     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5713       // If the indices are the same, return the inserted element else
5714       // if the indices are known different, extract the element from
5715       // the original vector.
5716       SDValue N1Op2 = N1.getOperand(2);
5717       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5718 
5719       if (N1Op2C && N2C) {
5720         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5721           if (VT == N1.getOperand(1).getValueType())
5722             return N1.getOperand(1);
5723           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5724         }
5725         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5726       }
5727     }
5728 
5729     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5730     // when vector types are scalarized and v1iX is legal.
5731     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5732     // Here we are completely ignoring the extract element index (N2),
5733     // which is fine for fixed width vectors, since any index other than 0
5734     // is undefined anyway. However, this cannot be ignored for scalable
5735     // vectors - in theory we could support this, but we don't want to do this
5736     // without a profitability check.
5737     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5738         N1.getValueType().isFixedLengthVector() &&
5739         N1.getValueType().getVectorNumElements() == 1) {
5740       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5741                      N1.getOperand(1));
5742     }
5743     break;
5744   case ISD::EXTRACT_ELEMENT:
5745     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5746     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5747            (N1.getValueType().isInteger() == VT.isInteger()) &&
5748            N1.getValueType() != VT &&
5749            "Wrong types for EXTRACT_ELEMENT!");
5750 
5751     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5752     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5753     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5754     if (N1.getOpcode() == ISD::BUILD_PAIR)
5755       return N1.getOperand(N2C->getZExtValue());
5756 
5757     // EXTRACT_ELEMENT of a constant int is also very common.
5758     if (N1C) {
5759       unsigned ElementSize = VT.getSizeInBits();
5760       unsigned Shift = ElementSize * N2C->getZExtValue();
5761       const APInt &Val = N1C->getAPIntValue();
5762       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5763     }
5764     break;
5765   case ISD::EXTRACT_SUBVECTOR:
5766     EVT N1VT = N1.getValueType();
5767     assert(VT.isVector() && N1VT.isVector() &&
5768            "Extract subvector VTs must be vectors!");
5769     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5770            "Extract subvector VTs must have the same element type!");
5771     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5772            "Cannot extract a scalable vector from a fixed length vector!");
5773     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5774             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5775            "Extract subvector must be from larger vector to smaller vector!");
5776     assert(N2C && "Extract subvector index must be a constant");
5777     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5778             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5779                 N1VT.getVectorMinNumElements()) &&
5780            "Extract subvector overflow!");
5781     assert(N2C->getAPIntValue().getBitWidth() ==
5782                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5783            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5784 
5785     // Trivial extraction.
5786     if (VT == N1VT)
5787       return N1;
5788 
5789     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5790     if (N1.isUndef())
5791       return getUNDEF(VT);
5792 
5793     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5794     // the concat have the same type as the extract.
5795     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5796         VT == N1.getOperand(0).getValueType()) {
5797       unsigned Factor = VT.getVectorMinNumElements();
5798       return N1.getOperand(N2C->getZExtValue() / Factor);
5799     }
5800 
5801     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5802     // during shuffle legalization.
5803     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5804         VT == N1.getOperand(1).getValueType())
5805       return N1.getOperand(1);
5806     break;
5807   }
5808 
5809   // Perform trivial constant folding.
5810   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5811     return SV;
5812 
5813   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5814     return V;
5815 
5816   // Canonicalize an UNDEF to the RHS, even over a constant.
5817   if (N1.isUndef()) {
5818     if (TLI->isCommutativeBinOp(Opcode)) {
5819       std::swap(N1, N2);
5820     } else {
5821       switch (Opcode) {
5822       case ISD::SIGN_EXTEND_INREG:
5823       case ISD::SUB:
5824         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5825       case ISD::UDIV:
5826       case ISD::SDIV:
5827       case ISD::UREM:
5828       case ISD::SREM:
5829       case ISD::SSUBSAT:
5830       case ISD::USUBSAT:
5831         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5832       }
5833     }
5834   }
5835 
5836   // Fold a bunch of operators when the RHS is undef.
5837   if (N2.isUndef()) {
5838     switch (Opcode) {
5839     case ISD::XOR:
5840       if (N1.isUndef())
5841         // Handle undef ^ undef -> 0 special case. This is a common
5842         // idiom (misuse).
5843         return getConstant(0, DL, VT);
5844       LLVM_FALLTHROUGH;
5845     case ISD::ADD:
5846     case ISD::SUB:
5847     case ISD::UDIV:
5848     case ISD::SDIV:
5849     case ISD::UREM:
5850     case ISD::SREM:
5851       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5852     case ISD::MUL:
5853     case ISD::AND:
5854     case ISD::SSUBSAT:
5855     case ISD::USUBSAT:
5856       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5857     case ISD::OR:
5858     case ISD::SADDSAT:
5859     case ISD::UADDSAT:
5860       return getAllOnesConstant(DL, VT);
5861     }
5862   }
5863 
5864   // Memoize this node if possible.
5865   SDNode *N;
5866   SDVTList VTs = getVTList(VT);
5867   SDValue Ops[] = {N1, N2};
5868   if (VT != MVT::Glue) {
5869     FoldingSetNodeID ID;
5870     AddNodeIDNode(ID, Opcode, VTs, Ops);
5871     void *IP = nullptr;
5872     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5873       E->intersectFlagsWith(Flags);
5874       return SDValue(E, 0);
5875     }
5876 
5877     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5878     N->setFlags(Flags);
5879     createOperands(N, Ops);
5880     CSEMap.InsertNode(N, IP);
5881   } else {
5882     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5883     createOperands(N, Ops);
5884   }
5885 
5886   InsertNode(N);
5887   SDValue V = SDValue(N, 0);
5888   NewSDValueDbgMsg(V, "Creating new node: ", this);
5889   return V;
5890 }
5891 
5892 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5893                               SDValue N1, SDValue N2, SDValue N3) {
5894   SDNodeFlags Flags;
5895   if (Inserter)
5896     Flags = Inserter->getFlags();
5897   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5898 }
5899 
5900 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5901                               SDValue N1, SDValue N2, SDValue N3,
5902                               const SDNodeFlags Flags) {
5903   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5904          N2.getOpcode() != ISD::DELETED_NODE &&
5905          N3.getOpcode() != ISD::DELETED_NODE &&
5906          "Operand is DELETED_NODE!");
5907   // Perform various simplifications.
5908   switch (Opcode) {
5909   case ISD::FMA: {
5910     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5911     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5912            N3.getValueType() == VT && "FMA types must match!");
5913     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5914     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5915     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5916     if (N1CFP && N2CFP && N3CFP) {
5917       APFloat  V1 = N1CFP->getValueAPF();
5918       const APFloat &V2 = N2CFP->getValueAPF();
5919       const APFloat &V3 = N3CFP->getValueAPF();
5920       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5921       return getConstantFP(V1, DL, VT);
5922     }
5923     break;
5924   }
5925   case ISD::BUILD_VECTOR: {
5926     // Attempt to simplify BUILD_VECTOR.
5927     SDValue Ops[] = {N1, N2, N3};
5928     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5929       return V;
5930     break;
5931   }
5932   case ISD::CONCAT_VECTORS: {
5933     SDValue Ops[] = {N1, N2, N3};
5934     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5935       return V;
5936     break;
5937   }
5938   case ISD::SETCC: {
5939     assert(VT.isInteger() && "SETCC result type must be an integer!");
5940     assert(N1.getValueType() == N2.getValueType() &&
5941            "SETCC operands must have the same type!");
5942     assert(VT.isVector() == N1.getValueType().isVector() &&
5943            "SETCC type should be vector iff the operand type is vector!");
5944     assert((!VT.isVector() || VT.getVectorElementCount() ==
5945                                   N1.getValueType().getVectorElementCount()) &&
5946            "SETCC vector element counts must match!");
5947     // Use FoldSetCC to simplify SETCC's.
5948     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5949       return V;
5950     // Vector constant folding.
5951     SDValue Ops[] = {N1, N2, N3};
5952     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5953       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5954       return V;
5955     }
5956     break;
5957   }
5958   case ISD::SELECT:
5959   case ISD::VSELECT:
5960     if (SDValue V = simplifySelect(N1, N2, N3))
5961       return V;
5962     break;
5963   case ISD::VECTOR_SHUFFLE:
5964     llvm_unreachable("should use getVectorShuffle constructor!");
5965   case ISD::INSERT_VECTOR_ELT: {
5966     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5967     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5968     // for scalable vectors where we will generate appropriate code to
5969     // deal with out-of-bounds cases correctly.
5970     if (N3C && N1.getValueType().isFixedLengthVector() &&
5971         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5972       return getUNDEF(VT);
5973 
5974     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5975     if (N3.isUndef())
5976       return getUNDEF(VT);
5977 
5978     // If the inserted element is an UNDEF, just use the input vector.
5979     if (N2.isUndef())
5980       return N1;
5981 
5982     break;
5983   }
5984   case ISD::INSERT_SUBVECTOR: {
5985     // Inserting undef into undef is still undef.
5986     if (N1.isUndef() && N2.isUndef())
5987       return getUNDEF(VT);
5988 
5989     EVT N2VT = N2.getValueType();
5990     assert(VT == N1.getValueType() &&
5991            "Dest and insert subvector source types must match!");
5992     assert(VT.isVector() && N2VT.isVector() &&
5993            "Insert subvector VTs must be vectors!");
5994     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5995            "Cannot insert a scalable vector into a fixed length vector!");
5996     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5997             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5998            "Insert subvector must be from smaller vector to larger vector!");
5999     assert(isa<ConstantSDNode>(N3) &&
6000            "Insert subvector index must be constant");
6001     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6002             (N2VT.getVectorMinNumElements() +
6003              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6004                 VT.getVectorMinNumElements()) &&
6005            "Insert subvector overflow!");
6006     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6007                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6008            "Constant index for INSERT_SUBVECTOR has an invalid size");
6009 
6010     // Trivial insertion.
6011     if (VT == N2VT)
6012       return N2;
6013 
6014     // If this is an insert of an extracted vector into an undef vector, we
6015     // can just use the input to the extract.
6016     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6017         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6018       return N2.getOperand(0);
6019     break;
6020   }
6021   case ISD::BITCAST:
6022     // Fold bit_convert nodes from a type to themselves.
6023     if (N1.getValueType() == VT)
6024       return N1;
6025     break;
6026   }
6027 
6028   // Memoize node if it doesn't produce a flag.
6029   SDNode *N;
6030   SDVTList VTs = getVTList(VT);
6031   SDValue Ops[] = {N1, N2, N3};
6032   if (VT != MVT::Glue) {
6033     FoldingSetNodeID ID;
6034     AddNodeIDNode(ID, Opcode, VTs, Ops);
6035     void *IP = nullptr;
6036     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6037       E->intersectFlagsWith(Flags);
6038       return SDValue(E, 0);
6039     }
6040 
6041     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6042     N->setFlags(Flags);
6043     createOperands(N, Ops);
6044     CSEMap.InsertNode(N, IP);
6045   } else {
6046     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6047     createOperands(N, Ops);
6048   }
6049 
6050   InsertNode(N);
6051   SDValue V = SDValue(N, 0);
6052   NewSDValueDbgMsg(V, "Creating new node: ", this);
6053   return V;
6054 }
6055 
6056 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6057                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6058   SDValue Ops[] = { N1, N2, N3, N4 };
6059   return getNode(Opcode, DL, VT, Ops);
6060 }
6061 
6062 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6063                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6064                               SDValue N5) {
6065   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6066   return getNode(Opcode, DL, VT, Ops);
6067 }
6068 
6069 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6070 /// the incoming stack arguments to be loaded from the stack.
6071 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6072   SmallVector<SDValue, 8> ArgChains;
6073 
6074   // Include the original chain at the beginning of the list. When this is
6075   // used by target LowerCall hooks, this helps legalize find the
6076   // CALLSEQ_BEGIN node.
6077   ArgChains.push_back(Chain);
6078 
6079   // Add a chain value for each stack argument.
6080   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6081        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6082     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6083       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6084         if (FI->getIndex() < 0)
6085           ArgChains.push_back(SDValue(L, 1));
6086 
6087   // Build a tokenfactor for all the chains.
6088   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6089 }
6090 
6091 /// getMemsetValue - Vectorized representation of the memset value
6092 /// operand.
6093 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6094                               const SDLoc &dl) {
6095   assert(!Value.isUndef());
6096 
6097   unsigned NumBits = VT.getScalarSizeInBits();
6098   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6099     assert(C->getAPIntValue().getBitWidth() == 8);
6100     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6101     if (VT.isInteger()) {
6102       bool IsOpaque = VT.getSizeInBits() > 64 ||
6103           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6104       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6105     }
6106     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6107                              VT);
6108   }
6109 
6110   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6111   EVT IntVT = VT.getScalarType();
6112   if (!IntVT.isInteger())
6113     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6114 
6115   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6116   if (NumBits > 8) {
6117     // Use a multiplication with 0x010101... to extend the input to the
6118     // required length.
6119     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6120     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6121                         DAG.getConstant(Magic, dl, IntVT));
6122   }
6123 
6124   if (VT != Value.getValueType() && !VT.isInteger())
6125     Value = DAG.getBitcast(VT.getScalarType(), Value);
6126   if (VT != Value.getValueType())
6127     Value = DAG.getSplatBuildVector(VT, dl, Value);
6128 
6129   return Value;
6130 }
6131 
6132 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6133 /// used when a memcpy is turned into a memset when the source is a constant
6134 /// string ptr.
6135 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6136                                   const TargetLowering &TLI,
6137                                   const ConstantDataArraySlice &Slice) {
6138   // Handle vector with all elements zero.
6139   if (Slice.Array == nullptr) {
6140     if (VT.isInteger())
6141       return DAG.getConstant(0, dl, VT);
6142     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6143       return DAG.getConstantFP(0.0, dl, VT);
6144     if (VT.isVector()) {
6145       unsigned NumElts = VT.getVectorNumElements();
6146       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6147       return DAG.getNode(ISD::BITCAST, dl, VT,
6148                          DAG.getConstant(0, dl,
6149                                          EVT::getVectorVT(*DAG.getContext(),
6150                                                           EltVT, NumElts)));
6151     }
6152     llvm_unreachable("Expected type!");
6153   }
6154 
6155   assert(!VT.isVector() && "Can't handle vector type here!");
6156   unsigned NumVTBits = VT.getSizeInBits();
6157   unsigned NumVTBytes = NumVTBits / 8;
6158   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6159 
6160   APInt Val(NumVTBits, 0);
6161   if (DAG.getDataLayout().isLittleEndian()) {
6162     for (unsigned i = 0; i != NumBytes; ++i)
6163       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6164   } else {
6165     for (unsigned i = 0; i != NumBytes; ++i)
6166       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6167   }
6168 
6169   // If the "cost" of materializing the integer immediate is less than the cost
6170   // of a load, then it is cost effective to turn the load into the immediate.
6171   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6172   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6173     return DAG.getConstant(Val, dl, VT);
6174   return SDValue(nullptr, 0);
6175 }
6176 
6177 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6178                                            const SDLoc &DL,
6179                                            const SDNodeFlags Flags) {
6180   EVT VT = Base.getValueType();
6181   SDValue Index;
6182 
6183   if (Offset.isScalable())
6184     Index = getVScale(DL, Base.getValueType(),
6185                       APInt(Base.getValueSizeInBits().getFixedSize(),
6186                             Offset.getKnownMinSize()));
6187   else
6188     Index = getConstant(Offset.getFixedSize(), DL, VT);
6189 
6190   return getMemBasePlusOffset(Base, Index, DL, Flags);
6191 }
6192 
6193 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6194                                            const SDLoc &DL,
6195                                            const SDNodeFlags Flags) {
6196   assert(Offset.getValueType().isInteger());
6197   EVT BasePtrVT = Ptr.getValueType();
6198   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6199 }
6200 
6201 /// Returns true if memcpy source is constant data.
6202 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6203   uint64_t SrcDelta = 0;
6204   GlobalAddressSDNode *G = nullptr;
6205   if (Src.getOpcode() == ISD::GlobalAddress)
6206     G = cast<GlobalAddressSDNode>(Src);
6207   else if (Src.getOpcode() == ISD::ADD &&
6208            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6209            Src.getOperand(1).getOpcode() == ISD::Constant) {
6210     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6211     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6212   }
6213   if (!G)
6214     return false;
6215 
6216   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6217                                   SrcDelta + G->getOffset());
6218 }
6219 
6220 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6221                                       SelectionDAG &DAG) {
6222   // On Darwin, -Os means optimize for size without hurting performance, so
6223   // only really optimize for size when -Oz (MinSize) is used.
6224   if (MF.getTarget().getTargetTriple().isOSDarwin())
6225     return MF.getFunction().hasMinSize();
6226   return DAG.shouldOptForSize();
6227 }
6228 
6229 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6230                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6231                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6232                           SmallVector<SDValue, 16> &OutStoreChains) {
6233   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6234   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6235   SmallVector<SDValue, 16> GluedLoadChains;
6236   for (unsigned i = From; i < To; ++i) {
6237     OutChains.push_back(OutLoadChains[i]);
6238     GluedLoadChains.push_back(OutLoadChains[i]);
6239   }
6240 
6241   // Chain for all loads.
6242   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6243                                   GluedLoadChains);
6244 
6245   for (unsigned i = From; i < To; ++i) {
6246     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6247     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6248                                   ST->getBasePtr(), ST->getMemoryVT(),
6249                                   ST->getMemOperand());
6250     OutChains.push_back(NewStore);
6251   }
6252 }
6253 
6254 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6255                                        SDValue Chain, SDValue Dst, SDValue Src,
6256                                        uint64_t Size, Align Alignment,
6257                                        bool isVol, bool AlwaysInline,
6258                                        MachinePointerInfo DstPtrInfo,
6259                                        MachinePointerInfo SrcPtrInfo) {
6260   // Turn a memcpy of undef to nop.
6261   // FIXME: We need to honor volatile even is Src is undef.
6262   if (Src.isUndef())
6263     return Chain;
6264 
6265   // Expand memcpy to a series of load and store ops if the size operand falls
6266   // below a certain threshold.
6267   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6268   // rather than maybe a humongous number of loads and stores.
6269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6270   const DataLayout &DL = DAG.getDataLayout();
6271   LLVMContext &C = *DAG.getContext();
6272   std::vector<EVT> MemOps;
6273   bool DstAlignCanChange = false;
6274   MachineFunction &MF = DAG.getMachineFunction();
6275   MachineFrameInfo &MFI = MF.getFrameInfo();
6276   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6277   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6278   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6279     DstAlignCanChange = true;
6280   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6281   if (!SrcAlign || Alignment > *SrcAlign)
6282     SrcAlign = Alignment;
6283   assert(SrcAlign && "SrcAlign must be set");
6284   ConstantDataArraySlice Slice;
6285   // If marked as volatile, perform a copy even when marked as constant.
6286   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6287   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6288   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6289   const MemOp Op = isZeroConstant
6290                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6291                                     /*IsZeroMemset*/ true, isVol)
6292                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6293                                      *SrcAlign, isVol, CopyFromConstant);
6294   if (!TLI.findOptimalMemOpLowering(
6295           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6296           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6297     return SDValue();
6298 
6299   if (DstAlignCanChange) {
6300     Type *Ty = MemOps[0].getTypeForEVT(C);
6301     Align NewAlign = DL.getABITypeAlign(Ty);
6302 
6303     // Don't promote to an alignment that would require dynamic stack
6304     // realignment.
6305     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6306     if (!TRI->hasStackRealignment(MF))
6307       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6308         NewAlign = NewAlign / 2;
6309 
6310     if (NewAlign > Alignment) {
6311       // Give the stack frame object a larger alignment if needed.
6312       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6313         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6314       Alignment = NewAlign;
6315     }
6316   }
6317 
6318   MachineMemOperand::Flags MMOFlags =
6319       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6320   SmallVector<SDValue, 16> OutLoadChains;
6321   SmallVector<SDValue, 16> OutStoreChains;
6322   SmallVector<SDValue, 32> OutChains;
6323   unsigned NumMemOps = MemOps.size();
6324   uint64_t SrcOff = 0, DstOff = 0;
6325   for (unsigned i = 0; i != NumMemOps; ++i) {
6326     EVT VT = MemOps[i];
6327     unsigned VTSize = VT.getSizeInBits() / 8;
6328     SDValue Value, Store;
6329 
6330     if (VTSize > Size) {
6331       // Issuing an unaligned load / store pair  that overlaps with the previous
6332       // pair. Adjust the offset accordingly.
6333       assert(i == NumMemOps-1 && i != 0);
6334       SrcOff -= VTSize - Size;
6335       DstOff -= VTSize - Size;
6336     }
6337 
6338     if (CopyFromConstant &&
6339         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6340       // It's unlikely a store of a vector immediate can be done in a single
6341       // instruction. It would require a load from a constantpool first.
6342       // We only handle zero vectors here.
6343       // FIXME: Handle other cases where store of vector immediate is done in
6344       // a single instruction.
6345       ConstantDataArraySlice SubSlice;
6346       if (SrcOff < Slice.Length) {
6347         SubSlice = Slice;
6348         SubSlice.move(SrcOff);
6349       } else {
6350         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6351         SubSlice.Array = nullptr;
6352         SubSlice.Offset = 0;
6353         SubSlice.Length = VTSize;
6354       }
6355       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6356       if (Value.getNode()) {
6357         Store = DAG.getStore(
6358             Chain, dl, Value,
6359             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6360             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6361         OutChains.push_back(Store);
6362       }
6363     }
6364 
6365     if (!Store.getNode()) {
6366       // The type might not be legal for the target.  This should only happen
6367       // if the type is smaller than a legal type, as on PPC, so the right
6368       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6369       // to Load/Store if NVT==VT.
6370       // FIXME does the case above also need this?
6371       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6372       assert(NVT.bitsGE(VT));
6373 
6374       bool isDereferenceable =
6375         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6376       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6377       if (isDereferenceable)
6378         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6379 
6380       Value = DAG.getExtLoad(
6381           ISD::EXTLOAD, dl, NVT, Chain,
6382           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6383           SrcPtrInfo.getWithOffset(SrcOff), VT,
6384           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6385       OutLoadChains.push_back(Value.getValue(1));
6386 
6387       Store = DAG.getTruncStore(
6388           Chain, dl, Value,
6389           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6390           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6391       OutStoreChains.push_back(Store);
6392     }
6393     SrcOff += VTSize;
6394     DstOff += VTSize;
6395     Size -= VTSize;
6396   }
6397 
6398   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6399                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6400   unsigned NumLdStInMemcpy = OutStoreChains.size();
6401 
6402   if (NumLdStInMemcpy) {
6403     // It may be that memcpy might be converted to memset if it's memcpy
6404     // of constants. In such a case, we won't have loads and stores, but
6405     // just stores. In the absence of loads, there is nothing to gang up.
6406     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6407       // If target does not care, just leave as it.
6408       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6409         OutChains.push_back(OutLoadChains[i]);
6410         OutChains.push_back(OutStoreChains[i]);
6411       }
6412     } else {
6413       // Ld/St less than/equal limit set by target.
6414       if (NumLdStInMemcpy <= GluedLdStLimit) {
6415           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6416                                         NumLdStInMemcpy, OutLoadChains,
6417                                         OutStoreChains);
6418       } else {
6419         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6420         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6421         unsigned GlueIter = 0;
6422 
6423         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6424           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6425           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6426 
6427           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6428                                        OutLoadChains, OutStoreChains);
6429           GlueIter += GluedLdStLimit;
6430         }
6431 
6432         // Residual ld/st.
6433         if (RemainingLdStInMemcpy) {
6434           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6435                                         RemainingLdStInMemcpy, OutLoadChains,
6436                                         OutStoreChains);
6437         }
6438       }
6439     }
6440   }
6441   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6442 }
6443 
6444 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6445                                         SDValue Chain, SDValue Dst, SDValue Src,
6446                                         uint64_t Size, Align Alignment,
6447                                         bool isVol, bool AlwaysInline,
6448                                         MachinePointerInfo DstPtrInfo,
6449                                         MachinePointerInfo SrcPtrInfo) {
6450   // Turn a memmove of undef to nop.
6451   // FIXME: We need to honor volatile even is Src is undef.
6452   if (Src.isUndef())
6453     return Chain;
6454 
6455   // Expand memmove to a series of load and store ops if the size operand falls
6456   // below a certain threshold.
6457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6458   const DataLayout &DL = DAG.getDataLayout();
6459   LLVMContext &C = *DAG.getContext();
6460   std::vector<EVT> MemOps;
6461   bool DstAlignCanChange = false;
6462   MachineFunction &MF = DAG.getMachineFunction();
6463   MachineFrameInfo &MFI = MF.getFrameInfo();
6464   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6465   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6466   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6467     DstAlignCanChange = true;
6468   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6469   if (!SrcAlign || Alignment > *SrcAlign)
6470     SrcAlign = Alignment;
6471   assert(SrcAlign && "SrcAlign must be set");
6472   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6473   if (!TLI.findOptimalMemOpLowering(
6474           MemOps, Limit,
6475           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6476                       /*IsVolatile*/ true),
6477           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6478           MF.getFunction().getAttributes()))
6479     return SDValue();
6480 
6481   if (DstAlignCanChange) {
6482     Type *Ty = MemOps[0].getTypeForEVT(C);
6483     Align NewAlign = DL.getABITypeAlign(Ty);
6484     if (NewAlign > Alignment) {
6485       // Give the stack frame object a larger alignment if needed.
6486       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6487         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6488       Alignment = NewAlign;
6489     }
6490   }
6491 
6492   MachineMemOperand::Flags MMOFlags =
6493       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6494   uint64_t SrcOff = 0, DstOff = 0;
6495   SmallVector<SDValue, 8> LoadValues;
6496   SmallVector<SDValue, 8> LoadChains;
6497   SmallVector<SDValue, 8> OutChains;
6498   unsigned NumMemOps = MemOps.size();
6499   for (unsigned i = 0; i < NumMemOps; i++) {
6500     EVT VT = MemOps[i];
6501     unsigned VTSize = VT.getSizeInBits() / 8;
6502     SDValue Value;
6503 
6504     bool isDereferenceable =
6505       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6506     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6507     if (isDereferenceable)
6508       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6509 
6510     Value =
6511         DAG.getLoad(VT, dl, Chain,
6512                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6513                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6514     LoadValues.push_back(Value);
6515     LoadChains.push_back(Value.getValue(1));
6516     SrcOff += VTSize;
6517   }
6518   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6519   OutChains.clear();
6520   for (unsigned i = 0; i < NumMemOps; i++) {
6521     EVT VT = MemOps[i];
6522     unsigned VTSize = VT.getSizeInBits() / 8;
6523     SDValue Store;
6524 
6525     Store =
6526         DAG.getStore(Chain, dl, LoadValues[i],
6527                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6528                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6529     OutChains.push_back(Store);
6530     DstOff += VTSize;
6531   }
6532 
6533   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6534 }
6535 
6536 /// Lower the call to 'memset' intrinsic function into a series of store
6537 /// operations.
6538 ///
6539 /// \param DAG Selection DAG where lowered code is placed.
6540 /// \param dl Link to corresponding IR location.
6541 /// \param Chain Control flow dependency.
6542 /// \param Dst Pointer to destination memory location.
6543 /// \param Src Value of byte to write into the memory.
6544 /// \param Size Number of bytes to write.
6545 /// \param Alignment Alignment of the destination in bytes.
6546 /// \param isVol True if destination is volatile.
6547 /// \param DstPtrInfo IR information on the memory pointer.
6548 /// \returns New head in the control flow, if lowering was successful, empty
6549 /// SDValue otherwise.
6550 ///
6551 /// The function tries to replace 'llvm.memset' intrinsic with several store
6552 /// operations and value calculation code. This is usually profitable for small
6553 /// memory size.
6554 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6555                                SDValue Chain, SDValue Dst, SDValue Src,
6556                                uint64_t Size, Align Alignment, bool isVol,
6557                                MachinePointerInfo DstPtrInfo) {
6558   // Turn a memset of undef to nop.
6559   // FIXME: We need to honor volatile even is Src is undef.
6560   if (Src.isUndef())
6561     return Chain;
6562 
6563   // Expand memset to a series of load/store ops if the size operand
6564   // falls below a certain threshold.
6565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6566   std::vector<EVT> MemOps;
6567   bool DstAlignCanChange = false;
6568   MachineFunction &MF = DAG.getMachineFunction();
6569   MachineFrameInfo &MFI = MF.getFrameInfo();
6570   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6571   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6572   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6573     DstAlignCanChange = true;
6574   bool IsZeroVal =
6575     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6576   if (!TLI.findOptimalMemOpLowering(
6577           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6578           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6579           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6580     return SDValue();
6581 
6582   if (DstAlignCanChange) {
6583     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6584     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6585     if (NewAlign > Alignment) {
6586       // Give the stack frame object a larger alignment if needed.
6587       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6588         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6589       Alignment = NewAlign;
6590     }
6591   }
6592 
6593   SmallVector<SDValue, 8> OutChains;
6594   uint64_t DstOff = 0;
6595   unsigned NumMemOps = MemOps.size();
6596 
6597   // Find the largest store and generate the bit pattern for it.
6598   EVT LargestVT = MemOps[0];
6599   for (unsigned i = 1; i < NumMemOps; i++)
6600     if (MemOps[i].bitsGT(LargestVT))
6601       LargestVT = MemOps[i];
6602   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6603 
6604   for (unsigned i = 0; i < NumMemOps; i++) {
6605     EVT VT = MemOps[i];
6606     unsigned VTSize = VT.getSizeInBits() / 8;
6607     if (VTSize > Size) {
6608       // Issuing an unaligned load / store pair  that overlaps with the previous
6609       // pair. Adjust the offset accordingly.
6610       assert(i == NumMemOps-1 && i != 0);
6611       DstOff -= VTSize - Size;
6612     }
6613 
6614     // If this store is smaller than the largest store see whether we can get
6615     // the smaller value for free with a truncate.
6616     SDValue Value = MemSetValue;
6617     if (VT.bitsLT(LargestVT)) {
6618       if (!LargestVT.isVector() && !VT.isVector() &&
6619           TLI.isTruncateFree(LargestVT, VT))
6620         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6621       else
6622         Value = getMemsetValue(Src, VT, DAG, dl);
6623     }
6624     assert(Value.getValueType() == VT && "Value with wrong type.");
6625     SDValue Store = DAG.getStore(
6626         Chain, dl, Value,
6627         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6628         DstPtrInfo.getWithOffset(DstOff), Alignment,
6629         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6630     OutChains.push_back(Store);
6631     DstOff += VT.getSizeInBits() / 8;
6632     Size -= VTSize;
6633   }
6634 
6635   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6636 }
6637 
6638 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6639                                             unsigned AS) {
6640   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6641   // pointer operands can be losslessly bitcasted to pointers of address space 0
6642   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6643     report_fatal_error("cannot lower memory intrinsic in address space " +
6644                        Twine(AS));
6645   }
6646 }
6647 
6648 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6649                                 SDValue Src, SDValue Size, Align Alignment,
6650                                 bool isVol, bool AlwaysInline, bool isTailCall,
6651                                 MachinePointerInfo DstPtrInfo,
6652                                 MachinePointerInfo SrcPtrInfo) {
6653   // Check to see if we should lower the memcpy to loads and stores first.
6654   // For cases within the target-specified limits, this is the best choice.
6655   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6656   if (ConstantSize) {
6657     // Memcpy with size zero? Just return the original chain.
6658     if (ConstantSize->isNullValue())
6659       return Chain;
6660 
6661     SDValue Result = getMemcpyLoadsAndStores(
6662         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6663         isVol, false, DstPtrInfo, SrcPtrInfo);
6664     if (Result.getNode())
6665       return Result;
6666   }
6667 
6668   // Then check to see if we should lower the memcpy with target-specific
6669   // code. If the target chooses to do this, this is the next best.
6670   if (TSI) {
6671     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6672         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6673         DstPtrInfo, SrcPtrInfo);
6674     if (Result.getNode())
6675       return Result;
6676   }
6677 
6678   // If we really need inline code and the target declined to provide it,
6679   // use a (potentially long) sequence of loads and stores.
6680   if (AlwaysInline) {
6681     assert(ConstantSize && "AlwaysInline requires a constant size!");
6682     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6683                                    ConstantSize->getZExtValue(), Alignment,
6684                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6685   }
6686 
6687   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6688   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6689 
6690   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6691   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6692   // respect volatile, so they may do things like read or write memory
6693   // beyond the given memory regions. But fixing this isn't easy, and most
6694   // people don't care.
6695 
6696   // Emit a library call.
6697   TargetLowering::ArgListTy Args;
6698   TargetLowering::ArgListEntry Entry;
6699   Entry.Ty = Type::getInt8PtrTy(*getContext());
6700   Entry.Node = Dst; Args.push_back(Entry);
6701   Entry.Node = Src; Args.push_back(Entry);
6702 
6703   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6704   Entry.Node = Size; Args.push_back(Entry);
6705   // FIXME: pass in SDLoc
6706   TargetLowering::CallLoweringInfo CLI(*this);
6707   CLI.setDebugLoc(dl)
6708       .setChain(Chain)
6709       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6710                     Dst.getValueType().getTypeForEVT(*getContext()),
6711                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6712                                       TLI->getPointerTy(getDataLayout())),
6713                     std::move(Args))
6714       .setDiscardResult()
6715       .setTailCall(isTailCall);
6716 
6717   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6718   return CallResult.second;
6719 }
6720 
6721 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6722                                       SDValue Dst, unsigned DstAlign,
6723                                       SDValue Src, unsigned SrcAlign,
6724                                       SDValue Size, Type *SizeTy,
6725                                       unsigned ElemSz, bool isTailCall,
6726                                       MachinePointerInfo DstPtrInfo,
6727                                       MachinePointerInfo SrcPtrInfo) {
6728   // Emit a library call.
6729   TargetLowering::ArgListTy Args;
6730   TargetLowering::ArgListEntry Entry;
6731   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6732   Entry.Node = Dst;
6733   Args.push_back(Entry);
6734 
6735   Entry.Node = Src;
6736   Args.push_back(Entry);
6737 
6738   Entry.Ty = SizeTy;
6739   Entry.Node = Size;
6740   Args.push_back(Entry);
6741 
6742   RTLIB::Libcall LibraryCall =
6743       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6744   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6745     report_fatal_error("Unsupported element size");
6746 
6747   TargetLowering::CallLoweringInfo CLI(*this);
6748   CLI.setDebugLoc(dl)
6749       .setChain(Chain)
6750       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6751                     Type::getVoidTy(*getContext()),
6752                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6753                                       TLI->getPointerTy(getDataLayout())),
6754                     std::move(Args))
6755       .setDiscardResult()
6756       .setTailCall(isTailCall);
6757 
6758   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6759   return CallResult.second;
6760 }
6761 
6762 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6763                                  SDValue Src, SDValue Size, Align Alignment,
6764                                  bool isVol, bool isTailCall,
6765                                  MachinePointerInfo DstPtrInfo,
6766                                  MachinePointerInfo SrcPtrInfo) {
6767   // Check to see if we should lower the memmove to loads and stores first.
6768   // For cases within the target-specified limits, this is the best choice.
6769   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6770   if (ConstantSize) {
6771     // Memmove with size zero? Just return the original chain.
6772     if (ConstantSize->isNullValue())
6773       return Chain;
6774 
6775     SDValue Result = getMemmoveLoadsAndStores(
6776         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6777         isVol, false, DstPtrInfo, SrcPtrInfo);
6778     if (Result.getNode())
6779       return Result;
6780   }
6781 
6782   // Then check to see if we should lower the memmove with target-specific
6783   // code. If the target chooses to do this, this is the next best.
6784   if (TSI) {
6785     SDValue Result =
6786         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6787                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6788     if (Result.getNode())
6789       return Result;
6790   }
6791 
6792   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6793   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6794 
6795   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6796   // not be safe.  See memcpy above for more details.
6797 
6798   // Emit a library call.
6799   TargetLowering::ArgListTy Args;
6800   TargetLowering::ArgListEntry Entry;
6801   Entry.Ty = Type::getInt8PtrTy(*getContext());
6802   Entry.Node = Dst; Args.push_back(Entry);
6803   Entry.Node = Src; Args.push_back(Entry);
6804 
6805   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6806   Entry.Node = Size; Args.push_back(Entry);
6807   // FIXME:  pass in SDLoc
6808   TargetLowering::CallLoweringInfo CLI(*this);
6809   CLI.setDebugLoc(dl)
6810       .setChain(Chain)
6811       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6812                     Dst.getValueType().getTypeForEVT(*getContext()),
6813                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6814                                       TLI->getPointerTy(getDataLayout())),
6815                     std::move(Args))
6816       .setDiscardResult()
6817       .setTailCall(isTailCall);
6818 
6819   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6820   return CallResult.second;
6821 }
6822 
6823 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6824                                        SDValue Dst, unsigned DstAlign,
6825                                        SDValue Src, unsigned SrcAlign,
6826                                        SDValue Size, Type *SizeTy,
6827                                        unsigned ElemSz, bool isTailCall,
6828                                        MachinePointerInfo DstPtrInfo,
6829                                        MachinePointerInfo SrcPtrInfo) {
6830   // Emit a library call.
6831   TargetLowering::ArgListTy Args;
6832   TargetLowering::ArgListEntry Entry;
6833   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6834   Entry.Node = Dst;
6835   Args.push_back(Entry);
6836 
6837   Entry.Node = Src;
6838   Args.push_back(Entry);
6839 
6840   Entry.Ty = SizeTy;
6841   Entry.Node = Size;
6842   Args.push_back(Entry);
6843 
6844   RTLIB::Libcall LibraryCall =
6845       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6846   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6847     report_fatal_error("Unsupported element size");
6848 
6849   TargetLowering::CallLoweringInfo CLI(*this);
6850   CLI.setDebugLoc(dl)
6851       .setChain(Chain)
6852       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6853                     Type::getVoidTy(*getContext()),
6854                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6855                                       TLI->getPointerTy(getDataLayout())),
6856                     std::move(Args))
6857       .setDiscardResult()
6858       .setTailCall(isTailCall);
6859 
6860   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6861   return CallResult.second;
6862 }
6863 
6864 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6865                                 SDValue Src, SDValue Size, Align Alignment,
6866                                 bool isVol, bool isTailCall,
6867                                 MachinePointerInfo DstPtrInfo) {
6868   // Check to see if we should lower the memset to stores first.
6869   // For cases within the target-specified limits, this is the best choice.
6870   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6871   if (ConstantSize) {
6872     // Memset with size zero? Just return the original chain.
6873     if (ConstantSize->isNullValue())
6874       return Chain;
6875 
6876     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6877                                      ConstantSize->getZExtValue(), Alignment,
6878                                      isVol, DstPtrInfo);
6879 
6880     if (Result.getNode())
6881       return Result;
6882   }
6883 
6884   // Then check to see if we should lower the memset with target-specific
6885   // code. If the target chooses to do this, this is the next best.
6886   if (TSI) {
6887     SDValue Result = TSI->EmitTargetCodeForMemset(
6888         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6889     if (Result.getNode())
6890       return Result;
6891   }
6892 
6893   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6894 
6895   // Emit a library call.
6896   TargetLowering::ArgListTy Args;
6897   TargetLowering::ArgListEntry Entry;
6898   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6899   Args.push_back(Entry);
6900   Entry.Node = Src;
6901   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6902   Args.push_back(Entry);
6903   Entry.Node = Size;
6904   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6905   Args.push_back(Entry);
6906 
6907   // FIXME: pass in SDLoc
6908   TargetLowering::CallLoweringInfo CLI(*this);
6909   CLI.setDebugLoc(dl)
6910       .setChain(Chain)
6911       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6912                     Dst.getValueType().getTypeForEVT(*getContext()),
6913                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6914                                       TLI->getPointerTy(getDataLayout())),
6915                     std::move(Args))
6916       .setDiscardResult()
6917       .setTailCall(isTailCall);
6918 
6919   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6920   return CallResult.second;
6921 }
6922 
6923 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6924                                       SDValue Dst, unsigned DstAlign,
6925                                       SDValue Value, SDValue Size, Type *SizeTy,
6926                                       unsigned ElemSz, bool isTailCall,
6927                                       MachinePointerInfo DstPtrInfo) {
6928   // Emit a library call.
6929   TargetLowering::ArgListTy Args;
6930   TargetLowering::ArgListEntry Entry;
6931   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6932   Entry.Node = Dst;
6933   Args.push_back(Entry);
6934 
6935   Entry.Ty = Type::getInt8Ty(*getContext());
6936   Entry.Node = Value;
6937   Args.push_back(Entry);
6938 
6939   Entry.Ty = SizeTy;
6940   Entry.Node = Size;
6941   Args.push_back(Entry);
6942 
6943   RTLIB::Libcall LibraryCall =
6944       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6945   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6946     report_fatal_error("Unsupported element size");
6947 
6948   TargetLowering::CallLoweringInfo CLI(*this);
6949   CLI.setDebugLoc(dl)
6950       .setChain(Chain)
6951       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6952                     Type::getVoidTy(*getContext()),
6953                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6954                                       TLI->getPointerTy(getDataLayout())),
6955                     std::move(Args))
6956       .setDiscardResult()
6957       .setTailCall(isTailCall);
6958 
6959   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6960   return CallResult.second;
6961 }
6962 
6963 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6964                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6965                                 MachineMemOperand *MMO) {
6966   FoldingSetNodeID ID;
6967   ID.AddInteger(MemVT.getRawBits());
6968   AddNodeIDNode(ID, Opcode, VTList, Ops);
6969   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6970   void* IP = nullptr;
6971   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6972     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6973     return SDValue(E, 0);
6974   }
6975 
6976   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6977                                     VTList, MemVT, MMO);
6978   createOperands(N, Ops);
6979 
6980   CSEMap.InsertNode(N, IP);
6981   InsertNode(N);
6982   return SDValue(N, 0);
6983 }
6984 
6985 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6986                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6987                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6988                                        MachineMemOperand *MMO) {
6989   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6990          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6991   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6992 
6993   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6994   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6995 }
6996 
6997 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6998                                 SDValue Chain, SDValue Ptr, SDValue Val,
6999                                 MachineMemOperand *MMO) {
7000   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7001           Opcode == ISD::ATOMIC_LOAD_SUB ||
7002           Opcode == ISD::ATOMIC_LOAD_AND ||
7003           Opcode == ISD::ATOMIC_LOAD_CLR ||
7004           Opcode == ISD::ATOMIC_LOAD_OR ||
7005           Opcode == ISD::ATOMIC_LOAD_XOR ||
7006           Opcode == ISD::ATOMIC_LOAD_NAND ||
7007           Opcode == ISD::ATOMIC_LOAD_MIN ||
7008           Opcode == ISD::ATOMIC_LOAD_MAX ||
7009           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7010           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7011           Opcode == ISD::ATOMIC_LOAD_FADD ||
7012           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7013           Opcode == ISD::ATOMIC_SWAP ||
7014           Opcode == ISD::ATOMIC_STORE) &&
7015          "Invalid Atomic Op");
7016 
7017   EVT VT = Val.getValueType();
7018 
7019   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7020                                                getVTList(VT, MVT::Other);
7021   SDValue Ops[] = {Chain, Ptr, Val};
7022   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7023 }
7024 
7025 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7026                                 EVT VT, SDValue Chain, SDValue Ptr,
7027                                 MachineMemOperand *MMO) {
7028   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7029 
7030   SDVTList VTs = getVTList(VT, MVT::Other);
7031   SDValue Ops[] = {Chain, Ptr};
7032   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7033 }
7034 
7035 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7036 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7037   if (Ops.size() == 1)
7038     return Ops[0];
7039 
7040   SmallVector<EVT, 4> VTs;
7041   VTs.reserve(Ops.size());
7042   for (const SDValue &Op : Ops)
7043     VTs.push_back(Op.getValueType());
7044   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7045 }
7046 
7047 SDValue SelectionDAG::getMemIntrinsicNode(
7048     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7049     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7050     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7051   if (!Size && MemVT.isScalableVector())
7052     Size = MemoryLocation::UnknownSize;
7053   else if (!Size)
7054     Size = MemVT.getStoreSize();
7055 
7056   MachineFunction &MF = getMachineFunction();
7057   MachineMemOperand *MMO =
7058       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7059 
7060   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7061 }
7062 
7063 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7064                                           SDVTList VTList,
7065                                           ArrayRef<SDValue> Ops, EVT MemVT,
7066                                           MachineMemOperand *MMO) {
7067   assert((Opcode == ISD::INTRINSIC_VOID ||
7068           Opcode == ISD::INTRINSIC_W_CHAIN ||
7069           Opcode == ISD::PREFETCH ||
7070           ((int)Opcode <= std::numeric_limits<int>::max() &&
7071            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7072          "Opcode is not a memory-accessing opcode!");
7073 
7074   // Memoize the node unless it returns a flag.
7075   MemIntrinsicSDNode *N;
7076   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7077     FoldingSetNodeID ID;
7078     AddNodeIDNode(ID, Opcode, VTList, Ops);
7079     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7080         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7081     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7082     void *IP = nullptr;
7083     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7084       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7085       return SDValue(E, 0);
7086     }
7087 
7088     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7089                                       VTList, MemVT, MMO);
7090     createOperands(N, Ops);
7091 
7092   CSEMap.InsertNode(N, IP);
7093   } else {
7094     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7095                                       VTList, MemVT, MMO);
7096     createOperands(N, Ops);
7097   }
7098   InsertNode(N);
7099   SDValue V(N, 0);
7100   NewSDValueDbgMsg(V, "Creating new node: ", this);
7101   return V;
7102 }
7103 
7104 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7105                                       SDValue Chain, int FrameIndex,
7106                                       int64_t Size, int64_t Offset) {
7107   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7108   const auto VTs = getVTList(MVT::Other);
7109   SDValue Ops[2] = {
7110       Chain,
7111       getFrameIndex(FrameIndex,
7112                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7113                     true)};
7114 
7115   FoldingSetNodeID ID;
7116   AddNodeIDNode(ID, Opcode, VTs, Ops);
7117   ID.AddInteger(FrameIndex);
7118   ID.AddInteger(Size);
7119   ID.AddInteger(Offset);
7120   void *IP = nullptr;
7121   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7122     return SDValue(E, 0);
7123 
7124   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7125       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7126   createOperands(N, Ops);
7127   CSEMap.InsertNode(N, IP);
7128   InsertNode(N);
7129   SDValue V(N, 0);
7130   NewSDValueDbgMsg(V, "Creating new node: ", this);
7131   return V;
7132 }
7133 
7134 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7135                                          uint64_t Guid, uint64_t Index,
7136                                          uint32_t Attr) {
7137   const unsigned Opcode = ISD::PSEUDO_PROBE;
7138   const auto VTs = getVTList(MVT::Other);
7139   SDValue Ops[] = {Chain};
7140   FoldingSetNodeID ID;
7141   AddNodeIDNode(ID, Opcode, VTs, Ops);
7142   ID.AddInteger(Guid);
7143   ID.AddInteger(Index);
7144   void *IP = nullptr;
7145   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7146     return SDValue(E, 0);
7147 
7148   auto *N = newSDNode<PseudoProbeSDNode>(
7149       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7150   createOperands(N, Ops);
7151   CSEMap.InsertNode(N, IP);
7152   InsertNode(N);
7153   SDValue V(N, 0);
7154   NewSDValueDbgMsg(V, "Creating new node: ", this);
7155   return V;
7156 }
7157 
7158 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7159 /// MachinePointerInfo record from it.  This is particularly useful because the
7160 /// code generator has many cases where it doesn't bother passing in a
7161 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7162 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7163                                            SelectionDAG &DAG, SDValue Ptr,
7164                                            int64_t Offset = 0) {
7165   // If this is FI+Offset, we can model it.
7166   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7167     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7168                                              FI->getIndex(), Offset);
7169 
7170   // If this is (FI+Offset1)+Offset2, we can model it.
7171   if (Ptr.getOpcode() != ISD::ADD ||
7172       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7173       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7174     return Info;
7175 
7176   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7177   return MachinePointerInfo::getFixedStack(
7178       DAG.getMachineFunction(), FI,
7179       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7180 }
7181 
7182 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7183 /// MachinePointerInfo record from it.  This is particularly useful because the
7184 /// code generator has many cases where it doesn't bother passing in a
7185 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7186 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7187                                            SelectionDAG &DAG, SDValue Ptr,
7188                                            SDValue OffsetOp) {
7189   // If the 'Offset' value isn't a constant, we can't handle this.
7190   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7191     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7192   if (OffsetOp.isUndef())
7193     return InferPointerInfo(Info, DAG, Ptr);
7194   return Info;
7195 }
7196 
7197 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7198                               EVT VT, const SDLoc &dl, SDValue Chain,
7199                               SDValue Ptr, SDValue Offset,
7200                               MachinePointerInfo PtrInfo, EVT MemVT,
7201                               Align Alignment,
7202                               MachineMemOperand::Flags MMOFlags,
7203                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7204   assert(Chain.getValueType() == MVT::Other &&
7205         "Invalid chain type");
7206 
7207   MMOFlags |= MachineMemOperand::MOLoad;
7208   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7209   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7210   // clients.
7211   if (PtrInfo.V.isNull())
7212     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7213 
7214   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7215   MachineFunction &MF = getMachineFunction();
7216   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7217                                                    Alignment, AAInfo, Ranges);
7218   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7219 }
7220 
7221 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7222                               EVT VT, const SDLoc &dl, SDValue Chain,
7223                               SDValue Ptr, SDValue Offset, EVT MemVT,
7224                               MachineMemOperand *MMO) {
7225   if (VT == MemVT) {
7226     ExtType = ISD::NON_EXTLOAD;
7227   } else if (ExtType == ISD::NON_EXTLOAD) {
7228     assert(VT == MemVT && "Non-extending load from different memory type!");
7229   } else {
7230     // Extending load.
7231     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7232            "Should only be an extending load, not truncating!");
7233     assert(VT.isInteger() == MemVT.isInteger() &&
7234            "Cannot convert from FP to Int or Int -> FP!");
7235     assert(VT.isVector() == MemVT.isVector() &&
7236            "Cannot use an ext load to convert to or from a vector!");
7237     assert((!VT.isVector() ||
7238             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7239            "Cannot use an ext load to change the number of vector elements!");
7240   }
7241 
7242   bool Indexed = AM != ISD::UNINDEXED;
7243   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7244 
7245   SDVTList VTs = Indexed ?
7246     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7247   SDValue Ops[] = { Chain, Ptr, Offset };
7248   FoldingSetNodeID ID;
7249   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7250   ID.AddInteger(MemVT.getRawBits());
7251   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7252       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7253   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7254   void *IP = nullptr;
7255   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7256     cast<LoadSDNode>(E)->refineAlignment(MMO);
7257     return SDValue(E, 0);
7258   }
7259   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7260                                   ExtType, MemVT, MMO);
7261   createOperands(N, Ops);
7262 
7263   CSEMap.InsertNode(N, IP);
7264   InsertNode(N);
7265   SDValue V(N, 0);
7266   NewSDValueDbgMsg(V, "Creating new node: ", this);
7267   return V;
7268 }
7269 
7270 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7271                               SDValue Ptr, MachinePointerInfo PtrInfo,
7272                               MaybeAlign Alignment,
7273                               MachineMemOperand::Flags MMOFlags,
7274                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7275   SDValue Undef = getUNDEF(Ptr.getValueType());
7276   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7277                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7278 }
7279 
7280 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7281                               SDValue Ptr, MachineMemOperand *MMO) {
7282   SDValue Undef = getUNDEF(Ptr.getValueType());
7283   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7284                  VT, MMO);
7285 }
7286 
7287 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7288                                  EVT VT, SDValue Chain, SDValue Ptr,
7289                                  MachinePointerInfo PtrInfo, EVT MemVT,
7290                                  MaybeAlign Alignment,
7291                                  MachineMemOperand::Flags MMOFlags,
7292                                  const AAMDNodes &AAInfo) {
7293   SDValue Undef = getUNDEF(Ptr.getValueType());
7294   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7295                  MemVT, Alignment, MMOFlags, AAInfo);
7296 }
7297 
7298 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7299                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7300                                  MachineMemOperand *MMO) {
7301   SDValue Undef = getUNDEF(Ptr.getValueType());
7302   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7303                  MemVT, MMO);
7304 }
7305 
7306 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7307                                      SDValue Base, SDValue Offset,
7308                                      ISD::MemIndexedMode AM) {
7309   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7310   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7311   // Don't propagate the invariant or dereferenceable flags.
7312   auto MMOFlags =
7313       LD->getMemOperand()->getFlags() &
7314       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7315   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7316                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7317                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7318 }
7319 
7320 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7321                                SDValue Ptr, MachinePointerInfo PtrInfo,
7322                                Align Alignment,
7323                                MachineMemOperand::Flags MMOFlags,
7324                                const AAMDNodes &AAInfo) {
7325   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7326 
7327   MMOFlags |= MachineMemOperand::MOStore;
7328   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7329 
7330   if (PtrInfo.V.isNull())
7331     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7332 
7333   MachineFunction &MF = getMachineFunction();
7334   uint64_t Size =
7335       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7336   MachineMemOperand *MMO =
7337       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7338   return getStore(Chain, dl, Val, Ptr, MMO);
7339 }
7340 
7341 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7342                                SDValue Ptr, MachineMemOperand *MMO) {
7343   assert(Chain.getValueType() == MVT::Other &&
7344         "Invalid chain type");
7345   EVT VT = Val.getValueType();
7346   SDVTList VTs = getVTList(MVT::Other);
7347   SDValue Undef = getUNDEF(Ptr.getValueType());
7348   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7349   FoldingSetNodeID ID;
7350   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7351   ID.AddInteger(VT.getRawBits());
7352   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7353       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7354   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7355   void *IP = nullptr;
7356   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7357     cast<StoreSDNode>(E)->refineAlignment(MMO);
7358     return SDValue(E, 0);
7359   }
7360   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7361                                    ISD::UNINDEXED, false, VT, MMO);
7362   createOperands(N, Ops);
7363 
7364   CSEMap.InsertNode(N, IP);
7365   InsertNode(N);
7366   SDValue V(N, 0);
7367   NewSDValueDbgMsg(V, "Creating new node: ", this);
7368   return V;
7369 }
7370 
7371 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7372                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7373                                     EVT SVT, Align Alignment,
7374                                     MachineMemOperand::Flags MMOFlags,
7375                                     const AAMDNodes &AAInfo) {
7376   assert(Chain.getValueType() == MVT::Other &&
7377         "Invalid chain type");
7378 
7379   MMOFlags |= MachineMemOperand::MOStore;
7380   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7381 
7382   if (PtrInfo.V.isNull())
7383     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7384 
7385   MachineFunction &MF = getMachineFunction();
7386   MachineMemOperand *MMO = MF.getMachineMemOperand(
7387       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7388       Alignment, AAInfo);
7389   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7390 }
7391 
7392 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7393                                     SDValue Ptr, EVT SVT,
7394                                     MachineMemOperand *MMO) {
7395   EVT VT = Val.getValueType();
7396 
7397   assert(Chain.getValueType() == MVT::Other &&
7398         "Invalid chain type");
7399   if (VT == SVT)
7400     return getStore(Chain, dl, Val, Ptr, MMO);
7401 
7402   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7403          "Should only be a truncating store, not extending!");
7404   assert(VT.isInteger() == SVT.isInteger() &&
7405          "Can't do FP-INT conversion!");
7406   assert(VT.isVector() == SVT.isVector() &&
7407          "Cannot use trunc store to convert to or from a vector!");
7408   assert((!VT.isVector() ||
7409           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7410          "Cannot use trunc store to change the number of vector elements!");
7411 
7412   SDVTList VTs = getVTList(MVT::Other);
7413   SDValue Undef = getUNDEF(Ptr.getValueType());
7414   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7415   FoldingSetNodeID ID;
7416   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7417   ID.AddInteger(SVT.getRawBits());
7418   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7419       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7420   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7421   void *IP = nullptr;
7422   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7423     cast<StoreSDNode>(E)->refineAlignment(MMO);
7424     return SDValue(E, 0);
7425   }
7426   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7427                                    ISD::UNINDEXED, true, SVT, MMO);
7428   createOperands(N, Ops);
7429 
7430   CSEMap.InsertNode(N, IP);
7431   InsertNode(N);
7432   SDValue V(N, 0);
7433   NewSDValueDbgMsg(V, "Creating new node: ", this);
7434   return V;
7435 }
7436 
7437 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7438                                       SDValue Base, SDValue Offset,
7439                                       ISD::MemIndexedMode AM) {
7440   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7441   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7442   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7443   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7444   FoldingSetNodeID ID;
7445   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7446   ID.AddInteger(ST->getMemoryVT().getRawBits());
7447   ID.AddInteger(ST->getRawSubclassData());
7448   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7449   void *IP = nullptr;
7450   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7451     return SDValue(E, 0);
7452 
7453   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7454                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7455                                    ST->getMemOperand());
7456   createOperands(N, Ops);
7457 
7458   CSEMap.InsertNode(N, IP);
7459   InsertNode(N);
7460   SDValue V(N, 0);
7461   NewSDValueDbgMsg(V, "Creating new node: ", this);
7462   return V;
7463 }
7464 
7465 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7466                                     SDValue Base, SDValue Offset, SDValue Mask,
7467                                     SDValue PassThru, EVT MemVT,
7468                                     MachineMemOperand *MMO,
7469                                     ISD::MemIndexedMode AM,
7470                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7471   bool Indexed = AM != ISD::UNINDEXED;
7472   assert((Indexed || Offset.isUndef()) &&
7473          "Unindexed masked load with an offset!");
7474   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7475                          : getVTList(VT, MVT::Other);
7476   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7477   FoldingSetNodeID ID;
7478   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7479   ID.AddInteger(MemVT.getRawBits());
7480   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7481       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7482   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7483   void *IP = nullptr;
7484   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7485     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7486     return SDValue(E, 0);
7487   }
7488   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7489                                         AM, ExtTy, isExpanding, MemVT, MMO);
7490   createOperands(N, Ops);
7491 
7492   CSEMap.InsertNode(N, IP);
7493   InsertNode(N);
7494   SDValue V(N, 0);
7495   NewSDValueDbgMsg(V, "Creating new node: ", this);
7496   return V;
7497 }
7498 
7499 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7500                                            SDValue Base, SDValue Offset,
7501                                            ISD::MemIndexedMode AM) {
7502   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7503   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7504   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7505                        Offset, LD->getMask(), LD->getPassThru(),
7506                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7507                        LD->getExtensionType(), LD->isExpandingLoad());
7508 }
7509 
7510 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7511                                      SDValue Val, SDValue Base, SDValue Offset,
7512                                      SDValue Mask, EVT MemVT,
7513                                      MachineMemOperand *MMO,
7514                                      ISD::MemIndexedMode AM, bool IsTruncating,
7515                                      bool IsCompressing) {
7516   assert(Chain.getValueType() == MVT::Other &&
7517         "Invalid chain type");
7518   bool Indexed = AM != ISD::UNINDEXED;
7519   assert((Indexed || Offset.isUndef()) &&
7520          "Unindexed masked store with an offset!");
7521   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7522                          : getVTList(MVT::Other);
7523   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7524   FoldingSetNodeID ID;
7525   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7526   ID.AddInteger(MemVT.getRawBits());
7527   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7528       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7529   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7530   void *IP = nullptr;
7531   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7532     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7533     return SDValue(E, 0);
7534   }
7535   auto *N =
7536       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7537                                    IsTruncating, IsCompressing, MemVT, MMO);
7538   createOperands(N, Ops);
7539 
7540   CSEMap.InsertNode(N, IP);
7541   InsertNode(N);
7542   SDValue V(N, 0);
7543   NewSDValueDbgMsg(V, "Creating new node: ", this);
7544   return V;
7545 }
7546 
7547 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7548                                             SDValue Base, SDValue Offset,
7549                                             ISD::MemIndexedMode AM) {
7550   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7551   assert(ST->getOffset().isUndef() &&
7552          "Masked store is already a indexed store!");
7553   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7554                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7555                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7556 }
7557 
7558 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7559                                       ArrayRef<SDValue> Ops,
7560                                       MachineMemOperand *MMO,
7561                                       ISD::MemIndexType IndexType,
7562                                       ISD::LoadExtType ExtTy) {
7563   assert(Ops.size() == 6 && "Incompatible number of operands");
7564 
7565   FoldingSetNodeID ID;
7566   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7567   ID.AddInteger(VT.getRawBits());
7568   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7569       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7570   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7571   void *IP = nullptr;
7572   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7573     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7574     return SDValue(E, 0);
7575   }
7576 
7577   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7578   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7579                                           VTs, VT, MMO, IndexType, ExtTy);
7580   createOperands(N, Ops);
7581 
7582   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7583          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7584   assert(N->getMask().getValueType().getVectorElementCount() ==
7585              N->getValueType(0).getVectorElementCount() &&
7586          "Vector width mismatch between mask and data");
7587   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7588              N->getValueType(0).getVectorElementCount().isScalable() &&
7589          "Scalable flags of index and data do not match");
7590   assert(ElementCount::isKnownGE(
7591              N->getIndex().getValueType().getVectorElementCount(),
7592              N->getValueType(0).getVectorElementCount()) &&
7593          "Vector width mismatch between index and data");
7594   assert(isa<ConstantSDNode>(N->getScale()) &&
7595          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7596          "Scale should be a constant power of 2");
7597 
7598   CSEMap.InsertNode(N, IP);
7599   InsertNode(N);
7600   SDValue V(N, 0);
7601   NewSDValueDbgMsg(V, "Creating new node: ", this);
7602   return V;
7603 }
7604 
7605 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7606                                        ArrayRef<SDValue> Ops,
7607                                        MachineMemOperand *MMO,
7608                                        ISD::MemIndexType IndexType,
7609                                        bool IsTrunc) {
7610   assert(Ops.size() == 6 && "Incompatible number of operands");
7611 
7612   FoldingSetNodeID ID;
7613   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7614   ID.AddInteger(VT.getRawBits());
7615   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7616       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7617   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7618   void *IP = nullptr;
7619   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7620     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7621     return SDValue(E, 0);
7622   }
7623 
7624   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7625   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7626                                            VTs, VT, MMO, IndexType, IsTrunc);
7627   createOperands(N, Ops);
7628 
7629   assert(N->getMask().getValueType().getVectorElementCount() ==
7630              N->getValue().getValueType().getVectorElementCount() &&
7631          "Vector width mismatch between mask and data");
7632   assert(
7633       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7634           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7635       "Scalable flags of index and data do not match");
7636   assert(ElementCount::isKnownGE(
7637              N->getIndex().getValueType().getVectorElementCount(),
7638              N->getValue().getValueType().getVectorElementCount()) &&
7639          "Vector width mismatch between index and data");
7640   assert(isa<ConstantSDNode>(N->getScale()) &&
7641          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7642          "Scale should be a constant power of 2");
7643 
7644   CSEMap.InsertNode(N, IP);
7645   InsertNode(N);
7646   SDValue V(N, 0);
7647   NewSDValueDbgMsg(V, "Creating new node: ", this);
7648   return V;
7649 }
7650 
7651 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7652   // select undef, T, F --> T (if T is a constant), otherwise F
7653   // select, ?, undef, F --> F
7654   // select, ?, T, undef --> T
7655   if (Cond.isUndef())
7656     return isConstantValueOfAnyType(T) ? T : F;
7657   if (T.isUndef())
7658     return F;
7659   if (F.isUndef())
7660     return T;
7661 
7662   // select true, T, F --> T
7663   // select false, T, F --> F
7664   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7665     return CondC->isNullValue() ? F : T;
7666 
7667   // TODO: This should simplify VSELECT with constant condition using something
7668   // like this (but check boolean contents to be complete?):
7669   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7670   //    return T;
7671   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7672   //    return F;
7673 
7674   // select ?, T, T --> T
7675   if (T == F)
7676     return T;
7677 
7678   return SDValue();
7679 }
7680 
7681 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7682   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7683   if (X.isUndef())
7684     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7685   // shift X, undef --> undef (because it may shift by the bitwidth)
7686   if (Y.isUndef())
7687     return getUNDEF(X.getValueType());
7688 
7689   // shift 0, Y --> 0
7690   // shift X, 0 --> X
7691   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7692     return X;
7693 
7694   // shift X, C >= bitwidth(X) --> undef
7695   // All vector elements must be too big (or undef) to avoid partial undefs.
7696   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7697     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7698   };
7699   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7700     return getUNDEF(X.getValueType());
7701 
7702   return SDValue();
7703 }
7704 
7705 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7706                                       SDNodeFlags Flags) {
7707   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7708   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7709   // operation is poison. That result can be relaxed to undef.
7710   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7711   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7712   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7713                 (YC && YC->getValueAPF().isNaN());
7714   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7715                 (YC && YC->getValueAPF().isInfinity());
7716 
7717   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7718     return getUNDEF(X.getValueType());
7719 
7720   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7721     return getUNDEF(X.getValueType());
7722 
7723   if (!YC)
7724     return SDValue();
7725 
7726   // X + -0.0 --> X
7727   if (Opcode == ISD::FADD)
7728     if (YC->getValueAPF().isNegZero())
7729       return X;
7730 
7731   // X - +0.0 --> X
7732   if (Opcode == ISD::FSUB)
7733     if (YC->getValueAPF().isPosZero())
7734       return X;
7735 
7736   // X * 1.0 --> X
7737   // X / 1.0 --> X
7738   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7739     if (YC->getValueAPF().isExactlyValue(1.0))
7740       return X;
7741 
7742   // X * 0.0 --> 0.0
7743   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7744     if (YC->getValueAPF().isZero())
7745       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7746 
7747   return SDValue();
7748 }
7749 
7750 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7751                                SDValue Ptr, SDValue SV, unsigned Align) {
7752   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7753   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7754 }
7755 
7756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7757                               ArrayRef<SDUse> Ops) {
7758   switch (Ops.size()) {
7759   case 0: return getNode(Opcode, DL, VT);
7760   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7761   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7762   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7763   default: break;
7764   }
7765 
7766   // Copy from an SDUse array into an SDValue array for use with
7767   // the regular getNode logic.
7768   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7769   return getNode(Opcode, DL, VT, NewOps);
7770 }
7771 
7772 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7773                               ArrayRef<SDValue> Ops) {
7774   SDNodeFlags Flags;
7775   if (Inserter)
7776     Flags = Inserter->getFlags();
7777   return getNode(Opcode, DL, VT, Ops, Flags);
7778 }
7779 
7780 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7781                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7782   unsigned NumOps = Ops.size();
7783   switch (NumOps) {
7784   case 0: return getNode(Opcode, DL, VT);
7785   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7786   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7787   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7788   default: break;
7789   }
7790 
7791 #ifndef NDEBUG
7792   for (auto &Op : Ops)
7793     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7794            "Operand is DELETED_NODE!");
7795 #endif
7796 
7797   switch (Opcode) {
7798   default: break;
7799   case ISD::BUILD_VECTOR:
7800     // Attempt to simplify BUILD_VECTOR.
7801     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7802       return V;
7803     break;
7804   case ISD::CONCAT_VECTORS:
7805     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7806       return V;
7807     break;
7808   case ISD::SELECT_CC:
7809     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7810     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7811            "LHS and RHS of condition must have same type!");
7812     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7813            "True and False arms of SelectCC must have same type!");
7814     assert(Ops[2].getValueType() == VT &&
7815            "select_cc node must be of same type as true and false value!");
7816     break;
7817   case ISD::BR_CC:
7818     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7819     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7820            "LHS/RHS of comparison should match types!");
7821     break;
7822   }
7823 
7824   // Memoize nodes.
7825   SDNode *N;
7826   SDVTList VTs = getVTList(VT);
7827 
7828   if (VT != MVT::Glue) {
7829     FoldingSetNodeID ID;
7830     AddNodeIDNode(ID, Opcode, VTs, Ops);
7831     void *IP = nullptr;
7832 
7833     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7834       return SDValue(E, 0);
7835 
7836     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7837     createOperands(N, Ops);
7838 
7839     CSEMap.InsertNode(N, IP);
7840   } else {
7841     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7842     createOperands(N, Ops);
7843   }
7844 
7845   N->setFlags(Flags);
7846   InsertNode(N);
7847   SDValue V(N, 0);
7848   NewSDValueDbgMsg(V, "Creating new node: ", this);
7849   return V;
7850 }
7851 
7852 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7853                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7854   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7855 }
7856 
7857 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7858                               ArrayRef<SDValue> Ops) {
7859   SDNodeFlags Flags;
7860   if (Inserter)
7861     Flags = Inserter->getFlags();
7862   return getNode(Opcode, DL, VTList, Ops, Flags);
7863 }
7864 
7865 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7866                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7867   if (VTList.NumVTs == 1)
7868     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7869 
7870 #ifndef NDEBUG
7871   for (auto &Op : Ops)
7872     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7873            "Operand is DELETED_NODE!");
7874 #endif
7875 
7876   switch (Opcode) {
7877   case ISD::STRICT_FP_EXTEND:
7878     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7879            "Invalid STRICT_FP_EXTEND!");
7880     assert(VTList.VTs[0].isFloatingPoint() &&
7881            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7882     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7883            "STRICT_FP_EXTEND result type should be vector iff the operand "
7884            "type is vector!");
7885     assert((!VTList.VTs[0].isVector() ||
7886             VTList.VTs[0].getVectorNumElements() ==
7887             Ops[1].getValueType().getVectorNumElements()) &&
7888            "Vector element count mismatch!");
7889     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7890            "Invalid fpext node, dst <= src!");
7891     break;
7892   case ISD::STRICT_FP_ROUND:
7893     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7894     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7895            "STRICT_FP_ROUND result type should be vector iff the operand "
7896            "type is vector!");
7897     assert((!VTList.VTs[0].isVector() ||
7898             VTList.VTs[0].getVectorNumElements() ==
7899             Ops[1].getValueType().getVectorNumElements()) &&
7900            "Vector element count mismatch!");
7901     assert(VTList.VTs[0].isFloatingPoint() &&
7902            Ops[1].getValueType().isFloatingPoint() &&
7903            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7904            isa<ConstantSDNode>(Ops[2]) &&
7905            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7906             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7907            "Invalid STRICT_FP_ROUND!");
7908     break;
7909 #if 0
7910   // FIXME: figure out how to safely handle things like
7911   // int foo(int x) { return 1 << (x & 255); }
7912   // int bar() { return foo(256); }
7913   case ISD::SRA_PARTS:
7914   case ISD::SRL_PARTS:
7915   case ISD::SHL_PARTS:
7916     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7917         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7918       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7919     else if (N3.getOpcode() == ISD::AND)
7920       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7921         // If the and is only masking out bits that cannot effect the shift,
7922         // eliminate the and.
7923         unsigned NumBits = VT.getScalarSizeInBits()*2;
7924         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7925           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7926       }
7927     break;
7928 #endif
7929   }
7930 
7931   // Memoize the node unless it returns a flag.
7932   SDNode *N;
7933   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7934     FoldingSetNodeID ID;
7935     AddNodeIDNode(ID, Opcode, VTList, Ops);
7936     void *IP = nullptr;
7937     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7938       return SDValue(E, 0);
7939 
7940     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7941     createOperands(N, Ops);
7942     CSEMap.InsertNode(N, IP);
7943   } else {
7944     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7945     createOperands(N, Ops);
7946   }
7947 
7948   N->setFlags(Flags);
7949   InsertNode(N);
7950   SDValue V(N, 0);
7951   NewSDValueDbgMsg(V, "Creating new node: ", this);
7952   return V;
7953 }
7954 
7955 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7956                               SDVTList VTList) {
7957   return getNode(Opcode, DL, VTList, None);
7958 }
7959 
7960 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7961                               SDValue N1) {
7962   SDValue Ops[] = { N1 };
7963   return getNode(Opcode, DL, VTList, Ops);
7964 }
7965 
7966 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7967                               SDValue N1, SDValue N2) {
7968   SDValue Ops[] = { N1, N2 };
7969   return getNode(Opcode, DL, VTList, Ops);
7970 }
7971 
7972 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7973                               SDValue N1, SDValue N2, SDValue N3) {
7974   SDValue Ops[] = { N1, N2, N3 };
7975   return getNode(Opcode, DL, VTList, Ops);
7976 }
7977 
7978 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7979                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7980   SDValue Ops[] = { N1, N2, N3, N4 };
7981   return getNode(Opcode, DL, VTList, Ops);
7982 }
7983 
7984 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7985                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7986                               SDValue N5) {
7987   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7988   return getNode(Opcode, DL, VTList, Ops);
7989 }
7990 
7991 SDVTList SelectionDAG::getVTList(EVT VT) {
7992   return makeVTList(SDNode::getValueTypeList(VT), 1);
7993 }
7994 
7995 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7996   FoldingSetNodeID ID;
7997   ID.AddInteger(2U);
7998   ID.AddInteger(VT1.getRawBits());
7999   ID.AddInteger(VT2.getRawBits());
8000 
8001   void *IP = nullptr;
8002   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8003   if (!Result) {
8004     EVT *Array = Allocator.Allocate<EVT>(2);
8005     Array[0] = VT1;
8006     Array[1] = VT2;
8007     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8008     VTListMap.InsertNode(Result, IP);
8009   }
8010   return Result->getSDVTList();
8011 }
8012 
8013 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8014   FoldingSetNodeID ID;
8015   ID.AddInteger(3U);
8016   ID.AddInteger(VT1.getRawBits());
8017   ID.AddInteger(VT2.getRawBits());
8018   ID.AddInteger(VT3.getRawBits());
8019 
8020   void *IP = nullptr;
8021   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8022   if (!Result) {
8023     EVT *Array = Allocator.Allocate<EVT>(3);
8024     Array[0] = VT1;
8025     Array[1] = VT2;
8026     Array[2] = VT3;
8027     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8028     VTListMap.InsertNode(Result, IP);
8029   }
8030   return Result->getSDVTList();
8031 }
8032 
8033 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8034   FoldingSetNodeID ID;
8035   ID.AddInteger(4U);
8036   ID.AddInteger(VT1.getRawBits());
8037   ID.AddInteger(VT2.getRawBits());
8038   ID.AddInteger(VT3.getRawBits());
8039   ID.AddInteger(VT4.getRawBits());
8040 
8041   void *IP = nullptr;
8042   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8043   if (!Result) {
8044     EVT *Array = Allocator.Allocate<EVT>(4);
8045     Array[0] = VT1;
8046     Array[1] = VT2;
8047     Array[2] = VT3;
8048     Array[3] = VT4;
8049     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8050     VTListMap.InsertNode(Result, IP);
8051   }
8052   return Result->getSDVTList();
8053 }
8054 
8055 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8056   unsigned NumVTs = VTs.size();
8057   FoldingSetNodeID ID;
8058   ID.AddInteger(NumVTs);
8059   for (unsigned index = 0; index < NumVTs; index++) {
8060     ID.AddInteger(VTs[index].getRawBits());
8061   }
8062 
8063   void *IP = nullptr;
8064   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8065   if (!Result) {
8066     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8067     llvm::copy(VTs, Array);
8068     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8069     VTListMap.InsertNode(Result, IP);
8070   }
8071   return Result->getSDVTList();
8072 }
8073 
8074 
8075 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8076 /// specified operands.  If the resultant node already exists in the DAG,
8077 /// this does not modify the specified node, instead it returns the node that
8078 /// already exists.  If the resultant node does not exist in the DAG, the
8079 /// input node is returned.  As a degenerate case, if you specify the same
8080 /// input operands as the node already has, the input node is returned.
8081 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8082   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8083 
8084   // Check to see if there is no change.
8085   if (Op == N->getOperand(0)) return N;
8086 
8087   // See if the modified node already exists.
8088   void *InsertPos = nullptr;
8089   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8090     return Existing;
8091 
8092   // Nope it doesn't.  Remove the node from its current place in the maps.
8093   if (InsertPos)
8094     if (!RemoveNodeFromCSEMaps(N))
8095       InsertPos = nullptr;
8096 
8097   // Now we update the operands.
8098   N->OperandList[0].set(Op);
8099 
8100   updateDivergence(N);
8101   // If this gets put into a CSE map, add it.
8102   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8103   return N;
8104 }
8105 
8106 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8107   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8108 
8109   // Check to see if there is no change.
8110   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8111     return N;   // No operands changed, just return the input node.
8112 
8113   // See if the modified node already exists.
8114   void *InsertPos = nullptr;
8115   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8116     return Existing;
8117 
8118   // Nope it doesn't.  Remove the node from its current place in the maps.
8119   if (InsertPos)
8120     if (!RemoveNodeFromCSEMaps(N))
8121       InsertPos = nullptr;
8122 
8123   // Now we update the operands.
8124   if (N->OperandList[0] != Op1)
8125     N->OperandList[0].set(Op1);
8126   if (N->OperandList[1] != Op2)
8127     N->OperandList[1].set(Op2);
8128 
8129   updateDivergence(N);
8130   // If this gets put into a CSE map, add it.
8131   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8132   return N;
8133 }
8134 
8135 SDNode *SelectionDAG::
8136 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8137   SDValue Ops[] = { Op1, Op2, Op3 };
8138   return UpdateNodeOperands(N, Ops);
8139 }
8140 
8141 SDNode *SelectionDAG::
8142 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8143                    SDValue Op3, SDValue Op4) {
8144   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8145   return UpdateNodeOperands(N, Ops);
8146 }
8147 
8148 SDNode *SelectionDAG::
8149 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8150                    SDValue Op3, SDValue Op4, SDValue Op5) {
8151   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8152   return UpdateNodeOperands(N, Ops);
8153 }
8154 
8155 SDNode *SelectionDAG::
8156 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8157   unsigned NumOps = Ops.size();
8158   assert(N->getNumOperands() == NumOps &&
8159          "Update with wrong number of operands");
8160 
8161   // If no operands changed just return the input node.
8162   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8163     return N;
8164 
8165   // See if the modified node already exists.
8166   void *InsertPos = nullptr;
8167   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8168     return Existing;
8169 
8170   // Nope it doesn't.  Remove the node from its current place in the maps.
8171   if (InsertPos)
8172     if (!RemoveNodeFromCSEMaps(N))
8173       InsertPos = nullptr;
8174 
8175   // Now we update the operands.
8176   for (unsigned i = 0; i != NumOps; ++i)
8177     if (N->OperandList[i] != Ops[i])
8178       N->OperandList[i].set(Ops[i]);
8179 
8180   updateDivergence(N);
8181   // If this gets put into a CSE map, add it.
8182   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8183   return N;
8184 }
8185 
8186 /// DropOperands - Release the operands and set this node to have
8187 /// zero operands.
8188 void SDNode::DropOperands() {
8189   // Unlike the code in MorphNodeTo that does this, we don't need to
8190   // watch for dead nodes here.
8191   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8192     SDUse &Use = *I++;
8193     Use.set(SDValue());
8194   }
8195 }
8196 
8197 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8198                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8199   if (NewMemRefs.empty()) {
8200     N->clearMemRefs();
8201     return;
8202   }
8203 
8204   // Check if we can avoid allocating by storing a single reference directly.
8205   if (NewMemRefs.size() == 1) {
8206     N->MemRefs = NewMemRefs[0];
8207     N->NumMemRefs = 1;
8208     return;
8209   }
8210 
8211   MachineMemOperand **MemRefsBuffer =
8212       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8213   llvm::copy(NewMemRefs, MemRefsBuffer);
8214   N->MemRefs = MemRefsBuffer;
8215   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8216 }
8217 
8218 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8219 /// machine opcode.
8220 ///
8221 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8222                                    EVT VT) {
8223   SDVTList VTs = getVTList(VT);
8224   return SelectNodeTo(N, MachineOpc, VTs, None);
8225 }
8226 
8227 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8228                                    EVT VT, SDValue Op1) {
8229   SDVTList VTs = getVTList(VT);
8230   SDValue Ops[] = { Op1 };
8231   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8232 }
8233 
8234 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8235                                    EVT VT, SDValue Op1,
8236                                    SDValue Op2) {
8237   SDVTList VTs = getVTList(VT);
8238   SDValue Ops[] = { Op1, Op2 };
8239   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8240 }
8241 
8242 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8243                                    EVT VT, SDValue Op1,
8244                                    SDValue Op2, SDValue Op3) {
8245   SDVTList VTs = getVTList(VT);
8246   SDValue Ops[] = { Op1, Op2, Op3 };
8247   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8248 }
8249 
8250 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8251                                    EVT VT, ArrayRef<SDValue> Ops) {
8252   SDVTList VTs = getVTList(VT);
8253   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8254 }
8255 
8256 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8257                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8258   SDVTList VTs = getVTList(VT1, VT2);
8259   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8260 }
8261 
8262 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8263                                    EVT VT1, EVT VT2) {
8264   SDVTList VTs = getVTList(VT1, VT2);
8265   return SelectNodeTo(N, MachineOpc, VTs, None);
8266 }
8267 
8268 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8269                                    EVT VT1, EVT VT2, EVT VT3,
8270                                    ArrayRef<SDValue> Ops) {
8271   SDVTList VTs = getVTList(VT1, VT2, VT3);
8272   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8273 }
8274 
8275 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8276                                    EVT VT1, EVT VT2,
8277                                    SDValue Op1, SDValue Op2) {
8278   SDVTList VTs = getVTList(VT1, VT2);
8279   SDValue Ops[] = { Op1, Op2 };
8280   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8281 }
8282 
8283 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8284                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8285   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8286   // Reset the NodeID to -1.
8287   New->setNodeId(-1);
8288   if (New != N) {
8289     ReplaceAllUsesWith(N, New);
8290     RemoveDeadNode(N);
8291   }
8292   return New;
8293 }
8294 
8295 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8296 /// the line number information on the merged node since it is not possible to
8297 /// preserve the information that operation is associated with multiple lines.
8298 /// This will make the debugger working better at -O0, were there is a higher
8299 /// probability having other instructions associated with that line.
8300 ///
8301 /// For IROrder, we keep the smaller of the two
8302 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8303   DebugLoc NLoc = N->getDebugLoc();
8304   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8305     N->setDebugLoc(DebugLoc());
8306   }
8307   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8308   N->setIROrder(Order);
8309   return N;
8310 }
8311 
8312 /// MorphNodeTo - This *mutates* the specified node to have the specified
8313 /// return type, opcode, and operands.
8314 ///
8315 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8316 /// node of the specified opcode and operands, it returns that node instead of
8317 /// the current one.  Note that the SDLoc need not be the same.
8318 ///
8319 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8320 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8321 /// node, and because it doesn't require CSE recalculation for any of
8322 /// the node's users.
8323 ///
8324 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8325 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8326 /// the legalizer which maintain worklists that would need to be updated when
8327 /// deleting things.
8328 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8329                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8330   // If an identical node already exists, use it.
8331   void *IP = nullptr;
8332   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8333     FoldingSetNodeID ID;
8334     AddNodeIDNode(ID, Opc, VTs, Ops);
8335     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8336       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8337   }
8338 
8339   if (!RemoveNodeFromCSEMaps(N))
8340     IP = nullptr;
8341 
8342   // Start the morphing.
8343   N->NodeType = Opc;
8344   N->ValueList = VTs.VTs;
8345   N->NumValues = VTs.NumVTs;
8346 
8347   // Clear the operands list, updating used nodes to remove this from their
8348   // use list.  Keep track of any operands that become dead as a result.
8349   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8350   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8351     SDUse &Use = *I++;
8352     SDNode *Used = Use.getNode();
8353     Use.set(SDValue());
8354     if (Used->use_empty())
8355       DeadNodeSet.insert(Used);
8356   }
8357 
8358   // For MachineNode, initialize the memory references information.
8359   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8360     MN->clearMemRefs();
8361 
8362   // Swap for an appropriately sized array from the recycler.
8363   removeOperands(N);
8364   createOperands(N, Ops);
8365 
8366   // Delete any nodes that are still dead after adding the uses for the
8367   // new operands.
8368   if (!DeadNodeSet.empty()) {
8369     SmallVector<SDNode *, 16> DeadNodes;
8370     for (SDNode *N : DeadNodeSet)
8371       if (N->use_empty())
8372         DeadNodes.push_back(N);
8373     RemoveDeadNodes(DeadNodes);
8374   }
8375 
8376   if (IP)
8377     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8378   return N;
8379 }
8380 
8381 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8382   unsigned OrigOpc = Node->getOpcode();
8383   unsigned NewOpc;
8384   switch (OrigOpc) {
8385   default:
8386     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8387 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8388   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8389 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8390   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8391 #include "llvm/IR/ConstrainedOps.def"
8392   }
8393 
8394   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8395 
8396   // We're taking this node out of the chain, so we need to re-link things.
8397   SDValue InputChain = Node->getOperand(0);
8398   SDValue OutputChain = SDValue(Node, 1);
8399   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8400 
8401   SmallVector<SDValue, 3> Ops;
8402   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8403     Ops.push_back(Node->getOperand(i));
8404 
8405   SDVTList VTs = getVTList(Node->getValueType(0));
8406   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8407 
8408   // MorphNodeTo can operate in two ways: if an existing node with the
8409   // specified operands exists, it can just return it.  Otherwise, it
8410   // updates the node in place to have the requested operands.
8411   if (Res == Node) {
8412     // If we updated the node in place, reset the node ID.  To the isel,
8413     // this should be just like a newly allocated machine node.
8414     Res->setNodeId(-1);
8415   } else {
8416     ReplaceAllUsesWith(Node, Res);
8417     RemoveDeadNode(Node);
8418   }
8419 
8420   return Res;
8421 }
8422 
8423 /// getMachineNode - These are used for target selectors to create a new node
8424 /// with specified return type(s), MachineInstr opcode, and operands.
8425 ///
8426 /// Note that getMachineNode returns the resultant node.  If there is already a
8427 /// node of the specified opcode and operands, it returns that node instead of
8428 /// the current one.
8429 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8430                                             EVT VT) {
8431   SDVTList VTs = getVTList(VT);
8432   return getMachineNode(Opcode, dl, VTs, None);
8433 }
8434 
8435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8436                                             EVT VT, SDValue Op1) {
8437   SDVTList VTs = getVTList(VT);
8438   SDValue Ops[] = { Op1 };
8439   return getMachineNode(Opcode, dl, VTs, Ops);
8440 }
8441 
8442 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8443                                             EVT VT, SDValue Op1, SDValue Op2) {
8444   SDVTList VTs = getVTList(VT);
8445   SDValue Ops[] = { Op1, Op2 };
8446   return getMachineNode(Opcode, dl, VTs, Ops);
8447 }
8448 
8449 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8450                                             EVT VT, SDValue Op1, SDValue Op2,
8451                                             SDValue Op3) {
8452   SDVTList VTs = getVTList(VT);
8453   SDValue Ops[] = { Op1, Op2, Op3 };
8454   return getMachineNode(Opcode, dl, VTs, Ops);
8455 }
8456 
8457 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8458                                             EVT VT, ArrayRef<SDValue> Ops) {
8459   SDVTList VTs = getVTList(VT);
8460   return getMachineNode(Opcode, dl, VTs, Ops);
8461 }
8462 
8463 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8464                                             EVT VT1, EVT VT2, SDValue Op1,
8465                                             SDValue Op2) {
8466   SDVTList VTs = getVTList(VT1, VT2);
8467   SDValue Ops[] = { Op1, Op2 };
8468   return getMachineNode(Opcode, dl, VTs, Ops);
8469 }
8470 
8471 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8472                                             EVT VT1, EVT VT2, SDValue Op1,
8473                                             SDValue Op2, SDValue Op3) {
8474   SDVTList VTs = getVTList(VT1, VT2);
8475   SDValue Ops[] = { Op1, Op2, Op3 };
8476   return getMachineNode(Opcode, dl, VTs, Ops);
8477 }
8478 
8479 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8480                                             EVT VT1, EVT VT2,
8481                                             ArrayRef<SDValue> Ops) {
8482   SDVTList VTs = getVTList(VT1, VT2);
8483   return getMachineNode(Opcode, dl, VTs, Ops);
8484 }
8485 
8486 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8487                                             EVT VT1, EVT VT2, EVT VT3,
8488                                             SDValue Op1, SDValue Op2) {
8489   SDVTList VTs = getVTList(VT1, VT2, VT3);
8490   SDValue Ops[] = { Op1, Op2 };
8491   return getMachineNode(Opcode, dl, VTs, Ops);
8492 }
8493 
8494 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8495                                             EVT VT1, EVT VT2, EVT VT3,
8496                                             SDValue Op1, SDValue Op2,
8497                                             SDValue Op3) {
8498   SDVTList VTs = getVTList(VT1, VT2, VT3);
8499   SDValue Ops[] = { Op1, Op2, Op3 };
8500   return getMachineNode(Opcode, dl, VTs, Ops);
8501 }
8502 
8503 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8504                                             EVT VT1, EVT VT2, EVT VT3,
8505                                             ArrayRef<SDValue> Ops) {
8506   SDVTList VTs = getVTList(VT1, VT2, VT3);
8507   return getMachineNode(Opcode, dl, VTs, Ops);
8508 }
8509 
8510 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8511                                             ArrayRef<EVT> ResultTys,
8512                                             ArrayRef<SDValue> Ops) {
8513   SDVTList VTs = getVTList(ResultTys);
8514   return getMachineNode(Opcode, dl, VTs, Ops);
8515 }
8516 
8517 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8518                                             SDVTList VTs,
8519                                             ArrayRef<SDValue> Ops) {
8520   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8521   MachineSDNode *N;
8522   void *IP = nullptr;
8523 
8524   if (DoCSE) {
8525     FoldingSetNodeID ID;
8526     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8527     IP = nullptr;
8528     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8529       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8530     }
8531   }
8532 
8533   // Allocate a new MachineSDNode.
8534   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8535   createOperands(N, Ops);
8536 
8537   if (DoCSE)
8538     CSEMap.InsertNode(N, IP);
8539 
8540   InsertNode(N);
8541   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8542   return N;
8543 }
8544 
8545 /// getTargetExtractSubreg - A convenience function for creating
8546 /// TargetOpcode::EXTRACT_SUBREG nodes.
8547 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8548                                              SDValue Operand) {
8549   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8550   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8551                                   VT, Operand, SRIdxVal);
8552   return SDValue(Subreg, 0);
8553 }
8554 
8555 /// getTargetInsertSubreg - A convenience function for creating
8556 /// TargetOpcode::INSERT_SUBREG nodes.
8557 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8558                                             SDValue Operand, SDValue Subreg) {
8559   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8560   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8561                                   VT, Operand, Subreg, SRIdxVal);
8562   return SDValue(Result, 0);
8563 }
8564 
8565 /// getNodeIfExists - Get the specified node if it's already available, or
8566 /// else return NULL.
8567 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8568                                       ArrayRef<SDValue> Ops) {
8569   SDNodeFlags Flags;
8570   if (Inserter)
8571     Flags = Inserter->getFlags();
8572   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8573 }
8574 
8575 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8576                                       ArrayRef<SDValue> Ops,
8577                                       const SDNodeFlags Flags) {
8578   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8579     FoldingSetNodeID ID;
8580     AddNodeIDNode(ID, Opcode, VTList, Ops);
8581     void *IP = nullptr;
8582     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8583       E->intersectFlagsWith(Flags);
8584       return E;
8585     }
8586   }
8587   return nullptr;
8588 }
8589 
8590 /// doesNodeExist - Check if a node exists without modifying its flags.
8591 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8592                                  ArrayRef<SDValue> Ops) {
8593   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8594     FoldingSetNodeID ID;
8595     AddNodeIDNode(ID, Opcode, VTList, Ops);
8596     void *IP = nullptr;
8597     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8598       return true;
8599   }
8600   return false;
8601 }
8602 
8603 /// getDbgValue - Creates a SDDbgValue node.
8604 ///
8605 /// SDNode
8606 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8607                                       SDNode *N, unsigned R, bool IsIndirect,
8608                                       const DebugLoc &DL, unsigned O) {
8609   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8610          "Expected inlined-at fields to agree");
8611   return new (DbgInfo->getAlloc())
8612       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8613                  {}, IsIndirect, DL, O,
8614                  /*IsVariadic=*/false);
8615 }
8616 
8617 /// Constant
8618 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8619                                               DIExpression *Expr,
8620                                               const Value *C,
8621                                               const DebugLoc &DL, unsigned O) {
8622   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8623          "Expected inlined-at fields to agree");
8624   return new (DbgInfo->getAlloc())
8625       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8626                  /*IsIndirect=*/false, DL, O,
8627                  /*IsVariadic=*/false);
8628 }
8629 
8630 /// FrameIndex
8631 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8632                                                 DIExpression *Expr, unsigned FI,
8633                                                 bool IsIndirect,
8634                                                 const DebugLoc &DL,
8635                                                 unsigned O) {
8636   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8637          "Expected inlined-at fields to agree");
8638   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8639 }
8640 
8641 /// FrameIndex with dependencies
8642 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8643                                                 DIExpression *Expr, unsigned FI,
8644                                                 ArrayRef<SDNode *> Dependencies,
8645                                                 bool IsIndirect,
8646                                                 const DebugLoc &DL,
8647                                                 unsigned O) {
8648   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8649          "Expected inlined-at fields to agree");
8650   return new (DbgInfo->getAlloc())
8651       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8652                  Dependencies, IsIndirect, DL, O,
8653                  /*IsVariadic=*/false);
8654 }
8655 
8656 /// VReg
8657 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8658                                           unsigned VReg, bool IsIndirect,
8659                                           const DebugLoc &DL, unsigned O) {
8660   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8661          "Expected inlined-at fields to agree");
8662   return new (DbgInfo->getAlloc())
8663       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8664                  {}, IsIndirect, DL, O,
8665                  /*IsVariadic=*/false);
8666 }
8667 
8668 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8669                                           ArrayRef<SDDbgOperand> Locs,
8670                                           ArrayRef<SDNode *> Dependencies,
8671                                           bool IsIndirect, const DebugLoc &DL,
8672                                           unsigned O, bool IsVariadic) {
8673   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8674          "Expected inlined-at fields to agree");
8675   return new (DbgInfo->getAlloc())
8676       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8677                  DL, O, IsVariadic);
8678 }
8679 
8680 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8681                                      unsigned OffsetInBits, unsigned SizeInBits,
8682                                      bool InvalidateDbg) {
8683   SDNode *FromNode = From.getNode();
8684   SDNode *ToNode = To.getNode();
8685   assert(FromNode && ToNode && "Can't modify dbg values");
8686 
8687   // PR35338
8688   // TODO: assert(From != To && "Redundant dbg value transfer");
8689   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8690   if (From == To || FromNode == ToNode)
8691     return;
8692 
8693   if (!FromNode->getHasDebugValue())
8694     return;
8695 
8696   SDDbgOperand FromLocOp =
8697       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8698   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8699 
8700   SmallVector<SDDbgValue *, 2> ClonedDVs;
8701   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8702     if (Dbg->isInvalidated())
8703       continue;
8704 
8705     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8706 
8707     // Create a new location ops vector that is equal to the old vector, but
8708     // with each instance of FromLocOp replaced with ToLocOp.
8709     bool Changed = false;
8710     auto NewLocOps = Dbg->copyLocationOps();
8711     std::replace_if(
8712         NewLocOps.begin(), NewLocOps.end(),
8713         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8714           bool Match = Op == FromLocOp;
8715           Changed |= Match;
8716           return Match;
8717         },
8718         ToLocOp);
8719     // Ignore this SDDbgValue if we didn't find a matching location.
8720     if (!Changed)
8721       continue;
8722 
8723     DIVariable *Var = Dbg->getVariable();
8724     auto *Expr = Dbg->getExpression();
8725     // If a fragment is requested, update the expression.
8726     if (SizeInBits) {
8727       // When splitting a larger (e.g., sign-extended) value whose
8728       // lower bits are described with an SDDbgValue, do not attempt
8729       // to transfer the SDDbgValue to the upper bits.
8730       if (auto FI = Expr->getFragmentInfo())
8731         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8732           continue;
8733       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8734                                                              SizeInBits);
8735       if (!Fragment)
8736         continue;
8737       Expr = *Fragment;
8738     }
8739 
8740     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8741     // Clone the SDDbgValue and move it to To.
8742     SDDbgValue *Clone = getDbgValueList(
8743         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8744         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8745         Dbg->isVariadic());
8746     ClonedDVs.push_back(Clone);
8747 
8748     if (InvalidateDbg) {
8749       // Invalidate value and indicate the SDDbgValue should not be emitted.
8750       Dbg->setIsInvalidated();
8751       Dbg->setIsEmitted();
8752     }
8753   }
8754 
8755   for (SDDbgValue *Dbg : ClonedDVs) {
8756     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8757            "Transferred DbgValues should depend on the new SDNode");
8758     AddDbgValue(Dbg, false);
8759   }
8760 }
8761 
8762 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8763   if (!N.getHasDebugValue())
8764     return;
8765 
8766   SmallVector<SDDbgValue *, 2> ClonedDVs;
8767   for (auto DV : GetDbgValues(&N)) {
8768     if (DV->isInvalidated())
8769       continue;
8770     switch (N.getOpcode()) {
8771     default:
8772       break;
8773     case ISD::ADD:
8774       SDValue N0 = N.getOperand(0);
8775       SDValue N1 = N.getOperand(1);
8776       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8777           isConstantIntBuildVectorOrConstantInt(N1)) {
8778         uint64_t Offset = N.getConstantOperandVal(1);
8779 
8780         // Rewrite an ADD constant node into a DIExpression. Since we are
8781         // performing arithmetic to compute the variable's *value* in the
8782         // DIExpression, we need to mark the expression with a
8783         // DW_OP_stack_value.
8784         auto *DIExpr = DV->getExpression();
8785         auto NewLocOps = DV->copyLocationOps();
8786         bool Changed = false;
8787         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8788           // We're not given a ResNo to compare against because the whole
8789           // node is going away. We know that any ISD::ADD only has one
8790           // result, so we can assume any node match is using the result.
8791           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8792               NewLocOps[i].getSDNode() != &N)
8793             continue;
8794           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8795           SmallVector<uint64_t, 3> ExprOps;
8796           DIExpression::appendOffset(ExprOps, Offset);
8797           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8798           Changed = true;
8799         }
8800         (void)Changed;
8801         assert(Changed && "Salvage target doesn't use N");
8802 
8803         auto AdditionalDependencies = DV->getAdditionalDependencies();
8804         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8805                                             NewLocOps, AdditionalDependencies,
8806                                             DV->isIndirect(), DV->getDebugLoc(),
8807                                             DV->getOrder(), DV->isVariadic());
8808         ClonedDVs.push_back(Clone);
8809         DV->setIsInvalidated();
8810         DV->setIsEmitted();
8811         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8812                    N0.getNode()->dumprFull(this);
8813                    dbgs() << " into " << *DIExpr << '\n');
8814       }
8815     }
8816   }
8817 
8818   for (SDDbgValue *Dbg : ClonedDVs) {
8819     assert(!Dbg->getSDNodes().empty() &&
8820            "Salvaged DbgValue should depend on a new SDNode");
8821     AddDbgValue(Dbg, false);
8822   }
8823 }
8824 
8825 /// Creates a SDDbgLabel node.
8826 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8827                                       const DebugLoc &DL, unsigned O) {
8828   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8829          "Expected inlined-at fields to agree");
8830   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8831 }
8832 
8833 namespace {
8834 
8835 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8836 /// pointed to by a use iterator is deleted, increment the use iterator
8837 /// so that it doesn't dangle.
8838 ///
8839 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8840   SDNode::use_iterator &UI;
8841   SDNode::use_iterator &UE;
8842 
8843   void NodeDeleted(SDNode *N, SDNode *E) override {
8844     // Increment the iterator as needed.
8845     while (UI != UE && N == *UI)
8846       ++UI;
8847   }
8848 
8849 public:
8850   RAUWUpdateListener(SelectionDAG &d,
8851                      SDNode::use_iterator &ui,
8852                      SDNode::use_iterator &ue)
8853     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8854 };
8855 
8856 } // end anonymous namespace
8857 
8858 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8859 /// This can cause recursive merging of nodes in the DAG.
8860 ///
8861 /// This version assumes From has a single result value.
8862 ///
8863 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8864   SDNode *From = FromN.getNode();
8865   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8866          "Cannot replace with this method!");
8867   assert(From != To.getNode() && "Cannot replace uses of with self");
8868 
8869   // Preserve Debug Values
8870   transferDbgValues(FromN, To);
8871 
8872   // Iterate over all the existing uses of From. New uses will be added
8873   // to the beginning of the use list, which we avoid visiting.
8874   // This specifically avoids visiting uses of From that arise while the
8875   // replacement is happening, because any such uses would be the result
8876   // of CSE: If an existing node looks like From after one of its operands
8877   // is replaced by To, we don't want to replace of all its users with To
8878   // too. See PR3018 for more info.
8879   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8880   RAUWUpdateListener Listener(*this, UI, UE);
8881   while (UI != UE) {
8882     SDNode *User = *UI;
8883 
8884     // This node is about to morph, remove its old self from the CSE maps.
8885     RemoveNodeFromCSEMaps(User);
8886 
8887     // A user can appear in a use list multiple times, and when this
8888     // happens the uses are usually next to each other in the list.
8889     // To help reduce the number of CSE recomputations, process all
8890     // the uses of this user that we can find this way.
8891     do {
8892       SDUse &Use = UI.getUse();
8893       ++UI;
8894       Use.set(To);
8895       if (To->isDivergent() != From->isDivergent())
8896         updateDivergence(User);
8897     } while (UI != UE && *UI == User);
8898     // Now that we have modified User, add it back to the CSE maps.  If it
8899     // already exists there, recursively merge the results together.
8900     AddModifiedNodeToCSEMaps(User);
8901   }
8902 
8903   // If we just RAUW'd the root, take note.
8904   if (FromN == getRoot())
8905     setRoot(To);
8906 }
8907 
8908 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8909 /// This can cause recursive merging of nodes in the DAG.
8910 ///
8911 /// This version assumes that for each value of From, there is a
8912 /// corresponding value in To in the same position with the same type.
8913 ///
8914 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8915 #ifndef NDEBUG
8916   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8917     assert((!From->hasAnyUseOfValue(i) ||
8918             From->getValueType(i) == To->getValueType(i)) &&
8919            "Cannot use this version of ReplaceAllUsesWith!");
8920 #endif
8921 
8922   // Handle the trivial case.
8923   if (From == To)
8924     return;
8925 
8926   // Preserve Debug Info. Only do this if there's a use.
8927   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8928     if (From->hasAnyUseOfValue(i)) {
8929       assert((i < To->getNumValues()) && "Invalid To location");
8930       transferDbgValues(SDValue(From, i), SDValue(To, i));
8931     }
8932 
8933   // Iterate over just the existing users of From. See the comments in
8934   // the ReplaceAllUsesWith above.
8935   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8936   RAUWUpdateListener Listener(*this, UI, UE);
8937   while (UI != UE) {
8938     SDNode *User = *UI;
8939 
8940     // This node is about to morph, remove its old self from the CSE maps.
8941     RemoveNodeFromCSEMaps(User);
8942 
8943     // A user can appear in a use list multiple times, and when this
8944     // happens the uses are usually next to each other in the list.
8945     // To help reduce the number of CSE recomputations, process all
8946     // the uses of this user that we can find this way.
8947     do {
8948       SDUse &Use = UI.getUse();
8949       ++UI;
8950       Use.setNode(To);
8951       if (To->isDivergent() != From->isDivergent())
8952         updateDivergence(User);
8953     } while (UI != UE && *UI == User);
8954 
8955     // Now that we have modified User, add it back to the CSE maps.  If it
8956     // already exists there, recursively merge the results together.
8957     AddModifiedNodeToCSEMaps(User);
8958   }
8959 
8960   // If we just RAUW'd the root, take note.
8961   if (From == getRoot().getNode())
8962     setRoot(SDValue(To, getRoot().getResNo()));
8963 }
8964 
8965 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8966 /// This can cause recursive merging of nodes in the DAG.
8967 ///
8968 /// This version can replace From with any result values.  To must match the
8969 /// number and types of values returned by From.
8970 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8971   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8972     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8973 
8974   // Preserve Debug Info.
8975   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8976     transferDbgValues(SDValue(From, i), To[i]);
8977 
8978   // Iterate over just the existing users of From. See the comments in
8979   // the ReplaceAllUsesWith above.
8980   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8981   RAUWUpdateListener Listener(*this, UI, UE);
8982   while (UI != UE) {
8983     SDNode *User = *UI;
8984 
8985     // This node is about to morph, remove its old self from the CSE maps.
8986     RemoveNodeFromCSEMaps(User);
8987 
8988     // A user can appear in a use list multiple times, and when this happens the
8989     // uses are usually next to each other in the list.  To help reduce the
8990     // number of CSE and divergence recomputations, process all the uses of this
8991     // user that we can find this way.
8992     bool To_IsDivergent = false;
8993     do {
8994       SDUse &Use = UI.getUse();
8995       const SDValue &ToOp = To[Use.getResNo()];
8996       ++UI;
8997       Use.set(ToOp);
8998       To_IsDivergent |= ToOp->isDivergent();
8999     } while (UI != UE && *UI == User);
9000 
9001     if (To_IsDivergent != From->isDivergent())
9002       updateDivergence(User);
9003 
9004     // Now that we have modified User, add it back to the CSE maps.  If it
9005     // already exists there, recursively merge the results together.
9006     AddModifiedNodeToCSEMaps(User);
9007   }
9008 
9009   // If we just RAUW'd the root, take note.
9010   if (From == getRoot().getNode())
9011     setRoot(SDValue(To[getRoot().getResNo()]));
9012 }
9013 
9014 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9015 /// uses of other values produced by From.getNode() alone.  The Deleted
9016 /// vector is handled the same way as for ReplaceAllUsesWith.
9017 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9018   // Handle the really simple, really trivial case efficiently.
9019   if (From == To) return;
9020 
9021   // Handle the simple, trivial, case efficiently.
9022   if (From.getNode()->getNumValues() == 1) {
9023     ReplaceAllUsesWith(From, To);
9024     return;
9025   }
9026 
9027   // Preserve Debug Info.
9028   transferDbgValues(From, To);
9029 
9030   // Iterate over just the existing users of From. See the comments in
9031   // the ReplaceAllUsesWith above.
9032   SDNode::use_iterator UI = From.getNode()->use_begin(),
9033                        UE = From.getNode()->use_end();
9034   RAUWUpdateListener Listener(*this, UI, UE);
9035   while (UI != UE) {
9036     SDNode *User = *UI;
9037     bool UserRemovedFromCSEMaps = false;
9038 
9039     // A user can appear in a use list multiple times, and when this
9040     // happens the uses are usually next to each other in the list.
9041     // To help reduce the number of CSE recomputations, process all
9042     // the uses of this user that we can find this way.
9043     do {
9044       SDUse &Use = UI.getUse();
9045 
9046       // Skip uses of different values from the same node.
9047       if (Use.getResNo() != From.getResNo()) {
9048         ++UI;
9049         continue;
9050       }
9051 
9052       // If this node hasn't been modified yet, it's still in the CSE maps,
9053       // so remove its old self from the CSE maps.
9054       if (!UserRemovedFromCSEMaps) {
9055         RemoveNodeFromCSEMaps(User);
9056         UserRemovedFromCSEMaps = true;
9057       }
9058 
9059       ++UI;
9060       Use.set(To);
9061       if (To->isDivergent() != From->isDivergent())
9062         updateDivergence(User);
9063     } while (UI != UE && *UI == User);
9064     // We are iterating over all uses of the From node, so if a use
9065     // doesn't use the specific value, no changes are made.
9066     if (!UserRemovedFromCSEMaps)
9067       continue;
9068 
9069     // Now that we have modified User, add it back to the CSE maps.  If it
9070     // already exists there, recursively merge the results together.
9071     AddModifiedNodeToCSEMaps(User);
9072   }
9073 
9074   // If we just RAUW'd the root, take note.
9075   if (From == getRoot())
9076     setRoot(To);
9077 }
9078 
9079 namespace {
9080 
9081   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9082   /// to record information about a use.
9083   struct UseMemo {
9084     SDNode *User;
9085     unsigned Index;
9086     SDUse *Use;
9087   };
9088 
9089   /// operator< - Sort Memos by User.
9090   bool operator<(const UseMemo &L, const UseMemo &R) {
9091     return (intptr_t)L.User < (intptr_t)R.User;
9092   }
9093 
9094 } // end anonymous namespace
9095 
9096 bool SelectionDAG::calculateDivergence(SDNode *N) {
9097   if (TLI->isSDNodeAlwaysUniform(N)) {
9098     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9099            "Conflicting divergence information!");
9100     return false;
9101   }
9102   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9103     return true;
9104   for (auto &Op : N->ops()) {
9105     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9106       return true;
9107   }
9108   return false;
9109 }
9110 
9111 void SelectionDAG::updateDivergence(SDNode *N) {
9112   SmallVector<SDNode *, 16> Worklist(1, N);
9113   do {
9114     N = Worklist.pop_back_val();
9115     bool IsDivergent = calculateDivergence(N);
9116     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9117       N->SDNodeBits.IsDivergent = IsDivergent;
9118       llvm::append_range(Worklist, N->uses());
9119     }
9120   } while (!Worklist.empty());
9121 }
9122 
9123 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9124   DenseMap<SDNode *, unsigned> Degree;
9125   Order.reserve(AllNodes.size());
9126   for (auto &N : allnodes()) {
9127     unsigned NOps = N.getNumOperands();
9128     Degree[&N] = NOps;
9129     if (0 == NOps)
9130       Order.push_back(&N);
9131   }
9132   for (size_t I = 0; I != Order.size(); ++I) {
9133     SDNode *N = Order[I];
9134     for (auto U : N->uses()) {
9135       unsigned &UnsortedOps = Degree[U];
9136       if (0 == --UnsortedOps)
9137         Order.push_back(U);
9138     }
9139   }
9140 }
9141 
9142 #ifndef NDEBUG
9143 void SelectionDAG::VerifyDAGDiverence() {
9144   std::vector<SDNode *> TopoOrder;
9145   CreateTopologicalOrder(TopoOrder);
9146   for (auto *N : TopoOrder) {
9147     assert(calculateDivergence(N) == N->isDivergent() &&
9148            "Divergence bit inconsistency detected");
9149   }
9150 }
9151 #endif
9152 
9153 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9154 /// uses of other values produced by From.getNode() alone.  The same value
9155 /// may appear in both the From and To list.  The Deleted vector is
9156 /// handled the same way as for ReplaceAllUsesWith.
9157 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9158                                               const SDValue *To,
9159                                               unsigned Num){
9160   // Handle the simple, trivial case efficiently.
9161   if (Num == 1)
9162     return ReplaceAllUsesOfValueWith(*From, *To);
9163 
9164   transferDbgValues(*From, *To);
9165 
9166   // Read up all the uses and make records of them. This helps
9167   // processing new uses that are introduced during the
9168   // replacement process.
9169   SmallVector<UseMemo, 4> Uses;
9170   for (unsigned i = 0; i != Num; ++i) {
9171     unsigned FromResNo = From[i].getResNo();
9172     SDNode *FromNode = From[i].getNode();
9173     for (SDNode::use_iterator UI = FromNode->use_begin(),
9174          E = FromNode->use_end(); UI != E; ++UI) {
9175       SDUse &Use = UI.getUse();
9176       if (Use.getResNo() == FromResNo) {
9177         UseMemo Memo = { *UI, i, &Use };
9178         Uses.push_back(Memo);
9179       }
9180     }
9181   }
9182 
9183   // Sort the uses, so that all the uses from a given User are together.
9184   llvm::sort(Uses);
9185 
9186   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9187        UseIndex != UseIndexEnd; ) {
9188     // We know that this user uses some value of From.  If it is the right
9189     // value, update it.
9190     SDNode *User = Uses[UseIndex].User;
9191 
9192     // This node is about to morph, remove its old self from the CSE maps.
9193     RemoveNodeFromCSEMaps(User);
9194 
9195     // The Uses array is sorted, so all the uses for a given User
9196     // are next to each other in the list.
9197     // To help reduce the number of CSE recomputations, process all
9198     // the uses of this user that we can find this way.
9199     do {
9200       unsigned i = Uses[UseIndex].Index;
9201       SDUse &Use = *Uses[UseIndex].Use;
9202       ++UseIndex;
9203 
9204       Use.set(To[i]);
9205     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9206 
9207     // Now that we have modified User, add it back to the CSE maps.  If it
9208     // already exists there, recursively merge the results together.
9209     AddModifiedNodeToCSEMaps(User);
9210   }
9211 }
9212 
9213 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9214 /// based on their topological order. It returns the maximum id and a vector
9215 /// of the SDNodes* in assigned order by reference.
9216 unsigned SelectionDAG::AssignTopologicalOrder() {
9217   unsigned DAGSize = 0;
9218 
9219   // SortedPos tracks the progress of the algorithm. Nodes before it are
9220   // sorted, nodes after it are unsorted. When the algorithm completes
9221   // it is at the end of the list.
9222   allnodes_iterator SortedPos = allnodes_begin();
9223 
9224   // Visit all the nodes. Move nodes with no operands to the front of
9225   // the list immediately. Annotate nodes that do have operands with their
9226   // operand count. Before we do this, the Node Id fields of the nodes
9227   // may contain arbitrary values. After, the Node Id fields for nodes
9228   // before SortedPos will contain the topological sort index, and the
9229   // Node Id fields for nodes At SortedPos and after will contain the
9230   // count of outstanding operands.
9231   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9232     SDNode *N = &*I++;
9233     checkForCycles(N, this);
9234     unsigned Degree = N->getNumOperands();
9235     if (Degree == 0) {
9236       // A node with no uses, add it to the result array immediately.
9237       N->setNodeId(DAGSize++);
9238       allnodes_iterator Q(N);
9239       if (Q != SortedPos)
9240         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9241       assert(SortedPos != AllNodes.end() && "Overran node list");
9242       ++SortedPos;
9243     } else {
9244       // Temporarily use the Node Id as scratch space for the degree count.
9245       N->setNodeId(Degree);
9246     }
9247   }
9248 
9249   // Visit all the nodes. As we iterate, move nodes into sorted order,
9250   // such that by the time the end is reached all nodes will be sorted.
9251   for (SDNode &Node : allnodes()) {
9252     SDNode *N = &Node;
9253     checkForCycles(N, this);
9254     // N is in sorted position, so all its uses have one less operand
9255     // that needs to be sorted.
9256     for (SDNode *P : N->uses()) {
9257       unsigned Degree = P->getNodeId();
9258       assert(Degree != 0 && "Invalid node degree");
9259       --Degree;
9260       if (Degree == 0) {
9261         // All of P's operands are sorted, so P may sorted now.
9262         P->setNodeId(DAGSize++);
9263         if (P->getIterator() != SortedPos)
9264           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9265         assert(SortedPos != AllNodes.end() && "Overran node list");
9266         ++SortedPos;
9267       } else {
9268         // Update P's outstanding operand count.
9269         P->setNodeId(Degree);
9270       }
9271     }
9272     if (Node.getIterator() == SortedPos) {
9273 #ifndef NDEBUG
9274       allnodes_iterator I(N);
9275       SDNode *S = &*++I;
9276       dbgs() << "Overran sorted position:\n";
9277       S->dumprFull(this); dbgs() << "\n";
9278       dbgs() << "Checking if this is due to cycles\n";
9279       checkForCycles(this, true);
9280 #endif
9281       llvm_unreachable(nullptr);
9282     }
9283   }
9284 
9285   assert(SortedPos == AllNodes.end() &&
9286          "Topological sort incomplete!");
9287   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9288          "First node in topological sort is not the entry token!");
9289   assert(AllNodes.front().getNodeId() == 0 &&
9290          "First node in topological sort has non-zero id!");
9291   assert(AllNodes.front().getNumOperands() == 0 &&
9292          "First node in topological sort has operands!");
9293   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9294          "Last node in topologic sort has unexpected id!");
9295   assert(AllNodes.back().use_empty() &&
9296          "Last node in topologic sort has users!");
9297   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9298   return DAGSize;
9299 }
9300 
9301 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9302 /// value is produced by SD.
9303 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9304   for (SDNode *SD : DB->getSDNodes()) {
9305     if (!SD)
9306       continue;
9307     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9308     SD->setHasDebugValue(true);
9309   }
9310   DbgInfo->add(DB, isParameter);
9311 }
9312 
9313 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9314 
9315 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9316                                                    SDValue NewMemOpChain) {
9317   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9318   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9319   // The new memory operation must have the same position as the old load in
9320   // terms of memory dependency. Create a TokenFactor for the old load and new
9321   // memory operation and update uses of the old load's output chain to use that
9322   // TokenFactor.
9323   if (OldChain == NewMemOpChain || OldChain.use_empty())
9324     return NewMemOpChain;
9325 
9326   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9327                                 OldChain, NewMemOpChain);
9328   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9329   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9330   return TokenFactor;
9331 }
9332 
9333 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9334                                                    SDValue NewMemOp) {
9335   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9336   SDValue OldChain = SDValue(OldLoad, 1);
9337   SDValue NewMemOpChain = NewMemOp.getValue(1);
9338   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9339 }
9340 
9341 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9342                                                      Function **OutFunction) {
9343   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9344 
9345   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9346   auto *Module = MF->getFunction().getParent();
9347   auto *Function = Module->getFunction(Symbol);
9348 
9349   if (OutFunction != nullptr)
9350       *OutFunction = Function;
9351 
9352   if (Function != nullptr) {
9353     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9354     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9355   }
9356 
9357   std::string ErrorStr;
9358   raw_string_ostream ErrorFormatter(ErrorStr);
9359 
9360   ErrorFormatter << "Undefined external symbol ";
9361   ErrorFormatter << '"' << Symbol << '"';
9362   ErrorFormatter.flush();
9363 
9364   report_fatal_error(ErrorStr);
9365 }
9366 
9367 //===----------------------------------------------------------------------===//
9368 //                              SDNode Class
9369 //===----------------------------------------------------------------------===//
9370 
9371 bool llvm::isNullConstant(SDValue V) {
9372   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9373   return Const != nullptr && Const->isNullValue();
9374 }
9375 
9376 bool llvm::isNullFPConstant(SDValue V) {
9377   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9378   return Const != nullptr && Const->isZero() && !Const->isNegative();
9379 }
9380 
9381 bool llvm::isAllOnesConstant(SDValue V) {
9382   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9383   return Const != nullptr && Const->isAllOnesValue();
9384 }
9385 
9386 bool llvm::isOneConstant(SDValue V) {
9387   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9388   return Const != nullptr && Const->isOne();
9389 }
9390 
9391 SDValue llvm::peekThroughBitcasts(SDValue V) {
9392   while (V.getOpcode() == ISD::BITCAST)
9393     V = V.getOperand(0);
9394   return V;
9395 }
9396 
9397 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9398   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9399     V = V.getOperand(0);
9400   return V;
9401 }
9402 
9403 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9404   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9405     V = V.getOperand(0);
9406   return V;
9407 }
9408 
9409 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9410   if (V.getOpcode() != ISD::XOR)
9411     return false;
9412   V = peekThroughBitcasts(V.getOperand(1));
9413   unsigned NumBits = V.getScalarValueSizeInBits();
9414   ConstantSDNode *C =
9415       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9416   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9417 }
9418 
9419 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9420                                           bool AllowTruncation) {
9421   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9422     return CN;
9423 
9424   // SplatVectors can truncate their operands. Ignore that case here unless
9425   // AllowTruncation is set.
9426   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9427     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9428     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9429       EVT CVT = CN->getValueType(0);
9430       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9431       if (AllowTruncation || CVT == VecEltVT)
9432         return CN;
9433     }
9434   }
9435 
9436   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9437     BitVector UndefElements;
9438     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9439 
9440     // BuildVectors can truncate their operands. Ignore that case here unless
9441     // AllowTruncation is set.
9442     if (CN && (UndefElements.none() || AllowUndefs)) {
9443       EVT CVT = CN->getValueType(0);
9444       EVT NSVT = N.getValueType().getScalarType();
9445       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9446       if (AllowTruncation || (CVT == NSVT))
9447         return CN;
9448     }
9449   }
9450 
9451   return nullptr;
9452 }
9453 
9454 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9455                                           bool AllowUndefs,
9456                                           bool AllowTruncation) {
9457   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9458     return CN;
9459 
9460   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9461     BitVector UndefElements;
9462     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9463 
9464     // BuildVectors can truncate their operands. Ignore that case here unless
9465     // AllowTruncation is set.
9466     if (CN && (UndefElements.none() || AllowUndefs)) {
9467       EVT CVT = CN->getValueType(0);
9468       EVT NSVT = N.getValueType().getScalarType();
9469       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9470       if (AllowTruncation || (CVT == NSVT))
9471         return CN;
9472     }
9473   }
9474 
9475   return nullptr;
9476 }
9477 
9478 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9479   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9480     return CN;
9481 
9482   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9483     BitVector UndefElements;
9484     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9485     if (CN && (UndefElements.none() || AllowUndefs))
9486       return CN;
9487   }
9488 
9489   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9490     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9491       return CN;
9492 
9493   return nullptr;
9494 }
9495 
9496 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9497                                               const APInt &DemandedElts,
9498                                               bool AllowUndefs) {
9499   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9500     return CN;
9501 
9502   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9503     BitVector UndefElements;
9504     ConstantFPSDNode *CN =
9505         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9506     if (CN && (UndefElements.none() || AllowUndefs))
9507       return CN;
9508   }
9509 
9510   return nullptr;
9511 }
9512 
9513 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9514   // TODO: may want to use peekThroughBitcast() here.
9515   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9516   return C && C->isNullValue();
9517 }
9518 
9519 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9520   // TODO: may want to use peekThroughBitcast() here.
9521   unsigned BitWidth = N.getScalarValueSizeInBits();
9522   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9523   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9524 }
9525 
9526 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9527   N = peekThroughBitcasts(N);
9528   unsigned BitWidth = N.getScalarValueSizeInBits();
9529   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9530   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9531 }
9532 
9533 HandleSDNode::~HandleSDNode() {
9534   DropOperands();
9535 }
9536 
9537 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9538                                          const DebugLoc &DL,
9539                                          const GlobalValue *GA, EVT VT,
9540                                          int64_t o, unsigned TF)
9541     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9542   TheGlobal = GA;
9543 }
9544 
9545 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9546                                          EVT VT, unsigned SrcAS,
9547                                          unsigned DestAS)
9548     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9549       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9550 
9551 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9552                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9553     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9554   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9555   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9556   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9557   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9558 
9559   // We check here that the size of the memory operand fits within the size of
9560   // the MMO. This is because the MMO might indicate only a possible address
9561   // range instead of specifying the affected memory addresses precisely.
9562   // TODO: Make MachineMemOperands aware of scalable vectors.
9563   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9564          "Size mismatch!");
9565 }
9566 
9567 /// Profile - Gather unique data for the node.
9568 ///
9569 void SDNode::Profile(FoldingSetNodeID &ID) const {
9570   AddNodeIDNode(ID, this);
9571 }
9572 
9573 namespace {
9574 
9575   struct EVTArray {
9576     std::vector<EVT> VTs;
9577 
9578     EVTArray() {
9579       VTs.reserve(MVT::LAST_VALUETYPE);
9580       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9581         VTs.push_back(MVT((MVT::SimpleValueType)i));
9582     }
9583   };
9584 
9585 } // end anonymous namespace
9586 
9587 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9588 static ManagedStatic<EVTArray> SimpleVTArray;
9589 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9590 
9591 /// getValueTypeList - Return a pointer to the specified value type.
9592 ///
9593 const EVT *SDNode::getValueTypeList(EVT VT) {
9594   if (VT.isExtended()) {
9595     sys::SmartScopedLock<true> Lock(*VTMutex);
9596     return &(*EVTs->insert(VT).first);
9597   }
9598   assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!");
9599   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9600 }
9601 
9602 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9603 /// indicated value.  This method ignores uses of other values defined by this
9604 /// operation.
9605 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9606   assert(Value < getNumValues() && "Bad value!");
9607 
9608   // TODO: Only iterate over uses of a given value of the node
9609   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9610     if (UI.getUse().getResNo() == Value) {
9611       if (NUses == 0)
9612         return false;
9613       --NUses;
9614     }
9615   }
9616 
9617   // Found exactly the right number of uses?
9618   return NUses == 0;
9619 }
9620 
9621 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9622 /// value. This method ignores uses of other values defined by this operation.
9623 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9624   assert(Value < getNumValues() && "Bad value!");
9625 
9626   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9627     if (UI.getUse().getResNo() == Value)
9628       return true;
9629 
9630   return false;
9631 }
9632 
9633 /// isOnlyUserOf - Return true if this node is the only use of N.
9634 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9635   bool Seen = false;
9636   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9637     SDNode *User = *I;
9638     if (User == this)
9639       Seen = true;
9640     else
9641       return false;
9642   }
9643 
9644   return Seen;
9645 }
9646 
9647 /// Return true if the only users of N are contained in Nodes.
9648 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9649   bool Seen = false;
9650   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9651     SDNode *User = *I;
9652     if (llvm::is_contained(Nodes, User))
9653       Seen = true;
9654     else
9655       return false;
9656   }
9657 
9658   return Seen;
9659 }
9660 
9661 /// isOperand - Return true if this node is an operand of N.
9662 bool SDValue::isOperandOf(const SDNode *N) const {
9663   return is_contained(N->op_values(), *this);
9664 }
9665 
9666 bool SDNode::isOperandOf(const SDNode *N) const {
9667   return any_of(N->op_values(),
9668                 [this](SDValue Op) { return this == Op.getNode(); });
9669 }
9670 
9671 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9672 /// be a chain) reaches the specified operand without crossing any
9673 /// side-effecting instructions on any chain path.  In practice, this looks
9674 /// through token factors and non-volatile loads.  In order to remain efficient,
9675 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9676 ///
9677 /// Note that we only need to examine chains when we're searching for
9678 /// side-effects; SelectionDAG requires that all side-effects are represented
9679 /// by chains, even if another operand would force a specific ordering. This
9680 /// constraint is necessary to allow transformations like splitting loads.
9681 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9682                                              unsigned Depth) const {
9683   if (*this == Dest) return true;
9684 
9685   // Don't search too deeply, we just want to be able to see through
9686   // TokenFactor's etc.
9687   if (Depth == 0) return false;
9688 
9689   // If this is a token factor, all inputs to the TF happen in parallel.
9690   if (getOpcode() == ISD::TokenFactor) {
9691     // First, try a shallow search.
9692     if (is_contained((*this)->ops(), Dest)) {
9693       // We found the chain we want as an operand of this TokenFactor.
9694       // Essentially, we reach the chain without side-effects if we could
9695       // serialize the TokenFactor into a simple chain of operations with
9696       // Dest as the last operation. This is automatically true if the
9697       // chain has one use: there are no other ordering constraints.
9698       // If the chain has more than one use, we give up: some other
9699       // use of Dest might force a side-effect between Dest and the current
9700       // node.
9701       if (Dest.hasOneUse())
9702         return true;
9703     }
9704     // Next, try a deep search: check whether every operand of the TokenFactor
9705     // reaches Dest.
9706     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9707       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9708     });
9709   }
9710 
9711   // Loads don't have side effects, look through them.
9712   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9713     if (Ld->isUnordered())
9714       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9715   }
9716   return false;
9717 }
9718 
9719 bool SDNode::hasPredecessor(const SDNode *N) const {
9720   SmallPtrSet<const SDNode *, 32> Visited;
9721   SmallVector<const SDNode *, 16> Worklist;
9722   Worklist.push_back(this);
9723   return hasPredecessorHelper(N, Visited, Worklist);
9724 }
9725 
9726 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9727   this->Flags.intersectWith(Flags);
9728 }
9729 
9730 SDValue
9731 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9732                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9733                                   bool AllowPartials) {
9734   // The pattern must end in an extract from index 0.
9735   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9736       !isNullConstant(Extract->getOperand(1)))
9737     return SDValue();
9738 
9739   // Match against one of the candidate binary ops.
9740   SDValue Op = Extract->getOperand(0);
9741   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9742         return Op.getOpcode() == unsigned(BinOp);
9743       }))
9744     return SDValue();
9745 
9746   // Floating-point reductions may require relaxed constraints on the final step
9747   // of the reduction because they may reorder intermediate operations.
9748   unsigned CandidateBinOp = Op.getOpcode();
9749   if (Op.getValueType().isFloatingPoint()) {
9750     SDNodeFlags Flags = Op->getFlags();
9751     switch (CandidateBinOp) {
9752     case ISD::FADD:
9753       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9754         return SDValue();
9755       break;
9756     default:
9757       llvm_unreachable("Unhandled FP opcode for binop reduction");
9758     }
9759   }
9760 
9761   // Matching failed - attempt to see if we did enough stages that a partial
9762   // reduction from a subvector is possible.
9763   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9764     if (!AllowPartials || !Op)
9765       return SDValue();
9766     EVT OpVT = Op.getValueType();
9767     EVT OpSVT = OpVT.getScalarType();
9768     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9769     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9770       return SDValue();
9771     BinOp = (ISD::NodeType)CandidateBinOp;
9772     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9773                    getVectorIdxConstant(0, SDLoc(Op)));
9774   };
9775 
9776   // At each stage, we're looking for something that looks like:
9777   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9778   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9779   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9780   // %a = binop <8 x i32> %op, %s
9781   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9782   // we expect something like:
9783   // <4,5,6,7,u,u,u,u>
9784   // <2,3,u,u,u,u,u,u>
9785   // <1,u,u,u,u,u,u,u>
9786   // While a partial reduction match would be:
9787   // <2,3,u,u,u,u,u,u>
9788   // <1,u,u,u,u,u,u,u>
9789   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9790   SDValue PrevOp;
9791   for (unsigned i = 0; i < Stages; ++i) {
9792     unsigned MaskEnd = (1 << i);
9793 
9794     if (Op.getOpcode() != CandidateBinOp)
9795       return PartialReduction(PrevOp, MaskEnd);
9796 
9797     SDValue Op0 = Op.getOperand(0);
9798     SDValue Op1 = Op.getOperand(1);
9799 
9800     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9801     if (Shuffle) {
9802       Op = Op1;
9803     } else {
9804       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9805       Op = Op0;
9806     }
9807 
9808     // The first operand of the shuffle should be the same as the other operand
9809     // of the binop.
9810     if (!Shuffle || Shuffle->getOperand(0) != Op)
9811       return PartialReduction(PrevOp, MaskEnd);
9812 
9813     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9814     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9815       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9816         return PartialReduction(PrevOp, MaskEnd);
9817 
9818     PrevOp = Op;
9819   }
9820 
9821   // Handle subvector reductions, which tend to appear after the shuffle
9822   // reduction stages.
9823   while (Op.getOpcode() == CandidateBinOp) {
9824     unsigned NumElts = Op.getValueType().getVectorNumElements();
9825     SDValue Op0 = Op.getOperand(0);
9826     SDValue Op1 = Op.getOperand(1);
9827     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9828         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9829         Op0.getOperand(0) != Op1.getOperand(0))
9830       break;
9831     SDValue Src = Op0.getOperand(0);
9832     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9833     if (NumSrcElts != (2 * NumElts))
9834       break;
9835     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9836           Op1.getConstantOperandAPInt(1) == NumElts) &&
9837         !(Op1.getConstantOperandAPInt(1) == 0 &&
9838           Op0.getConstantOperandAPInt(1) == NumElts))
9839       break;
9840     Op = Src;
9841   }
9842 
9843   BinOp = (ISD::NodeType)CandidateBinOp;
9844   return Op;
9845 }
9846 
9847 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9848   assert(N->getNumValues() == 1 &&
9849          "Can't unroll a vector with multiple results!");
9850 
9851   EVT VT = N->getValueType(0);
9852   unsigned NE = VT.getVectorNumElements();
9853   EVT EltVT = VT.getVectorElementType();
9854   SDLoc dl(N);
9855 
9856   SmallVector<SDValue, 8> Scalars;
9857   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9858 
9859   // If ResNE is 0, fully unroll the vector op.
9860   if (ResNE == 0)
9861     ResNE = NE;
9862   else if (NE > ResNE)
9863     NE = ResNE;
9864 
9865   unsigned i;
9866   for (i= 0; i != NE; ++i) {
9867     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9868       SDValue Operand = N->getOperand(j);
9869       EVT OperandVT = Operand.getValueType();
9870       if (OperandVT.isVector()) {
9871         // A vector operand; extract a single element.
9872         EVT OperandEltVT = OperandVT.getVectorElementType();
9873         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9874                               Operand, getVectorIdxConstant(i, dl));
9875       } else {
9876         // A scalar operand; just use it as is.
9877         Operands[j] = Operand;
9878       }
9879     }
9880 
9881     switch (N->getOpcode()) {
9882     default: {
9883       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9884                                 N->getFlags()));
9885       break;
9886     }
9887     case ISD::VSELECT:
9888       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9889       break;
9890     case ISD::SHL:
9891     case ISD::SRA:
9892     case ISD::SRL:
9893     case ISD::ROTL:
9894     case ISD::ROTR:
9895       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9896                                getShiftAmountOperand(Operands[0].getValueType(),
9897                                                      Operands[1])));
9898       break;
9899     case ISD::SIGN_EXTEND_INREG: {
9900       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9901       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9902                                 Operands[0],
9903                                 getValueType(ExtVT)));
9904     }
9905     }
9906   }
9907 
9908   for (; i < ResNE; ++i)
9909     Scalars.push_back(getUNDEF(EltVT));
9910 
9911   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9912   return getBuildVector(VecVT, dl, Scalars);
9913 }
9914 
9915 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9916     SDNode *N, unsigned ResNE) {
9917   unsigned Opcode = N->getOpcode();
9918   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9919           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9920           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9921          "Expected an overflow opcode");
9922 
9923   EVT ResVT = N->getValueType(0);
9924   EVT OvVT = N->getValueType(1);
9925   EVT ResEltVT = ResVT.getVectorElementType();
9926   EVT OvEltVT = OvVT.getVectorElementType();
9927   SDLoc dl(N);
9928 
9929   // If ResNE is 0, fully unroll the vector op.
9930   unsigned NE = ResVT.getVectorNumElements();
9931   if (ResNE == 0)
9932     ResNE = NE;
9933   else if (NE > ResNE)
9934     NE = ResNE;
9935 
9936   SmallVector<SDValue, 8> LHSScalars;
9937   SmallVector<SDValue, 8> RHSScalars;
9938   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9939   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9940 
9941   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9942   SDVTList VTs = getVTList(ResEltVT, SVT);
9943   SmallVector<SDValue, 8> ResScalars;
9944   SmallVector<SDValue, 8> OvScalars;
9945   for (unsigned i = 0; i < NE; ++i) {
9946     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9947     SDValue Ov =
9948         getSelect(dl, OvEltVT, Res.getValue(1),
9949                   getBoolConstant(true, dl, OvEltVT, ResVT),
9950                   getConstant(0, dl, OvEltVT));
9951 
9952     ResScalars.push_back(Res);
9953     OvScalars.push_back(Ov);
9954   }
9955 
9956   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9957   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9958 
9959   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9960   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9961   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9962                         getBuildVector(NewOvVT, dl, OvScalars));
9963 }
9964 
9965 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9966                                                   LoadSDNode *Base,
9967                                                   unsigned Bytes,
9968                                                   int Dist) const {
9969   if (LD->isVolatile() || Base->isVolatile())
9970     return false;
9971   // TODO: probably too restrictive for atomics, revisit
9972   if (!LD->isSimple())
9973     return false;
9974   if (LD->isIndexed() || Base->isIndexed())
9975     return false;
9976   if (LD->getChain() != Base->getChain())
9977     return false;
9978   EVT VT = LD->getValueType(0);
9979   if (VT.getSizeInBits() / 8 != Bytes)
9980     return false;
9981 
9982   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9983   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9984 
9985   int64_t Offset = 0;
9986   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9987     return (Dist * Bytes == Offset);
9988   return false;
9989 }
9990 
9991 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9992 /// if it cannot be inferred.
9993 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9994   // If this is a GlobalAddress + cst, return the alignment.
9995   const GlobalValue *GV = nullptr;
9996   int64_t GVOffset = 0;
9997   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9998     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9999     KnownBits Known(PtrWidth);
10000     llvm::computeKnownBits(GV, Known, getDataLayout());
10001     unsigned AlignBits = Known.countMinTrailingZeros();
10002     if (AlignBits)
10003       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10004   }
10005 
10006   // If this is a direct reference to a stack slot, use information about the
10007   // stack slot's alignment.
10008   int FrameIdx = INT_MIN;
10009   int64_t FrameOffset = 0;
10010   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10011     FrameIdx = FI->getIndex();
10012   } else if (isBaseWithConstantOffset(Ptr) &&
10013              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10014     // Handle FI+Cst
10015     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10016     FrameOffset = Ptr.getConstantOperandVal(1);
10017   }
10018 
10019   if (FrameIdx != INT_MIN) {
10020     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10021     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10022   }
10023 
10024   return None;
10025 }
10026 
10027 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10028 /// which is split (or expanded) into two not necessarily identical pieces.
10029 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10030   // Currently all types are split in half.
10031   EVT LoVT, HiVT;
10032   if (!VT.isVector())
10033     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10034   else
10035     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10036 
10037   return std::make_pair(LoVT, HiVT);
10038 }
10039 
10040 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10041 /// type, dependent on an enveloping VT that has been split into two identical
10042 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10043 std::pair<EVT, EVT>
10044 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10045                                        bool *HiIsEmpty) const {
10046   EVT EltTp = VT.getVectorElementType();
10047   // Examples:
10048   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10049   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10050   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10051   //   etc.
10052   ElementCount VTNumElts = VT.getVectorElementCount();
10053   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10054   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10055          "Mixing fixed width and scalable vectors when enveloping a type");
10056   EVT LoVT, HiVT;
10057   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10058     LoVT = EnvVT;
10059     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10060     *HiIsEmpty = false;
10061   } else {
10062     // Flag that hi type has zero storage size, but return split envelop type
10063     // (this would be easier if vector types with zero elements were allowed).
10064     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10065     HiVT = EnvVT;
10066     *HiIsEmpty = true;
10067   }
10068   return std::make_pair(LoVT, HiVT);
10069 }
10070 
10071 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10072 /// low/high part.
10073 std::pair<SDValue, SDValue>
10074 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10075                           const EVT &HiVT) {
10076   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10077          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10078          "Splitting vector with an invalid mixture of fixed and scalable "
10079          "vector types");
10080   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10081              N.getValueType().getVectorMinNumElements() &&
10082          "More vector elements requested than available!");
10083   SDValue Lo, Hi;
10084   Lo =
10085       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10086   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10087   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10088   // IDX with the runtime scaling factor of the result vector type. For
10089   // fixed-width result vectors, that runtime scaling factor is 1.
10090   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10091                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10092   return std::make_pair(Lo, Hi);
10093 }
10094 
10095 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10096 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10097   EVT VT = N.getValueType();
10098   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10099                                 NextPowerOf2(VT.getVectorNumElements()));
10100   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10101                  getVectorIdxConstant(0, DL));
10102 }
10103 
10104 void SelectionDAG::ExtractVectorElements(SDValue Op,
10105                                          SmallVectorImpl<SDValue> &Args,
10106                                          unsigned Start, unsigned Count,
10107                                          EVT EltVT) {
10108   EVT VT = Op.getValueType();
10109   if (Count == 0)
10110     Count = VT.getVectorNumElements();
10111   if (EltVT == EVT())
10112     EltVT = VT.getVectorElementType();
10113   SDLoc SL(Op);
10114   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10115     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10116                            getVectorIdxConstant(i, SL)));
10117   }
10118 }
10119 
10120 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10121 unsigned GlobalAddressSDNode::getAddressSpace() const {
10122   return getGlobal()->getType()->getAddressSpace();
10123 }
10124 
10125 Type *ConstantPoolSDNode::getType() const {
10126   if (isMachineConstantPoolEntry())
10127     return Val.MachineCPVal->getType();
10128   return Val.ConstVal->getType();
10129 }
10130 
10131 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10132                                         unsigned &SplatBitSize,
10133                                         bool &HasAnyUndefs,
10134                                         unsigned MinSplatBits,
10135                                         bool IsBigEndian) const {
10136   EVT VT = getValueType(0);
10137   assert(VT.isVector() && "Expected a vector type");
10138   unsigned VecWidth = VT.getSizeInBits();
10139   if (MinSplatBits > VecWidth)
10140     return false;
10141 
10142   // FIXME: The widths are based on this node's type, but build vectors can
10143   // truncate their operands.
10144   SplatValue = APInt(VecWidth, 0);
10145   SplatUndef = APInt(VecWidth, 0);
10146 
10147   // Get the bits. Bits with undefined values (when the corresponding element
10148   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10149   // in SplatValue. If any of the values are not constant, give up and return
10150   // false.
10151   unsigned int NumOps = getNumOperands();
10152   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10153   unsigned EltWidth = VT.getScalarSizeInBits();
10154 
10155   for (unsigned j = 0; j < NumOps; ++j) {
10156     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10157     SDValue OpVal = getOperand(i);
10158     unsigned BitPos = j * EltWidth;
10159 
10160     if (OpVal.isUndef())
10161       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10162     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10163       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10164     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10165       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10166     else
10167       return false;
10168   }
10169 
10170   // The build_vector is all constants or undefs. Find the smallest element
10171   // size that splats the vector.
10172   HasAnyUndefs = (SplatUndef != 0);
10173 
10174   // FIXME: This does not work for vectors with elements less than 8 bits.
10175   while (VecWidth > 8) {
10176     unsigned HalfSize = VecWidth / 2;
10177     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10178     APInt LowValue = SplatValue.trunc(HalfSize);
10179     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10180     APInt LowUndef = SplatUndef.trunc(HalfSize);
10181 
10182     // If the two halves do not match (ignoring undef bits), stop here.
10183     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10184         MinSplatBits > HalfSize)
10185       break;
10186 
10187     SplatValue = HighValue | LowValue;
10188     SplatUndef = HighUndef & LowUndef;
10189 
10190     VecWidth = HalfSize;
10191   }
10192 
10193   SplatBitSize = VecWidth;
10194   return true;
10195 }
10196 
10197 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10198                                          BitVector *UndefElements) const {
10199   unsigned NumOps = getNumOperands();
10200   if (UndefElements) {
10201     UndefElements->clear();
10202     UndefElements->resize(NumOps);
10203   }
10204   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10205   if (!DemandedElts)
10206     return SDValue();
10207   SDValue Splatted;
10208   for (unsigned i = 0; i != NumOps; ++i) {
10209     if (!DemandedElts[i])
10210       continue;
10211     SDValue Op = getOperand(i);
10212     if (Op.isUndef()) {
10213       if (UndefElements)
10214         (*UndefElements)[i] = true;
10215     } else if (!Splatted) {
10216       Splatted = Op;
10217     } else if (Splatted != Op) {
10218       return SDValue();
10219     }
10220   }
10221 
10222   if (!Splatted) {
10223     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10224     assert(getOperand(FirstDemandedIdx).isUndef() &&
10225            "Can only have a splat without a constant for all undefs.");
10226     return getOperand(FirstDemandedIdx);
10227   }
10228 
10229   return Splatted;
10230 }
10231 
10232 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10233   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10234   return getSplatValue(DemandedElts, UndefElements);
10235 }
10236 
10237 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10238                                             SmallVectorImpl<SDValue> &Sequence,
10239                                             BitVector *UndefElements) const {
10240   unsigned NumOps = getNumOperands();
10241   Sequence.clear();
10242   if (UndefElements) {
10243     UndefElements->clear();
10244     UndefElements->resize(NumOps);
10245   }
10246   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10247   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10248     return false;
10249 
10250   // Set the undefs even if we don't find a sequence (like getSplatValue).
10251   if (UndefElements)
10252     for (unsigned I = 0; I != NumOps; ++I)
10253       if (DemandedElts[I] && getOperand(I).isUndef())
10254         (*UndefElements)[I] = true;
10255 
10256   // Iteratively widen the sequence length looking for repetitions.
10257   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10258     Sequence.append(SeqLen, SDValue());
10259     for (unsigned I = 0; I != NumOps; ++I) {
10260       if (!DemandedElts[I])
10261         continue;
10262       SDValue &SeqOp = Sequence[I % SeqLen];
10263       SDValue Op = getOperand(I);
10264       if (Op.isUndef()) {
10265         if (!SeqOp)
10266           SeqOp = Op;
10267         continue;
10268       }
10269       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10270         Sequence.clear();
10271         break;
10272       }
10273       SeqOp = Op;
10274     }
10275     if (!Sequence.empty())
10276       return true;
10277   }
10278 
10279   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10280   return false;
10281 }
10282 
10283 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10284                                             BitVector *UndefElements) const {
10285   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10286   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10287 }
10288 
10289 ConstantSDNode *
10290 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10291                                         BitVector *UndefElements) const {
10292   return dyn_cast_or_null<ConstantSDNode>(
10293       getSplatValue(DemandedElts, UndefElements));
10294 }
10295 
10296 ConstantSDNode *
10297 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10298   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10299 }
10300 
10301 ConstantFPSDNode *
10302 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10303                                           BitVector *UndefElements) const {
10304   return dyn_cast_or_null<ConstantFPSDNode>(
10305       getSplatValue(DemandedElts, UndefElements));
10306 }
10307 
10308 ConstantFPSDNode *
10309 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10310   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10311 }
10312 
10313 int32_t
10314 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10315                                                    uint32_t BitWidth) const {
10316   if (ConstantFPSDNode *CN =
10317           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10318     bool IsExact;
10319     APSInt IntVal(BitWidth);
10320     const APFloat &APF = CN->getValueAPF();
10321     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10322             APFloat::opOK ||
10323         !IsExact)
10324       return -1;
10325 
10326     return IntVal.exactLogBase2();
10327   }
10328   return -1;
10329 }
10330 
10331 bool BuildVectorSDNode::isConstant() const {
10332   for (const SDValue &Op : op_values()) {
10333     unsigned Opc = Op.getOpcode();
10334     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10335       return false;
10336   }
10337   return true;
10338 }
10339 
10340 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10341   // Find the first non-undef value in the shuffle mask.
10342   unsigned i, e;
10343   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10344     /* search */;
10345 
10346   // If all elements are undefined, this shuffle can be considered a splat
10347   // (although it should eventually get simplified away completely).
10348   if (i == e)
10349     return true;
10350 
10351   // Make sure all remaining elements are either undef or the same as the first
10352   // non-undef value.
10353   for (int Idx = Mask[i]; i != e; ++i)
10354     if (Mask[i] >= 0 && Mask[i] != Idx)
10355       return false;
10356   return true;
10357 }
10358 
10359 // Returns the SDNode if it is a constant integer BuildVector
10360 // or constant integer.
10361 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10362   if (isa<ConstantSDNode>(N))
10363     return N.getNode();
10364   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10365     return N.getNode();
10366   // Treat a GlobalAddress supporting constant offset folding as a
10367   // constant integer.
10368   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10369     if (GA->getOpcode() == ISD::GlobalAddress &&
10370         TLI->isOffsetFoldingLegal(GA))
10371       return GA;
10372   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10373       isa<ConstantSDNode>(N.getOperand(0)))
10374     return N.getNode();
10375   return nullptr;
10376 }
10377 
10378 // Returns the SDNode if it is a constant float BuildVector
10379 // or constant float.
10380 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10381   if (isa<ConstantFPSDNode>(N))
10382     return N.getNode();
10383 
10384   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10385     return N.getNode();
10386 
10387   return nullptr;
10388 }
10389 
10390 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10391   assert(!Node->OperandList && "Node already has operands");
10392   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10393          "too many operands to fit into SDNode");
10394   SDUse *Ops = OperandRecycler.allocate(
10395       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10396 
10397   bool IsDivergent = false;
10398   for (unsigned I = 0; I != Vals.size(); ++I) {
10399     Ops[I].setUser(Node);
10400     Ops[I].setInitial(Vals[I]);
10401     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10402       IsDivergent |= Ops[I].getNode()->isDivergent();
10403   }
10404   Node->NumOperands = Vals.size();
10405   Node->OperandList = Ops;
10406   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10407     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10408     Node->SDNodeBits.IsDivergent = IsDivergent;
10409   }
10410   checkForCycles(Node);
10411 }
10412 
10413 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10414                                      SmallVectorImpl<SDValue> &Vals) {
10415   size_t Limit = SDNode::getMaxNumOperands();
10416   while (Vals.size() > Limit) {
10417     unsigned SliceIdx = Vals.size() - Limit;
10418     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10419     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10420     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10421     Vals.emplace_back(NewTF);
10422   }
10423   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10424 }
10425 
10426 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10427                                         EVT VT, SDNodeFlags Flags) {
10428   switch (Opcode) {
10429   default:
10430     return SDValue();
10431   case ISD::ADD:
10432   case ISD::OR:
10433   case ISD::XOR:
10434   case ISD::UMAX:
10435     return getConstant(0, DL, VT);
10436   case ISD::MUL:
10437     return getConstant(1, DL, VT);
10438   case ISD::AND:
10439   case ISD::UMIN:
10440     return getAllOnesConstant(DL, VT);
10441   case ISD::SMAX:
10442     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10443   case ISD::SMIN:
10444     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10445   case ISD::FADD:
10446     return getConstantFP(-0.0, DL, VT);
10447   case ISD::FMUL:
10448     return getConstantFP(1.0, DL, VT);
10449   case ISD::FMINNUM:
10450   case ISD::FMAXNUM: {
10451     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10452     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10453     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10454                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10455                         APFloat::getLargest(Semantics);
10456     if (Opcode == ISD::FMAXNUM)
10457       NeutralAF.changeSign();
10458 
10459     return getConstantFP(NeutralAF, DL, VT);
10460   }
10461   }
10462 }
10463 
10464 #ifndef NDEBUG
10465 static void checkForCyclesHelper(const SDNode *N,
10466                                  SmallPtrSetImpl<const SDNode*> &Visited,
10467                                  SmallPtrSetImpl<const SDNode*> &Checked,
10468                                  const llvm::SelectionDAG *DAG) {
10469   // If this node has already been checked, don't check it again.
10470   if (Checked.count(N))
10471     return;
10472 
10473   // If a node has already been visited on this depth-first walk, reject it as
10474   // a cycle.
10475   if (!Visited.insert(N).second) {
10476     errs() << "Detected cycle in SelectionDAG\n";
10477     dbgs() << "Offending node:\n";
10478     N->dumprFull(DAG); dbgs() << "\n";
10479     abort();
10480   }
10481 
10482   for (const SDValue &Op : N->op_values())
10483     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10484 
10485   Checked.insert(N);
10486   Visited.erase(N);
10487 }
10488 #endif
10489 
10490 void llvm::checkForCycles(const llvm::SDNode *N,
10491                           const llvm::SelectionDAG *DAG,
10492                           bool force) {
10493 #ifndef NDEBUG
10494   bool check = force;
10495 #ifdef EXPENSIVE_CHECKS
10496   check = true;
10497 #endif  // EXPENSIVE_CHECKS
10498   if (check) {
10499     assert(N && "Checking nonexistent SDNode");
10500     SmallPtrSet<const SDNode*, 32> visited;
10501     SmallPtrSet<const SDNode*, 32> checked;
10502     checkForCyclesHelper(N, visited, checked, DAG);
10503   }
10504 #endif  // !NDEBUG
10505 }
10506 
10507 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10508   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10509 }
10510