1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlignment()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlignment(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 assert(!VT.isVector() && 1171 "getZeroExtendInReg should use the vector element type instead of " 1172 "the vector type!"); 1173 if (Op.getValueType().getScalarType() == VT) return Op; 1174 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1175 APInt Imm = APInt::getLowBitsSet(BitWidth, 1176 VT.getSizeInBits()); 1177 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1178 getConstant(Imm, DL, Op.getValueType())); 1179 } 1180 1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1182 // Only unsigned pointer semantics are supported right now. In the future this 1183 // might delegate to TLI to check pointer signedness. 1184 return getZExtOrTrunc(Op, DL, VT); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZeroExtendInReg(Op, DL, VT); 1191 } 1192 1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1195 EVT EltVT = VT.getScalarType(); 1196 SDValue NegOne = 1197 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1198 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1199 } 1200 1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1203 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1204 } 1205 1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1207 EVT OpVT) { 1208 if (!V) 1209 return getConstant(0, DL, VT); 1210 1211 switch (TLI->getBooleanContents(OpVT)) { 1212 case TargetLowering::ZeroOrOneBooleanContent: 1213 case TargetLowering::UndefinedBooleanContent: 1214 return getConstant(1, DL, VT); 1215 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1216 return getAllOnesConstant(DL, VT); 1217 } 1218 llvm_unreachable("Unexpected boolean content enum!"); 1219 } 1220 1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1222 bool isT, bool isO) { 1223 EVT EltVT = VT.getScalarType(); 1224 assert((EltVT.getSizeInBits() >= 64 || 1225 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1226 "getConstant with a uint64_t value that doesn't fit in the type!"); 1227 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1228 } 1229 1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1231 bool isT, bool isO) { 1232 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1233 } 1234 1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1236 EVT VT, bool isT, bool isO) { 1237 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1238 1239 EVT EltVT = VT.getScalarType(); 1240 const ConstantInt *Elt = &Val; 1241 1242 // In some cases the vector type is legal but the element type is illegal and 1243 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1244 // inserted value (the type does not need to match the vector element type). 1245 // Any extra bits introduced will be truncated away. 1246 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1247 TargetLowering::TypePromoteInteger) { 1248 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1249 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1250 Elt = ConstantInt::get(*getContext(), NewVal); 1251 } 1252 // In other cases the element type is illegal and needs to be expanded, for 1253 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1254 // the value into n parts and use a vector type with n-times the elements. 1255 // Then bitcast to the type requested. 1256 // Legalizing constants too early makes the DAGCombiner's job harder so we 1257 // only legalize if the DAG tells us we must produce legal types. 1258 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1259 TLI->getTypeAction(*getContext(), EltVT) == 1260 TargetLowering::TypeExpandInteger) { 1261 const APInt &NewVal = Elt->getValue(); 1262 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1263 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1264 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1265 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1266 1267 // Check the temporary vector is the correct size. If this fails then 1268 // getTypeToTransformTo() probably returned a type whose size (in bits) 1269 // isn't a power-of-2 factor of the requested type size. 1270 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1271 1272 SmallVector<SDValue, 2> EltParts; 1273 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1274 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1275 .zextOrTrunc(ViaEltSizeInBits), DL, 1276 ViaEltVT, isT, isO)); 1277 } 1278 1279 // EltParts is currently in little endian order. If we actually want 1280 // big-endian order then reverse it now. 1281 if (getDataLayout().isBigEndian()) 1282 std::reverse(EltParts.begin(), EltParts.end()); 1283 1284 // The elements must be reversed when the element order is different 1285 // to the endianness of the elements (because the BITCAST is itself a 1286 // vector shuffle in this situation). However, we do not need any code to 1287 // perform this reversal because getConstant() is producing a vector 1288 // splat. 1289 // This situation occurs in MIPS MSA. 1290 1291 SmallVector<SDValue, 8> Ops; 1292 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1293 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1294 1295 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1296 return V; 1297 } 1298 1299 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1300 "APInt size does not match type size!"); 1301 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1302 FoldingSetNodeID ID; 1303 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1304 ID.AddPointer(Elt); 1305 ID.AddBoolean(isO); 1306 void *IP = nullptr; 1307 SDNode *N = nullptr; 1308 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1309 if (!VT.isVector()) 1310 return SDValue(N, 0); 1311 1312 if (!N) { 1313 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1314 CSEMap.InsertNode(N, IP); 1315 InsertNode(N); 1316 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1317 } 1318 1319 SDValue Result(N, 0); 1320 if (VT.isScalableVector()) 1321 Result = getSplatVector(VT, DL, Result); 1322 else if (VT.isVector()) 1323 Result = getSplatBuildVector(VT, DL, Result); 1324 1325 return Result; 1326 } 1327 1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1329 bool isTarget) { 1330 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1331 } 1332 1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1334 const SDLoc &DL, bool LegalTypes) { 1335 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1336 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1337 return getConstant(Val, DL, ShiftVT); 1338 } 1339 1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1341 bool isTarget) { 1342 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1343 } 1344 1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1346 bool isTarget) { 1347 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1348 } 1349 1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1351 EVT VT, bool isTarget) { 1352 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1353 1354 EVT EltVT = VT.getScalarType(); 1355 1356 // Do the map lookup using the actual bit pattern for the floating point 1357 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1358 // we don't have issues with SNANs. 1359 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1360 FoldingSetNodeID ID; 1361 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1362 ID.AddPointer(&V); 1363 void *IP = nullptr; 1364 SDNode *N = nullptr; 1365 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1366 if (!VT.isVector()) 1367 return SDValue(N, 0); 1368 1369 if (!N) { 1370 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1371 CSEMap.InsertNode(N, IP); 1372 InsertNode(N); 1373 } 1374 1375 SDValue Result(N, 0); 1376 if (VT.isVector()) 1377 Result = getSplatBuildVector(VT, DL, Result); 1378 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1379 return Result; 1380 } 1381 1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1383 bool isTarget) { 1384 EVT EltVT = VT.getScalarType(); 1385 if (EltVT == MVT::f32) 1386 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1387 else if (EltVT == MVT::f64) 1388 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1389 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1390 EltVT == MVT::f16) { 1391 bool Ignored; 1392 APFloat APF = APFloat(Val); 1393 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1394 &Ignored); 1395 return getConstantFP(APF, DL, VT, isTarget); 1396 } else 1397 llvm_unreachable("Unsupported type in getConstantFP"); 1398 } 1399 1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1401 EVT VT, int64_t Offset, bool isTargetGA, 1402 unsigned TargetFlags) { 1403 assert((TargetFlags == 0 || isTargetGA) && 1404 "Cannot set target flags on target-independent globals"); 1405 1406 // Truncate (with sign-extension) the offset value to the pointer size. 1407 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1408 if (BitWidth < 64) 1409 Offset = SignExtend64(Offset, BitWidth); 1410 1411 unsigned Opc; 1412 if (GV->isThreadLocal()) 1413 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1414 else 1415 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1416 1417 FoldingSetNodeID ID; 1418 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1419 ID.AddPointer(GV); 1420 ID.AddInteger(Offset); 1421 ID.AddInteger(TargetFlags); 1422 void *IP = nullptr; 1423 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1424 return SDValue(E, 0); 1425 1426 auto *N = newSDNode<GlobalAddressSDNode>( 1427 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1428 CSEMap.InsertNode(N, IP); 1429 InsertNode(N); 1430 return SDValue(N, 0); 1431 } 1432 1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1434 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1435 FoldingSetNodeID ID; 1436 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1437 ID.AddInteger(FI); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1443 CSEMap.InsertNode(N, IP); 1444 InsertNode(N); 1445 return SDValue(N, 0); 1446 } 1447 1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1449 unsigned TargetFlags) { 1450 assert((TargetFlags == 0 || isTarget) && 1451 "Cannot set target flags on target-independent jump tables"); 1452 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1453 FoldingSetNodeID ID; 1454 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1455 ID.AddInteger(JTI); 1456 ID.AddInteger(TargetFlags); 1457 void *IP = nullptr; 1458 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1459 return SDValue(E, 0); 1460 1461 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1462 CSEMap.InsertNode(N, IP); 1463 InsertNode(N); 1464 return SDValue(N, 0); 1465 } 1466 1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1468 unsigned Alignment, int Offset, 1469 bool isTarget, 1470 unsigned TargetFlags) { 1471 assert((TargetFlags == 0 || isTarget) && 1472 "Cannot set target flags on target-independent globals"); 1473 if (Alignment == 0) 1474 Alignment = shouldOptForSize() 1475 ? getDataLayout().getABITypeAlignment(C->getType()) 1476 : getDataLayout().getPrefTypeAlignment(C->getType()); 1477 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1478 FoldingSetNodeID ID; 1479 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1480 ID.AddInteger(Alignment); 1481 ID.AddInteger(Offset); 1482 ID.AddPointer(C); 1483 ID.AddInteger(TargetFlags); 1484 void *IP = nullptr; 1485 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1486 return SDValue(E, 0); 1487 1488 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1489 TargetFlags); 1490 CSEMap.InsertNode(N, IP); 1491 InsertNode(N); 1492 return SDValue(N, 0); 1493 } 1494 1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1496 unsigned Alignment, int Offset, 1497 bool isTarget, 1498 unsigned TargetFlags) { 1499 assert((TargetFlags == 0 || isTarget) && 1500 "Cannot set target flags on target-independent globals"); 1501 if (Alignment == 0) 1502 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1503 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1504 FoldingSetNodeID ID; 1505 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1506 ID.AddInteger(Alignment); 1507 ID.AddInteger(Offset); 1508 C->addSelectionDAGCSEId(ID); 1509 ID.AddInteger(TargetFlags); 1510 void *IP = nullptr; 1511 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1512 return SDValue(E, 0); 1513 1514 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1515 TargetFlags); 1516 CSEMap.InsertNode(N, IP); 1517 InsertNode(N); 1518 return SDValue(N, 0); 1519 } 1520 1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1522 unsigned TargetFlags) { 1523 FoldingSetNodeID ID; 1524 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1525 ID.AddInteger(Index); 1526 ID.AddInteger(Offset); 1527 ID.AddInteger(TargetFlags); 1528 void *IP = nullptr; 1529 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1530 return SDValue(E, 0); 1531 1532 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1533 CSEMap.InsertNode(N, IP); 1534 InsertNode(N); 1535 return SDValue(N, 0); 1536 } 1537 1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1539 FoldingSetNodeID ID; 1540 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1541 ID.AddPointer(MBB); 1542 void *IP = nullptr; 1543 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1544 return SDValue(E, 0); 1545 1546 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1547 CSEMap.InsertNode(N, IP); 1548 InsertNode(N); 1549 return SDValue(N, 0); 1550 } 1551 1552 SDValue SelectionDAG::getValueType(EVT VT) { 1553 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1554 ValueTypeNodes.size()) 1555 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1556 1557 SDNode *&N = VT.isExtended() ? 1558 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1559 1560 if (N) return SDValue(N, 0); 1561 N = newSDNode<VTSDNode>(VT); 1562 InsertNode(N); 1563 return SDValue(N, 0); 1564 } 1565 1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1567 SDNode *&N = ExternalSymbols[Sym]; 1568 if (N) return SDValue(N, 0); 1569 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1570 InsertNode(N); 1571 return SDValue(N, 0); 1572 } 1573 1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1575 SDNode *&N = MCSymbols[Sym]; 1576 if (N) 1577 return SDValue(N, 0); 1578 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1584 unsigned TargetFlags) { 1585 SDNode *&N = 1586 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1587 if (N) return SDValue(N, 0); 1588 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1594 if ((unsigned)Cond >= CondCodeNodes.size()) 1595 CondCodeNodes.resize(Cond+1); 1596 1597 if (!CondCodeNodes[Cond]) { 1598 auto *N = newSDNode<CondCodeSDNode>(Cond); 1599 CondCodeNodes[Cond] = N; 1600 InsertNode(N); 1601 } 1602 1603 return SDValue(CondCodeNodes[Cond], 0); 1604 } 1605 1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1609 std::swap(N1, N2); 1610 ShuffleVectorSDNode::commuteMask(M); 1611 } 1612 1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1614 SDValue N2, ArrayRef<int> Mask) { 1615 assert(VT.getVectorNumElements() == Mask.size() && 1616 "Must have the same number of vector elements as mask elements!"); 1617 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1618 "Invalid VECTOR_SHUFFLE"); 1619 1620 // Canonicalize shuffle undef, undef -> undef 1621 if (N1.isUndef() && N2.isUndef()) 1622 return getUNDEF(VT); 1623 1624 // Validate that all indices in Mask are within the range of the elements 1625 // input to the shuffle. 1626 int NElts = Mask.size(); 1627 assert(llvm::all_of(Mask, 1628 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1629 "Index out of range"); 1630 1631 // Copy the mask so we can do any needed cleanup. 1632 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1633 1634 // Canonicalize shuffle v, v -> v, undef 1635 if (N1 == N2) { 1636 N2 = getUNDEF(VT); 1637 for (int i = 0; i != NElts; ++i) 1638 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1639 } 1640 1641 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1642 if (N1.isUndef()) 1643 commuteShuffle(N1, N2, MaskVec); 1644 1645 if (TLI->hasVectorBlend()) { 1646 // If shuffling a splat, try to blend the splat instead. We do this here so 1647 // that even when this arises during lowering we don't have to re-handle it. 1648 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1649 BitVector UndefElements; 1650 SDValue Splat = BV->getSplatValue(&UndefElements); 1651 if (!Splat) 1652 return; 1653 1654 for (int i = 0; i < NElts; ++i) { 1655 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1656 continue; 1657 1658 // If this input comes from undef, mark it as such. 1659 if (UndefElements[MaskVec[i] - Offset]) { 1660 MaskVec[i] = -1; 1661 continue; 1662 } 1663 1664 // If we can blend a non-undef lane, use that instead. 1665 if (!UndefElements[i]) 1666 MaskVec[i] = i + Offset; 1667 } 1668 }; 1669 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1670 BlendSplat(N1BV, 0); 1671 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1672 BlendSplat(N2BV, NElts); 1673 } 1674 1675 // Canonicalize all index into lhs, -> shuffle lhs, undef 1676 // Canonicalize all index into rhs, -> shuffle rhs, undef 1677 bool AllLHS = true, AllRHS = true; 1678 bool N2Undef = N2.isUndef(); 1679 for (int i = 0; i != NElts; ++i) { 1680 if (MaskVec[i] >= NElts) { 1681 if (N2Undef) 1682 MaskVec[i] = -1; 1683 else 1684 AllLHS = false; 1685 } else if (MaskVec[i] >= 0) { 1686 AllRHS = false; 1687 } 1688 } 1689 if (AllLHS && AllRHS) 1690 return getUNDEF(VT); 1691 if (AllLHS && !N2Undef) 1692 N2 = getUNDEF(VT); 1693 if (AllRHS) { 1694 N1 = getUNDEF(VT); 1695 commuteShuffle(N1, N2, MaskVec); 1696 } 1697 // Reset our undef status after accounting for the mask. 1698 N2Undef = N2.isUndef(); 1699 // Re-check whether both sides ended up undef. 1700 if (N1.isUndef() && N2Undef) 1701 return getUNDEF(VT); 1702 1703 // If Identity shuffle return that node. 1704 bool Identity = true, AllSame = true; 1705 for (int i = 0; i != NElts; ++i) { 1706 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1707 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1708 } 1709 if (Identity && NElts) 1710 return N1; 1711 1712 // Shuffling a constant splat doesn't change the result. 1713 if (N2Undef) { 1714 SDValue V = N1; 1715 1716 // Look through any bitcasts. We check that these don't change the number 1717 // (and size) of elements and just changes their types. 1718 while (V.getOpcode() == ISD::BITCAST) 1719 V = V->getOperand(0); 1720 1721 // A splat should always show up as a build vector node. 1722 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1723 BitVector UndefElements; 1724 SDValue Splat = BV->getSplatValue(&UndefElements); 1725 // If this is a splat of an undef, shuffling it is also undef. 1726 if (Splat && Splat.isUndef()) 1727 return getUNDEF(VT); 1728 1729 bool SameNumElts = 1730 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1731 1732 // We only have a splat which can skip shuffles if there is a splatted 1733 // value and no undef lanes rearranged by the shuffle. 1734 if (Splat && UndefElements.none()) { 1735 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1736 // number of elements match or the value splatted is a zero constant. 1737 if (SameNumElts) 1738 return N1; 1739 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1740 if (C->isNullValue()) 1741 return N1; 1742 } 1743 1744 // If the shuffle itself creates a splat, build the vector directly. 1745 if (AllSame && SameNumElts) { 1746 EVT BuildVT = BV->getValueType(0); 1747 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1748 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1749 1750 // We may have jumped through bitcasts, so the type of the 1751 // BUILD_VECTOR may not match the type of the shuffle. 1752 if (BuildVT != VT) 1753 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1754 return NewBV; 1755 } 1756 } 1757 } 1758 1759 FoldingSetNodeID ID; 1760 SDValue Ops[2] = { N1, N2 }; 1761 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1762 for (int i = 0; i != NElts; ++i) 1763 ID.AddInteger(MaskVec[i]); 1764 1765 void* IP = nullptr; 1766 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1767 return SDValue(E, 0); 1768 1769 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1770 // SDNode doesn't have access to it. This memory will be "leaked" when 1771 // the node is deallocated, but recovered when the NodeAllocator is released. 1772 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1773 llvm::copy(MaskVec, MaskAlloc); 1774 1775 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1776 dl.getDebugLoc(), MaskAlloc); 1777 createOperands(N, Ops); 1778 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 SDValue V = SDValue(N, 0); 1782 NewSDValueDbgMsg(V, "Creating new node: ", this); 1783 return V; 1784 } 1785 1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1787 EVT VT = SV.getValueType(0); 1788 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1789 ShuffleVectorSDNode::commuteMask(MaskVec); 1790 1791 SDValue Op0 = SV.getOperand(0); 1792 SDValue Op1 = SV.getOperand(1); 1793 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1794 } 1795 1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1797 FoldingSetNodeID ID; 1798 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1799 ID.AddInteger(RegNo); 1800 void *IP = nullptr; 1801 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1802 return SDValue(E, 0); 1803 1804 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1805 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1806 CSEMap.InsertNode(N, IP); 1807 InsertNode(N); 1808 return SDValue(N, 0); 1809 } 1810 1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1812 FoldingSetNodeID ID; 1813 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1814 ID.AddPointer(RegMask); 1815 void *IP = nullptr; 1816 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1817 return SDValue(E, 0); 1818 1819 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1820 CSEMap.InsertNode(N, IP); 1821 InsertNode(N); 1822 return SDValue(N, 0); 1823 } 1824 1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1826 MCSymbol *Label) { 1827 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1828 } 1829 1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1831 SDValue Root, MCSymbol *Label) { 1832 FoldingSetNodeID ID; 1833 SDValue Ops[] = { Root }; 1834 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1835 ID.AddPointer(Label); 1836 void *IP = nullptr; 1837 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1838 return SDValue(E, 0); 1839 1840 auto *N = 1841 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1842 createOperands(N, Ops); 1843 1844 CSEMap.InsertNode(N, IP); 1845 InsertNode(N); 1846 return SDValue(N, 0); 1847 } 1848 1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1850 int64_t Offset, bool isTarget, 1851 unsigned TargetFlags) { 1852 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1853 1854 FoldingSetNodeID ID; 1855 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1856 ID.AddPointer(BA); 1857 ID.AddInteger(Offset); 1858 ID.AddInteger(TargetFlags); 1859 void *IP = nullptr; 1860 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1861 return SDValue(E, 0); 1862 1863 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1864 CSEMap.InsertNode(N, IP); 1865 InsertNode(N); 1866 return SDValue(N, 0); 1867 } 1868 1869 SDValue SelectionDAG::getSrcValue(const Value *V) { 1870 assert((!V || V->getType()->isPointerTy()) && 1871 "SrcValue is not a pointer?"); 1872 1873 FoldingSetNodeID ID; 1874 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1875 ID.AddPointer(V); 1876 1877 void *IP = nullptr; 1878 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1879 return SDValue(E, 0); 1880 1881 auto *N = newSDNode<SrcValueSDNode>(V); 1882 CSEMap.InsertNode(N, IP); 1883 InsertNode(N); 1884 return SDValue(N, 0); 1885 } 1886 1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1888 FoldingSetNodeID ID; 1889 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1890 ID.AddPointer(MD); 1891 1892 void *IP = nullptr; 1893 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1894 return SDValue(E, 0); 1895 1896 auto *N = newSDNode<MDNodeSDNode>(MD); 1897 CSEMap.InsertNode(N, IP); 1898 InsertNode(N); 1899 return SDValue(N, 0); 1900 } 1901 1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1903 if (VT == V.getValueType()) 1904 return V; 1905 1906 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1907 } 1908 1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1910 unsigned SrcAS, unsigned DestAS) { 1911 SDValue Ops[] = {Ptr}; 1912 FoldingSetNodeID ID; 1913 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1914 ID.AddInteger(SrcAS); 1915 ID.AddInteger(DestAS); 1916 1917 void *IP = nullptr; 1918 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1919 return SDValue(E, 0); 1920 1921 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1922 VT, SrcAS, DestAS); 1923 createOperands(N, Ops); 1924 1925 CSEMap.InsertNode(N, IP); 1926 InsertNode(N); 1927 return SDValue(N, 0); 1928 } 1929 1930 SDValue SelectionDAG::getFreeze(SDValue V) { 1931 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1932 } 1933 1934 /// getShiftAmountOperand - Return the specified value casted to 1935 /// the target's desired shift amount type. 1936 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1937 EVT OpTy = Op.getValueType(); 1938 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1939 if (OpTy == ShTy || OpTy.isVector()) return Op; 1940 1941 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1942 } 1943 1944 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1945 SDLoc dl(Node); 1946 const TargetLowering &TLI = getTargetLoweringInfo(); 1947 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1948 EVT VT = Node->getValueType(0); 1949 SDValue Tmp1 = Node->getOperand(0); 1950 SDValue Tmp2 = Node->getOperand(1); 1951 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1952 1953 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1954 Tmp2, MachinePointerInfo(V)); 1955 SDValue VAList = VAListLoad; 1956 1957 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1958 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1959 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1960 1961 VAList = 1962 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1963 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1964 } 1965 1966 // Increment the pointer, VAList, to the next vaarg 1967 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1968 getConstant(getDataLayout().getTypeAllocSize( 1969 VT.getTypeForEVT(*getContext())), 1970 dl, VAList.getValueType())); 1971 // Store the incremented VAList to the legalized pointer 1972 Tmp1 = 1973 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1974 // Load the actual argument out of the pointer VAList 1975 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1976 } 1977 1978 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1979 SDLoc dl(Node); 1980 const TargetLowering &TLI = getTargetLoweringInfo(); 1981 // This defaults to loading a pointer from the input and storing it to the 1982 // output, returning the chain. 1983 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1984 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1985 SDValue Tmp1 = 1986 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1987 Node->getOperand(2), MachinePointerInfo(VS)); 1988 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1989 MachinePointerInfo(VD)); 1990 } 1991 1992 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1993 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1994 unsigned ByteSize = VT.getStoreSize(); 1995 Type *Ty = VT.getTypeForEVT(*getContext()); 1996 unsigned StackAlign = 1997 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1998 1999 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 2000 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2001 } 2002 2003 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2004 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2005 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2006 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2007 const DataLayout &DL = getDataLayout(); 2008 unsigned Align = 2009 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 2010 2011 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2012 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 2013 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2014 } 2015 2016 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2017 ISD::CondCode Cond, const SDLoc &dl) { 2018 EVT OpVT = N1.getValueType(); 2019 2020 // These setcc operations always fold. 2021 switch (Cond) { 2022 default: break; 2023 case ISD::SETFALSE: 2024 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2025 case ISD::SETTRUE: 2026 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2027 2028 case ISD::SETOEQ: 2029 case ISD::SETOGT: 2030 case ISD::SETOGE: 2031 case ISD::SETOLT: 2032 case ISD::SETOLE: 2033 case ISD::SETONE: 2034 case ISD::SETO: 2035 case ISD::SETUO: 2036 case ISD::SETUEQ: 2037 case ISD::SETUNE: 2038 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2039 break; 2040 } 2041 2042 if (OpVT.isInteger()) { 2043 // For EQ and NE, we can always pick a value for the undef to make the 2044 // predicate pass or fail, so we can return undef. 2045 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2046 // icmp eq/ne X, undef -> undef. 2047 if ((N1.isUndef() || N2.isUndef()) && 2048 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2049 return getUNDEF(VT); 2050 2051 // If both operands are undef, we can return undef for int comparison. 2052 // icmp undef, undef -> undef. 2053 if (N1.isUndef() && N2.isUndef()) 2054 return getUNDEF(VT); 2055 2056 // icmp X, X -> true/false 2057 // icmp X, undef -> true/false because undef could be X. 2058 if (N1 == N2) 2059 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2060 } 2061 2062 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2063 const APInt &C2 = N2C->getAPIntValue(); 2064 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2065 const APInt &C1 = N1C->getAPIntValue(); 2066 2067 switch (Cond) { 2068 default: llvm_unreachable("Unknown integer setcc!"); 2069 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2070 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2071 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2072 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2073 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2074 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2075 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2076 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2077 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2078 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2079 } 2080 } 2081 } 2082 2083 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2084 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2085 2086 if (N1CFP && N2CFP) { 2087 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2088 switch (Cond) { 2089 default: break; 2090 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2091 return getUNDEF(VT); 2092 LLVM_FALLTHROUGH; 2093 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2094 OpVT); 2095 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2096 return getUNDEF(VT); 2097 LLVM_FALLTHROUGH; 2098 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2099 R==APFloat::cmpLessThan, dl, VT, 2100 OpVT); 2101 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2102 return getUNDEF(VT); 2103 LLVM_FALLTHROUGH; 2104 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2105 OpVT); 2106 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2107 return getUNDEF(VT); 2108 LLVM_FALLTHROUGH; 2109 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2110 VT, OpVT); 2111 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2112 return getUNDEF(VT); 2113 LLVM_FALLTHROUGH; 2114 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2115 R==APFloat::cmpEqual, dl, VT, 2116 OpVT); 2117 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2118 return getUNDEF(VT); 2119 LLVM_FALLTHROUGH; 2120 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2121 R==APFloat::cmpEqual, dl, VT, OpVT); 2122 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2123 OpVT); 2124 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2125 OpVT); 2126 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2127 R==APFloat::cmpEqual, dl, VT, 2128 OpVT); 2129 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2130 OpVT); 2131 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2132 R==APFloat::cmpLessThan, dl, VT, 2133 OpVT); 2134 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2135 R==APFloat::cmpUnordered, dl, VT, 2136 OpVT); 2137 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2138 VT, OpVT); 2139 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2140 OpVT); 2141 } 2142 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2143 // Ensure that the constant occurs on the RHS. 2144 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2145 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2146 return SDValue(); 2147 return getSetCC(dl, VT, N2, N1, SwappedCond); 2148 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2149 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2150 // If an operand is known to be a nan (or undef that could be a nan), we can 2151 // fold it. 2152 // Choosing NaN for the undef will always make unordered comparison succeed 2153 // and ordered comparison fails. 2154 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2155 switch (ISD::getUnorderedFlavor(Cond)) { 2156 default: 2157 llvm_unreachable("Unknown flavor!"); 2158 case 0: // Known false. 2159 return getBoolConstant(false, dl, VT, OpVT); 2160 case 1: // Known true. 2161 return getBoolConstant(true, dl, VT, OpVT); 2162 case 2: // Undefined. 2163 return getUNDEF(VT); 2164 } 2165 } 2166 2167 // Could not fold it. 2168 return SDValue(); 2169 } 2170 2171 /// See if the specified operand can be simplified with the knowledge that only 2172 /// the bits specified by DemandedBits are used. 2173 /// TODO: really we should be making this into the DAG equivalent of 2174 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2175 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2176 EVT VT = V.getValueType(); 2177 APInt DemandedElts = VT.isVector() 2178 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2179 : APInt(1, 1); 2180 return GetDemandedBits(V, DemandedBits, DemandedElts); 2181 } 2182 2183 /// See if the specified operand can be simplified with the knowledge that only 2184 /// the bits specified by DemandedBits are used in the elements specified by 2185 /// DemandedElts. 2186 /// TODO: really we should be making this into the DAG equivalent of 2187 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2188 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2189 const APInt &DemandedElts) { 2190 switch (V.getOpcode()) { 2191 default: 2192 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2193 *this, 0); 2194 break; 2195 case ISD::Constant: { 2196 auto *CV = cast<ConstantSDNode>(V.getNode()); 2197 assert(CV && "Const value should be ConstSDNode."); 2198 const APInt &CVal = CV->getAPIntValue(); 2199 APInt NewVal = CVal & DemandedBits; 2200 if (NewVal != CVal) 2201 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2202 break; 2203 } 2204 case ISD::SRL: 2205 // Only look at single-use SRLs. 2206 if (!V.getNode()->hasOneUse()) 2207 break; 2208 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2209 // See if we can recursively simplify the LHS. 2210 unsigned Amt = RHSC->getZExtValue(); 2211 2212 // Watch out for shift count overflow though. 2213 if (Amt >= DemandedBits.getBitWidth()) 2214 break; 2215 APInt SrcDemandedBits = DemandedBits << Amt; 2216 if (SDValue SimplifyLHS = 2217 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2218 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2219 V.getOperand(1)); 2220 } 2221 break; 2222 case ISD::AND: { 2223 // X & -1 -> X (ignoring bits which aren't demanded). 2224 // Also handle the case where masked out bits in X are known to be zero. 2225 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2226 const APInt &AndVal = RHSC->getAPIntValue(); 2227 if (DemandedBits.isSubsetOf(AndVal) || 2228 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2229 AndVal)) 2230 return V.getOperand(0); 2231 } 2232 break; 2233 } 2234 } 2235 return SDValue(); 2236 } 2237 2238 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2239 /// use this predicate to simplify operations downstream. 2240 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2241 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2242 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2243 } 2244 2245 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2246 /// this predicate to simplify operations downstream. Mask is known to be zero 2247 /// for bits that V cannot have. 2248 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2249 unsigned Depth) const { 2250 EVT VT = V.getValueType(); 2251 APInt DemandedElts = VT.isVector() 2252 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2253 : APInt(1, 1); 2254 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2255 } 2256 2257 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2258 /// DemandedElts. We use this predicate to simplify operations downstream. 2259 /// Mask is known to be zero for bits that V cannot have. 2260 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2261 const APInt &DemandedElts, 2262 unsigned Depth) const { 2263 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2264 } 2265 2266 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2267 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2268 unsigned Depth) const { 2269 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2270 } 2271 2272 /// isSplatValue - Return true if the vector V has the same value 2273 /// across all DemandedElts. 2274 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2275 APInt &UndefElts) { 2276 if (!DemandedElts) 2277 return false; // No demanded elts, better to assume we don't know anything. 2278 2279 EVT VT = V.getValueType(); 2280 assert(VT.isVector() && "Vector type expected"); 2281 2282 unsigned NumElts = VT.getVectorNumElements(); 2283 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2284 UndefElts = APInt::getNullValue(NumElts); 2285 2286 switch (V.getOpcode()) { 2287 case ISD::BUILD_VECTOR: { 2288 SDValue Scl; 2289 for (unsigned i = 0; i != NumElts; ++i) { 2290 SDValue Op = V.getOperand(i); 2291 if (Op.isUndef()) { 2292 UndefElts.setBit(i); 2293 continue; 2294 } 2295 if (!DemandedElts[i]) 2296 continue; 2297 if (Scl && Scl != Op) 2298 return false; 2299 Scl = Op; 2300 } 2301 return true; 2302 } 2303 case ISD::VECTOR_SHUFFLE: { 2304 // Check if this is a shuffle node doing a splat. 2305 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2306 int SplatIndex = -1; 2307 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2308 for (int i = 0; i != (int)NumElts; ++i) { 2309 int M = Mask[i]; 2310 if (M < 0) { 2311 UndefElts.setBit(i); 2312 continue; 2313 } 2314 if (!DemandedElts[i]) 2315 continue; 2316 if (0 <= SplatIndex && SplatIndex != M) 2317 return false; 2318 SplatIndex = M; 2319 } 2320 return true; 2321 } 2322 case ISD::EXTRACT_SUBVECTOR: { 2323 SDValue Src = V.getOperand(0); 2324 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2325 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2326 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2327 // Offset the demanded elts by the subvector index. 2328 uint64_t Idx = SubIdx->getZExtValue(); 2329 APInt UndefSrcElts; 2330 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2331 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2332 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2333 return true; 2334 } 2335 } 2336 break; 2337 } 2338 case ISD::ADD: 2339 case ISD::SUB: 2340 case ISD::AND: { 2341 APInt UndefLHS, UndefRHS; 2342 SDValue LHS = V.getOperand(0); 2343 SDValue RHS = V.getOperand(1); 2344 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2345 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2346 UndefElts = UndefLHS | UndefRHS; 2347 return true; 2348 } 2349 break; 2350 } 2351 } 2352 2353 return false; 2354 } 2355 2356 /// Helper wrapper to main isSplatValue function. 2357 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2358 EVT VT = V.getValueType(); 2359 assert(VT.isVector() && "Vector type expected"); 2360 unsigned NumElts = VT.getVectorNumElements(); 2361 2362 APInt UndefElts; 2363 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2364 return isSplatValue(V, DemandedElts, UndefElts) && 2365 (AllowUndefs || !UndefElts); 2366 } 2367 2368 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2369 V = peekThroughExtractSubvectors(V); 2370 2371 EVT VT = V.getValueType(); 2372 unsigned Opcode = V.getOpcode(); 2373 switch (Opcode) { 2374 default: { 2375 APInt UndefElts; 2376 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2377 if (isSplatValue(V, DemandedElts, UndefElts)) { 2378 // Handle case where all demanded elements are UNDEF. 2379 if (DemandedElts.isSubsetOf(UndefElts)) { 2380 SplatIdx = 0; 2381 return getUNDEF(VT); 2382 } 2383 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2384 return V; 2385 } 2386 break; 2387 } 2388 case ISD::VECTOR_SHUFFLE: { 2389 // Check if this is a shuffle node doing a splat. 2390 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2391 // getTargetVShiftNode currently struggles without the splat source. 2392 auto *SVN = cast<ShuffleVectorSDNode>(V); 2393 if (!SVN->isSplat()) 2394 break; 2395 int Idx = SVN->getSplatIndex(); 2396 int NumElts = V.getValueType().getVectorNumElements(); 2397 SplatIdx = Idx % NumElts; 2398 return V.getOperand(Idx / NumElts); 2399 } 2400 } 2401 2402 return SDValue(); 2403 } 2404 2405 SDValue SelectionDAG::getSplatValue(SDValue V) { 2406 int SplatIdx; 2407 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2408 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2409 SrcVector.getValueType().getScalarType(), SrcVector, 2410 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2411 return SDValue(); 2412 } 2413 2414 const APInt * 2415 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2416 const APInt &DemandedElts) const { 2417 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2418 V.getOpcode() == ISD::SRA) && 2419 "Unknown shift node"); 2420 unsigned BitWidth = V.getScalarValueSizeInBits(); 2421 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2422 // Shifting more than the bitwidth is not valid. 2423 const APInt &ShAmt = SA->getAPIntValue(); 2424 if (ShAmt.ult(BitWidth)) 2425 return &ShAmt; 2426 } 2427 return nullptr; 2428 } 2429 2430 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2431 SDValue V, const APInt &DemandedElts) const { 2432 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2433 V.getOpcode() == ISD::SRA) && 2434 "Unknown shift node"); 2435 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2436 return ValidAmt; 2437 unsigned BitWidth = V.getScalarValueSizeInBits(); 2438 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2439 if (!BV) 2440 return nullptr; 2441 const APInt *MinShAmt = nullptr; 2442 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2443 if (!DemandedElts[i]) 2444 continue; 2445 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2446 if (!SA) 2447 return nullptr; 2448 // Shifting more than the bitwidth is not valid. 2449 const APInt &ShAmt = SA->getAPIntValue(); 2450 if (ShAmt.uge(BitWidth)) 2451 return nullptr; 2452 if (MinShAmt && MinShAmt->ule(ShAmt)) 2453 continue; 2454 MinShAmt = &ShAmt; 2455 } 2456 return MinShAmt; 2457 } 2458 2459 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2460 SDValue V, const APInt &DemandedElts) const { 2461 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2462 V.getOpcode() == ISD::SRA) && 2463 "Unknown shift node"); 2464 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2465 return ValidAmt; 2466 unsigned BitWidth = V.getScalarValueSizeInBits(); 2467 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2468 if (!BV) 2469 return nullptr; 2470 const APInt *MaxShAmt = nullptr; 2471 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2472 if (!DemandedElts[i]) 2473 continue; 2474 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2475 if (!SA) 2476 return nullptr; 2477 // Shifting more than the bitwidth is not valid. 2478 const APInt &ShAmt = SA->getAPIntValue(); 2479 if (ShAmt.uge(BitWidth)) 2480 return nullptr; 2481 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2482 continue; 2483 MaxShAmt = &ShAmt; 2484 } 2485 return MaxShAmt; 2486 } 2487 2488 /// Determine which bits of Op are known to be either zero or one and return 2489 /// them in Known. For vectors, the known bits are those that are shared by 2490 /// every vector element. 2491 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2492 EVT VT = Op.getValueType(); 2493 APInt DemandedElts = VT.isVector() 2494 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2495 : APInt(1, 1); 2496 return computeKnownBits(Op, DemandedElts, Depth); 2497 } 2498 2499 /// Determine which bits of Op are known to be either zero or one and return 2500 /// them in Known. The DemandedElts argument allows us to only collect the known 2501 /// bits that are shared by the requested vector elements. 2502 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2503 unsigned Depth) const { 2504 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2505 2506 KnownBits Known(BitWidth); // Don't know anything. 2507 2508 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2509 // We know all of the bits for a constant! 2510 Known.One = C->getAPIntValue(); 2511 Known.Zero = ~Known.One; 2512 return Known; 2513 } 2514 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2515 // We know all of the bits for a constant fp! 2516 Known.One = C->getValueAPF().bitcastToAPInt(); 2517 Known.Zero = ~Known.One; 2518 return Known; 2519 } 2520 2521 if (Depth >= MaxRecursionDepth) 2522 return Known; // Limit search depth. 2523 2524 KnownBits Known2; 2525 unsigned NumElts = DemandedElts.getBitWidth(); 2526 assert((!Op.getValueType().isVector() || 2527 NumElts == Op.getValueType().getVectorNumElements()) && 2528 "Unexpected vector size"); 2529 2530 if (!DemandedElts) 2531 return Known; // No demanded elts, better to assume we don't know anything. 2532 2533 unsigned Opcode = Op.getOpcode(); 2534 switch (Opcode) { 2535 case ISD::BUILD_VECTOR: 2536 // Collect the known bits that are shared by every demanded vector element. 2537 Known.Zero.setAllBits(); Known.One.setAllBits(); 2538 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2539 if (!DemandedElts[i]) 2540 continue; 2541 2542 SDValue SrcOp = Op.getOperand(i); 2543 Known2 = computeKnownBits(SrcOp, Depth + 1); 2544 2545 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2546 if (SrcOp.getValueSizeInBits() != BitWidth) { 2547 assert(SrcOp.getValueSizeInBits() > BitWidth && 2548 "Expected BUILD_VECTOR implicit truncation"); 2549 Known2 = Known2.trunc(BitWidth); 2550 } 2551 2552 // Known bits are the values that are shared by every demanded element. 2553 Known.One &= Known2.One; 2554 Known.Zero &= Known2.Zero; 2555 2556 // If we don't know any bits, early out. 2557 if (Known.isUnknown()) 2558 break; 2559 } 2560 break; 2561 case ISD::VECTOR_SHUFFLE: { 2562 // Collect the known bits that are shared by every vector element referenced 2563 // by the shuffle. 2564 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2565 Known.Zero.setAllBits(); Known.One.setAllBits(); 2566 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2567 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2568 for (unsigned i = 0; i != NumElts; ++i) { 2569 if (!DemandedElts[i]) 2570 continue; 2571 2572 int M = SVN->getMaskElt(i); 2573 if (M < 0) { 2574 // For UNDEF elements, we don't know anything about the common state of 2575 // the shuffle result. 2576 Known.resetAll(); 2577 DemandedLHS.clearAllBits(); 2578 DemandedRHS.clearAllBits(); 2579 break; 2580 } 2581 2582 if ((unsigned)M < NumElts) 2583 DemandedLHS.setBit((unsigned)M % NumElts); 2584 else 2585 DemandedRHS.setBit((unsigned)M % NumElts); 2586 } 2587 // Known bits are the values that are shared by every demanded element. 2588 if (!!DemandedLHS) { 2589 SDValue LHS = Op.getOperand(0); 2590 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2591 Known.One &= Known2.One; 2592 Known.Zero &= Known2.Zero; 2593 } 2594 // If we don't know any bits, early out. 2595 if (Known.isUnknown()) 2596 break; 2597 if (!!DemandedRHS) { 2598 SDValue RHS = Op.getOperand(1); 2599 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2600 Known.One &= Known2.One; 2601 Known.Zero &= Known2.Zero; 2602 } 2603 break; 2604 } 2605 case ISD::CONCAT_VECTORS: { 2606 // Split DemandedElts and test each of the demanded subvectors. 2607 Known.Zero.setAllBits(); Known.One.setAllBits(); 2608 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2609 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2610 unsigned NumSubVectors = Op.getNumOperands(); 2611 for (unsigned i = 0; i != NumSubVectors; ++i) { 2612 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2613 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2614 if (!!DemandedSub) { 2615 SDValue Sub = Op.getOperand(i); 2616 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2617 Known.One &= Known2.One; 2618 Known.Zero &= Known2.Zero; 2619 } 2620 // If we don't know any bits, early out. 2621 if (Known.isUnknown()) 2622 break; 2623 } 2624 break; 2625 } 2626 case ISD::INSERT_SUBVECTOR: { 2627 // If we know the element index, demand any elements from the subvector and 2628 // the remainder from the src its inserted into, otherwise assume we need 2629 // the original demanded base elements and ALL the inserted subvector 2630 // elements. 2631 SDValue Src = Op.getOperand(0); 2632 SDValue Sub = Op.getOperand(1); 2633 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2634 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2635 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 2636 APInt DemandedSrcElts = DemandedElts; 2637 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2638 uint64_t Idx = SubIdx->getZExtValue(); 2639 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2640 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2641 } 2642 Known.One.setAllBits(); 2643 Known.Zero.setAllBits(); 2644 if (!!DemandedSubElts) { 2645 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2646 if (Known.isUnknown()) 2647 break; // early-out. 2648 } 2649 if (!!DemandedSrcElts) { 2650 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2651 Known.One &= Known2.One; 2652 Known.Zero &= Known2.Zero; 2653 } 2654 break; 2655 } 2656 case ISD::EXTRACT_SUBVECTOR: { 2657 // If we know the element index, just demand that subvector elements, 2658 // otherwise demand them all. 2659 SDValue Src = Op.getOperand(0); 2660 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2661 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2662 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2663 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2664 // Offset the demanded elts by the subvector index. 2665 uint64_t Idx = SubIdx->getZExtValue(); 2666 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2667 } 2668 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2669 break; 2670 } 2671 case ISD::SCALAR_TO_VECTOR: { 2672 // We know about scalar_to_vector as much as we know about it source, 2673 // which becomes the first element of otherwise unknown vector. 2674 if (DemandedElts != 1) 2675 break; 2676 2677 SDValue N0 = Op.getOperand(0); 2678 Known = computeKnownBits(N0, Depth + 1); 2679 if (N0.getValueSizeInBits() != BitWidth) 2680 Known = Known.trunc(BitWidth); 2681 2682 break; 2683 } 2684 case ISD::BITCAST: { 2685 SDValue N0 = Op.getOperand(0); 2686 EVT SubVT = N0.getValueType(); 2687 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2688 2689 // Ignore bitcasts from unsupported types. 2690 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2691 break; 2692 2693 // Fast handling of 'identity' bitcasts. 2694 if (BitWidth == SubBitWidth) { 2695 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2696 break; 2697 } 2698 2699 bool IsLE = getDataLayout().isLittleEndian(); 2700 2701 // Bitcast 'small element' vector to 'large element' scalar/vector. 2702 if ((BitWidth % SubBitWidth) == 0) { 2703 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2704 2705 // Collect known bits for the (larger) output by collecting the known 2706 // bits from each set of sub elements and shift these into place. 2707 // We need to separately call computeKnownBits for each set of 2708 // sub elements as the knownbits for each is likely to be different. 2709 unsigned SubScale = BitWidth / SubBitWidth; 2710 APInt SubDemandedElts(NumElts * SubScale, 0); 2711 for (unsigned i = 0; i != NumElts; ++i) 2712 if (DemandedElts[i]) 2713 SubDemandedElts.setBit(i * SubScale); 2714 2715 for (unsigned i = 0; i != SubScale; ++i) { 2716 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2717 Depth + 1); 2718 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2719 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2720 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2721 } 2722 } 2723 2724 // Bitcast 'large element' scalar/vector to 'small element' vector. 2725 if ((SubBitWidth % BitWidth) == 0) { 2726 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2727 2728 // Collect known bits for the (smaller) output by collecting the known 2729 // bits from the overlapping larger input elements and extracting the 2730 // sub sections we actually care about. 2731 unsigned SubScale = SubBitWidth / BitWidth; 2732 APInt SubDemandedElts(NumElts / SubScale, 0); 2733 for (unsigned i = 0; i != NumElts; ++i) 2734 if (DemandedElts[i]) 2735 SubDemandedElts.setBit(i / SubScale); 2736 2737 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2738 2739 Known.Zero.setAllBits(); Known.One.setAllBits(); 2740 for (unsigned i = 0; i != NumElts; ++i) 2741 if (DemandedElts[i]) { 2742 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2743 unsigned Offset = (Shifts % SubScale) * BitWidth; 2744 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2745 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2746 // If we don't know any bits, early out. 2747 if (Known.isUnknown()) 2748 break; 2749 } 2750 } 2751 break; 2752 } 2753 case ISD::AND: 2754 // If either the LHS or the RHS are Zero, the result is zero. 2755 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2756 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2757 2758 // Output known-1 bits are only known if set in both the LHS & RHS. 2759 Known.One &= Known2.One; 2760 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2761 Known.Zero |= Known2.Zero; 2762 break; 2763 case ISD::OR: 2764 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2765 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2766 2767 // Output known-0 bits are only known if clear in both the LHS & RHS. 2768 Known.Zero &= Known2.Zero; 2769 // Output known-1 are known to be set if set in either the LHS | RHS. 2770 Known.One |= Known2.One; 2771 break; 2772 case ISD::XOR: { 2773 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2774 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2775 2776 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2777 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2778 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2779 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2780 Known.Zero = KnownZeroOut; 2781 break; 2782 } 2783 case ISD::MUL: { 2784 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2785 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2786 2787 // If low bits are zero in either operand, output low known-0 bits. 2788 // Also compute a conservative estimate for high known-0 bits. 2789 // More trickiness is possible, but this is sufficient for the 2790 // interesting case of alignment computation. 2791 unsigned TrailZ = Known.countMinTrailingZeros() + 2792 Known2.countMinTrailingZeros(); 2793 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2794 Known2.countMinLeadingZeros(), 2795 BitWidth) - BitWidth; 2796 2797 Known.resetAll(); 2798 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2799 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2800 break; 2801 } 2802 case ISD::UDIV: { 2803 // For the purposes of computing leading zeros we can conservatively 2804 // treat a udiv as a logical right shift by the power of 2 known to 2805 // be less than the denominator. 2806 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2807 unsigned LeadZ = Known2.countMinLeadingZeros(); 2808 2809 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2810 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2811 if (RHSMaxLeadingZeros != BitWidth) 2812 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2813 2814 Known.Zero.setHighBits(LeadZ); 2815 break; 2816 } 2817 case ISD::SELECT: 2818 case ISD::VSELECT: 2819 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2820 // If we don't know any bits, early out. 2821 if (Known.isUnknown()) 2822 break; 2823 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2824 2825 // Only known if known in both the LHS and RHS. 2826 Known.One &= Known2.One; 2827 Known.Zero &= Known2.Zero; 2828 break; 2829 case ISD::SELECT_CC: 2830 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2831 // If we don't know any bits, early out. 2832 if (Known.isUnknown()) 2833 break; 2834 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2835 2836 // Only known if known in both the LHS and RHS. 2837 Known.One &= Known2.One; 2838 Known.Zero &= Known2.Zero; 2839 break; 2840 case ISD::SMULO: 2841 case ISD::UMULO: 2842 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2843 if (Op.getResNo() != 1) 2844 break; 2845 // The boolean result conforms to getBooleanContents. 2846 // If we know the result of a setcc has the top bits zero, use this info. 2847 // We know that we have an integer-based boolean since these operations 2848 // are only available for integer. 2849 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2850 TargetLowering::ZeroOrOneBooleanContent && 2851 BitWidth > 1) 2852 Known.Zero.setBitsFrom(1); 2853 break; 2854 case ISD::SETCC: 2855 case ISD::STRICT_FSETCC: 2856 case ISD::STRICT_FSETCCS: { 2857 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2858 // If we know the result of a setcc has the top bits zero, use this info. 2859 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2860 TargetLowering::ZeroOrOneBooleanContent && 2861 BitWidth > 1) 2862 Known.Zero.setBitsFrom(1); 2863 break; 2864 } 2865 case ISD::SHL: 2866 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2867 2868 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2869 unsigned Shift = ShAmt->getZExtValue(); 2870 Known.Zero <<= Shift; 2871 Known.One <<= Shift; 2872 // Low bits are known zero. 2873 Known.Zero.setLowBits(Shift); 2874 break; 2875 } 2876 2877 // No matter the shift amount, the trailing zeros will stay zero. 2878 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2879 Known.One.clearAllBits(); 2880 2881 // Minimum shift low bits are known zero. 2882 if (const APInt *ShMinAmt = 2883 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2884 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2885 break; 2886 case ISD::SRL: 2887 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2888 2889 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2890 unsigned Shift = ShAmt->getZExtValue(); 2891 Known.Zero.lshrInPlace(Shift); 2892 Known.One.lshrInPlace(Shift); 2893 // High bits are known zero. 2894 Known.Zero.setHighBits(Shift); 2895 break; 2896 } 2897 2898 // No matter the shift amount, the leading zeros will stay zero. 2899 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2900 Known.One.clearAllBits(); 2901 2902 // Minimum shift high bits are known zero. 2903 if (const APInt *ShMinAmt = 2904 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2905 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2906 break; 2907 case ISD::SRA: 2908 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2909 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2910 unsigned Shift = ShAmt->getZExtValue(); 2911 // Sign extend known zero/one bit (else is unknown). 2912 Known.Zero.ashrInPlace(Shift); 2913 Known.One.ashrInPlace(Shift); 2914 } 2915 break; 2916 case ISD::FSHL: 2917 case ISD::FSHR: 2918 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2919 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2920 2921 // For fshl, 0-shift returns the 1st arg. 2922 // For fshr, 0-shift returns the 2nd arg. 2923 if (Amt == 0) { 2924 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2925 DemandedElts, Depth + 1); 2926 break; 2927 } 2928 2929 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2930 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2931 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2932 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2933 if (Opcode == ISD::FSHL) { 2934 Known.One <<= Amt; 2935 Known.Zero <<= Amt; 2936 Known2.One.lshrInPlace(BitWidth - Amt); 2937 Known2.Zero.lshrInPlace(BitWidth - Amt); 2938 } else { 2939 Known.One <<= BitWidth - Amt; 2940 Known.Zero <<= BitWidth - Amt; 2941 Known2.One.lshrInPlace(Amt); 2942 Known2.Zero.lshrInPlace(Amt); 2943 } 2944 Known.One |= Known2.One; 2945 Known.Zero |= Known2.Zero; 2946 } 2947 break; 2948 case ISD::SIGN_EXTEND_INREG: { 2949 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2950 unsigned EBits = EVT.getScalarSizeInBits(); 2951 2952 // Sign extension. Compute the demanded bits in the result that are not 2953 // present in the input. 2954 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2955 2956 APInt InSignMask = APInt::getSignMask(EBits); 2957 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2958 2959 // If the sign extended bits are demanded, we know that the sign 2960 // bit is demanded. 2961 InSignMask = InSignMask.zext(BitWidth); 2962 if (NewBits.getBoolValue()) 2963 InputDemandedBits |= InSignMask; 2964 2965 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2966 Known.One &= InputDemandedBits; 2967 Known.Zero &= InputDemandedBits; 2968 2969 // If the sign bit of the input is known set or clear, then we know the 2970 // top bits of the result. 2971 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2972 Known.Zero |= NewBits; 2973 Known.One &= ~NewBits; 2974 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2975 Known.One |= NewBits; 2976 Known.Zero &= ~NewBits; 2977 } else { // Input sign bit unknown 2978 Known.Zero &= ~NewBits; 2979 Known.One &= ~NewBits; 2980 } 2981 break; 2982 } 2983 case ISD::CTTZ: 2984 case ISD::CTTZ_ZERO_UNDEF: { 2985 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2986 // If we have a known 1, its position is our upper bound. 2987 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2988 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2989 Known.Zero.setBitsFrom(LowBits); 2990 break; 2991 } 2992 case ISD::CTLZ: 2993 case ISD::CTLZ_ZERO_UNDEF: { 2994 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2995 // If we have a known 1, its position is our upper bound. 2996 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2997 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2998 Known.Zero.setBitsFrom(LowBits); 2999 break; 3000 } 3001 case ISD::CTPOP: { 3002 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3003 // If we know some of the bits are zero, they can't be one. 3004 unsigned PossibleOnes = Known2.countMaxPopulation(); 3005 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3006 break; 3007 } 3008 case ISD::LOAD: { 3009 LoadSDNode *LD = cast<LoadSDNode>(Op); 3010 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3011 if (ISD::isNON_EXTLoad(LD) && Cst) { 3012 // Determine any common known bits from the loaded constant pool value. 3013 Type *CstTy = Cst->getType(); 3014 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3015 // If its a vector splat, then we can (quickly) reuse the scalar path. 3016 // NOTE: We assume all elements match and none are UNDEF. 3017 if (CstTy->isVectorTy()) { 3018 if (const Constant *Splat = Cst->getSplatValue()) { 3019 Cst = Splat; 3020 CstTy = Cst->getType(); 3021 } 3022 } 3023 // TODO - do we need to handle different bitwidths? 3024 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3025 // Iterate across all vector elements finding common known bits. 3026 Known.One.setAllBits(); 3027 Known.Zero.setAllBits(); 3028 for (unsigned i = 0; i != NumElts; ++i) { 3029 if (!DemandedElts[i]) 3030 continue; 3031 if (Constant *Elt = Cst->getAggregateElement(i)) { 3032 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3033 const APInt &Value = CInt->getValue(); 3034 Known.One &= Value; 3035 Known.Zero &= ~Value; 3036 continue; 3037 } 3038 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3039 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3040 Known.One &= Value; 3041 Known.Zero &= ~Value; 3042 continue; 3043 } 3044 } 3045 Known.One.clearAllBits(); 3046 Known.Zero.clearAllBits(); 3047 break; 3048 } 3049 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3050 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3051 const APInt &Value = CInt->getValue(); 3052 Known.One = Value; 3053 Known.Zero = ~Value; 3054 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3055 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3056 Known.One = Value; 3057 Known.Zero = ~Value; 3058 } 3059 } 3060 } 3061 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3062 // If this is a ZEXTLoad and we are looking at the loaded value. 3063 EVT VT = LD->getMemoryVT(); 3064 unsigned MemBits = VT.getScalarSizeInBits(); 3065 Known.Zero.setBitsFrom(MemBits); 3066 } else if (const MDNode *Ranges = LD->getRanges()) { 3067 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3068 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3069 } 3070 break; 3071 } 3072 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3073 EVT InVT = Op.getOperand(0).getValueType(); 3074 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3075 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3076 Known = Known.zext(BitWidth); 3077 break; 3078 } 3079 case ISD::ZERO_EXTEND: { 3080 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known = Known.zext(BitWidth); 3082 break; 3083 } 3084 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3085 EVT InVT = Op.getOperand(0).getValueType(); 3086 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3087 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3088 // If the sign bit is known to be zero or one, then sext will extend 3089 // it to the top bits, else it will just zext. 3090 Known = Known.sext(BitWidth); 3091 break; 3092 } 3093 case ISD::SIGN_EXTEND: { 3094 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3095 // If the sign bit is known to be zero or one, then sext will extend 3096 // it to the top bits, else it will just zext. 3097 Known = Known.sext(BitWidth); 3098 break; 3099 } 3100 case ISD::ANY_EXTEND_VECTOR_INREG: { 3101 EVT InVT = Op.getOperand(0).getValueType(); 3102 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3103 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3104 Known = Known.anyext(BitWidth); 3105 break; 3106 } 3107 case ISD::ANY_EXTEND: { 3108 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3109 Known = Known.anyext(BitWidth); 3110 break; 3111 } 3112 case ISD::TRUNCATE: { 3113 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3114 Known = Known.trunc(BitWidth); 3115 break; 3116 } 3117 case ISD::AssertZext: { 3118 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3119 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3120 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3121 Known.Zero |= (~InMask); 3122 Known.One &= (~Known.Zero); 3123 break; 3124 } 3125 case ISD::FGETSIGN: 3126 // All bits are zero except the low bit. 3127 Known.Zero.setBitsFrom(1); 3128 break; 3129 case ISD::USUBO: 3130 case ISD::SSUBO: 3131 if (Op.getResNo() == 1) { 3132 // If we know the result of a setcc has the top bits zero, use this info. 3133 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3134 TargetLowering::ZeroOrOneBooleanContent && 3135 BitWidth > 1) 3136 Known.Zero.setBitsFrom(1); 3137 break; 3138 } 3139 LLVM_FALLTHROUGH; 3140 case ISD::SUB: 3141 case ISD::SUBC: { 3142 assert(Op.getResNo() == 0 && 3143 "We only compute knownbits for the difference here."); 3144 3145 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3146 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3147 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3148 Known, Known2); 3149 break; 3150 } 3151 case ISD::UADDO: 3152 case ISD::SADDO: 3153 case ISD::ADDCARRY: 3154 if (Op.getResNo() == 1) { 3155 // If we know the result of a setcc has the top bits zero, use this info. 3156 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3157 TargetLowering::ZeroOrOneBooleanContent && 3158 BitWidth > 1) 3159 Known.Zero.setBitsFrom(1); 3160 break; 3161 } 3162 LLVM_FALLTHROUGH; 3163 case ISD::ADD: 3164 case ISD::ADDC: 3165 case ISD::ADDE: { 3166 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3167 3168 // With ADDE and ADDCARRY, a carry bit may be added in. 3169 KnownBits Carry(1); 3170 if (Opcode == ISD::ADDE) 3171 // Can't track carry from glue, set carry to unknown. 3172 Carry.resetAll(); 3173 else if (Opcode == ISD::ADDCARRY) 3174 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3175 // the trouble (how often will we find a known carry bit). And I haven't 3176 // tested this very much yet, but something like this might work: 3177 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3178 // Carry = Carry.zextOrTrunc(1, false); 3179 Carry.resetAll(); 3180 else 3181 Carry.setAllZero(); 3182 3183 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3184 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3185 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3186 break; 3187 } 3188 case ISD::SREM: 3189 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3190 const APInt &RA = Rem->getAPIntValue().abs(); 3191 if (RA.isPowerOf2()) { 3192 APInt LowBits = RA - 1; 3193 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3194 3195 // The low bits of the first operand are unchanged by the srem. 3196 Known.Zero = Known2.Zero & LowBits; 3197 Known.One = Known2.One & LowBits; 3198 3199 // If the first operand is non-negative or has all low bits zero, then 3200 // the upper bits are all zero. 3201 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3202 Known.Zero |= ~LowBits; 3203 3204 // If the first operand is negative and not all low bits are zero, then 3205 // the upper bits are all one. 3206 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3207 Known.One |= ~LowBits; 3208 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3209 } 3210 } 3211 break; 3212 case ISD::UREM: { 3213 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3214 const APInt &RA = Rem->getAPIntValue(); 3215 if (RA.isPowerOf2()) { 3216 APInt LowBits = (RA - 1); 3217 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3218 3219 // The upper bits are all zero, the lower ones are unchanged. 3220 Known.Zero = Known2.Zero | ~LowBits; 3221 Known.One = Known2.One & LowBits; 3222 break; 3223 } 3224 } 3225 3226 // Since the result is less than or equal to either operand, any leading 3227 // zero bits in either operand must also exist in the result. 3228 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3229 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3230 3231 uint32_t Leaders = 3232 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3233 Known.resetAll(); 3234 Known.Zero.setHighBits(Leaders); 3235 break; 3236 } 3237 case ISD::EXTRACT_ELEMENT: { 3238 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3239 const unsigned Index = Op.getConstantOperandVal(1); 3240 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3241 3242 // Remove low part of known bits mask 3243 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3244 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3245 3246 // Remove high part of known bit mask 3247 Known = Known.trunc(EltBitWidth); 3248 break; 3249 } 3250 case ISD::EXTRACT_VECTOR_ELT: { 3251 SDValue InVec = Op.getOperand(0); 3252 SDValue EltNo = Op.getOperand(1); 3253 EVT VecVT = InVec.getValueType(); 3254 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3255 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3256 3257 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3258 // anything about the extended bits. 3259 if (BitWidth > EltBitWidth) 3260 Known = Known.trunc(EltBitWidth); 3261 3262 // If we know the element index, just demand that vector element, else for 3263 // an unknown element index, ignore DemandedElts and demand them all. 3264 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3265 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3266 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3267 DemandedSrcElts = 3268 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3269 3270 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3271 if (BitWidth > EltBitWidth) 3272 Known = Known.anyext(BitWidth); 3273 break; 3274 } 3275 case ISD::INSERT_VECTOR_ELT: { 3276 // If we know the element index, split the demand between the 3277 // source vector and the inserted element, otherwise assume we need 3278 // the original demanded vector elements and the value. 3279 SDValue InVec = Op.getOperand(0); 3280 SDValue InVal = Op.getOperand(1); 3281 SDValue EltNo = Op.getOperand(2); 3282 bool DemandedVal = true; 3283 APInt DemandedVecElts = DemandedElts; 3284 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3285 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3286 unsigned EltIdx = CEltNo->getZExtValue(); 3287 DemandedVal = !!DemandedElts[EltIdx]; 3288 DemandedVecElts.clearBit(EltIdx); 3289 } 3290 Known.One.setAllBits(); 3291 Known.Zero.setAllBits(); 3292 if (DemandedVal) { 3293 Known2 = computeKnownBits(InVal, Depth + 1); 3294 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3295 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3296 } 3297 if (!!DemandedVecElts) { 3298 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3299 Known.One &= Known2.One; 3300 Known.Zero &= Known2.Zero; 3301 } 3302 break; 3303 } 3304 case ISD::BITREVERSE: { 3305 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3306 Known.Zero = Known2.Zero.reverseBits(); 3307 Known.One = Known2.One.reverseBits(); 3308 break; 3309 } 3310 case ISD::BSWAP: { 3311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3312 Known.Zero = Known2.Zero.byteSwap(); 3313 Known.One = Known2.One.byteSwap(); 3314 break; 3315 } 3316 case ISD::ABS: { 3317 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3318 3319 // If the source's MSB is zero then we know the rest of the bits already. 3320 if (Known2.isNonNegative()) { 3321 Known.Zero = Known2.Zero; 3322 Known.One = Known2.One; 3323 break; 3324 } 3325 3326 // We only know that the absolute values's MSB will be zero iff there is 3327 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3328 Known2.One.clearSignBit(); 3329 if (Known2.One.getBoolValue()) { 3330 Known.Zero = APInt::getSignMask(BitWidth); 3331 break; 3332 } 3333 break; 3334 } 3335 case ISD::UMIN: { 3336 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3338 3339 // UMIN - we know that the result will have the maximum of the 3340 // known zero leading bits of the inputs. 3341 unsigned LeadZero = Known.countMinLeadingZeros(); 3342 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3343 3344 Known.Zero &= Known2.Zero; 3345 Known.One &= Known2.One; 3346 Known.Zero.setHighBits(LeadZero); 3347 break; 3348 } 3349 case ISD::UMAX: { 3350 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3352 3353 // UMAX - we know that the result will have the maximum of the 3354 // known one leading bits of the inputs. 3355 unsigned LeadOne = Known.countMinLeadingOnes(); 3356 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3357 3358 Known.Zero &= Known2.Zero; 3359 Known.One &= Known2.One; 3360 Known.One.setHighBits(LeadOne); 3361 break; 3362 } 3363 case ISD::SMIN: 3364 case ISD::SMAX: { 3365 // If we have a clamp pattern, we know that the number of sign bits will be 3366 // the minimum of the clamp min/max range. 3367 bool IsMax = (Opcode == ISD::SMAX); 3368 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3369 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3370 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3371 CstHigh = 3372 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3373 if (CstLow && CstHigh) { 3374 if (!IsMax) 3375 std::swap(CstLow, CstHigh); 3376 3377 const APInt &ValueLow = CstLow->getAPIntValue(); 3378 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3379 if (ValueLow.sle(ValueHigh)) { 3380 unsigned LowSignBits = ValueLow.getNumSignBits(); 3381 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3382 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3383 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3384 Known.One.setHighBits(MinSignBits); 3385 break; 3386 } 3387 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3388 Known.Zero.setHighBits(MinSignBits); 3389 break; 3390 } 3391 } 3392 } 3393 3394 // Fallback - just get the shared known bits of the operands. 3395 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3396 if (Known.isUnknown()) break; // Early-out 3397 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3398 Known.Zero &= Known2.Zero; 3399 Known.One &= Known2.One; 3400 break; 3401 } 3402 case ISD::FrameIndex: 3403 case ISD::TargetFrameIndex: 3404 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3405 break; 3406 3407 default: 3408 if (Opcode < ISD::BUILTIN_OP_END) 3409 break; 3410 LLVM_FALLTHROUGH; 3411 case ISD::INTRINSIC_WO_CHAIN: 3412 case ISD::INTRINSIC_W_CHAIN: 3413 case ISD::INTRINSIC_VOID: 3414 // Allow the target to implement this method for its nodes. 3415 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3416 break; 3417 } 3418 3419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3420 return Known; 3421 } 3422 3423 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3424 SDValue N1) const { 3425 // X + 0 never overflow 3426 if (isNullConstant(N1)) 3427 return OFK_Never; 3428 3429 KnownBits N1Known = computeKnownBits(N1); 3430 if (N1Known.Zero.getBoolValue()) { 3431 KnownBits N0Known = computeKnownBits(N0); 3432 3433 bool overflow; 3434 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3435 if (!overflow) 3436 return OFK_Never; 3437 } 3438 3439 // mulhi + 1 never overflow 3440 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3441 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3442 return OFK_Never; 3443 3444 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3445 KnownBits N0Known = computeKnownBits(N0); 3446 3447 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3448 return OFK_Never; 3449 } 3450 3451 return OFK_Sometime; 3452 } 3453 3454 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3455 EVT OpVT = Val.getValueType(); 3456 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3457 3458 // Is the constant a known power of 2? 3459 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3460 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3461 3462 // A left-shift of a constant one will have exactly one bit set because 3463 // shifting the bit off the end is undefined. 3464 if (Val.getOpcode() == ISD::SHL) { 3465 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3466 if (C && C->getAPIntValue() == 1) 3467 return true; 3468 } 3469 3470 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3471 // one bit set. 3472 if (Val.getOpcode() == ISD::SRL) { 3473 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3474 if (C && C->getAPIntValue().isSignMask()) 3475 return true; 3476 } 3477 3478 // Are all operands of a build vector constant powers of two? 3479 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3480 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3481 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3482 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3483 return false; 3484 })) 3485 return true; 3486 3487 // More could be done here, though the above checks are enough 3488 // to handle some common cases. 3489 3490 // Fall back to computeKnownBits to catch other known cases. 3491 KnownBits Known = computeKnownBits(Val); 3492 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3493 } 3494 3495 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3496 EVT VT = Op.getValueType(); 3497 APInt DemandedElts = VT.isVector() 3498 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3499 : APInt(1, 1); 3500 return ComputeNumSignBits(Op, DemandedElts, Depth); 3501 } 3502 3503 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3504 unsigned Depth) const { 3505 EVT VT = Op.getValueType(); 3506 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3507 unsigned VTBits = VT.getScalarSizeInBits(); 3508 unsigned NumElts = DemandedElts.getBitWidth(); 3509 unsigned Tmp, Tmp2; 3510 unsigned FirstAnswer = 1; 3511 3512 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3513 const APInt &Val = C->getAPIntValue(); 3514 return Val.getNumSignBits(); 3515 } 3516 3517 if (Depth >= MaxRecursionDepth) 3518 return 1; // Limit search depth. 3519 3520 if (!DemandedElts) 3521 return 1; // No demanded elts, better to assume we don't know anything. 3522 3523 unsigned Opcode = Op.getOpcode(); 3524 switch (Opcode) { 3525 default: break; 3526 case ISD::AssertSext: 3527 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3528 return VTBits-Tmp+1; 3529 case ISD::AssertZext: 3530 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3531 return VTBits-Tmp; 3532 3533 case ISD::BUILD_VECTOR: 3534 Tmp = VTBits; 3535 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3536 if (!DemandedElts[i]) 3537 continue; 3538 3539 SDValue SrcOp = Op.getOperand(i); 3540 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3541 3542 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3543 if (SrcOp.getValueSizeInBits() != VTBits) { 3544 assert(SrcOp.getValueSizeInBits() > VTBits && 3545 "Expected BUILD_VECTOR implicit truncation"); 3546 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3547 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3548 } 3549 Tmp = std::min(Tmp, Tmp2); 3550 } 3551 return Tmp; 3552 3553 case ISD::VECTOR_SHUFFLE: { 3554 // Collect the minimum number of sign bits that are shared by every vector 3555 // element referenced by the shuffle. 3556 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3557 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3558 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3559 for (unsigned i = 0; i != NumElts; ++i) { 3560 int M = SVN->getMaskElt(i); 3561 if (!DemandedElts[i]) 3562 continue; 3563 // For UNDEF elements, we don't know anything about the common state of 3564 // the shuffle result. 3565 if (M < 0) 3566 return 1; 3567 if ((unsigned)M < NumElts) 3568 DemandedLHS.setBit((unsigned)M % NumElts); 3569 else 3570 DemandedRHS.setBit((unsigned)M % NumElts); 3571 } 3572 Tmp = std::numeric_limits<unsigned>::max(); 3573 if (!!DemandedLHS) 3574 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3575 if (!!DemandedRHS) { 3576 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3577 Tmp = std::min(Tmp, Tmp2); 3578 } 3579 // If we don't know anything, early out and try computeKnownBits fall-back. 3580 if (Tmp == 1) 3581 break; 3582 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3583 return Tmp; 3584 } 3585 3586 case ISD::BITCAST: { 3587 SDValue N0 = Op.getOperand(0); 3588 EVT SrcVT = N0.getValueType(); 3589 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3590 3591 // Ignore bitcasts from unsupported types.. 3592 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3593 break; 3594 3595 // Fast handling of 'identity' bitcasts. 3596 if (VTBits == SrcBits) 3597 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3598 3599 bool IsLE = getDataLayout().isLittleEndian(); 3600 3601 // Bitcast 'large element' scalar/vector to 'small element' vector. 3602 if ((SrcBits % VTBits) == 0) { 3603 assert(VT.isVector() && "Expected bitcast to vector"); 3604 3605 unsigned Scale = SrcBits / VTBits; 3606 APInt SrcDemandedElts(NumElts / Scale, 0); 3607 for (unsigned i = 0; i != NumElts; ++i) 3608 if (DemandedElts[i]) 3609 SrcDemandedElts.setBit(i / Scale); 3610 3611 // Fast case - sign splat can be simply split across the small elements. 3612 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3613 if (Tmp == SrcBits) 3614 return VTBits; 3615 3616 // Slow case - determine how far the sign extends into each sub-element. 3617 Tmp2 = VTBits; 3618 for (unsigned i = 0; i != NumElts; ++i) 3619 if (DemandedElts[i]) { 3620 unsigned SubOffset = i % Scale; 3621 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3622 SubOffset = SubOffset * VTBits; 3623 if (Tmp <= SubOffset) 3624 return 1; 3625 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3626 } 3627 return Tmp2; 3628 } 3629 break; 3630 } 3631 3632 case ISD::SIGN_EXTEND: 3633 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3634 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3635 case ISD::SIGN_EXTEND_INREG: 3636 // Max of the input and what this extends. 3637 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3638 Tmp = VTBits-Tmp+1; 3639 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3640 return std::max(Tmp, Tmp2); 3641 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3642 SDValue Src = Op.getOperand(0); 3643 EVT SrcVT = Src.getValueType(); 3644 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3645 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3646 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3647 } 3648 case ISD::SRA: 3649 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3650 // SRA X, C -> adds C sign bits. 3651 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3652 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3653 else if (const APInt *ShAmt = 3654 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3655 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3656 return Tmp; 3657 case ISD::SHL: 3658 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3659 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3660 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 if (ShAmt->ult(Tmp)) 3662 return Tmp - ShAmt->getZExtValue(); 3663 } else if (const APInt *ShAmt = 3664 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3665 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 if (ShAmt->ult(Tmp)) 3667 return Tmp - ShAmt->getZExtValue(); 3668 } 3669 break; 3670 case ISD::AND: 3671 case ISD::OR: 3672 case ISD::XOR: // NOT is handled here. 3673 // Logical binary ops preserve the number of sign bits at the worst. 3674 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3675 if (Tmp != 1) { 3676 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3677 FirstAnswer = std::min(Tmp, Tmp2); 3678 // We computed what we know about the sign bits as our first 3679 // answer. Now proceed to the generic code that uses 3680 // computeKnownBits, and pick whichever answer is better. 3681 } 3682 break; 3683 3684 case ISD::SELECT: 3685 case ISD::VSELECT: 3686 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3687 if (Tmp == 1) return 1; // Early out. 3688 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3689 return std::min(Tmp, Tmp2); 3690 case ISD::SELECT_CC: 3691 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3692 if (Tmp == 1) return 1; // Early out. 3693 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3694 return std::min(Tmp, Tmp2); 3695 3696 case ISD::SMIN: 3697 case ISD::SMAX: { 3698 // If we have a clamp pattern, we know that the number of sign bits will be 3699 // the minimum of the clamp min/max range. 3700 bool IsMax = (Opcode == ISD::SMAX); 3701 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3702 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3703 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3704 CstHigh = 3705 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3706 if (CstLow && CstHigh) { 3707 if (!IsMax) 3708 std::swap(CstLow, CstHigh); 3709 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3710 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3711 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3712 return std::min(Tmp, Tmp2); 3713 } 3714 } 3715 3716 // Fallback - just get the minimum number of sign bits of the operands. 3717 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3718 if (Tmp == 1) 3719 return 1; // Early out. 3720 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3721 return std::min(Tmp, Tmp2); 3722 } 3723 case ISD::UMIN: 3724 case ISD::UMAX: 3725 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3726 if (Tmp == 1) 3727 return 1; // Early out. 3728 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3729 return std::min(Tmp, Tmp2); 3730 case ISD::SADDO: 3731 case ISD::UADDO: 3732 case ISD::SSUBO: 3733 case ISD::USUBO: 3734 case ISD::SMULO: 3735 case ISD::UMULO: 3736 if (Op.getResNo() != 1) 3737 break; 3738 // The boolean result conforms to getBooleanContents. Fall through. 3739 // If setcc returns 0/-1, all bits are sign bits. 3740 // We know that we have an integer-based boolean since these operations 3741 // are only available for integer. 3742 if (TLI->getBooleanContents(VT.isVector(), false) == 3743 TargetLowering::ZeroOrNegativeOneBooleanContent) 3744 return VTBits; 3745 break; 3746 case ISD::SETCC: 3747 case ISD::STRICT_FSETCC: 3748 case ISD::STRICT_FSETCCS: { 3749 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3750 // If setcc returns 0/-1, all bits are sign bits. 3751 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3752 TargetLowering::ZeroOrNegativeOneBooleanContent) 3753 return VTBits; 3754 break; 3755 } 3756 case ISD::ROTL: 3757 case ISD::ROTR: 3758 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3759 3760 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3761 if (Tmp == VTBits) 3762 return VTBits; 3763 3764 if (ConstantSDNode *C = 3765 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3766 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3767 3768 // Handle rotate right by N like a rotate left by 32-N. 3769 if (Opcode == ISD::ROTR) 3770 RotAmt = (VTBits - RotAmt) % VTBits; 3771 3772 // If we aren't rotating out all of the known-in sign bits, return the 3773 // number that are left. This handles rotl(sext(x), 1) for example. 3774 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3775 } 3776 break; 3777 case ISD::ADD: 3778 case ISD::ADDC: 3779 // Add can have at most one carry bit. Thus we know that the output 3780 // is, at worst, one more bit than the inputs. 3781 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3782 if (Tmp == 1) return 1; // Early out. 3783 3784 // Special case decrementing a value (ADD X, -1): 3785 if (ConstantSDNode *CRHS = 3786 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3787 if (CRHS->isAllOnesValue()) { 3788 KnownBits Known = 3789 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3790 3791 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3792 // sign bits set. 3793 if ((Known.Zero | 1).isAllOnesValue()) 3794 return VTBits; 3795 3796 // If we are subtracting one from a positive number, there is no carry 3797 // out of the result. 3798 if (Known.isNonNegative()) 3799 return Tmp; 3800 } 3801 3802 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3803 if (Tmp2 == 1) return 1; // Early out. 3804 return std::min(Tmp, Tmp2) - 1; 3805 case ISD::SUB: 3806 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3807 if (Tmp2 == 1) return 1; // Early out. 3808 3809 // Handle NEG. 3810 if (ConstantSDNode *CLHS = 3811 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3812 if (CLHS->isNullValue()) { 3813 KnownBits Known = 3814 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3815 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3816 // sign bits set. 3817 if ((Known.Zero | 1).isAllOnesValue()) 3818 return VTBits; 3819 3820 // If the input is known to be positive (the sign bit is known clear), 3821 // the output of the NEG has the same number of sign bits as the input. 3822 if (Known.isNonNegative()) 3823 return Tmp2; 3824 3825 // Otherwise, we treat this like a SUB. 3826 } 3827 3828 // Sub can have at most one carry bit. Thus we know that the output 3829 // is, at worst, one more bit than the inputs. 3830 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3831 if (Tmp == 1) return 1; // Early out. 3832 return std::min(Tmp, Tmp2) - 1; 3833 case ISD::MUL: { 3834 // The output of the Mul can be at most twice the valid bits in the inputs. 3835 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3836 if (SignBitsOp0 == 1) 3837 break; 3838 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3839 if (SignBitsOp1 == 1) 3840 break; 3841 unsigned OutValidBits = 3842 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3843 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3844 } 3845 case ISD::TRUNCATE: { 3846 // Check if the sign bits of source go down as far as the truncated value. 3847 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3848 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3849 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3850 return NumSrcSignBits - (NumSrcBits - VTBits); 3851 break; 3852 } 3853 case ISD::EXTRACT_ELEMENT: { 3854 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3855 const int BitWidth = Op.getValueSizeInBits(); 3856 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3857 3858 // Get reverse index (starting from 1), Op1 value indexes elements from 3859 // little end. Sign starts at big end. 3860 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3861 3862 // If the sign portion ends in our element the subtraction gives correct 3863 // result. Otherwise it gives either negative or > bitwidth result 3864 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3865 } 3866 case ISD::INSERT_VECTOR_ELT: { 3867 // If we know the element index, split the demand between the 3868 // source vector and the inserted element, otherwise assume we need 3869 // the original demanded vector elements and the value. 3870 SDValue InVec = Op.getOperand(0); 3871 SDValue InVal = Op.getOperand(1); 3872 SDValue EltNo = Op.getOperand(2); 3873 bool DemandedVal = true; 3874 APInt DemandedVecElts = DemandedElts; 3875 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3876 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3877 unsigned EltIdx = CEltNo->getZExtValue(); 3878 DemandedVal = !!DemandedElts[EltIdx]; 3879 DemandedVecElts.clearBit(EltIdx); 3880 } 3881 Tmp = std::numeric_limits<unsigned>::max(); 3882 if (DemandedVal) { 3883 // TODO - handle implicit truncation of inserted elements. 3884 if (InVal.getScalarValueSizeInBits() != VTBits) 3885 break; 3886 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3887 Tmp = std::min(Tmp, Tmp2); 3888 } 3889 if (!!DemandedVecElts) { 3890 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3891 Tmp = std::min(Tmp, Tmp2); 3892 } 3893 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3894 return Tmp; 3895 } 3896 case ISD::EXTRACT_VECTOR_ELT: { 3897 SDValue InVec = Op.getOperand(0); 3898 SDValue EltNo = Op.getOperand(1); 3899 EVT VecVT = InVec.getValueType(); 3900 const unsigned BitWidth = Op.getValueSizeInBits(); 3901 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3902 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3903 3904 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3905 // anything about sign bits. But if the sizes match we can derive knowledge 3906 // about sign bits from the vector operand. 3907 if (BitWidth != EltBitWidth) 3908 break; 3909 3910 // If we know the element index, just demand that vector element, else for 3911 // an unknown element index, ignore DemandedElts and demand them all. 3912 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3913 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3914 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3915 DemandedSrcElts = 3916 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3917 3918 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3919 } 3920 case ISD::EXTRACT_SUBVECTOR: { 3921 // If we know the element index, just demand that subvector elements, 3922 // otherwise demand them all. 3923 SDValue Src = Op.getOperand(0); 3924 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3925 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3926 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3927 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3928 // Offset the demanded elts by the subvector index. 3929 uint64_t Idx = SubIdx->getZExtValue(); 3930 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3931 } 3932 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3933 } 3934 case ISD::CONCAT_VECTORS: { 3935 // Determine the minimum number of sign bits across all demanded 3936 // elts of the input vectors. Early out if the result is already 1. 3937 Tmp = std::numeric_limits<unsigned>::max(); 3938 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3939 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3940 unsigned NumSubVectors = Op.getNumOperands(); 3941 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3942 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3943 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3944 if (!DemandedSub) 3945 continue; 3946 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3947 Tmp = std::min(Tmp, Tmp2); 3948 } 3949 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3950 return Tmp; 3951 } 3952 case ISD::INSERT_SUBVECTOR: { 3953 // If we know the element index, demand any elements from the subvector and 3954 // the remainder from the src its inserted into, otherwise assume we need 3955 // the original demanded base elements and ALL the inserted subvector 3956 // elements. 3957 SDValue Src = Op.getOperand(0); 3958 SDValue Sub = Op.getOperand(1); 3959 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3960 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3961 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 3962 APInt DemandedSrcElts = DemandedElts; 3963 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3964 uint64_t Idx = SubIdx->getZExtValue(); 3965 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3966 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3967 } 3968 Tmp = std::numeric_limits<unsigned>::max(); 3969 if (!!DemandedSubElts) { 3970 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3971 if (Tmp == 1) 3972 return 1; // early-out 3973 } 3974 if (!!DemandedSrcElts) { 3975 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3976 Tmp = std::min(Tmp, Tmp2); 3977 } 3978 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3979 return Tmp; 3980 } 3981 } 3982 3983 // If we are looking at the loaded value of the SDNode. 3984 if (Op.getResNo() == 0) { 3985 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3986 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3987 unsigned ExtType = LD->getExtensionType(); 3988 switch (ExtType) { 3989 default: break; 3990 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3991 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3992 return VTBits - Tmp + 1; 3993 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3994 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3995 return VTBits - Tmp; 3996 case ISD::NON_EXTLOAD: 3997 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3998 // We only need to handle vectors - computeKnownBits should handle 3999 // scalar cases. 4000 Type *CstTy = Cst->getType(); 4001 if (CstTy->isVectorTy() && 4002 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4003 Tmp = VTBits; 4004 for (unsigned i = 0; i != NumElts; ++i) { 4005 if (!DemandedElts[i]) 4006 continue; 4007 if (Constant *Elt = Cst->getAggregateElement(i)) { 4008 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4009 const APInt &Value = CInt->getValue(); 4010 Tmp = std::min(Tmp, Value.getNumSignBits()); 4011 continue; 4012 } 4013 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4014 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4015 Tmp = std::min(Tmp, Value.getNumSignBits()); 4016 continue; 4017 } 4018 } 4019 // Unknown type. Conservatively assume no bits match sign bit. 4020 return 1; 4021 } 4022 return Tmp; 4023 } 4024 } 4025 break; 4026 } 4027 } 4028 } 4029 4030 // Allow the target to implement this method for its nodes. 4031 if (Opcode >= ISD::BUILTIN_OP_END || 4032 Opcode == ISD::INTRINSIC_WO_CHAIN || 4033 Opcode == ISD::INTRINSIC_W_CHAIN || 4034 Opcode == ISD::INTRINSIC_VOID) { 4035 unsigned NumBits = 4036 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4037 if (NumBits > 1) 4038 FirstAnswer = std::max(FirstAnswer, NumBits); 4039 } 4040 4041 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4042 // use this information. 4043 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4044 4045 APInt Mask; 4046 if (Known.isNonNegative()) { // sign bit is 0 4047 Mask = Known.Zero; 4048 } else if (Known.isNegative()) { // sign bit is 1; 4049 Mask = Known.One; 4050 } else { 4051 // Nothing known. 4052 return FirstAnswer; 4053 } 4054 4055 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4056 // the number of identical bits in the top of the input value. 4057 Mask <<= Mask.getBitWidth()-VTBits; 4058 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4059 } 4060 4061 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4062 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4063 !isa<ConstantSDNode>(Op.getOperand(1))) 4064 return false; 4065 4066 if (Op.getOpcode() == ISD::OR && 4067 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4068 return false; 4069 4070 return true; 4071 } 4072 4073 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4074 // If we're told that NaNs won't happen, assume they won't. 4075 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4076 return true; 4077 4078 if (Depth >= MaxRecursionDepth) 4079 return false; // Limit search depth. 4080 4081 // TODO: Handle vectors. 4082 // If the value is a constant, we can obviously see if it is a NaN or not. 4083 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4084 return !C->getValueAPF().isNaN() || 4085 (SNaN && !C->getValueAPF().isSignaling()); 4086 } 4087 4088 unsigned Opcode = Op.getOpcode(); 4089 switch (Opcode) { 4090 case ISD::FADD: 4091 case ISD::FSUB: 4092 case ISD::FMUL: 4093 case ISD::FDIV: 4094 case ISD::FREM: 4095 case ISD::FSIN: 4096 case ISD::FCOS: { 4097 if (SNaN) 4098 return true; 4099 // TODO: Need isKnownNeverInfinity 4100 return false; 4101 } 4102 case ISD::FCANONICALIZE: 4103 case ISD::FEXP: 4104 case ISD::FEXP2: 4105 case ISD::FTRUNC: 4106 case ISD::FFLOOR: 4107 case ISD::FCEIL: 4108 case ISD::FROUND: 4109 case ISD::FRINT: 4110 case ISD::FNEARBYINT: { 4111 if (SNaN) 4112 return true; 4113 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4114 } 4115 case ISD::FABS: 4116 case ISD::FNEG: 4117 case ISD::FCOPYSIGN: { 4118 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4119 } 4120 case ISD::SELECT: 4121 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4122 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4123 case ISD::FP_EXTEND: 4124 case ISD::FP_ROUND: { 4125 if (SNaN) 4126 return true; 4127 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4128 } 4129 case ISD::SINT_TO_FP: 4130 case ISD::UINT_TO_FP: 4131 return true; 4132 case ISD::FMA: 4133 case ISD::FMAD: { 4134 if (SNaN) 4135 return true; 4136 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4137 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4138 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4139 } 4140 case ISD::FSQRT: // Need is known positive 4141 case ISD::FLOG: 4142 case ISD::FLOG2: 4143 case ISD::FLOG10: 4144 case ISD::FPOWI: 4145 case ISD::FPOW: { 4146 if (SNaN) 4147 return true; 4148 // TODO: Refine on operand 4149 return false; 4150 } 4151 case ISD::FMINNUM: 4152 case ISD::FMAXNUM: { 4153 // Only one needs to be known not-nan, since it will be returned if the 4154 // other ends up being one. 4155 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4156 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4157 } 4158 case ISD::FMINNUM_IEEE: 4159 case ISD::FMAXNUM_IEEE: { 4160 if (SNaN) 4161 return true; 4162 // This can return a NaN if either operand is an sNaN, or if both operands 4163 // are NaN. 4164 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4165 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4166 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4167 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4168 } 4169 case ISD::FMINIMUM: 4170 case ISD::FMAXIMUM: { 4171 // TODO: Does this quiet or return the origina NaN as-is? 4172 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4173 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4174 } 4175 case ISD::EXTRACT_VECTOR_ELT: { 4176 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4177 } 4178 default: 4179 if (Opcode >= ISD::BUILTIN_OP_END || 4180 Opcode == ISD::INTRINSIC_WO_CHAIN || 4181 Opcode == ISD::INTRINSIC_W_CHAIN || 4182 Opcode == ISD::INTRINSIC_VOID) { 4183 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4184 } 4185 4186 return false; 4187 } 4188 } 4189 4190 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4191 assert(Op.getValueType().isFloatingPoint() && 4192 "Floating point type expected"); 4193 4194 // If the value is a constant, we can obviously see if it is a zero or not. 4195 // TODO: Add BuildVector support. 4196 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4197 return !C->isZero(); 4198 return false; 4199 } 4200 4201 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4202 assert(!Op.getValueType().isFloatingPoint() && 4203 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4204 4205 // If the value is a constant, we can obviously see if it is a zero or not. 4206 if (ISD::matchUnaryPredicate( 4207 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4208 return true; 4209 4210 // TODO: Recognize more cases here. 4211 switch (Op.getOpcode()) { 4212 default: break; 4213 case ISD::OR: 4214 if (isKnownNeverZero(Op.getOperand(1)) || 4215 isKnownNeverZero(Op.getOperand(0))) 4216 return true; 4217 break; 4218 } 4219 4220 return false; 4221 } 4222 4223 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4224 // Check the obvious case. 4225 if (A == B) return true; 4226 4227 // For for negative and positive zero. 4228 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4229 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4230 if (CA->isZero() && CB->isZero()) return true; 4231 4232 // Otherwise they may not be equal. 4233 return false; 4234 } 4235 4236 // FIXME: unify with llvm::haveNoCommonBitsSet. 4237 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4238 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4239 assert(A.getValueType() == B.getValueType() && 4240 "Values must have the same type"); 4241 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4242 } 4243 4244 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4245 ArrayRef<SDValue> Ops, 4246 SelectionDAG &DAG) { 4247 int NumOps = Ops.size(); 4248 assert(NumOps != 0 && "Can't build an empty vector!"); 4249 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4250 "Incorrect element count in BUILD_VECTOR!"); 4251 4252 // BUILD_VECTOR of UNDEFs is UNDEF. 4253 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4254 return DAG.getUNDEF(VT); 4255 4256 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4257 SDValue IdentitySrc; 4258 bool IsIdentity = true; 4259 for (int i = 0; i != NumOps; ++i) { 4260 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4261 Ops[i].getOperand(0).getValueType() != VT || 4262 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4263 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4264 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4265 IsIdentity = false; 4266 break; 4267 } 4268 IdentitySrc = Ops[i].getOperand(0); 4269 } 4270 if (IsIdentity) 4271 return IdentitySrc; 4272 4273 return SDValue(); 4274 } 4275 4276 /// Try to simplify vector concatenation to an input value, undef, or build 4277 /// vector. 4278 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4279 ArrayRef<SDValue> Ops, 4280 SelectionDAG &DAG) { 4281 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4282 assert(llvm::all_of(Ops, 4283 [Ops](SDValue Op) { 4284 return Ops[0].getValueType() == Op.getValueType(); 4285 }) && 4286 "Concatenation of vectors with inconsistent value types!"); 4287 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4288 VT.getVectorNumElements() && 4289 "Incorrect element count in vector concatenation!"); 4290 4291 if (Ops.size() == 1) 4292 return Ops[0]; 4293 4294 // Concat of UNDEFs is UNDEF. 4295 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4296 return DAG.getUNDEF(VT); 4297 4298 // Scan the operands and look for extract operations from a single source 4299 // that correspond to insertion at the same location via this concatenation: 4300 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4301 SDValue IdentitySrc; 4302 bool IsIdentity = true; 4303 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4304 SDValue Op = Ops[i]; 4305 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4306 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4307 Op.getOperand(0).getValueType() != VT || 4308 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4309 !isa<ConstantSDNode>(Op.getOperand(1)) || 4310 Op.getConstantOperandVal(1) != IdentityIndex) { 4311 IsIdentity = false; 4312 break; 4313 } 4314 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4315 "Unexpected identity source vector for concat of extracts"); 4316 IdentitySrc = Op.getOperand(0); 4317 } 4318 if (IsIdentity) { 4319 assert(IdentitySrc && "Failed to set source vector of extracts"); 4320 return IdentitySrc; 4321 } 4322 4323 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4324 // simplified to one big BUILD_VECTOR. 4325 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4326 EVT SVT = VT.getScalarType(); 4327 SmallVector<SDValue, 16> Elts; 4328 for (SDValue Op : Ops) { 4329 EVT OpVT = Op.getValueType(); 4330 if (Op.isUndef()) 4331 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4332 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4333 Elts.append(Op->op_begin(), Op->op_end()); 4334 else 4335 return SDValue(); 4336 } 4337 4338 // BUILD_VECTOR requires all inputs to be of the same type, find the 4339 // maximum type and extend them all. 4340 for (SDValue Op : Elts) 4341 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4342 4343 if (SVT.bitsGT(VT.getScalarType())) 4344 for (SDValue &Op : Elts) 4345 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4346 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4347 : DAG.getSExtOrTrunc(Op, DL, SVT); 4348 4349 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4350 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4351 return V; 4352 } 4353 4354 /// Gets or creates the specified node. 4355 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4356 FoldingSetNodeID ID; 4357 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4358 void *IP = nullptr; 4359 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4360 return SDValue(E, 0); 4361 4362 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4363 getVTList(VT)); 4364 CSEMap.InsertNode(N, IP); 4365 4366 InsertNode(N); 4367 SDValue V = SDValue(N, 0); 4368 NewSDValueDbgMsg(V, "Creating new node: ", this); 4369 return V; 4370 } 4371 4372 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4373 SDValue Operand, const SDNodeFlags Flags) { 4374 // Constant fold unary operations with an integer constant operand. Even 4375 // opaque constant will be folded, because the folding of unary operations 4376 // doesn't create new constants with different values. Nevertheless, the 4377 // opaque flag is preserved during folding to prevent future folding with 4378 // other constants. 4379 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4380 const APInt &Val = C->getAPIntValue(); 4381 switch (Opcode) { 4382 default: break; 4383 case ISD::SIGN_EXTEND: 4384 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4385 C->isTargetOpcode(), C->isOpaque()); 4386 case ISD::TRUNCATE: 4387 if (C->isOpaque()) 4388 break; 4389 LLVM_FALLTHROUGH; 4390 case ISD::ANY_EXTEND: 4391 case ISD::ZERO_EXTEND: 4392 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4393 C->isTargetOpcode(), C->isOpaque()); 4394 case ISD::UINT_TO_FP: 4395 case ISD::SINT_TO_FP: { 4396 APFloat apf(EVTToAPFloatSemantics(VT), 4397 APInt::getNullValue(VT.getSizeInBits())); 4398 (void)apf.convertFromAPInt(Val, 4399 Opcode==ISD::SINT_TO_FP, 4400 APFloat::rmNearestTiesToEven); 4401 return getConstantFP(apf, DL, VT); 4402 } 4403 case ISD::BITCAST: 4404 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4405 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4406 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4407 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4408 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4409 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4410 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4411 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4412 break; 4413 case ISD::ABS: 4414 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4415 C->isOpaque()); 4416 case ISD::BITREVERSE: 4417 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4418 C->isOpaque()); 4419 case ISD::BSWAP: 4420 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4421 C->isOpaque()); 4422 case ISD::CTPOP: 4423 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4424 C->isOpaque()); 4425 case ISD::CTLZ: 4426 case ISD::CTLZ_ZERO_UNDEF: 4427 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4428 C->isOpaque()); 4429 case ISD::CTTZ: 4430 case ISD::CTTZ_ZERO_UNDEF: 4431 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4432 C->isOpaque()); 4433 case ISD::FP16_TO_FP: { 4434 bool Ignored; 4435 APFloat FPV(APFloat::IEEEhalf(), 4436 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4437 4438 // This can return overflow, underflow, or inexact; we don't care. 4439 // FIXME need to be more flexible about rounding mode. 4440 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4441 APFloat::rmNearestTiesToEven, &Ignored); 4442 return getConstantFP(FPV, DL, VT); 4443 } 4444 } 4445 } 4446 4447 // Constant fold unary operations with a floating point constant operand. 4448 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4449 APFloat V = C->getValueAPF(); // make copy 4450 switch (Opcode) { 4451 case ISD::FNEG: 4452 V.changeSign(); 4453 return getConstantFP(V, DL, VT); 4454 case ISD::FABS: 4455 V.clearSign(); 4456 return getConstantFP(V, DL, VT); 4457 case ISD::FCEIL: { 4458 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4459 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4460 return getConstantFP(V, DL, VT); 4461 break; 4462 } 4463 case ISD::FTRUNC: { 4464 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4465 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4466 return getConstantFP(V, DL, VT); 4467 break; 4468 } 4469 case ISD::FFLOOR: { 4470 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4471 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4472 return getConstantFP(V, DL, VT); 4473 break; 4474 } 4475 case ISD::FP_EXTEND: { 4476 bool ignored; 4477 // This can return overflow, underflow, or inexact; we don't care. 4478 // FIXME need to be more flexible about rounding mode. 4479 (void)V.convert(EVTToAPFloatSemantics(VT), 4480 APFloat::rmNearestTiesToEven, &ignored); 4481 return getConstantFP(V, DL, VT); 4482 } 4483 case ISD::FP_TO_SINT: 4484 case ISD::FP_TO_UINT: { 4485 bool ignored; 4486 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4487 // FIXME need to be more flexible about rounding mode. 4488 APFloat::opStatus s = 4489 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4490 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4491 break; 4492 return getConstant(IntVal, DL, VT); 4493 } 4494 case ISD::BITCAST: 4495 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4496 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4497 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4498 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4499 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4500 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4501 break; 4502 case ISD::FP_TO_FP16: { 4503 bool Ignored; 4504 // This can return overflow, underflow, or inexact; we don't care. 4505 // FIXME need to be more flexible about rounding mode. 4506 (void)V.convert(APFloat::IEEEhalf(), 4507 APFloat::rmNearestTiesToEven, &Ignored); 4508 return getConstant(V.bitcastToAPInt(), DL, VT); 4509 } 4510 } 4511 } 4512 4513 // Constant fold unary operations with a vector integer or float operand. 4514 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4515 if (BV->isConstant()) { 4516 switch (Opcode) { 4517 default: 4518 // FIXME: Entirely reasonable to perform folding of other unary 4519 // operations here as the need arises. 4520 break; 4521 case ISD::FNEG: 4522 case ISD::FABS: 4523 case ISD::FCEIL: 4524 case ISD::FTRUNC: 4525 case ISD::FFLOOR: 4526 case ISD::FP_EXTEND: 4527 case ISD::FP_TO_SINT: 4528 case ISD::FP_TO_UINT: 4529 case ISD::TRUNCATE: 4530 case ISD::ANY_EXTEND: 4531 case ISD::ZERO_EXTEND: 4532 case ISD::SIGN_EXTEND: 4533 case ISD::UINT_TO_FP: 4534 case ISD::SINT_TO_FP: 4535 case ISD::ABS: 4536 case ISD::BITREVERSE: 4537 case ISD::BSWAP: 4538 case ISD::CTLZ: 4539 case ISD::CTLZ_ZERO_UNDEF: 4540 case ISD::CTTZ: 4541 case ISD::CTTZ_ZERO_UNDEF: 4542 case ISD::CTPOP: { 4543 SDValue Ops = { Operand }; 4544 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4545 return Fold; 4546 } 4547 } 4548 } 4549 } 4550 4551 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4552 switch (Opcode) { 4553 case ISD::TokenFactor: 4554 case ISD::MERGE_VALUES: 4555 case ISD::CONCAT_VECTORS: 4556 return Operand; // Factor, merge or concat of one node? No need. 4557 case ISD::BUILD_VECTOR: { 4558 // Attempt to simplify BUILD_VECTOR. 4559 SDValue Ops[] = {Operand}; 4560 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4561 return V; 4562 break; 4563 } 4564 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4565 case ISD::FP_EXTEND: 4566 assert(VT.isFloatingPoint() && 4567 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4568 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4569 assert((!VT.isVector() || 4570 VT.getVectorNumElements() == 4571 Operand.getValueType().getVectorNumElements()) && 4572 "Vector element count mismatch!"); 4573 assert(Operand.getValueType().bitsLT(VT) && 4574 "Invalid fpext node, dst < src!"); 4575 if (Operand.isUndef()) 4576 return getUNDEF(VT); 4577 break; 4578 case ISD::FP_TO_SINT: 4579 case ISD::FP_TO_UINT: 4580 if (Operand.isUndef()) 4581 return getUNDEF(VT); 4582 break; 4583 case ISD::SINT_TO_FP: 4584 case ISD::UINT_TO_FP: 4585 // [us]itofp(undef) = 0, because the result value is bounded. 4586 if (Operand.isUndef()) 4587 return getConstantFP(0.0, DL, VT); 4588 break; 4589 case ISD::SIGN_EXTEND: 4590 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4591 "Invalid SIGN_EXTEND!"); 4592 assert(VT.isVector() == Operand.getValueType().isVector() && 4593 "SIGN_EXTEND result type type should be vector iff the operand " 4594 "type is vector!"); 4595 if (Operand.getValueType() == VT) return Operand; // noop extension 4596 assert((!VT.isVector() || 4597 VT.getVectorNumElements() == 4598 Operand.getValueType().getVectorNumElements()) && 4599 "Vector element count mismatch!"); 4600 assert(Operand.getValueType().bitsLT(VT) && 4601 "Invalid sext node, dst < src!"); 4602 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4603 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4604 else if (OpOpcode == ISD::UNDEF) 4605 // sext(undef) = 0, because the top bits will all be the same. 4606 return getConstant(0, DL, VT); 4607 break; 4608 case ISD::ZERO_EXTEND: 4609 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4610 "Invalid ZERO_EXTEND!"); 4611 assert(VT.isVector() == Operand.getValueType().isVector() && 4612 "ZERO_EXTEND result type type should be vector iff the operand " 4613 "type is vector!"); 4614 if (Operand.getValueType() == VT) return Operand; // noop extension 4615 assert((!VT.isVector() || 4616 VT.getVectorNumElements() == 4617 Operand.getValueType().getVectorNumElements()) && 4618 "Vector element count mismatch!"); 4619 assert(Operand.getValueType().bitsLT(VT) && 4620 "Invalid zext node, dst < src!"); 4621 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4622 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4623 else if (OpOpcode == ISD::UNDEF) 4624 // zext(undef) = 0, because the top bits will be zero. 4625 return getConstant(0, DL, VT); 4626 break; 4627 case ISD::ANY_EXTEND: 4628 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4629 "Invalid ANY_EXTEND!"); 4630 assert(VT.isVector() == Operand.getValueType().isVector() && 4631 "ANY_EXTEND result type type should be vector iff the operand " 4632 "type is vector!"); 4633 if (Operand.getValueType() == VT) return Operand; // noop extension 4634 assert((!VT.isVector() || 4635 VT.getVectorNumElements() == 4636 Operand.getValueType().getVectorNumElements()) && 4637 "Vector element count mismatch!"); 4638 assert(Operand.getValueType().bitsLT(VT) && 4639 "Invalid anyext node, dst < src!"); 4640 4641 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4642 OpOpcode == ISD::ANY_EXTEND) 4643 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4644 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4645 else if (OpOpcode == ISD::UNDEF) 4646 return getUNDEF(VT); 4647 4648 // (ext (trunc x)) -> x 4649 if (OpOpcode == ISD::TRUNCATE) { 4650 SDValue OpOp = Operand.getOperand(0); 4651 if (OpOp.getValueType() == VT) { 4652 transferDbgValues(Operand, OpOp); 4653 return OpOp; 4654 } 4655 } 4656 break; 4657 case ISD::TRUNCATE: 4658 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4659 "Invalid TRUNCATE!"); 4660 assert(VT.isVector() == Operand.getValueType().isVector() && 4661 "TRUNCATE result type type should be vector iff the operand " 4662 "type is vector!"); 4663 if (Operand.getValueType() == VT) return Operand; // noop truncate 4664 assert((!VT.isVector() || 4665 VT.getVectorNumElements() == 4666 Operand.getValueType().getVectorNumElements()) && 4667 "Vector element count mismatch!"); 4668 assert(Operand.getValueType().bitsGT(VT) && 4669 "Invalid truncate node, src < dst!"); 4670 if (OpOpcode == ISD::TRUNCATE) 4671 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4672 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4673 OpOpcode == ISD::ANY_EXTEND) { 4674 // If the source is smaller than the dest, we still need an extend. 4675 if (Operand.getOperand(0).getValueType().getScalarType() 4676 .bitsLT(VT.getScalarType())) 4677 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4678 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4679 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4680 return Operand.getOperand(0); 4681 } 4682 if (OpOpcode == ISD::UNDEF) 4683 return getUNDEF(VT); 4684 break; 4685 case ISD::ANY_EXTEND_VECTOR_INREG: 4686 case ISD::ZERO_EXTEND_VECTOR_INREG: 4687 case ISD::SIGN_EXTEND_VECTOR_INREG: 4688 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4689 assert(Operand.getValueType().bitsLE(VT) && 4690 "The input must be the same size or smaller than the result."); 4691 assert(VT.getVectorNumElements() < 4692 Operand.getValueType().getVectorNumElements() && 4693 "The destination vector type must have fewer lanes than the input."); 4694 break; 4695 case ISD::ABS: 4696 assert(VT.isInteger() && VT == Operand.getValueType() && 4697 "Invalid ABS!"); 4698 if (OpOpcode == ISD::UNDEF) 4699 return getUNDEF(VT); 4700 break; 4701 case ISD::BSWAP: 4702 assert(VT.isInteger() && VT == Operand.getValueType() && 4703 "Invalid BSWAP!"); 4704 assert((VT.getScalarSizeInBits() % 16 == 0) && 4705 "BSWAP types must be a multiple of 16 bits!"); 4706 if (OpOpcode == ISD::UNDEF) 4707 return getUNDEF(VT); 4708 break; 4709 case ISD::BITREVERSE: 4710 assert(VT.isInteger() && VT == Operand.getValueType() && 4711 "Invalid BITREVERSE!"); 4712 if (OpOpcode == ISD::UNDEF) 4713 return getUNDEF(VT); 4714 break; 4715 case ISD::BITCAST: 4716 // Basic sanity checking. 4717 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4718 "Cannot BITCAST between types of different sizes!"); 4719 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4720 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4721 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4722 if (OpOpcode == ISD::UNDEF) 4723 return getUNDEF(VT); 4724 break; 4725 case ISD::SCALAR_TO_VECTOR: 4726 assert(VT.isVector() && !Operand.getValueType().isVector() && 4727 (VT.getVectorElementType() == Operand.getValueType() || 4728 (VT.getVectorElementType().isInteger() && 4729 Operand.getValueType().isInteger() && 4730 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4731 "Illegal SCALAR_TO_VECTOR node!"); 4732 if (OpOpcode == ISD::UNDEF) 4733 return getUNDEF(VT); 4734 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4735 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4736 isa<ConstantSDNode>(Operand.getOperand(1)) && 4737 Operand.getConstantOperandVal(1) == 0 && 4738 Operand.getOperand(0).getValueType() == VT) 4739 return Operand.getOperand(0); 4740 break; 4741 case ISD::FNEG: 4742 // Negation of an unknown bag of bits is still completely undefined. 4743 if (OpOpcode == ISD::UNDEF) 4744 return getUNDEF(VT); 4745 4746 if (OpOpcode == ISD::FNEG) // --X -> X 4747 return Operand.getOperand(0); 4748 break; 4749 case ISD::FABS: 4750 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4751 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4752 break; 4753 } 4754 4755 SDNode *N; 4756 SDVTList VTs = getVTList(VT); 4757 SDValue Ops[] = {Operand}; 4758 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4759 FoldingSetNodeID ID; 4760 AddNodeIDNode(ID, Opcode, VTs, Ops); 4761 void *IP = nullptr; 4762 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4763 E->intersectFlagsWith(Flags); 4764 return SDValue(E, 0); 4765 } 4766 4767 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4768 N->setFlags(Flags); 4769 createOperands(N, Ops); 4770 CSEMap.InsertNode(N, IP); 4771 } else { 4772 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4773 createOperands(N, Ops); 4774 } 4775 4776 InsertNode(N); 4777 SDValue V = SDValue(N, 0); 4778 NewSDValueDbgMsg(V, "Creating new node: ", this); 4779 return V; 4780 } 4781 4782 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4783 const APInt &C2) { 4784 switch (Opcode) { 4785 case ISD::ADD: return C1 + C2; 4786 case ISD::SUB: return C1 - C2; 4787 case ISD::MUL: return C1 * C2; 4788 case ISD::AND: return C1 & C2; 4789 case ISD::OR: return C1 | C2; 4790 case ISD::XOR: return C1 ^ C2; 4791 case ISD::SHL: return C1 << C2; 4792 case ISD::SRL: return C1.lshr(C2); 4793 case ISD::SRA: return C1.ashr(C2); 4794 case ISD::ROTL: return C1.rotl(C2); 4795 case ISD::ROTR: return C1.rotr(C2); 4796 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4797 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4798 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4799 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4800 case ISD::SADDSAT: return C1.sadd_sat(C2); 4801 case ISD::UADDSAT: return C1.uadd_sat(C2); 4802 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4803 case ISD::USUBSAT: return C1.usub_sat(C2); 4804 case ISD::UDIV: 4805 if (!C2.getBoolValue()) 4806 break; 4807 return C1.udiv(C2); 4808 case ISD::UREM: 4809 if (!C2.getBoolValue()) 4810 break; 4811 return C1.urem(C2); 4812 case ISD::SDIV: 4813 if (!C2.getBoolValue()) 4814 break; 4815 return C1.sdiv(C2); 4816 case ISD::SREM: 4817 if (!C2.getBoolValue()) 4818 break; 4819 return C1.srem(C2); 4820 } 4821 return llvm::None; 4822 } 4823 4824 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4825 const GlobalAddressSDNode *GA, 4826 const SDNode *N2) { 4827 if (GA->getOpcode() != ISD::GlobalAddress) 4828 return SDValue(); 4829 if (!TLI->isOffsetFoldingLegal(GA)) 4830 return SDValue(); 4831 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4832 if (!C2) 4833 return SDValue(); 4834 int64_t Offset = C2->getSExtValue(); 4835 switch (Opcode) { 4836 case ISD::ADD: break; 4837 case ISD::SUB: Offset = -uint64_t(Offset); break; 4838 default: return SDValue(); 4839 } 4840 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4841 GA->getOffset() + uint64_t(Offset)); 4842 } 4843 4844 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4845 switch (Opcode) { 4846 case ISD::SDIV: 4847 case ISD::UDIV: 4848 case ISD::SREM: 4849 case ISD::UREM: { 4850 // If a divisor is zero/undef or any element of a divisor vector is 4851 // zero/undef, the whole op is undef. 4852 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4853 SDValue Divisor = Ops[1]; 4854 if (Divisor.isUndef() || isNullConstant(Divisor)) 4855 return true; 4856 4857 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4858 llvm::any_of(Divisor->op_values(), 4859 [](SDValue V) { return V.isUndef() || 4860 isNullConstant(V); }); 4861 // TODO: Handle signed overflow. 4862 } 4863 // TODO: Handle oversized shifts. 4864 default: 4865 return false; 4866 } 4867 } 4868 4869 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4870 EVT VT, ArrayRef<SDValue> Ops) { 4871 // If the opcode is a target-specific ISD node, there's nothing we can 4872 // do here and the operand rules may not line up with the below, so 4873 // bail early. 4874 if (Opcode >= ISD::BUILTIN_OP_END) 4875 return SDValue(); 4876 4877 // For now, the array Ops should only contain two values. 4878 // This enforcement will be removed once this function is merged with 4879 // FoldConstantVectorArithmetic 4880 if (Ops.size() != 2) 4881 return SDValue(); 4882 4883 if (isUndef(Opcode, Ops)) 4884 return getUNDEF(VT); 4885 4886 SDNode *N1 = Ops[0].getNode(); 4887 SDNode *N2 = Ops[1].getNode(); 4888 4889 // Handle the case of two scalars. 4890 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4891 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4892 if (C1->isOpaque() || C2->isOpaque()) 4893 return SDValue(); 4894 4895 Optional<APInt> FoldAttempt = 4896 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4897 if (!FoldAttempt) 4898 return SDValue(); 4899 4900 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4901 assert((!Folded || !VT.isVector()) && 4902 "Can't fold vectors ops with scalar operands"); 4903 return Folded; 4904 } 4905 } 4906 4907 // fold (add Sym, c) -> Sym+c 4908 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4909 return FoldSymbolOffset(Opcode, VT, GA, N2); 4910 if (TLI->isCommutativeBinOp(Opcode)) 4911 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4912 return FoldSymbolOffset(Opcode, VT, GA, N1); 4913 4914 // For vectors, extract each constant element and fold them individually. 4915 // Either input may be an undef value. 4916 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4917 if (!BV1 && !N1->isUndef()) 4918 return SDValue(); 4919 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4920 if (!BV2 && !N2->isUndef()) 4921 return SDValue(); 4922 // If both operands are undef, that's handled the same way as scalars. 4923 if (!BV1 && !BV2) 4924 return SDValue(); 4925 4926 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4927 "Vector binop with different number of elements in operands?"); 4928 4929 EVT SVT = VT.getScalarType(); 4930 EVT LegalSVT = SVT; 4931 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4932 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4933 if (LegalSVT.bitsLT(SVT)) 4934 return SDValue(); 4935 } 4936 SmallVector<SDValue, 4> Outputs; 4937 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4938 for (unsigned I = 0; I != NumOps; ++I) { 4939 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4940 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4941 if (SVT.isInteger()) { 4942 if (V1->getValueType(0).bitsGT(SVT)) 4943 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4944 if (V2->getValueType(0).bitsGT(SVT)) 4945 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4946 } 4947 4948 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4949 return SDValue(); 4950 4951 // Fold one vector element. 4952 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4953 if (LegalSVT != SVT) 4954 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4955 4956 // Scalar folding only succeeded if the result is a constant or UNDEF. 4957 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4958 ScalarResult.getOpcode() != ISD::ConstantFP) 4959 return SDValue(); 4960 Outputs.push_back(ScalarResult); 4961 } 4962 4963 assert(VT.getVectorNumElements() == Outputs.size() && 4964 "Vector size mismatch!"); 4965 4966 // We may have a vector type but a scalar result. Create a splat. 4967 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4968 4969 // Build a big vector out of the scalar elements we generated. 4970 return getBuildVector(VT, SDLoc(), Outputs); 4971 } 4972 4973 // TODO: Merge with FoldConstantArithmetic 4974 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4975 const SDLoc &DL, EVT VT, 4976 ArrayRef<SDValue> Ops, 4977 const SDNodeFlags Flags) { 4978 // If the opcode is a target-specific ISD node, there's nothing we can 4979 // do here and the operand rules may not line up with the below, so 4980 // bail early. 4981 if (Opcode >= ISD::BUILTIN_OP_END) 4982 return SDValue(); 4983 4984 if (isUndef(Opcode, Ops)) 4985 return getUNDEF(VT); 4986 4987 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4988 if (!VT.isVector()) 4989 return SDValue(); 4990 4991 unsigned NumElts = VT.getVectorNumElements(); 4992 4993 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4994 return !Op.getValueType().isVector() || 4995 Op.getValueType().getVectorNumElements() == NumElts; 4996 }; 4997 4998 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4999 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5000 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5001 (BV && BV->isConstant()); 5002 }; 5003 5004 // All operands must be vector types with the same number of elements as 5005 // the result type and must be either UNDEF or a build vector of constant 5006 // or UNDEF scalars. 5007 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5008 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5009 return SDValue(); 5010 5011 // If we are comparing vectors, then the result needs to be a i1 boolean 5012 // that is then sign-extended back to the legal result type. 5013 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5014 5015 // Find legal integer scalar type for constant promotion and 5016 // ensure that its scalar size is at least as large as source. 5017 EVT LegalSVT = VT.getScalarType(); 5018 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5019 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5020 if (LegalSVT.bitsLT(VT.getScalarType())) 5021 return SDValue(); 5022 } 5023 5024 // Constant fold each scalar lane separately. 5025 SmallVector<SDValue, 4> ScalarResults; 5026 for (unsigned i = 0; i != NumElts; i++) { 5027 SmallVector<SDValue, 4> ScalarOps; 5028 for (SDValue Op : Ops) { 5029 EVT InSVT = Op.getValueType().getScalarType(); 5030 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5031 if (!InBV) { 5032 // We've checked that this is UNDEF or a constant of some kind. 5033 if (Op.isUndef()) 5034 ScalarOps.push_back(getUNDEF(InSVT)); 5035 else 5036 ScalarOps.push_back(Op); 5037 continue; 5038 } 5039 5040 SDValue ScalarOp = InBV->getOperand(i); 5041 EVT ScalarVT = ScalarOp.getValueType(); 5042 5043 // Build vector (integer) scalar operands may need implicit 5044 // truncation - do this before constant folding. 5045 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5046 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5047 5048 ScalarOps.push_back(ScalarOp); 5049 } 5050 5051 // Constant fold the scalar operands. 5052 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5053 5054 // Legalize the (integer) scalar constant if necessary. 5055 if (LegalSVT != SVT) 5056 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5057 5058 // Scalar folding only succeeded if the result is a constant or UNDEF. 5059 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5060 ScalarResult.getOpcode() != ISD::ConstantFP) 5061 return SDValue(); 5062 ScalarResults.push_back(ScalarResult); 5063 } 5064 5065 SDValue V = getBuildVector(VT, DL, ScalarResults); 5066 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5067 return V; 5068 } 5069 5070 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5071 EVT VT, SDValue N1, SDValue N2) { 5072 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5073 // should. That will require dealing with a potentially non-default 5074 // rounding mode, checking the "opStatus" return value from the APFloat 5075 // math calculations, and possibly other variations. 5076 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5077 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5078 if (N1CFP && N2CFP) { 5079 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5080 switch (Opcode) { 5081 case ISD::FADD: 5082 C1.add(C2, APFloat::rmNearestTiesToEven); 5083 return getConstantFP(C1, DL, VT); 5084 case ISD::FSUB: 5085 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5086 return getConstantFP(C1, DL, VT); 5087 case ISD::FMUL: 5088 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5089 return getConstantFP(C1, DL, VT); 5090 case ISD::FDIV: 5091 C1.divide(C2, APFloat::rmNearestTiesToEven); 5092 return getConstantFP(C1, DL, VT); 5093 case ISD::FREM: 5094 C1.mod(C2); 5095 return getConstantFP(C1, DL, VT); 5096 case ISD::FCOPYSIGN: 5097 C1.copySign(C2); 5098 return getConstantFP(C1, DL, VT); 5099 default: break; 5100 } 5101 } 5102 if (N1CFP && Opcode == ISD::FP_ROUND) { 5103 APFloat C1 = N1CFP->getValueAPF(); // make copy 5104 bool Unused; 5105 // This can return overflow, underflow, or inexact; we don't care. 5106 // FIXME need to be more flexible about rounding mode. 5107 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5108 &Unused); 5109 return getConstantFP(C1, DL, VT); 5110 } 5111 5112 switch (Opcode) { 5113 case ISD::FSUB: 5114 // -0.0 - undef --> undef (consistent with "fneg undef") 5115 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5116 return getUNDEF(VT); 5117 LLVM_FALLTHROUGH; 5118 5119 case ISD::FADD: 5120 case ISD::FMUL: 5121 case ISD::FDIV: 5122 case ISD::FREM: 5123 // If both operands are undef, the result is undef. If 1 operand is undef, 5124 // the result is NaN. This should match the behavior of the IR optimizer. 5125 if (N1.isUndef() && N2.isUndef()) 5126 return getUNDEF(VT); 5127 if (N1.isUndef() || N2.isUndef()) 5128 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5129 } 5130 return SDValue(); 5131 } 5132 5133 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5134 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5135 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5136 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5137 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5138 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5139 5140 // Canonicalize constant to RHS if commutative. 5141 if (TLI->isCommutativeBinOp(Opcode)) { 5142 if (N1C && !N2C) { 5143 std::swap(N1C, N2C); 5144 std::swap(N1, N2); 5145 } else if (N1CFP && !N2CFP) { 5146 std::swap(N1CFP, N2CFP); 5147 std::swap(N1, N2); 5148 } 5149 } 5150 5151 switch (Opcode) { 5152 default: break; 5153 case ISD::TokenFactor: 5154 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5155 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5156 // Fold trivial token factors. 5157 if (N1.getOpcode() == ISD::EntryToken) return N2; 5158 if (N2.getOpcode() == ISD::EntryToken) return N1; 5159 if (N1 == N2) return N1; 5160 break; 5161 case ISD::BUILD_VECTOR: { 5162 // Attempt to simplify BUILD_VECTOR. 5163 SDValue Ops[] = {N1, N2}; 5164 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5165 return V; 5166 break; 5167 } 5168 case ISD::CONCAT_VECTORS: { 5169 SDValue Ops[] = {N1, N2}; 5170 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5171 return V; 5172 break; 5173 } 5174 case ISD::AND: 5175 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5176 assert(N1.getValueType() == N2.getValueType() && 5177 N1.getValueType() == VT && "Binary operator types must match!"); 5178 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5179 // worth handling here. 5180 if (N2C && N2C->isNullValue()) 5181 return N2; 5182 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5183 return N1; 5184 break; 5185 case ISD::OR: 5186 case ISD::XOR: 5187 case ISD::ADD: 5188 case ISD::SUB: 5189 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5190 assert(N1.getValueType() == N2.getValueType() && 5191 N1.getValueType() == VT && "Binary operator types must match!"); 5192 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5193 // it's worth handling here. 5194 if (N2C && N2C->isNullValue()) 5195 return N1; 5196 break; 5197 case ISD::MUL: 5198 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5199 assert(N1.getValueType() == N2.getValueType() && 5200 N1.getValueType() == VT && "Binary operator types must match!"); 5201 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5202 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5203 APInt N2CImm = N2C->getAPIntValue(); 5204 return getVScale(DL, VT, MulImm * N2CImm); 5205 } 5206 break; 5207 case ISD::UDIV: 5208 case ISD::UREM: 5209 case ISD::MULHU: 5210 case ISD::MULHS: 5211 case ISD::SDIV: 5212 case ISD::SREM: 5213 case ISD::SMIN: 5214 case ISD::SMAX: 5215 case ISD::UMIN: 5216 case ISD::UMAX: 5217 case ISD::SADDSAT: 5218 case ISD::SSUBSAT: 5219 case ISD::UADDSAT: 5220 case ISD::USUBSAT: 5221 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5222 assert(N1.getValueType() == N2.getValueType() && 5223 N1.getValueType() == VT && "Binary operator types must match!"); 5224 break; 5225 case ISD::FADD: 5226 case ISD::FSUB: 5227 case ISD::FMUL: 5228 case ISD::FDIV: 5229 case ISD::FREM: 5230 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5231 assert(N1.getValueType() == N2.getValueType() && 5232 N1.getValueType() == VT && "Binary operator types must match!"); 5233 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5234 return V; 5235 break; 5236 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5237 assert(N1.getValueType() == VT && 5238 N1.getValueType().isFloatingPoint() && 5239 N2.getValueType().isFloatingPoint() && 5240 "Invalid FCOPYSIGN!"); 5241 break; 5242 case ISD::SHL: 5243 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5244 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5245 APInt ShiftImm = N2C->getAPIntValue(); 5246 return getVScale(DL, VT, MulImm << ShiftImm); 5247 } 5248 LLVM_FALLTHROUGH; 5249 case ISD::SRA: 5250 case ISD::SRL: 5251 if (SDValue V = simplifyShift(N1, N2)) 5252 return V; 5253 LLVM_FALLTHROUGH; 5254 case ISD::ROTL: 5255 case ISD::ROTR: 5256 assert(VT == N1.getValueType() && 5257 "Shift operators return type must be the same as their first arg"); 5258 assert(VT.isInteger() && N2.getValueType().isInteger() && 5259 "Shifts only work on integers"); 5260 assert((!VT.isVector() || VT == N2.getValueType()) && 5261 "Vector shift amounts must be in the same as their first arg"); 5262 // Verify that the shift amount VT is big enough to hold valid shift 5263 // amounts. This catches things like trying to shift an i1024 value by an 5264 // i8, which is easy to fall into in generic code that uses 5265 // TLI.getShiftAmount(). 5266 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5267 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5268 "Invalid use of small shift amount with oversized value!"); 5269 5270 // Always fold shifts of i1 values so the code generator doesn't need to 5271 // handle them. Since we know the size of the shift has to be less than the 5272 // size of the value, the shift/rotate count is guaranteed to be zero. 5273 if (VT == MVT::i1) 5274 return N1; 5275 if (N2C && N2C->isNullValue()) 5276 return N1; 5277 break; 5278 case ISD::FP_ROUND: 5279 assert(VT.isFloatingPoint() && 5280 N1.getValueType().isFloatingPoint() && 5281 VT.bitsLE(N1.getValueType()) && 5282 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5283 "Invalid FP_ROUND!"); 5284 if (N1.getValueType() == VT) return N1; // noop conversion. 5285 break; 5286 case ISD::AssertSext: 5287 case ISD::AssertZext: { 5288 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5289 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5290 assert(VT.isInteger() && EVT.isInteger() && 5291 "Cannot *_EXTEND_INREG FP types"); 5292 assert(!EVT.isVector() && 5293 "AssertSExt/AssertZExt type should be the vector element type " 5294 "rather than the vector type!"); 5295 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5296 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5297 break; 5298 } 5299 case ISD::SIGN_EXTEND_INREG: { 5300 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5301 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5302 assert(VT.isInteger() && EVT.isInteger() && 5303 "Cannot *_EXTEND_INREG FP types"); 5304 assert(EVT.isVector() == VT.isVector() && 5305 "SIGN_EXTEND_INREG type should be vector iff the operand " 5306 "type is vector!"); 5307 assert((!EVT.isVector() || 5308 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5309 "Vector element counts must match in SIGN_EXTEND_INREG"); 5310 assert(EVT.bitsLE(VT) && "Not extending!"); 5311 if (EVT == VT) return N1; // Not actually extending 5312 5313 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5314 unsigned FromBits = EVT.getScalarSizeInBits(); 5315 Val <<= Val.getBitWidth() - FromBits; 5316 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5317 return getConstant(Val, DL, ConstantVT); 5318 }; 5319 5320 if (N1C) { 5321 const APInt &Val = N1C->getAPIntValue(); 5322 return SignExtendInReg(Val, VT); 5323 } 5324 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5325 SmallVector<SDValue, 8> Ops; 5326 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5327 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5328 SDValue Op = N1.getOperand(i); 5329 if (Op.isUndef()) { 5330 Ops.push_back(getUNDEF(OpVT)); 5331 continue; 5332 } 5333 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5334 APInt Val = C->getAPIntValue(); 5335 Ops.push_back(SignExtendInReg(Val, OpVT)); 5336 } 5337 return getBuildVector(VT, DL, Ops); 5338 } 5339 break; 5340 } 5341 case ISD::EXTRACT_VECTOR_ELT: 5342 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5343 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5344 element type of the vector."); 5345 5346 // Extract from an undefined value or using an undefined index is undefined. 5347 if (N1.isUndef() || N2.isUndef()) 5348 return getUNDEF(VT); 5349 5350 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5351 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5352 return getUNDEF(VT); 5353 5354 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5355 // expanding copies of large vectors from registers. 5356 if (N2C && 5357 N1.getOpcode() == ISD::CONCAT_VECTORS && 5358 N1.getNumOperands() > 0) { 5359 unsigned Factor = 5360 N1.getOperand(0).getValueType().getVectorNumElements(); 5361 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5362 N1.getOperand(N2C->getZExtValue() / Factor), 5363 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5364 } 5365 5366 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5367 // expanding large vector constants. 5368 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5369 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5370 5371 if (VT != Elt.getValueType()) 5372 // If the vector element type is not legal, the BUILD_VECTOR operands 5373 // are promoted and implicitly truncated, and the result implicitly 5374 // extended. Make that explicit here. 5375 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5376 5377 return Elt; 5378 } 5379 5380 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5381 // operations are lowered to scalars. 5382 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5383 // If the indices are the same, return the inserted element else 5384 // if the indices are known different, extract the element from 5385 // the original vector. 5386 SDValue N1Op2 = N1.getOperand(2); 5387 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5388 5389 if (N1Op2C && N2C) { 5390 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5391 if (VT == N1.getOperand(1).getValueType()) 5392 return N1.getOperand(1); 5393 else 5394 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5395 } 5396 5397 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5398 } 5399 } 5400 5401 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5402 // when vector types are scalarized and v1iX is legal. 5403 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5404 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5405 N1.getValueType().getVectorNumElements() == 1) { 5406 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5407 N1.getOperand(1)); 5408 } 5409 break; 5410 case ISD::EXTRACT_ELEMENT: 5411 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5412 assert(!N1.getValueType().isVector() && !VT.isVector() && 5413 (N1.getValueType().isInteger() == VT.isInteger()) && 5414 N1.getValueType() != VT && 5415 "Wrong types for EXTRACT_ELEMENT!"); 5416 5417 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5418 // 64-bit integers into 32-bit parts. Instead of building the extract of 5419 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5420 if (N1.getOpcode() == ISD::BUILD_PAIR) 5421 return N1.getOperand(N2C->getZExtValue()); 5422 5423 // EXTRACT_ELEMENT of a constant int is also very common. 5424 if (N1C) { 5425 unsigned ElementSize = VT.getSizeInBits(); 5426 unsigned Shift = ElementSize * N2C->getZExtValue(); 5427 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5428 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5429 } 5430 break; 5431 case ISD::EXTRACT_SUBVECTOR: 5432 if (VT.isSimple() && N1.getValueType().isSimple()) { 5433 assert(VT.isVector() && N1.getValueType().isVector() && 5434 "Extract subvector VTs must be a vectors!"); 5435 assert(VT.getVectorElementType() == 5436 N1.getValueType().getVectorElementType() && 5437 "Extract subvector VTs must have the same element type!"); 5438 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5439 "Extract subvector must be from larger vector to smaller vector!"); 5440 5441 if (N2C) { 5442 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5443 <= N1.getValueType().getVectorNumElements()) 5444 && "Extract subvector overflow!"); 5445 } 5446 5447 // Trivial extraction. 5448 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5449 return N1; 5450 5451 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5452 if (N1.isUndef()) 5453 return getUNDEF(VT); 5454 5455 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5456 // the concat have the same type as the extract. 5457 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5458 N1.getNumOperands() > 0 && 5459 VT == N1.getOperand(0).getValueType()) { 5460 unsigned Factor = VT.getVectorNumElements(); 5461 return N1.getOperand(N2C->getZExtValue() / Factor); 5462 } 5463 5464 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5465 // during shuffle legalization. 5466 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5467 VT == N1.getOperand(1).getValueType()) 5468 return N1.getOperand(1); 5469 } 5470 break; 5471 } 5472 5473 // Perform trivial constant folding. 5474 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5475 return SV; 5476 5477 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5478 return V; 5479 5480 // Canonicalize an UNDEF to the RHS, even over a constant. 5481 if (N1.isUndef()) { 5482 if (TLI->isCommutativeBinOp(Opcode)) { 5483 std::swap(N1, N2); 5484 } else { 5485 switch (Opcode) { 5486 case ISD::SIGN_EXTEND_INREG: 5487 case ISD::SUB: 5488 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5489 case ISD::UDIV: 5490 case ISD::SDIV: 5491 case ISD::UREM: 5492 case ISD::SREM: 5493 case ISD::SSUBSAT: 5494 case ISD::USUBSAT: 5495 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5496 } 5497 } 5498 } 5499 5500 // Fold a bunch of operators when the RHS is undef. 5501 if (N2.isUndef()) { 5502 switch (Opcode) { 5503 case ISD::XOR: 5504 if (N1.isUndef()) 5505 // Handle undef ^ undef -> 0 special case. This is a common 5506 // idiom (misuse). 5507 return getConstant(0, DL, VT); 5508 LLVM_FALLTHROUGH; 5509 case ISD::ADD: 5510 case ISD::SUB: 5511 case ISD::UDIV: 5512 case ISD::SDIV: 5513 case ISD::UREM: 5514 case ISD::SREM: 5515 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5516 case ISD::MUL: 5517 case ISD::AND: 5518 case ISD::SSUBSAT: 5519 case ISD::USUBSAT: 5520 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5521 case ISD::OR: 5522 case ISD::SADDSAT: 5523 case ISD::UADDSAT: 5524 return getAllOnesConstant(DL, VT); 5525 } 5526 } 5527 5528 // Memoize this node if possible. 5529 SDNode *N; 5530 SDVTList VTs = getVTList(VT); 5531 SDValue Ops[] = {N1, N2}; 5532 if (VT != MVT::Glue) { 5533 FoldingSetNodeID ID; 5534 AddNodeIDNode(ID, Opcode, VTs, Ops); 5535 void *IP = nullptr; 5536 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5537 E->intersectFlagsWith(Flags); 5538 return SDValue(E, 0); 5539 } 5540 5541 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5542 N->setFlags(Flags); 5543 createOperands(N, Ops); 5544 CSEMap.InsertNode(N, IP); 5545 } else { 5546 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5547 createOperands(N, Ops); 5548 } 5549 5550 InsertNode(N); 5551 SDValue V = SDValue(N, 0); 5552 NewSDValueDbgMsg(V, "Creating new node: ", this); 5553 return V; 5554 } 5555 5556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5557 SDValue N1, SDValue N2, SDValue N3, 5558 const SDNodeFlags Flags) { 5559 // Perform various simplifications. 5560 switch (Opcode) { 5561 case ISD::FMA: { 5562 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5563 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5564 N3.getValueType() == VT && "FMA types must match!"); 5565 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5566 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5567 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5568 if (N1CFP && N2CFP && N3CFP) { 5569 APFloat V1 = N1CFP->getValueAPF(); 5570 const APFloat &V2 = N2CFP->getValueAPF(); 5571 const APFloat &V3 = N3CFP->getValueAPF(); 5572 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5573 return getConstantFP(V1, DL, VT); 5574 } 5575 break; 5576 } 5577 case ISD::BUILD_VECTOR: { 5578 // Attempt to simplify BUILD_VECTOR. 5579 SDValue Ops[] = {N1, N2, N3}; 5580 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5581 return V; 5582 break; 5583 } 5584 case ISD::CONCAT_VECTORS: { 5585 SDValue Ops[] = {N1, N2, N3}; 5586 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5587 return V; 5588 break; 5589 } 5590 case ISD::SETCC: { 5591 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5592 assert(N1.getValueType() == N2.getValueType() && 5593 "SETCC operands must have the same type!"); 5594 assert(VT.isVector() == N1.getValueType().isVector() && 5595 "SETCC type should be vector iff the operand type is vector!"); 5596 assert((!VT.isVector() || 5597 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5598 "SETCC vector element counts must match!"); 5599 // Use FoldSetCC to simplify SETCC's. 5600 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5601 return V; 5602 // Vector constant folding. 5603 SDValue Ops[] = {N1, N2, N3}; 5604 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5605 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5606 return V; 5607 } 5608 break; 5609 } 5610 case ISD::SELECT: 5611 case ISD::VSELECT: 5612 if (SDValue V = simplifySelect(N1, N2, N3)) 5613 return V; 5614 break; 5615 case ISD::VECTOR_SHUFFLE: 5616 llvm_unreachable("should use getVectorShuffle constructor!"); 5617 case ISD::INSERT_VECTOR_ELT: { 5618 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5619 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5620 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5621 return getUNDEF(VT); 5622 5623 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5624 if (N3.isUndef()) 5625 return getUNDEF(VT); 5626 5627 // If the inserted element is an UNDEF, just use the input vector. 5628 if (N2.isUndef()) 5629 return N1; 5630 5631 break; 5632 } 5633 case ISD::INSERT_SUBVECTOR: { 5634 // Inserting undef into undef is still undef. 5635 if (N1.isUndef() && N2.isUndef()) 5636 return getUNDEF(VT); 5637 SDValue Index = N3; 5638 if (VT.isSimple() && N1.getValueType().isSimple() 5639 && N2.getValueType().isSimple()) { 5640 assert(VT.isVector() && N1.getValueType().isVector() && 5641 N2.getValueType().isVector() && 5642 "Insert subvector VTs must be a vectors"); 5643 assert(VT == N1.getValueType() && 5644 "Dest and insert subvector source types must match!"); 5645 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5646 "Insert subvector must be from smaller vector to larger vector!"); 5647 if (isa<ConstantSDNode>(Index)) { 5648 assert((N2.getValueType().getVectorNumElements() + 5649 cast<ConstantSDNode>(Index)->getZExtValue() 5650 <= VT.getVectorNumElements()) 5651 && "Insert subvector overflow!"); 5652 } 5653 5654 // Trivial insertion. 5655 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5656 return N2; 5657 5658 // If this is an insert of an extracted vector into an undef vector, we 5659 // can just use the input to the extract. 5660 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5661 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5662 return N2.getOperand(0); 5663 } 5664 break; 5665 } 5666 case ISD::BITCAST: 5667 // Fold bit_convert nodes from a type to themselves. 5668 if (N1.getValueType() == VT) 5669 return N1; 5670 break; 5671 } 5672 5673 // Memoize node if it doesn't produce a flag. 5674 SDNode *N; 5675 SDVTList VTs = getVTList(VT); 5676 SDValue Ops[] = {N1, N2, N3}; 5677 if (VT != MVT::Glue) { 5678 FoldingSetNodeID ID; 5679 AddNodeIDNode(ID, Opcode, VTs, Ops); 5680 void *IP = nullptr; 5681 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5682 E->intersectFlagsWith(Flags); 5683 return SDValue(E, 0); 5684 } 5685 5686 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5687 N->setFlags(Flags); 5688 createOperands(N, Ops); 5689 CSEMap.InsertNode(N, IP); 5690 } else { 5691 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5692 createOperands(N, Ops); 5693 } 5694 5695 InsertNode(N); 5696 SDValue V = SDValue(N, 0); 5697 NewSDValueDbgMsg(V, "Creating new node: ", this); 5698 return V; 5699 } 5700 5701 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5702 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5703 SDValue Ops[] = { N1, N2, N3, N4 }; 5704 return getNode(Opcode, DL, VT, Ops); 5705 } 5706 5707 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5708 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5709 SDValue N5) { 5710 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5711 return getNode(Opcode, DL, VT, Ops); 5712 } 5713 5714 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5715 /// the incoming stack arguments to be loaded from the stack. 5716 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5717 SmallVector<SDValue, 8> ArgChains; 5718 5719 // Include the original chain at the beginning of the list. When this is 5720 // used by target LowerCall hooks, this helps legalize find the 5721 // CALLSEQ_BEGIN node. 5722 ArgChains.push_back(Chain); 5723 5724 // Add a chain value for each stack argument. 5725 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5726 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5727 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5728 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5729 if (FI->getIndex() < 0) 5730 ArgChains.push_back(SDValue(L, 1)); 5731 5732 // Build a tokenfactor for all the chains. 5733 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5734 } 5735 5736 /// getMemsetValue - Vectorized representation of the memset value 5737 /// operand. 5738 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5739 const SDLoc &dl) { 5740 assert(!Value.isUndef()); 5741 5742 unsigned NumBits = VT.getScalarSizeInBits(); 5743 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5744 assert(C->getAPIntValue().getBitWidth() == 8); 5745 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5746 if (VT.isInteger()) { 5747 bool IsOpaque = VT.getSizeInBits() > 64 || 5748 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5749 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5750 } 5751 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5752 VT); 5753 } 5754 5755 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5756 EVT IntVT = VT.getScalarType(); 5757 if (!IntVT.isInteger()) 5758 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5759 5760 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5761 if (NumBits > 8) { 5762 // Use a multiplication with 0x010101... to extend the input to the 5763 // required length. 5764 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5765 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5766 DAG.getConstant(Magic, dl, IntVT)); 5767 } 5768 5769 if (VT != Value.getValueType() && !VT.isInteger()) 5770 Value = DAG.getBitcast(VT.getScalarType(), Value); 5771 if (VT != Value.getValueType()) 5772 Value = DAG.getSplatBuildVector(VT, dl, Value); 5773 5774 return Value; 5775 } 5776 5777 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5778 /// used when a memcpy is turned into a memset when the source is a constant 5779 /// string ptr. 5780 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5781 const TargetLowering &TLI, 5782 const ConstantDataArraySlice &Slice) { 5783 // Handle vector with all elements zero. 5784 if (Slice.Array == nullptr) { 5785 if (VT.isInteger()) 5786 return DAG.getConstant(0, dl, VT); 5787 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5788 return DAG.getConstantFP(0.0, dl, VT); 5789 else if (VT.isVector()) { 5790 unsigned NumElts = VT.getVectorNumElements(); 5791 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5792 return DAG.getNode(ISD::BITCAST, dl, VT, 5793 DAG.getConstant(0, dl, 5794 EVT::getVectorVT(*DAG.getContext(), 5795 EltVT, NumElts))); 5796 } else 5797 llvm_unreachable("Expected type!"); 5798 } 5799 5800 assert(!VT.isVector() && "Can't handle vector type here!"); 5801 unsigned NumVTBits = VT.getSizeInBits(); 5802 unsigned NumVTBytes = NumVTBits / 8; 5803 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5804 5805 APInt Val(NumVTBits, 0); 5806 if (DAG.getDataLayout().isLittleEndian()) { 5807 for (unsigned i = 0; i != NumBytes; ++i) 5808 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5809 } else { 5810 for (unsigned i = 0; i != NumBytes; ++i) 5811 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5812 } 5813 5814 // If the "cost" of materializing the integer immediate is less than the cost 5815 // of a load, then it is cost effective to turn the load into the immediate. 5816 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5817 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5818 return DAG.getConstant(Val, dl, VT); 5819 return SDValue(nullptr, 0); 5820 } 5821 5822 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5823 const SDLoc &DL, 5824 const SDNodeFlags Flags) { 5825 EVT VT = Base.getValueType(); 5826 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5827 } 5828 5829 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5830 const SDLoc &DL, 5831 const SDNodeFlags Flags) { 5832 assert(Offset.getValueType().isInteger()); 5833 EVT BasePtrVT = Ptr.getValueType(); 5834 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5835 } 5836 5837 /// Returns true if memcpy source is constant data. 5838 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5839 uint64_t SrcDelta = 0; 5840 GlobalAddressSDNode *G = nullptr; 5841 if (Src.getOpcode() == ISD::GlobalAddress) 5842 G = cast<GlobalAddressSDNode>(Src); 5843 else if (Src.getOpcode() == ISD::ADD && 5844 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5845 Src.getOperand(1).getOpcode() == ISD::Constant) { 5846 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5847 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5848 } 5849 if (!G) 5850 return false; 5851 5852 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5853 SrcDelta + G->getOffset()); 5854 } 5855 5856 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5857 SelectionDAG &DAG) { 5858 // On Darwin, -Os means optimize for size without hurting performance, so 5859 // only really optimize for size when -Oz (MinSize) is used. 5860 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5861 return MF.getFunction().hasMinSize(); 5862 return DAG.shouldOptForSize(); 5863 } 5864 5865 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5866 SmallVector<SDValue, 32> &OutChains, unsigned From, 5867 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5868 SmallVector<SDValue, 16> &OutStoreChains) { 5869 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5870 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5871 SmallVector<SDValue, 16> GluedLoadChains; 5872 for (unsigned i = From; i < To; ++i) { 5873 OutChains.push_back(OutLoadChains[i]); 5874 GluedLoadChains.push_back(OutLoadChains[i]); 5875 } 5876 5877 // Chain for all loads. 5878 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5879 GluedLoadChains); 5880 5881 for (unsigned i = From; i < To; ++i) { 5882 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5883 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5884 ST->getBasePtr(), ST->getMemoryVT(), 5885 ST->getMemOperand()); 5886 OutChains.push_back(NewStore); 5887 } 5888 } 5889 5890 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5891 SDValue Chain, SDValue Dst, SDValue Src, 5892 uint64_t Size, Align Alignment, 5893 bool isVol, bool AlwaysInline, 5894 MachinePointerInfo DstPtrInfo, 5895 MachinePointerInfo SrcPtrInfo) { 5896 // Turn a memcpy of undef to nop. 5897 // FIXME: We need to honor volatile even is Src is undef. 5898 if (Src.isUndef()) 5899 return Chain; 5900 5901 // Expand memcpy to a series of load and store ops if the size operand falls 5902 // below a certain threshold. 5903 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5904 // rather than maybe a humongous number of loads and stores. 5905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5906 const DataLayout &DL = DAG.getDataLayout(); 5907 LLVMContext &C = *DAG.getContext(); 5908 std::vector<EVT> MemOps; 5909 bool DstAlignCanChange = false; 5910 MachineFunction &MF = DAG.getMachineFunction(); 5911 MachineFrameInfo &MFI = MF.getFrameInfo(); 5912 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5913 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5914 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5915 DstAlignCanChange = true; 5916 MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src)); 5917 if (!SrcAlign || Alignment > *SrcAlign) 5918 SrcAlign = Alignment; 5919 assert(SrcAlign && "SrcAlign must be set"); 5920 ConstantDataArraySlice Slice; 5921 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5922 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5923 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5924 const MemOp Op = isZeroConstant 5925 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5926 /*IsZeroMemset*/ true, isVol) 5927 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5928 *SrcAlign, isVol, CopyFromConstant); 5929 if (!TLI.findOptimalMemOpLowering( 5930 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5931 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5932 return SDValue(); 5933 5934 if (DstAlignCanChange) { 5935 Type *Ty = MemOps[0].getTypeForEVT(C); 5936 Align NewAlign = DL.getABITypeAlign(Ty); 5937 5938 // Don't promote to an alignment that would require dynamic stack 5939 // realignment. 5940 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5941 if (!TRI->needsStackRealignment(MF)) 5942 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5943 NewAlign = NewAlign / 2; 5944 5945 if (NewAlign > Alignment) { 5946 // Give the stack frame object a larger alignment if needed. 5947 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5948 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5949 Alignment = NewAlign; 5950 } 5951 } 5952 5953 MachineMemOperand::Flags MMOFlags = 5954 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5955 SmallVector<SDValue, 16> OutLoadChains; 5956 SmallVector<SDValue, 16> OutStoreChains; 5957 SmallVector<SDValue, 32> OutChains; 5958 unsigned NumMemOps = MemOps.size(); 5959 uint64_t SrcOff = 0, DstOff = 0; 5960 for (unsigned i = 0; i != NumMemOps; ++i) { 5961 EVT VT = MemOps[i]; 5962 unsigned VTSize = VT.getSizeInBits() / 8; 5963 SDValue Value, Store; 5964 5965 if (VTSize > Size) { 5966 // Issuing an unaligned load / store pair that overlaps with the previous 5967 // pair. Adjust the offset accordingly. 5968 assert(i == NumMemOps-1 && i != 0); 5969 SrcOff -= VTSize - Size; 5970 DstOff -= VTSize - Size; 5971 } 5972 5973 if (CopyFromConstant && 5974 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5975 // It's unlikely a store of a vector immediate can be done in a single 5976 // instruction. It would require a load from a constantpool first. 5977 // We only handle zero vectors here. 5978 // FIXME: Handle other cases where store of vector immediate is done in 5979 // a single instruction. 5980 ConstantDataArraySlice SubSlice; 5981 if (SrcOff < Slice.Length) { 5982 SubSlice = Slice; 5983 SubSlice.move(SrcOff); 5984 } else { 5985 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5986 SubSlice.Array = nullptr; 5987 SubSlice.Offset = 0; 5988 SubSlice.Length = VTSize; 5989 } 5990 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5991 if (Value.getNode()) { 5992 Store = DAG.getStore( 5993 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5994 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 5995 OutChains.push_back(Store); 5996 } 5997 } 5998 5999 if (!Store.getNode()) { 6000 // The type might not be legal for the target. This should only happen 6001 // if the type is smaller than a legal type, as on PPC, so the right 6002 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6003 // to Load/Store if NVT==VT. 6004 // FIXME does the case above also need this? 6005 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6006 assert(NVT.bitsGE(VT)); 6007 6008 bool isDereferenceable = 6009 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6010 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6011 if (isDereferenceable) 6012 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6013 6014 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6015 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6016 SrcPtrInfo.getWithOffset(SrcOff), VT, 6017 commonAlignment(*SrcAlign, SrcOff).value(), 6018 SrcMMOFlags); 6019 OutLoadChains.push_back(Value.getValue(1)); 6020 6021 Store = DAG.getTruncStore( 6022 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6023 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6024 OutStoreChains.push_back(Store); 6025 } 6026 SrcOff += VTSize; 6027 DstOff += VTSize; 6028 Size -= VTSize; 6029 } 6030 6031 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6032 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6033 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6034 6035 if (NumLdStInMemcpy) { 6036 // It may be that memcpy might be converted to memset if it's memcpy 6037 // of constants. In such a case, we won't have loads and stores, but 6038 // just stores. In the absence of loads, there is nothing to gang up. 6039 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6040 // If target does not care, just leave as it. 6041 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6042 OutChains.push_back(OutLoadChains[i]); 6043 OutChains.push_back(OutStoreChains[i]); 6044 } 6045 } else { 6046 // Ld/St less than/equal limit set by target. 6047 if (NumLdStInMemcpy <= GluedLdStLimit) { 6048 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6049 NumLdStInMemcpy, OutLoadChains, 6050 OutStoreChains); 6051 } else { 6052 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6053 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6054 unsigned GlueIter = 0; 6055 6056 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6057 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6058 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6059 6060 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6061 OutLoadChains, OutStoreChains); 6062 GlueIter += GluedLdStLimit; 6063 } 6064 6065 // Residual ld/st. 6066 if (RemainingLdStInMemcpy) { 6067 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6068 RemainingLdStInMemcpy, OutLoadChains, 6069 OutStoreChains); 6070 } 6071 } 6072 } 6073 } 6074 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6075 } 6076 6077 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6078 SDValue Chain, SDValue Dst, SDValue Src, 6079 uint64_t Size, Align Alignment, 6080 bool isVol, bool AlwaysInline, 6081 MachinePointerInfo DstPtrInfo, 6082 MachinePointerInfo SrcPtrInfo) { 6083 // Turn a memmove of undef to nop. 6084 // FIXME: We need to honor volatile even is Src is undef. 6085 if (Src.isUndef()) 6086 return Chain; 6087 6088 // Expand memmove to a series of load and store ops if the size operand falls 6089 // below a certain threshold. 6090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6091 const DataLayout &DL = DAG.getDataLayout(); 6092 LLVMContext &C = *DAG.getContext(); 6093 std::vector<EVT> MemOps; 6094 bool DstAlignCanChange = false; 6095 MachineFunction &MF = DAG.getMachineFunction(); 6096 MachineFrameInfo &MFI = MF.getFrameInfo(); 6097 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6098 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6099 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6100 DstAlignCanChange = true; 6101 MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src)); 6102 if (!SrcAlign || Alignment > *SrcAlign) 6103 SrcAlign = Alignment; 6104 assert(SrcAlign && "SrcAlign must be set"); 6105 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6106 if (!TLI.findOptimalMemOpLowering( 6107 MemOps, Limit, 6108 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6109 /*IsVolatile*/ true), 6110 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6111 MF.getFunction().getAttributes())) 6112 return SDValue(); 6113 6114 if (DstAlignCanChange) { 6115 Type *Ty = MemOps[0].getTypeForEVT(C); 6116 Align NewAlign = DL.getABITypeAlign(Ty); 6117 if (NewAlign > Alignment) { 6118 // Give the stack frame object a larger alignment if needed. 6119 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6120 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6121 Alignment = NewAlign; 6122 } 6123 } 6124 6125 MachineMemOperand::Flags MMOFlags = 6126 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6127 uint64_t SrcOff = 0, DstOff = 0; 6128 SmallVector<SDValue, 8> LoadValues; 6129 SmallVector<SDValue, 8> LoadChains; 6130 SmallVector<SDValue, 8> OutChains; 6131 unsigned NumMemOps = MemOps.size(); 6132 for (unsigned i = 0; i < NumMemOps; i++) { 6133 EVT VT = MemOps[i]; 6134 unsigned VTSize = VT.getSizeInBits() / 8; 6135 SDValue Value; 6136 6137 bool isDereferenceable = 6138 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6139 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6140 if (isDereferenceable) 6141 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6142 6143 Value = DAG.getLoad( 6144 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6145 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6146 LoadValues.push_back(Value); 6147 LoadChains.push_back(Value.getValue(1)); 6148 SrcOff += VTSize; 6149 } 6150 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6151 OutChains.clear(); 6152 for (unsigned i = 0; i < NumMemOps; i++) { 6153 EVT VT = MemOps[i]; 6154 unsigned VTSize = VT.getSizeInBits() / 8; 6155 SDValue Store; 6156 6157 Store = DAG.getStore( 6158 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6159 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6160 OutChains.push_back(Store); 6161 DstOff += VTSize; 6162 } 6163 6164 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6165 } 6166 6167 /// Lower the call to 'memset' intrinsic function into a series of store 6168 /// operations. 6169 /// 6170 /// \param DAG Selection DAG where lowered code is placed. 6171 /// \param dl Link to corresponding IR location. 6172 /// \param Chain Control flow dependency. 6173 /// \param Dst Pointer to destination memory location. 6174 /// \param Src Value of byte to write into the memory. 6175 /// \param Size Number of bytes to write. 6176 /// \param Alignment Alignment of the destination in bytes. 6177 /// \param isVol True if destination is volatile. 6178 /// \param DstPtrInfo IR information on the memory pointer. 6179 /// \returns New head in the control flow, if lowering was successful, empty 6180 /// SDValue otherwise. 6181 /// 6182 /// The function tries to replace 'llvm.memset' intrinsic with several store 6183 /// operations and value calculation code. This is usually profitable for small 6184 /// memory size. 6185 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6186 SDValue Chain, SDValue Dst, SDValue Src, 6187 uint64_t Size, Align Alignment, bool isVol, 6188 MachinePointerInfo DstPtrInfo) { 6189 // Turn a memset of undef to nop. 6190 // FIXME: We need to honor volatile even is Src is undef. 6191 if (Src.isUndef()) 6192 return Chain; 6193 6194 // Expand memset to a series of load/store ops if the size operand 6195 // falls below a certain threshold. 6196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6197 std::vector<EVT> MemOps; 6198 bool DstAlignCanChange = false; 6199 MachineFunction &MF = DAG.getMachineFunction(); 6200 MachineFrameInfo &MFI = MF.getFrameInfo(); 6201 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6202 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6203 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6204 DstAlignCanChange = true; 6205 bool IsZeroVal = 6206 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6207 if (!TLI.findOptimalMemOpLowering( 6208 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6209 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6210 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6211 return SDValue(); 6212 6213 if (DstAlignCanChange) { 6214 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6215 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6216 if (NewAlign > Alignment) { 6217 // Give the stack frame object a larger alignment if needed. 6218 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6219 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6220 Alignment = NewAlign; 6221 } 6222 } 6223 6224 SmallVector<SDValue, 8> OutChains; 6225 uint64_t DstOff = 0; 6226 unsigned NumMemOps = MemOps.size(); 6227 6228 // Find the largest store and generate the bit pattern for it. 6229 EVT LargestVT = MemOps[0]; 6230 for (unsigned i = 1; i < NumMemOps; i++) 6231 if (MemOps[i].bitsGT(LargestVT)) 6232 LargestVT = MemOps[i]; 6233 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6234 6235 for (unsigned i = 0; i < NumMemOps; i++) { 6236 EVT VT = MemOps[i]; 6237 unsigned VTSize = VT.getSizeInBits() / 8; 6238 if (VTSize > Size) { 6239 // Issuing an unaligned load / store pair that overlaps with the previous 6240 // pair. Adjust the offset accordingly. 6241 assert(i == NumMemOps-1 && i != 0); 6242 DstOff -= VTSize - Size; 6243 } 6244 6245 // If this store is smaller than the largest store see whether we can get 6246 // the smaller value for free with a truncate. 6247 SDValue Value = MemSetValue; 6248 if (VT.bitsLT(LargestVT)) { 6249 if (!LargestVT.isVector() && !VT.isVector() && 6250 TLI.isTruncateFree(LargestVT, VT)) 6251 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6252 else 6253 Value = getMemsetValue(Src, VT, DAG, dl); 6254 } 6255 assert(Value.getValueType() == VT && "Value with wrong type."); 6256 SDValue Store = DAG.getStore( 6257 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6258 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6259 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6260 OutChains.push_back(Store); 6261 DstOff += VT.getSizeInBits() / 8; 6262 Size -= VTSize; 6263 } 6264 6265 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6266 } 6267 6268 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6269 unsigned AS) { 6270 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6271 // pointer operands can be losslessly bitcasted to pointers of address space 0 6272 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6273 report_fatal_error("cannot lower memory intrinsic in address space " + 6274 Twine(AS)); 6275 } 6276 } 6277 6278 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6279 SDValue Src, SDValue Size, Align Alignment, 6280 bool isVol, bool AlwaysInline, bool isTailCall, 6281 MachinePointerInfo DstPtrInfo, 6282 MachinePointerInfo SrcPtrInfo) { 6283 // Check to see if we should lower the memcpy to loads and stores first. 6284 // For cases within the target-specified limits, this is the best choice. 6285 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6286 if (ConstantSize) { 6287 // Memcpy with size zero? Just return the original chain. 6288 if (ConstantSize->isNullValue()) 6289 return Chain; 6290 6291 SDValue Result = getMemcpyLoadsAndStores( 6292 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6293 isVol, false, DstPtrInfo, SrcPtrInfo); 6294 if (Result.getNode()) 6295 return Result; 6296 } 6297 6298 // Then check to see if we should lower the memcpy with target-specific 6299 // code. If the target chooses to do this, this is the next best. 6300 if (TSI) { 6301 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6302 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6303 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6304 if (Result.getNode()) 6305 return Result; 6306 } 6307 6308 // If we really need inline code and the target declined to provide it, 6309 // use a (potentially long) sequence of loads and stores. 6310 if (AlwaysInline) { 6311 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6312 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6313 ConstantSize->getZExtValue(), Alignment, 6314 isVol, true, DstPtrInfo, SrcPtrInfo); 6315 } 6316 6317 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6318 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6319 6320 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6321 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6322 // respect volatile, so they may do things like read or write memory 6323 // beyond the given memory regions. But fixing this isn't easy, and most 6324 // people don't care. 6325 6326 // Emit a library call. 6327 TargetLowering::ArgListTy Args; 6328 TargetLowering::ArgListEntry Entry; 6329 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6330 Entry.Node = Dst; Args.push_back(Entry); 6331 Entry.Node = Src; Args.push_back(Entry); 6332 6333 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6334 Entry.Node = Size; Args.push_back(Entry); 6335 // FIXME: pass in SDLoc 6336 TargetLowering::CallLoweringInfo CLI(*this); 6337 CLI.setDebugLoc(dl) 6338 .setChain(Chain) 6339 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6340 Dst.getValueType().getTypeForEVT(*getContext()), 6341 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6342 TLI->getPointerTy(getDataLayout())), 6343 std::move(Args)) 6344 .setDiscardResult() 6345 .setTailCall(isTailCall); 6346 6347 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6348 return CallResult.second; 6349 } 6350 6351 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6352 SDValue Dst, unsigned DstAlign, 6353 SDValue Src, unsigned SrcAlign, 6354 SDValue Size, Type *SizeTy, 6355 unsigned ElemSz, bool isTailCall, 6356 MachinePointerInfo DstPtrInfo, 6357 MachinePointerInfo SrcPtrInfo) { 6358 // Emit a library call. 6359 TargetLowering::ArgListTy Args; 6360 TargetLowering::ArgListEntry Entry; 6361 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6362 Entry.Node = Dst; 6363 Args.push_back(Entry); 6364 6365 Entry.Node = Src; 6366 Args.push_back(Entry); 6367 6368 Entry.Ty = SizeTy; 6369 Entry.Node = Size; 6370 Args.push_back(Entry); 6371 6372 RTLIB::Libcall LibraryCall = 6373 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6374 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6375 report_fatal_error("Unsupported element size"); 6376 6377 TargetLowering::CallLoweringInfo CLI(*this); 6378 CLI.setDebugLoc(dl) 6379 .setChain(Chain) 6380 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6381 Type::getVoidTy(*getContext()), 6382 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6383 TLI->getPointerTy(getDataLayout())), 6384 std::move(Args)) 6385 .setDiscardResult() 6386 .setTailCall(isTailCall); 6387 6388 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6389 return CallResult.second; 6390 } 6391 6392 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6393 SDValue Src, SDValue Size, Align Alignment, 6394 bool isVol, bool isTailCall, 6395 MachinePointerInfo DstPtrInfo, 6396 MachinePointerInfo SrcPtrInfo) { 6397 // Check to see if we should lower the memmove to loads and stores first. 6398 // For cases within the target-specified limits, this is the best choice. 6399 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6400 if (ConstantSize) { 6401 // Memmove with size zero? Just return the original chain. 6402 if (ConstantSize->isNullValue()) 6403 return Chain; 6404 6405 SDValue Result = getMemmoveLoadsAndStores( 6406 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6407 isVol, false, DstPtrInfo, SrcPtrInfo); 6408 if (Result.getNode()) 6409 return Result; 6410 } 6411 6412 // Then check to see if we should lower the memmove with target-specific 6413 // code. If the target chooses to do this, this is the next best. 6414 if (TSI) { 6415 SDValue Result = TSI->EmitTargetCodeForMemmove( 6416 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6417 SrcPtrInfo); 6418 if (Result.getNode()) 6419 return Result; 6420 } 6421 6422 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6423 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6424 6425 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6426 // not be safe. See memcpy above for more details. 6427 6428 // Emit a library call. 6429 TargetLowering::ArgListTy Args; 6430 TargetLowering::ArgListEntry Entry; 6431 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6432 Entry.Node = Dst; Args.push_back(Entry); 6433 Entry.Node = Src; Args.push_back(Entry); 6434 6435 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6436 Entry.Node = Size; Args.push_back(Entry); 6437 // FIXME: pass in SDLoc 6438 TargetLowering::CallLoweringInfo CLI(*this); 6439 CLI.setDebugLoc(dl) 6440 .setChain(Chain) 6441 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6442 Dst.getValueType().getTypeForEVT(*getContext()), 6443 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6444 TLI->getPointerTy(getDataLayout())), 6445 std::move(Args)) 6446 .setDiscardResult() 6447 .setTailCall(isTailCall); 6448 6449 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6450 return CallResult.second; 6451 } 6452 6453 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6454 SDValue Dst, unsigned DstAlign, 6455 SDValue Src, unsigned SrcAlign, 6456 SDValue Size, Type *SizeTy, 6457 unsigned ElemSz, bool isTailCall, 6458 MachinePointerInfo DstPtrInfo, 6459 MachinePointerInfo SrcPtrInfo) { 6460 // Emit a library call. 6461 TargetLowering::ArgListTy Args; 6462 TargetLowering::ArgListEntry Entry; 6463 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6464 Entry.Node = Dst; 6465 Args.push_back(Entry); 6466 6467 Entry.Node = Src; 6468 Args.push_back(Entry); 6469 6470 Entry.Ty = SizeTy; 6471 Entry.Node = Size; 6472 Args.push_back(Entry); 6473 6474 RTLIB::Libcall LibraryCall = 6475 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6476 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6477 report_fatal_error("Unsupported element size"); 6478 6479 TargetLowering::CallLoweringInfo CLI(*this); 6480 CLI.setDebugLoc(dl) 6481 .setChain(Chain) 6482 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6483 Type::getVoidTy(*getContext()), 6484 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6485 TLI->getPointerTy(getDataLayout())), 6486 std::move(Args)) 6487 .setDiscardResult() 6488 .setTailCall(isTailCall); 6489 6490 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6491 return CallResult.second; 6492 } 6493 6494 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6495 SDValue Src, SDValue Size, Align Alignment, 6496 bool isVol, bool isTailCall, 6497 MachinePointerInfo DstPtrInfo) { 6498 // Check to see if we should lower the memset to stores first. 6499 // For cases within the target-specified limits, this is the best choice. 6500 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6501 if (ConstantSize) { 6502 // Memset with size zero? Just return the original chain. 6503 if (ConstantSize->isNullValue()) 6504 return Chain; 6505 6506 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6507 ConstantSize->getZExtValue(), Alignment, 6508 isVol, DstPtrInfo); 6509 6510 if (Result.getNode()) 6511 return Result; 6512 } 6513 6514 // Then check to see if we should lower the memset with target-specific 6515 // code. If the target chooses to do this, this is the next best. 6516 if (TSI) { 6517 SDValue Result = TSI->EmitTargetCodeForMemset( 6518 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6519 if (Result.getNode()) 6520 return Result; 6521 } 6522 6523 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6524 6525 // Emit a library call. 6526 TargetLowering::ArgListTy Args; 6527 TargetLowering::ArgListEntry Entry; 6528 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6529 Args.push_back(Entry); 6530 Entry.Node = Src; 6531 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6532 Args.push_back(Entry); 6533 Entry.Node = Size; 6534 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6535 Args.push_back(Entry); 6536 6537 // FIXME: pass in SDLoc 6538 TargetLowering::CallLoweringInfo CLI(*this); 6539 CLI.setDebugLoc(dl) 6540 .setChain(Chain) 6541 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6542 Dst.getValueType().getTypeForEVT(*getContext()), 6543 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6544 TLI->getPointerTy(getDataLayout())), 6545 std::move(Args)) 6546 .setDiscardResult() 6547 .setTailCall(isTailCall); 6548 6549 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6550 return CallResult.second; 6551 } 6552 6553 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6554 SDValue Dst, unsigned DstAlign, 6555 SDValue Value, SDValue Size, Type *SizeTy, 6556 unsigned ElemSz, bool isTailCall, 6557 MachinePointerInfo DstPtrInfo) { 6558 // Emit a library call. 6559 TargetLowering::ArgListTy Args; 6560 TargetLowering::ArgListEntry Entry; 6561 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6562 Entry.Node = Dst; 6563 Args.push_back(Entry); 6564 6565 Entry.Ty = Type::getInt8Ty(*getContext()); 6566 Entry.Node = Value; 6567 Args.push_back(Entry); 6568 6569 Entry.Ty = SizeTy; 6570 Entry.Node = Size; 6571 Args.push_back(Entry); 6572 6573 RTLIB::Libcall LibraryCall = 6574 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6575 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6576 report_fatal_error("Unsupported element size"); 6577 6578 TargetLowering::CallLoweringInfo CLI(*this); 6579 CLI.setDebugLoc(dl) 6580 .setChain(Chain) 6581 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6582 Type::getVoidTy(*getContext()), 6583 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6584 TLI->getPointerTy(getDataLayout())), 6585 std::move(Args)) 6586 .setDiscardResult() 6587 .setTailCall(isTailCall); 6588 6589 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6590 return CallResult.second; 6591 } 6592 6593 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6594 SDVTList VTList, ArrayRef<SDValue> Ops, 6595 MachineMemOperand *MMO) { 6596 FoldingSetNodeID ID; 6597 ID.AddInteger(MemVT.getRawBits()); 6598 AddNodeIDNode(ID, Opcode, VTList, Ops); 6599 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6600 void* IP = nullptr; 6601 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6602 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6603 return SDValue(E, 0); 6604 } 6605 6606 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6607 VTList, MemVT, MMO); 6608 createOperands(N, Ops); 6609 6610 CSEMap.InsertNode(N, IP); 6611 InsertNode(N); 6612 return SDValue(N, 0); 6613 } 6614 6615 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6616 EVT MemVT, SDVTList VTs, SDValue Chain, 6617 SDValue Ptr, SDValue Cmp, SDValue Swp, 6618 MachineMemOperand *MMO) { 6619 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6620 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6621 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6622 6623 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6624 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6625 } 6626 6627 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6628 SDValue Chain, SDValue Ptr, SDValue Val, 6629 MachineMemOperand *MMO) { 6630 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6631 Opcode == ISD::ATOMIC_LOAD_SUB || 6632 Opcode == ISD::ATOMIC_LOAD_AND || 6633 Opcode == ISD::ATOMIC_LOAD_CLR || 6634 Opcode == ISD::ATOMIC_LOAD_OR || 6635 Opcode == ISD::ATOMIC_LOAD_XOR || 6636 Opcode == ISD::ATOMIC_LOAD_NAND || 6637 Opcode == ISD::ATOMIC_LOAD_MIN || 6638 Opcode == ISD::ATOMIC_LOAD_MAX || 6639 Opcode == ISD::ATOMIC_LOAD_UMIN || 6640 Opcode == ISD::ATOMIC_LOAD_UMAX || 6641 Opcode == ISD::ATOMIC_LOAD_FADD || 6642 Opcode == ISD::ATOMIC_LOAD_FSUB || 6643 Opcode == ISD::ATOMIC_SWAP || 6644 Opcode == ISD::ATOMIC_STORE) && 6645 "Invalid Atomic Op"); 6646 6647 EVT VT = Val.getValueType(); 6648 6649 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6650 getVTList(VT, MVT::Other); 6651 SDValue Ops[] = {Chain, Ptr, Val}; 6652 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6653 } 6654 6655 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6656 EVT VT, SDValue Chain, SDValue Ptr, 6657 MachineMemOperand *MMO) { 6658 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6659 6660 SDVTList VTs = getVTList(VT, MVT::Other); 6661 SDValue Ops[] = {Chain, Ptr}; 6662 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6663 } 6664 6665 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6666 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6667 if (Ops.size() == 1) 6668 return Ops[0]; 6669 6670 SmallVector<EVT, 4> VTs; 6671 VTs.reserve(Ops.size()); 6672 for (unsigned i = 0; i < Ops.size(); ++i) 6673 VTs.push_back(Ops[i].getValueType()); 6674 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6675 } 6676 6677 SDValue SelectionDAG::getMemIntrinsicNode( 6678 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6679 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6680 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6681 if (Align == 0) // Ensure that codegen never sees alignment 0 6682 Align = getEVTAlignment(MemVT); 6683 6684 if (!Size && MemVT.isScalableVector()) 6685 Size = MemoryLocation::UnknownSize; 6686 else if (!Size) 6687 Size = MemVT.getStoreSize(); 6688 6689 MachineFunction &MF = getMachineFunction(); 6690 MachineMemOperand *MMO = 6691 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6692 6693 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6694 } 6695 6696 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6697 SDVTList VTList, 6698 ArrayRef<SDValue> Ops, EVT MemVT, 6699 MachineMemOperand *MMO) { 6700 assert((Opcode == ISD::INTRINSIC_VOID || 6701 Opcode == ISD::INTRINSIC_W_CHAIN || 6702 Opcode == ISD::PREFETCH || 6703 ((int)Opcode <= std::numeric_limits<int>::max() && 6704 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6705 "Opcode is not a memory-accessing opcode!"); 6706 6707 // Memoize the node unless it returns a flag. 6708 MemIntrinsicSDNode *N; 6709 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6710 FoldingSetNodeID ID; 6711 AddNodeIDNode(ID, Opcode, VTList, Ops); 6712 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6713 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6714 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6715 void *IP = nullptr; 6716 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6717 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6718 return SDValue(E, 0); 6719 } 6720 6721 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6722 VTList, MemVT, MMO); 6723 createOperands(N, Ops); 6724 6725 CSEMap.InsertNode(N, IP); 6726 } else { 6727 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6728 VTList, MemVT, MMO); 6729 createOperands(N, Ops); 6730 } 6731 InsertNode(N); 6732 SDValue V(N, 0); 6733 NewSDValueDbgMsg(V, "Creating new node: ", this); 6734 return V; 6735 } 6736 6737 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6738 SDValue Chain, int FrameIndex, 6739 int64_t Size, int64_t Offset) { 6740 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6741 const auto VTs = getVTList(MVT::Other); 6742 SDValue Ops[2] = { 6743 Chain, 6744 getFrameIndex(FrameIndex, 6745 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6746 true)}; 6747 6748 FoldingSetNodeID ID; 6749 AddNodeIDNode(ID, Opcode, VTs, Ops); 6750 ID.AddInteger(FrameIndex); 6751 ID.AddInteger(Size); 6752 ID.AddInteger(Offset); 6753 void *IP = nullptr; 6754 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6755 return SDValue(E, 0); 6756 6757 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6758 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6759 createOperands(N, Ops); 6760 CSEMap.InsertNode(N, IP); 6761 InsertNode(N); 6762 SDValue V(N, 0); 6763 NewSDValueDbgMsg(V, "Creating new node: ", this); 6764 return V; 6765 } 6766 6767 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6768 /// MachinePointerInfo record from it. This is particularly useful because the 6769 /// code generator has many cases where it doesn't bother passing in a 6770 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6771 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6772 SelectionDAG &DAG, SDValue Ptr, 6773 int64_t Offset = 0) { 6774 // If this is FI+Offset, we can model it. 6775 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6776 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6777 FI->getIndex(), Offset); 6778 6779 // If this is (FI+Offset1)+Offset2, we can model it. 6780 if (Ptr.getOpcode() != ISD::ADD || 6781 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6782 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6783 return Info; 6784 6785 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6786 return MachinePointerInfo::getFixedStack( 6787 DAG.getMachineFunction(), FI, 6788 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6789 } 6790 6791 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6792 /// MachinePointerInfo record from it. This is particularly useful because the 6793 /// code generator has many cases where it doesn't bother passing in a 6794 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6795 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6796 SelectionDAG &DAG, SDValue Ptr, 6797 SDValue OffsetOp) { 6798 // If the 'Offset' value isn't a constant, we can't handle this. 6799 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6800 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6801 if (OffsetOp.isUndef()) 6802 return InferPointerInfo(Info, DAG, Ptr); 6803 return Info; 6804 } 6805 6806 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6807 EVT VT, const SDLoc &dl, SDValue Chain, 6808 SDValue Ptr, SDValue Offset, 6809 MachinePointerInfo PtrInfo, EVT MemVT, 6810 unsigned Alignment, 6811 MachineMemOperand::Flags MMOFlags, 6812 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6813 assert(Chain.getValueType() == MVT::Other && 6814 "Invalid chain type"); 6815 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6816 Alignment = getEVTAlignment(MemVT); 6817 6818 MMOFlags |= MachineMemOperand::MOLoad; 6819 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6820 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6821 // clients. 6822 if (PtrInfo.V.isNull()) 6823 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6824 6825 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6826 MachineFunction &MF = getMachineFunction(); 6827 MachineMemOperand *MMO = MF.getMachineMemOperand( 6828 PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges); 6829 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6830 } 6831 6832 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6833 EVT VT, const SDLoc &dl, SDValue Chain, 6834 SDValue Ptr, SDValue Offset, EVT MemVT, 6835 MachineMemOperand *MMO) { 6836 if (VT == MemVT) { 6837 ExtType = ISD::NON_EXTLOAD; 6838 } else if (ExtType == ISD::NON_EXTLOAD) { 6839 assert(VT == MemVT && "Non-extending load from different memory type!"); 6840 } else { 6841 // Extending load. 6842 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6843 "Should only be an extending load, not truncating!"); 6844 assert(VT.isInteger() == MemVT.isInteger() && 6845 "Cannot convert from FP to Int or Int -> FP!"); 6846 assert(VT.isVector() == MemVT.isVector() && 6847 "Cannot use an ext load to convert to or from a vector!"); 6848 assert((!VT.isVector() || 6849 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6850 "Cannot use an ext load to change the number of vector elements!"); 6851 } 6852 6853 bool Indexed = AM != ISD::UNINDEXED; 6854 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6855 6856 SDVTList VTs = Indexed ? 6857 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6858 SDValue Ops[] = { Chain, Ptr, Offset }; 6859 FoldingSetNodeID ID; 6860 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6861 ID.AddInteger(MemVT.getRawBits()); 6862 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6863 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6864 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6865 void *IP = nullptr; 6866 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6867 cast<LoadSDNode>(E)->refineAlignment(MMO); 6868 return SDValue(E, 0); 6869 } 6870 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6871 ExtType, MemVT, MMO); 6872 createOperands(N, Ops); 6873 6874 CSEMap.InsertNode(N, IP); 6875 InsertNode(N); 6876 SDValue V(N, 0); 6877 NewSDValueDbgMsg(V, "Creating new node: ", this); 6878 return V; 6879 } 6880 6881 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6882 SDValue Ptr, MachinePointerInfo PtrInfo, 6883 unsigned Alignment, 6884 MachineMemOperand::Flags MMOFlags, 6885 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6886 SDValue Undef = getUNDEF(Ptr.getValueType()); 6887 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6888 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6889 } 6890 6891 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6892 SDValue Ptr, MachineMemOperand *MMO) { 6893 SDValue Undef = getUNDEF(Ptr.getValueType()); 6894 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6895 VT, MMO); 6896 } 6897 6898 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6899 EVT VT, SDValue Chain, SDValue Ptr, 6900 MachinePointerInfo PtrInfo, EVT MemVT, 6901 unsigned Alignment, 6902 MachineMemOperand::Flags MMOFlags, 6903 const AAMDNodes &AAInfo) { 6904 SDValue Undef = getUNDEF(Ptr.getValueType()); 6905 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6906 MemVT, Alignment, MMOFlags, AAInfo); 6907 } 6908 6909 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6910 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6911 MachineMemOperand *MMO) { 6912 SDValue Undef = getUNDEF(Ptr.getValueType()); 6913 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6914 MemVT, MMO); 6915 } 6916 6917 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6918 SDValue Base, SDValue Offset, 6919 ISD::MemIndexedMode AM) { 6920 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6921 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6922 // Don't propagate the invariant or dereferenceable flags. 6923 auto MMOFlags = 6924 LD->getMemOperand()->getFlags() & 6925 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6926 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6927 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6928 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6929 LD->getAAInfo()); 6930 } 6931 6932 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6933 SDValue Ptr, MachinePointerInfo PtrInfo, 6934 unsigned Alignment, 6935 MachineMemOperand::Flags MMOFlags, 6936 const AAMDNodes &AAInfo) { 6937 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6938 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6939 Alignment = getEVTAlignment(Val.getValueType()); 6940 6941 MMOFlags |= MachineMemOperand::MOStore; 6942 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6943 6944 if (PtrInfo.V.isNull()) 6945 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6946 6947 MachineFunction &MF = getMachineFunction(); 6948 uint64_t Size = 6949 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6950 MachineMemOperand *MMO = 6951 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6952 return getStore(Chain, dl, Val, Ptr, MMO); 6953 } 6954 6955 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6956 SDValue Ptr, MachineMemOperand *MMO) { 6957 assert(Chain.getValueType() == MVT::Other && 6958 "Invalid chain type"); 6959 EVT VT = Val.getValueType(); 6960 SDVTList VTs = getVTList(MVT::Other); 6961 SDValue Undef = getUNDEF(Ptr.getValueType()); 6962 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6963 FoldingSetNodeID ID; 6964 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6965 ID.AddInteger(VT.getRawBits()); 6966 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6967 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6968 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6969 void *IP = nullptr; 6970 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6971 cast<StoreSDNode>(E)->refineAlignment(MMO); 6972 return SDValue(E, 0); 6973 } 6974 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6975 ISD::UNINDEXED, false, VT, MMO); 6976 createOperands(N, Ops); 6977 6978 CSEMap.InsertNode(N, IP); 6979 InsertNode(N); 6980 SDValue V(N, 0); 6981 NewSDValueDbgMsg(V, "Creating new node: ", this); 6982 return V; 6983 } 6984 6985 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6986 SDValue Ptr, MachinePointerInfo PtrInfo, 6987 EVT SVT, unsigned Alignment, 6988 MachineMemOperand::Flags MMOFlags, 6989 const AAMDNodes &AAInfo) { 6990 assert(Chain.getValueType() == MVT::Other && 6991 "Invalid chain type"); 6992 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6993 Alignment = getEVTAlignment(SVT); 6994 6995 MMOFlags |= MachineMemOperand::MOStore; 6996 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6997 6998 if (PtrInfo.V.isNull()) 6999 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7000 7001 MachineFunction &MF = getMachineFunction(); 7002 MachineMemOperand *MMO = MF.getMachineMemOperand( 7003 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7004 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7005 } 7006 7007 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7008 SDValue Ptr, EVT SVT, 7009 MachineMemOperand *MMO) { 7010 EVT VT = Val.getValueType(); 7011 7012 assert(Chain.getValueType() == MVT::Other && 7013 "Invalid chain type"); 7014 if (VT == SVT) 7015 return getStore(Chain, dl, Val, Ptr, MMO); 7016 7017 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7018 "Should only be a truncating store, not extending!"); 7019 assert(VT.isInteger() == SVT.isInteger() && 7020 "Can't do FP-INT conversion!"); 7021 assert(VT.isVector() == SVT.isVector() && 7022 "Cannot use trunc store to convert to or from a vector!"); 7023 assert((!VT.isVector() || 7024 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7025 "Cannot use trunc store to change the number of vector elements!"); 7026 7027 SDVTList VTs = getVTList(MVT::Other); 7028 SDValue Undef = getUNDEF(Ptr.getValueType()); 7029 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7030 FoldingSetNodeID ID; 7031 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7032 ID.AddInteger(SVT.getRawBits()); 7033 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7034 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7035 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7036 void *IP = nullptr; 7037 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7038 cast<StoreSDNode>(E)->refineAlignment(MMO); 7039 return SDValue(E, 0); 7040 } 7041 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7042 ISD::UNINDEXED, true, SVT, MMO); 7043 createOperands(N, Ops); 7044 7045 CSEMap.InsertNode(N, IP); 7046 InsertNode(N); 7047 SDValue V(N, 0); 7048 NewSDValueDbgMsg(V, "Creating new node: ", this); 7049 return V; 7050 } 7051 7052 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7053 SDValue Base, SDValue Offset, 7054 ISD::MemIndexedMode AM) { 7055 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7056 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7057 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7058 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7059 FoldingSetNodeID ID; 7060 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7061 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7062 ID.AddInteger(ST->getRawSubclassData()); 7063 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7064 void *IP = nullptr; 7065 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7066 return SDValue(E, 0); 7067 7068 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7069 ST->isTruncatingStore(), ST->getMemoryVT(), 7070 ST->getMemOperand()); 7071 createOperands(N, Ops); 7072 7073 CSEMap.InsertNode(N, IP); 7074 InsertNode(N); 7075 SDValue V(N, 0); 7076 NewSDValueDbgMsg(V, "Creating new node: ", this); 7077 return V; 7078 } 7079 7080 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7081 SDValue Base, SDValue Offset, SDValue Mask, 7082 SDValue PassThru, EVT MemVT, 7083 MachineMemOperand *MMO, 7084 ISD::MemIndexedMode AM, 7085 ISD::LoadExtType ExtTy, bool isExpanding) { 7086 bool Indexed = AM != ISD::UNINDEXED; 7087 assert((Indexed || Offset.isUndef()) && 7088 "Unindexed masked load with an offset!"); 7089 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7090 : getVTList(VT, MVT::Other); 7091 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7092 FoldingSetNodeID ID; 7093 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7094 ID.AddInteger(MemVT.getRawBits()); 7095 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7096 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7098 void *IP = nullptr; 7099 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7100 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7101 return SDValue(E, 0); 7102 } 7103 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7104 AM, ExtTy, isExpanding, MemVT, MMO); 7105 createOperands(N, Ops); 7106 7107 CSEMap.InsertNode(N, IP); 7108 InsertNode(N); 7109 SDValue V(N, 0); 7110 NewSDValueDbgMsg(V, "Creating new node: ", this); 7111 return V; 7112 } 7113 7114 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7115 SDValue Base, SDValue Offset, 7116 ISD::MemIndexedMode AM) { 7117 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7118 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7119 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7120 Offset, LD->getMask(), LD->getPassThru(), 7121 LD->getMemoryVT(), LD->getMemOperand(), AM, 7122 LD->getExtensionType(), LD->isExpandingLoad()); 7123 } 7124 7125 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7126 SDValue Val, SDValue Base, SDValue Offset, 7127 SDValue Mask, EVT MemVT, 7128 MachineMemOperand *MMO, 7129 ISD::MemIndexedMode AM, bool IsTruncating, 7130 bool IsCompressing) { 7131 assert(Chain.getValueType() == MVT::Other && 7132 "Invalid chain type"); 7133 bool Indexed = AM != ISD::UNINDEXED; 7134 assert((Indexed || Offset.isUndef()) && 7135 "Unindexed masked store with an offset!"); 7136 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7137 : getVTList(MVT::Other); 7138 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7139 FoldingSetNodeID ID; 7140 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7141 ID.AddInteger(MemVT.getRawBits()); 7142 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7143 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7145 void *IP = nullptr; 7146 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7147 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7148 return SDValue(E, 0); 7149 } 7150 auto *N = 7151 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7152 IsTruncating, IsCompressing, MemVT, MMO); 7153 createOperands(N, Ops); 7154 7155 CSEMap.InsertNode(N, IP); 7156 InsertNode(N); 7157 SDValue V(N, 0); 7158 NewSDValueDbgMsg(V, "Creating new node: ", this); 7159 return V; 7160 } 7161 7162 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7163 SDValue Base, SDValue Offset, 7164 ISD::MemIndexedMode AM) { 7165 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7166 assert(ST->getOffset().isUndef() && 7167 "Masked store is already a indexed store!"); 7168 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7169 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7170 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7171 } 7172 7173 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7174 ArrayRef<SDValue> Ops, 7175 MachineMemOperand *MMO, 7176 ISD::MemIndexType IndexType) { 7177 assert(Ops.size() == 6 && "Incompatible number of operands"); 7178 7179 FoldingSetNodeID ID; 7180 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7181 ID.AddInteger(VT.getRawBits()); 7182 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7183 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7184 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7185 void *IP = nullptr; 7186 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7187 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7188 return SDValue(E, 0); 7189 } 7190 7191 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7192 VTs, VT, MMO, IndexType); 7193 createOperands(N, Ops); 7194 7195 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7196 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7197 assert(N->getMask().getValueType().getVectorNumElements() == 7198 N->getValueType(0).getVectorNumElements() && 7199 "Vector width mismatch between mask and data"); 7200 assert(N->getIndex().getValueType().getVectorNumElements() >= 7201 N->getValueType(0).getVectorNumElements() && 7202 "Vector width mismatch between index and data"); 7203 assert(isa<ConstantSDNode>(N->getScale()) && 7204 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7205 "Scale should be a constant power of 2"); 7206 7207 CSEMap.InsertNode(N, IP); 7208 InsertNode(N); 7209 SDValue V(N, 0); 7210 NewSDValueDbgMsg(V, "Creating new node: ", this); 7211 return V; 7212 } 7213 7214 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7215 ArrayRef<SDValue> Ops, 7216 MachineMemOperand *MMO, 7217 ISD::MemIndexType IndexType) { 7218 assert(Ops.size() == 6 && "Incompatible number of operands"); 7219 7220 FoldingSetNodeID ID; 7221 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7222 ID.AddInteger(VT.getRawBits()); 7223 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7224 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7225 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7226 void *IP = nullptr; 7227 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7228 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7229 return SDValue(E, 0); 7230 } 7231 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7232 VTs, VT, MMO, IndexType); 7233 createOperands(N, Ops); 7234 7235 assert(N->getMask().getValueType().getVectorNumElements() == 7236 N->getValue().getValueType().getVectorNumElements() && 7237 "Vector width mismatch between mask and data"); 7238 assert(N->getIndex().getValueType().getVectorNumElements() >= 7239 N->getValue().getValueType().getVectorNumElements() && 7240 "Vector width mismatch between index and data"); 7241 assert(isa<ConstantSDNode>(N->getScale()) && 7242 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7243 "Scale should be a constant power of 2"); 7244 7245 CSEMap.InsertNode(N, IP); 7246 InsertNode(N); 7247 SDValue V(N, 0); 7248 NewSDValueDbgMsg(V, "Creating new node: ", this); 7249 return V; 7250 } 7251 7252 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7253 // select undef, T, F --> T (if T is a constant), otherwise F 7254 // select, ?, undef, F --> F 7255 // select, ?, T, undef --> T 7256 if (Cond.isUndef()) 7257 return isConstantValueOfAnyType(T) ? T : F; 7258 if (T.isUndef()) 7259 return F; 7260 if (F.isUndef()) 7261 return T; 7262 7263 // select true, T, F --> T 7264 // select false, T, F --> F 7265 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7266 return CondC->isNullValue() ? F : T; 7267 7268 // TODO: This should simplify VSELECT with constant condition using something 7269 // like this (but check boolean contents to be complete?): 7270 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7271 // return T; 7272 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7273 // return F; 7274 7275 // select ?, T, T --> T 7276 if (T == F) 7277 return T; 7278 7279 return SDValue(); 7280 } 7281 7282 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7283 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7284 if (X.isUndef()) 7285 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7286 // shift X, undef --> undef (because it may shift by the bitwidth) 7287 if (Y.isUndef()) 7288 return getUNDEF(X.getValueType()); 7289 7290 // shift 0, Y --> 0 7291 // shift X, 0 --> X 7292 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7293 return X; 7294 7295 // shift X, C >= bitwidth(X) --> undef 7296 // All vector elements must be too big (or undef) to avoid partial undefs. 7297 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7298 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7299 }; 7300 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7301 return getUNDEF(X.getValueType()); 7302 7303 return SDValue(); 7304 } 7305 7306 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7307 SDNodeFlags Flags) { 7308 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7309 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7310 // operation is poison. That result can be relaxed to undef. 7311 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7312 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7313 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7314 (YC && YC->getValueAPF().isNaN()); 7315 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7316 (YC && YC->getValueAPF().isInfinity()); 7317 7318 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7319 return getUNDEF(X.getValueType()); 7320 7321 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7322 return getUNDEF(X.getValueType()); 7323 7324 if (!YC) 7325 return SDValue(); 7326 7327 // X + -0.0 --> X 7328 if (Opcode == ISD::FADD) 7329 if (YC->getValueAPF().isNegZero()) 7330 return X; 7331 7332 // X - +0.0 --> X 7333 if (Opcode == ISD::FSUB) 7334 if (YC->getValueAPF().isPosZero()) 7335 return X; 7336 7337 // X * 1.0 --> X 7338 // X / 1.0 --> X 7339 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7340 if (YC->getValueAPF().isExactlyValue(1.0)) 7341 return X; 7342 7343 return SDValue(); 7344 } 7345 7346 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7347 SDValue Ptr, SDValue SV, unsigned Align) { 7348 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7349 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7350 } 7351 7352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7353 ArrayRef<SDUse> Ops) { 7354 switch (Ops.size()) { 7355 case 0: return getNode(Opcode, DL, VT); 7356 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7357 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7358 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7359 default: break; 7360 } 7361 7362 // Copy from an SDUse array into an SDValue array for use with 7363 // the regular getNode logic. 7364 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7365 return getNode(Opcode, DL, VT, NewOps); 7366 } 7367 7368 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7369 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7370 unsigned NumOps = Ops.size(); 7371 switch (NumOps) { 7372 case 0: return getNode(Opcode, DL, VT); 7373 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7374 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7375 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7376 default: break; 7377 } 7378 7379 switch (Opcode) { 7380 default: break; 7381 case ISD::BUILD_VECTOR: 7382 // Attempt to simplify BUILD_VECTOR. 7383 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7384 return V; 7385 break; 7386 case ISD::CONCAT_VECTORS: 7387 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7388 return V; 7389 break; 7390 case ISD::SELECT_CC: 7391 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7392 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7393 "LHS and RHS of condition must have same type!"); 7394 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7395 "True and False arms of SelectCC must have same type!"); 7396 assert(Ops[2].getValueType() == VT && 7397 "select_cc node must be of same type as true and false value!"); 7398 break; 7399 case ISD::BR_CC: 7400 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7401 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7402 "LHS/RHS of comparison should match types!"); 7403 break; 7404 } 7405 7406 // Memoize nodes. 7407 SDNode *N; 7408 SDVTList VTs = getVTList(VT); 7409 7410 if (VT != MVT::Glue) { 7411 FoldingSetNodeID ID; 7412 AddNodeIDNode(ID, Opcode, VTs, Ops); 7413 void *IP = nullptr; 7414 7415 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7416 return SDValue(E, 0); 7417 7418 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7419 createOperands(N, Ops); 7420 7421 CSEMap.InsertNode(N, IP); 7422 } else { 7423 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7424 createOperands(N, Ops); 7425 } 7426 7427 InsertNode(N); 7428 SDValue V(N, 0); 7429 NewSDValueDbgMsg(V, "Creating new node: ", this); 7430 return V; 7431 } 7432 7433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7434 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7435 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7436 } 7437 7438 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7439 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7440 if (VTList.NumVTs == 1) 7441 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7442 7443 switch (Opcode) { 7444 case ISD::STRICT_FP_EXTEND: 7445 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7446 "Invalid STRICT_FP_EXTEND!"); 7447 assert(VTList.VTs[0].isFloatingPoint() && 7448 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7449 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7450 "STRICT_FP_EXTEND result type should be vector iff the operand " 7451 "type is vector!"); 7452 assert((!VTList.VTs[0].isVector() || 7453 VTList.VTs[0].getVectorNumElements() == 7454 Ops[1].getValueType().getVectorNumElements()) && 7455 "Vector element count mismatch!"); 7456 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7457 "Invalid fpext node, dst <= src!"); 7458 break; 7459 case ISD::STRICT_FP_ROUND: 7460 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7461 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7462 "STRICT_FP_ROUND result type should be vector iff the operand " 7463 "type is vector!"); 7464 assert((!VTList.VTs[0].isVector() || 7465 VTList.VTs[0].getVectorNumElements() == 7466 Ops[1].getValueType().getVectorNumElements()) && 7467 "Vector element count mismatch!"); 7468 assert(VTList.VTs[0].isFloatingPoint() && 7469 Ops[1].getValueType().isFloatingPoint() && 7470 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7471 isa<ConstantSDNode>(Ops[2]) && 7472 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7473 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7474 "Invalid STRICT_FP_ROUND!"); 7475 break; 7476 #if 0 7477 // FIXME: figure out how to safely handle things like 7478 // int foo(int x) { return 1 << (x & 255); } 7479 // int bar() { return foo(256); } 7480 case ISD::SRA_PARTS: 7481 case ISD::SRL_PARTS: 7482 case ISD::SHL_PARTS: 7483 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7484 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7485 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7486 else if (N3.getOpcode() == ISD::AND) 7487 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7488 // If the and is only masking out bits that cannot effect the shift, 7489 // eliminate the and. 7490 unsigned NumBits = VT.getScalarSizeInBits()*2; 7491 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7492 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7493 } 7494 break; 7495 #endif 7496 } 7497 7498 // Memoize the node unless it returns a flag. 7499 SDNode *N; 7500 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7501 FoldingSetNodeID ID; 7502 AddNodeIDNode(ID, Opcode, VTList, Ops); 7503 void *IP = nullptr; 7504 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7505 return SDValue(E, 0); 7506 7507 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7508 N->setFlags(Flags); 7509 createOperands(N, Ops); 7510 CSEMap.InsertNode(N, IP); 7511 } else { 7512 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7513 createOperands(N, Ops); 7514 } 7515 InsertNode(N); 7516 SDValue V(N, 0); 7517 NewSDValueDbgMsg(V, "Creating new node: ", this); 7518 return V; 7519 } 7520 7521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7522 SDVTList VTList) { 7523 return getNode(Opcode, DL, VTList, None); 7524 } 7525 7526 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7527 SDValue N1) { 7528 SDValue Ops[] = { N1 }; 7529 return getNode(Opcode, DL, VTList, Ops); 7530 } 7531 7532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7533 SDValue N1, SDValue N2) { 7534 SDValue Ops[] = { N1, N2 }; 7535 return getNode(Opcode, DL, VTList, Ops); 7536 } 7537 7538 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7539 SDValue N1, SDValue N2, SDValue N3) { 7540 SDValue Ops[] = { N1, N2, N3 }; 7541 return getNode(Opcode, DL, VTList, Ops); 7542 } 7543 7544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7545 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7546 SDValue Ops[] = { N1, N2, N3, N4 }; 7547 return getNode(Opcode, DL, VTList, Ops); 7548 } 7549 7550 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7551 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7552 SDValue N5) { 7553 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7554 return getNode(Opcode, DL, VTList, Ops); 7555 } 7556 7557 SDVTList SelectionDAG::getVTList(EVT VT) { 7558 return makeVTList(SDNode::getValueTypeList(VT), 1); 7559 } 7560 7561 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7562 FoldingSetNodeID ID; 7563 ID.AddInteger(2U); 7564 ID.AddInteger(VT1.getRawBits()); 7565 ID.AddInteger(VT2.getRawBits()); 7566 7567 void *IP = nullptr; 7568 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7569 if (!Result) { 7570 EVT *Array = Allocator.Allocate<EVT>(2); 7571 Array[0] = VT1; 7572 Array[1] = VT2; 7573 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7574 VTListMap.InsertNode(Result, IP); 7575 } 7576 return Result->getSDVTList(); 7577 } 7578 7579 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7580 FoldingSetNodeID ID; 7581 ID.AddInteger(3U); 7582 ID.AddInteger(VT1.getRawBits()); 7583 ID.AddInteger(VT2.getRawBits()); 7584 ID.AddInteger(VT3.getRawBits()); 7585 7586 void *IP = nullptr; 7587 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7588 if (!Result) { 7589 EVT *Array = Allocator.Allocate<EVT>(3); 7590 Array[0] = VT1; 7591 Array[1] = VT2; 7592 Array[2] = VT3; 7593 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7594 VTListMap.InsertNode(Result, IP); 7595 } 7596 return Result->getSDVTList(); 7597 } 7598 7599 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7600 FoldingSetNodeID ID; 7601 ID.AddInteger(4U); 7602 ID.AddInteger(VT1.getRawBits()); 7603 ID.AddInteger(VT2.getRawBits()); 7604 ID.AddInteger(VT3.getRawBits()); 7605 ID.AddInteger(VT4.getRawBits()); 7606 7607 void *IP = nullptr; 7608 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7609 if (!Result) { 7610 EVT *Array = Allocator.Allocate<EVT>(4); 7611 Array[0] = VT1; 7612 Array[1] = VT2; 7613 Array[2] = VT3; 7614 Array[3] = VT4; 7615 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7616 VTListMap.InsertNode(Result, IP); 7617 } 7618 return Result->getSDVTList(); 7619 } 7620 7621 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7622 unsigned NumVTs = VTs.size(); 7623 FoldingSetNodeID ID; 7624 ID.AddInteger(NumVTs); 7625 for (unsigned index = 0; index < NumVTs; index++) { 7626 ID.AddInteger(VTs[index].getRawBits()); 7627 } 7628 7629 void *IP = nullptr; 7630 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7631 if (!Result) { 7632 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7633 llvm::copy(VTs, Array); 7634 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7635 VTListMap.InsertNode(Result, IP); 7636 } 7637 return Result->getSDVTList(); 7638 } 7639 7640 7641 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7642 /// specified operands. If the resultant node already exists in the DAG, 7643 /// this does not modify the specified node, instead it returns the node that 7644 /// already exists. If the resultant node does not exist in the DAG, the 7645 /// input node is returned. As a degenerate case, if you specify the same 7646 /// input operands as the node already has, the input node is returned. 7647 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7648 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7649 7650 // Check to see if there is no change. 7651 if (Op == N->getOperand(0)) return N; 7652 7653 // See if the modified node already exists. 7654 void *InsertPos = nullptr; 7655 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7656 return Existing; 7657 7658 // Nope it doesn't. Remove the node from its current place in the maps. 7659 if (InsertPos) 7660 if (!RemoveNodeFromCSEMaps(N)) 7661 InsertPos = nullptr; 7662 7663 // Now we update the operands. 7664 N->OperandList[0].set(Op); 7665 7666 updateDivergence(N); 7667 // If this gets put into a CSE map, add it. 7668 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7669 return N; 7670 } 7671 7672 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7673 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7674 7675 // Check to see if there is no change. 7676 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7677 return N; // No operands changed, just return the input node. 7678 7679 // See if the modified node already exists. 7680 void *InsertPos = nullptr; 7681 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7682 return Existing; 7683 7684 // Nope it doesn't. Remove the node from its current place in the maps. 7685 if (InsertPos) 7686 if (!RemoveNodeFromCSEMaps(N)) 7687 InsertPos = nullptr; 7688 7689 // Now we update the operands. 7690 if (N->OperandList[0] != Op1) 7691 N->OperandList[0].set(Op1); 7692 if (N->OperandList[1] != Op2) 7693 N->OperandList[1].set(Op2); 7694 7695 updateDivergence(N); 7696 // If this gets put into a CSE map, add it. 7697 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7698 return N; 7699 } 7700 7701 SDNode *SelectionDAG:: 7702 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7703 SDValue Ops[] = { Op1, Op2, Op3 }; 7704 return UpdateNodeOperands(N, Ops); 7705 } 7706 7707 SDNode *SelectionDAG:: 7708 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7709 SDValue Op3, SDValue Op4) { 7710 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7711 return UpdateNodeOperands(N, Ops); 7712 } 7713 7714 SDNode *SelectionDAG:: 7715 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7716 SDValue Op3, SDValue Op4, SDValue Op5) { 7717 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7718 return UpdateNodeOperands(N, Ops); 7719 } 7720 7721 SDNode *SelectionDAG:: 7722 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7723 unsigned NumOps = Ops.size(); 7724 assert(N->getNumOperands() == NumOps && 7725 "Update with wrong number of operands"); 7726 7727 // If no operands changed just return the input node. 7728 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7729 return N; 7730 7731 // See if the modified node already exists. 7732 void *InsertPos = nullptr; 7733 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7734 return Existing; 7735 7736 // Nope it doesn't. Remove the node from its current place in the maps. 7737 if (InsertPos) 7738 if (!RemoveNodeFromCSEMaps(N)) 7739 InsertPos = nullptr; 7740 7741 // Now we update the operands. 7742 for (unsigned i = 0; i != NumOps; ++i) 7743 if (N->OperandList[i] != Ops[i]) 7744 N->OperandList[i].set(Ops[i]); 7745 7746 updateDivergence(N); 7747 // If this gets put into a CSE map, add it. 7748 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7749 return N; 7750 } 7751 7752 /// DropOperands - Release the operands and set this node to have 7753 /// zero operands. 7754 void SDNode::DropOperands() { 7755 // Unlike the code in MorphNodeTo that does this, we don't need to 7756 // watch for dead nodes here. 7757 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7758 SDUse &Use = *I++; 7759 Use.set(SDValue()); 7760 } 7761 } 7762 7763 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7764 ArrayRef<MachineMemOperand *> NewMemRefs) { 7765 if (NewMemRefs.empty()) { 7766 N->clearMemRefs(); 7767 return; 7768 } 7769 7770 // Check if we can avoid allocating by storing a single reference directly. 7771 if (NewMemRefs.size() == 1) { 7772 N->MemRefs = NewMemRefs[0]; 7773 N->NumMemRefs = 1; 7774 return; 7775 } 7776 7777 MachineMemOperand **MemRefsBuffer = 7778 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7779 llvm::copy(NewMemRefs, MemRefsBuffer); 7780 N->MemRefs = MemRefsBuffer; 7781 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7782 } 7783 7784 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7785 /// machine opcode. 7786 /// 7787 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7788 EVT VT) { 7789 SDVTList VTs = getVTList(VT); 7790 return SelectNodeTo(N, MachineOpc, VTs, None); 7791 } 7792 7793 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7794 EVT VT, SDValue Op1) { 7795 SDVTList VTs = getVTList(VT); 7796 SDValue Ops[] = { Op1 }; 7797 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7798 } 7799 7800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7801 EVT VT, SDValue Op1, 7802 SDValue Op2) { 7803 SDVTList VTs = getVTList(VT); 7804 SDValue Ops[] = { Op1, Op2 }; 7805 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7806 } 7807 7808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7809 EVT VT, SDValue Op1, 7810 SDValue Op2, SDValue Op3) { 7811 SDVTList VTs = getVTList(VT); 7812 SDValue Ops[] = { Op1, Op2, Op3 }; 7813 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7814 } 7815 7816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7817 EVT VT, ArrayRef<SDValue> Ops) { 7818 SDVTList VTs = getVTList(VT); 7819 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7820 } 7821 7822 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7823 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7824 SDVTList VTs = getVTList(VT1, VT2); 7825 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7826 } 7827 7828 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7829 EVT VT1, EVT VT2) { 7830 SDVTList VTs = getVTList(VT1, VT2); 7831 return SelectNodeTo(N, MachineOpc, VTs, None); 7832 } 7833 7834 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7835 EVT VT1, EVT VT2, EVT VT3, 7836 ArrayRef<SDValue> Ops) { 7837 SDVTList VTs = getVTList(VT1, VT2, VT3); 7838 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7839 } 7840 7841 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7842 EVT VT1, EVT VT2, 7843 SDValue Op1, SDValue Op2) { 7844 SDVTList VTs = getVTList(VT1, VT2); 7845 SDValue Ops[] = { Op1, Op2 }; 7846 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7847 } 7848 7849 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7850 SDVTList VTs,ArrayRef<SDValue> Ops) { 7851 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7852 // Reset the NodeID to -1. 7853 New->setNodeId(-1); 7854 if (New != N) { 7855 ReplaceAllUsesWith(N, New); 7856 RemoveDeadNode(N); 7857 } 7858 return New; 7859 } 7860 7861 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7862 /// the line number information on the merged node since it is not possible to 7863 /// preserve the information that operation is associated with multiple lines. 7864 /// This will make the debugger working better at -O0, were there is a higher 7865 /// probability having other instructions associated with that line. 7866 /// 7867 /// For IROrder, we keep the smaller of the two 7868 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7869 DebugLoc NLoc = N->getDebugLoc(); 7870 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7871 N->setDebugLoc(DebugLoc()); 7872 } 7873 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7874 N->setIROrder(Order); 7875 return N; 7876 } 7877 7878 /// MorphNodeTo - This *mutates* the specified node to have the specified 7879 /// return type, opcode, and operands. 7880 /// 7881 /// Note that MorphNodeTo returns the resultant node. If there is already a 7882 /// node of the specified opcode and operands, it returns that node instead of 7883 /// the current one. Note that the SDLoc need not be the same. 7884 /// 7885 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7886 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7887 /// node, and because it doesn't require CSE recalculation for any of 7888 /// the node's users. 7889 /// 7890 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7891 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7892 /// the legalizer which maintain worklists that would need to be updated when 7893 /// deleting things. 7894 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7895 SDVTList VTs, ArrayRef<SDValue> Ops) { 7896 // If an identical node already exists, use it. 7897 void *IP = nullptr; 7898 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7899 FoldingSetNodeID ID; 7900 AddNodeIDNode(ID, Opc, VTs, Ops); 7901 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7902 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7903 } 7904 7905 if (!RemoveNodeFromCSEMaps(N)) 7906 IP = nullptr; 7907 7908 // Start the morphing. 7909 N->NodeType = Opc; 7910 N->ValueList = VTs.VTs; 7911 N->NumValues = VTs.NumVTs; 7912 7913 // Clear the operands list, updating used nodes to remove this from their 7914 // use list. Keep track of any operands that become dead as a result. 7915 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7916 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7917 SDUse &Use = *I++; 7918 SDNode *Used = Use.getNode(); 7919 Use.set(SDValue()); 7920 if (Used->use_empty()) 7921 DeadNodeSet.insert(Used); 7922 } 7923 7924 // For MachineNode, initialize the memory references information. 7925 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7926 MN->clearMemRefs(); 7927 7928 // Swap for an appropriately sized array from the recycler. 7929 removeOperands(N); 7930 createOperands(N, Ops); 7931 7932 // Delete any nodes that are still dead after adding the uses for the 7933 // new operands. 7934 if (!DeadNodeSet.empty()) { 7935 SmallVector<SDNode *, 16> DeadNodes; 7936 for (SDNode *N : DeadNodeSet) 7937 if (N->use_empty()) 7938 DeadNodes.push_back(N); 7939 RemoveDeadNodes(DeadNodes); 7940 } 7941 7942 if (IP) 7943 CSEMap.InsertNode(N, IP); // Memoize the new node. 7944 return N; 7945 } 7946 7947 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7948 unsigned OrigOpc = Node->getOpcode(); 7949 unsigned NewOpc; 7950 switch (OrigOpc) { 7951 default: 7952 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7953 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7954 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7955 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7956 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7957 #include "llvm/IR/ConstrainedOps.def" 7958 } 7959 7960 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7961 7962 // We're taking this node out of the chain, so we need to re-link things. 7963 SDValue InputChain = Node->getOperand(0); 7964 SDValue OutputChain = SDValue(Node, 1); 7965 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7966 7967 SmallVector<SDValue, 3> Ops; 7968 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7969 Ops.push_back(Node->getOperand(i)); 7970 7971 SDVTList VTs = getVTList(Node->getValueType(0)); 7972 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7973 7974 // MorphNodeTo can operate in two ways: if an existing node with the 7975 // specified operands exists, it can just return it. Otherwise, it 7976 // updates the node in place to have the requested operands. 7977 if (Res == Node) { 7978 // If we updated the node in place, reset the node ID. To the isel, 7979 // this should be just like a newly allocated machine node. 7980 Res->setNodeId(-1); 7981 } else { 7982 ReplaceAllUsesWith(Node, Res); 7983 RemoveDeadNode(Node); 7984 } 7985 7986 return Res; 7987 } 7988 7989 /// getMachineNode - These are used for target selectors to create a new node 7990 /// with specified return type(s), MachineInstr opcode, and operands. 7991 /// 7992 /// Note that getMachineNode returns the resultant node. If there is already a 7993 /// node of the specified opcode and operands, it returns that node instead of 7994 /// the current one. 7995 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7996 EVT VT) { 7997 SDVTList VTs = getVTList(VT); 7998 return getMachineNode(Opcode, dl, VTs, None); 7999 } 8000 8001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8002 EVT VT, SDValue Op1) { 8003 SDVTList VTs = getVTList(VT); 8004 SDValue Ops[] = { Op1 }; 8005 return getMachineNode(Opcode, dl, VTs, Ops); 8006 } 8007 8008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8009 EVT VT, SDValue Op1, SDValue Op2) { 8010 SDVTList VTs = getVTList(VT); 8011 SDValue Ops[] = { Op1, Op2 }; 8012 return getMachineNode(Opcode, dl, VTs, Ops); 8013 } 8014 8015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8016 EVT VT, SDValue Op1, SDValue Op2, 8017 SDValue Op3) { 8018 SDVTList VTs = getVTList(VT); 8019 SDValue Ops[] = { Op1, Op2, Op3 }; 8020 return getMachineNode(Opcode, dl, VTs, Ops); 8021 } 8022 8023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8024 EVT VT, ArrayRef<SDValue> Ops) { 8025 SDVTList VTs = getVTList(VT); 8026 return getMachineNode(Opcode, dl, VTs, Ops); 8027 } 8028 8029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8030 EVT VT1, EVT VT2, SDValue Op1, 8031 SDValue Op2) { 8032 SDVTList VTs = getVTList(VT1, VT2); 8033 SDValue Ops[] = { Op1, Op2 }; 8034 return getMachineNode(Opcode, dl, VTs, Ops); 8035 } 8036 8037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8038 EVT VT1, EVT VT2, SDValue Op1, 8039 SDValue Op2, SDValue Op3) { 8040 SDVTList VTs = getVTList(VT1, VT2); 8041 SDValue Ops[] = { Op1, Op2, Op3 }; 8042 return getMachineNode(Opcode, dl, VTs, Ops); 8043 } 8044 8045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8046 EVT VT1, EVT VT2, 8047 ArrayRef<SDValue> Ops) { 8048 SDVTList VTs = getVTList(VT1, VT2); 8049 return getMachineNode(Opcode, dl, VTs, Ops); 8050 } 8051 8052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8053 EVT VT1, EVT VT2, EVT VT3, 8054 SDValue Op1, SDValue Op2) { 8055 SDVTList VTs = getVTList(VT1, VT2, VT3); 8056 SDValue Ops[] = { Op1, Op2 }; 8057 return getMachineNode(Opcode, dl, VTs, Ops); 8058 } 8059 8060 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8061 EVT VT1, EVT VT2, EVT VT3, 8062 SDValue Op1, SDValue Op2, 8063 SDValue Op3) { 8064 SDVTList VTs = getVTList(VT1, VT2, VT3); 8065 SDValue Ops[] = { Op1, Op2, Op3 }; 8066 return getMachineNode(Opcode, dl, VTs, Ops); 8067 } 8068 8069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8070 EVT VT1, EVT VT2, EVT VT3, 8071 ArrayRef<SDValue> Ops) { 8072 SDVTList VTs = getVTList(VT1, VT2, VT3); 8073 return getMachineNode(Opcode, dl, VTs, Ops); 8074 } 8075 8076 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8077 ArrayRef<EVT> ResultTys, 8078 ArrayRef<SDValue> Ops) { 8079 SDVTList VTs = getVTList(ResultTys); 8080 return getMachineNode(Opcode, dl, VTs, Ops); 8081 } 8082 8083 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8084 SDVTList VTs, 8085 ArrayRef<SDValue> Ops) { 8086 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8087 MachineSDNode *N; 8088 void *IP = nullptr; 8089 8090 if (DoCSE) { 8091 FoldingSetNodeID ID; 8092 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8093 IP = nullptr; 8094 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8095 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8096 } 8097 } 8098 8099 // Allocate a new MachineSDNode. 8100 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8101 createOperands(N, Ops); 8102 8103 if (DoCSE) 8104 CSEMap.InsertNode(N, IP); 8105 8106 InsertNode(N); 8107 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8108 return N; 8109 } 8110 8111 /// getTargetExtractSubreg - A convenience function for creating 8112 /// TargetOpcode::EXTRACT_SUBREG nodes. 8113 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8114 SDValue Operand) { 8115 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8116 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8117 VT, Operand, SRIdxVal); 8118 return SDValue(Subreg, 0); 8119 } 8120 8121 /// getTargetInsertSubreg - A convenience function for creating 8122 /// TargetOpcode::INSERT_SUBREG nodes. 8123 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8124 SDValue Operand, SDValue Subreg) { 8125 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8126 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8127 VT, Operand, Subreg, SRIdxVal); 8128 return SDValue(Result, 0); 8129 } 8130 8131 /// getNodeIfExists - Get the specified node if it's already available, or 8132 /// else return NULL. 8133 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8134 ArrayRef<SDValue> Ops, 8135 const SDNodeFlags Flags) { 8136 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8137 FoldingSetNodeID ID; 8138 AddNodeIDNode(ID, Opcode, VTList, Ops); 8139 void *IP = nullptr; 8140 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8141 E->intersectFlagsWith(Flags); 8142 return E; 8143 } 8144 } 8145 return nullptr; 8146 } 8147 8148 /// getDbgValue - Creates a SDDbgValue node. 8149 /// 8150 /// SDNode 8151 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8152 SDNode *N, unsigned R, bool IsIndirect, 8153 const DebugLoc &DL, unsigned O) { 8154 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8155 "Expected inlined-at fields to agree"); 8156 return new (DbgInfo->getAlloc()) 8157 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8158 } 8159 8160 /// Constant 8161 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8162 DIExpression *Expr, 8163 const Value *C, 8164 const DebugLoc &DL, unsigned O) { 8165 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8166 "Expected inlined-at fields to agree"); 8167 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8168 } 8169 8170 /// FrameIndex 8171 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8172 DIExpression *Expr, unsigned FI, 8173 bool IsIndirect, 8174 const DebugLoc &DL, 8175 unsigned O) { 8176 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8177 "Expected inlined-at fields to agree"); 8178 return new (DbgInfo->getAlloc()) 8179 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8180 } 8181 8182 /// VReg 8183 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8184 DIExpression *Expr, 8185 unsigned VReg, bool IsIndirect, 8186 const DebugLoc &DL, unsigned O) { 8187 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8188 "Expected inlined-at fields to agree"); 8189 return new (DbgInfo->getAlloc()) 8190 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8191 } 8192 8193 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8194 unsigned OffsetInBits, unsigned SizeInBits, 8195 bool InvalidateDbg) { 8196 SDNode *FromNode = From.getNode(); 8197 SDNode *ToNode = To.getNode(); 8198 assert(FromNode && ToNode && "Can't modify dbg values"); 8199 8200 // PR35338 8201 // TODO: assert(From != To && "Redundant dbg value transfer"); 8202 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8203 if (From == To || FromNode == ToNode) 8204 return; 8205 8206 if (!FromNode->getHasDebugValue()) 8207 return; 8208 8209 SmallVector<SDDbgValue *, 2> ClonedDVs; 8210 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8211 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8212 continue; 8213 8214 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8215 8216 // Just transfer the dbg value attached to From. 8217 if (Dbg->getResNo() != From.getResNo()) 8218 continue; 8219 8220 DIVariable *Var = Dbg->getVariable(); 8221 auto *Expr = Dbg->getExpression(); 8222 // If a fragment is requested, update the expression. 8223 if (SizeInBits) { 8224 // When splitting a larger (e.g., sign-extended) value whose 8225 // lower bits are described with an SDDbgValue, do not attempt 8226 // to transfer the SDDbgValue to the upper bits. 8227 if (auto FI = Expr->getFragmentInfo()) 8228 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8229 continue; 8230 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8231 SizeInBits); 8232 if (!Fragment) 8233 continue; 8234 Expr = *Fragment; 8235 } 8236 // Clone the SDDbgValue and move it to To. 8237 SDDbgValue *Clone = getDbgValue( 8238 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8239 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8240 ClonedDVs.push_back(Clone); 8241 8242 if (InvalidateDbg) { 8243 // Invalidate value and indicate the SDDbgValue should not be emitted. 8244 Dbg->setIsInvalidated(); 8245 Dbg->setIsEmitted(); 8246 } 8247 } 8248 8249 for (SDDbgValue *Dbg : ClonedDVs) 8250 AddDbgValue(Dbg, ToNode, false); 8251 } 8252 8253 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8254 if (!N.getHasDebugValue()) 8255 return; 8256 8257 SmallVector<SDDbgValue *, 2> ClonedDVs; 8258 for (auto DV : GetDbgValues(&N)) { 8259 if (DV->isInvalidated()) 8260 continue; 8261 switch (N.getOpcode()) { 8262 default: 8263 break; 8264 case ISD::ADD: 8265 SDValue N0 = N.getOperand(0); 8266 SDValue N1 = N.getOperand(1); 8267 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8268 isConstantIntBuildVectorOrConstantInt(N1)) { 8269 uint64_t Offset = N.getConstantOperandVal(1); 8270 // Rewrite an ADD constant node into a DIExpression. Since we are 8271 // performing arithmetic to compute the variable's *value* in the 8272 // DIExpression, we need to mark the expression with a 8273 // DW_OP_stack_value. 8274 auto *DIExpr = DV->getExpression(); 8275 DIExpr = 8276 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8277 SDDbgValue *Clone = 8278 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8279 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8280 ClonedDVs.push_back(Clone); 8281 DV->setIsInvalidated(); 8282 DV->setIsEmitted(); 8283 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8284 N0.getNode()->dumprFull(this); 8285 dbgs() << " into " << *DIExpr << '\n'); 8286 } 8287 } 8288 } 8289 8290 for (SDDbgValue *Dbg : ClonedDVs) 8291 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8292 } 8293 8294 /// Creates a SDDbgLabel node. 8295 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8296 const DebugLoc &DL, unsigned O) { 8297 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8298 "Expected inlined-at fields to agree"); 8299 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8300 } 8301 8302 namespace { 8303 8304 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8305 /// pointed to by a use iterator is deleted, increment the use iterator 8306 /// so that it doesn't dangle. 8307 /// 8308 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8309 SDNode::use_iterator &UI; 8310 SDNode::use_iterator &UE; 8311 8312 void NodeDeleted(SDNode *N, SDNode *E) override { 8313 // Increment the iterator as needed. 8314 while (UI != UE && N == *UI) 8315 ++UI; 8316 } 8317 8318 public: 8319 RAUWUpdateListener(SelectionDAG &d, 8320 SDNode::use_iterator &ui, 8321 SDNode::use_iterator &ue) 8322 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8323 }; 8324 8325 } // end anonymous namespace 8326 8327 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8328 /// This can cause recursive merging of nodes in the DAG. 8329 /// 8330 /// This version assumes From has a single result value. 8331 /// 8332 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8333 SDNode *From = FromN.getNode(); 8334 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8335 "Cannot replace with this method!"); 8336 assert(From != To.getNode() && "Cannot replace uses of with self"); 8337 8338 // Preserve Debug Values 8339 transferDbgValues(FromN, To); 8340 8341 // Iterate over all the existing uses of From. New uses will be added 8342 // to the beginning of the use list, which we avoid visiting. 8343 // This specifically avoids visiting uses of From that arise while the 8344 // replacement is happening, because any such uses would be the result 8345 // of CSE: If an existing node looks like From after one of its operands 8346 // is replaced by To, we don't want to replace of all its users with To 8347 // too. See PR3018 for more info. 8348 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8349 RAUWUpdateListener Listener(*this, UI, UE); 8350 while (UI != UE) { 8351 SDNode *User = *UI; 8352 8353 // This node is about to morph, remove its old self from the CSE maps. 8354 RemoveNodeFromCSEMaps(User); 8355 8356 // A user can appear in a use list multiple times, and when this 8357 // happens the uses are usually next to each other in the list. 8358 // To help reduce the number of CSE recomputations, process all 8359 // the uses of this user that we can find this way. 8360 do { 8361 SDUse &Use = UI.getUse(); 8362 ++UI; 8363 Use.set(To); 8364 if (To->isDivergent() != From->isDivergent()) 8365 updateDivergence(User); 8366 } while (UI != UE && *UI == User); 8367 // Now that we have modified User, add it back to the CSE maps. If it 8368 // already exists there, recursively merge the results together. 8369 AddModifiedNodeToCSEMaps(User); 8370 } 8371 8372 // If we just RAUW'd the root, take note. 8373 if (FromN == getRoot()) 8374 setRoot(To); 8375 } 8376 8377 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8378 /// This can cause recursive merging of nodes in the DAG. 8379 /// 8380 /// This version assumes that for each value of From, there is a 8381 /// corresponding value in To in the same position with the same type. 8382 /// 8383 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8384 #ifndef NDEBUG 8385 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8386 assert((!From->hasAnyUseOfValue(i) || 8387 From->getValueType(i) == To->getValueType(i)) && 8388 "Cannot use this version of ReplaceAllUsesWith!"); 8389 #endif 8390 8391 // Handle the trivial case. 8392 if (From == To) 8393 return; 8394 8395 // Preserve Debug Info. Only do this if there's a use. 8396 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8397 if (From->hasAnyUseOfValue(i)) { 8398 assert((i < To->getNumValues()) && "Invalid To location"); 8399 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8400 } 8401 8402 // Iterate over just the existing users of From. See the comments in 8403 // the ReplaceAllUsesWith above. 8404 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8405 RAUWUpdateListener Listener(*this, UI, UE); 8406 while (UI != UE) { 8407 SDNode *User = *UI; 8408 8409 // This node is about to morph, remove its old self from the CSE maps. 8410 RemoveNodeFromCSEMaps(User); 8411 8412 // A user can appear in a use list multiple times, and when this 8413 // happens the uses are usually next to each other in the list. 8414 // To help reduce the number of CSE recomputations, process all 8415 // the uses of this user that we can find this way. 8416 do { 8417 SDUse &Use = UI.getUse(); 8418 ++UI; 8419 Use.setNode(To); 8420 if (To->isDivergent() != From->isDivergent()) 8421 updateDivergence(User); 8422 } while (UI != UE && *UI == User); 8423 8424 // Now that we have modified User, add it back to the CSE maps. If it 8425 // already exists there, recursively merge the results together. 8426 AddModifiedNodeToCSEMaps(User); 8427 } 8428 8429 // If we just RAUW'd the root, take note. 8430 if (From == getRoot().getNode()) 8431 setRoot(SDValue(To, getRoot().getResNo())); 8432 } 8433 8434 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8435 /// This can cause recursive merging of nodes in the DAG. 8436 /// 8437 /// This version can replace From with any result values. To must match the 8438 /// number and types of values returned by From. 8439 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8440 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8441 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8442 8443 // Preserve Debug Info. 8444 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8445 transferDbgValues(SDValue(From, i), To[i]); 8446 8447 // Iterate over just the existing users of From. See the comments in 8448 // the ReplaceAllUsesWith above. 8449 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8450 RAUWUpdateListener Listener(*this, UI, UE); 8451 while (UI != UE) { 8452 SDNode *User = *UI; 8453 8454 // This node is about to morph, remove its old self from the CSE maps. 8455 RemoveNodeFromCSEMaps(User); 8456 8457 // A user can appear in a use list multiple times, and when this happens the 8458 // uses are usually next to each other in the list. To help reduce the 8459 // number of CSE and divergence recomputations, process all the uses of this 8460 // user that we can find this way. 8461 bool To_IsDivergent = false; 8462 do { 8463 SDUse &Use = UI.getUse(); 8464 const SDValue &ToOp = To[Use.getResNo()]; 8465 ++UI; 8466 Use.set(ToOp); 8467 To_IsDivergent |= ToOp->isDivergent(); 8468 } while (UI != UE && *UI == User); 8469 8470 if (To_IsDivergent != From->isDivergent()) 8471 updateDivergence(User); 8472 8473 // Now that we have modified User, add it back to the CSE maps. If it 8474 // already exists there, recursively merge the results together. 8475 AddModifiedNodeToCSEMaps(User); 8476 } 8477 8478 // If we just RAUW'd the root, take note. 8479 if (From == getRoot().getNode()) 8480 setRoot(SDValue(To[getRoot().getResNo()])); 8481 } 8482 8483 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8484 /// uses of other values produced by From.getNode() alone. The Deleted 8485 /// vector is handled the same way as for ReplaceAllUsesWith. 8486 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8487 // Handle the really simple, really trivial case efficiently. 8488 if (From == To) return; 8489 8490 // Handle the simple, trivial, case efficiently. 8491 if (From.getNode()->getNumValues() == 1) { 8492 ReplaceAllUsesWith(From, To); 8493 return; 8494 } 8495 8496 // Preserve Debug Info. 8497 transferDbgValues(From, To); 8498 8499 // Iterate over just the existing users of From. See the comments in 8500 // the ReplaceAllUsesWith above. 8501 SDNode::use_iterator UI = From.getNode()->use_begin(), 8502 UE = From.getNode()->use_end(); 8503 RAUWUpdateListener Listener(*this, UI, UE); 8504 while (UI != UE) { 8505 SDNode *User = *UI; 8506 bool UserRemovedFromCSEMaps = false; 8507 8508 // A user can appear in a use list multiple times, and when this 8509 // happens the uses are usually next to each other in the list. 8510 // To help reduce the number of CSE recomputations, process all 8511 // the uses of this user that we can find this way. 8512 do { 8513 SDUse &Use = UI.getUse(); 8514 8515 // Skip uses of different values from the same node. 8516 if (Use.getResNo() != From.getResNo()) { 8517 ++UI; 8518 continue; 8519 } 8520 8521 // If this node hasn't been modified yet, it's still in the CSE maps, 8522 // so remove its old self from the CSE maps. 8523 if (!UserRemovedFromCSEMaps) { 8524 RemoveNodeFromCSEMaps(User); 8525 UserRemovedFromCSEMaps = true; 8526 } 8527 8528 ++UI; 8529 Use.set(To); 8530 if (To->isDivergent() != From->isDivergent()) 8531 updateDivergence(User); 8532 } while (UI != UE && *UI == User); 8533 // We are iterating over all uses of the From node, so if a use 8534 // doesn't use the specific value, no changes are made. 8535 if (!UserRemovedFromCSEMaps) 8536 continue; 8537 8538 // Now that we have modified User, add it back to the CSE maps. If it 8539 // already exists there, recursively merge the results together. 8540 AddModifiedNodeToCSEMaps(User); 8541 } 8542 8543 // If we just RAUW'd the root, take note. 8544 if (From == getRoot()) 8545 setRoot(To); 8546 } 8547 8548 namespace { 8549 8550 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8551 /// to record information about a use. 8552 struct UseMemo { 8553 SDNode *User; 8554 unsigned Index; 8555 SDUse *Use; 8556 }; 8557 8558 /// operator< - Sort Memos by User. 8559 bool operator<(const UseMemo &L, const UseMemo &R) { 8560 return (intptr_t)L.User < (intptr_t)R.User; 8561 } 8562 8563 } // end anonymous namespace 8564 8565 void SelectionDAG::updateDivergence(SDNode * N) 8566 { 8567 if (TLI->isSDNodeAlwaysUniform(N)) 8568 return; 8569 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8570 for (auto &Op : N->ops()) { 8571 if (Op.Val.getValueType() != MVT::Other) 8572 IsDivergent |= Op.getNode()->isDivergent(); 8573 } 8574 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8575 N->SDNodeBits.IsDivergent = IsDivergent; 8576 for (auto U : N->uses()) { 8577 updateDivergence(U); 8578 } 8579 } 8580 } 8581 8582 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8583 DenseMap<SDNode *, unsigned> Degree; 8584 Order.reserve(AllNodes.size()); 8585 for (auto &N : allnodes()) { 8586 unsigned NOps = N.getNumOperands(); 8587 Degree[&N] = NOps; 8588 if (0 == NOps) 8589 Order.push_back(&N); 8590 } 8591 for (size_t I = 0; I != Order.size(); ++I) { 8592 SDNode *N = Order[I]; 8593 for (auto U : N->uses()) { 8594 unsigned &UnsortedOps = Degree[U]; 8595 if (0 == --UnsortedOps) 8596 Order.push_back(U); 8597 } 8598 } 8599 } 8600 8601 #ifndef NDEBUG 8602 void SelectionDAG::VerifyDAGDiverence() { 8603 std::vector<SDNode *> TopoOrder; 8604 CreateTopologicalOrder(TopoOrder); 8605 const TargetLowering &TLI = getTargetLoweringInfo(); 8606 DenseMap<const SDNode *, bool> DivergenceMap; 8607 for (auto &N : allnodes()) { 8608 DivergenceMap[&N] = false; 8609 } 8610 for (auto N : TopoOrder) { 8611 bool IsDivergent = DivergenceMap[N]; 8612 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8613 for (auto &Op : N->ops()) { 8614 if (Op.Val.getValueType() != MVT::Other) 8615 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8616 } 8617 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8618 DivergenceMap[N] = true; 8619 } 8620 } 8621 for (auto &N : allnodes()) { 8622 (void)N; 8623 assert(DivergenceMap[&N] == N.isDivergent() && 8624 "Divergence bit inconsistency detected\n"); 8625 } 8626 } 8627 #endif 8628 8629 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8630 /// uses of other values produced by From.getNode() alone. The same value 8631 /// may appear in both the From and To list. The Deleted vector is 8632 /// handled the same way as for ReplaceAllUsesWith. 8633 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8634 const SDValue *To, 8635 unsigned Num){ 8636 // Handle the simple, trivial case efficiently. 8637 if (Num == 1) 8638 return ReplaceAllUsesOfValueWith(*From, *To); 8639 8640 transferDbgValues(*From, *To); 8641 8642 // Read up all the uses and make records of them. This helps 8643 // processing new uses that are introduced during the 8644 // replacement process. 8645 SmallVector<UseMemo, 4> Uses; 8646 for (unsigned i = 0; i != Num; ++i) { 8647 unsigned FromResNo = From[i].getResNo(); 8648 SDNode *FromNode = From[i].getNode(); 8649 for (SDNode::use_iterator UI = FromNode->use_begin(), 8650 E = FromNode->use_end(); UI != E; ++UI) { 8651 SDUse &Use = UI.getUse(); 8652 if (Use.getResNo() == FromResNo) { 8653 UseMemo Memo = { *UI, i, &Use }; 8654 Uses.push_back(Memo); 8655 } 8656 } 8657 } 8658 8659 // Sort the uses, so that all the uses from a given User are together. 8660 llvm::sort(Uses); 8661 8662 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8663 UseIndex != UseIndexEnd; ) { 8664 // We know that this user uses some value of From. If it is the right 8665 // value, update it. 8666 SDNode *User = Uses[UseIndex].User; 8667 8668 // This node is about to morph, remove its old self from the CSE maps. 8669 RemoveNodeFromCSEMaps(User); 8670 8671 // The Uses array is sorted, so all the uses for a given User 8672 // are next to each other in the list. 8673 // To help reduce the number of CSE recomputations, process all 8674 // the uses of this user that we can find this way. 8675 do { 8676 unsigned i = Uses[UseIndex].Index; 8677 SDUse &Use = *Uses[UseIndex].Use; 8678 ++UseIndex; 8679 8680 Use.set(To[i]); 8681 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8682 8683 // Now that we have modified User, add it back to the CSE maps. If it 8684 // already exists there, recursively merge the results together. 8685 AddModifiedNodeToCSEMaps(User); 8686 } 8687 } 8688 8689 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8690 /// based on their topological order. It returns the maximum id and a vector 8691 /// of the SDNodes* in assigned order by reference. 8692 unsigned SelectionDAG::AssignTopologicalOrder() { 8693 unsigned DAGSize = 0; 8694 8695 // SortedPos tracks the progress of the algorithm. Nodes before it are 8696 // sorted, nodes after it are unsorted. When the algorithm completes 8697 // it is at the end of the list. 8698 allnodes_iterator SortedPos = allnodes_begin(); 8699 8700 // Visit all the nodes. Move nodes with no operands to the front of 8701 // the list immediately. Annotate nodes that do have operands with their 8702 // operand count. Before we do this, the Node Id fields of the nodes 8703 // may contain arbitrary values. After, the Node Id fields for nodes 8704 // before SortedPos will contain the topological sort index, and the 8705 // Node Id fields for nodes At SortedPos and after will contain the 8706 // count of outstanding operands. 8707 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8708 SDNode *N = &*I++; 8709 checkForCycles(N, this); 8710 unsigned Degree = N->getNumOperands(); 8711 if (Degree == 0) { 8712 // A node with no uses, add it to the result array immediately. 8713 N->setNodeId(DAGSize++); 8714 allnodes_iterator Q(N); 8715 if (Q != SortedPos) 8716 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8717 assert(SortedPos != AllNodes.end() && "Overran node list"); 8718 ++SortedPos; 8719 } else { 8720 // Temporarily use the Node Id as scratch space for the degree count. 8721 N->setNodeId(Degree); 8722 } 8723 } 8724 8725 // Visit all the nodes. As we iterate, move nodes into sorted order, 8726 // such that by the time the end is reached all nodes will be sorted. 8727 for (SDNode &Node : allnodes()) { 8728 SDNode *N = &Node; 8729 checkForCycles(N, this); 8730 // N is in sorted position, so all its uses have one less operand 8731 // that needs to be sorted. 8732 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8733 UI != UE; ++UI) { 8734 SDNode *P = *UI; 8735 unsigned Degree = P->getNodeId(); 8736 assert(Degree != 0 && "Invalid node degree"); 8737 --Degree; 8738 if (Degree == 0) { 8739 // All of P's operands are sorted, so P may sorted now. 8740 P->setNodeId(DAGSize++); 8741 if (P->getIterator() != SortedPos) 8742 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8743 assert(SortedPos != AllNodes.end() && "Overran node list"); 8744 ++SortedPos; 8745 } else { 8746 // Update P's outstanding operand count. 8747 P->setNodeId(Degree); 8748 } 8749 } 8750 if (Node.getIterator() == SortedPos) { 8751 #ifndef NDEBUG 8752 allnodes_iterator I(N); 8753 SDNode *S = &*++I; 8754 dbgs() << "Overran sorted position:\n"; 8755 S->dumprFull(this); dbgs() << "\n"; 8756 dbgs() << "Checking if this is due to cycles\n"; 8757 checkForCycles(this, true); 8758 #endif 8759 llvm_unreachable(nullptr); 8760 } 8761 } 8762 8763 assert(SortedPos == AllNodes.end() && 8764 "Topological sort incomplete!"); 8765 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8766 "First node in topological sort is not the entry token!"); 8767 assert(AllNodes.front().getNodeId() == 0 && 8768 "First node in topological sort has non-zero id!"); 8769 assert(AllNodes.front().getNumOperands() == 0 && 8770 "First node in topological sort has operands!"); 8771 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8772 "Last node in topologic sort has unexpected id!"); 8773 assert(AllNodes.back().use_empty() && 8774 "Last node in topologic sort has users!"); 8775 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8776 return DAGSize; 8777 } 8778 8779 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8780 /// value is produced by SD. 8781 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8782 if (SD) { 8783 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8784 SD->setHasDebugValue(true); 8785 } 8786 DbgInfo->add(DB, SD, isParameter); 8787 } 8788 8789 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8790 DbgInfo->add(DB); 8791 } 8792 8793 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8794 SDValue NewMemOp) { 8795 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8796 // The new memory operation must have the same position as the old load in 8797 // terms of memory dependency. Create a TokenFactor for the old load and new 8798 // memory operation and update uses of the old load's output chain to use that 8799 // TokenFactor. 8800 SDValue OldChain = SDValue(OldLoad, 1); 8801 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8802 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8803 return NewChain; 8804 8805 SDValue TokenFactor = 8806 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8807 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8808 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8809 return TokenFactor; 8810 } 8811 8812 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8813 Function **OutFunction) { 8814 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8815 8816 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8817 auto *Module = MF->getFunction().getParent(); 8818 auto *Function = Module->getFunction(Symbol); 8819 8820 if (OutFunction != nullptr) 8821 *OutFunction = Function; 8822 8823 if (Function != nullptr) { 8824 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8825 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8826 } 8827 8828 std::string ErrorStr; 8829 raw_string_ostream ErrorFormatter(ErrorStr); 8830 8831 ErrorFormatter << "Undefined external symbol "; 8832 ErrorFormatter << '"' << Symbol << '"'; 8833 ErrorFormatter.flush(); 8834 8835 report_fatal_error(ErrorStr); 8836 } 8837 8838 //===----------------------------------------------------------------------===// 8839 // SDNode Class 8840 //===----------------------------------------------------------------------===// 8841 8842 bool llvm::isNullConstant(SDValue V) { 8843 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8844 return Const != nullptr && Const->isNullValue(); 8845 } 8846 8847 bool llvm::isNullFPConstant(SDValue V) { 8848 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8849 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8850 } 8851 8852 bool llvm::isAllOnesConstant(SDValue V) { 8853 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8854 return Const != nullptr && Const->isAllOnesValue(); 8855 } 8856 8857 bool llvm::isOneConstant(SDValue V) { 8858 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8859 return Const != nullptr && Const->isOne(); 8860 } 8861 8862 SDValue llvm::peekThroughBitcasts(SDValue V) { 8863 while (V.getOpcode() == ISD::BITCAST) 8864 V = V.getOperand(0); 8865 return V; 8866 } 8867 8868 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8869 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8870 V = V.getOperand(0); 8871 return V; 8872 } 8873 8874 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8875 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8876 V = V.getOperand(0); 8877 return V; 8878 } 8879 8880 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8881 if (V.getOpcode() != ISD::XOR) 8882 return false; 8883 V = peekThroughBitcasts(V.getOperand(1)); 8884 unsigned NumBits = V.getScalarValueSizeInBits(); 8885 ConstantSDNode *C = 8886 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8887 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8888 } 8889 8890 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8891 bool AllowTruncation) { 8892 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8893 return CN; 8894 8895 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8896 BitVector UndefElements; 8897 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8898 8899 // BuildVectors can truncate their operands. Ignore that case here unless 8900 // AllowTruncation is set. 8901 if (CN && (UndefElements.none() || AllowUndefs)) { 8902 EVT CVT = CN->getValueType(0); 8903 EVT NSVT = N.getValueType().getScalarType(); 8904 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8905 if (AllowTruncation || (CVT == NSVT)) 8906 return CN; 8907 } 8908 } 8909 8910 return nullptr; 8911 } 8912 8913 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8914 bool AllowUndefs, 8915 bool AllowTruncation) { 8916 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8917 return CN; 8918 8919 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8920 BitVector UndefElements; 8921 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8922 8923 // BuildVectors can truncate their operands. Ignore that case here unless 8924 // AllowTruncation is set. 8925 if (CN && (UndefElements.none() || AllowUndefs)) { 8926 EVT CVT = CN->getValueType(0); 8927 EVT NSVT = N.getValueType().getScalarType(); 8928 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8929 if (AllowTruncation || (CVT == NSVT)) 8930 return CN; 8931 } 8932 } 8933 8934 return nullptr; 8935 } 8936 8937 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8938 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8939 return CN; 8940 8941 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8942 BitVector UndefElements; 8943 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8944 if (CN && (UndefElements.none() || AllowUndefs)) 8945 return CN; 8946 } 8947 8948 return nullptr; 8949 } 8950 8951 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8952 const APInt &DemandedElts, 8953 bool AllowUndefs) { 8954 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8955 return CN; 8956 8957 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8958 BitVector UndefElements; 8959 ConstantFPSDNode *CN = 8960 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8961 if (CN && (UndefElements.none() || AllowUndefs)) 8962 return CN; 8963 } 8964 8965 return nullptr; 8966 } 8967 8968 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8969 // TODO: may want to use peekThroughBitcast() here. 8970 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8971 return C && C->isNullValue(); 8972 } 8973 8974 bool llvm::isOneOrOneSplat(SDValue N) { 8975 // TODO: may want to use peekThroughBitcast() here. 8976 unsigned BitWidth = N.getScalarValueSizeInBits(); 8977 ConstantSDNode *C = isConstOrConstSplat(N); 8978 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8979 } 8980 8981 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8982 N = peekThroughBitcasts(N); 8983 unsigned BitWidth = N.getScalarValueSizeInBits(); 8984 ConstantSDNode *C = isConstOrConstSplat(N); 8985 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8986 } 8987 8988 HandleSDNode::~HandleSDNode() { 8989 DropOperands(); 8990 } 8991 8992 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8993 const DebugLoc &DL, 8994 const GlobalValue *GA, EVT VT, 8995 int64_t o, unsigned TF) 8996 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8997 TheGlobal = GA; 8998 } 8999 9000 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9001 EVT VT, unsigned SrcAS, 9002 unsigned DestAS) 9003 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9004 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9005 9006 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9007 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9008 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9009 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9010 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9011 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9012 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9013 9014 // We check here that the size of the memory operand fits within the size of 9015 // the MMO. This is because the MMO might indicate only a possible address 9016 // range instead of specifying the affected memory addresses precisely. 9017 // TODO: Make MachineMemOperands aware of scalable vectors. 9018 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9019 "Size mismatch!"); 9020 } 9021 9022 /// Profile - Gather unique data for the node. 9023 /// 9024 void SDNode::Profile(FoldingSetNodeID &ID) const { 9025 AddNodeIDNode(ID, this); 9026 } 9027 9028 namespace { 9029 9030 struct EVTArray { 9031 std::vector<EVT> VTs; 9032 9033 EVTArray() { 9034 VTs.reserve(MVT::LAST_VALUETYPE); 9035 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9036 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9037 } 9038 }; 9039 9040 } // end anonymous namespace 9041 9042 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9043 static ManagedStatic<EVTArray> SimpleVTArray; 9044 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9045 9046 /// getValueTypeList - Return a pointer to the specified value type. 9047 /// 9048 const EVT *SDNode::getValueTypeList(EVT VT) { 9049 if (VT.isExtended()) { 9050 sys::SmartScopedLock<true> Lock(*VTMutex); 9051 return &(*EVTs->insert(VT).first); 9052 } else { 9053 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9054 "Value type out of range!"); 9055 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9056 } 9057 } 9058 9059 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9060 /// indicated value. This method ignores uses of other values defined by this 9061 /// operation. 9062 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9063 assert(Value < getNumValues() && "Bad value!"); 9064 9065 // TODO: Only iterate over uses of a given value of the node 9066 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9067 if (UI.getUse().getResNo() == Value) { 9068 if (NUses == 0) 9069 return false; 9070 --NUses; 9071 } 9072 } 9073 9074 // Found exactly the right number of uses? 9075 return NUses == 0; 9076 } 9077 9078 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9079 /// value. This method ignores uses of other values defined by this operation. 9080 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9081 assert(Value < getNumValues() && "Bad value!"); 9082 9083 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9084 if (UI.getUse().getResNo() == Value) 9085 return true; 9086 9087 return false; 9088 } 9089 9090 /// isOnlyUserOf - Return true if this node is the only use of N. 9091 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9092 bool Seen = false; 9093 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9094 SDNode *User = *I; 9095 if (User == this) 9096 Seen = true; 9097 else 9098 return false; 9099 } 9100 9101 return Seen; 9102 } 9103 9104 /// Return true if the only users of N are contained in Nodes. 9105 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9106 bool Seen = false; 9107 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9108 SDNode *User = *I; 9109 if (llvm::any_of(Nodes, 9110 [&User](const SDNode *Node) { return User == Node; })) 9111 Seen = true; 9112 else 9113 return false; 9114 } 9115 9116 return Seen; 9117 } 9118 9119 /// isOperand - Return true if this node is an operand of N. 9120 bool SDValue::isOperandOf(const SDNode *N) const { 9121 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9122 } 9123 9124 bool SDNode::isOperandOf(const SDNode *N) const { 9125 return any_of(N->op_values(), 9126 [this](SDValue Op) { return this == Op.getNode(); }); 9127 } 9128 9129 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9130 /// be a chain) reaches the specified operand without crossing any 9131 /// side-effecting instructions on any chain path. In practice, this looks 9132 /// through token factors and non-volatile loads. In order to remain efficient, 9133 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9134 /// 9135 /// Note that we only need to examine chains when we're searching for 9136 /// side-effects; SelectionDAG requires that all side-effects are represented 9137 /// by chains, even if another operand would force a specific ordering. This 9138 /// constraint is necessary to allow transformations like splitting loads. 9139 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9140 unsigned Depth) const { 9141 if (*this == Dest) return true; 9142 9143 // Don't search too deeply, we just want to be able to see through 9144 // TokenFactor's etc. 9145 if (Depth == 0) return false; 9146 9147 // If this is a token factor, all inputs to the TF happen in parallel. 9148 if (getOpcode() == ISD::TokenFactor) { 9149 // First, try a shallow search. 9150 if (is_contained((*this)->ops(), Dest)) { 9151 // We found the chain we want as an operand of this TokenFactor. 9152 // Essentially, we reach the chain without side-effects if we could 9153 // serialize the TokenFactor into a simple chain of operations with 9154 // Dest as the last operation. This is automatically true if the 9155 // chain has one use: there are no other ordering constraints. 9156 // If the chain has more than one use, we give up: some other 9157 // use of Dest might force a side-effect between Dest and the current 9158 // node. 9159 if (Dest.hasOneUse()) 9160 return true; 9161 } 9162 // Next, try a deep search: check whether every operand of the TokenFactor 9163 // reaches Dest. 9164 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9165 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9166 }); 9167 } 9168 9169 // Loads don't have side effects, look through them. 9170 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9171 if (Ld->isUnordered()) 9172 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9173 } 9174 return false; 9175 } 9176 9177 bool SDNode::hasPredecessor(const SDNode *N) const { 9178 SmallPtrSet<const SDNode *, 32> Visited; 9179 SmallVector<const SDNode *, 16> Worklist; 9180 Worklist.push_back(this); 9181 return hasPredecessorHelper(N, Visited, Worklist); 9182 } 9183 9184 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9185 this->Flags.intersectWith(Flags); 9186 } 9187 9188 SDValue 9189 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9190 ArrayRef<ISD::NodeType> CandidateBinOps, 9191 bool AllowPartials) { 9192 // The pattern must end in an extract from index 0. 9193 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9194 !isNullConstant(Extract->getOperand(1))) 9195 return SDValue(); 9196 9197 // Match against one of the candidate binary ops. 9198 SDValue Op = Extract->getOperand(0); 9199 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9200 return Op.getOpcode() == unsigned(BinOp); 9201 })) 9202 return SDValue(); 9203 9204 // Floating-point reductions may require relaxed constraints on the final step 9205 // of the reduction because they may reorder intermediate operations. 9206 unsigned CandidateBinOp = Op.getOpcode(); 9207 if (Op.getValueType().isFloatingPoint()) { 9208 SDNodeFlags Flags = Op->getFlags(); 9209 switch (CandidateBinOp) { 9210 case ISD::FADD: 9211 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9212 return SDValue(); 9213 break; 9214 default: 9215 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9216 } 9217 } 9218 9219 // Matching failed - attempt to see if we did enough stages that a partial 9220 // reduction from a subvector is possible. 9221 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9222 if (!AllowPartials || !Op) 9223 return SDValue(); 9224 EVT OpVT = Op.getValueType(); 9225 EVT OpSVT = OpVT.getScalarType(); 9226 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9227 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9228 return SDValue(); 9229 BinOp = (ISD::NodeType)CandidateBinOp; 9230 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9231 getVectorIdxConstant(0, SDLoc(Op))); 9232 }; 9233 9234 // At each stage, we're looking for something that looks like: 9235 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9236 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9237 // i32 undef, i32 undef, i32 undef, i32 undef> 9238 // %a = binop <8 x i32> %op, %s 9239 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9240 // we expect something like: 9241 // <4,5,6,7,u,u,u,u> 9242 // <2,3,u,u,u,u,u,u> 9243 // <1,u,u,u,u,u,u,u> 9244 // While a partial reduction match would be: 9245 // <2,3,u,u,u,u,u,u> 9246 // <1,u,u,u,u,u,u,u> 9247 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9248 SDValue PrevOp; 9249 for (unsigned i = 0; i < Stages; ++i) { 9250 unsigned MaskEnd = (1 << i); 9251 9252 if (Op.getOpcode() != CandidateBinOp) 9253 return PartialReduction(PrevOp, MaskEnd); 9254 9255 SDValue Op0 = Op.getOperand(0); 9256 SDValue Op1 = Op.getOperand(1); 9257 9258 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9259 if (Shuffle) { 9260 Op = Op1; 9261 } else { 9262 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9263 Op = Op0; 9264 } 9265 9266 // The first operand of the shuffle should be the same as the other operand 9267 // of the binop. 9268 if (!Shuffle || Shuffle->getOperand(0) != Op) 9269 return PartialReduction(PrevOp, MaskEnd); 9270 9271 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9272 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9273 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9274 return PartialReduction(PrevOp, MaskEnd); 9275 9276 PrevOp = Op; 9277 } 9278 9279 BinOp = (ISD::NodeType)CandidateBinOp; 9280 return Op; 9281 } 9282 9283 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9284 assert(N->getNumValues() == 1 && 9285 "Can't unroll a vector with multiple results!"); 9286 9287 EVT VT = N->getValueType(0); 9288 unsigned NE = VT.getVectorNumElements(); 9289 EVT EltVT = VT.getVectorElementType(); 9290 SDLoc dl(N); 9291 9292 SmallVector<SDValue, 8> Scalars; 9293 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9294 9295 // If ResNE is 0, fully unroll the vector op. 9296 if (ResNE == 0) 9297 ResNE = NE; 9298 else if (NE > ResNE) 9299 NE = ResNE; 9300 9301 unsigned i; 9302 for (i= 0; i != NE; ++i) { 9303 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9304 SDValue Operand = N->getOperand(j); 9305 EVT OperandVT = Operand.getValueType(); 9306 if (OperandVT.isVector()) { 9307 // A vector operand; extract a single element. 9308 EVT OperandEltVT = OperandVT.getVectorElementType(); 9309 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9310 Operand, getVectorIdxConstant(i, dl)); 9311 } else { 9312 // A scalar operand; just use it as is. 9313 Operands[j] = Operand; 9314 } 9315 } 9316 9317 switch (N->getOpcode()) { 9318 default: { 9319 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9320 N->getFlags())); 9321 break; 9322 } 9323 case ISD::VSELECT: 9324 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9325 break; 9326 case ISD::SHL: 9327 case ISD::SRA: 9328 case ISD::SRL: 9329 case ISD::ROTL: 9330 case ISD::ROTR: 9331 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9332 getShiftAmountOperand(Operands[0].getValueType(), 9333 Operands[1]))); 9334 break; 9335 case ISD::SIGN_EXTEND_INREG: { 9336 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9337 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9338 Operands[0], 9339 getValueType(ExtVT))); 9340 } 9341 } 9342 } 9343 9344 for (; i < ResNE; ++i) 9345 Scalars.push_back(getUNDEF(EltVT)); 9346 9347 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9348 return getBuildVector(VecVT, dl, Scalars); 9349 } 9350 9351 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9352 SDNode *N, unsigned ResNE) { 9353 unsigned Opcode = N->getOpcode(); 9354 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9355 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9356 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9357 "Expected an overflow opcode"); 9358 9359 EVT ResVT = N->getValueType(0); 9360 EVT OvVT = N->getValueType(1); 9361 EVT ResEltVT = ResVT.getVectorElementType(); 9362 EVT OvEltVT = OvVT.getVectorElementType(); 9363 SDLoc dl(N); 9364 9365 // If ResNE is 0, fully unroll the vector op. 9366 unsigned NE = ResVT.getVectorNumElements(); 9367 if (ResNE == 0) 9368 ResNE = NE; 9369 else if (NE > ResNE) 9370 NE = ResNE; 9371 9372 SmallVector<SDValue, 8> LHSScalars; 9373 SmallVector<SDValue, 8> RHSScalars; 9374 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9375 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9376 9377 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9378 SDVTList VTs = getVTList(ResEltVT, SVT); 9379 SmallVector<SDValue, 8> ResScalars; 9380 SmallVector<SDValue, 8> OvScalars; 9381 for (unsigned i = 0; i < NE; ++i) { 9382 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9383 SDValue Ov = 9384 getSelect(dl, OvEltVT, Res.getValue(1), 9385 getBoolConstant(true, dl, OvEltVT, ResVT), 9386 getConstant(0, dl, OvEltVT)); 9387 9388 ResScalars.push_back(Res); 9389 OvScalars.push_back(Ov); 9390 } 9391 9392 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9393 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9394 9395 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9396 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9397 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9398 getBuildVector(NewOvVT, dl, OvScalars)); 9399 } 9400 9401 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9402 LoadSDNode *Base, 9403 unsigned Bytes, 9404 int Dist) const { 9405 if (LD->isVolatile() || Base->isVolatile()) 9406 return false; 9407 // TODO: probably too restrictive for atomics, revisit 9408 if (!LD->isSimple()) 9409 return false; 9410 if (LD->isIndexed() || Base->isIndexed()) 9411 return false; 9412 if (LD->getChain() != Base->getChain()) 9413 return false; 9414 EVT VT = LD->getValueType(0); 9415 if (VT.getSizeInBits() / 8 != Bytes) 9416 return false; 9417 9418 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9419 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9420 9421 int64_t Offset = 0; 9422 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9423 return (Dist * Bytes == Offset); 9424 return false; 9425 } 9426 9427 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9428 /// it cannot be inferred. 9429 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9430 // If this is a GlobalAddress + cst, return the alignment. 9431 const GlobalValue *GV = nullptr; 9432 int64_t GVOffset = 0; 9433 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9434 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9435 KnownBits Known(PtrWidth); 9436 llvm::computeKnownBits(GV, Known, getDataLayout()); 9437 unsigned AlignBits = Known.countMinTrailingZeros(); 9438 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9439 if (Align) 9440 return MinAlign(Align, GVOffset); 9441 } 9442 9443 // If this is a direct reference to a stack slot, use information about the 9444 // stack slot's alignment. 9445 int FrameIdx = INT_MIN; 9446 int64_t FrameOffset = 0; 9447 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9448 FrameIdx = FI->getIndex(); 9449 } else if (isBaseWithConstantOffset(Ptr) && 9450 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9451 // Handle FI+Cst 9452 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9453 FrameOffset = Ptr.getConstantOperandVal(1); 9454 } 9455 9456 if (FrameIdx != INT_MIN) { 9457 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9458 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9459 FrameOffset); 9460 return FIInfoAlign; 9461 } 9462 9463 return 0; 9464 } 9465 9466 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9467 /// which is split (or expanded) into two not necessarily identical pieces. 9468 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9469 // Currently all types are split in half. 9470 EVT LoVT, HiVT; 9471 if (!VT.isVector()) 9472 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9473 else 9474 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9475 9476 return std::make_pair(LoVT, HiVT); 9477 } 9478 9479 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9480 /// low/high part. 9481 std::pair<SDValue, SDValue> 9482 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9483 const EVT &HiVT) { 9484 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9485 N.getValueType().getVectorNumElements() && 9486 "More vector elements requested than available!"); 9487 SDValue Lo, Hi; 9488 Lo = 9489 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9490 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9491 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9492 return std::make_pair(Lo, Hi); 9493 } 9494 9495 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9496 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9497 EVT VT = N.getValueType(); 9498 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9499 NextPowerOf2(VT.getVectorNumElements())); 9500 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9501 getVectorIdxConstant(0, DL)); 9502 } 9503 9504 void SelectionDAG::ExtractVectorElements(SDValue Op, 9505 SmallVectorImpl<SDValue> &Args, 9506 unsigned Start, unsigned Count, 9507 EVT EltVT) { 9508 EVT VT = Op.getValueType(); 9509 if (Count == 0) 9510 Count = VT.getVectorNumElements(); 9511 if (EltVT == EVT()) 9512 EltVT = VT.getVectorElementType(); 9513 SDLoc SL(Op); 9514 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9515 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9516 getVectorIdxConstant(i, SL))); 9517 } 9518 } 9519 9520 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9521 unsigned GlobalAddressSDNode::getAddressSpace() const { 9522 return getGlobal()->getType()->getAddressSpace(); 9523 } 9524 9525 Type *ConstantPoolSDNode::getType() const { 9526 if (isMachineConstantPoolEntry()) 9527 return Val.MachineCPVal->getType(); 9528 return Val.ConstVal->getType(); 9529 } 9530 9531 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9532 unsigned &SplatBitSize, 9533 bool &HasAnyUndefs, 9534 unsigned MinSplatBits, 9535 bool IsBigEndian) const { 9536 EVT VT = getValueType(0); 9537 assert(VT.isVector() && "Expected a vector type"); 9538 unsigned VecWidth = VT.getSizeInBits(); 9539 if (MinSplatBits > VecWidth) 9540 return false; 9541 9542 // FIXME: The widths are based on this node's type, but build vectors can 9543 // truncate their operands. 9544 SplatValue = APInt(VecWidth, 0); 9545 SplatUndef = APInt(VecWidth, 0); 9546 9547 // Get the bits. Bits with undefined values (when the corresponding element 9548 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9549 // in SplatValue. If any of the values are not constant, give up and return 9550 // false. 9551 unsigned int NumOps = getNumOperands(); 9552 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9553 unsigned EltWidth = VT.getScalarSizeInBits(); 9554 9555 for (unsigned j = 0; j < NumOps; ++j) { 9556 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9557 SDValue OpVal = getOperand(i); 9558 unsigned BitPos = j * EltWidth; 9559 9560 if (OpVal.isUndef()) 9561 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9562 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9563 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9564 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9565 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9566 else 9567 return false; 9568 } 9569 9570 // The build_vector is all constants or undefs. Find the smallest element 9571 // size that splats the vector. 9572 HasAnyUndefs = (SplatUndef != 0); 9573 9574 // FIXME: This does not work for vectors with elements less than 8 bits. 9575 while (VecWidth > 8) { 9576 unsigned HalfSize = VecWidth / 2; 9577 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9578 APInt LowValue = SplatValue.trunc(HalfSize); 9579 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9580 APInt LowUndef = SplatUndef.trunc(HalfSize); 9581 9582 // If the two halves do not match (ignoring undef bits), stop here. 9583 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9584 MinSplatBits > HalfSize) 9585 break; 9586 9587 SplatValue = HighValue | LowValue; 9588 SplatUndef = HighUndef & LowUndef; 9589 9590 VecWidth = HalfSize; 9591 } 9592 9593 SplatBitSize = VecWidth; 9594 return true; 9595 } 9596 9597 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9598 BitVector *UndefElements) const { 9599 if (UndefElements) { 9600 UndefElements->clear(); 9601 UndefElements->resize(getNumOperands()); 9602 } 9603 assert(getNumOperands() == DemandedElts.getBitWidth() && 9604 "Unexpected vector size"); 9605 if (!DemandedElts) 9606 return SDValue(); 9607 SDValue Splatted; 9608 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9609 if (!DemandedElts[i]) 9610 continue; 9611 SDValue Op = getOperand(i); 9612 if (Op.isUndef()) { 9613 if (UndefElements) 9614 (*UndefElements)[i] = true; 9615 } else if (!Splatted) { 9616 Splatted = Op; 9617 } else if (Splatted != Op) { 9618 return SDValue(); 9619 } 9620 } 9621 9622 if (!Splatted) { 9623 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9624 assert(getOperand(FirstDemandedIdx).isUndef() && 9625 "Can only have a splat without a constant for all undefs."); 9626 return getOperand(FirstDemandedIdx); 9627 } 9628 9629 return Splatted; 9630 } 9631 9632 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9633 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9634 return getSplatValue(DemandedElts, UndefElements); 9635 } 9636 9637 ConstantSDNode * 9638 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9639 BitVector *UndefElements) const { 9640 return dyn_cast_or_null<ConstantSDNode>( 9641 getSplatValue(DemandedElts, UndefElements)); 9642 } 9643 9644 ConstantSDNode * 9645 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9646 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9647 } 9648 9649 ConstantFPSDNode * 9650 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9651 BitVector *UndefElements) const { 9652 return dyn_cast_or_null<ConstantFPSDNode>( 9653 getSplatValue(DemandedElts, UndefElements)); 9654 } 9655 9656 ConstantFPSDNode * 9657 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9658 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9659 } 9660 9661 int32_t 9662 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9663 uint32_t BitWidth) const { 9664 if (ConstantFPSDNode *CN = 9665 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9666 bool IsExact; 9667 APSInt IntVal(BitWidth); 9668 const APFloat &APF = CN->getValueAPF(); 9669 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9670 APFloat::opOK || 9671 !IsExact) 9672 return -1; 9673 9674 return IntVal.exactLogBase2(); 9675 } 9676 return -1; 9677 } 9678 9679 bool BuildVectorSDNode::isConstant() const { 9680 for (const SDValue &Op : op_values()) { 9681 unsigned Opc = Op.getOpcode(); 9682 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9683 return false; 9684 } 9685 return true; 9686 } 9687 9688 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9689 // Find the first non-undef value in the shuffle mask. 9690 unsigned i, e; 9691 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9692 /* search */; 9693 9694 // If all elements are undefined, this shuffle can be considered a splat 9695 // (although it should eventually get simplified away completely). 9696 if (i == e) 9697 return true; 9698 9699 // Make sure all remaining elements are either undef or the same as the first 9700 // non-undef value. 9701 for (int Idx = Mask[i]; i != e; ++i) 9702 if (Mask[i] >= 0 && Mask[i] != Idx) 9703 return false; 9704 return true; 9705 } 9706 9707 // Returns the SDNode if it is a constant integer BuildVector 9708 // or constant integer. 9709 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9710 if (isa<ConstantSDNode>(N)) 9711 return N.getNode(); 9712 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9713 return N.getNode(); 9714 // Treat a GlobalAddress supporting constant offset folding as a 9715 // constant integer. 9716 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9717 if (GA->getOpcode() == ISD::GlobalAddress && 9718 TLI->isOffsetFoldingLegal(GA)) 9719 return GA; 9720 return nullptr; 9721 } 9722 9723 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9724 if (isa<ConstantFPSDNode>(N)) 9725 return N.getNode(); 9726 9727 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9728 return N.getNode(); 9729 9730 return nullptr; 9731 } 9732 9733 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9734 assert(!Node->OperandList && "Node already has operands"); 9735 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9736 "too many operands to fit into SDNode"); 9737 SDUse *Ops = OperandRecycler.allocate( 9738 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9739 9740 bool IsDivergent = false; 9741 for (unsigned I = 0; I != Vals.size(); ++I) { 9742 Ops[I].setUser(Node); 9743 Ops[I].setInitial(Vals[I]); 9744 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9745 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9746 } 9747 Node->NumOperands = Vals.size(); 9748 Node->OperandList = Ops; 9749 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9750 if (!TLI->isSDNodeAlwaysUniform(Node)) 9751 Node->SDNodeBits.IsDivergent = IsDivergent; 9752 checkForCycles(Node); 9753 } 9754 9755 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9756 SmallVectorImpl<SDValue> &Vals) { 9757 size_t Limit = SDNode::getMaxNumOperands(); 9758 while (Vals.size() > Limit) { 9759 unsigned SliceIdx = Vals.size() - Limit; 9760 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9761 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9762 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9763 Vals.emplace_back(NewTF); 9764 } 9765 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9766 } 9767 9768 #ifndef NDEBUG 9769 static void checkForCyclesHelper(const SDNode *N, 9770 SmallPtrSetImpl<const SDNode*> &Visited, 9771 SmallPtrSetImpl<const SDNode*> &Checked, 9772 const llvm::SelectionDAG *DAG) { 9773 // If this node has already been checked, don't check it again. 9774 if (Checked.count(N)) 9775 return; 9776 9777 // If a node has already been visited on this depth-first walk, reject it as 9778 // a cycle. 9779 if (!Visited.insert(N).second) { 9780 errs() << "Detected cycle in SelectionDAG\n"; 9781 dbgs() << "Offending node:\n"; 9782 N->dumprFull(DAG); dbgs() << "\n"; 9783 abort(); 9784 } 9785 9786 for (const SDValue &Op : N->op_values()) 9787 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9788 9789 Checked.insert(N); 9790 Visited.erase(N); 9791 } 9792 #endif 9793 9794 void llvm::checkForCycles(const llvm::SDNode *N, 9795 const llvm::SelectionDAG *DAG, 9796 bool force) { 9797 #ifndef NDEBUG 9798 bool check = force; 9799 #ifdef EXPENSIVE_CHECKS 9800 check = true; 9801 #endif // EXPENSIVE_CHECKS 9802 if (check) { 9803 assert(N && "Checking nonexistent SDNode"); 9804 SmallPtrSet<const SDNode*, 32> visited; 9805 SmallPtrSet<const SDNode*, 32> checked; 9806 checkForCyclesHelper(N, visited, checked, DAG); 9807 } 9808 #endif // !NDEBUG 9809 } 9810 9811 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9812 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9813 } 9814