1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlign().value()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 Align SelectionDAG::getEVTAlign(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlign(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 EVT OpVT = Op.getValueType(); 1171 assert(VT.isInteger() && OpVT.isInteger() && 1172 "Cannot getZeroExtendInReg FP types"); 1173 assert(VT.isVector() == OpVT.isVector() && 1174 "getZeroExtendInReg type should be vector iff the operand " 1175 "type is vector!"); 1176 assert((!VT.isVector() || 1177 VT.getVectorNumElements() == OpVT.getVectorNumElements()) && 1178 "Vector element counts must match in getZeroExtendInReg"); 1179 assert(VT.bitsLE(OpVT) && "Not extending!"); 1180 if (OpVT == VT) 1181 return Op; 1182 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1183 VT.getScalarSizeInBits()); 1184 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZExtOrTrunc(Op, DL, VT); 1191 } 1192 1193 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1194 // Only unsigned pointer semantics are supported right now. In the future this 1195 // might delegate to TLI to check pointer signedness. 1196 return getZeroExtendInReg(Op, DL, VT); 1197 } 1198 1199 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1200 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1201 EVT EltVT = VT.getScalarType(); 1202 SDValue NegOne = 1203 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1204 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1205 } 1206 1207 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1208 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1209 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1210 } 1211 1212 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1213 EVT OpVT) { 1214 if (!V) 1215 return getConstant(0, DL, VT); 1216 1217 switch (TLI->getBooleanContents(OpVT)) { 1218 case TargetLowering::ZeroOrOneBooleanContent: 1219 case TargetLowering::UndefinedBooleanContent: 1220 return getConstant(1, DL, VT); 1221 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1222 return getAllOnesConstant(DL, VT); 1223 } 1224 llvm_unreachable("Unexpected boolean content enum!"); 1225 } 1226 1227 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1228 bool isT, bool isO) { 1229 EVT EltVT = VT.getScalarType(); 1230 assert((EltVT.getSizeInBits() >= 64 || 1231 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1232 "getConstant with a uint64_t value that doesn't fit in the type!"); 1233 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1234 } 1235 1236 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1237 bool isT, bool isO) { 1238 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1239 } 1240 1241 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1242 EVT VT, bool isT, bool isO) { 1243 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1244 1245 EVT EltVT = VT.getScalarType(); 1246 const ConstantInt *Elt = &Val; 1247 1248 // In some cases the vector type is legal but the element type is illegal and 1249 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1250 // inserted value (the type does not need to match the vector element type). 1251 // Any extra bits introduced will be truncated away. 1252 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1253 TargetLowering::TypePromoteInteger) { 1254 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1255 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1256 Elt = ConstantInt::get(*getContext(), NewVal); 1257 } 1258 // In other cases the element type is illegal and needs to be expanded, for 1259 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1260 // the value into n parts and use a vector type with n-times the elements. 1261 // Then bitcast to the type requested. 1262 // Legalizing constants too early makes the DAGCombiner's job harder so we 1263 // only legalize if the DAG tells us we must produce legal types. 1264 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1265 TLI->getTypeAction(*getContext(), EltVT) == 1266 TargetLowering::TypeExpandInteger) { 1267 const APInt &NewVal = Elt->getValue(); 1268 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1269 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1270 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1271 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1272 1273 // Check the temporary vector is the correct size. If this fails then 1274 // getTypeToTransformTo() probably returned a type whose size (in bits) 1275 // isn't a power-of-2 factor of the requested type size. 1276 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1277 1278 SmallVector<SDValue, 2> EltParts; 1279 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1280 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1281 .zextOrTrunc(ViaEltSizeInBits), DL, 1282 ViaEltVT, isT, isO)); 1283 } 1284 1285 // EltParts is currently in little endian order. If we actually want 1286 // big-endian order then reverse it now. 1287 if (getDataLayout().isBigEndian()) 1288 std::reverse(EltParts.begin(), EltParts.end()); 1289 1290 // The elements must be reversed when the element order is different 1291 // to the endianness of the elements (because the BITCAST is itself a 1292 // vector shuffle in this situation). However, we do not need any code to 1293 // perform this reversal because getConstant() is producing a vector 1294 // splat. 1295 // This situation occurs in MIPS MSA. 1296 1297 SmallVector<SDValue, 8> Ops; 1298 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1299 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1300 1301 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1302 return V; 1303 } 1304 1305 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1306 "APInt size does not match type size!"); 1307 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1308 FoldingSetNodeID ID; 1309 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1310 ID.AddPointer(Elt); 1311 ID.AddBoolean(isO); 1312 void *IP = nullptr; 1313 SDNode *N = nullptr; 1314 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1315 if (!VT.isVector()) 1316 return SDValue(N, 0); 1317 1318 if (!N) { 1319 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1320 CSEMap.InsertNode(N, IP); 1321 InsertNode(N); 1322 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1323 } 1324 1325 SDValue Result(N, 0); 1326 if (VT.isScalableVector()) 1327 Result = getSplatVector(VT, DL, Result); 1328 else if (VT.isVector()) 1329 Result = getSplatBuildVector(VT, DL, Result); 1330 1331 return Result; 1332 } 1333 1334 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1335 bool isTarget) { 1336 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1337 } 1338 1339 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1340 const SDLoc &DL, bool LegalTypes) { 1341 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1342 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1343 return getConstant(Val, DL, ShiftVT); 1344 } 1345 1346 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1347 bool isTarget) { 1348 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1349 } 1350 1351 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1352 bool isTarget) { 1353 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1354 } 1355 1356 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1357 EVT VT, bool isTarget) { 1358 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1359 1360 EVT EltVT = VT.getScalarType(); 1361 1362 // Do the map lookup using the actual bit pattern for the floating point 1363 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1364 // we don't have issues with SNANs. 1365 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1368 ID.AddPointer(&V); 1369 void *IP = nullptr; 1370 SDNode *N = nullptr; 1371 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1372 if (!VT.isVector()) 1373 return SDValue(N, 0); 1374 1375 if (!N) { 1376 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 } 1380 1381 SDValue Result(N, 0); 1382 if (VT.isVector()) 1383 Result = getSplatBuildVector(VT, DL, Result); 1384 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1385 return Result; 1386 } 1387 1388 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1389 bool isTarget) { 1390 EVT EltVT = VT.getScalarType(); 1391 if (EltVT == MVT::f32) 1392 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1393 else if (EltVT == MVT::f64) 1394 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1395 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1396 EltVT == MVT::f16) { 1397 bool Ignored; 1398 APFloat APF = APFloat(Val); 1399 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1400 &Ignored); 1401 return getConstantFP(APF, DL, VT, isTarget); 1402 } else 1403 llvm_unreachable("Unsupported type in getConstantFP"); 1404 } 1405 1406 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1407 EVT VT, int64_t Offset, bool isTargetGA, 1408 unsigned TargetFlags) { 1409 assert((TargetFlags == 0 || isTargetGA) && 1410 "Cannot set target flags on target-independent globals"); 1411 1412 // Truncate (with sign-extension) the offset value to the pointer size. 1413 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1414 if (BitWidth < 64) 1415 Offset = SignExtend64(Offset, BitWidth); 1416 1417 unsigned Opc; 1418 if (GV->isThreadLocal()) 1419 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1420 else 1421 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1422 1423 FoldingSetNodeID ID; 1424 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1425 ID.AddPointer(GV); 1426 ID.AddInteger(Offset); 1427 ID.AddInteger(TargetFlags); 1428 void *IP = nullptr; 1429 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1430 return SDValue(E, 0); 1431 1432 auto *N = newSDNode<GlobalAddressSDNode>( 1433 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1434 CSEMap.InsertNode(N, IP); 1435 InsertNode(N); 1436 return SDValue(N, 0); 1437 } 1438 1439 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1440 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1441 FoldingSetNodeID ID; 1442 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1443 ID.AddInteger(FI); 1444 void *IP = nullptr; 1445 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1446 return SDValue(E, 0); 1447 1448 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1449 CSEMap.InsertNode(N, IP); 1450 InsertNode(N); 1451 return SDValue(N, 0); 1452 } 1453 1454 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1455 unsigned TargetFlags) { 1456 assert((TargetFlags == 0 || isTarget) && 1457 "Cannot set target flags on target-independent jump tables"); 1458 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1459 FoldingSetNodeID ID; 1460 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1461 ID.AddInteger(JTI); 1462 ID.AddInteger(TargetFlags); 1463 void *IP = nullptr; 1464 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1465 return SDValue(E, 0); 1466 1467 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1468 CSEMap.InsertNode(N, IP); 1469 InsertNode(N); 1470 return SDValue(N, 0); 1471 } 1472 1473 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1474 MaybeAlign Alignment, int Offset, 1475 bool isTarget, unsigned TargetFlags) { 1476 assert((TargetFlags == 0 || isTarget) && 1477 "Cannot set target flags on target-independent globals"); 1478 if (!Alignment) 1479 Alignment = shouldOptForSize() 1480 ? getDataLayout().getABITypeAlign(C->getType()) 1481 : getDataLayout().getPrefTypeAlign(C->getType()); 1482 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1483 FoldingSetNodeID ID; 1484 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1485 ID.AddInteger(Alignment->value()); 1486 ID.AddInteger(Offset); 1487 ID.AddPointer(C); 1488 ID.AddInteger(TargetFlags); 1489 void *IP = nullptr; 1490 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1491 return SDValue(E, 0); 1492 1493 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1494 TargetFlags); 1495 CSEMap.InsertNode(N, IP); 1496 InsertNode(N); 1497 SDValue V = SDValue(N, 0); 1498 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1499 return V; 1500 } 1501 1502 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1503 MaybeAlign Alignment, int Offset, 1504 bool isTarget, unsigned TargetFlags) { 1505 assert((TargetFlags == 0 || isTarget) && 1506 "Cannot set target flags on target-independent globals"); 1507 if (!Alignment) 1508 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1509 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1512 ID.AddInteger(Alignment->value()); 1513 ID.AddInteger(Offset); 1514 C->addSelectionDAGCSEId(ID); 1515 ID.AddInteger(TargetFlags); 1516 void *IP = nullptr; 1517 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1518 return SDValue(E, 0); 1519 1520 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1521 TargetFlags); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 return SDValue(N, 0); 1525 } 1526 1527 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1528 unsigned TargetFlags) { 1529 FoldingSetNodeID ID; 1530 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1531 ID.AddInteger(Index); 1532 ID.AddInteger(Offset); 1533 ID.AddInteger(TargetFlags); 1534 void *IP = nullptr; 1535 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1536 return SDValue(E, 0); 1537 1538 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1539 CSEMap.InsertNode(N, IP); 1540 InsertNode(N); 1541 return SDValue(N, 0); 1542 } 1543 1544 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1545 FoldingSetNodeID ID; 1546 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1547 ID.AddPointer(MBB); 1548 void *IP = nullptr; 1549 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1550 return SDValue(E, 0); 1551 1552 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1553 CSEMap.InsertNode(N, IP); 1554 InsertNode(N); 1555 return SDValue(N, 0); 1556 } 1557 1558 SDValue SelectionDAG::getValueType(EVT VT) { 1559 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1560 ValueTypeNodes.size()) 1561 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1562 1563 SDNode *&N = VT.isExtended() ? 1564 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1565 1566 if (N) return SDValue(N, 0); 1567 N = newSDNode<VTSDNode>(VT); 1568 InsertNode(N); 1569 return SDValue(N, 0); 1570 } 1571 1572 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1573 SDNode *&N = ExternalSymbols[Sym]; 1574 if (N) return SDValue(N, 0); 1575 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1576 InsertNode(N); 1577 return SDValue(N, 0); 1578 } 1579 1580 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1581 SDNode *&N = MCSymbols[Sym]; 1582 if (N) 1583 return SDValue(N, 0); 1584 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1585 InsertNode(N); 1586 return SDValue(N, 0); 1587 } 1588 1589 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1590 unsigned TargetFlags) { 1591 SDNode *&N = 1592 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1593 if (N) return SDValue(N, 0); 1594 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1595 InsertNode(N); 1596 return SDValue(N, 0); 1597 } 1598 1599 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1600 if ((unsigned)Cond >= CondCodeNodes.size()) 1601 CondCodeNodes.resize(Cond+1); 1602 1603 if (!CondCodeNodes[Cond]) { 1604 auto *N = newSDNode<CondCodeSDNode>(Cond); 1605 CondCodeNodes[Cond] = N; 1606 InsertNode(N); 1607 } 1608 1609 return SDValue(CondCodeNodes[Cond], 0); 1610 } 1611 1612 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1613 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1614 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1615 std::swap(N1, N2); 1616 ShuffleVectorSDNode::commuteMask(M); 1617 } 1618 1619 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1620 SDValue N2, ArrayRef<int> Mask) { 1621 assert(VT.getVectorNumElements() == Mask.size() && 1622 "Must have the same number of vector elements as mask elements!"); 1623 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1624 "Invalid VECTOR_SHUFFLE"); 1625 1626 // Canonicalize shuffle undef, undef -> undef 1627 if (N1.isUndef() && N2.isUndef()) 1628 return getUNDEF(VT); 1629 1630 // Validate that all indices in Mask are within the range of the elements 1631 // input to the shuffle. 1632 int NElts = Mask.size(); 1633 assert(llvm::all_of(Mask, 1634 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1635 "Index out of range"); 1636 1637 // Copy the mask so we can do any needed cleanup. 1638 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1639 1640 // Canonicalize shuffle v, v -> v, undef 1641 if (N1 == N2) { 1642 N2 = getUNDEF(VT); 1643 for (int i = 0; i != NElts; ++i) 1644 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1645 } 1646 1647 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1648 if (N1.isUndef()) 1649 commuteShuffle(N1, N2, MaskVec); 1650 1651 if (TLI->hasVectorBlend()) { 1652 // If shuffling a splat, try to blend the splat instead. We do this here so 1653 // that even when this arises during lowering we don't have to re-handle it. 1654 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1655 BitVector UndefElements; 1656 SDValue Splat = BV->getSplatValue(&UndefElements); 1657 if (!Splat) 1658 return; 1659 1660 for (int i = 0; i < NElts; ++i) { 1661 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1662 continue; 1663 1664 // If this input comes from undef, mark it as such. 1665 if (UndefElements[MaskVec[i] - Offset]) { 1666 MaskVec[i] = -1; 1667 continue; 1668 } 1669 1670 // If we can blend a non-undef lane, use that instead. 1671 if (!UndefElements[i]) 1672 MaskVec[i] = i + Offset; 1673 } 1674 }; 1675 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1676 BlendSplat(N1BV, 0); 1677 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1678 BlendSplat(N2BV, NElts); 1679 } 1680 1681 // Canonicalize all index into lhs, -> shuffle lhs, undef 1682 // Canonicalize all index into rhs, -> shuffle rhs, undef 1683 bool AllLHS = true, AllRHS = true; 1684 bool N2Undef = N2.isUndef(); 1685 for (int i = 0; i != NElts; ++i) { 1686 if (MaskVec[i] >= NElts) { 1687 if (N2Undef) 1688 MaskVec[i] = -1; 1689 else 1690 AllLHS = false; 1691 } else if (MaskVec[i] >= 0) { 1692 AllRHS = false; 1693 } 1694 } 1695 if (AllLHS && AllRHS) 1696 return getUNDEF(VT); 1697 if (AllLHS && !N2Undef) 1698 N2 = getUNDEF(VT); 1699 if (AllRHS) { 1700 N1 = getUNDEF(VT); 1701 commuteShuffle(N1, N2, MaskVec); 1702 } 1703 // Reset our undef status after accounting for the mask. 1704 N2Undef = N2.isUndef(); 1705 // Re-check whether both sides ended up undef. 1706 if (N1.isUndef() && N2Undef) 1707 return getUNDEF(VT); 1708 1709 // If Identity shuffle return that node. 1710 bool Identity = true, AllSame = true; 1711 for (int i = 0; i != NElts; ++i) { 1712 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1713 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1714 } 1715 if (Identity && NElts) 1716 return N1; 1717 1718 // Shuffling a constant splat doesn't change the result. 1719 if (N2Undef) { 1720 SDValue V = N1; 1721 1722 // Look through any bitcasts. We check that these don't change the number 1723 // (and size) of elements and just changes their types. 1724 while (V.getOpcode() == ISD::BITCAST) 1725 V = V->getOperand(0); 1726 1727 // A splat should always show up as a build vector node. 1728 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1729 BitVector UndefElements; 1730 SDValue Splat = BV->getSplatValue(&UndefElements); 1731 // If this is a splat of an undef, shuffling it is also undef. 1732 if (Splat && Splat.isUndef()) 1733 return getUNDEF(VT); 1734 1735 bool SameNumElts = 1736 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1737 1738 // We only have a splat which can skip shuffles if there is a splatted 1739 // value and no undef lanes rearranged by the shuffle. 1740 if (Splat && UndefElements.none()) { 1741 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1742 // number of elements match or the value splatted is a zero constant. 1743 if (SameNumElts) 1744 return N1; 1745 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1746 if (C->isNullValue()) 1747 return N1; 1748 } 1749 1750 // If the shuffle itself creates a splat, build the vector directly. 1751 if (AllSame && SameNumElts) { 1752 EVT BuildVT = BV->getValueType(0); 1753 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1754 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1755 1756 // We may have jumped through bitcasts, so the type of the 1757 // BUILD_VECTOR may not match the type of the shuffle. 1758 if (BuildVT != VT) 1759 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1760 return NewBV; 1761 } 1762 } 1763 } 1764 1765 FoldingSetNodeID ID; 1766 SDValue Ops[2] = { N1, N2 }; 1767 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1768 for (int i = 0; i != NElts; ++i) 1769 ID.AddInteger(MaskVec[i]); 1770 1771 void* IP = nullptr; 1772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1773 return SDValue(E, 0); 1774 1775 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1776 // SDNode doesn't have access to it. This memory will be "leaked" when 1777 // the node is deallocated, but recovered when the NodeAllocator is released. 1778 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1779 llvm::copy(MaskVec, MaskAlloc); 1780 1781 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1782 dl.getDebugLoc(), MaskAlloc); 1783 createOperands(N, Ops); 1784 1785 CSEMap.InsertNode(N, IP); 1786 InsertNode(N); 1787 SDValue V = SDValue(N, 0); 1788 NewSDValueDbgMsg(V, "Creating new node: ", this); 1789 return V; 1790 } 1791 1792 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1793 EVT VT = SV.getValueType(0); 1794 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1795 ShuffleVectorSDNode::commuteMask(MaskVec); 1796 1797 SDValue Op0 = SV.getOperand(0); 1798 SDValue Op1 = SV.getOperand(1); 1799 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1800 } 1801 1802 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1803 FoldingSetNodeID ID; 1804 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1805 ID.AddInteger(RegNo); 1806 void *IP = nullptr; 1807 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1808 return SDValue(E, 0); 1809 1810 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1811 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1818 FoldingSetNodeID ID; 1819 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1820 ID.AddPointer(RegMask); 1821 void *IP = nullptr; 1822 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1823 return SDValue(E, 0); 1824 1825 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1826 CSEMap.InsertNode(N, IP); 1827 InsertNode(N); 1828 return SDValue(N, 0); 1829 } 1830 1831 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1832 MCSymbol *Label) { 1833 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1834 } 1835 1836 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1837 SDValue Root, MCSymbol *Label) { 1838 FoldingSetNodeID ID; 1839 SDValue Ops[] = { Root }; 1840 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1841 ID.AddPointer(Label); 1842 void *IP = nullptr; 1843 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1844 return SDValue(E, 0); 1845 1846 auto *N = 1847 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1848 createOperands(N, Ops); 1849 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1856 int64_t Offset, bool isTarget, 1857 unsigned TargetFlags) { 1858 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1859 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1862 ID.AddPointer(BA); 1863 ID.AddInteger(Offset); 1864 ID.AddInteger(TargetFlags); 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1870 CSEMap.InsertNode(N, IP); 1871 InsertNode(N); 1872 return SDValue(N, 0); 1873 } 1874 1875 SDValue SelectionDAG::getSrcValue(const Value *V) { 1876 assert((!V || V->getType()->isPointerTy()) && 1877 "SrcValue is not a pointer?"); 1878 1879 FoldingSetNodeID ID; 1880 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1881 ID.AddPointer(V); 1882 1883 void *IP = nullptr; 1884 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1885 return SDValue(E, 0); 1886 1887 auto *N = newSDNode<SrcValueSDNode>(V); 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1894 FoldingSetNodeID ID; 1895 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1896 ID.AddPointer(MD); 1897 1898 void *IP = nullptr; 1899 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1900 return SDValue(E, 0); 1901 1902 auto *N = newSDNode<MDNodeSDNode>(MD); 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1909 if (VT == V.getValueType()) 1910 return V; 1911 1912 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1913 } 1914 1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1916 unsigned SrcAS, unsigned DestAS) { 1917 SDValue Ops[] = {Ptr}; 1918 FoldingSetNodeID ID; 1919 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1920 ID.AddInteger(SrcAS); 1921 ID.AddInteger(DestAS); 1922 1923 void *IP = nullptr; 1924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1925 return SDValue(E, 0); 1926 1927 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1928 VT, SrcAS, DestAS); 1929 createOperands(N, Ops); 1930 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getFreeze(SDValue V) { 1937 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1938 } 1939 1940 /// getShiftAmountOperand - Return the specified value casted to 1941 /// the target's desired shift amount type. 1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1943 EVT OpTy = Op.getValueType(); 1944 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1945 if (OpTy == ShTy || OpTy.isVector()) return Op; 1946 1947 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1948 } 1949 1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1951 SDLoc dl(Node); 1952 const TargetLowering &TLI = getTargetLoweringInfo(); 1953 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1954 EVT VT = Node->getValueType(0); 1955 SDValue Tmp1 = Node->getOperand(0); 1956 SDValue Tmp2 = Node->getOperand(1); 1957 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1958 1959 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1960 Tmp2, MachinePointerInfo(V)); 1961 SDValue VAList = VAListLoad; 1962 1963 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1964 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1965 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1966 1967 VAList = 1968 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1969 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1970 } 1971 1972 // Increment the pointer, VAList, to the next vaarg 1973 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1974 getConstant(getDataLayout().getTypeAllocSize( 1975 VT.getTypeForEVT(*getContext())), 1976 dl, VAList.getValueType())); 1977 // Store the incremented VAList to the legalized pointer 1978 Tmp1 = 1979 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1980 // Load the actual argument out of the pointer VAList 1981 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1982 } 1983 1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1985 SDLoc dl(Node); 1986 const TargetLowering &TLI = getTargetLoweringInfo(); 1987 // This defaults to loading a pointer from the input and storing it to the 1988 // output, returning the chain. 1989 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1990 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1991 SDValue Tmp1 = 1992 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1993 Node->getOperand(2), MachinePointerInfo(VS)); 1994 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1995 MachinePointerInfo(VD)); 1996 } 1997 1998 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1999 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2000 unsigned ByteSize = VT.getStoreSize(); 2001 Type *Ty = VT.getTypeForEVT(*getContext()); 2002 unsigned StackAlign = 2003 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 2004 2005 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 2006 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2007 } 2008 2009 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2010 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2011 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2012 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2013 const DataLayout &DL = getDataLayout(); 2014 unsigned Align = 2015 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 2016 2017 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2018 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 2019 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2020 } 2021 2022 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2023 ISD::CondCode Cond, const SDLoc &dl) { 2024 EVT OpVT = N1.getValueType(); 2025 2026 // These setcc operations always fold. 2027 switch (Cond) { 2028 default: break; 2029 case ISD::SETFALSE: 2030 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2031 case ISD::SETTRUE: 2032 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2033 2034 case ISD::SETOEQ: 2035 case ISD::SETOGT: 2036 case ISD::SETOGE: 2037 case ISD::SETOLT: 2038 case ISD::SETOLE: 2039 case ISD::SETONE: 2040 case ISD::SETO: 2041 case ISD::SETUO: 2042 case ISD::SETUEQ: 2043 case ISD::SETUNE: 2044 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2045 break; 2046 } 2047 2048 if (OpVT.isInteger()) { 2049 // For EQ and NE, we can always pick a value for the undef to make the 2050 // predicate pass or fail, so we can return undef. 2051 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2052 // icmp eq/ne X, undef -> undef. 2053 if ((N1.isUndef() || N2.isUndef()) && 2054 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2055 return getUNDEF(VT); 2056 2057 // If both operands are undef, we can return undef for int comparison. 2058 // icmp undef, undef -> undef. 2059 if (N1.isUndef() && N2.isUndef()) 2060 return getUNDEF(VT); 2061 2062 // icmp X, X -> true/false 2063 // icmp X, undef -> true/false because undef could be X. 2064 if (N1 == N2) 2065 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2066 } 2067 2068 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2069 const APInt &C2 = N2C->getAPIntValue(); 2070 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2071 const APInt &C1 = N1C->getAPIntValue(); 2072 2073 switch (Cond) { 2074 default: llvm_unreachable("Unknown integer setcc!"); 2075 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2076 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2077 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2078 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2079 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2080 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2081 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2082 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2083 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2084 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2085 } 2086 } 2087 } 2088 2089 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2090 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2091 2092 if (N1CFP && N2CFP) { 2093 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2094 switch (Cond) { 2095 default: break; 2096 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2097 return getUNDEF(VT); 2098 LLVM_FALLTHROUGH; 2099 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2100 OpVT); 2101 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2102 return getUNDEF(VT); 2103 LLVM_FALLTHROUGH; 2104 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2105 R==APFloat::cmpLessThan, dl, VT, 2106 OpVT); 2107 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2108 return getUNDEF(VT); 2109 LLVM_FALLTHROUGH; 2110 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2111 OpVT); 2112 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2113 return getUNDEF(VT); 2114 LLVM_FALLTHROUGH; 2115 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2116 VT, OpVT); 2117 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2118 return getUNDEF(VT); 2119 LLVM_FALLTHROUGH; 2120 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2121 R==APFloat::cmpEqual, dl, VT, 2122 OpVT); 2123 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2124 return getUNDEF(VT); 2125 LLVM_FALLTHROUGH; 2126 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2127 R==APFloat::cmpEqual, dl, VT, OpVT); 2128 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2129 OpVT); 2130 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2131 OpVT); 2132 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2133 R==APFloat::cmpEqual, dl, VT, 2134 OpVT); 2135 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2136 OpVT); 2137 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2138 R==APFloat::cmpLessThan, dl, VT, 2139 OpVT); 2140 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2141 R==APFloat::cmpUnordered, dl, VT, 2142 OpVT); 2143 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2144 VT, OpVT); 2145 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2146 OpVT); 2147 } 2148 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2149 // Ensure that the constant occurs on the RHS. 2150 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2151 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2152 return SDValue(); 2153 return getSetCC(dl, VT, N2, N1, SwappedCond); 2154 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2155 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2156 // If an operand is known to be a nan (or undef that could be a nan), we can 2157 // fold it. 2158 // Choosing NaN for the undef will always make unordered comparison succeed 2159 // and ordered comparison fails. 2160 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2161 switch (ISD::getUnorderedFlavor(Cond)) { 2162 default: 2163 llvm_unreachable("Unknown flavor!"); 2164 case 0: // Known false. 2165 return getBoolConstant(false, dl, VT, OpVT); 2166 case 1: // Known true. 2167 return getBoolConstant(true, dl, VT, OpVT); 2168 case 2: // Undefined. 2169 return getUNDEF(VT); 2170 } 2171 } 2172 2173 // Could not fold it. 2174 return SDValue(); 2175 } 2176 2177 /// See if the specified operand can be simplified with the knowledge that only 2178 /// the bits specified by DemandedBits are used. 2179 /// TODO: really we should be making this into the DAG equivalent of 2180 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2181 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2182 EVT VT = V.getValueType(); 2183 APInt DemandedElts = VT.isVector() 2184 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2185 : APInt(1, 1); 2186 return GetDemandedBits(V, DemandedBits, DemandedElts); 2187 } 2188 2189 /// See if the specified operand can be simplified with the knowledge that only 2190 /// the bits specified by DemandedBits are used in the elements specified by 2191 /// DemandedElts. 2192 /// TODO: really we should be making this into the DAG equivalent of 2193 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2194 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2195 const APInt &DemandedElts) { 2196 switch (V.getOpcode()) { 2197 default: 2198 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2199 *this, 0); 2200 break; 2201 case ISD::Constant: { 2202 auto *CV = cast<ConstantSDNode>(V.getNode()); 2203 assert(CV && "Const value should be ConstSDNode."); 2204 const APInt &CVal = CV->getAPIntValue(); 2205 APInt NewVal = CVal & DemandedBits; 2206 if (NewVal != CVal) 2207 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2208 break; 2209 } 2210 case ISD::SRL: 2211 // Only look at single-use SRLs. 2212 if (!V.getNode()->hasOneUse()) 2213 break; 2214 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2215 // See if we can recursively simplify the LHS. 2216 unsigned Amt = RHSC->getZExtValue(); 2217 2218 // Watch out for shift count overflow though. 2219 if (Amt >= DemandedBits.getBitWidth()) 2220 break; 2221 APInt SrcDemandedBits = DemandedBits << Amt; 2222 if (SDValue SimplifyLHS = 2223 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2224 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2225 V.getOperand(1)); 2226 } 2227 break; 2228 case ISD::AND: { 2229 // X & -1 -> X (ignoring bits which aren't demanded). 2230 // Also handle the case where masked out bits in X are known to be zero. 2231 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2232 const APInt &AndVal = RHSC->getAPIntValue(); 2233 if (DemandedBits.isSubsetOf(AndVal) || 2234 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2235 AndVal)) 2236 return V.getOperand(0); 2237 } 2238 break; 2239 } 2240 } 2241 return SDValue(); 2242 } 2243 2244 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2245 /// use this predicate to simplify operations downstream. 2246 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2247 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2248 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2249 } 2250 2251 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2252 /// this predicate to simplify operations downstream. Mask is known to be zero 2253 /// for bits that V cannot have. 2254 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2255 unsigned Depth) const { 2256 EVT VT = V.getValueType(); 2257 APInt DemandedElts = VT.isVector() 2258 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2259 : APInt(1, 1); 2260 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2261 } 2262 2263 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2264 /// DemandedElts. We use this predicate to simplify operations downstream. 2265 /// Mask is known to be zero for bits that V cannot have. 2266 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2267 const APInt &DemandedElts, 2268 unsigned Depth) const { 2269 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2270 } 2271 2272 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2273 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2274 unsigned Depth) const { 2275 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2276 } 2277 2278 /// isSplatValue - Return true if the vector V has the same value 2279 /// across all DemandedElts. For scalable vectors it does not make 2280 /// sense to specify which elements are demanded or undefined, therefore 2281 /// they are simply ignored. 2282 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2283 APInt &UndefElts) { 2284 EVT VT = V.getValueType(); 2285 assert(VT.isVector() && "Vector type expected"); 2286 2287 if (!VT.isScalableVector() && !DemandedElts) 2288 return false; // No demanded elts, better to assume we don't know anything. 2289 2290 // Deal with some common cases here that work for both fixed and scalable 2291 // vector types. 2292 switch (V.getOpcode()) { 2293 case ISD::SPLAT_VECTOR: 2294 return true; 2295 case ISD::ADD: 2296 case ISD::SUB: 2297 case ISD::AND: { 2298 APInt UndefLHS, UndefRHS; 2299 SDValue LHS = V.getOperand(0); 2300 SDValue RHS = V.getOperand(1); 2301 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2302 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2303 UndefElts = UndefLHS | UndefRHS; 2304 return true; 2305 } 2306 break; 2307 } 2308 } 2309 2310 // We don't support other cases than those above for scalable vectors at 2311 // the moment. 2312 if (VT.isScalableVector()) 2313 return false; 2314 2315 unsigned NumElts = VT.getVectorNumElements(); 2316 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2317 UndefElts = APInt::getNullValue(NumElts); 2318 2319 switch (V.getOpcode()) { 2320 case ISD::BUILD_VECTOR: { 2321 SDValue Scl; 2322 for (unsigned i = 0; i != NumElts; ++i) { 2323 SDValue Op = V.getOperand(i); 2324 if (Op.isUndef()) { 2325 UndefElts.setBit(i); 2326 continue; 2327 } 2328 if (!DemandedElts[i]) 2329 continue; 2330 if (Scl && Scl != Op) 2331 return false; 2332 Scl = Op; 2333 } 2334 return true; 2335 } 2336 case ISD::VECTOR_SHUFFLE: { 2337 // Check if this is a shuffle node doing a splat. 2338 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2339 int SplatIndex = -1; 2340 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2341 for (int i = 0; i != (int)NumElts; ++i) { 2342 int M = Mask[i]; 2343 if (M < 0) { 2344 UndefElts.setBit(i); 2345 continue; 2346 } 2347 if (!DemandedElts[i]) 2348 continue; 2349 if (0 <= SplatIndex && SplatIndex != M) 2350 return false; 2351 SplatIndex = M; 2352 } 2353 return true; 2354 } 2355 case ISD::EXTRACT_SUBVECTOR: { 2356 // Offset the demanded elts by the subvector index. 2357 SDValue Src = V.getOperand(0); 2358 uint64_t Idx = V.getConstantOperandVal(1); 2359 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2360 APInt UndefSrcElts; 2361 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2362 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2363 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2364 return true; 2365 } 2366 break; 2367 } 2368 } 2369 2370 return false; 2371 } 2372 2373 /// Helper wrapper to main isSplatValue function. 2374 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2375 EVT VT = V.getValueType(); 2376 assert(VT.isVector() && "Vector type expected"); 2377 2378 APInt UndefElts; 2379 APInt DemandedElts; 2380 2381 // For now we don't support this with scalable vectors. 2382 if (!VT.isScalableVector()) 2383 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2384 return isSplatValue(V, DemandedElts, UndefElts) && 2385 (AllowUndefs || !UndefElts); 2386 } 2387 2388 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2389 V = peekThroughExtractSubvectors(V); 2390 2391 EVT VT = V.getValueType(); 2392 unsigned Opcode = V.getOpcode(); 2393 switch (Opcode) { 2394 default: { 2395 APInt UndefElts; 2396 APInt DemandedElts; 2397 2398 if (!VT.isScalableVector()) 2399 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2400 2401 if (isSplatValue(V, DemandedElts, UndefElts)) { 2402 if (VT.isScalableVector()) { 2403 // DemandedElts and UndefElts are ignored for scalable vectors, since 2404 // the only supported cases are SPLAT_VECTOR nodes. 2405 SplatIdx = 0; 2406 } else { 2407 // Handle case where all demanded elements are UNDEF. 2408 if (DemandedElts.isSubsetOf(UndefElts)) { 2409 SplatIdx = 0; 2410 return getUNDEF(VT); 2411 } 2412 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2413 } 2414 return V; 2415 } 2416 break; 2417 } 2418 case ISD::SPLAT_VECTOR: 2419 SplatIdx = 0; 2420 return V; 2421 case ISD::VECTOR_SHUFFLE: { 2422 if (VT.isScalableVector()) 2423 return SDValue(); 2424 2425 // Check if this is a shuffle node doing a splat. 2426 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2427 // getTargetVShiftNode currently struggles without the splat source. 2428 auto *SVN = cast<ShuffleVectorSDNode>(V); 2429 if (!SVN->isSplat()) 2430 break; 2431 int Idx = SVN->getSplatIndex(); 2432 int NumElts = V.getValueType().getVectorNumElements(); 2433 SplatIdx = Idx % NumElts; 2434 return V.getOperand(Idx / NumElts); 2435 } 2436 } 2437 2438 return SDValue(); 2439 } 2440 2441 SDValue SelectionDAG::getSplatValue(SDValue V) { 2442 int SplatIdx; 2443 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2444 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2445 SrcVector.getValueType().getScalarType(), SrcVector, 2446 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2447 return SDValue(); 2448 } 2449 2450 const APInt * 2451 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2452 const APInt &DemandedElts) const { 2453 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2454 V.getOpcode() == ISD::SRA) && 2455 "Unknown shift node"); 2456 unsigned BitWidth = V.getScalarValueSizeInBits(); 2457 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2458 // Shifting more than the bitwidth is not valid. 2459 const APInt &ShAmt = SA->getAPIntValue(); 2460 if (ShAmt.ult(BitWidth)) 2461 return &ShAmt; 2462 } 2463 return nullptr; 2464 } 2465 2466 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2467 SDValue V, const APInt &DemandedElts) const { 2468 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2469 V.getOpcode() == ISD::SRA) && 2470 "Unknown shift node"); 2471 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2472 return ValidAmt; 2473 unsigned BitWidth = V.getScalarValueSizeInBits(); 2474 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2475 if (!BV) 2476 return nullptr; 2477 const APInt *MinShAmt = nullptr; 2478 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2479 if (!DemandedElts[i]) 2480 continue; 2481 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2482 if (!SA) 2483 return nullptr; 2484 // Shifting more than the bitwidth is not valid. 2485 const APInt &ShAmt = SA->getAPIntValue(); 2486 if (ShAmt.uge(BitWidth)) 2487 return nullptr; 2488 if (MinShAmt && MinShAmt->ule(ShAmt)) 2489 continue; 2490 MinShAmt = &ShAmt; 2491 } 2492 return MinShAmt; 2493 } 2494 2495 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2496 SDValue V, const APInt &DemandedElts) const { 2497 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2498 V.getOpcode() == ISD::SRA) && 2499 "Unknown shift node"); 2500 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2501 return ValidAmt; 2502 unsigned BitWidth = V.getScalarValueSizeInBits(); 2503 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2504 if (!BV) 2505 return nullptr; 2506 const APInt *MaxShAmt = nullptr; 2507 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2508 if (!DemandedElts[i]) 2509 continue; 2510 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2511 if (!SA) 2512 return nullptr; 2513 // Shifting more than the bitwidth is not valid. 2514 const APInt &ShAmt = SA->getAPIntValue(); 2515 if (ShAmt.uge(BitWidth)) 2516 return nullptr; 2517 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2518 continue; 2519 MaxShAmt = &ShAmt; 2520 } 2521 return MaxShAmt; 2522 } 2523 2524 /// Determine which bits of Op are known to be either zero or one and return 2525 /// them in Known. For vectors, the known bits are those that are shared by 2526 /// every vector element. 2527 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2528 EVT VT = Op.getValueType(); 2529 APInt DemandedElts = VT.isVector() 2530 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2531 : APInt(1, 1); 2532 return computeKnownBits(Op, DemandedElts, Depth); 2533 } 2534 2535 /// Determine which bits of Op are known to be either zero or one and return 2536 /// them in Known. The DemandedElts argument allows us to only collect the known 2537 /// bits that are shared by the requested vector elements. 2538 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2539 unsigned Depth) const { 2540 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2541 2542 KnownBits Known(BitWidth); // Don't know anything. 2543 2544 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2545 // We know all of the bits for a constant! 2546 Known.One = C->getAPIntValue(); 2547 Known.Zero = ~Known.One; 2548 return Known; 2549 } 2550 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2551 // We know all of the bits for a constant fp! 2552 Known.One = C->getValueAPF().bitcastToAPInt(); 2553 Known.Zero = ~Known.One; 2554 return Known; 2555 } 2556 2557 if (Depth >= MaxRecursionDepth) 2558 return Known; // Limit search depth. 2559 2560 KnownBits Known2; 2561 unsigned NumElts = DemandedElts.getBitWidth(); 2562 assert((!Op.getValueType().isVector() || 2563 NumElts == Op.getValueType().getVectorNumElements()) && 2564 "Unexpected vector size"); 2565 2566 if (!DemandedElts) 2567 return Known; // No demanded elts, better to assume we don't know anything. 2568 2569 unsigned Opcode = Op.getOpcode(); 2570 switch (Opcode) { 2571 case ISD::BUILD_VECTOR: 2572 // Collect the known bits that are shared by every demanded vector element. 2573 Known.Zero.setAllBits(); Known.One.setAllBits(); 2574 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2575 if (!DemandedElts[i]) 2576 continue; 2577 2578 SDValue SrcOp = Op.getOperand(i); 2579 Known2 = computeKnownBits(SrcOp, Depth + 1); 2580 2581 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2582 if (SrcOp.getValueSizeInBits() != BitWidth) { 2583 assert(SrcOp.getValueSizeInBits() > BitWidth && 2584 "Expected BUILD_VECTOR implicit truncation"); 2585 Known2 = Known2.trunc(BitWidth); 2586 } 2587 2588 // Known bits are the values that are shared by every demanded element. 2589 Known.One &= Known2.One; 2590 Known.Zero &= Known2.Zero; 2591 2592 // If we don't know any bits, early out. 2593 if (Known.isUnknown()) 2594 break; 2595 } 2596 break; 2597 case ISD::VECTOR_SHUFFLE: { 2598 // Collect the known bits that are shared by every vector element referenced 2599 // by the shuffle. 2600 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2601 Known.Zero.setAllBits(); Known.One.setAllBits(); 2602 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2603 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2604 for (unsigned i = 0; i != NumElts; ++i) { 2605 if (!DemandedElts[i]) 2606 continue; 2607 2608 int M = SVN->getMaskElt(i); 2609 if (M < 0) { 2610 // For UNDEF elements, we don't know anything about the common state of 2611 // the shuffle result. 2612 Known.resetAll(); 2613 DemandedLHS.clearAllBits(); 2614 DemandedRHS.clearAllBits(); 2615 break; 2616 } 2617 2618 if ((unsigned)M < NumElts) 2619 DemandedLHS.setBit((unsigned)M % NumElts); 2620 else 2621 DemandedRHS.setBit((unsigned)M % NumElts); 2622 } 2623 // Known bits are the values that are shared by every demanded element. 2624 if (!!DemandedLHS) { 2625 SDValue LHS = Op.getOperand(0); 2626 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2627 Known.One &= Known2.One; 2628 Known.Zero &= Known2.Zero; 2629 } 2630 // If we don't know any bits, early out. 2631 if (Known.isUnknown()) 2632 break; 2633 if (!!DemandedRHS) { 2634 SDValue RHS = Op.getOperand(1); 2635 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2636 Known.One &= Known2.One; 2637 Known.Zero &= Known2.Zero; 2638 } 2639 break; 2640 } 2641 case ISD::CONCAT_VECTORS: { 2642 // Split DemandedElts and test each of the demanded subvectors. 2643 Known.Zero.setAllBits(); Known.One.setAllBits(); 2644 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2645 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2646 unsigned NumSubVectors = Op.getNumOperands(); 2647 for (unsigned i = 0; i != NumSubVectors; ++i) { 2648 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2649 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2650 if (!!DemandedSub) { 2651 SDValue Sub = Op.getOperand(i); 2652 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2653 Known.One &= Known2.One; 2654 Known.Zero &= Known2.Zero; 2655 } 2656 // If we don't know any bits, early out. 2657 if (Known.isUnknown()) 2658 break; 2659 } 2660 break; 2661 } 2662 case ISD::INSERT_SUBVECTOR: { 2663 // Demand any elements from the subvector and the remainder from the src its 2664 // inserted into. 2665 SDValue Src = Op.getOperand(0); 2666 SDValue Sub = Op.getOperand(1); 2667 uint64_t Idx = Op.getConstantOperandVal(2); 2668 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2669 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2670 APInt DemandedSrcElts = DemandedElts; 2671 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2672 2673 Known.One.setAllBits(); 2674 Known.Zero.setAllBits(); 2675 if (!!DemandedSubElts) { 2676 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2677 if (Known.isUnknown()) 2678 break; // early-out. 2679 } 2680 if (!!DemandedSrcElts) { 2681 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2682 Known.One &= Known2.One; 2683 Known.Zero &= Known2.Zero; 2684 } 2685 break; 2686 } 2687 case ISD::EXTRACT_SUBVECTOR: { 2688 // Offset the demanded elts by the subvector index. 2689 SDValue Src = Op.getOperand(0); 2690 uint64_t Idx = Op.getConstantOperandVal(1); 2691 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2692 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2693 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2694 break; 2695 } 2696 case ISD::SCALAR_TO_VECTOR: { 2697 // We know about scalar_to_vector as much as we know about it source, 2698 // which becomes the first element of otherwise unknown vector. 2699 if (DemandedElts != 1) 2700 break; 2701 2702 SDValue N0 = Op.getOperand(0); 2703 Known = computeKnownBits(N0, Depth + 1); 2704 if (N0.getValueSizeInBits() != BitWidth) 2705 Known = Known.trunc(BitWidth); 2706 2707 break; 2708 } 2709 case ISD::BITCAST: { 2710 SDValue N0 = Op.getOperand(0); 2711 EVT SubVT = N0.getValueType(); 2712 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2713 2714 // Ignore bitcasts from unsupported types. 2715 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2716 break; 2717 2718 // Fast handling of 'identity' bitcasts. 2719 if (BitWidth == SubBitWidth) { 2720 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2721 break; 2722 } 2723 2724 bool IsLE = getDataLayout().isLittleEndian(); 2725 2726 // Bitcast 'small element' vector to 'large element' scalar/vector. 2727 if ((BitWidth % SubBitWidth) == 0) { 2728 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2729 2730 // Collect known bits for the (larger) output by collecting the known 2731 // bits from each set of sub elements and shift these into place. 2732 // We need to separately call computeKnownBits for each set of 2733 // sub elements as the knownbits for each is likely to be different. 2734 unsigned SubScale = BitWidth / SubBitWidth; 2735 APInt SubDemandedElts(NumElts * SubScale, 0); 2736 for (unsigned i = 0; i != NumElts; ++i) 2737 if (DemandedElts[i]) 2738 SubDemandedElts.setBit(i * SubScale); 2739 2740 for (unsigned i = 0; i != SubScale; ++i) { 2741 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2742 Depth + 1); 2743 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2744 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2745 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2746 } 2747 } 2748 2749 // Bitcast 'large element' scalar/vector to 'small element' vector. 2750 if ((SubBitWidth % BitWidth) == 0) { 2751 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2752 2753 // Collect known bits for the (smaller) output by collecting the known 2754 // bits from the overlapping larger input elements and extracting the 2755 // sub sections we actually care about. 2756 unsigned SubScale = SubBitWidth / BitWidth; 2757 APInt SubDemandedElts(NumElts / SubScale, 0); 2758 for (unsigned i = 0; i != NumElts; ++i) 2759 if (DemandedElts[i]) 2760 SubDemandedElts.setBit(i / SubScale); 2761 2762 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2763 2764 Known.Zero.setAllBits(); Known.One.setAllBits(); 2765 for (unsigned i = 0; i != NumElts; ++i) 2766 if (DemandedElts[i]) { 2767 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2768 unsigned Offset = (Shifts % SubScale) * BitWidth; 2769 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2770 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2771 // If we don't know any bits, early out. 2772 if (Known.isUnknown()) 2773 break; 2774 } 2775 } 2776 break; 2777 } 2778 case ISD::AND: 2779 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2780 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2781 2782 Known &= Known2; 2783 break; 2784 case ISD::OR: 2785 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2786 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2787 2788 Known |= Known2; 2789 break; 2790 case ISD::XOR: 2791 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2792 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2793 2794 Known ^= Known2; 2795 break; 2796 case ISD::MUL: { 2797 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2798 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2799 2800 // If low bits are zero in either operand, output low known-0 bits. 2801 // Also compute a conservative estimate for high known-0 bits. 2802 // More trickiness is possible, but this is sufficient for the 2803 // interesting case of alignment computation. 2804 unsigned TrailZ = Known.countMinTrailingZeros() + 2805 Known2.countMinTrailingZeros(); 2806 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2807 Known2.countMinLeadingZeros(), 2808 BitWidth) - BitWidth; 2809 2810 Known.resetAll(); 2811 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2812 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2813 break; 2814 } 2815 case ISD::UDIV: { 2816 // For the purposes of computing leading zeros we can conservatively 2817 // treat a udiv as a logical right shift by the power of 2 known to 2818 // be less than the denominator. 2819 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2820 unsigned LeadZ = Known2.countMinLeadingZeros(); 2821 2822 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2823 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2824 if (RHSMaxLeadingZeros != BitWidth) 2825 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2826 2827 Known.Zero.setHighBits(LeadZ); 2828 break; 2829 } 2830 case ISD::SELECT: 2831 case ISD::VSELECT: 2832 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2833 // If we don't know any bits, early out. 2834 if (Known.isUnknown()) 2835 break; 2836 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2837 2838 // Only known if known in both the LHS and RHS. 2839 Known.One &= Known2.One; 2840 Known.Zero &= Known2.Zero; 2841 break; 2842 case ISD::SELECT_CC: 2843 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2844 // If we don't know any bits, early out. 2845 if (Known.isUnknown()) 2846 break; 2847 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2848 2849 // Only known if known in both the LHS and RHS. 2850 Known.One &= Known2.One; 2851 Known.Zero &= Known2.Zero; 2852 break; 2853 case ISD::SMULO: 2854 case ISD::UMULO: 2855 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2856 if (Op.getResNo() != 1) 2857 break; 2858 // The boolean result conforms to getBooleanContents. 2859 // If we know the result of a setcc has the top bits zero, use this info. 2860 // We know that we have an integer-based boolean since these operations 2861 // are only available for integer. 2862 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2863 TargetLowering::ZeroOrOneBooleanContent && 2864 BitWidth > 1) 2865 Known.Zero.setBitsFrom(1); 2866 break; 2867 case ISD::SETCC: 2868 case ISD::STRICT_FSETCC: 2869 case ISD::STRICT_FSETCCS: { 2870 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2871 // If we know the result of a setcc has the top bits zero, use this info. 2872 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2873 TargetLowering::ZeroOrOneBooleanContent && 2874 BitWidth > 1) 2875 Known.Zero.setBitsFrom(1); 2876 break; 2877 } 2878 case ISD::SHL: 2879 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2880 2881 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2882 unsigned Shift = ShAmt->getZExtValue(); 2883 Known.Zero <<= Shift; 2884 Known.One <<= Shift; 2885 // Low bits are known zero. 2886 Known.Zero.setLowBits(Shift); 2887 break; 2888 } 2889 2890 // No matter the shift amount, the trailing zeros will stay zero. 2891 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2892 Known.One.clearAllBits(); 2893 2894 // Minimum shift low bits are known zero. 2895 if (const APInt *ShMinAmt = 2896 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2897 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2898 break; 2899 case ISD::SRL: 2900 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2901 2902 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2903 unsigned Shift = ShAmt->getZExtValue(); 2904 Known.Zero.lshrInPlace(Shift); 2905 Known.One.lshrInPlace(Shift); 2906 // High bits are known zero. 2907 Known.Zero.setHighBits(Shift); 2908 break; 2909 } 2910 2911 // No matter the shift amount, the leading zeros will stay zero. 2912 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2913 Known.One.clearAllBits(); 2914 2915 // Minimum shift high bits are known zero. 2916 if (const APInt *ShMinAmt = 2917 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2918 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2919 break; 2920 case ISD::SRA: 2921 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2922 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2923 unsigned Shift = ShAmt->getZExtValue(); 2924 // Sign extend known zero/one bit (else is unknown). 2925 Known.Zero.ashrInPlace(Shift); 2926 Known.One.ashrInPlace(Shift); 2927 } 2928 break; 2929 case ISD::FSHL: 2930 case ISD::FSHR: 2931 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2932 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2933 2934 // For fshl, 0-shift returns the 1st arg. 2935 // For fshr, 0-shift returns the 2nd arg. 2936 if (Amt == 0) { 2937 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2938 DemandedElts, Depth + 1); 2939 break; 2940 } 2941 2942 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2943 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2944 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2945 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2946 if (Opcode == ISD::FSHL) { 2947 Known.One <<= Amt; 2948 Known.Zero <<= Amt; 2949 Known2.One.lshrInPlace(BitWidth - Amt); 2950 Known2.Zero.lshrInPlace(BitWidth - Amt); 2951 } else { 2952 Known.One <<= BitWidth - Amt; 2953 Known.Zero <<= BitWidth - Amt; 2954 Known2.One.lshrInPlace(Amt); 2955 Known2.Zero.lshrInPlace(Amt); 2956 } 2957 Known.One |= Known2.One; 2958 Known.Zero |= Known2.Zero; 2959 } 2960 break; 2961 case ISD::SIGN_EXTEND_INREG: { 2962 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2963 unsigned EBits = EVT.getScalarSizeInBits(); 2964 2965 // Sign extension. Compute the demanded bits in the result that are not 2966 // present in the input. 2967 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2968 2969 APInt InSignMask = APInt::getSignMask(EBits); 2970 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2971 2972 // If the sign extended bits are demanded, we know that the sign 2973 // bit is demanded. 2974 InSignMask = InSignMask.zext(BitWidth); 2975 if (NewBits.getBoolValue()) 2976 InputDemandedBits |= InSignMask; 2977 2978 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2979 Known.One &= InputDemandedBits; 2980 Known.Zero &= InputDemandedBits; 2981 2982 // If the sign bit of the input is known set or clear, then we know the 2983 // top bits of the result. 2984 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2985 Known.Zero |= NewBits; 2986 Known.One &= ~NewBits; 2987 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2988 Known.One |= NewBits; 2989 Known.Zero &= ~NewBits; 2990 } else { // Input sign bit unknown 2991 Known.Zero &= ~NewBits; 2992 Known.One &= ~NewBits; 2993 } 2994 break; 2995 } 2996 case ISD::CTTZ: 2997 case ISD::CTTZ_ZERO_UNDEF: { 2998 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2999 // If we have a known 1, its position is our upper bound. 3000 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3001 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3002 Known.Zero.setBitsFrom(LowBits); 3003 break; 3004 } 3005 case ISD::CTLZ: 3006 case ISD::CTLZ_ZERO_UNDEF: { 3007 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3008 // If we have a known 1, its position is our upper bound. 3009 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3010 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3011 Known.Zero.setBitsFrom(LowBits); 3012 break; 3013 } 3014 case ISD::CTPOP: { 3015 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3016 // If we know some of the bits are zero, they can't be one. 3017 unsigned PossibleOnes = Known2.countMaxPopulation(); 3018 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3019 break; 3020 } 3021 case ISD::LOAD: { 3022 LoadSDNode *LD = cast<LoadSDNode>(Op); 3023 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3024 if (ISD::isNON_EXTLoad(LD) && Cst) { 3025 // Determine any common known bits from the loaded constant pool value. 3026 Type *CstTy = Cst->getType(); 3027 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3028 // If its a vector splat, then we can (quickly) reuse the scalar path. 3029 // NOTE: We assume all elements match and none are UNDEF. 3030 if (CstTy->isVectorTy()) { 3031 if (const Constant *Splat = Cst->getSplatValue()) { 3032 Cst = Splat; 3033 CstTy = Cst->getType(); 3034 } 3035 } 3036 // TODO - do we need to handle different bitwidths? 3037 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3038 // Iterate across all vector elements finding common known bits. 3039 Known.One.setAllBits(); 3040 Known.Zero.setAllBits(); 3041 for (unsigned i = 0; i != NumElts; ++i) { 3042 if (!DemandedElts[i]) 3043 continue; 3044 if (Constant *Elt = Cst->getAggregateElement(i)) { 3045 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3046 const APInt &Value = CInt->getValue(); 3047 Known.One &= Value; 3048 Known.Zero &= ~Value; 3049 continue; 3050 } 3051 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3052 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3053 Known.One &= Value; 3054 Known.Zero &= ~Value; 3055 continue; 3056 } 3057 } 3058 Known.One.clearAllBits(); 3059 Known.Zero.clearAllBits(); 3060 break; 3061 } 3062 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3063 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3064 const APInt &Value = CInt->getValue(); 3065 Known.One = Value; 3066 Known.Zero = ~Value; 3067 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3068 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3069 Known.One = Value; 3070 Known.Zero = ~Value; 3071 } 3072 } 3073 } 3074 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3075 // If this is a ZEXTLoad and we are looking at the loaded value. 3076 EVT VT = LD->getMemoryVT(); 3077 unsigned MemBits = VT.getScalarSizeInBits(); 3078 Known.Zero.setBitsFrom(MemBits); 3079 } else if (const MDNode *Ranges = LD->getRanges()) { 3080 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3081 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3082 } 3083 break; 3084 } 3085 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3086 EVT InVT = Op.getOperand(0).getValueType(); 3087 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3088 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3089 Known = Known.zext(BitWidth); 3090 break; 3091 } 3092 case ISD::ZERO_EXTEND: { 3093 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3094 Known = Known.zext(BitWidth); 3095 break; 3096 } 3097 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3098 EVT InVT = Op.getOperand(0).getValueType(); 3099 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3100 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3101 // If the sign bit is known to be zero or one, then sext will extend 3102 // it to the top bits, else it will just zext. 3103 Known = Known.sext(BitWidth); 3104 break; 3105 } 3106 case ISD::SIGN_EXTEND: { 3107 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3108 // If the sign bit is known to be zero or one, then sext will extend 3109 // it to the top bits, else it will just zext. 3110 Known = Known.sext(BitWidth); 3111 break; 3112 } 3113 case ISD::ANY_EXTEND_VECTOR_INREG: { 3114 EVT InVT = Op.getOperand(0).getValueType(); 3115 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3116 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3117 Known = Known.anyext(BitWidth); 3118 break; 3119 } 3120 case ISD::ANY_EXTEND: { 3121 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3122 Known = Known.anyext(BitWidth); 3123 break; 3124 } 3125 case ISD::TRUNCATE: { 3126 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3127 Known = Known.trunc(BitWidth); 3128 break; 3129 } 3130 case ISD::AssertZext: { 3131 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3132 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3133 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3134 Known.Zero |= (~InMask); 3135 Known.One &= (~Known.Zero); 3136 break; 3137 } 3138 case ISD::FGETSIGN: 3139 // All bits are zero except the low bit. 3140 Known.Zero.setBitsFrom(1); 3141 break; 3142 case ISD::USUBO: 3143 case ISD::SSUBO: 3144 if (Op.getResNo() == 1) { 3145 // If we know the result of a setcc has the top bits zero, use this info. 3146 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3147 TargetLowering::ZeroOrOneBooleanContent && 3148 BitWidth > 1) 3149 Known.Zero.setBitsFrom(1); 3150 break; 3151 } 3152 LLVM_FALLTHROUGH; 3153 case ISD::SUB: 3154 case ISD::SUBC: { 3155 assert(Op.getResNo() == 0 && 3156 "We only compute knownbits for the difference here."); 3157 3158 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3160 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3161 Known, Known2); 3162 break; 3163 } 3164 case ISD::UADDO: 3165 case ISD::SADDO: 3166 case ISD::ADDCARRY: 3167 if (Op.getResNo() == 1) { 3168 // If we know the result of a setcc has the top bits zero, use this info. 3169 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3170 TargetLowering::ZeroOrOneBooleanContent && 3171 BitWidth > 1) 3172 Known.Zero.setBitsFrom(1); 3173 break; 3174 } 3175 LLVM_FALLTHROUGH; 3176 case ISD::ADD: 3177 case ISD::ADDC: 3178 case ISD::ADDE: { 3179 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3180 3181 // With ADDE and ADDCARRY, a carry bit may be added in. 3182 KnownBits Carry(1); 3183 if (Opcode == ISD::ADDE) 3184 // Can't track carry from glue, set carry to unknown. 3185 Carry.resetAll(); 3186 else if (Opcode == ISD::ADDCARRY) 3187 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3188 // the trouble (how often will we find a known carry bit). And I haven't 3189 // tested this very much yet, but something like this might work: 3190 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3191 // Carry = Carry.zextOrTrunc(1, false); 3192 Carry.resetAll(); 3193 else 3194 Carry.setAllZero(); 3195 3196 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3198 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3199 break; 3200 } 3201 case ISD::SREM: 3202 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3203 const APInt &RA = Rem->getAPIntValue().abs(); 3204 if (RA.isPowerOf2()) { 3205 APInt LowBits = RA - 1; 3206 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3207 3208 // The low bits of the first operand are unchanged by the srem. 3209 Known.Zero = Known2.Zero & LowBits; 3210 Known.One = Known2.One & LowBits; 3211 3212 // If the first operand is non-negative or has all low bits zero, then 3213 // the upper bits are all zero. 3214 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3215 Known.Zero |= ~LowBits; 3216 3217 // If the first operand is negative and not all low bits are zero, then 3218 // the upper bits are all one. 3219 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3220 Known.One |= ~LowBits; 3221 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3222 } 3223 } 3224 break; 3225 case ISD::UREM: { 3226 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3227 const APInt &RA = Rem->getAPIntValue(); 3228 if (RA.isPowerOf2()) { 3229 APInt LowBits = (RA - 1); 3230 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 3232 // The upper bits are all zero, the lower ones are unchanged. 3233 Known.Zero = Known2.Zero | ~LowBits; 3234 Known.One = Known2.One & LowBits; 3235 break; 3236 } 3237 } 3238 3239 // Since the result is less than or equal to either operand, any leading 3240 // zero bits in either operand must also exist in the result. 3241 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3243 3244 uint32_t Leaders = 3245 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3246 Known.resetAll(); 3247 Known.Zero.setHighBits(Leaders); 3248 break; 3249 } 3250 case ISD::EXTRACT_ELEMENT: { 3251 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3252 const unsigned Index = Op.getConstantOperandVal(1); 3253 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3254 3255 // Remove low part of known bits mask 3256 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3257 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3258 3259 // Remove high part of known bit mask 3260 Known = Known.trunc(EltBitWidth); 3261 break; 3262 } 3263 case ISD::EXTRACT_VECTOR_ELT: { 3264 SDValue InVec = Op.getOperand(0); 3265 SDValue EltNo = Op.getOperand(1); 3266 EVT VecVT = InVec.getValueType(); 3267 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3268 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3269 3270 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3271 // anything about the extended bits. 3272 if (BitWidth > EltBitWidth) 3273 Known = Known.trunc(EltBitWidth); 3274 3275 // If we know the element index, just demand that vector element, else for 3276 // an unknown element index, ignore DemandedElts and demand them all. 3277 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3278 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3279 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3280 DemandedSrcElts = 3281 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3282 3283 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3284 if (BitWidth > EltBitWidth) 3285 Known = Known.anyext(BitWidth); 3286 break; 3287 } 3288 case ISD::INSERT_VECTOR_ELT: { 3289 // If we know the element index, split the demand between the 3290 // source vector and the inserted element, otherwise assume we need 3291 // the original demanded vector elements and the value. 3292 SDValue InVec = Op.getOperand(0); 3293 SDValue InVal = Op.getOperand(1); 3294 SDValue EltNo = Op.getOperand(2); 3295 bool DemandedVal = true; 3296 APInt DemandedVecElts = DemandedElts; 3297 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3298 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3299 unsigned EltIdx = CEltNo->getZExtValue(); 3300 DemandedVal = !!DemandedElts[EltIdx]; 3301 DemandedVecElts.clearBit(EltIdx); 3302 } 3303 Known.One.setAllBits(); 3304 Known.Zero.setAllBits(); 3305 if (DemandedVal) { 3306 Known2 = computeKnownBits(InVal, Depth + 1); 3307 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3308 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3309 } 3310 if (!!DemandedVecElts) { 3311 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3312 Known.One &= Known2.One; 3313 Known.Zero &= Known2.Zero; 3314 } 3315 break; 3316 } 3317 case ISD::BITREVERSE: { 3318 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known.Zero = Known2.Zero.reverseBits(); 3320 Known.One = Known2.One.reverseBits(); 3321 break; 3322 } 3323 case ISD::BSWAP: { 3324 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3325 Known.Zero = Known2.Zero.byteSwap(); 3326 Known.One = Known2.One.byteSwap(); 3327 break; 3328 } 3329 case ISD::ABS: { 3330 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3331 3332 // If the source's MSB is zero then we know the rest of the bits already. 3333 if (Known2.isNonNegative()) { 3334 Known.Zero = Known2.Zero; 3335 Known.One = Known2.One; 3336 break; 3337 } 3338 3339 // We only know that the absolute values's MSB will be zero iff there is 3340 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3341 Known2.One.clearSignBit(); 3342 if (Known2.One.getBoolValue()) { 3343 Known.Zero = APInt::getSignMask(BitWidth); 3344 break; 3345 } 3346 break; 3347 } 3348 case ISD::UMIN: { 3349 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3350 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3351 3352 // UMIN - we know that the result will have the maximum of the 3353 // known zero leading bits of the inputs. 3354 unsigned LeadZero = Known.countMinLeadingZeros(); 3355 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3356 3357 Known.Zero &= Known2.Zero; 3358 Known.One &= Known2.One; 3359 Known.Zero.setHighBits(LeadZero); 3360 break; 3361 } 3362 case ISD::UMAX: { 3363 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3364 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3365 3366 // UMAX - we know that the result will have the maximum of the 3367 // known one leading bits of the inputs. 3368 unsigned LeadOne = Known.countMinLeadingOnes(); 3369 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3370 3371 Known.Zero &= Known2.Zero; 3372 Known.One &= Known2.One; 3373 Known.One.setHighBits(LeadOne); 3374 break; 3375 } 3376 case ISD::SMIN: 3377 case ISD::SMAX: { 3378 // If we have a clamp pattern, we know that the number of sign bits will be 3379 // the minimum of the clamp min/max range. 3380 bool IsMax = (Opcode == ISD::SMAX); 3381 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3382 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3383 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3384 CstHigh = 3385 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3386 if (CstLow && CstHigh) { 3387 if (!IsMax) 3388 std::swap(CstLow, CstHigh); 3389 3390 const APInt &ValueLow = CstLow->getAPIntValue(); 3391 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3392 if (ValueLow.sle(ValueHigh)) { 3393 unsigned LowSignBits = ValueLow.getNumSignBits(); 3394 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3395 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3396 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3397 Known.One.setHighBits(MinSignBits); 3398 break; 3399 } 3400 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3401 Known.Zero.setHighBits(MinSignBits); 3402 break; 3403 } 3404 } 3405 } 3406 3407 // Fallback - just get the shared known bits of the operands. 3408 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3409 if (Known.isUnknown()) break; // Early-out 3410 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3411 Known.Zero &= Known2.Zero; 3412 Known.One &= Known2.One; 3413 break; 3414 } 3415 case ISD::FrameIndex: 3416 case ISD::TargetFrameIndex: 3417 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3418 break; 3419 3420 default: 3421 if (Opcode < ISD::BUILTIN_OP_END) 3422 break; 3423 LLVM_FALLTHROUGH; 3424 case ISD::INTRINSIC_WO_CHAIN: 3425 case ISD::INTRINSIC_W_CHAIN: 3426 case ISD::INTRINSIC_VOID: 3427 // Allow the target to implement this method for its nodes. 3428 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3429 break; 3430 } 3431 3432 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3433 return Known; 3434 } 3435 3436 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3437 SDValue N1) const { 3438 // X + 0 never overflow 3439 if (isNullConstant(N1)) 3440 return OFK_Never; 3441 3442 KnownBits N1Known = computeKnownBits(N1); 3443 if (N1Known.Zero.getBoolValue()) { 3444 KnownBits N0Known = computeKnownBits(N0); 3445 3446 bool overflow; 3447 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3448 if (!overflow) 3449 return OFK_Never; 3450 } 3451 3452 // mulhi + 1 never overflow 3453 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3454 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3455 return OFK_Never; 3456 3457 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3458 KnownBits N0Known = computeKnownBits(N0); 3459 3460 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3461 return OFK_Never; 3462 } 3463 3464 return OFK_Sometime; 3465 } 3466 3467 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3468 EVT OpVT = Val.getValueType(); 3469 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3470 3471 // Is the constant a known power of 2? 3472 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3473 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3474 3475 // A left-shift of a constant one will have exactly one bit set because 3476 // shifting the bit off the end is undefined. 3477 if (Val.getOpcode() == ISD::SHL) { 3478 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3479 if (C && C->getAPIntValue() == 1) 3480 return true; 3481 } 3482 3483 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3484 // one bit set. 3485 if (Val.getOpcode() == ISD::SRL) { 3486 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3487 if (C && C->getAPIntValue().isSignMask()) 3488 return true; 3489 } 3490 3491 // Are all operands of a build vector constant powers of two? 3492 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3493 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3494 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3495 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3496 return false; 3497 })) 3498 return true; 3499 3500 // More could be done here, though the above checks are enough 3501 // to handle some common cases. 3502 3503 // Fall back to computeKnownBits to catch other known cases. 3504 KnownBits Known = computeKnownBits(Val); 3505 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3506 } 3507 3508 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3509 EVT VT = Op.getValueType(); 3510 APInt DemandedElts = VT.isVector() 3511 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3512 : APInt(1, 1); 3513 return ComputeNumSignBits(Op, DemandedElts, Depth); 3514 } 3515 3516 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3517 unsigned Depth) const { 3518 EVT VT = Op.getValueType(); 3519 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3520 unsigned VTBits = VT.getScalarSizeInBits(); 3521 unsigned NumElts = DemandedElts.getBitWidth(); 3522 unsigned Tmp, Tmp2; 3523 unsigned FirstAnswer = 1; 3524 3525 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3526 const APInt &Val = C->getAPIntValue(); 3527 return Val.getNumSignBits(); 3528 } 3529 3530 if (Depth >= MaxRecursionDepth) 3531 return 1; // Limit search depth. 3532 3533 if (!DemandedElts) 3534 return 1; // No demanded elts, better to assume we don't know anything. 3535 3536 unsigned Opcode = Op.getOpcode(); 3537 switch (Opcode) { 3538 default: break; 3539 case ISD::AssertSext: 3540 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3541 return VTBits-Tmp+1; 3542 case ISD::AssertZext: 3543 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3544 return VTBits-Tmp; 3545 3546 case ISD::BUILD_VECTOR: 3547 Tmp = VTBits; 3548 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3549 if (!DemandedElts[i]) 3550 continue; 3551 3552 SDValue SrcOp = Op.getOperand(i); 3553 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3554 3555 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3556 if (SrcOp.getValueSizeInBits() != VTBits) { 3557 assert(SrcOp.getValueSizeInBits() > VTBits && 3558 "Expected BUILD_VECTOR implicit truncation"); 3559 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3560 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3561 } 3562 Tmp = std::min(Tmp, Tmp2); 3563 } 3564 return Tmp; 3565 3566 case ISD::VECTOR_SHUFFLE: { 3567 // Collect the minimum number of sign bits that are shared by every vector 3568 // element referenced by the shuffle. 3569 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3570 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3571 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3572 for (unsigned i = 0; i != NumElts; ++i) { 3573 int M = SVN->getMaskElt(i); 3574 if (!DemandedElts[i]) 3575 continue; 3576 // For UNDEF elements, we don't know anything about the common state of 3577 // the shuffle result. 3578 if (M < 0) 3579 return 1; 3580 if ((unsigned)M < NumElts) 3581 DemandedLHS.setBit((unsigned)M % NumElts); 3582 else 3583 DemandedRHS.setBit((unsigned)M % NumElts); 3584 } 3585 Tmp = std::numeric_limits<unsigned>::max(); 3586 if (!!DemandedLHS) 3587 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3588 if (!!DemandedRHS) { 3589 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3590 Tmp = std::min(Tmp, Tmp2); 3591 } 3592 // If we don't know anything, early out and try computeKnownBits fall-back. 3593 if (Tmp == 1) 3594 break; 3595 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3596 return Tmp; 3597 } 3598 3599 case ISD::BITCAST: { 3600 SDValue N0 = Op.getOperand(0); 3601 EVT SrcVT = N0.getValueType(); 3602 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3603 3604 // Ignore bitcasts from unsupported types.. 3605 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3606 break; 3607 3608 // Fast handling of 'identity' bitcasts. 3609 if (VTBits == SrcBits) 3610 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3611 3612 bool IsLE = getDataLayout().isLittleEndian(); 3613 3614 // Bitcast 'large element' scalar/vector to 'small element' vector. 3615 if ((SrcBits % VTBits) == 0) { 3616 assert(VT.isVector() && "Expected bitcast to vector"); 3617 3618 unsigned Scale = SrcBits / VTBits; 3619 APInt SrcDemandedElts(NumElts / Scale, 0); 3620 for (unsigned i = 0; i != NumElts; ++i) 3621 if (DemandedElts[i]) 3622 SrcDemandedElts.setBit(i / Scale); 3623 3624 // Fast case - sign splat can be simply split across the small elements. 3625 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3626 if (Tmp == SrcBits) 3627 return VTBits; 3628 3629 // Slow case - determine how far the sign extends into each sub-element. 3630 Tmp2 = VTBits; 3631 for (unsigned i = 0; i != NumElts; ++i) 3632 if (DemandedElts[i]) { 3633 unsigned SubOffset = i % Scale; 3634 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3635 SubOffset = SubOffset * VTBits; 3636 if (Tmp <= SubOffset) 3637 return 1; 3638 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3639 } 3640 return Tmp2; 3641 } 3642 break; 3643 } 3644 3645 case ISD::SIGN_EXTEND: 3646 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3647 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3648 case ISD::SIGN_EXTEND_INREG: 3649 // Max of the input and what this extends. 3650 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3651 Tmp = VTBits-Tmp+1; 3652 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3653 return std::max(Tmp, Tmp2); 3654 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3655 SDValue Src = Op.getOperand(0); 3656 EVT SrcVT = Src.getValueType(); 3657 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3658 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3659 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3660 } 3661 case ISD::SRA: 3662 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3663 // SRA X, C -> adds C sign bits. 3664 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3665 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3666 else if (const APInt *ShAmt = 3667 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3668 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3669 return Tmp; 3670 case ISD::SHL: 3671 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3672 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3673 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3674 if (ShAmt->ult(Tmp)) 3675 return Tmp - ShAmt->getZExtValue(); 3676 } else if (const APInt *ShAmt = 3677 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3678 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3679 if (ShAmt->ult(Tmp)) 3680 return Tmp - ShAmt->getZExtValue(); 3681 } 3682 break; 3683 case ISD::AND: 3684 case ISD::OR: 3685 case ISD::XOR: // NOT is handled here. 3686 // Logical binary ops preserve the number of sign bits at the worst. 3687 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3688 if (Tmp != 1) { 3689 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3690 FirstAnswer = std::min(Tmp, Tmp2); 3691 // We computed what we know about the sign bits as our first 3692 // answer. Now proceed to the generic code that uses 3693 // computeKnownBits, and pick whichever answer is better. 3694 } 3695 break; 3696 3697 case ISD::SELECT: 3698 case ISD::VSELECT: 3699 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3700 if (Tmp == 1) return 1; // Early out. 3701 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3702 return std::min(Tmp, Tmp2); 3703 case ISD::SELECT_CC: 3704 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3705 if (Tmp == 1) return 1; // Early out. 3706 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3707 return std::min(Tmp, Tmp2); 3708 3709 case ISD::SMIN: 3710 case ISD::SMAX: { 3711 // If we have a clamp pattern, we know that the number of sign bits will be 3712 // the minimum of the clamp min/max range. 3713 bool IsMax = (Opcode == ISD::SMAX); 3714 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3715 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3716 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3717 CstHigh = 3718 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3719 if (CstLow && CstHigh) { 3720 if (!IsMax) 3721 std::swap(CstLow, CstHigh); 3722 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3723 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3724 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3725 return std::min(Tmp, Tmp2); 3726 } 3727 } 3728 3729 // Fallback - just get the minimum number of sign bits of the operands. 3730 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3731 if (Tmp == 1) 3732 return 1; // Early out. 3733 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3734 return std::min(Tmp, Tmp2); 3735 } 3736 case ISD::UMIN: 3737 case ISD::UMAX: 3738 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3739 if (Tmp == 1) 3740 return 1; // Early out. 3741 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3742 return std::min(Tmp, Tmp2); 3743 case ISD::SADDO: 3744 case ISD::UADDO: 3745 case ISD::SSUBO: 3746 case ISD::USUBO: 3747 case ISD::SMULO: 3748 case ISD::UMULO: 3749 if (Op.getResNo() != 1) 3750 break; 3751 // The boolean result conforms to getBooleanContents. Fall through. 3752 // If setcc returns 0/-1, all bits are sign bits. 3753 // We know that we have an integer-based boolean since these operations 3754 // are only available for integer. 3755 if (TLI->getBooleanContents(VT.isVector(), false) == 3756 TargetLowering::ZeroOrNegativeOneBooleanContent) 3757 return VTBits; 3758 break; 3759 case ISD::SETCC: 3760 case ISD::STRICT_FSETCC: 3761 case ISD::STRICT_FSETCCS: { 3762 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3763 // If setcc returns 0/-1, all bits are sign bits. 3764 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3765 TargetLowering::ZeroOrNegativeOneBooleanContent) 3766 return VTBits; 3767 break; 3768 } 3769 case ISD::ROTL: 3770 case ISD::ROTR: 3771 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3772 3773 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3774 if (Tmp == VTBits) 3775 return VTBits; 3776 3777 if (ConstantSDNode *C = 3778 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3779 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3780 3781 // Handle rotate right by N like a rotate left by 32-N. 3782 if (Opcode == ISD::ROTR) 3783 RotAmt = (VTBits - RotAmt) % VTBits; 3784 3785 // If we aren't rotating out all of the known-in sign bits, return the 3786 // number that are left. This handles rotl(sext(x), 1) for example. 3787 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3788 } 3789 break; 3790 case ISD::ADD: 3791 case ISD::ADDC: 3792 // Add can have at most one carry bit. Thus we know that the output 3793 // is, at worst, one more bit than the inputs. 3794 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3795 if (Tmp == 1) return 1; // Early out. 3796 3797 // Special case decrementing a value (ADD X, -1): 3798 if (ConstantSDNode *CRHS = 3799 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3800 if (CRHS->isAllOnesValue()) { 3801 KnownBits Known = 3802 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3803 3804 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3805 // sign bits set. 3806 if ((Known.Zero | 1).isAllOnesValue()) 3807 return VTBits; 3808 3809 // If we are subtracting one from a positive number, there is no carry 3810 // out of the result. 3811 if (Known.isNonNegative()) 3812 return Tmp; 3813 } 3814 3815 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3816 if (Tmp2 == 1) return 1; // Early out. 3817 return std::min(Tmp, Tmp2) - 1; 3818 case ISD::SUB: 3819 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3820 if (Tmp2 == 1) return 1; // Early out. 3821 3822 // Handle NEG. 3823 if (ConstantSDNode *CLHS = 3824 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3825 if (CLHS->isNullValue()) { 3826 KnownBits Known = 3827 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3828 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3829 // sign bits set. 3830 if ((Known.Zero | 1).isAllOnesValue()) 3831 return VTBits; 3832 3833 // If the input is known to be positive (the sign bit is known clear), 3834 // the output of the NEG has the same number of sign bits as the input. 3835 if (Known.isNonNegative()) 3836 return Tmp2; 3837 3838 // Otherwise, we treat this like a SUB. 3839 } 3840 3841 // Sub can have at most one carry bit. Thus we know that the output 3842 // is, at worst, one more bit than the inputs. 3843 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3844 if (Tmp == 1) return 1; // Early out. 3845 return std::min(Tmp, Tmp2) - 1; 3846 case ISD::MUL: { 3847 // The output of the Mul can be at most twice the valid bits in the inputs. 3848 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3849 if (SignBitsOp0 == 1) 3850 break; 3851 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3852 if (SignBitsOp1 == 1) 3853 break; 3854 unsigned OutValidBits = 3855 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3856 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3857 } 3858 case ISD::TRUNCATE: { 3859 // Check if the sign bits of source go down as far as the truncated value. 3860 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3861 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3862 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3863 return NumSrcSignBits - (NumSrcBits - VTBits); 3864 break; 3865 } 3866 case ISD::EXTRACT_ELEMENT: { 3867 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3868 const int BitWidth = Op.getValueSizeInBits(); 3869 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3870 3871 // Get reverse index (starting from 1), Op1 value indexes elements from 3872 // little end. Sign starts at big end. 3873 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3874 3875 // If the sign portion ends in our element the subtraction gives correct 3876 // result. Otherwise it gives either negative or > bitwidth result 3877 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3878 } 3879 case ISD::INSERT_VECTOR_ELT: { 3880 // If we know the element index, split the demand between the 3881 // source vector and the inserted element, otherwise assume we need 3882 // the original demanded vector elements and the value. 3883 SDValue InVec = Op.getOperand(0); 3884 SDValue InVal = Op.getOperand(1); 3885 SDValue EltNo = Op.getOperand(2); 3886 bool DemandedVal = true; 3887 APInt DemandedVecElts = DemandedElts; 3888 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3889 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3890 unsigned EltIdx = CEltNo->getZExtValue(); 3891 DemandedVal = !!DemandedElts[EltIdx]; 3892 DemandedVecElts.clearBit(EltIdx); 3893 } 3894 Tmp = std::numeric_limits<unsigned>::max(); 3895 if (DemandedVal) { 3896 // TODO - handle implicit truncation of inserted elements. 3897 if (InVal.getScalarValueSizeInBits() != VTBits) 3898 break; 3899 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3900 Tmp = std::min(Tmp, Tmp2); 3901 } 3902 if (!!DemandedVecElts) { 3903 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3904 Tmp = std::min(Tmp, Tmp2); 3905 } 3906 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3907 return Tmp; 3908 } 3909 case ISD::EXTRACT_VECTOR_ELT: { 3910 SDValue InVec = Op.getOperand(0); 3911 SDValue EltNo = Op.getOperand(1); 3912 EVT VecVT = InVec.getValueType(); 3913 const unsigned BitWidth = Op.getValueSizeInBits(); 3914 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3915 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3916 3917 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3918 // anything about sign bits. But if the sizes match we can derive knowledge 3919 // about sign bits from the vector operand. 3920 if (BitWidth != EltBitWidth) 3921 break; 3922 3923 // If we know the element index, just demand that vector element, else for 3924 // an unknown element index, ignore DemandedElts and demand them all. 3925 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3926 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3927 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3928 DemandedSrcElts = 3929 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3930 3931 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3932 } 3933 case ISD::EXTRACT_SUBVECTOR: { 3934 // Offset the demanded elts by the subvector index. 3935 SDValue Src = Op.getOperand(0); 3936 uint64_t Idx = Op.getConstantOperandVal(1); 3937 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3938 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3939 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3940 } 3941 case ISD::CONCAT_VECTORS: { 3942 // Determine the minimum number of sign bits across all demanded 3943 // elts of the input vectors. Early out if the result is already 1. 3944 Tmp = std::numeric_limits<unsigned>::max(); 3945 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3946 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3947 unsigned NumSubVectors = Op.getNumOperands(); 3948 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3949 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3950 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3951 if (!DemandedSub) 3952 continue; 3953 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3954 Tmp = std::min(Tmp, Tmp2); 3955 } 3956 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3957 return Tmp; 3958 } 3959 case ISD::INSERT_SUBVECTOR: { 3960 // Demand any elements from the subvector and the remainder from the src its 3961 // inserted into. 3962 SDValue Src = Op.getOperand(0); 3963 SDValue Sub = Op.getOperand(1); 3964 uint64_t Idx = Op.getConstantOperandVal(2); 3965 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3966 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3967 APInt DemandedSrcElts = DemandedElts; 3968 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3969 3970 Tmp = std::numeric_limits<unsigned>::max(); 3971 if (!!DemandedSubElts) { 3972 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3973 if (Tmp == 1) 3974 return 1; // early-out 3975 } 3976 if (!!DemandedSrcElts) { 3977 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3978 Tmp = std::min(Tmp, Tmp2); 3979 } 3980 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3981 return Tmp; 3982 } 3983 } 3984 3985 // If we are looking at the loaded value of the SDNode. 3986 if (Op.getResNo() == 0) { 3987 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3988 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3989 unsigned ExtType = LD->getExtensionType(); 3990 switch (ExtType) { 3991 default: break; 3992 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3993 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3994 return VTBits - Tmp + 1; 3995 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3996 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3997 return VTBits - Tmp; 3998 case ISD::NON_EXTLOAD: 3999 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4000 // We only need to handle vectors - computeKnownBits should handle 4001 // scalar cases. 4002 Type *CstTy = Cst->getType(); 4003 if (CstTy->isVectorTy() && 4004 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4005 Tmp = VTBits; 4006 for (unsigned i = 0; i != NumElts; ++i) { 4007 if (!DemandedElts[i]) 4008 continue; 4009 if (Constant *Elt = Cst->getAggregateElement(i)) { 4010 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4011 const APInt &Value = CInt->getValue(); 4012 Tmp = std::min(Tmp, Value.getNumSignBits()); 4013 continue; 4014 } 4015 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4016 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4017 Tmp = std::min(Tmp, Value.getNumSignBits()); 4018 continue; 4019 } 4020 } 4021 // Unknown type. Conservatively assume no bits match sign bit. 4022 return 1; 4023 } 4024 return Tmp; 4025 } 4026 } 4027 break; 4028 } 4029 } 4030 } 4031 4032 // Allow the target to implement this method for its nodes. 4033 if (Opcode >= ISD::BUILTIN_OP_END || 4034 Opcode == ISD::INTRINSIC_WO_CHAIN || 4035 Opcode == ISD::INTRINSIC_W_CHAIN || 4036 Opcode == ISD::INTRINSIC_VOID) { 4037 unsigned NumBits = 4038 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4039 if (NumBits > 1) 4040 FirstAnswer = std::max(FirstAnswer, NumBits); 4041 } 4042 4043 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4044 // use this information. 4045 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4046 4047 APInt Mask; 4048 if (Known.isNonNegative()) { // sign bit is 0 4049 Mask = Known.Zero; 4050 } else if (Known.isNegative()) { // sign bit is 1; 4051 Mask = Known.One; 4052 } else { 4053 // Nothing known. 4054 return FirstAnswer; 4055 } 4056 4057 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4058 // the number of identical bits in the top of the input value. 4059 Mask <<= Mask.getBitWidth()-VTBits; 4060 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4061 } 4062 4063 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4064 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4065 !isa<ConstantSDNode>(Op.getOperand(1))) 4066 return false; 4067 4068 if (Op.getOpcode() == ISD::OR && 4069 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4070 return false; 4071 4072 return true; 4073 } 4074 4075 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4076 // If we're told that NaNs won't happen, assume they won't. 4077 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4078 return true; 4079 4080 if (Depth >= MaxRecursionDepth) 4081 return false; // Limit search depth. 4082 4083 // TODO: Handle vectors. 4084 // If the value is a constant, we can obviously see if it is a NaN or not. 4085 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4086 return !C->getValueAPF().isNaN() || 4087 (SNaN && !C->getValueAPF().isSignaling()); 4088 } 4089 4090 unsigned Opcode = Op.getOpcode(); 4091 switch (Opcode) { 4092 case ISD::FADD: 4093 case ISD::FSUB: 4094 case ISD::FMUL: 4095 case ISD::FDIV: 4096 case ISD::FREM: 4097 case ISD::FSIN: 4098 case ISD::FCOS: { 4099 if (SNaN) 4100 return true; 4101 // TODO: Need isKnownNeverInfinity 4102 return false; 4103 } 4104 case ISD::FCANONICALIZE: 4105 case ISD::FEXP: 4106 case ISD::FEXP2: 4107 case ISD::FTRUNC: 4108 case ISD::FFLOOR: 4109 case ISD::FCEIL: 4110 case ISD::FROUND: 4111 case ISD::FRINT: 4112 case ISD::FNEARBYINT: { 4113 if (SNaN) 4114 return true; 4115 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4116 } 4117 case ISD::FABS: 4118 case ISD::FNEG: 4119 case ISD::FCOPYSIGN: { 4120 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4121 } 4122 case ISD::SELECT: 4123 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4124 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4125 case ISD::FP_EXTEND: 4126 case ISD::FP_ROUND: { 4127 if (SNaN) 4128 return true; 4129 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4130 } 4131 case ISD::SINT_TO_FP: 4132 case ISD::UINT_TO_FP: 4133 return true; 4134 case ISD::FMA: 4135 case ISD::FMAD: { 4136 if (SNaN) 4137 return true; 4138 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4139 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4140 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4141 } 4142 case ISD::FSQRT: // Need is known positive 4143 case ISD::FLOG: 4144 case ISD::FLOG2: 4145 case ISD::FLOG10: 4146 case ISD::FPOWI: 4147 case ISD::FPOW: { 4148 if (SNaN) 4149 return true; 4150 // TODO: Refine on operand 4151 return false; 4152 } 4153 case ISD::FMINNUM: 4154 case ISD::FMAXNUM: { 4155 // Only one needs to be known not-nan, since it will be returned if the 4156 // other ends up being one. 4157 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4158 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4159 } 4160 case ISD::FMINNUM_IEEE: 4161 case ISD::FMAXNUM_IEEE: { 4162 if (SNaN) 4163 return true; 4164 // This can return a NaN if either operand is an sNaN, or if both operands 4165 // are NaN. 4166 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4167 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4168 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4169 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4170 } 4171 case ISD::FMINIMUM: 4172 case ISD::FMAXIMUM: { 4173 // TODO: Does this quiet or return the origina NaN as-is? 4174 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4175 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4176 } 4177 case ISD::EXTRACT_VECTOR_ELT: { 4178 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4179 } 4180 default: 4181 if (Opcode >= ISD::BUILTIN_OP_END || 4182 Opcode == ISD::INTRINSIC_WO_CHAIN || 4183 Opcode == ISD::INTRINSIC_W_CHAIN || 4184 Opcode == ISD::INTRINSIC_VOID) { 4185 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4186 } 4187 4188 return false; 4189 } 4190 } 4191 4192 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4193 assert(Op.getValueType().isFloatingPoint() && 4194 "Floating point type expected"); 4195 4196 // If the value is a constant, we can obviously see if it is a zero or not. 4197 // TODO: Add BuildVector support. 4198 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4199 return !C->isZero(); 4200 return false; 4201 } 4202 4203 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4204 assert(!Op.getValueType().isFloatingPoint() && 4205 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4206 4207 // If the value is a constant, we can obviously see if it is a zero or not. 4208 if (ISD::matchUnaryPredicate( 4209 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4210 return true; 4211 4212 // TODO: Recognize more cases here. 4213 switch (Op.getOpcode()) { 4214 default: break; 4215 case ISD::OR: 4216 if (isKnownNeverZero(Op.getOperand(1)) || 4217 isKnownNeverZero(Op.getOperand(0))) 4218 return true; 4219 break; 4220 } 4221 4222 return false; 4223 } 4224 4225 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4226 // Check the obvious case. 4227 if (A == B) return true; 4228 4229 // For for negative and positive zero. 4230 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4231 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4232 if (CA->isZero() && CB->isZero()) return true; 4233 4234 // Otherwise they may not be equal. 4235 return false; 4236 } 4237 4238 // FIXME: unify with llvm::haveNoCommonBitsSet. 4239 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4240 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4241 assert(A.getValueType() == B.getValueType() && 4242 "Values must have the same type"); 4243 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4244 } 4245 4246 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4247 ArrayRef<SDValue> Ops, 4248 SelectionDAG &DAG) { 4249 int NumOps = Ops.size(); 4250 assert(NumOps != 0 && "Can't build an empty vector!"); 4251 assert(!VT.isScalableVector() && 4252 "BUILD_VECTOR cannot be used with scalable types"); 4253 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4254 "Incorrect element count in BUILD_VECTOR!"); 4255 4256 // BUILD_VECTOR of UNDEFs is UNDEF. 4257 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4258 return DAG.getUNDEF(VT); 4259 4260 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4261 SDValue IdentitySrc; 4262 bool IsIdentity = true; 4263 for (int i = 0; i != NumOps; ++i) { 4264 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4265 Ops[i].getOperand(0).getValueType() != VT || 4266 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4267 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4268 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4269 IsIdentity = false; 4270 break; 4271 } 4272 IdentitySrc = Ops[i].getOperand(0); 4273 } 4274 if (IsIdentity) 4275 return IdentitySrc; 4276 4277 return SDValue(); 4278 } 4279 4280 /// Try to simplify vector concatenation to an input value, undef, or build 4281 /// vector. 4282 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4283 ArrayRef<SDValue> Ops, 4284 SelectionDAG &DAG) { 4285 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4286 assert(llvm::all_of(Ops, 4287 [Ops](SDValue Op) { 4288 return Ops[0].getValueType() == Op.getValueType(); 4289 }) && 4290 "Concatenation of vectors with inconsistent value types!"); 4291 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4292 VT.getVectorNumElements() && 4293 "Incorrect element count in vector concatenation!"); 4294 4295 if (Ops.size() == 1) 4296 return Ops[0]; 4297 4298 // Concat of UNDEFs is UNDEF. 4299 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4300 return DAG.getUNDEF(VT); 4301 4302 // Scan the operands and look for extract operations from a single source 4303 // that correspond to insertion at the same location via this concatenation: 4304 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4305 SDValue IdentitySrc; 4306 bool IsIdentity = true; 4307 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4308 SDValue Op = Ops[i]; 4309 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4310 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4311 Op.getOperand(0).getValueType() != VT || 4312 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4313 Op.getConstantOperandVal(1) != IdentityIndex) { 4314 IsIdentity = false; 4315 break; 4316 } 4317 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4318 "Unexpected identity source vector for concat of extracts"); 4319 IdentitySrc = Op.getOperand(0); 4320 } 4321 if (IsIdentity) { 4322 assert(IdentitySrc && "Failed to set source vector of extracts"); 4323 return IdentitySrc; 4324 } 4325 4326 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4327 // simplified to one big BUILD_VECTOR. 4328 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4329 EVT SVT = VT.getScalarType(); 4330 SmallVector<SDValue, 16> Elts; 4331 for (SDValue Op : Ops) { 4332 EVT OpVT = Op.getValueType(); 4333 if (Op.isUndef()) 4334 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4335 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4336 Elts.append(Op->op_begin(), Op->op_end()); 4337 else 4338 return SDValue(); 4339 } 4340 4341 // BUILD_VECTOR requires all inputs to be of the same type, find the 4342 // maximum type and extend them all. 4343 for (SDValue Op : Elts) 4344 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4345 4346 if (SVT.bitsGT(VT.getScalarType())) 4347 for (SDValue &Op : Elts) 4348 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4349 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4350 : DAG.getSExtOrTrunc(Op, DL, SVT); 4351 4352 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4353 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4354 return V; 4355 } 4356 4357 /// Gets or creates the specified node. 4358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4359 FoldingSetNodeID ID; 4360 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4361 void *IP = nullptr; 4362 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4363 return SDValue(E, 0); 4364 4365 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4366 getVTList(VT)); 4367 CSEMap.InsertNode(N, IP); 4368 4369 InsertNode(N); 4370 SDValue V = SDValue(N, 0); 4371 NewSDValueDbgMsg(V, "Creating new node: ", this); 4372 return V; 4373 } 4374 4375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4376 SDValue Operand, const SDNodeFlags Flags) { 4377 // Constant fold unary operations with an integer constant operand. Even 4378 // opaque constant will be folded, because the folding of unary operations 4379 // doesn't create new constants with different values. Nevertheless, the 4380 // opaque flag is preserved during folding to prevent future folding with 4381 // other constants. 4382 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4383 const APInt &Val = C->getAPIntValue(); 4384 switch (Opcode) { 4385 default: break; 4386 case ISD::SIGN_EXTEND: 4387 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4388 C->isTargetOpcode(), C->isOpaque()); 4389 case ISD::TRUNCATE: 4390 if (C->isOpaque()) 4391 break; 4392 LLVM_FALLTHROUGH; 4393 case ISD::ANY_EXTEND: 4394 case ISD::ZERO_EXTEND: 4395 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4396 C->isTargetOpcode(), C->isOpaque()); 4397 case ISD::UINT_TO_FP: 4398 case ISD::SINT_TO_FP: { 4399 APFloat apf(EVTToAPFloatSemantics(VT), 4400 APInt::getNullValue(VT.getSizeInBits())); 4401 (void)apf.convertFromAPInt(Val, 4402 Opcode==ISD::SINT_TO_FP, 4403 APFloat::rmNearestTiesToEven); 4404 return getConstantFP(apf, DL, VT); 4405 } 4406 case ISD::BITCAST: 4407 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4408 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4409 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4410 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4411 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4412 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4413 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4414 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4415 break; 4416 case ISD::ABS: 4417 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4418 C->isOpaque()); 4419 case ISD::BITREVERSE: 4420 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4421 C->isOpaque()); 4422 case ISD::BSWAP: 4423 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4424 C->isOpaque()); 4425 case ISD::CTPOP: 4426 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4427 C->isOpaque()); 4428 case ISD::CTLZ: 4429 case ISD::CTLZ_ZERO_UNDEF: 4430 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4431 C->isOpaque()); 4432 case ISD::CTTZ: 4433 case ISD::CTTZ_ZERO_UNDEF: 4434 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4435 C->isOpaque()); 4436 case ISD::FP16_TO_FP: { 4437 bool Ignored; 4438 APFloat FPV(APFloat::IEEEhalf(), 4439 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4440 4441 // This can return overflow, underflow, or inexact; we don't care. 4442 // FIXME need to be more flexible about rounding mode. 4443 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4444 APFloat::rmNearestTiesToEven, &Ignored); 4445 return getConstantFP(FPV, DL, VT); 4446 } 4447 } 4448 } 4449 4450 // Constant fold unary operations with a floating point constant operand. 4451 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4452 APFloat V = C->getValueAPF(); // make copy 4453 switch (Opcode) { 4454 case ISD::FNEG: 4455 V.changeSign(); 4456 return getConstantFP(V, DL, VT); 4457 case ISD::FABS: 4458 V.clearSign(); 4459 return getConstantFP(V, DL, VT); 4460 case ISD::FCEIL: { 4461 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4462 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4463 return getConstantFP(V, DL, VT); 4464 break; 4465 } 4466 case ISD::FTRUNC: { 4467 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4468 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4469 return getConstantFP(V, DL, VT); 4470 break; 4471 } 4472 case ISD::FFLOOR: { 4473 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4474 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4475 return getConstantFP(V, DL, VT); 4476 break; 4477 } 4478 case ISD::FP_EXTEND: { 4479 bool ignored; 4480 // This can return overflow, underflow, or inexact; we don't care. 4481 // FIXME need to be more flexible about rounding mode. 4482 (void)V.convert(EVTToAPFloatSemantics(VT), 4483 APFloat::rmNearestTiesToEven, &ignored); 4484 return getConstantFP(V, DL, VT); 4485 } 4486 case ISD::FP_TO_SINT: 4487 case ISD::FP_TO_UINT: { 4488 bool ignored; 4489 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4490 // FIXME need to be more flexible about rounding mode. 4491 APFloat::opStatus s = 4492 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4493 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4494 break; 4495 return getConstant(IntVal, DL, VT); 4496 } 4497 case ISD::BITCAST: 4498 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4499 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4500 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4501 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4502 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4503 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4504 break; 4505 case ISD::FP_TO_FP16: { 4506 bool Ignored; 4507 // This can return overflow, underflow, or inexact; we don't care. 4508 // FIXME need to be more flexible about rounding mode. 4509 (void)V.convert(APFloat::IEEEhalf(), 4510 APFloat::rmNearestTiesToEven, &Ignored); 4511 return getConstant(V.bitcastToAPInt(), DL, VT); 4512 } 4513 } 4514 } 4515 4516 // Constant fold unary operations with a vector integer or float operand. 4517 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4518 if (BV->isConstant()) { 4519 switch (Opcode) { 4520 default: 4521 // FIXME: Entirely reasonable to perform folding of other unary 4522 // operations here as the need arises. 4523 break; 4524 case ISD::FNEG: 4525 case ISD::FABS: 4526 case ISD::FCEIL: 4527 case ISD::FTRUNC: 4528 case ISD::FFLOOR: 4529 case ISD::FP_EXTEND: 4530 case ISD::FP_TO_SINT: 4531 case ISD::FP_TO_UINT: 4532 case ISD::TRUNCATE: 4533 case ISD::ANY_EXTEND: 4534 case ISD::ZERO_EXTEND: 4535 case ISD::SIGN_EXTEND: 4536 case ISD::UINT_TO_FP: 4537 case ISD::SINT_TO_FP: 4538 case ISD::ABS: 4539 case ISD::BITREVERSE: 4540 case ISD::BSWAP: 4541 case ISD::CTLZ: 4542 case ISD::CTLZ_ZERO_UNDEF: 4543 case ISD::CTTZ: 4544 case ISD::CTTZ_ZERO_UNDEF: 4545 case ISD::CTPOP: { 4546 SDValue Ops = { Operand }; 4547 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4548 return Fold; 4549 } 4550 } 4551 } 4552 } 4553 4554 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4555 switch (Opcode) { 4556 case ISD::FREEZE: 4557 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4558 break; 4559 case ISD::TokenFactor: 4560 case ISD::MERGE_VALUES: 4561 case ISD::CONCAT_VECTORS: 4562 return Operand; // Factor, merge or concat of one node? No need. 4563 case ISD::BUILD_VECTOR: { 4564 // Attempt to simplify BUILD_VECTOR. 4565 SDValue Ops[] = {Operand}; 4566 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4567 return V; 4568 break; 4569 } 4570 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4571 case ISD::FP_EXTEND: 4572 assert(VT.isFloatingPoint() && 4573 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4574 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4575 assert((!VT.isVector() || 4576 VT.getVectorNumElements() == 4577 Operand.getValueType().getVectorNumElements()) && 4578 "Vector element count mismatch!"); 4579 assert(Operand.getValueType().bitsLT(VT) && 4580 "Invalid fpext node, dst < src!"); 4581 if (Operand.isUndef()) 4582 return getUNDEF(VT); 4583 break; 4584 case ISD::FP_TO_SINT: 4585 case ISD::FP_TO_UINT: 4586 if (Operand.isUndef()) 4587 return getUNDEF(VT); 4588 break; 4589 case ISD::SINT_TO_FP: 4590 case ISD::UINT_TO_FP: 4591 // [us]itofp(undef) = 0, because the result value is bounded. 4592 if (Operand.isUndef()) 4593 return getConstantFP(0.0, DL, VT); 4594 break; 4595 case ISD::SIGN_EXTEND: 4596 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4597 "Invalid SIGN_EXTEND!"); 4598 assert(VT.isVector() == Operand.getValueType().isVector() && 4599 "SIGN_EXTEND result type type should be vector iff the operand " 4600 "type is vector!"); 4601 if (Operand.getValueType() == VT) return Operand; // noop extension 4602 assert((!VT.isVector() || 4603 VT.getVectorElementCount() == 4604 Operand.getValueType().getVectorElementCount()) && 4605 "Vector element count mismatch!"); 4606 assert(Operand.getValueType().bitsLT(VT) && 4607 "Invalid sext node, dst < src!"); 4608 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4609 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4610 else if (OpOpcode == ISD::UNDEF) 4611 // sext(undef) = 0, because the top bits will all be the same. 4612 return getConstant(0, DL, VT); 4613 break; 4614 case ISD::ZERO_EXTEND: 4615 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4616 "Invalid ZERO_EXTEND!"); 4617 assert(VT.isVector() == Operand.getValueType().isVector() && 4618 "ZERO_EXTEND result type type should be vector iff the operand " 4619 "type is vector!"); 4620 if (Operand.getValueType() == VT) return Operand; // noop extension 4621 assert((!VT.isVector() || 4622 VT.getVectorElementCount() == 4623 Operand.getValueType().getVectorElementCount()) && 4624 "Vector element count mismatch!"); 4625 assert(Operand.getValueType().bitsLT(VT) && 4626 "Invalid zext node, dst < src!"); 4627 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4628 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4629 else if (OpOpcode == ISD::UNDEF) 4630 // zext(undef) = 0, because the top bits will be zero. 4631 return getConstant(0, DL, VT); 4632 break; 4633 case ISD::ANY_EXTEND: 4634 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4635 "Invalid ANY_EXTEND!"); 4636 assert(VT.isVector() == Operand.getValueType().isVector() && 4637 "ANY_EXTEND result type type should be vector iff the operand " 4638 "type is vector!"); 4639 if (Operand.getValueType() == VT) return Operand; // noop extension 4640 assert((!VT.isVector() || 4641 VT.getVectorElementCount() == 4642 Operand.getValueType().getVectorElementCount()) && 4643 "Vector element count mismatch!"); 4644 assert(Operand.getValueType().bitsLT(VT) && 4645 "Invalid anyext node, dst < src!"); 4646 4647 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4648 OpOpcode == ISD::ANY_EXTEND) 4649 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4650 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4651 else if (OpOpcode == ISD::UNDEF) 4652 return getUNDEF(VT); 4653 4654 // (ext (trunc x)) -> x 4655 if (OpOpcode == ISD::TRUNCATE) { 4656 SDValue OpOp = Operand.getOperand(0); 4657 if (OpOp.getValueType() == VT) { 4658 transferDbgValues(Operand, OpOp); 4659 return OpOp; 4660 } 4661 } 4662 break; 4663 case ISD::TRUNCATE: 4664 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4665 "Invalid TRUNCATE!"); 4666 assert(VT.isVector() == Operand.getValueType().isVector() && 4667 "TRUNCATE result type type should be vector iff the operand " 4668 "type is vector!"); 4669 if (Operand.getValueType() == VT) return Operand; // noop truncate 4670 assert((!VT.isVector() || 4671 VT.getVectorElementCount() == 4672 Operand.getValueType().getVectorElementCount()) && 4673 "Vector element count mismatch!"); 4674 assert(Operand.getValueType().bitsGT(VT) && 4675 "Invalid truncate node, src < dst!"); 4676 if (OpOpcode == ISD::TRUNCATE) 4677 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4678 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4679 OpOpcode == ISD::ANY_EXTEND) { 4680 // If the source is smaller than the dest, we still need an extend. 4681 if (Operand.getOperand(0).getValueType().getScalarType() 4682 .bitsLT(VT.getScalarType())) 4683 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4684 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4685 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4686 return Operand.getOperand(0); 4687 } 4688 if (OpOpcode == ISD::UNDEF) 4689 return getUNDEF(VT); 4690 break; 4691 case ISD::ANY_EXTEND_VECTOR_INREG: 4692 case ISD::ZERO_EXTEND_VECTOR_INREG: 4693 case ISD::SIGN_EXTEND_VECTOR_INREG: 4694 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4695 assert(Operand.getValueType().bitsLE(VT) && 4696 "The input must be the same size or smaller than the result."); 4697 assert(VT.getVectorNumElements() < 4698 Operand.getValueType().getVectorNumElements() && 4699 "The destination vector type must have fewer lanes than the input."); 4700 break; 4701 case ISD::ABS: 4702 assert(VT.isInteger() && VT == Operand.getValueType() && 4703 "Invalid ABS!"); 4704 if (OpOpcode == ISD::UNDEF) 4705 return getUNDEF(VT); 4706 break; 4707 case ISD::BSWAP: 4708 assert(VT.isInteger() && VT == Operand.getValueType() && 4709 "Invalid BSWAP!"); 4710 assert((VT.getScalarSizeInBits() % 16 == 0) && 4711 "BSWAP types must be a multiple of 16 bits!"); 4712 if (OpOpcode == ISD::UNDEF) 4713 return getUNDEF(VT); 4714 break; 4715 case ISD::BITREVERSE: 4716 assert(VT.isInteger() && VT == Operand.getValueType() && 4717 "Invalid BITREVERSE!"); 4718 if (OpOpcode == ISD::UNDEF) 4719 return getUNDEF(VT); 4720 break; 4721 case ISD::BITCAST: 4722 // Basic sanity checking. 4723 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4724 "Cannot BITCAST between types of different sizes!"); 4725 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4726 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4727 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4728 if (OpOpcode == ISD::UNDEF) 4729 return getUNDEF(VT); 4730 break; 4731 case ISD::SCALAR_TO_VECTOR: 4732 assert(VT.isVector() && !Operand.getValueType().isVector() && 4733 (VT.getVectorElementType() == Operand.getValueType() || 4734 (VT.getVectorElementType().isInteger() && 4735 Operand.getValueType().isInteger() && 4736 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4737 "Illegal SCALAR_TO_VECTOR node!"); 4738 if (OpOpcode == ISD::UNDEF) 4739 return getUNDEF(VT); 4740 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4741 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4742 isa<ConstantSDNode>(Operand.getOperand(1)) && 4743 Operand.getConstantOperandVal(1) == 0 && 4744 Operand.getOperand(0).getValueType() == VT) 4745 return Operand.getOperand(0); 4746 break; 4747 case ISD::FNEG: 4748 // Negation of an unknown bag of bits is still completely undefined. 4749 if (OpOpcode == ISD::UNDEF) 4750 return getUNDEF(VT); 4751 4752 if (OpOpcode == ISD::FNEG) // --X -> X 4753 return Operand.getOperand(0); 4754 break; 4755 case ISD::FABS: 4756 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4757 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4758 break; 4759 } 4760 4761 SDNode *N; 4762 SDVTList VTs = getVTList(VT); 4763 SDValue Ops[] = {Operand}; 4764 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4765 FoldingSetNodeID ID; 4766 AddNodeIDNode(ID, Opcode, VTs, Ops); 4767 void *IP = nullptr; 4768 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4769 E->intersectFlagsWith(Flags); 4770 return SDValue(E, 0); 4771 } 4772 4773 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4774 N->setFlags(Flags); 4775 createOperands(N, Ops); 4776 CSEMap.InsertNode(N, IP); 4777 } else { 4778 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4779 createOperands(N, Ops); 4780 } 4781 4782 InsertNode(N); 4783 SDValue V = SDValue(N, 0); 4784 NewSDValueDbgMsg(V, "Creating new node: ", this); 4785 return V; 4786 } 4787 4788 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4789 const APInt &C2) { 4790 switch (Opcode) { 4791 case ISD::ADD: return C1 + C2; 4792 case ISD::SUB: return C1 - C2; 4793 case ISD::MUL: return C1 * C2; 4794 case ISD::AND: return C1 & C2; 4795 case ISD::OR: return C1 | C2; 4796 case ISD::XOR: return C1 ^ C2; 4797 case ISD::SHL: return C1 << C2; 4798 case ISD::SRL: return C1.lshr(C2); 4799 case ISD::SRA: return C1.ashr(C2); 4800 case ISD::ROTL: return C1.rotl(C2); 4801 case ISD::ROTR: return C1.rotr(C2); 4802 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4803 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4804 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4805 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4806 case ISD::SADDSAT: return C1.sadd_sat(C2); 4807 case ISD::UADDSAT: return C1.uadd_sat(C2); 4808 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4809 case ISD::USUBSAT: return C1.usub_sat(C2); 4810 case ISD::UDIV: 4811 if (!C2.getBoolValue()) 4812 break; 4813 return C1.udiv(C2); 4814 case ISD::UREM: 4815 if (!C2.getBoolValue()) 4816 break; 4817 return C1.urem(C2); 4818 case ISD::SDIV: 4819 if (!C2.getBoolValue()) 4820 break; 4821 return C1.sdiv(C2); 4822 case ISD::SREM: 4823 if (!C2.getBoolValue()) 4824 break; 4825 return C1.srem(C2); 4826 } 4827 return llvm::None; 4828 } 4829 4830 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4831 const GlobalAddressSDNode *GA, 4832 const SDNode *N2) { 4833 if (GA->getOpcode() != ISD::GlobalAddress) 4834 return SDValue(); 4835 if (!TLI->isOffsetFoldingLegal(GA)) 4836 return SDValue(); 4837 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4838 if (!C2) 4839 return SDValue(); 4840 int64_t Offset = C2->getSExtValue(); 4841 switch (Opcode) { 4842 case ISD::ADD: break; 4843 case ISD::SUB: Offset = -uint64_t(Offset); break; 4844 default: return SDValue(); 4845 } 4846 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4847 GA->getOffset() + uint64_t(Offset)); 4848 } 4849 4850 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4851 switch (Opcode) { 4852 case ISD::SDIV: 4853 case ISD::UDIV: 4854 case ISD::SREM: 4855 case ISD::UREM: { 4856 // If a divisor is zero/undef or any element of a divisor vector is 4857 // zero/undef, the whole op is undef. 4858 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4859 SDValue Divisor = Ops[1]; 4860 if (Divisor.isUndef() || isNullConstant(Divisor)) 4861 return true; 4862 4863 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4864 llvm::any_of(Divisor->op_values(), 4865 [](SDValue V) { return V.isUndef() || 4866 isNullConstant(V); }); 4867 // TODO: Handle signed overflow. 4868 } 4869 // TODO: Handle oversized shifts. 4870 default: 4871 return false; 4872 } 4873 } 4874 4875 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4876 EVT VT, ArrayRef<SDValue> Ops) { 4877 // If the opcode is a target-specific ISD node, there's nothing we can 4878 // do here and the operand rules may not line up with the below, so 4879 // bail early. 4880 if (Opcode >= ISD::BUILTIN_OP_END) 4881 return SDValue(); 4882 4883 // For now, the array Ops should only contain two values. 4884 // This enforcement will be removed once this function is merged with 4885 // FoldConstantVectorArithmetic 4886 if (Ops.size() != 2) 4887 return SDValue(); 4888 4889 if (isUndef(Opcode, Ops)) 4890 return getUNDEF(VT); 4891 4892 SDNode *N1 = Ops[0].getNode(); 4893 SDNode *N2 = Ops[1].getNode(); 4894 4895 // Handle the case of two scalars. 4896 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4897 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4898 if (C1->isOpaque() || C2->isOpaque()) 4899 return SDValue(); 4900 4901 Optional<APInt> FoldAttempt = 4902 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4903 if (!FoldAttempt) 4904 return SDValue(); 4905 4906 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4907 assert((!Folded || !VT.isVector()) && 4908 "Can't fold vectors ops with scalar operands"); 4909 return Folded; 4910 } 4911 } 4912 4913 // fold (add Sym, c) -> Sym+c 4914 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4915 return FoldSymbolOffset(Opcode, VT, GA, N2); 4916 if (TLI->isCommutativeBinOp(Opcode)) 4917 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4918 return FoldSymbolOffset(Opcode, VT, GA, N1); 4919 4920 // For vectors, extract each constant element and fold them individually. 4921 // Either input may be an undef value. 4922 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4923 if (!BV1 && !N1->isUndef()) 4924 return SDValue(); 4925 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4926 if (!BV2 && !N2->isUndef()) 4927 return SDValue(); 4928 // If both operands are undef, that's handled the same way as scalars. 4929 if (!BV1 && !BV2) 4930 return SDValue(); 4931 4932 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4933 "Vector binop with different number of elements in operands?"); 4934 4935 EVT SVT = VT.getScalarType(); 4936 EVT LegalSVT = SVT; 4937 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4938 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4939 if (LegalSVT.bitsLT(SVT)) 4940 return SDValue(); 4941 } 4942 SmallVector<SDValue, 4> Outputs; 4943 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4944 for (unsigned I = 0; I != NumOps; ++I) { 4945 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4946 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4947 if (SVT.isInteger()) { 4948 if (V1->getValueType(0).bitsGT(SVT)) 4949 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4950 if (V2->getValueType(0).bitsGT(SVT)) 4951 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4952 } 4953 4954 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4955 return SDValue(); 4956 4957 // Fold one vector element. 4958 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4959 if (LegalSVT != SVT) 4960 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4961 4962 // Scalar folding only succeeded if the result is a constant or UNDEF. 4963 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4964 ScalarResult.getOpcode() != ISD::ConstantFP) 4965 return SDValue(); 4966 Outputs.push_back(ScalarResult); 4967 } 4968 4969 assert(VT.getVectorNumElements() == Outputs.size() && 4970 "Vector size mismatch!"); 4971 4972 // We may have a vector type but a scalar result. Create a splat. 4973 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4974 4975 // Build a big vector out of the scalar elements we generated. 4976 return getBuildVector(VT, SDLoc(), Outputs); 4977 } 4978 4979 // TODO: Merge with FoldConstantArithmetic 4980 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4981 const SDLoc &DL, EVT VT, 4982 ArrayRef<SDValue> Ops, 4983 const SDNodeFlags Flags) { 4984 // If the opcode is a target-specific ISD node, there's nothing we can 4985 // do here and the operand rules may not line up with the below, so 4986 // bail early. 4987 if (Opcode >= ISD::BUILTIN_OP_END) 4988 return SDValue(); 4989 4990 if (isUndef(Opcode, Ops)) 4991 return getUNDEF(VT); 4992 4993 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4994 if (!VT.isVector()) 4995 return SDValue(); 4996 4997 unsigned NumElts = VT.getVectorNumElements(); 4998 4999 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5000 return !Op.getValueType().isVector() || 5001 Op.getValueType().getVectorNumElements() == NumElts; 5002 }; 5003 5004 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5005 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5006 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5007 (BV && BV->isConstant()); 5008 }; 5009 5010 // All operands must be vector types with the same number of elements as 5011 // the result type and must be either UNDEF or a build vector of constant 5012 // or UNDEF scalars. 5013 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5014 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5015 return SDValue(); 5016 5017 // If we are comparing vectors, then the result needs to be a i1 boolean 5018 // that is then sign-extended back to the legal result type. 5019 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5020 5021 // Find legal integer scalar type for constant promotion and 5022 // ensure that its scalar size is at least as large as source. 5023 EVT LegalSVT = VT.getScalarType(); 5024 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5025 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5026 if (LegalSVT.bitsLT(VT.getScalarType())) 5027 return SDValue(); 5028 } 5029 5030 // Constant fold each scalar lane separately. 5031 SmallVector<SDValue, 4> ScalarResults; 5032 for (unsigned i = 0; i != NumElts; i++) { 5033 SmallVector<SDValue, 4> ScalarOps; 5034 for (SDValue Op : Ops) { 5035 EVT InSVT = Op.getValueType().getScalarType(); 5036 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5037 if (!InBV) { 5038 // We've checked that this is UNDEF or a constant of some kind. 5039 if (Op.isUndef()) 5040 ScalarOps.push_back(getUNDEF(InSVT)); 5041 else 5042 ScalarOps.push_back(Op); 5043 continue; 5044 } 5045 5046 SDValue ScalarOp = InBV->getOperand(i); 5047 EVT ScalarVT = ScalarOp.getValueType(); 5048 5049 // Build vector (integer) scalar operands may need implicit 5050 // truncation - do this before constant folding. 5051 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5052 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5053 5054 ScalarOps.push_back(ScalarOp); 5055 } 5056 5057 // Constant fold the scalar operands. 5058 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5059 5060 // Legalize the (integer) scalar constant if necessary. 5061 if (LegalSVT != SVT) 5062 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5063 5064 // Scalar folding only succeeded if the result is a constant or UNDEF. 5065 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5066 ScalarResult.getOpcode() != ISD::ConstantFP) 5067 return SDValue(); 5068 ScalarResults.push_back(ScalarResult); 5069 } 5070 5071 SDValue V = getBuildVector(VT, DL, ScalarResults); 5072 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5073 return V; 5074 } 5075 5076 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5077 EVT VT, SDValue N1, SDValue N2) { 5078 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5079 // should. That will require dealing with a potentially non-default 5080 // rounding mode, checking the "opStatus" return value from the APFloat 5081 // math calculations, and possibly other variations. 5082 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5083 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5084 if (N1CFP && N2CFP) { 5085 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5086 switch (Opcode) { 5087 case ISD::FADD: 5088 C1.add(C2, APFloat::rmNearestTiesToEven); 5089 return getConstantFP(C1, DL, VT); 5090 case ISD::FSUB: 5091 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5092 return getConstantFP(C1, DL, VT); 5093 case ISD::FMUL: 5094 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5095 return getConstantFP(C1, DL, VT); 5096 case ISD::FDIV: 5097 C1.divide(C2, APFloat::rmNearestTiesToEven); 5098 return getConstantFP(C1, DL, VT); 5099 case ISD::FREM: 5100 C1.mod(C2); 5101 return getConstantFP(C1, DL, VT); 5102 case ISD::FCOPYSIGN: 5103 C1.copySign(C2); 5104 return getConstantFP(C1, DL, VT); 5105 default: break; 5106 } 5107 } 5108 if (N1CFP && Opcode == ISD::FP_ROUND) { 5109 APFloat C1 = N1CFP->getValueAPF(); // make copy 5110 bool Unused; 5111 // This can return overflow, underflow, or inexact; we don't care. 5112 // FIXME need to be more flexible about rounding mode. 5113 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5114 &Unused); 5115 return getConstantFP(C1, DL, VT); 5116 } 5117 5118 switch (Opcode) { 5119 case ISD::FSUB: 5120 // -0.0 - undef --> undef (consistent with "fneg undef") 5121 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5122 return getUNDEF(VT); 5123 LLVM_FALLTHROUGH; 5124 5125 case ISD::FADD: 5126 case ISD::FMUL: 5127 case ISD::FDIV: 5128 case ISD::FREM: 5129 // If both operands are undef, the result is undef. If 1 operand is undef, 5130 // the result is NaN. This should match the behavior of the IR optimizer. 5131 if (N1.isUndef() && N2.isUndef()) 5132 return getUNDEF(VT); 5133 if (N1.isUndef() || N2.isUndef()) 5134 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5135 } 5136 return SDValue(); 5137 } 5138 5139 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5140 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5141 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5142 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5143 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5144 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5145 5146 // Canonicalize constant to RHS if commutative. 5147 if (TLI->isCommutativeBinOp(Opcode)) { 5148 if (N1C && !N2C) { 5149 std::swap(N1C, N2C); 5150 std::swap(N1, N2); 5151 } else if (N1CFP && !N2CFP) { 5152 std::swap(N1CFP, N2CFP); 5153 std::swap(N1, N2); 5154 } 5155 } 5156 5157 switch (Opcode) { 5158 default: break; 5159 case ISD::TokenFactor: 5160 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5161 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5162 // Fold trivial token factors. 5163 if (N1.getOpcode() == ISD::EntryToken) return N2; 5164 if (N2.getOpcode() == ISD::EntryToken) return N1; 5165 if (N1 == N2) return N1; 5166 break; 5167 case ISD::BUILD_VECTOR: { 5168 // Attempt to simplify BUILD_VECTOR. 5169 SDValue Ops[] = {N1, N2}; 5170 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5171 return V; 5172 break; 5173 } 5174 case ISD::CONCAT_VECTORS: { 5175 SDValue Ops[] = {N1, N2}; 5176 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5177 return V; 5178 break; 5179 } 5180 case ISD::AND: 5181 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5182 assert(N1.getValueType() == N2.getValueType() && 5183 N1.getValueType() == VT && "Binary operator types must match!"); 5184 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5185 // worth handling here. 5186 if (N2C && N2C->isNullValue()) 5187 return N2; 5188 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5189 return N1; 5190 break; 5191 case ISD::OR: 5192 case ISD::XOR: 5193 case ISD::ADD: 5194 case ISD::SUB: 5195 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5196 assert(N1.getValueType() == N2.getValueType() && 5197 N1.getValueType() == VT && "Binary operator types must match!"); 5198 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5199 // it's worth handling here. 5200 if (N2C && N2C->isNullValue()) 5201 return N1; 5202 break; 5203 case ISD::MUL: 5204 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5205 assert(N1.getValueType() == N2.getValueType() && 5206 N1.getValueType() == VT && "Binary operator types must match!"); 5207 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5208 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5209 APInt N2CImm = N2C->getAPIntValue(); 5210 return getVScale(DL, VT, MulImm * N2CImm); 5211 } 5212 break; 5213 case ISD::UDIV: 5214 case ISD::UREM: 5215 case ISD::MULHU: 5216 case ISD::MULHS: 5217 case ISD::SDIV: 5218 case ISD::SREM: 5219 case ISD::SMIN: 5220 case ISD::SMAX: 5221 case ISD::UMIN: 5222 case ISD::UMAX: 5223 case ISD::SADDSAT: 5224 case ISD::SSUBSAT: 5225 case ISD::UADDSAT: 5226 case ISD::USUBSAT: 5227 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5228 assert(N1.getValueType() == N2.getValueType() && 5229 N1.getValueType() == VT && "Binary operator types must match!"); 5230 break; 5231 case ISD::FADD: 5232 case ISD::FSUB: 5233 case ISD::FMUL: 5234 case ISD::FDIV: 5235 case ISD::FREM: 5236 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5237 assert(N1.getValueType() == N2.getValueType() && 5238 N1.getValueType() == VT && "Binary operator types must match!"); 5239 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5240 return V; 5241 break; 5242 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5243 assert(N1.getValueType() == VT && 5244 N1.getValueType().isFloatingPoint() && 5245 N2.getValueType().isFloatingPoint() && 5246 "Invalid FCOPYSIGN!"); 5247 break; 5248 case ISD::SHL: 5249 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5250 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5251 APInt ShiftImm = N2C->getAPIntValue(); 5252 return getVScale(DL, VT, MulImm << ShiftImm); 5253 } 5254 LLVM_FALLTHROUGH; 5255 case ISD::SRA: 5256 case ISD::SRL: 5257 if (SDValue V = simplifyShift(N1, N2)) 5258 return V; 5259 LLVM_FALLTHROUGH; 5260 case ISD::ROTL: 5261 case ISD::ROTR: 5262 assert(VT == N1.getValueType() && 5263 "Shift operators return type must be the same as their first arg"); 5264 assert(VT.isInteger() && N2.getValueType().isInteger() && 5265 "Shifts only work on integers"); 5266 assert((!VT.isVector() || VT == N2.getValueType()) && 5267 "Vector shift amounts must be in the same as their first arg"); 5268 // Verify that the shift amount VT is big enough to hold valid shift 5269 // amounts. This catches things like trying to shift an i1024 value by an 5270 // i8, which is easy to fall into in generic code that uses 5271 // TLI.getShiftAmount(). 5272 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5273 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5274 "Invalid use of small shift amount with oversized value!"); 5275 5276 // Always fold shifts of i1 values so the code generator doesn't need to 5277 // handle them. Since we know the size of the shift has to be less than the 5278 // size of the value, the shift/rotate count is guaranteed to be zero. 5279 if (VT == MVT::i1) 5280 return N1; 5281 if (N2C && N2C->isNullValue()) 5282 return N1; 5283 break; 5284 case ISD::FP_ROUND: 5285 assert(VT.isFloatingPoint() && 5286 N1.getValueType().isFloatingPoint() && 5287 VT.bitsLE(N1.getValueType()) && 5288 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5289 "Invalid FP_ROUND!"); 5290 if (N1.getValueType() == VT) return N1; // noop conversion. 5291 break; 5292 case ISD::AssertSext: 5293 case ISD::AssertZext: { 5294 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5295 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5296 assert(VT.isInteger() && EVT.isInteger() && 5297 "Cannot *_EXTEND_INREG FP types"); 5298 assert(!EVT.isVector() && 5299 "AssertSExt/AssertZExt type should be the vector element type " 5300 "rather than the vector type!"); 5301 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5302 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5303 break; 5304 } 5305 case ISD::SIGN_EXTEND_INREG: { 5306 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5307 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5308 assert(VT.isInteger() && EVT.isInteger() && 5309 "Cannot *_EXTEND_INREG FP types"); 5310 assert(EVT.isVector() == VT.isVector() && 5311 "SIGN_EXTEND_INREG type should be vector iff the operand " 5312 "type is vector!"); 5313 assert((!EVT.isVector() || 5314 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5315 "Vector element counts must match in SIGN_EXTEND_INREG"); 5316 assert(EVT.bitsLE(VT) && "Not extending!"); 5317 if (EVT == VT) return N1; // Not actually extending 5318 5319 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5320 unsigned FromBits = EVT.getScalarSizeInBits(); 5321 Val <<= Val.getBitWidth() - FromBits; 5322 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5323 return getConstant(Val, DL, ConstantVT); 5324 }; 5325 5326 if (N1C) { 5327 const APInt &Val = N1C->getAPIntValue(); 5328 return SignExtendInReg(Val, VT); 5329 } 5330 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5331 SmallVector<SDValue, 8> Ops; 5332 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5333 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5334 SDValue Op = N1.getOperand(i); 5335 if (Op.isUndef()) { 5336 Ops.push_back(getUNDEF(OpVT)); 5337 continue; 5338 } 5339 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5340 APInt Val = C->getAPIntValue(); 5341 Ops.push_back(SignExtendInReg(Val, OpVT)); 5342 } 5343 return getBuildVector(VT, DL, Ops); 5344 } 5345 break; 5346 } 5347 case ISD::EXTRACT_VECTOR_ELT: 5348 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5349 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5350 element type of the vector."); 5351 5352 // Extract from an undefined value or using an undefined index is undefined. 5353 if (N1.isUndef() || N2.isUndef()) 5354 return getUNDEF(VT); 5355 5356 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5357 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5358 return getUNDEF(VT); 5359 5360 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5361 // expanding copies of large vectors from registers. 5362 if (N2C && 5363 N1.getOpcode() == ISD::CONCAT_VECTORS && 5364 N1.getNumOperands() > 0) { 5365 unsigned Factor = 5366 N1.getOperand(0).getValueType().getVectorNumElements(); 5367 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5368 N1.getOperand(N2C->getZExtValue() / Factor), 5369 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5370 } 5371 5372 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5373 // expanding large vector constants. 5374 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5375 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5376 5377 if (VT != Elt.getValueType()) 5378 // If the vector element type is not legal, the BUILD_VECTOR operands 5379 // are promoted and implicitly truncated, and the result implicitly 5380 // extended. Make that explicit here. 5381 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5382 5383 return Elt; 5384 } 5385 5386 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5387 // operations are lowered to scalars. 5388 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5389 // If the indices are the same, return the inserted element else 5390 // if the indices are known different, extract the element from 5391 // the original vector. 5392 SDValue N1Op2 = N1.getOperand(2); 5393 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5394 5395 if (N1Op2C && N2C) { 5396 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5397 if (VT == N1.getOperand(1).getValueType()) 5398 return N1.getOperand(1); 5399 else 5400 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5401 } 5402 5403 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5404 } 5405 } 5406 5407 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5408 // when vector types are scalarized and v1iX is legal. 5409 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5410 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5411 N1.getValueType().getVectorNumElements() == 1) { 5412 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5413 N1.getOperand(1)); 5414 } 5415 break; 5416 case ISD::EXTRACT_ELEMENT: 5417 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5418 assert(!N1.getValueType().isVector() && !VT.isVector() && 5419 (N1.getValueType().isInteger() == VT.isInteger()) && 5420 N1.getValueType() != VT && 5421 "Wrong types for EXTRACT_ELEMENT!"); 5422 5423 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5424 // 64-bit integers into 32-bit parts. Instead of building the extract of 5425 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5426 if (N1.getOpcode() == ISD::BUILD_PAIR) 5427 return N1.getOperand(N2C->getZExtValue()); 5428 5429 // EXTRACT_ELEMENT of a constant int is also very common. 5430 if (N1C) { 5431 unsigned ElementSize = VT.getSizeInBits(); 5432 unsigned Shift = ElementSize * N2C->getZExtValue(); 5433 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5434 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5435 } 5436 break; 5437 case ISD::EXTRACT_SUBVECTOR: 5438 assert(VT.isVector() && N1.getValueType().isVector() && 5439 "Extract subvector VTs must be a vectors!"); 5440 assert(VT.getVectorElementType() == 5441 N1.getValueType().getVectorElementType() && 5442 "Extract subvector VTs must have the same element type!"); 5443 assert(VT.getVectorNumElements() <= 5444 N1.getValueType().getVectorNumElements() && 5445 "Extract subvector must be from larger vector to smaller vector!"); 5446 assert(N2C && "Extract subvector index must be a constant"); 5447 assert(VT.getVectorNumElements() + N2C->getZExtValue() <= 5448 N1.getValueType().getVectorNumElements() && 5449 "Extract subvector overflow!"); 5450 5451 // Trivial extraction. 5452 if (VT == N1.getValueType()) 5453 return N1; 5454 5455 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5456 if (N1.isUndef()) 5457 return getUNDEF(VT); 5458 5459 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5460 // the concat have the same type as the extract. 5461 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5462 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5463 unsigned Factor = VT.getVectorNumElements(); 5464 return N1.getOperand(N2C->getZExtValue() / Factor); 5465 } 5466 5467 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5468 // during shuffle legalization. 5469 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5470 VT == N1.getOperand(1).getValueType()) 5471 return N1.getOperand(1); 5472 break; 5473 } 5474 5475 // Perform trivial constant folding. 5476 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5477 return SV; 5478 5479 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5480 return V; 5481 5482 // Canonicalize an UNDEF to the RHS, even over a constant. 5483 if (N1.isUndef()) { 5484 if (TLI->isCommutativeBinOp(Opcode)) { 5485 std::swap(N1, N2); 5486 } else { 5487 switch (Opcode) { 5488 case ISD::SIGN_EXTEND_INREG: 5489 case ISD::SUB: 5490 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5491 case ISD::UDIV: 5492 case ISD::SDIV: 5493 case ISD::UREM: 5494 case ISD::SREM: 5495 case ISD::SSUBSAT: 5496 case ISD::USUBSAT: 5497 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5498 } 5499 } 5500 } 5501 5502 // Fold a bunch of operators when the RHS is undef. 5503 if (N2.isUndef()) { 5504 switch (Opcode) { 5505 case ISD::XOR: 5506 if (N1.isUndef()) 5507 // Handle undef ^ undef -> 0 special case. This is a common 5508 // idiom (misuse). 5509 return getConstant(0, DL, VT); 5510 LLVM_FALLTHROUGH; 5511 case ISD::ADD: 5512 case ISD::SUB: 5513 case ISD::UDIV: 5514 case ISD::SDIV: 5515 case ISD::UREM: 5516 case ISD::SREM: 5517 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5518 case ISD::MUL: 5519 case ISD::AND: 5520 case ISD::SSUBSAT: 5521 case ISD::USUBSAT: 5522 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5523 case ISD::OR: 5524 case ISD::SADDSAT: 5525 case ISD::UADDSAT: 5526 return getAllOnesConstant(DL, VT); 5527 } 5528 } 5529 5530 // Memoize this node if possible. 5531 SDNode *N; 5532 SDVTList VTs = getVTList(VT); 5533 SDValue Ops[] = {N1, N2}; 5534 if (VT != MVT::Glue) { 5535 FoldingSetNodeID ID; 5536 AddNodeIDNode(ID, Opcode, VTs, Ops); 5537 void *IP = nullptr; 5538 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5539 E->intersectFlagsWith(Flags); 5540 return SDValue(E, 0); 5541 } 5542 5543 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5544 N->setFlags(Flags); 5545 createOperands(N, Ops); 5546 CSEMap.InsertNode(N, IP); 5547 } else { 5548 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5549 createOperands(N, Ops); 5550 } 5551 5552 InsertNode(N); 5553 SDValue V = SDValue(N, 0); 5554 NewSDValueDbgMsg(V, "Creating new node: ", this); 5555 return V; 5556 } 5557 5558 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5559 SDValue N1, SDValue N2, SDValue N3, 5560 const SDNodeFlags Flags) { 5561 // Perform various simplifications. 5562 switch (Opcode) { 5563 case ISD::FMA: { 5564 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5565 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5566 N3.getValueType() == VT && "FMA types must match!"); 5567 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5568 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5569 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5570 if (N1CFP && N2CFP && N3CFP) { 5571 APFloat V1 = N1CFP->getValueAPF(); 5572 const APFloat &V2 = N2CFP->getValueAPF(); 5573 const APFloat &V3 = N3CFP->getValueAPF(); 5574 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5575 return getConstantFP(V1, DL, VT); 5576 } 5577 break; 5578 } 5579 case ISD::BUILD_VECTOR: { 5580 // Attempt to simplify BUILD_VECTOR. 5581 SDValue Ops[] = {N1, N2, N3}; 5582 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5583 return V; 5584 break; 5585 } 5586 case ISD::CONCAT_VECTORS: { 5587 SDValue Ops[] = {N1, N2, N3}; 5588 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5589 return V; 5590 break; 5591 } 5592 case ISD::SETCC: { 5593 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5594 assert(N1.getValueType() == N2.getValueType() && 5595 "SETCC operands must have the same type!"); 5596 assert(VT.isVector() == N1.getValueType().isVector() && 5597 "SETCC type should be vector iff the operand type is vector!"); 5598 assert((!VT.isVector() || VT.getVectorElementCount() == 5599 N1.getValueType().getVectorElementCount()) && 5600 "SETCC vector element counts must match!"); 5601 // Use FoldSetCC to simplify SETCC's. 5602 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5603 return V; 5604 // Vector constant folding. 5605 SDValue Ops[] = {N1, N2, N3}; 5606 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5607 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5608 return V; 5609 } 5610 break; 5611 } 5612 case ISD::SELECT: 5613 case ISD::VSELECT: 5614 if (SDValue V = simplifySelect(N1, N2, N3)) 5615 return V; 5616 break; 5617 case ISD::VECTOR_SHUFFLE: 5618 llvm_unreachable("should use getVectorShuffle constructor!"); 5619 case ISD::INSERT_VECTOR_ELT: { 5620 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5621 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5622 // for scalable vectors where we will generate appropriate code to 5623 // deal with out-of-bounds cases correctly. 5624 if (N3C && N1.getValueType().isFixedLengthVector() && 5625 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5626 return getUNDEF(VT); 5627 5628 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5629 if (N3.isUndef()) 5630 return getUNDEF(VT); 5631 5632 // If the inserted element is an UNDEF, just use the input vector. 5633 if (N2.isUndef()) 5634 return N1; 5635 5636 break; 5637 } 5638 case ISD::INSERT_SUBVECTOR: { 5639 // Inserting undef into undef is still undef. 5640 if (N1.isUndef() && N2.isUndef()) 5641 return getUNDEF(VT); 5642 assert(VT.isVector() && N1.getValueType().isVector() && 5643 N2.getValueType().isVector() && 5644 "Insert subvector VTs must be a vectors"); 5645 assert(VT == N1.getValueType() && 5646 "Dest and insert subvector source types must match!"); 5647 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5648 "Insert subvector must be from smaller vector to larger vector!"); 5649 assert(isa<ConstantSDNode>(N3) && 5650 "Insert subvector index must be constant"); 5651 assert(N2.getValueType().getVectorNumElements() + 5652 cast<ConstantSDNode>(N3)->getZExtValue() <= 5653 VT.getVectorNumElements() && 5654 "Insert subvector overflow!"); 5655 5656 // Trivial insertion. 5657 if (VT == N2.getValueType()) 5658 return N2; 5659 5660 // If this is an insert of an extracted vector into an undef vector, we 5661 // can just use the input to the extract. 5662 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5663 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5664 return N2.getOperand(0); 5665 break; 5666 } 5667 case ISD::BITCAST: 5668 // Fold bit_convert nodes from a type to themselves. 5669 if (N1.getValueType() == VT) 5670 return N1; 5671 break; 5672 } 5673 5674 // Memoize node if it doesn't produce a flag. 5675 SDNode *N; 5676 SDVTList VTs = getVTList(VT); 5677 SDValue Ops[] = {N1, N2, N3}; 5678 if (VT != MVT::Glue) { 5679 FoldingSetNodeID ID; 5680 AddNodeIDNode(ID, Opcode, VTs, Ops); 5681 void *IP = nullptr; 5682 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5683 E->intersectFlagsWith(Flags); 5684 return SDValue(E, 0); 5685 } 5686 5687 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5688 N->setFlags(Flags); 5689 createOperands(N, Ops); 5690 CSEMap.InsertNode(N, IP); 5691 } else { 5692 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5693 createOperands(N, Ops); 5694 } 5695 5696 InsertNode(N); 5697 SDValue V = SDValue(N, 0); 5698 NewSDValueDbgMsg(V, "Creating new node: ", this); 5699 return V; 5700 } 5701 5702 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5703 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5704 SDValue Ops[] = { N1, N2, N3, N4 }; 5705 return getNode(Opcode, DL, VT, Ops); 5706 } 5707 5708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5709 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5710 SDValue N5) { 5711 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5712 return getNode(Opcode, DL, VT, Ops); 5713 } 5714 5715 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5716 /// the incoming stack arguments to be loaded from the stack. 5717 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5718 SmallVector<SDValue, 8> ArgChains; 5719 5720 // Include the original chain at the beginning of the list. When this is 5721 // used by target LowerCall hooks, this helps legalize find the 5722 // CALLSEQ_BEGIN node. 5723 ArgChains.push_back(Chain); 5724 5725 // Add a chain value for each stack argument. 5726 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5727 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5728 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5729 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5730 if (FI->getIndex() < 0) 5731 ArgChains.push_back(SDValue(L, 1)); 5732 5733 // Build a tokenfactor for all the chains. 5734 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5735 } 5736 5737 /// getMemsetValue - Vectorized representation of the memset value 5738 /// operand. 5739 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5740 const SDLoc &dl) { 5741 assert(!Value.isUndef()); 5742 5743 unsigned NumBits = VT.getScalarSizeInBits(); 5744 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5745 assert(C->getAPIntValue().getBitWidth() == 8); 5746 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5747 if (VT.isInteger()) { 5748 bool IsOpaque = VT.getSizeInBits() > 64 || 5749 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5750 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5751 } 5752 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5753 VT); 5754 } 5755 5756 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5757 EVT IntVT = VT.getScalarType(); 5758 if (!IntVT.isInteger()) 5759 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5760 5761 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5762 if (NumBits > 8) { 5763 // Use a multiplication with 0x010101... to extend the input to the 5764 // required length. 5765 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5766 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5767 DAG.getConstant(Magic, dl, IntVT)); 5768 } 5769 5770 if (VT != Value.getValueType() && !VT.isInteger()) 5771 Value = DAG.getBitcast(VT.getScalarType(), Value); 5772 if (VT != Value.getValueType()) 5773 Value = DAG.getSplatBuildVector(VT, dl, Value); 5774 5775 return Value; 5776 } 5777 5778 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5779 /// used when a memcpy is turned into a memset when the source is a constant 5780 /// string ptr. 5781 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5782 const TargetLowering &TLI, 5783 const ConstantDataArraySlice &Slice) { 5784 // Handle vector with all elements zero. 5785 if (Slice.Array == nullptr) { 5786 if (VT.isInteger()) 5787 return DAG.getConstant(0, dl, VT); 5788 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5789 return DAG.getConstantFP(0.0, dl, VT); 5790 else if (VT.isVector()) { 5791 unsigned NumElts = VT.getVectorNumElements(); 5792 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5793 return DAG.getNode(ISD::BITCAST, dl, VT, 5794 DAG.getConstant(0, dl, 5795 EVT::getVectorVT(*DAG.getContext(), 5796 EltVT, NumElts))); 5797 } else 5798 llvm_unreachable("Expected type!"); 5799 } 5800 5801 assert(!VT.isVector() && "Can't handle vector type here!"); 5802 unsigned NumVTBits = VT.getSizeInBits(); 5803 unsigned NumVTBytes = NumVTBits / 8; 5804 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5805 5806 APInt Val(NumVTBits, 0); 5807 if (DAG.getDataLayout().isLittleEndian()) { 5808 for (unsigned i = 0; i != NumBytes; ++i) 5809 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5810 } else { 5811 for (unsigned i = 0; i != NumBytes; ++i) 5812 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5813 } 5814 5815 // If the "cost" of materializing the integer immediate is less than the cost 5816 // of a load, then it is cost effective to turn the load into the immediate. 5817 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5818 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5819 return DAG.getConstant(Val, dl, VT); 5820 return SDValue(nullptr, 0); 5821 } 5822 5823 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5824 const SDLoc &DL, 5825 const SDNodeFlags Flags) { 5826 EVT VT = Base.getValueType(); 5827 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5828 } 5829 5830 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5831 const SDLoc &DL, 5832 const SDNodeFlags Flags) { 5833 assert(Offset.getValueType().isInteger()); 5834 EVT BasePtrVT = Ptr.getValueType(); 5835 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5836 } 5837 5838 /// Returns true if memcpy source is constant data. 5839 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5840 uint64_t SrcDelta = 0; 5841 GlobalAddressSDNode *G = nullptr; 5842 if (Src.getOpcode() == ISD::GlobalAddress) 5843 G = cast<GlobalAddressSDNode>(Src); 5844 else if (Src.getOpcode() == ISD::ADD && 5845 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5846 Src.getOperand(1).getOpcode() == ISD::Constant) { 5847 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5848 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5849 } 5850 if (!G) 5851 return false; 5852 5853 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5854 SrcDelta + G->getOffset()); 5855 } 5856 5857 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5858 SelectionDAG &DAG) { 5859 // On Darwin, -Os means optimize for size without hurting performance, so 5860 // only really optimize for size when -Oz (MinSize) is used. 5861 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5862 return MF.getFunction().hasMinSize(); 5863 return DAG.shouldOptForSize(); 5864 } 5865 5866 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5867 SmallVector<SDValue, 32> &OutChains, unsigned From, 5868 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5869 SmallVector<SDValue, 16> &OutStoreChains) { 5870 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5871 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5872 SmallVector<SDValue, 16> GluedLoadChains; 5873 for (unsigned i = From; i < To; ++i) { 5874 OutChains.push_back(OutLoadChains[i]); 5875 GluedLoadChains.push_back(OutLoadChains[i]); 5876 } 5877 5878 // Chain for all loads. 5879 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5880 GluedLoadChains); 5881 5882 for (unsigned i = From; i < To; ++i) { 5883 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5884 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5885 ST->getBasePtr(), ST->getMemoryVT(), 5886 ST->getMemOperand()); 5887 OutChains.push_back(NewStore); 5888 } 5889 } 5890 5891 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5892 SDValue Chain, SDValue Dst, SDValue Src, 5893 uint64_t Size, Align Alignment, 5894 bool isVol, bool AlwaysInline, 5895 MachinePointerInfo DstPtrInfo, 5896 MachinePointerInfo SrcPtrInfo) { 5897 // Turn a memcpy of undef to nop. 5898 // FIXME: We need to honor volatile even is Src is undef. 5899 if (Src.isUndef()) 5900 return Chain; 5901 5902 // Expand memcpy to a series of load and store ops if the size operand falls 5903 // below a certain threshold. 5904 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5905 // rather than maybe a humongous number of loads and stores. 5906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5907 const DataLayout &DL = DAG.getDataLayout(); 5908 LLVMContext &C = *DAG.getContext(); 5909 std::vector<EVT> MemOps; 5910 bool DstAlignCanChange = false; 5911 MachineFunction &MF = DAG.getMachineFunction(); 5912 MachineFrameInfo &MFI = MF.getFrameInfo(); 5913 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5914 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5915 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5916 DstAlignCanChange = true; 5917 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 5918 if (!SrcAlign || Alignment > *SrcAlign) 5919 SrcAlign = Alignment; 5920 assert(SrcAlign && "SrcAlign must be set"); 5921 ConstantDataArraySlice Slice; 5922 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5923 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5924 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5925 const MemOp Op = isZeroConstant 5926 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5927 /*IsZeroMemset*/ true, isVol) 5928 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5929 *SrcAlign, isVol, CopyFromConstant); 5930 if (!TLI.findOptimalMemOpLowering( 5931 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5932 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5933 return SDValue(); 5934 5935 if (DstAlignCanChange) { 5936 Type *Ty = MemOps[0].getTypeForEVT(C); 5937 Align NewAlign = DL.getABITypeAlign(Ty); 5938 5939 // Don't promote to an alignment that would require dynamic stack 5940 // realignment. 5941 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5942 if (!TRI->needsStackRealignment(MF)) 5943 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5944 NewAlign = NewAlign / 2; 5945 5946 if (NewAlign > Alignment) { 5947 // Give the stack frame object a larger alignment if needed. 5948 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5949 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5950 Alignment = NewAlign; 5951 } 5952 } 5953 5954 MachineMemOperand::Flags MMOFlags = 5955 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5956 SmallVector<SDValue, 16> OutLoadChains; 5957 SmallVector<SDValue, 16> OutStoreChains; 5958 SmallVector<SDValue, 32> OutChains; 5959 unsigned NumMemOps = MemOps.size(); 5960 uint64_t SrcOff = 0, DstOff = 0; 5961 for (unsigned i = 0; i != NumMemOps; ++i) { 5962 EVT VT = MemOps[i]; 5963 unsigned VTSize = VT.getSizeInBits() / 8; 5964 SDValue Value, Store; 5965 5966 if (VTSize > Size) { 5967 // Issuing an unaligned load / store pair that overlaps with the previous 5968 // pair. Adjust the offset accordingly. 5969 assert(i == NumMemOps-1 && i != 0); 5970 SrcOff -= VTSize - Size; 5971 DstOff -= VTSize - Size; 5972 } 5973 5974 if (CopyFromConstant && 5975 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5976 // It's unlikely a store of a vector immediate can be done in a single 5977 // instruction. It would require a load from a constantpool first. 5978 // We only handle zero vectors here. 5979 // FIXME: Handle other cases where store of vector immediate is done in 5980 // a single instruction. 5981 ConstantDataArraySlice SubSlice; 5982 if (SrcOff < Slice.Length) { 5983 SubSlice = Slice; 5984 SubSlice.move(SrcOff); 5985 } else { 5986 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5987 SubSlice.Array = nullptr; 5988 SubSlice.Offset = 0; 5989 SubSlice.Length = VTSize; 5990 } 5991 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5992 if (Value.getNode()) { 5993 Store = DAG.getStore( 5994 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5995 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 5996 OutChains.push_back(Store); 5997 } 5998 } 5999 6000 if (!Store.getNode()) { 6001 // The type might not be legal for the target. This should only happen 6002 // if the type is smaller than a legal type, as on PPC, so the right 6003 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6004 // to Load/Store if NVT==VT. 6005 // FIXME does the case above also need this? 6006 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6007 assert(NVT.bitsGE(VT)); 6008 6009 bool isDereferenceable = 6010 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6011 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6012 if (isDereferenceable) 6013 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6014 6015 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6016 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6017 SrcPtrInfo.getWithOffset(SrcOff), VT, 6018 commonAlignment(*SrcAlign, SrcOff).value(), 6019 SrcMMOFlags); 6020 OutLoadChains.push_back(Value.getValue(1)); 6021 6022 Store = DAG.getTruncStore( 6023 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6024 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6025 OutStoreChains.push_back(Store); 6026 } 6027 SrcOff += VTSize; 6028 DstOff += VTSize; 6029 Size -= VTSize; 6030 } 6031 6032 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6033 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6034 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6035 6036 if (NumLdStInMemcpy) { 6037 // It may be that memcpy might be converted to memset if it's memcpy 6038 // of constants. In such a case, we won't have loads and stores, but 6039 // just stores. In the absence of loads, there is nothing to gang up. 6040 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6041 // If target does not care, just leave as it. 6042 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6043 OutChains.push_back(OutLoadChains[i]); 6044 OutChains.push_back(OutStoreChains[i]); 6045 } 6046 } else { 6047 // Ld/St less than/equal limit set by target. 6048 if (NumLdStInMemcpy <= GluedLdStLimit) { 6049 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6050 NumLdStInMemcpy, OutLoadChains, 6051 OutStoreChains); 6052 } else { 6053 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6054 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6055 unsigned GlueIter = 0; 6056 6057 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6058 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6059 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6060 6061 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6062 OutLoadChains, OutStoreChains); 6063 GlueIter += GluedLdStLimit; 6064 } 6065 6066 // Residual ld/st. 6067 if (RemainingLdStInMemcpy) { 6068 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6069 RemainingLdStInMemcpy, OutLoadChains, 6070 OutStoreChains); 6071 } 6072 } 6073 } 6074 } 6075 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6076 } 6077 6078 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6079 SDValue Chain, SDValue Dst, SDValue Src, 6080 uint64_t Size, Align Alignment, 6081 bool isVol, bool AlwaysInline, 6082 MachinePointerInfo DstPtrInfo, 6083 MachinePointerInfo SrcPtrInfo) { 6084 // Turn a memmove of undef to nop. 6085 // FIXME: We need to honor volatile even is Src is undef. 6086 if (Src.isUndef()) 6087 return Chain; 6088 6089 // Expand memmove to a series of load and store ops if the size operand falls 6090 // below a certain threshold. 6091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6092 const DataLayout &DL = DAG.getDataLayout(); 6093 LLVMContext &C = *DAG.getContext(); 6094 std::vector<EVT> MemOps; 6095 bool DstAlignCanChange = false; 6096 MachineFunction &MF = DAG.getMachineFunction(); 6097 MachineFrameInfo &MFI = MF.getFrameInfo(); 6098 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6099 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6100 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6101 DstAlignCanChange = true; 6102 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6103 if (!SrcAlign || Alignment > *SrcAlign) 6104 SrcAlign = Alignment; 6105 assert(SrcAlign && "SrcAlign must be set"); 6106 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6107 if (!TLI.findOptimalMemOpLowering( 6108 MemOps, Limit, 6109 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6110 /*IsVolatile*/ true), 6111 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6112 MF.getFunction().getAttributes())) 6113 return SDValue(); 6114 6115 if (DstAlignCanChange) { 6116 Type *Ty = MemOps[0].getTypeForEVT(C); 6117 Align NewAlign = DL.getABITypeAlign(Ty); 6118 if (NewAlign > Alignment) { 6119 // Give the stack frame object a larger alignment if needed. 6120 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6121 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6122 Alignment = NewAlign; 6123 } 6124 } 6125 6126 MachineMemOperand::Flags MMOFlags = 6127 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6128 uint64_t SrcOff = 0, DstOff = 0; 6129 SmallVector<SDValue, 8> LoadValues; 6130 SmallVector<SDValue, 8> LoadChains; 6131 SmallVector<SDValue, 8> OutChains; 6132 unsigned NumMemOps = MemOps.size(); 6133 for (unsigned i = 0; i < NumMemOps; i++) { 6134 EVT VT = MemOps[i]; 6135 unsigned VTSize = VT.getSizeInBits() / 8; 6136 SDValue Value; 6137 6138 bool isDereferenceable = 6139 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6140 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6141 if (isDereferenceable) 6142 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6143 6144 Value = DAG.getLoad( 6145 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6146 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6147 LoadValues.push_back(Value); 6148 LoadChains.push_back(Value.getValue(1)); 6149 SrcOff += VTSize; 6150 } 6151 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6152 OutChains.clear(); 6153 for (unsigned i = 0; i < NumMemOps; i++) { 6154 EVT VT = MemOps[i]; 6155 unsigned VTSize = VT.getSizeInBits() / 8; 6156 SDValue Store; 6157 6158 Store = DAG.getStore( 6159 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6160 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6161 OutChains.push_back(Store); 6162 DstOff += VTSize; 6163 } 6164 6165 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6166 } 6167 6168 /// Lower the call to 'memset' intrinsic function into a series of store 6169 /// operations. 6170 /// 6171 /// \param DAG Selection DAG where lowered code is placed. 6172 /// \param dl Link to corresponding IR location. 6173 /// \param Chain Control flow dependency. 6174 /// \param Dst Pointer to destination memory location. 6175 /// \param Src Value of byte to write into the memory. 6176 /// \param Size Number of bytes to write. 6177 /// \param Alignment Alignment of the destination in bytes. 6178 /// \param isVol True if destination is volatile. 6179 /// \param DstPtrInfo IR information on the memory pointer. 6180 /// \returns New head in the control flow, if lowering was successful, empty 6181 /// SDValue otherwise. 6182 /// 6183 /// The function tries to replace 'llvm.memset' intrinsic with several store 6184 /// operations and value calculation code. This is usually profitable for small 6185 /// memory size. 6186 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6187 SDValue Chain, SDValue Dst, SDValue Src, 6188 uint64_t Size, Align Alignment, bool isVol, 6189 MachinePointerInfo DstPtrInfo) { 6190 // Turn a memset of undef to nop. 6191 // FIXME: We need to honor volatile even is Src is undef. 6192 if (Src.isUndef()) 6193 return Chain; 6194 6195 // Expand memset to a series of load/store ops if the size operand 6196 // falls below a certain threshold. 6197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6198 std::vector<EVT> MemOps; 6199 bool DstAlignCanChange = false; 6200 MachineFunction &MF = DAG.getMachineFunction(); 6201 MachineFrameInfo &MFI = MF.getFrameInfo(); 6202 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6203 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6204 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6205 DstAlignCanChange = true; 6206 bool IsZeroVal = 6207 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6208 if (!TLI.findOptimalMemOpLowering( 6209 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6210 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6211 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6212 return SDValue(); 6213 6214 if (DstAlignCanChange) { 6215 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6216 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6217 if (NewAlign > Alignment) { 6218 // Give the stack frame object a larger alignment if needed. 6219 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6220 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6221 Alignment = NewAlign; 6222 } 6223 } 6224 6225 SmallVector<SDValue, 8> OutChains; 6226 uint64_t DstOff = 0; 6227 unsigned NumMemOps = MemOps.size(); 6228 6229 // Find the largest store and generate the bit pattern for it. 6230 EVT LargestVT = MemOps[0]; 6231 for (unsigned i = 1; i < NumMemOps; i++) 6232 if (MemOps[i].bitsGT(LargestVT)) 6233 LargestVT = MemOps[i]; 6234 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6235 6236 for (unsigned i = 0; i < NumMemOps; i++) { 6237 EVT VT = MemOps[i]; 6238 unsigned VTSize = VT.getSizeInBits() / 8; 6239 if (VTSize > Size) { 6240 // Issuing an unaligned load / store pair that overlaps with the previous 6241 // pair. Adjust the offset accordingly. 6242 assert(i == NumMemOps-1 && i != 0); 6243 DstOff -= VTSize - Size; 6244 } 6245 6246 // If this store is smaller than the largest store see whether we can get 6247 // the smaller value for free with a truncate. 6248 SDValue Value = MemSetValue; 6249 if (VT.bitsLT(LargestVT)) { 6250 if (!LargestVT.isVector() && !VT.isVector() && 6251 TLI.isTruncateFree(LargestVT, VT)) 6252 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6253 else 6254 Value = getMemsetValue(Src, VT, DAG, dl); 6255 } 6256 assert(Value.getValueType() == VT && "Value with wrong type."); 6257 SDValue Store = DAG.getStore( 6258 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6259 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6260 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6261 OutChains.push_back(Store); 6262 DstOff += VT.getSizeInBits() / 8; 6263 Size -= VTSize; 6264 } 6265 6266 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6267 } 6268 6269 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6270 unsigned AS) { 6271 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6272 // pointer operands can be losslessly bitcasted to pointers of address space 0 6273 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6274 report_fatal_error("cannot lower memory intrinsic in address space " + 6275 Twine(AS)); 6276 } 6277 } 6278 6279 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6280 SDValue Src, SDValue Size, Align Alignment, 6281 bool isVol, bool AlwaysInline, bool isTailCall, 6282 MachinePointerInfo DstPtrInfo, 6283 MachinePointerInfo SrcPtrInfo) { 6284 // Check to see if we should lower the memcpy to loads and stores first. 6285 // For cases within the target-specified limits, this is the best choice. 6286 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6287 if (ConstantSize) { 6288 // Memcpy with size zero? Just return the original chain. 6289 if (ConstantSize->isNullValue()) 6290 return Chain; 6291 6292 SDValue Result = getMemcpyLoadsAndStores( 6293 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6294 isVol, false, DstPtrInfo, SrcPtrInfo); 6295 if (Result.getNode()) 6296 return Result; 6297 } 6298 6299 // Then check to see if we should lower the memcpy with target-specific 6300 // code. If the target chooses to do this, this is the next best. 6301 if (TSI) { 6302 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6303 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6304 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6305 if (Result.getNode()) 6306 return Result; 6307 } 6308 6309 // If we really need inline code and the target declined to provide it, 6310 // use a (potentially long) sequence of loads and stores. 6311 if (AlwaysInline) { 6312 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6313 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6314 ConstantSize->getZExtValue(), Alignment, 6315 isVol, true, DstPtrInfo, SrcPtrInfo); 6316 } 6317 6318 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6319 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6320 6321 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6322 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6323 // respect volatile, so they may do things like read or write memory 6324 // beyond the given memory regions. But fixing this isn't easy, and most 6325 // people don't care. 6326 6327 // Emit a library call. 6328 TargetLowering::ArgListTy Args; 6329 TargetLowering::ArgListEntry Entry; 6330 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6331 Entry.Node = Dst; Args.push_back(Entry); 6332 Entry.Node = Src; Args.push_back(Entry); 6333 6334 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6335 Entry.Node = Size; Args.push_back(Entry); 6336 // FIXME: pass in SDLoc 6337 TargetLowering::CallLoweringInfo CLI(*this); 6338 CLI.setDebugLoc(dl) 6339 .setChain(Chain) 6340 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6341 Dst.getValueType().getTypeForEVT(*getContext()), 6342 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6343 TLI->getPointerTy(getDataLayout())), 6344 std::move(Args)) 6345 .setDiscardResult() 6346 .setTailCall(isTailCall); 6347 6348 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6349 return CallResult.second; 6350 } 6351 6352 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6353 SDValue Dst, unsigned DstAlign, 6354 SDValue Src, unsigned SrcAlign, 6355 SDValue Size, Type *SizeTy, 6356 unsigned ElemSz, bool isTailCall, 6357 MachinePointerInfo DstPtrInfo, 6358 MachinePointerInfo SrcPtrInfo) { 6359 // Emit a library call. 6360 TargetLowering::ArgListTy Args; 6361 TargetLowering::ArgListEntry Entry; 6362 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6363 Entry.Node = Dst; 6364 Args.push_back(Entry); 6365 6366 Entry.Node = Src; 6367 Args.push_back(Entry); 6368 6369 Entry.Ty = SizeTy; 6370 Entry.Node = Size; 6371 Args.push_back(Entry); 6372 6373 RTLIB::Libcall LibraryCall = 6374 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6375 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6376 report_fatal_error("Unsupported element size"); 6377 6378 TargetLowering::CallLoweringInfo CLI(*this); 6379 CLI.setDebugLoc(dl) 6380 .setChain(Chain) 6381 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6382 Type::getVoidTy(*getContext()), 6383 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6384 TLI->getPointerTy(getDataLayout())), 6385 std::move(Args)) 6386 .setDiscardResult() 6387 .setTailCall(isTailCall); 6388 6389 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6390 return CallResult.second; 6391 } 6392 6393 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6394 SDValue Src, SDValue Size, Align Alignment, 6395 bool isVol, bool isTailCall, 6396 MachinePointerInfo DstPtrInfo, 6397 MachinePointerInfo SrcPtrInfo) { 6398 // Check to see if we should lower the memmove to loads and stores first. 6399 // For cases within the target-specified limits, this is the best choice. 6400 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6401 if (ConstantSize) { 6402 // Memmove with size zero? Just return the original chain. 6403 if (ConstantSize->isNullValue()) 6404 return Chain; 6405 6406 SDValue Result = getMemmoveLoadsAndStores( 6407 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6408 isVol, false, DstPtrInfo, SrcPtrInfo); 6409 if (Result.getNode()) 6410 return Result; 6411 } 6412 6413 // Then check to see if we should lower the memmove with target-specific 6414 // code. If the target chooses to do this, this is the next best. 6415 if (TSI) { 6416 SDValue Result = TSI->EmitTargetCodeForMemmove( 6417 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6418 SrcPtrInfo); 6419 if (Result.getNode()) 6420 return Result; 6421 } 6422 6423 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6424 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6425 6426 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6427 // not be safe. See memcpy above for more details. 6428 6429 // Emit a library call. 6430 TargetLowering::ArgListTy Args; 6431 TargetLowering::ArgListEntry Entry; 6432 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6433 Entry.Node = Dst; Args.push_back(Entry); 6434 Entry.Node = Src; Args.push_back(Entry); 6435 6436 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6437 Entry.Node = Size; Args.push_back(Entry); 6438 // FIXME: pass in SDLoc 6439 TargetLowering::CallLoweringInfo CLI(*this); 6440 CLI.setDebugLoc(dl) 6441 .setChain(Chain) 6442 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6443 Dst.getValueType().getTypeForEVT(*getContext()), 6444 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6445 TLI->getPointerTy(getDataLayout())), 6446 std::move(Args)) 6447 .setDiscardResult() 6448 .setTailCall(isTailCall); 6449 6450 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6451 return CallResult.second; 6452 } 6453 6454 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6455 SDValue Dst, unsigned DstAlign, 6456 SDValue Src, unsigned SrcAlign, 6457 SDValue Size, Type *SizeTy, 6458 unsigned ElemSz, bool isTailCall, 6459 MachinePointerInfo DstPtrInfo, 6460 MachinePointerInfo SrcPtrInfo) { 6461 // Emit a library call. 6462 TargetLowering::ArgListTy Args; 6463 TargetLowering::ArgListEntry Entry; 6464 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6465 Entry.Node = Dst; 6466 Args.push_back(Entry); 6467 6468 Entry.Node = Src; 6469 Args.push_back(Entry); 6470 6471 Entry.Ty = SizeTy; 6472 Entry.Node = Size; 6473 Args.push_back(Entry); 6474 6475 RTLIB::Libcall LibraryCall = 6476 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6477 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6478 report_fatal_error("Unsupported element size"); 6479 6480 TargetLowering::CallLoweringInfo CLI(*this); 6481 CLI.setDebugLoc(dl) 6482 .setChain(Chain) 6483 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6484 Type::getVoidTy(*getContext()), 6485 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6486 TLI->getPointerTy(getDataLayout())), 6487 std::move(Args)) 6488 .setDiscardResult() 6489 .setTailCall(isTailCall); 6490 6491 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6492 return CallResult.second; 6493 } 6494 6495 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6496 SDValue Src, SDValue Size, Align Alignment, 6497 bool isVol, bool isTailCall, 6498 MachinePointerInfo DstPtrInfo) { 6499 // Check to see if we should lower the memset to stores first. 6500 // For cases within the target-specified limits, this is the best choice. 6501 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6502 if (ConstantSize) { 6503 // Memset with size zero? Just return the original chain. 6504 if (ConstantSize->isNullValue()) 6505 return Chain; 6506 6507 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6508 ConstantSize->getZExtValue(), Alignment, 6509 isVol, DstPtrInfo); 6510 6511 if (Result.getNode()) 6512 return Result; 6513 } 6514 6515 // Then check to see if we should lower the memset with target-specific 6516 // code. If the target chooses to do this, this is the next best. 6517 if (TSI) { 6518 SDValue Result = TSI->EmitTargetCodeForMemset( 6519 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6520 if (Result.getNode()) 6521 return Result; 6522 } 6523 6524 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6525 6526 // Emit a library call. 6527 TargetLowering::ArgListTy Args; 6528 TargetLowering::ArgListEntry Entry; 6529 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6530 Args.push_back(Entry); 6531 Entry.Node = Src; 6532 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6533 Args.push_back(Entry); 6534 Entry.Node = Size; 6535 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6536 Args.push_back(Entry); 6537 6538 // FIXME: pass in SDLoc 6539 TargetLowering::CallLoweringInfo CLI(*this); 6540 CLI.setDebugLoc(dl) 6541 .setChain(Chain) 6542 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6543 Dst.getValueType().getTypeForEVT(*getContext()), 6544 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6545 TLI->getPointerTy(getDataLayout())), 6546 std::move(Args)) 6547 .setDiscardResult() 6548 .setTailCall(isTailCall); 6549 6550 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6551 return CallResult.second; 6552 } 6553 6554 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6555 SDValue Dst, unsigned DstAlign, 6556 SDValue Value, SDValue Size, Type *SizeTy, 6557 unsigned ElemSz, bool isTailCall, 6558 MachinePointerInfo DstPtrInfo) { 6559 // Emit a library call. 6560 TargetLowering::ArgListTy Args; 6561 TargetLowering::ArgListEntry Entry; 6562 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6563 Entry.Node = Dst; 6564 Args.push_back(Entry); 6565 6566 Entry.Ty = Type::getInt8Ty(*getContext()); 6567 Entry.Node = Value; 6568 Args.push_back(Entry); 6569 6570 Entry.Ty = SizeTy; 6571 Entry.Node = Size; 6572 Args.push_back(Entry); 6573 6574 RTLIB::Libcall LibraryCall = 6575 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6576 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6577 report_fatal_error("Unsupported element size"); 6578 6579 TargetLowering::CallLoweringInfo CLI(*this); 6580 CLI.setDebugLoc(dl) 6581 .setChain(Chain) 6582 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6583 Type::getVoidTy(*getContext()), 6584 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6585 TLI->getPointerTy(getDataLayout())), 6586 std::move(Args)) 6587 .setDiscardResult() 6588 .setTailCall(isTailCall); 6589 6590 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6591 return CallResult.second; 6592 } 6593 6594 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6595 SDVTList VTList, ArrayRef<SDValue> Ops, 6596 MachineMemOperand *MMO) { 6597 FoldingSetNodeID ID; 6598 ID.AddInteger(MemVT.getRawBits()); 6599 AddNodeIDNode(ID, Opcode, VTList, Ops); 6600 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6601 void* IP = nullptr; 6602 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6603 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6604 return SDValue(E, 0); 6605 } 6606 6607 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6608 VTList, MemVT, MMO); 6609 createOperands(N, Ops); 6610 6611 CSEMap.InsertNode(N, IP); 6612 InsertNode(N); 6613 return SDValue(N, 0); 6614 } 6615 6616 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6617 EVT MemVT, SDVTList VTs, SDValue Chain, 6618 SDValue Ptr, SDValue Cmp, SDValue Swp, 6619 MachineMemOperand *MMO) { 6620 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6621 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6622 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6623 6624 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6625 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6626 } 6627 6628 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6629 SDValue Chain, SDValue Ptr, SDValue Val, 6630 MachineMemOperand *MMO) { 6631 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6632 Opcode == ISD::ATOMIC_LOAD_SUB || 6633 Opcode == ISD::ATOMIC_LOAD_AND || 6634 Opcode == ISD::ATOMIC_LOAD_CLR || 6635 Opcode == ISD::ATOMIC_LOAD_OR || 6636 Opcode == ISD::ATOMIC_LOAD_XOR || 6637 Opcode == ISD::ATOMIC_LOAD_NAND || 6638 Opcode == ISD::ATOMIC_LOAD_MIN || 6639 Opcode == ISD::ATOMIC_LOAD_MAX || 6640 Opcode == ISD::ATOMIC_LOAD_UMIN || 6641 Opcode == ISD::ATOMIC_LOAD_UMAX || 6642 Opcode == ISD::ATOMIC_LOAD_FADD || 6643 Opcode == ISD::ATOMIC_LOAD_FSUB || 6644 Opcode == ISD::ATOMIC_SWAP || 6645 Opcode == ISD::ATOMIC_STORE) && 6646 "Invalid Atomic Op"); 6647 6648 EVT VT = Val.getValueType(); 6649 6650 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6651 getVTList(VT, MVT::Other); 6652 SDValue Ops[] = {Chain, Ptr, Val}; 6653 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6654 } 6655 6656 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6657 EVT VT, SDValue Chain, SDValue Ptr, 6658 MachineMemOperand *MMO) { 6659 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6660 6661 SDVTList VTs = getVTList(VT, MVT::Other); 6662 SDValue Ops[] = {Chain, Ptr}; 6663 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6664 } 6665 6666 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6667 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6668 if (Ops.size() == 1) 6669 return Ops[0]; 6670 6671 SmallVector<EVT, 4> VTs; 6672 VTs.reserve(Ops.size()); 6673 for (unsigned i = 0; i < Ops.size(); ++i) 6674 VTs.push_back(Ops[i].getValueType()); 6675 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6676 } 6677 6678 SDValue SelectionDAG::getMemIntrinsicNode( 6679 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6680 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6681 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6682 if (!Size && MemVT.isScalableVector()) 6683 Size = MemoryLocation::UnknownSize; 6684 else if (!Size) 6685 Size = MemVT.getStoreSize(); 6686 6687 MachineFunction &MF = getMachineFunction(); 6688 MachineMemOperand *MMO = 6689 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6690 6691 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6692 } 6693 6694 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6695 SDVTList VTList, 6696 ArrayRef<SDValue> Ops, EVT MemVT, 6697 MachineMemOperand *MMO) { 6698 assert((Opcode == ISD::INTRINSIC_VOID || 6699 Opcode == ISD::INTRINSIC_W_CHAIN || 6700 Opcode == ISD::PREFETCH || 6701 ((int)Opcode <= std::numeric_limits<int>::max() && 6702 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6703 "Opcode is not a memory-accessing opcode!"); 6704 6705 // Memoize the node unless it returns a flag. 6706 MemIntrinsicSDNode *N; 6707 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6708 FoldingSetNodeID ID; 6709 AddNodeIDNode(ID, Opcode, VTList, Ops); 6710 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6711 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6712 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6713 void *IP = nullptr; 6714 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6715 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6716 return SDValue(E, 0); 6717 } 6718 6719 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6720 VTList, MemVT, MMO); 6721 createOperands(N, Ops); 6722 6723 CSEMap.InsertNode(N, IP); 6724 } else { 6725 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6726 VTList, MemVT, MMO); 6727 createOperands(N, Ops); 6728 } 6729 InsertNode(N); 6730 SDValue V(N, 0); 6731 NewSDValueDbgMsg(V, "Creating new node: ", this); 6732 return V; 6733 } 6734 6735 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6736 SDValue Chain, int FrameIndex, 6737 int64_t Size, int64_t Offset) { 6738 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6739 const auto VTs = getVTList(MVT::Other); 6740 SDValue Ops[2] = { 6741 Chain, 6742 getFrameIndex(FrameIndex, 6743 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6744 true)}; 6745 6746 FoldingSetNodeID ID; 6747 AddNodeIDNode(ID, Opcode, VTs, Ops); 6748 ID.AddInteger(FrameIndex); 6749 ID.AddInteger(Size); 6750 ID.AddInteger(Offset); 6751 void *IP = nullptr; 6752 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6753 return SDValue(E, 0); 6754 6755 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6756 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6757 createOperands(N, Ops); 6758 CSEMap.InsertNode(N, IP); 6759 InsertNode(N); 6760 SDValue V(N, 0); 6761 NewSDValueDbgMsg(V, "Creating new node: ", this); 6762 return V; 6763 } 6764 6765 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6766 /// MachinePointerInfo record from it. This is particularly useful because the 6767 /// code generator has many cases where it doesn't bother passing in a 6768 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6769 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6770 SelectionDAG &DAG, SDValue Ptr, 6771 int64_t Offset = 0) { 6772 // If this is FI+Offset, we can model it. 6773 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6774 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6775 FI->getIndex(), Offset); 6776 6777 // If this is (FI+Offset1)+Offset2, we can model it. 6778 if (Ptr.getOpcode() != ISD::ADD || 6779 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6780 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6781 return Info; 6782 6783 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6784 return MachinePointerInfo::getFixedStack( 6785 DAG.getMachineFunction(), FI, 6786 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6787 } 6788 6789 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6790 /// MachinePointerInfo record from it. This is particularly useful because the 6791 /// code generator has many cases where it doesn't bother passing in a 6792 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6793 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6794 SelectionDAG &DAG, SDValue Ptr, 6795 SDValue OffsetOp) { 6796 // If the 'Offset' value isn't a constant, we can't handle this. 6797 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6798 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6799 if (OffsetOp.isUndef()) 6800 return InferPointerInfo(Info, DAG, Ptr); 6801 return Info; 6802 } 6803 6804 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6805 EVT VT, const SDLoc &dl, SDValue Chain, 6806 SDValue Ptr, SDValue Offset, 6807 MachinePointerInfo PtrInfo, EVT MemVT, 6808 Align Alignment, 6809 MachineMemOperand::Flags MMOFlags, 6810 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6811 assert(Chain.getValueType() == MVT::Other && 6812 "Invalid chain type"); 6813 6814 MMOFlags |= MachineMemOperand::MOLoad; 6815 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6816 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6817 // clients. 6818 if (PtrInfo.V.isNull()) 6819 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6820 6821 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6822 MachineFunction &MF = getMachineFunction(); 6823 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6824 Alignment, AAInfo, Ranges); 6825 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6826 } 6827 6828 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6829 EVT VT, const SDLoc &dl, SDValue Chain, 6830 SDValue Ptr, SDValue Offset, EVT MemVT, 6831 MachineMemOperand *MMO) { 6832 if (VT == MemVT) { 6833 ExtType = ISD::NON_EXTLOAD; 6834 } else if (ExtType == ISD::NON_EXTLOAD) { 6835 assert(VT == MemVT && "Non-extending load from different memory type!"); 6836 } else { 6837 // Extending load. 6838 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6839 "Should only be an extending load, not truncating!"); 6840 assert(VT.isInteger() == MemVT.isInteger() && 6841 "Cannot convert from FP to Int or Int -> FP!"); 6842 assert(VT.isVector() == MemVT.isVector() && 6843 "Cannot use an ext load to convert to or from a vector!"); 6844 assert((!VT.isVector() || 6845 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6846 "Cannot use an ext load to change the number of vector elements!"); 6847 } 6848 6849 bool Indexed = AM != ISD::UNINDEXED; 6850 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6851 6852 SDVTList VTs = Indexed ? 6853 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6854 SDValue Ops[] = { Chain, Ptr, Offset }; 6855 FoldingSetNodeID ID; 6856 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6857 ID.AddInteger(MemVT.getRawBits()); 6858 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6859 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6860 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6861 void *IP = nullptr; 6862 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6863 cast<LoadSDNode>(E)->refineAlignment(MMO); 6864 return SDValue(E, 0); 6865 } 6866 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6867 ExtType, MemVT, MMO); 6868 createOperands(N, Ops); 6869 6870 CSEMap.InsertNode(N, IP); 6871 InsertNode(N); 6872 SDValue V(N, 0); 6873 NewSDValueDbgMsg(V, "Creating new node: ", this); 6874 return V; 6875 } 6876 6877 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6878 SDValue Ptr, MachinePointerInfo PtrInfo, 6879 MaybeAlign Alignment, 6880 MachineMemOperand::Flags MMOFlags, 6881 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6882 SDValue Undef = getUNDEF(Ptr.getValueType()); 6883 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6884 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6885 } 6886 6887 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6888 SDValue Ptr, MachineMemOperand *MMO) { 6889 SDValue Undef = getUNDEF(Ptr.getValueType()); 6890 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6891 VT, MMO); 6892 } 6893 6894 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6895 EVT VT, SDValue Chain, SDValue Ptr, 6896 MachinePointerInfo PtrInfo, EVT MemVT, 6897 MaybeAlign Alignment, 6898 MachineMemOperand::Flags MMOFlags, 6899 const AAMDNodes &AAInfo) { 6900 SDValue Undef = getUNDEF(Ptr.getValueType()); 6901 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6902 MemVT, Alignment, MMOFlags, AAInfo); 6903 } 6904 6905 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6906 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6907 MachineMemOperand *MMO) { 6908 SDValue Undef = getUNDEF(Ptr.getValueType()); 6909 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6910 MemVT, MMO); 6911 } 6912 6913 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6914 SDValue Base, SDValue Offset, 6915 ISD::MemIndexedMode AM) { 6916 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6917 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6918 // Don't propagate the invariant or dereferenceable flags. 6919 auto MMOFlags = 6920 LD->getMemOperand()->getFlags() & 6921 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6922 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6923 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6924 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6925 LD->getAAInfo()); 6926 } 6927 6928 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6929 SDValue Ptr, MachinePointerInfo PtrInfo, 6930 Align Alignment, 6931 MachineMemOperand::Flags MMOFlags, 6932 const AAMDNodes &AAInfo) { 6933 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6934 6935 MMOFlags |= MachineMemOperand::MOStore; 6936 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6937 6938 if (PtrInfo.V.isNull()) 6939 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6940 6941 MachineFunction &MF = getMachineFunction(); 6942 uint64_t Size = 6943 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6944 MachineMemOperand *MMO = 6945 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6946 return getStore(Chain, dl, Val, Ptr, MMO); 6947 } 6948 6949 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6950 SDValue Ptr, MachineMemOperand *MMO) { 6951 assert(Chain.getValueType() == MVT::Other && 6952 "Invalid chain type"); 6953 EVT VT = Val.getValueType(); 6954 SDVTList VTs = getVTList(MVT::Other); 6955 SDValue Undef = getUNDEF(Ptr.getValueType()); 6956 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6957 FoldingSetNodeID ID; 6958 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6959 ID.AddInteger(VT.getRawBits()); 6960 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6961 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6962 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6963 void *IP = nullptr; 6964 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6965 cast<StoreSDNode>(E)->refineAlignment(MMO); 6966 return SDValue(E, 0); 6967 } 6968 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6969 ISD::UNINDEXED, false, VT, MMO); 6970 createOperands(N, Ops); 6971 6972 CSEMap.InsertNode(N, IP); 6973 InsertNode(N); 6974 SDValue V(N, 0); 6975 NewSDValueDbgMsg(V, "Creating new node: ", this); 6976 return V; 6977 } 6978 6979 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6980 SDValue Ptr, MachinePointerInfo PtrInfo, 6981 EVT SVT, Align Alignment, 6982 MachineMemOperand::Flags MMOFlags, 6983 const AAMDNodes &AAInfo) { 6984 assert(Chain.getValueType() == MVT::Other && 6985 "Invalid chain type"); 6986 6987 MMOFlags |= MachineMemOperand::MOStore; 6988 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6989 6990 if (PtrInfo.V.isNull()) 6991 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6992 6993 MachineFunction &MF = getMachineFunction(); 6994 MachineMemOperand *MMO = MF.getMachineMemOperand( 6995 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6996 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6997 } 6998 6999 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7000 SDValue Ptr, EVT SVT, 7001 MachineMemOperand *MMO) { 7002 EVT VT = Val.getValueType(); 7003 7004 assert(Chain.getValueType() == MVT::Other && 7005 "Invalid chain type"); 7006 if (VT == SVT) 7007 return getStore(Chain, dl, Val, Ptr, MMO); 7008 7009 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7010 "Should only be a truncating store, not extending!"); 7011 assert(VT.isInteger() == SVT.isInteger() && 7012 "Can't do FP-INT conversion!"); 7013 assert(VT.isVector() == SVT.isVector() && 7014 "Cannot use trunc store to convert to or from a vector!"); 7015 assert((!VT.isVector() || 7016 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7017 "Cannot use trunc store to change the number of vector elements!"); 7018 7019 SDVTList VTs = getVTList(MVT::Other); 7020 SDValue Undef = getUNDEF(Ptr.getValueType()); 7021 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7022 FoldingSetNodeID ID; 7023 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7024 ID.AddInteger(SVT.getRawBits()); 7025 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7026 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7027 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7028 void *IP = nullptr; 7029 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7030 cast<StoreSDNode>(E)->refineAlignment(MMO); 7031 return SDValue(E, 0); 7032 } 7033 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7034 ISD::UNINDEXED, true, SVT, MMO); 7035 createOperands(N, Ops); 7036 7037 CSEMap.InsertNode(N, IP); 7038 InsertNode(N); 7039 SDValue V(N, 0); 7040 NewSDValueDbgMsg(V, "Creating new node: ", this); 7041 return V; 7042 } 7043 7044 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7045 SDValue Base, SDValue Offset, 7046 ISD::MemIndexedMode AM) { 7047 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7048 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7049 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7050 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7051 FoldingSetNodeID ID; 7052 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7053 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7054 ID.AddInteger(ST->getRawSubclassData()); 7055 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7056 void *IP = nullptr; 7057 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7058 return SDValue(E, 0); 7059 7060 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7061 ST->isTruncatingStore(), ST->getMemoryVT(), 7062 ST->getMemOperand()); 7063 createOperands(N, Ops); 7064 7065 CSEMap.InsertNode(N, IP); 7066 InsertNode(N); 7067 SDValue V(N, 0); 7068 NewSDValueDbgMsg(V, "Creating new node: ", this); 7069 return V; 7070 } 7071 7072 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7073 SDValue Base, SDValue Offset, SDValue Mask, 7074 SDValue PassThru, EVT MemVT, 7075 MachineMemOperand *MMO, 7076 ISD::MemIndexedMode AM, 7077 ISD::LoadExtType ExtTy, bool isExpanding) { 7078 bool Indexed = AM != ISD::UNINDEXED; 7079 assert((Indexed || Offset.isUndef()) && 7080 "Unindexed masked load with an offset!"); 7081 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7082 : getVTList(VT, MVT::Other); 7083 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7084 FoldingSetNodeID ID; 7085 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7086 ID.AddInteger(MemVT.getRawBits()); 7087 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7088 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7089 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7090 void *IP = nullptr; 7091 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7092 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7093 return SDValue(E, 0); 7094 } 7095 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7096 AM, ExtTy, isExpanding, MemVT, MMO); 7097 createOperands(N, Ops); 7098 7099 CSEMap.InsertNode(N, IP); 7100 InsertNode(N); 7101 SDValue V(N, 0); 7102 NewSDValueDbgMsg(V, "Creating new node: ", this); 7103 return V; 7104 } 7105 7106 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7107 SDValue Base, SDValue Offset, 7108 ISD::MemIndexedMode AM) { 7109 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7110 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7111 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7112 Offset, LD->getMask(), LD->getPassThru(), 7113 LD->getMemoryVT(), LD->getMemOperand(), AM, 7114 LD->getExtensionType(), LD->isExpandingLoad()); 7115 } 7116 7117 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7118 SDValue Val, SDValue Base, SDValue Offset, 7119 SDValue Mask, EVT MemVT, 7120 MachineMemOperand *MMO, 7121 ISD::MemIndexedMode AM, bool IsTruncating, 7122 bool IsCompressing) { 7123 assert(Chain.getValueType() == MVT::Other && 7124 "Invalid chain type"); 7125 bool Indexed = AM != ISD::UNINDEXED; 7126 assert((Indexed || Offset.isUndef()) && 7127 "Unindexed masked store with an offset!"); 7128 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7129 : getVTList(MVT::Other); 7130 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7131 FoldingSetNodeID ID; 7132 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7133 ID.AddInteger(MemVT.getRawBits()); 7134 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7135 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7136 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7137 void *IP = nullptr; 7138 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7139 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7140 return SDValue(E, 0); 7141 } 7142 auto *N = 7143 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7144 IsTruncating, IsCompressing, MemVT, MMO); 7145 createOperands(N, Ops); 7146 7147 CSEMap.InsertNode(N, IP); 7148 InsertNode(N); 7149 SDValue V(N, 0); 7150 NewSDValueDbgMsg(V, "Creating new node: ", this); 7151 return V; 7152 } 7153 7154 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7155 SDValue Base, SDValue Offset, 7156 ISD::MemIndexedMode AM) { 7157 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7158 assert(ST->getOffset().isUndef() && 7159 "Masked store is already a indexed store!"); 7160 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7161 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7162 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7163 } 7164 7165 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7166 ArrayRef<SDValue> Ops, 7167 MachineMemOperand *MMO, 7168 ISD::MemIndexType IndexType) { 7169 assert(Ops.size() == 6 && "Incompatible number of operands"); 7170 7171 FoldingSetNodeID ID; 7172 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7173 ID.AddInteger(VT.getRawBits()); 7174 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7175 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7176 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7177 void *IP = nullptr; 7178 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7179 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7180 return SDValue(E, 0); 7181 } 7182 7183 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7184 VTs, VT, MMO, IndexType); 7185 createOperands(N, Ops); 7186 7187 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7188 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7189 assert(N->getMask().getValueType().getVectorNumElements() == 7190 N->getValueType(0).getVectorNumElements() && 7191 "Vector width mismatch between mask and data"); 7192 assert(N->getIndex().getValueType().getVectorNumElements() >= 7193 N->getValueType(0).getVectorNumElements() && 7194 "Vector width mismatch between index and data"); 7195 assert(isa<ConstantSDNode>(N->getScale()) && 7196 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7197 "Scale should be a constant power of 2"); 7198 7199 CSEMap.InsertNode(N, IP); 7200 InsertNode(N); 7201 SDValue V(N, 0); 7202 NewSDValueDbgMsg(V, "Creating new node: ", this); 7203 return V; 7204 } 7205 7206 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7207 ArrayRef<SDValue> Ops, 7208 MachineMemOperand *MMO, 7209 ISD::MemIndexType IndexType) { 7210 assert(Ops.size() == 6 && "Incompatible number of operands"); 7211 7212 FoldingSetNodeID ID; 7213 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7214 ID.AddInteger(VT.getRawBits()); 7215 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7216 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7217 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7218 void *IP = nullptr; 7219 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7220 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7221 return SDValue(E, 0); 7222 } 7223 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7224 VTs, VT, MMO, IndexType); 7225 createOperands(N, Ops); 7226 7227 assert(N->getMask().getValueType().getVectorNumElements() == 7228 N->getValue().getValueType().getVectorNumElements() && 7229 "Vector width mismatch between mask and data"); 7230 assert(N->getIndex().getValueType().getVectorNumElements() >= 7231 N->getValue().getValueType().getVectorNumElements() && 7232 "Vector width mismatch between index and data"); 7233 assert(isa<ConstantSDNode>(N->getScale()) && 7234 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7235 "Scale should be a constant power of 2"); 7236 7237 CSEMap.InsertNode(N, IP); 7238 InsertNode(N); 7239 SDValue V(N, 0); 7240 NewSDValueDbgMsg(V, "Creating new node: ", this); 7241 return V; 7242 } 7243 7244 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7245 // select undef, T, F --> T (if T is a constant), otherwise F 7246 // select, ?, undef, F --> F 7247 // select, ?, T, undef --> T 7248 if (Cond.isUndef()) 7249 return isConstantValueOfAnyType(T) ? T : F; 7250 if (T.isUndef()) 7251 return F; 7252 if (F.isUndef()) 7253 return T; 7254 7255 // select true, T, F --> T 7256 // select false, T, F --> F 7257 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7258 return CondC->isNullValue() ? F : T; 7259 7260 // TODO: This should simplify VSELECT with constant condition using something 7261 // like this (but check boolean contents to be complete?): 7262 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7263 // return T; 7264 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7265 // return F; 7266 7267 // select ?, T, T --> T 7268 if (T == F) 7269 return T; 7270 7271 return SDValue(); 7272 } 7273 7274 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7275 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7276 if (X.isUndef()) 7277 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7278 // shift X, undef --> undef (because it may shift by the bitwidth) 7279 if (Y.isUndef()) 7280 return getUNDEF(X.getValueType()); 7281 7282 // shift 0, Y --> 0 7283 // shift X, 0 --> X 7284 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7285 return X; 7286 7287 // shift X, C >= bitwidth(X) --> undef 7288 // All vector elements must be too big (or undef) to avoid partial undefs. 7289 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7290 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7291 }; 7292 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7293 return getUNDEF(X.getValueType()); 7294 7295 return SDValue(); 7296 } 7297 7298 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7299 SDNodeFlags Flags) { 7300 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7301 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7302 // operation is poison. That result can be relaxed to undef. 7303 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7304 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7305 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7306 (YC && YC->getValueAPF().isNaN()); 7307 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7308 (YC && YC->getValueAPF().isInfinity()); 7309 7310 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7311 return getUNDEF(X.getValueType()); 7312 7313 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7314 return getUNDEF(X.getValueType()); 7315 7316 if (!YC) 7317 return SDValue(); 7318 7319 // X + -0.0 --> X 7320 if (Opcode == ISD::FADD) 7321 if (YC->getValueAPF().isNegZero()) 7322 return X; 7323 7324 // X - +0.0 --> X 7325 if (Opcode == ISD::FSUB) 7326 if (YC->getValueAPF().isPosZero()) 7327 return X; 7328 7329 // X * 1.0 --> X 7330 // X / 1.0 --> X 7331 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7332 if (YC->getValueAPF().isExactlyValue(1.0)) 7333 return X; 7334 7335 return SDValue(); 7336 } 7337 7338 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7339 SDValue Ptr, SDValue SV, unsigned Align) { 7340 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7341 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7342 } 7343 7344 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7345 ArrayRef<SDUse> Ops) { 7346 switch (Ops.size()) { 7347 case 0: return getNode(Opcode, DL, VT); 7348 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7349 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7350 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7351 default: break; 7352 } 7353 7354 // Copy from an SDUse array into an SDValue array for use with 7355 // the regular getNode logic. 7356 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7357 return getNode(Opcode, DL, VT, NewOps); 7358 } 7359 7360 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7361 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7362 unsigned NumOps = Ops.size(); 7363 switch (NumOps) { 7364 case 0: return getNode(Opcode, DL, VT); 7365 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7366 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7367 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7368 default: break; 7369 } 7370 7371 switch (Opcode) { 7372 default: break; 7373 case ISD::BUILD_VECTOR: 7374 // Attempt to simplify BUILD_VECTOR. 7375 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7376 return V; 7377 break; 7378 case ISD::CONCAT_VECTORS: 7379 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7380 return V; 7381 break; 7382 case ISD::SELECT_CC: 7383 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7384 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7385 "LHS and RHS of condition must have same type!"); 7386 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7387 "True and False arms of SelectCC must have same type!"); 7388 assert(Ops[2].getValueType() == VT && 7389 "select_cc node must be of same type as true and false value!"); 7390 break; 7391 case ISD::BR_CC: 7392 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7393 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7394 "LHS/RHS of comparison should match types!"); 7395 break; 7396 } 7397 7398 // Memoize nodes. 7399 SDNode *N; 7400 SDVTList VTs = getVTList(VT); 7401 7402 if (VT != MVT::Glue) { 7403 FoldingSetNodeID ID; 7404 AddNodeIDNode(ID, Opcode, VTs, Ops); 7405 void *IP = nullptr; 7406 7407 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7408 return SDValue(E, 0); 7409 7410 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7411 createOperands(N, Ops); 7412 7413 CSEMap.InsertNode(N, IP); 7414 } else { 7415 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7416 createOperands(N, Ops); 7417 } 7418 7419 InsertNode(N); 7420 SDValue V(N, 0); 7421 NewSDValueDbgMsg(V, "Creating new node: ", this); 7422 return V; 7423 } 7424 7425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7426 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7427 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7428 } 7429 7430 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7431 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7432 if (VTList.NumVTs == 1) 7433 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7434 7435 switch (Opcode) { 7436 case ISD::STRICT_FP_EXTEND: 7437 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7438 "Invalid STRICT_FP_EXTEND!"); 7439 assert(VTList.VTs[0].isFloatingPoint() && 7440 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7441 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7442 "STRICT_FP_EXTEND result type should be vector iff the operand " 7443 "type is vector!"); 7444 assert((!VTList.VTs[0].isVector() || 7445 VTList.VTs[0].getVectorNumElements() == 7446 Ops[1].getValueType().getVectorNumElements()) && 7447 "Vector element count mismatch!"); 7448 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7449 "Invalid fpext node, dst <= src!"); 7450 break; 7451 case ISD::STRICT_FP_ROUND: 7452 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7453 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7454 "STRICT_FP_ROUND result type should be vector iff the operand " 7455 "type is vector!"); 7456 assert((!VTList.VTs[0].isVector() || 7457 VTList.VTs[0].getVectorNumElements() == 7458 Ops[1].getValueType().getVectorNumElements()) && 7459 "Vector element count mismatch!"); 7460 assert(VTList.VTs[0].isFloatingPoint() && 7461 Ops[1].getValueType().isFloatingPoint() && 7462 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7463 isa<ConstantSDNode>(Ops[2]) && 7464 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7465 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7466 "Invalid STRICT_FP_ROUND!"); 7467 break; 7468 #if 0 7469 // FIXME: figure out how to safely handle things like 7470 // int foo(int x) { return 1 << (x & 255); } 7471 // int bar() { return foo(256); } 7472 case ISD::SRA_PARTS: 7473 case ISD::SRL_PARTS: 7474 case ISD::SHL_PARTS: 7475 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7476 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7477 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7478 else if (N3.getOpcode() == ISD::AND) 7479 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7480 // If the and is only masking out bits that cannot effect the shift, 7481 // eliminate the and. 7482 unsigned NumBits = VT.getScalarSizeInBits()*2; 7483 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7484 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7485 } 7486 break; 7487 #endif 7488 } 7489 7490 // Memoize the node unless it returns a flag. 7491 SDNode *N; 7492 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7493 FoldingSetNodeID ID; 7494 AddNodeIDNode(ID, Opcode, VTList, Ops); 7495 void *IP = nullptr; 7496 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7497 return SDValue(E, 0); 7498 7499 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7500 N->setFlags(Flags); 7501 createOperands(N, Ops); 7502 CSEMap.InsertNode(N, IP); 7503 } else { 7504 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7505 createOperands(N, Ops); 7506 } 7507 InsertNode(N); 7508 SDValue V(N, 0); 7509 NewSDValueDbgMsg(V, "Creating new node: ", this); 7510 return V; 7511 } 7512 7513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7514 SDVTList VTList) { 7515 return getNode(Opcode, DL, VTList, None); 7516 } 7517 7518 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7519 SDValue N1) { 7520 SDValue Ops[] = { N1 }; 7521 return getNode(Opcode, DL, VTList, Ops); 7522 } 7523 7524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7525 SDValue N1, SDValue N2) { 7526 SDValue Ops[] = { N1, N2 }; 7527 return getNode(Opcode, DL, VTList, Ops); 7528 } 7529 7530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7531 SDValue N1, SDValue N2, SDValue N3) { 7532 SDValue Ops[] = { N1, N2, N3 }; 7533 return getNode(Opcode, DL, VTList, Ops); 7534 } 7535 7536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7537 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7538 SDValue Ops[] = { N1, N2, N3, N4 }; 7539 return getNode(Opcode, DL, VTList, Ops); 7540 } 7541 7542 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7543 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7544 SDValue N5) { 7545 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7546 return getNode(Opcode, DL, VTList, Ops); 7547 } 7548 7549 SDVTList SelectionDAG::getVTList(EVT VT) { 7550 return makeVTList(SDNode::getValueTypeList(VT), 1); 7551 } 7552 7553 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7554 FoldingSetNodeID ID; 7555 ID.AddInteger(2U); 7556 ID.AddInteger(VT1.getRawBits()); 7557 ID.AddInteger(VT2.getRawBits()); 7558 7559 void *IP = nullptr; 7560 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7561 if (!Result) { 7562 EVT *Array = Allocator.Allocate<EVT>(2); 7563 Array[0] = VT1; 7564 Array[1] = VT2; 7565 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7566 VTListMap.InsertNode(Result, IP); 7567 } 7568 return Result->getSDVTList(); 7569 } 7570 7571 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7572 FoldingSetNodeID ID; 7573 ID.AddInteger(3U); 7574 ID.AddInteger(VT1.getRawBits()); 7575 ID.AddInteger(VT2.getRawBits()); 7576 ID.AddInteger(VT3.getRawBits()); 7577 7578 void *IP = nullptr; 7579 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7580 if (!Result) { 7581 EVT *Array = Allocator.Allocate<EVT>(3); 7582 Array[0] = VT1; 7583 Array[1] = VT2; 7584 Array[2] = VT3; 7585 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7586 VTListMap.InsertNode(Result, IP); 7587 } 7588 return Result->getSDVTList(); 7589 } 7590 7591 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7592 FoldingSetNodeID ID; 7593 ID.AddInteger(4U); 7594 ID.AddInteger(VT1.getRawBits()); 7595 ID.AddInteger(VT2.getRawBits()); 7596 ID.AddInteger(VT3.getRawBits()); 7597 ID.AddInteger(VT4.getRawBits()); 7598 7599 void *IP = nullptr; 7600 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7601 if (!Result) { 7602 EVT *Array = Allocator.Allocate<EVT>(4); 7603 Array[0] = VT1; 7604 Array[1] = VT2; 7605 Array[2] = VT3; 7606 Array[3] = VT4; 7607 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7608 VTListMap.InsertNode(Result, IP); 7609 } 7610 return Result->getSDVTList(); 7611 } 7612 7613 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7614 unsigned NumVTs = VTs.size(); 7615 FoldingSetNodeID ID; 7616 ID.AddInteger(NumVTs); 7617 for (unsigned index = 0; index < NumVTs; index++) { 7618 ID.AddInteger(VTs[index].getRawBits()); 7619 } 7620 7621 void *IP = nullptr; 7622 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7623 if (!Result) { 7624 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7625 llvm::copy(VTs, Array); 7626 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7627 VTListMap.InsertNode(Result, IP); 7628 } 7629 return Result->getSDVTList(); 7630 } 7631 7632 7633 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7634 /// specified operands. If the resultant node already exists in the DAG, 7635 /// this does not modify the specified node, instead it returns the node that 7636 /// already exists. If the resultant node does not exist in the DAG, the 7637 /// input node is returned. As a degenerate case, if you specify the same 7638 /// input operands as the node already has, the input node is returned. 7639 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7640 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7641 7642 // Check to see if there is no change. 7643 if (Op == N->getOperand(0)) return N; 7644 7645 // See if the modified node already exists. 7646 void *InsertPos = nullptr; 7647 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7648 return Existing; 7649 7650 // Nope it doesn't. Remove the node from its current place in the maps. 7651 if (InsertPos) 7652 if (!RemoveNodeFromCSEMaps(N)) 7653 InsertPos = nullptr; 7654 7655 // Now we update the operands. 7656 N->OperandList[0].set(Op); 7657 7658 updateDivergence(N); 7659 // If this gets put into a CSE map, add it. 7660 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7661 return N; 7662 } 7663 7664 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7665 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7666 7667 // Check to see if there is no change. 7668 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7669 return N; // No operands changed, just return the input node. 7670 7671 // See if the modified node already exists. 7672 void *InsertPos = nullptr; 7673 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7674 return Existing; 7675 7676 // Nope it doesn't. Remove the node from its current place in the maps. 7677 if (InsertPos) 7678 if (!RemoveNodeFromCSEMaps(N)) 7679 InsertPos = nullptr; 7680 7681 // Now we update the operands. 7682 if (N->OperandList[0] != Op1) 7683 N->OperandList[0].set(Op1); 7684 if (N->OperandList[1] != Op2) 7685 N->OperandList[1].set(Op2); 7686 7687 updateDivergence(N); 7688 // If this gets put into a CSE map, add it. 7689 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7690 return N; 7691 } 7692 7693 SDNode *SelectionDAG:: 7694 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7695 SDValue Ops[] = { Op1, Op2, Op3 }; 7696 return UpdateNodeOperands(N, Ops); 7697 } 7698 7699 SDNode *SelectionDAG:: 7700 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7701 SDValue Op3, SDValue Op4) { 7702 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7703 return UpdateNodeOperands(N, Ops); 7704 } 7705 7706 SDNode *SelectionDAG:: 7707 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7708 SDValue Op3, SDValue Op4, SDValue Op5) { 7709 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7710 return UpdateNodeOperands(N, Ops); 7711 } 7712 7713 SDNode *SelectionDAG:: 7714 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7715 unsigned NumOps = Ops.size(); 7716 assert(N->getNumOperands() == NumOps && 7717 "Update with wrong number of operands"); 7718 7719 // If no operands changed just return the input node. 7720 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7721 return N; 7722 7723 // See if the modified node already exists. 7724 void *InsertPos = nullptr; 7725 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7726 return Existing; 7727 7728 // Nope it doesn't. Remove the node from its current place in the maps. 7729 if (InsertPos) 7730 if (!RemoveNodeFromCSEMaps(N)) 7731 InsertPos = nullptr; 7732 7733 // Now we update the operands. 7734 for (unsigned i = 0; i != NumOps; ++i) 7735 if (N->OperandList[i] != Ops[i]) 7736 N->OperandList[i].set(Ops[i]); 7737 7738 updateDivergence(N); 7739 // If this gets put into a CSE map, add it. 7740 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7741 return N; 7742 } 7743 7744 /// DropOperands - Release the operands and set this node to have 7745 /// zero operands. 7746 void SDNode::DropOperands() { 7747 // Unlike the code in MorphNodeTo that does this, we don't need to 7748 // watch for dead nodes here. 7749 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7750 SDUse &Use = *I++; 7751 Use.set(SDValue()); 7752 } 7753 } 7754 7755 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7756 ArrayRef<MachineMemOperand *> NewMemRefs) { 7757 if (NewMemRefs.empty()) { 7758 N->clearMemRefs(); 7759 return; 7760 } 7761 7762 // Check if we can avoid allocating by storing a single reference directly. 7763 if (NewMemRefs.size() == 1) { 7764 N->MemRefs = NewMemRefs[0]; 7765 N->NumMemRefs = 1; 7766 return; 7767 } 7768 7769 MachineMemOperand **MemRefsBuffer = 7770 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7771 llvm::copy(NewMemRefs, MemRefsBuffer); 7772 N->MemRefs = MemRefsBuffer; 7773 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7774 } 7775 7776 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7777 /// machine opcode. 7778 /// 7779 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7780 EVT VT) { 7781 SDVTList VTs = getVTList(VT); 7782 return SelectNodeTo(N, MachineOpc, VTs, None); 7783 } 7784 7785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7786 EVT VT, SDValue Op1) { 7787 SDVTList VTs = getVTList(VT); 7788 SDValue Ops[] = { Op1 }; 7789 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7790 } 7791 7792 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7793 EVT VT, SDValue Op1, 7794 SDValue Op2) { 7795 SDVTList VTs = getVTList(VT); 7796 SDValue Ops[] = { Op1, Op2 }; 7797 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7798 } 7799 7800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7801 EVT VT, SDValue Op1, 7802 SDValue Op2, SDValue Op3) { 7803 SDVTList VTs = getVTList(VT); 7804 SDValue Ops[] = { Op1, Op2, Op3 }; 7805 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7806 } 7807 7808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7809 EVT VT, ArrayRef<SDValue> Ops) { 7810 SDVTList VTs = getVTList(VT); 7811 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7812 } 7813 7814 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7815 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7816 SDVTList VTs = getVTList(VT1, VT2); 7817 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7818 } 7819 7820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7821 EVT VT1, EVT VT2) { 7822 SDVTList VTs = getVTList(VT1, VT2); 7823 return SelectNodeTo(N, MachineOpc, VTs, None); 7824 } 7825 7826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7827 EVT VT1, EVT VT2, EVT VT3, 7828 ArrayRef<SDValue> Ops) { 7829 SDVTList VTs = getVTList(VT1, VT2, VT3); 7830 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7831 } 7832 7833 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7834 EVT VT1, EVT VT2, 7835 SDValue Op1, SDValue Op2) { 7836 SDVTList VTs = getVTList(VT1, VT2); 7837 SDValue Ops[] = { Op1, Op2 }; 7838 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7839 } 7840 7841 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7842 SDVTList VTs,ArrayRef<SDValue> Ops) { 7843 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7844 // Reset the NodeID to -1. 7845 New->setNodeId(-1); 7846 if (New != N) { 7847 ReplaceAllUsesWith(N, New); 7848 RemoveDeadNode(N); 7849 } 7850 return New; 7851 } 7852 7853 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7854 /// the line number information on the merged node since it is not possible to 7855 /// preserve the information that operation is associated with multiple lines. 7856 /// This will make the debugger working better at -O0, were there is a higher 7857 /// probability having other instructions associated with that line. 7858 /// 7859 /// For IROrder, we keep the smaller of the two 7860 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7861 DebugLoc NLoc = N->getDebugLoc(); 7862 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7863 N->setDebugLoc(DebugLoc()); 7864 } 7865 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7866 N->setIROrder(Order); 7867 return N; 7868 } 7869 7870 /// MorphNodeTo - This *mutates* the specified node to have the specified 7871 /// return type, opcode, and operands. 7872 /// 7873 /// Note that MorphNodeTo returns the resultant node. If there is already a 7874 /// node of the specified opcode and operands, it returns that node instead of 7875 /// the current one. Note that the SDLoc need not be the same. 7876 /// 7877 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7878 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7879 /// node, and because it doesn't require CSE recalculation for any of 7880 /// the node's users. 7881 /// 7882 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7883 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7884 /// the legalizer which maintain worklists that would need to be updated when 7885 /// deleting things. 7886 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7887 SDVTList VTs, ArrayRef<SDValue> Ops) { 7888 // If an identical node already exists, use it. 7889 void *IP = nullptr; 7890 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7891 FoldingSetNodeID ID; 7892 AddNodeIDNode(ID, Opc, VTs, Ops); 7893 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7894 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7895 } 7896 7897 if (!RemoveNodeFromCSEMaps(N)) 7898 IP = nullptr; 7899 7900 // Start the morphing. 7901 N->NodeType = Opc; 7902 N->ValueList = VTs.VTs; 7903 N->NumValues = VTs.NumVTs; 7904 7905 // Clear the operands list, updating used nodes to remove this from their 7906 // use list. Keep track of any operands that become dead as a result. 7907 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7908 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7909 SDUse &Use = *I++; 7910 SDNode *Used = Use.getNode(); 7911 Use.set(SDValue()); 7912 if (Used->use_empty()) 7913 DeadNodeSet.insert(Used); 7914 } 7915 7916 // For MachineNode, initialize the memory references information. 7917 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7918 MN->clearMemRefs(); 7919 7920 // Swap for an appropriately sized array from the recycler. 7921 removeOperands(N); 7922 createOperands(N, Ops); 7923 7924 // Delete any nodes that are still dead after adding the uses for the 7925 // new operands. 7926 if (!DeadNodeSet.empty()) { 7927 SmallVector<SDNode *, 16> DeadNodes; 7928 for (SDNode *N : DeadNodeSet) 7929 if (N->use_empty()) 7930 DeadNodes.push_back(N); 7931 RemoveDeadNodes(DeadNodes); 7932 } 7933 7934 if (IP) 7935 CSEMap.InsertNode(N, IP); // Memoize the new node. 7936 return N; 7937 } 7938 7939 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7940 unsigned OrigOpc = Node->getOpcode(); 7941 unsigned NewOpc; 7942 switch (OrigOpc) { 7943 default: 7944 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7945 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7946 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7947 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7948 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7949 #include "llvm/IR/ConstrainedOps.def" 7950 } 7951 7952 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7953 7954 // We're taking this node out of the chain, so we need to re-link things. 7955 SDValue InputChain = Node->getOperand(0); 7956 SDValue OutputChain = SDValue(Node, 1); 7957 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7958 7959 SmallVector<SDValue, 3> Ops; 7960 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7961 Ops.push_back(Node->getOperand(i)); 7962 7963 SDVTList VTs = getVTList(Node->getValueType(0)); 7964 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7965 7966 // MorphNodeTo can operate in two ways: if an existing node with the 7967 // specified operands exists, it can just return it. Otherwise, it 7968 // updates the node in place to have the requested operands. 7969 if (Res == Node) { 7970 // If we updated the node in place, reset the node ID. To the isel, 7971 // this should be just like a newly allocated machine node. 7972 Res->setNodeId(-1); 7973 } else { 7974 ReplaceAllUsesWith(Node, Res); 7975 RemoveDeadNode(Node); 7976 } 7977 7978 return Res; 7979 } 7980 7981 /// getMachineNode - These are used for target selectors to create a new node 7982 /// with specified return type(s), MachineInstr opcode, and operands. 7983 /// 7984 /// Note that getMachineNode returns the resultant node. If there is already a 7985 /// node of the specified opcode and operands, it returns that node instead of 7986 /// the current one. 7987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7988 EVT VT) { 7989 SDVTList VTs = getVTList(VT); 7990 return getMachineNode(Opcode, dl, VTs, None); 7991 } 7992 7993 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7994 EVT VT, SDValue Op1) { 7995 SDVTList VTs = getVTList(VT); 7996 SDValue Ops[] = { Op1 }; 7997 return getMachineNode(Opcode, dl, VTs, Ops); 7998 } 7999 8000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8001 EVT VT, SDValue Op1, SDValue Op2) { 8002 SDVTList VTs = getVTList(VT); 8003 SDValue Ops[] = { Op1, Op2 }; 8004 return getMachineNode(Opcode, dl, VTs, Ops); 8005 } 8006 8007 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8008 EVT VT, SDValue Op1, SDValue Op2, 8009 SDValue Op3) { 8010 SDVTList VTs = getVTList(VT); 8011 SDValue Ops[] = { Op1, Op2, Op3 }; 8012 return getMachineNode(Opcode, dl, VTs, Ops); 8013 } 8014 8015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8016 EVT VT, ArrayRef<SDValue> Ops) { 8017 SDVTList VTs = getVTList(VT); 8018 return getMachineNode(Opcode, dl, VTs, Ops); 8019 } 8020 8021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8022 EVT VT1, EVT VT2, SDValue Op1, 8023 SDValue Op2) { 8024 SDVTList VTs = getVTList(VT1, VT2); 8025 SDValue Ops[] = { Op1, Op2 }; 8026 return getMachineNode(Opcode, dl, VTs, Ops); 8027 } 8028 8029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8030 EVT VT1, EVT VT2, SDValue Op1, 8031 SDValue Op2, SDValue Op3) { 8032 SDVTList VTs = getVTList(VT1, VT2); 8033 SDValue Ops[] = { Op1, Op2, Op3 }; 8034 return getMachineNode(Opcode, dl, VTs, Ops); 8035 } 8036 8037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8038 EVT VT1, EVT VT2, 8039 ArrayRef<SDValue> Ops) { 8040 SDVTList VTs = getVTList(VT1, VT2); 8041 return getMachineNode(Opcode, dl, VTs, Ops); 8042 } 8043 8044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8045 EVT VT1, EVT VT2, EVT VT3, 8046 SDValue Op1, SDValue Op2) { 8047 SDVTList VTs = getVTList(VT1, VT2, VT3); 8048 SDValue Ops[] = { Op1, Op2 }; 8049 return getMachineNode(Opcode, dl, VTs, Ops); 8050 } 8051 8052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8053 EVT VT1, EVT VT2, EVT VT3, 8054 SDValue Op1, SDValue Op2, 8055 SDValue Op3) { 8056 SDVTList VTs = getVTList(VT1, VT2, VT3); 8057 SDValue Ops[] = { Op1, Op2, Op3 }; 8058 return getMachineNode(Opcode, dl, VTs, Ops); 8059 } 8060 8061 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8062 EVT VT1, EVT VT2, EVT VT3, 8063 ArrayRef<SDValue> Ops) { 8064 SDVTList VTs = getVTList(VT1, VT2, VT3); 8065 return getMachineNode(Opcode, dl, VTs, Ops); 8066 } 8067 8068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8069 ArrayRef<EVT> ResultTys, 8070 ArrayRef<SDValue> Ops) { 8071 SDVTList VTs = getVTList(ResultTys); 8072 return getMachineNode(Opcode, dl, VTs, Ops); 8073 } 8074 8075 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8076 SDVTList VTs, 8077 ArrayRef<SDValue> Ops) { 8078 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8079 MachineSDNode *N; 8080 void *IP = nullptr; 8081 8082 if (DoCSE) { 8083 FoldingSetNodeID ID; 8084 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8085 IP = nullptr; 8086 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8087 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8088 } 8089 } 8090 8091 // Allocate a new MachineSDNode. 8092 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8093 createOperands(N, Ops); 8094 8095 if (DoCSE) 8096 CSEMap.InsertNode(N, IP); 8097 8098 InsertNode(N); 8099 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8100 return N; 8101 } 8102 8103 /// getTargetExtractSubreg - A convenience function for creating 8104 /// TargetOpcode::EXTRACT_SUBREG nodes. 8105 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8106 SDValue Operand) { 8107 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8108 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8109 VT, Operand, SRIdxVal); 8110 return SDValue(Subreg, 0); 8111 } 8112 8113 /// getTargetInsertSubreg - A convenience function for creating 8114 /// TargetOpcode::INSERT_SUBREG nodes. 8115 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8116 SDValue Operand, SDValue Subreg) { 8117 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8118 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8119 VT, Operand, Subreg, SRIdxVal); 8120 return SDValue(Result, 0); 8121 } 8122 8123 /// getNodeIfExists - Get the specified node if it's already available, or 8124 /// else return NULL. 8125 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8126 ArrayRef<SDValue> Ops, 8127 const SDNodeFlags Flags) { 8128 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8129 FoldingSetNodeID ID; 8130 AddNodeIDNode(ID, Opcode, VTList, Ops); 8131 void *IP = nullptr; 8132 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8133 E->intersectFlagsWith(Flags); 8134 return E; 8135 } 8136 } 8137 return nullptr; 8138 } 8139 8140 /// getDbgValue - Creates a SDDbgValue node. 8141 /// 8142 /// SDNode 8143 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8144 SDNode *N, unsigned R, bool IsIndirect, 8145 const DebugLoc &DL, unsigned O) { 8146 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8147 "Expected inlined-at fields to agree"); 8148 return new (DbgInfo->getAlloc()) 8149 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8150 } 8151 8152 /// Constant 8153 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8154 DIExpression *Expr, 8155 const Value *C, 8156 const DebugLoc &DL, unsigned O) { 8157 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8158 "Expected inlined-at fields to agree"); 8159 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8160 } 8161 8162 /// FrameIndex 8163 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8164 DIExpression *Expr, unsigned FI, 8165 bool IsIndirect, 8166 const DebugLoc &DL, 8167 unsigned O) { 8168 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8169 "Expected inlined-at fields to agree"); 8170 return new (DbgInfo->getAlloc()) 8171 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8172 } 8173 8174 /// VReg 8175 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8176 DIExpression *Expr, 8177 unsigned VReg, bool IsIndirect, 8178 const DebugLoc &DL, unsigned O) { 8179 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8180 "Expected inlined-at fields to agree"); 8181 return new (DbgInfo->getAlloc()) 8182 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8183 } 8184 8185 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8186 unsigned OffsetInBits, unsigned SizeInBits, 8187 bool InvalidateDbg) { 8188 SDNode *FromNode = From.getNode(); 8189 SDNode *ToNode = To.getNode(); 8190 assert(FromNode && ToNode && "Can't modify dbg values"); 8191 8192 // PR35338 8193 // TODO: assert(From != To && "Redundant dbg value transfer"); 8194 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8195 if (From == To || FromNode == ToNode) 8196 return; 8197 8198 if (!FromNode->getHasDebugValue()) 8199 return; 8200 8201 SmallVector<SDDbgValue *, 2> ClonedDVs; 8202 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8203 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8204 continue; 8205 8206 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8207 8208 // Just transfer the dbg value attached to From. 8209 if (Dbg->getResNo() != From.getResNo()) 8210 continue; 8211 8212 DIVariable *Var = Dbg->getVariable(); 8213 auto *Expr = Dbg->getExpression(); 8214 // If a fragment is requested, update the expression. 8215 if (SizeInBits) { 8216 // When splitting a larger (e.g., sign-extended) value whose 8217 // lower bits are described with an SDDbgValue, do not attempt 8218 // to transfer the SDDbgValue to the upper bits. 8219 if (auto FI = Expr->getFragmentInfo()) 8220 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8221 continue; 8222 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8223 SizeInBits); 8224 if (!Fragment) 8225 continue; 8226 Expr = *Fragment; 8227 } 8228 // Clone the SDDbgValue and move it to To. 8229 SDDbgValue *Clone = getDbgValue( 8230 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8231 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8232 ClonedDVs.push_back(Clone); 8233 8234 if (InvalidateDbg) { 8235 // Invalidate value and indicate the SDDbgValue should not be emitted. 8236 Dbg->setIsInvalidated(); 8237 Dbg->setIsEmitted(); 8238 } 8239 } 8240 8241 for (SDDbgValue *Dbg : ClonedDVs) 8242 AddDbgValue(Dbg, ToNode, false); 8243 } 8244 8245 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8246 if (!N.getHasDebugValue()) 8247 return; 8248 8249 SmallVector<SDDbgValue *, 2> ClonedDVs; 8250 for (auto DV : GetDbgValues(&N)) { 8251 if (DV->isInvalidated()) 8252 continue; 8253 switch (N.getOpcode()) { 8254 default: 8255 break; 8256 case ISD::ADD: 8257 SDValue N0 = N.getOperand(0); 8258 SDValue N1 = N.getOperand(1); 8259 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8260 isConstantIntBuildVectorOrConstantInt(N1)) { 8261 uint64_t Offset = N.getConstantOperandVal(1); 8262 // Rewrite an ADD constant node into a DIExpression. Since we are 8263 // performing arithmetic to compute the variable's *value* in the 8264 // DIExpression, we need to mark the expression with a 8265 // DW_OP_stack_value. 8266 auto *DIExpr = DV->getExpression(); 8267 DIExpr = 8268 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8269 SDDbgValue *Clone = 8270 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8271 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8272 ClonedDVs.push_back(Clone); 8273 DV->setIsInvalidated(); 8274 DV->setIsEmitted(); 8275 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8276 N0.getNode()->dumprFull(this); 8277 dbgs() << " into " << *DIExpr << '\n'); 8278 } 8279 } 8280 } 8281 8282 for (SDDbgValue *Dbg : ClonedDVs) 8283 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8284 } 8285 8286 /// Creates a SDDbgLabel node. 8287 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8288 const DebugLoc &DL, unsigned O) { 8289 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8290 "Expected inlined-at fields to agree"); 8291 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8292 } 8293 8294 namespace { 8295 8296 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8297 /// pointed to by a use iterator is deleted, increment the use iterator 8298 /// so that it doesn't dangle. 8299 /// 8300 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8301 SDNode::use_iterator &UI; 8302 SDNode::use_iterator &UE; 8303 8304 void NodeDeleted(SDNode *N, SDNode *E) override { 8305 // Increment the iterator as needed. 8306 while (UI != UE && N == *UI) 8307 ++UI; 8308 } 8309 8310 public: 8311 RAUWUpdateListener(SelectionDAG &d, 8312 SDNode::use_iterator &ui, 8313 SDNode::use_iterator &ue) 8314 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8315 }; 8316 8317 } // end anonymous namespace 8318 8319 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8320 /// This can cause recursive merging of nodes in the DAG. 8321 /// 8322 /// This version assumes From has a single result value. 8323 /// 8324 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8325 SDNode *From = FromN.getNode(); 8326 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8327 "Cannot replace with this method!"); 8328 assert(From != To.getNode() && "Cannot replace uses of with self"); 8329 8330 // Preserve Debug Values 8331 transferDbgValues(FromN, To); 8332 8333 // Iterate over all the existing uses of From. New uses will be added 8334 // to the beginning of the use list, which we avoid visiting. 8335 // This specifically avoids visiting uses of From that arise while the 8336 // replacement is happening, because any such uses would be the result 8337 // of CSE: If an existing node looks like From after one of its operands 8338 // is replaced by To, we don't want to replace of all its users with To 8339 // too. See PR3018 for more info. 8340 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8341 RAUWUpdateListener Listener(*this, UI, UE); 8342 while (UI != UE) { 8343 SDNode *User = *UI; 8344 8345 // This node is about to morph, remove its old self from the CSE maps. 8346 RemoveNodeFromCSEMaps(User); 8347 8348 // A user can appear in a use list multiple times, and when this 8349 // happens the uses are usually next to each other in the list. 8350 // To help reduce the number of CSE recomputations, process all 8351 // the uses of this user that we can find this way. 8352 do { 8353 SDUse &Use = UI.getUse(); 8354 ++UI; 8355 Use.set(To); 8356 if (To->isDivergent() != From->isDivergent()) 8357 updateDivergence(User); 8358 } while (UI != UE && *UI == User); 8359 // Now that we have modified User, add it back to the CSE maps. If it 8360 // already exists there, recursively merge the results together. 8361 AddModifiedNodeToCSEMaps(User); 8362 } 8363 8364 // If we just RAUW'd the root, take note. 8365 if (FromN == getRoot()) 8366 setRoot(To); 8367 } 8368 8369 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8370 /// This can cause recursive merging of nodes in the DAG. 8371 /// 8372 /// This version assumes that for each value of From, there is a 8373 /// corresponding value in To in the same position with the same type. 8374 /// 8375 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8376 #ifndef NDEBUG 8377 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8378 assert((!From->hasAnyUseOfValue(i) || 8379 From->getValueType(i) == To->getValueType(i)) && 8380 "Cannot use this version of ReplaceAllUsesWith!"); 8381 #endif 8382 8383 // Handle the trivial case. 8384 if (From == To) 8385 return; 8386 8387 // Preserve Debug Info. Only do this if there's a use. 8388 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8389 if (From->hasAnyUseOfValue(i)) { 8390 assert((i < To->getNumValues()) && "Invalid To location"); 8391 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8392 } 8393 8394 // Iterate over just the existing users of From. See the comments in 8395 // the ReplaceAllUsesWith above. 8396 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8397 RAUWUpdateListener Listener(*this, UI, UE); 8398 while (UI != UE) { 8399 SDNode *User = *UI; 8400 8401 // This node is about to morph, remove its old self from the CSE maps. 8402 RemoveNodeFromCSEMaps(User); 8403 8404 // A user can appear in a use list multiple times, and when this 8405 // happens the uses are usually next to each other in the list. 8406 // To help reduce the number of CSE recomputations, process all 8407 // the uses of this user that we can find this way. 8408 do { 8409 SDUse &Use = UI.getUse(); 8410 ++UI; 8411 Use.setNode(To); 8412 if (To->isDivergent() != From->isDivergent()) 8413 updateDivergence(User); 8414 } while (UI != UE && *UI == User); 8415 8416 // Now that we have modified User, add it back to the CSE maps. If it 8417 // already exists there, recursively merge the results together. 8418 AddModifiedNodeToCSEMaps(User); 8419 } 8420 8421 // If we just RAUW'd the root, take note. 8422 if (From == getRoot().getNode()) 8423 setRoot(SDValue(To, getRoot().getResNo())); 8424 } 8425 8426 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8427 /// This can cause recursive merging of nodes in the DAG. 8428 /// 8429 /// This version can replace From with any result values. To must match the 8430 /// number and types of values returned by From. 8431 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8432 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8433 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8434 8435 // Preserve Debug Info. 8436 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8437 transferDbgValues(SDValue(From, i), To[i]); 8438 8439 // Iterate over just the existing users of From. See the comments in 8440 // the ReplaceAllUsesWith above. 8441 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8442 RAUWUpdateListener Listener(*this, UI, UE); 8443 while (UI != UE) { 8444 SDNode *User = *UI; 8445 8446 // This node is about to morph, remove its old self from the CSE maps. 8447 RemoveNodeFromCSEMaps(User); 8448 8449 // A user can appear in a use list multiple times, and when this happens the 8450 // uses are usually next to each other in the list. To help reduce the 8451 // number of CSE and divergence recomputations, process all the uses of this 8452 // user that we can find this way. 8453 bool To_IsDivergent = false; 8454 do { 8455 SDUse &Use = UI.getUse(); 8456 const SDValue &ToOp = To[Use.getResNo()]; 8457 ++UI; 8458 Use.set(ToOp); 8459 To_IsDivergent |= ToOp->isDivergent(); 8460 } while (UI != UE && *UI == User); 8461 8462 if (To_IsDivergent != From->isDivergent()) 8463 updateDivergence(User); 8464 8465 // Now that we have modified User, add it back to the CSE maps. If it 8466 // already exists there, recursively merge the results together. 8467 AddModifiedNodeToCSEMaps(User); 8468 } 8469 8470 // If we just RAUW'd the root, take note. 8471 if (From == getRoot().getNode()) 8472 setRoot(SDValue(To[getRoot().getResNo()])); 8473 } 8474 8475 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8476 /// uses of other values produced by From.getNode() alone. The Deleted 8477 /// vector is handled the same way as for ReplaceAllUsesWith. 8478 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8479 // Handle the really simple, really trivial case efficiently. 8480 if (From == To) return; 8481 8482 // Handle the simple, trivial, case efficiently. 8483 if (From.getNode()->getNumValues() == 1) { 8484 ReplaceAllUsesWith(From, To); 8485 return; 8486 } 8487 8488 // Preserve Debug Info. 8489 transferDbgValues(From, To); 8490 8491 // Iterate over just the existing users of From. See the comments in 8492 // the ReplaceAllUsesWith above. 8493 SDNode::use_iterator UI = From.getNode()->use_begin(), 8494 UE = From.getNode()->use_end(); 8495 RAUWUpdateListener Listener(*this, UI, UE); 8496 while (UI != UE) { 8497 SDNode *User = *UI; 8498 bool UserRemovedFromCSEMaps = false; 8499 8500 // A user can appear in a use list multiple times, and when this 8501 // happens the uses are usually next to each other in the list. 8502 // To help reduce the number of CSE recomputations, process all 8503 // the uses of this user that we can find this way. 8504 do { 8505 SDUse &Use = UI.getUse(); 8506 8507 // Skip uses of different values from the same node. 8508 if (Use.getResNo() != From.getResNo()) { 8509 ++UI; 8510 continue; 8511 } 8512 8513 // If this node hasn't been modified yet, it's still in the CSE maps, 8514 // so remove its old self from the CSE maps. 8515 if (!UserRemovedFromCSEMaps) { 8516 RemoveNodeFromCSEMaps(User); 8517 UserRemovedFromCSEMaps = true; 8518 } 8519 8520 ++UI; 8521 Use.set(To); 8522 if (To->isDivergent() != From->isDivergent()) 8523 updateDivergence(User); 8524 } while (UI != UE && *UI == User); 8525 // We are iterating over all uses of the From node, so if a use 8526 // doesn't use the specific value, no changes are made. 8527 if (!UserRemovedFromCSEMaps) 8528 continue; 8529 8530 // Now that we have modified User, add it back to the CSE maps. If it 8531 // already exists there, recursively merge the results together. 8532 AddModifiedNodeToCSEMaps(User); 8533 } 8534 8535 // If we just RAUW'd the root, take note. 8536 if (From == getRoot()) 8537 setRoot(To); 8538 } 8539 8540 namespace { 8541 8542 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8543 /// to record information about a use. 8544 struct UseMemo { 8545 SDNode *User; 8546 unsigned Index; 8547 SDUse *Use; 8548 }; 8549 8550 /// operator< - Sort Memos by User. 8551 bool operator<(const UseMemo &L, const UseMemo &R) { 8552 return (intptr_t)L.User < (intptr_t)R.User; 8553 } 8554 8555 } // end anonymous namespace 8556 8557 void SelectionDAG::updateDivergence(SDNode * N) 8558 { 8559 if (TLI->isSDNodeAlwaysUniform(N)) 8560 return; 8561 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8562 for (auto &Op : N->ops()) { 8563 if (Op.Val.getValueType() != MVT::Other) 8564 IsDivergent |= Op.getNode()->isDivergent(); 8565 } 8566 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8567 N->SDNodeBits.IsDivergent = IsDivergent; 8568 for (auto U : N->uses()) { 8569 updateDivergence(U); 8570 } 8571 } 8572 } 8573 8574 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8575 DenseMap<SDNode *, unsigned> Degree; 8576 Order.reserve(AllNodes.size()); 8577 for (auto &N : allnodes()) { 8578 unsigned NOps = N.getNumOperands(); 8579 Degree[&N] = NOps; 8580 if (0 == NOps) 8581 Order.push_back(&N); 8582 } 8583 for (size_t I = 0; I != Order.size(); ++I) { 8584 SDNode *N = Order[I]; 8585 for (auto U : N->uses()) { 8586 unsigned &UnsortedOps = Degree[U]; 8587 if (0 == --UnsortedOps) 8588 Order.push_back(U); 8589 } 8590 } 8591 } 8592 8593 #ifndef NDEBUG 8594 void SelectionDAG::VerifyDAGDiverence() { 8595 std::vector<SDNode *> TopoOrder; 8596 CreateTopologicalOrder(TopoOrder); 8597 const TargetLowering &TLI = getTargetLoweringInfo(); 8598 DenseMap<const SDNode *, bool> DivergenceMap; 8599 for (auto &N : allnodes()) { 8600 DivergenceMap[&N] = false; 8601 } 8602 for (auto N : TopoOrder) { 8603 bool IsDivergent = DivergenceMap[N]; 8604 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8605 for (auto &Op : N->ops()) { 8606 if (Op.Val.getValueType() != MVT::Other) 8607 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8608 } 8609 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8610 DivergenceMap[N] = true; 8611 } 8612 } 8613 for (auto &N : allnodes()) { 8614 (void)N; 8615 assert(DivergenceMap[&N] == N.isDivergent() && 8616 "Divergence bit inconsistency detected\n"); 8617 } 8618 } 8619 #endif 8620 8621 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8622 /// uses of other values produced by From.getNode() alone. The same value 8623 /// may appear in both the From and To list. The Deleted vector is 8624 /// handled the same way as for ReplaceAllUsesWith. 8625 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8626 const SDValue *To, 8627 unsigned Num){ 8628 // Handle the simple, trivial case efficiently. 8629 if (Num == 1) 8630 return ReplaceAllUsesOfValueWith(*From, *To); 8631 8632 transferDbgValues(*From, *To); 8633 8634 // Read up all the uses and make records of them. This helps 8635 // processing new uses that are introduced during the 8636 // replacement process. 8637 SmallVector<UseMemo, 4> Uses; 8638 for (unsigned i = 0; i != Num; ++i) { 8639 unsigned FromResNo = From[i].getResNo(); 8640 SDNode *FromNode = From[i].getNode(); 8641 for (SDNode::use_iterator UI = FromNode->use_begin(), 8642 E = FromNode->use_end(); UI != E; ++UI) { 8643 SDUse &Use = UI.getUse(); 8644 if (Use.getResNo() == FromResNo) { 8645 UseMemo Memo = { *UI, i, &Use }; 8646 Uses.push_back(Memo); 8647 } 8648 } 8649 } 8650 8651 // Sort the uses, so that all the uses from a given User are together. 8652 llvm::sort(Uses); 8653 8654 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8655 UseIndex != UseIndexEnd; ) { 8656 // We know that this user uses some value of From. If it is the right 8657 // value, update it. 8658 SDNode *User = Uses[UseIndex].User; 8659 8660 // This node is about to morph, remove its old self from the CSE maps. 8661 RemoveNodeFromCSEMaps(User); 8662 8663 // The Uses array is sorted, so all the uses for a given User 8664 // are next to each other in the list. 8665 // To help reduce the number of CSE recomputations, process all 8666 // the uses of this user that we can find this way. 8667 do { 8668 unsigned i = Uses[UseIndex].Index; 8669 SDUse &Use = *Uses[UseIndex].Use; 8670 ++UseIndex; 8671 8672 Use.set(To[i]); 8673 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8674 8675 // Now that we have modified User, add it back to the CSE maps. If it 8676 // already exists there, recursively merge the results together. 8677 AddModifiedNodeToCSEMaps(User); 8678 } 8679 } 8680 8681 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8682 /// based on their topological order. It returns the maximum id and a vector 8683 /// of the SDNodes* in assigned order by reference. 8684 unsigned SelectionDAG::AssignTopologicalOrder() { 8685 unsigned DAGSize = 0; 8686 8687 // SortedPos tracks the progress of the algorithm. Nodes before it are 8688 // sorted, nodes after it are unsorted. When the algorithm completes 8689 // it is at the end of the list. 8690 allnodes_iterator SortedPos = allnodes_begin(); 8691 8692 // Visit all the nodes. Move nodes with no operands to the front of 8693 // the list immediately. Annotate nodes that do have operands with their 8694 // operand count. Before we do this, the Node Id fields of the nodes 8695 // may contain arbitrary values. After, the Node Id fields for nodes 8696 // before SortedPos will contain the topological sort index, and the 8697 // Node Id fields for nodes At SortedPos and after will contain the 8698 // count of outstanding operands. 8699 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8700 SDNode *N = &*I++; 8701 checkForCycles(N, this); 8702 unsigned Degree = N->getNumOperands(); 8703 if (Degree == 0) { 8704 // A node with no uses, add it to the result array immediately. 8705 N->setNodeId(DAGSize++); 8706 allnodes_iterator Q(N); 8707 if (Q != SortedPos) 8708 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8709 assert(SortedPos != AllNodes.end() && "Overran node list"); 8710 ++SortedPos; 8711 } else { 8712 // Temporarily use the Node Id as scratch space for the degree count. 8713 N->setNodeId(Degree); 8714 } 8715 } 8716 8717 // Visit all the nodes. As we iterate, move nodes into sorted order, 8718 // such that by the time the end is reached all nodes will be sorted. 8719 for (SDNode &Node : allnodes()) { 8720 SDNode *N = &Node; 8721 checkForCycles(N, this); 8722 // N is in sorted position, so all its uses have one less operand 8723 // that needs to be sorted. 8724 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8725 UI != UE; ++UI) { 8726 SDNode *P = *UI; 8727 unsigned Degree = P->getNodeId(); 8728 assert(Degree != 0 && "Invalid node degree"); 8729 --Degree; 8730 if (Degree == 0) { 8731 // All of P's operands are sorted, so P may sorted now. 8732 P->setNodeId(DAGSize++); 8733 if (P->getIterator() != SortedPos) 8734 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8735 assert(SortedPos != AllNodes.end() && "Overran node list"); 8736 ++SortedPos; 8737 } else { 8738 // Update P's outstanding operand count. 8739 P->setNodeId(Degree); 8740 } 8741 } 8742 if (Node.getIterator() == SortedPos) { 8743 #ifndef NDEBUG 8744 allnodes_iterator I(N); 8745 SDNode *S = &*++I; 8746 dbgs() << "Overran sorted position:\n"; 8747 S->dumprFull(this); dbgs() << "\n"; 8748 dbgs() << "Checking if this is due to cycles\n"; 8749 checkForCycles(this, true); 8750 #endif 8751 llvm_unreachable(nullptr); 8752 } 8753 } 8754 8755 assert(SortedPos == AllNodes.end() && 8756 "Topological sort incomplete!"); 8757 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8758 "First node in topological sort is not the entry token!"); 8759 assert(AllNodes.front().getNodeId() == 0 && 8760 "First node in topological sort has non-zero id!"); 8761 assert(AllNodes.front().getNumOperands() == 0 && 8762 "First node in topological sort has operands!"); 8763 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8764 "Last node in topologic sort has unexpected id!"); 8765 assert(AllNodes.back().use_empty() && 8766 "Last node in topologic sort has users!"); 8767 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8768 return DAGSize; 8769 } 8770 8771 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8772 /// value is produced by SD. 8773 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8774 if (SD) { 8775 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8776 SD->setHasDebugValue(true); 8777 } 8778 DbgInfo->add(DB, SD, isParameter); 8779 } 8780 8781 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8782 DbgInfo->add(DB); 8783 } 8784 8785 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8786 SDValue NewMemOp) { 8787 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8788 // The new memory operation must have the same position as the old load in 8789 // terms of memory dependency. Create a TokenFactor for the old load and new 8790 // memory operation and update uses of the old load's output chain to use that 8791 // TokenFactor. 8792 SDValue OldChain = SDValue(OldLoad, 1); 8793 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8794 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8795 return NewChain; 8796 8797 SDValue TokenFactor = 8798 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8799 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8800 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8801 return TokenFactor; 8802 } 8803 8804 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8805 Function **OutFunction) { 8806 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8807 8808 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8809 auto *Module = MF->getFunction().getParent(); 8810 auto *Function = Module->getFunction(Symbol); 8811 8812 if (OutFunction != nullptr) 8813 *OutFunction = Function; 8814 8815 if (Function != nullptr) { 8816 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8817 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8818 } 8819 8820 std::string ErrorStr; 8821 raw_string_ostream ErrorFormatter(ErrorStr); 8822 8823 ErrorFormatter << "Undefined external symbol "; 8824 ErrorFormatter << '"' << Symbol << '"'; 8825 ErrorFormatter.flush(); 8826 8827 report_fatal_error(ErrorStr); 8828 } 8829 8830 //===----------------------------------------------------------------------===// 8831 // SDNode Class 8832 //===----------------------------------------------------------------------===// 8833 8834 bool llvm::isNullConstant(SDValue V) { 8835 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8836 return Const != nullptr && Const->isNullValue(); 8837 } 8838 8839 bool llvm::isNullFPConstant(SDValue V) { 8840 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8841 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8842 } 8843 8844 bool llvm::isAllOnesConstant(SDValue V) { 8845 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8846 return Const != nullptr && Const->isAllOnesValue(); 8847 } 8848 8849 bool llvm::isOneConstant(SDValue V) { 8850 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8851 return Const != nullptr && Const->isOne(); 8852 } 8853 8854 SDValue llvm::peekThroughBitcasts(SDValue V) { 8855 while (V.getOpcode() == ISD::BITCAST) 8856 V = V.getOperand(0); 8857 return V; 8858 } 8859 8860 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8861 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8862 V = V.getOperand(0); 8863 return V; 8864 } 8865 8866 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8867 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8868 V = V.getOperand(0); 8869 return V; 8870 } 8871 8872 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8873 if (V.getOpcode() != ISD::XOR) 8874 return false; 8875 V = peekThroughBitcasts(V.getOperand(1)); 8876 unsigned NumBits = V.getScalarValueSizeInBits(); 8877 ConstantSDNode *C = 8878 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8879 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8880 } 8881 8882 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8883 bool AllowTruncation) { 8884 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8885 return CN; 8886 8887 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8888 BitVector UndefElements; 8889 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8890 8891 // BuildVectors can truncate their operands. Ignore that case here unless 8892 // AllowTruncation is set. 8893 if (CN && (UndefElements.none() || AllowUndefs)) { 8894 EVT CVT = CN->getValueType(0); 8895 EVT NSVT = N.getValueType().getScalarType(); 8896 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8897 if (AllowTruncation || (CVT == NSVT)) 8898 return CN; 8899 } 8900 } 8901 8902 return nullptr; 8903 } 8904 8905 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8906 bool AllowUndefs, 8907 bool AllowTruncation) { 8908 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8909 return CN; 8910 8911 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8912 BitVector UndefElements; 8913 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8914 8915 // BuildVectors can truncate their operands. Ignore that case here unless 8916 // AllowTruncation is set. 8917 if (CN && (UndefElements.none() || AllowUndefs)) { 8918 EVT CVT = CN->getValueType(0); 8919 EVT NSVT = N.getValueType().getScalarType(); 8920 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8921 if (AllowTruncation || (CVT == NSVT)) 8922 return CN; 8923 } 8924 } 8925 8926 return nullptr; 8927 } 8928 8929 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8930 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8931 return CN; 8932 8933 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8934 BitVector UndefElements; 8935 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8936 if (CN && (UndefElements.none() || AllowUndefs)) 8937 return CN; 8938 } 8939 8940 return nullptr; 8941 } 8942 8943 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8944 const APInt &DemandedElts, 8945 bool AllowUndefs) { 8946 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8947 return CN; 8948 8949 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8950 BitVector UndefElements; 8951 ConstantFPSDNode *CN = 8952 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8953 if (CN && (UndefElements.none() || AllowUndefs)) 8954 return CN; 8955 } 8956 8957 return nullptr; 8958 } 8959 8960 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8961 // TODO: may want to use peekThroughBitcast() here. 8962 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8963 return C && C->isNullValue(); 8964 } 8965 8966 bool llvm::isOneOrOneSplat(SDValue N) { 8967 // TODO: may want to use peekThroughBitcast() here. 8968 unsigned BitWidth = N.getScalarValueSizeInBits(); 8969 ConstantSDNode *C = isConstOrConstSplat(N); 8970 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8971 } 8972 8973 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8974 N = peekThroughBitcasts(N); 8975 unsigned BitWidth = N.getScalarValueSizeInBits(); 8976 ConstantSDNode *C = isConstOrConstSplat(N); 8977 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8978 } 8979 8980 HandleSDNode::~HandleSDNode() { 8981 DropOperands(); 8982 } 8983 8984 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8985 const DebugLoc &DL, 8986 const GlobalValue *GA, EVT VT, 8987 int64_t o, unsigned TF) 8988 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8989 TheGlobal = GA; 8990 } 8991 8992 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8993 EVT VT, unsigned SrcAS, 8994 unsigned DestAS) 8995 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8996 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8997 8998 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8999 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9000 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9001 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9002 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9003 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9004 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9005 9006 // We check here that the size of the memory operand fits within the size of 9007 // the MMO. This is because the MMO might indicate only a possible address 9008 // range instead of specifying the affected memory addresses precisely. 9009 // TODO: Make MachineMemOperands aware of scalable vectors. 9010 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9011 "Size mismatch!"); 9012 } 9013 9014 /// Profile - Gather unique data for the node. 9015 /// 9016 void SDNode::Profile(FoldingSetNodeID &ID) const { 9017 AddNodeIDNode(ID, this); 9018 } 9019 9020 namespace { 9021 9022 struct EVTArray { 9023 std::vector<EVT> VTs; 9024 9025 EVTArray() { 9026 VTs.reserve(MVT::LAST_VALUETYPE); 9027 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9028 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9029 } 9030 }; 9031 9032 } // end anonymous namespace 9033 9034 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9035 static ManagedStatic<EVTArray> SimpleVTArray; 9036 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9037 9038 /// getValueTypeList - Return a pointer to the specified value type. 9039 /// 9040 const EVT *SDNode::getValueTypeList(EVT VT) { 9041 if (VT.isExtended()) { 9042 sys::SmartScopedLock<true> Lock(*VTMutex); 9043 return &(*EVTs->insert(VT).first); 9044 } else { 9045 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9046 "Value type out of range!"); 9047 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9048 } 9049 } 9050 9051 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9052 /// indicated value. This method ignores uses of other values defined by this 9053 /// operation. 9054 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9055 assert(Value < getNumValues() && "Bad value!"); 9056 9057 // TODO: Only iterate over uses of a given value of the node 9058 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9059 if (UI.getUse().getResNo() == Value) { 9060 if (NUses == 0) 9061 return false; 9062 --NUses; 9063 } 9064 } 9065 9066 // Found exactly the right number of uses? 9067 return NUses == 0; 9068 } 9069 9070 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9071 /// value. This method ignores uses of other values defined by this operation. 9072 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9073 assert(Value < getNumValues() && "Bad value!"); 9074 9075 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9076 if (UI.getUse().getResNo() == Value) 9077 return true; 9078 9079 return false; 9080 } 9081 9082 /// isOnlyUserOf - Return true if this node is the only use of N. 9083 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9084 bool Seen = false; 9085 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9086 SDNode *User = *I; 9087 if (User == this) 9088 Seen = true; 9089 else 9090 return false; 9091 } 9092 9093 return Seen; 9094 } 9095 9096 /// Return true if the only users of N are contained in Nodes. 9097 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9098 bool Seen = false; 9099 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9100 SDNode *User = *I; 9101 if (llvm::any_of(Nodes, 9102 [&User](const SDNode *Node) { return User == Node; })) 9103 Seen = true; 9104 else 9105 return false; 9106 } 9107 9108 return Seen; 9109 } 9110 9111 /// isOperand - Return true if this node is an operand of N. 9112 bool SDValue::isOperandOf(const SDNode *N) const { 9113 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9114 } 9115 9116 bool SDNode::isOperandOf(const SDNode *N) const { 9117 return any_of(N->op_values(), 9118 [this](SDValue Op) { return this == Op.getNode(); }); 9119 } 9120 9121 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9122 /// be a chain) reaches the specified operand without crossing any 9123 /// side-effecting instructions on any chain path. In practice, this looks 9124 /// through token factors and non-volatile loads. In order to remain efficient, 9125 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9126 /// 9127 /// Note that we only need to examine chains when we're searching for 9128 /// side-effects; SelectionDAG requires that all side-effects are represented 9129 /// by chains, even if another operand would force a specific ordering. This 9130 /// constraint is necessary to allow transformations like splitting loads. 9131 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9132 unsigned Depth) const { 9133 if (*this == Dest) return true; 9134 9135 // Don't search too deeply, we just want to be able to see through 9136 // TokenFactor's etc. 9137 if (Depth == 0) return false; 9138 9139 // If this is a token factor, all inputs to the TF happen in parallel. 9140 if (getOpcode() == ISD::TokenFactor) { 9141 // First, try a shallow search. 9142 if (is_contained((*this)->ops(), Dest)) { 9143 // We found the chain we want as an operand of this TokenFactor. 9144 // Essentially, we reach the chain without side-effects if we could 9145 // serialize the TokenFactor into a simple chain of operations with 9146 // Dest as the last operation. This is automatically true if the 9147 // chain has one use: there are no other ordering constraints. 9148 // If the chain has more than one use, we give up: some other 9149 // use of Dest might force a side-effect between Dest and the current 9150 // node. 9151 if (Dest.hasOneUse()) 9152 return true; 9153 } 9154 // Next, try a deep search: check whether every operand of the TokenFactor 9155 // reaches Dest. 9156 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9157 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9158 }); 9159 } 9160 9161 // Loads don't have side effects, look through them. 9162 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9163 if (Ld->isUnordered()) 9164 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9165 } 9166 return false; 9167 } 9168 9169 bool SDNode::hasPredecessor(const SDNode *N) const { 9170 SmallPtrSet<const SDNode *, 32> Visited; 9171 SmallVector<const SDNode *, 16> Worklist; 9172 Worklist.push_back(this); 9173 return hasPredecessorHelper(N, Visited, Worklist); 9174 } 9175 9176 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9177 this->Flags.intersectWith(Flags); 9178 } 9179 9180 SDValue 9181 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9182 ArrayRef<ISD::NodeType> CandidateBinOps, 9183 bool AllowPartials) { 9184 // The pattern must end in an extract from index 0. 9185 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9186 !isNullConstant(Extract->getOperand(1))) 9187 return SDValue(); 9188 9189 // Match against one of the candidate binary ops. 9190 SDValue Op = Extract->getOperand(0); 9191 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9192 return Op.getOpcode() == unsigned(BinOp); 9193 })) 9194 return SDValue(); 9195 9196 // Floating-point reductions may require relaxed constraints on the final step 9197 // of the reduction because they may reorder intermediate operations. 9198 unsigned CandidateBinOp = Op.getOpcode(); 9199 if (Op.getValueType().isFloatingPoint()) { 9200 SDNodeFlags Flags = Op->getFlags(); 9201 switch (CandidateBinOp) { 9202 case ISD::FADD: 9203 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9204 return SDValue(); 9205 break; 9206 default: 9207 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9208 } 9209 } 9210 9211 // Matching failed - attempt to see if we did enough stages that a partial 9212 // reduction from a subvector is possible. 9213 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9214 if (!AllowPartials || !Op) 9215 return SDValue(); 9216 EVT OpVT = Op.getValueType(); 9217 EVT OpSVT = OpVT.getScalarType(); 9218 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9219 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9220 return SDValue(); 9221 BinOp = (ISD::NodeType)CandidateBinOp; 9222 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9223 getVectorIdxConstant(0, SDLoc(Op))); 9224 }; 9225 9226 // At each stage, we're looking for something that looks like: 9227 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9228 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9229 // i32 undef, i32 undef, i32 undef, i32 undef> 9230 // %a = binop <8 x i32> %op, %s 9231 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9232 // we expect something like: 9233 // <4,5,6,7,u,u,u,u> 9234 // <2,3,u,u,u,u,u,u> 9235 // <1,u,u,u,u,u,u,u> 9236 // While a partial reduction match would be: 9237 // <2,3,u,u,u,u,u,u> 9238 // <1,u,u,u,u,u,u,u> 9239 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9240 SDValue PrevOp; 9241 for (unsigned i = 0; i < Stages; ++i) { 9242 unsigned MaskEnd = (1 << i); 9243 9244 if (Op.getOpcode() != CandidateBinOp) 9245 return PartialReduction(PrevOp, MaskEnd); 9246 9247 SDValue Op0 = Op.getOperand(0); 9248 SDValue Op1 = Op.getOperand(1); 9249 9250 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9251 if (Shuffle) { 9252 Op = Op1; 9253 } else { 9254 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9255 Op = Op0; 9256 } 9257 9258 // The first operand of the shuffle should be the same as the other operand 9259 // of the binop. 9260 if (!Shuffle || Shuffle->getOperand(0) != Op) 9261 return PartialReduction(PrevOp, MaskEnd); 9262 9263 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9264 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9265 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9266 return PartialReduction(PrevOp, MaskEnd); 9267 9268 PrevOp = Op; 9269 } 9270 9271 BinOp = (ISD::NodeType)CandidateBinOp; 9272 return Op; 9273 } 9274 9275 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9276 assert(N->getNumValues() == 1 && 9277 "Can't unroll a vector with multiple results!"); 9278 9279 EVT VT = N->getValueType(0); 9280 unsigned NE = VT.getVectorNumElements(); 9281 EVT EltVT = VT.getVectorElementType(); 9282 SDLoc dl(N); 9283 9284 SmallVector<SDValue, 8> Scalars; 9285 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9286 9287 // If ResNE is 0, fully unroll the vector op. 9288 if (ResNE == 0) 9289 ResNE = NE; 9290 else if (NE > ResNE) 9291 NE = ResNE; 9292 9293 unsigned i; 9294 for (i= 0; i != NE; ++i) { 9295 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9296 SDValue Operand = N->getOperand(j); 9297 EVT OperandVT = Operand.getValueType(); 9298 if (OperandVT.isVector()) { 9299 // A vector operand; extract a single element. 9300 EVT OperandEltVT = OperandVT.getVectorElementType(); 9301 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9302 Operand, getVectorIdxConstant(i, dl)); 9303 } else { 9304 // A scalar operand; just use it as is. 9305 Operands[j] = Operand; 9306 } 9307 } 9308 9309 switch (N->getOpcode()) { 9310 default: { 9311 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9312 N->getFlags())); 9313 break; 9314 } 9315 case ISD::VSELECT: 9316 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9317 break; 9318 case ISD::SHL: 9319 case ISD::SRA: 9320 case ISD::SRL: 9321 case ISD::ROTL: 9322 case ISD::ROTR: 9323 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9324 getShiftAmountOperand(Operands[0].getValueType(), 9325 Operands[1]))); 9326 break; 9327 case ISD::SIGN_EXTEND_INREG: { 9328 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9329 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9330 Operands[0], 9331 getValueType(ExtVT))); 9332 } 9333 } 9334 } 9335 9336 for (; i < ResNE; ++i) 9337 Scalars.push_back(getUNDEF(EltVT)); 9338 9339 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9340 return getBuildVector(VecVT, dl, Scalars); 9341 } 9342 9343 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9344 SDNode *N, unsigned ResNE) { 9345 unsigned Opcode = N->getOpcode(); 9346 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9347 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9348 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9349 "Expected an overflow opcode"); 9350 9351 EVT ResVT = N->getValueType(0); 9352 EVT OvVT = N->getValueType(1); 9353 EVT ResEltVT = ResVT.getVectorElementType(); 9354 EVT OvEltVT = OvVT.getVectorElementType(); 9355 SDLoc dl(N); 9356 9357 // If ResNE is 0, fully unroll the vector op. 9358 unsigned NE = ResVT.getVectorNumElements(); 9359 if (ResNE == 0) 9360 ResNE = NE; 9361 else if (NE > ResNE) 9362 NE = ResNE; 9363 9364 SmallVector<SDValue, 8> LHSScalars; 9365 SmallVector<SDValue, 8> RHSScalars; 9366 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9367 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9368 9369 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9370 SDVTList VTs = getVTList(ResEltVT, SVT); 9371 SmallVector<SDValue, 8> ResScalars; 9372 SmallVector<SDValue, 8> OvScalars; 9373 for (unsigned i = 0; i < NE; ++i) { 9374 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9375 SDValue Ov = 9376 getSelect(dl, OvEltVT, Res.getValue(1), 9377 getBoolConstant(true, dl, OvEltVT, ResVT), 9378 getConstant(0, dl, OvEltVT)); 9379 9380 ResScalars.push_back(Res); 9381 OvScalars.push_back(Ov); 9382 } 9383 9384 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9385 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9386 9387 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9388 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9389 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9390 getBuildVector(NewOvVT, dl, OvScalars)); 9391 } 9392 9393 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9394 LoadSDNode *Base, 9395 unsigned Bytes, 9396 int Dist) const { 9397 if (LD->isVolatile() || Base->isVolatile()) 9398 return false; 9399 // TODO: probably too restrictive for atomics, revisit 9400 if (!LD->isSimple()) 9401 return false; 9402 if (LD->isIndexed() || Base->isIndexed()) 9403 return false; 9404 if (LD->getChain() != Base->getChain()) 9405 return false; 9406 EVT VT = LD->getValueType(0); 9407 if (VT.getSizeInBits() / 8 != Bytes) 9408 return false; 9409 9410 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9411 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9412 9413 int64_t Offset = 0; 9414 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9415 return (Dist * Bytes == Offset); 9416 return false; 9417 } 9418 9419 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9420 /// if it cannot be inferred. 9421 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9422 // If this is a GlobalAddress + cst, return the alignment. 9423 const GlobalValue *GV = nullptr; 9424 int64_t GVOffset = 0; 9425 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9426 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9427 KnownBits Known(PtrWidth); 9428 llvm::computeKnownBits(GV, Known, getDataLayout()); 9429 unsigned AlignBits = Known.countMinTrailingZeros(); 9430 if (AlignBits) 9431 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9432 } 9433 9434 // If this is a direct reference to a stack slot, use information about the 9435 // stack slot's alignment. 9436 int FrameIdx = INT_MIN; 9437 int64_t FrameOffset = 0; 9438 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9439 FrameIdx = FI->getIndex(); 9440 } else if (isBaseWithConstantOffset(Ptr) && 9441 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9442 // Handle FI+Cst 9443 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9444 FrameOffset = Ptr.getConstantOperandVal(1); 9445 } 9446 9447 if (FrameIdx != INT_MIN) { 9448 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9449 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9450 } 9451 9452 return None; 9453 } 9454 9455 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9456 /// which is split (or expanded) into two not necessarily identical pieces. 9457 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9458 // Currently all types are split in half. 9459 EVT LoVT, HiVT; 9460 if (!VT.isVector()) 9461 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9462 else 9463 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9464 9465 return std::make_pair(LoVT, HiVT); 9466 } 9467 9468 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9469 /// type, dependent on an enveloping VT that has been split into two identical 9470 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9471 std::pair<EVT, EVT> 9472 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9473 bool *HiIsEmpty) const { 9474 EVT EltTp = VT.getVectorElementType(); 9475 bool IsScalable = VT.isScalableVector(); 9476 // Examples: 9477 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9478 // custom VL=9 with enveloping VL=8/8 yields 8/1 9479 // custom VL=10 with enveloping VL=8/8 yields 8/2 9480 // etc. 9481 unsigned VTNumElts = VT.getVectorNumElements(); 9482 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9483 EVT LoVT, HiVT; 9484 if (VTNumElts > EnvNumElts) { 9485 LoVT = EnvVT; 9486 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9487 IsScalable); 9488 *HiIsEmpty = false; 9489 } else { 9490 // Flag that hi type has zero storage size, but return split envelop type 9491 // (this would be easier if vector types with zero elements were allowed). 9492 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9493 HiVT = EnvVT; 9494 *HiIsEmpty = true; 9495 } 9496 return std::make_pair(LoVT, HiVT); 9497 } 9498 9499 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9500 /// low/high part. 9501 std::pair<SDValue, SDValue> 9502 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9503 const EVT &HiVT) { 9504 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9505 N.getValueType().getVectorNumElements() && 9506 "More vector elements requested than available!"); 9507 SDValue Lo, Hi; 9508 Lo = 9509 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9510 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9511 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9512 return std::make_pair(Lo, Hi); 9513 } 9514 9515 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9516 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9517 EVT VT = N.getValueType(); 9518 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9519 NextPowerOf2(VT.getVectorNumElements())); 9520 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9521 getVectorIdxConstant(0, DL)); 9522 } 9523 9524 void SelectionDAG::ExtractVectorElements(SDValue Op, 9525 SmallVectorImpl<SDValue> &Args, 9526 unsigned Start, unsigned Count, 9527 EVT EltVT) { 9528 EVT VT = Op.getValueType(); 9529 if (Count == 0) 9530 Count = VT.getVectorNumElements(); 9531 if (EltVT == EVT()) 9532 EltVT = VT.getVectorElementType(); 9533 SDLoc SL(Op); 9534 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9535 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9536 getVectorIdxConstant(i, SL))); 9537 } 9538 } 9539 9540 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9541 unsigned GlobalAddressSDNode::getAddressSpace() const { 9542 return getGlobal()->getType()->getAddressSpace(); 9543 } 9544 9545 Type *ConstantPoolSDNode::getType() const { 9546 if (isMachineConstantPoolEntry()) 9547 return Val.MachineCPVal->getType(); 9548 return Val.ConstVal->getType(); 9549 } 9550 9551 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9552 unsigned &SplatBitSize, 9553 bool &HasAnyUndefs, 9554 unsigned MinSplatBits, 9555 bool IsBigEndian) const { 9556 EVT VT = getValueType(0); 9557 assert(VT.isVector() && "Expected a vector type"); 9558 unsigned VecWidth = VT.getSizeInBits(); 9559 if (MinSplatBits > VecWidth) 9560 return false; 9561 9562 // FIXME: The widths are based on this node's type, but build vectors can 9563 // truncate their operands. 9564 SplatValue = APInt(VecWidth, 0); 9565 SplatUndef = APInt(VecWidth, 0); 9566 9567 // Get the bits. Bits with undefined values (when the corresponding element 9568 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9569 // in SplatValue. If any of the values are not constant, give up and return 9570 // false. 9571 unsigned int NumOps = getNumOperands(); 9572 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9573 unsigned EltWidth = VT.getScalarSizeInBits(); 9574 9575 for (unsigned j = 0; j < NumOps; ++j) { 9576 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9577 SDValue OpVal = getOperand(i); 9578 unsigned BitPos = j * EltWidth; 9579 9580 if (OpVal.isUndef()) 9581 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9582 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9583 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9584 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9585 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9586 else 9587 return false; 9588 } 9589 9590 // The build_vector is all constants or undefs. Find the smallest element 9591 // size that splats the vector. 9592 HasAnyUndefs = (SplatUndef != 0); 9593 9594 // FIXME: This does not work for vectors with elements less than 8 bits. 9595 while (VecWidth > 8) { 9596 unsigned HalfSize = VecWidth / 2; 9597 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9598 APInt LowValue = SplatValue.trunc(HalfSize); 9599 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9600 APInt LowUndef = SplatUndef.trunc(HalfSize); 9601 9602 // If the two halves do not match (ignoring undef bits), stop here. 9603 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9604 MinSplatBits > HalfSize) 9605 break; 9606 9607 SplatValue = HighValue | LowValue; 9608 SplatUndef = HighUndef & LowUndef; 9609 9610 VecWidth = HalfSize; 9611 } 9612 9613 SplatBitSize = VecWidth; 9614 return true; 9615 } 9616 9617 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9618 BitVector *UndefElements) const { 9619 if (UndefElements) { 9620 UndefElements->clear(); 9621 UndefElements->resize(getNumOperands()); 9622 } 9623 assert(getNumOperands() == DemandedElts.getBitWidth() && 9624 "Unexpected vector size"); 9625 if (!DemandedElts) 9626 return SDValue(); 9627 SDValue Splatted; 9628 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9629 if (!DemandedElts[i]) 9630 continue; 9631 SDValue Op = getOperand(i); 9632 if (Op.isUndef()) { 9633 if (UndefElements) 9634 (*UndefElements)[i] = true; 9635 } else if (!Splatted) { 9636 Splatted = Op; 9637 } else if (Splatted != Op) { 9638 return SDValue(); 9639 } 9640 } 9641 9642 if (!Splatted) { 9643 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9644 assert(getOperand(FirstDemandedIdx).isUndef() && 9645 "Can only have a splat without a constant for all undefs."); 9646 return getOperand(FirstDemandedIdx); 9647 } 9648 9649 return Splatted; 9650 } 9651 9652 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9653 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9654 return getSplatValue(DemandedElts, UndefElements); 9655 } 9656 9657 ConstantSDNode * 9658 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9659 BitVector *UndefElements) const { 9660 return dyn_cast_or_null<ConstantSDNode>( 9661 getSplatValue(DemandedElts, UndefElements)); 9662 } 9663 9664 ConstantSDNode * 9665 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9666 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9667 } 9668 9669 ConstantFPSDNode * 9670 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9671 BitVector *UndefElements) const { 9672 return dyn_cast_or_null<ConstantFPSDNode>( 9673 getSplatValue(DemandedElts, UndefElements)); 9674 } 9675 9676 ConstantFPSDNode * 9677 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9678 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9679 } 9680 9681 int32_t 9682 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9683 uint32_t BitWidth) const { 9684 if (ConstantFPSDNode *CN = 9685 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9686 bool IsExact; 9687 APSInt IntVal(BitWidth); 9688 const APFloat &APF = CN->getValueAPF(); 9689 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9690 APFloat::opOK || 9691 !IsExact) 9692 return -1; 9693 9694 return IntVal.exactLogBase2(); 9695 } 9696 return -1; 9697 } 9698 9699 bool BuildVectorSDNode::isConstant() const { 9700 for (const SDValue &Op : op_values()) { 9701 unsigned Opc = Op.getOpcode(); 9702 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9703 return false; 9704 } 9705 return true; 9706 } 9707 9708 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9709 // Find the first non-undef value in the shuffle mask. 9710 unsigned i, e; 9711 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9712 /* search */; 9713 9714 // If all elements are undefined, this shuffle can be considered a splat 9715 // (although it should eventually get simplified away completely). 9716 if (i == e) 9717 return true; 9718 9719 // Make sure all remaining elements are either undef or the same as the first 9720 // non-undef value. 9721 for (int Idx = Mask[i]; i != e; ++i) 9722 if (Mask[i] >= 0 && Mask[i] != Idx) 9723 return false; 9724 return true; 9725 } 9726 9727 // Returns the SDNode if it is a constant integer BuildVector 9728 // or constant integer. 9729 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9730 if (isa<ConstantSDNode>(N)) 9731 return N.getNode(); 9732 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9733 return N.getNode(); 9734 // Treat a GlobalAddress supporting constant offset folding as a 9735 // constant integer. 9736 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9737 if (GA->getOpcode() == ISD::GlobalAddress && 9738 TLI->isOffsetFoldingLegal(GA)) 9739 return GA; 9740 return nullptr; 9741 } 9742 9743 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9744 if (isa<ConstantFPSDNode>(N)) 9745 return N.getNode(); 9746 9747 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9748 return N.getNode(); 9749 9750 return nullptr; 9751 } 9752 9753 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9754 assert(!Node->OperandList && "Node already has operands"); 9755 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9756 "too many operands to fit into SDNode"); 9757 SDUse *Ops = OperandRecycler.allocate( 9758 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9759 9760 bool IsDivergent = false; 9761 for (unsigned I = 0; I != Vals.size(); ++I) { 9762 Ops[I].setUser(Node); 9763 Ops[I].setInitial(Vals[I]); 9764 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9765 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9766 } 9767 Node->NumOperands = Vals.size(); 9768 Node->OperandList = Ops; 9769 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9770 if (!TLI->isSDNodeAlwaysUniform(Node)) 9771 Node->SDNodeBits.IsDivergent = IsDivergent; 9772 checkForCycles(Node); 9773 } 9774 9775 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9776 SmallVectorImpl<SDValue> &Vals) { 9777 size_t Limit = SDNode::getMaxNumOperands(); 9778 while (Vals.size() > Limit) { 9779 unsigned SliceIdx = Vals.size() - Limit; 9780 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9781 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9782 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9783 Vals.emplace_back(NewTF); 9784 } 9785 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9786 } 9787 9788 #ifndef NDEBUG 9789 static void checkForCyclesHelper(const SDNode *N, 9790 SmallPtrSetImpl<const SDNode*> &Visited, 9791 SmallPtrSetImpl<const SDNode*> &Checked, 9792 const llvm::SelectionDAG *DAG) { 9793 // If this node has already been checked, don't check it again. 9794 if (Checked.count(N)) 9795 return; 9796 9797 // If a node has already been visited on this depth-first walk, reject it as 9798 // a cycle. 9799 if (!Visited.insert(N).second) { 9800 errs() << "Detected cycle in SelectionDAG\n"; 9801 dbgs() << "Offending node:\n"; 9802 N->dumprFull(DAG); dbgs() << "\n"; 9803 abort(); 9804 } 9805 9806 for (const SDValue &Op : N->op_values()) 9807 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9808 9809 Checked.insert(N); 9810 Visited.erase(N); 9811 } 9812 #endif 9813 9814 void llvm::checkForCycles(const llvm::SDNode *N, 9815 const llvm::SelectionDAG *DAG, 9816 bool force) { 9817 #ifndef NDEBUG 9818 bool check = force; 9819 #ifdef EXPENSIVE_CHECKS 9820 check = true; 9821 #endif // EXPENSIVE_CHECKS 9822 if (check) { 9823 assert(N && "Checking nonexistent SDNode"); 9824 SmallPtrSet<const SDNode*, 32> visited; 9825 SmallPtrSet<const SDNode*, 32> checked; 9826 checkForCyclesHelper(N, visited, checked, DAG); 9827 } 9828 #endif // !NDEBUG 9829 } 9830 9831 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9832 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9833 } 9834