1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 266 for (const SDValue &Op : N->op_values()) 267 if (!Op.isUndef()) 268 return false; 269 270 return true; 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs) { 303 if (LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType()) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 361 unsigned Operation = Op; 362 if (isInteger) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 /// For an integer comparison, return 1 if the comparison is a signed operation 374 /// and 2 if the result is an unsigned comparison. Return zero if the operation 375 /// does not depend on the sign of the input (setne and seteq). 376 static int isSignedOp(ISD::CondCode Opcode) { 377 switch (Opcode) { 378 default: llvm_unreachable("Illegal integer setcc operation!"); 379 case ISD::SETEQ: 380 case ISD::SETNE: return 0; 381 case ISD::SETLT: 382 case ISD::SETLE: 383 case ISD::SETGT: 384 case ISD::SETGE: return 1; 385 case ISD::SETULT: 386 case ISD::SETULE: 387 case ISD::SETUGT: 388 case ISD::SETUGE: return 2; 389 } 390 } 391 392 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 393 bool IsInteger) { 394 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 395 // Cannot fold a signed integer setcc with an unsigned integer setcc. 396 return ISD::SETCC_INVALID; 397 398 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 399 400 // If the N and U bits get set, then the resultant comparison DOES suddenly 401 // care about orderedness, and it is true when ordered. 402 if (Op > ISD::SETTRUE2) 403 Op &= ~16; // Clear the U bit if the N bit is set. 404 405 // Canonicalize illegal integer setcc's. 406 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 407 Op = ISD::SETNE; 408 409 return ISD::CondCode(Op); 410 } 411 412 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 413 bool IsInteger) { 414 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 415 // Cannot fold a signed setcc with an unsigned setcc. 416 return ISD::SETCC_INVALID; 417 418 // Combine all of the condition bits. 419 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 420 421 // Canonicalize illegal integer setcc's. 422 if (IsInteger) { 423 switch (Result) { 424 default: break; 425 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 426 case ISD::SETOEQ: // SETEQ & SETU[LG]E 427 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 428 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 429 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 430 } 431 } 432 433 return Result; 434 } 435 436 //===----------------------------------------------------------------------===// 437 // SDNode Profile Support 438 //===----------------------------------------------------------------------===// 439 440 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 441 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 442 ID.AddInteger(OpC); 443 } 444 445 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 446 /// solely with their pointer. 447 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 448 ID.AddPointer(VTList.VTs); 449 } 450 451 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 452 static void AddNodeIDOperands(FoldingSetNodeID &ID, 453 ArrayRef<SDValue> Ops) { 454 for (auto& Op : Ops) { 455 ID.AddPointer(Op.getNode()); 456 ID.AddInteger(Op.getResNo()); 457 } 458 } 459 460 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 461 static void AddNodeIDOperands(FoldingSetNodeID &ID, 462 ArrayRef<SDUse> Ops) { 463 for (auto& Op : Ops) { 464 ID.AddPointer(Op.getNode()); 465 ID.AddInteger(Op.getResNo()); 466 } 467 } 468 469 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 470 SDVTList VTList, ArrayRef<SDValue> OpList) { 471 AddNodeIDOpcode(ID, OpC); 472 AddNodeIDValueTypes(ID, VTList); 473 AddNodeIDOperands(ID, OpList); 474 } 475 476 /// If this is an SDNode with special info, add this info to the NodeID data. 477 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 478 switch (N->getOpcode()) { 479 case ISD::TargetExternalSymbol: 480 case ISD::ExternalSymbol: 481 case ISD::MCSymbol: 482 llvm_unreachable("Should only be used on nodes with operands"); 483 default: break; // Normal nodes don't need extra info. 484 case ISD::TargetConstant: 485 case ISD::Constant: { 486 const ConstantSDNode *C = cast<ConstantSDNode>(N); 487 ID.AddPointer(C->getConstantIntValue()); 488 ID.AddBoolean(C->isOpaque()); 489 break; 490 } 491 case ISD::TargetConstantFP: 492 case ISD::ConstantFP: 493 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 494 break; 495 case ISD::TargetGlobalAddress: 496 case ISD::GlobalAddress: 497 case ISD::TargetGlobalTLSAddress: 498 case ISD::GlobalTLSAddress: { 499 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 500 ID.AddPointer(GA->getGlobal()); 501 ID.AddInteger(GA->getOffset()); 502 ID.AddInteger(GA->getTargetFlags()); 503 break; 504 } 505 case ISD::BasicBlock: 506 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 507 break; 508 case ISD::Register: 509 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 510 break; 511 case ISD::RegisterMask: 512 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 513 break; 514 case ISD::SRCVALUE: 515 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 516 break; 517 case ISD::FrameIndex: 518 case ISD::TargetFrameIndex: 519 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 520 break; 521 case ISD::LIFETIME_START: 522 case ISD::LIFETIME_END: 523 if (cast<LifetimeSDNode>(N)->hasOffset()) { 524 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 525 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 526 } 527 break; 528 case ISD::JumpTable: 529 case ISD::TargetJumpTable: 530 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 531 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 532 break; 533 case ISD::ConstantPool: 534 case ISD::TargetConstantPool: { 535 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 536 ID.AddInteger(CP->getAlignment()); 537 ID.AddInteger(CP->getOffset()); 538 if (CP->isMachineConstantPoolEntry()) 539 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 540 else 541 ID.AddPointer(CP->getConstVal()); 542 ID.AddInteger(CP->getTargetFlags()); 543 break; 544 } 545 case ISD::TargetIndex: { 546 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 547 ID.AddInteger(TI->getIndex()); 548 ID.AddInteger(TI->getOffset()); 549 ID.AddInteger(TI->getTargetFlags()); 550 break; 551 } 552 case ISD::LOAD: { 553 const LoadSDNode *LD = cast<LoadSDNode>(N); 554 ID.AddInteger(LD->getMemoryVT().getRawBits()); 555 ID.AddInteger(LD->getRawSubclassData()); 556 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 557 break; 558 } 559 case ISD::STORE: { 560 const StoreSDNode *ST = cast<StoreSDNode>(N); 561 ID.AddInteger(ST->getMemoryVT().getRawBits()); 562 ID.AddInteger(ST->getRawSubclassData()); 563 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 564 break; 565 } 566 case ISD::MLOAD: { 567 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 568 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 569 ID.AddInteger(MLD->getRawSubclassData()); 570 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 571 break; 572 } 573 case ISD::MSTORE: { 574 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 575 ID.AddInteger(MST->getMemoryVT().getRawBits()); 576 ID.AddInteger(MST->getRawSubclassData()); 577 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 578 break; 579 } 580 case ISD::MGATHER: { 581 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 582 ID.AddInteger(MG->getMemoryVT().getRawBits()); 583 ID.AddInteger(MG->getRawSubclassData()); 584 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 585 break; 586 } 587 case ISD::MSCATTER: { 588 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 589 ID.AddInteger(MS->getMemoryVT().getRawBits()); 590 ID.AddInteger(MS->getRawSubclassData()); 591 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 592 break; 593 } 594 case ISD::ATOMIC_CMP_SWAP: 595 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 596 case ISD::ATOMIC_SWAP: 597 case ISD::ATOMIC_LOAD_ADD: 598 case ISD::ATOMIC_LOAD_SUB: 599 case ISD::ATOMIC_LOAD_AND: 600 case ISD::ATOMIC_LOAD_CLR: 601 case ISD::ATOMIC_LOAD_OR: 602 case ISD::ATOMIC_LOAD_XOR: 603 case ISD::ATOMIC_LOAD_NAND: 604 case ISD::ATOMIC_LOAD_MIN: 605 case ISD::ATOMIC_LOAD_MAX: 606 case ISD::ATOMIC_LOAD_UMIN: 607 case ISD::ATOMIC_LOAD_UMAX: 608 case ISD::ATOMIC_LOAD: 609 case ISD::ATOMIC_STORE: { 610 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 611 ID.AddInteger(AT->getMemoryVT().getRawBits()); 612 ID.AddInteger(AT->getRawSubclassData()); 613 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::PREFETCH: { 617 const MemSDNode *PF = cast<MemSDNode>(N); 618 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 619 break; 620 } 621 case ISD::VECTOR_SHUFFLE: { 622 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 623 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 624 i != e; ++i) 625 ID.AddInteger(SVN->getMaskElt(i)); 626 break; 627 } 628 case ISD::TargetBlockAddress: 629 case ISD::BlockAddress: { 630 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 631 ID.AddPointer(BA->getBlockAddress()); 632 ID.AddInteger(BA->getOffset()); 633 ID.AddInteger(BA->getTargetFlags()); 634 break; 635 } 636 } // end switch (N->getOpcode()) 637 638 // Target specific memory nodes could also have address spaces to check. 639 if (N->isTargetMemoryOpcode()) 640 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 641 } 642 643 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 644 /// data. 645 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 646 AddNodeIDOpcode(ID, N->getOpcode()); 647 // Add the return value info. 648 AddNodeIDValueTypes(ID, N->getVTList()); 649 // Add the operand info. 650 AddNodeIDOperands(ID, N->ops()); 651 652 // Handle SDNode leafs with special info. 653 AddNodeIDCustom(ID, N); 654 } 655 656 //===----------------------------------------------------------------------===// 657 // SelectionDAG Class 658 //===----------------------------------------------------------------------===// 659 660 /// doNotCSE - Return true if CSE should not be performed for this node. 661 static bool doNotCSE(SDNode *N) { 662 if (N->getValueType(0) == MVT::Glue) 663 return true; // Never CSE anything that produces a flag. 664 665 switch (N->getOpcode()) { 666 default: break; 667 case ISD::HANDLENODE: 668 case ISD::EH_LABEL: 669 return true; // Never CSE these nodes. 670 } 671 672 // Check that remaining values produced are not flags. 673 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 674 if (N->getValueType(i) == MVT::Glue) 675 return true; // Never CSE anything that produces a flag. 676 677 return false; 678 } 679 680 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 681 /// SelectionDAG. 682 void SelectionDAG::RemoveDeadNodes() { 683 // Create a dummy node (which is not added to allnodes), that adds a reference 684 // to the root node, preventing it from being deleted. 685 HandleSDNode Dummy(getRoot()); 686 687 SmallVector<SDNode*, 128> DeadNodes; 688 689 // Add all obviously-dead nodes to the DeadNodes worklist. 690 for (SDNode &Node : allnodes()) 691 if (Node.use_empty()) 692 DeadNodes.push_back(&Node); 693 694 RemoveDeadNodes(DeadNodes); 695 696 // If the root changed (e.g. it was a dead load, update the root). 697 setRoot(Dummy.getValue()); 698 } 699 700 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 701 /// given list, and any nodes that become unreachable as a result. 702 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 703 704 // Process the worklist, deleting the nodes and adding their uses to the 705 // worklist. 706 while (!DeadNodes.empty()) { 707 SDNode *N = DeadNodes.pop_back_val(); 708 // Skip to next node if we've already managed to delete the node. This could 709 // happen if replacing a node causes a node previously added to the node to 710 // be deleted. 711 if (N->getOpcode() == ISD::DELETED_NODE) 712 continue; 713 714 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 715 DUL->NodeDeleted(N, nullptr); 716 717 // Take the node out of the appropriate CSE map. 718 RemoveNodeFromCSEMaps(N); 719 720 // Next, brutally remove the operand list. This is safe to do, as there are 721 // no cycles in the graph. 722 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 723 SDUse &Use = *I++; 724 SDNode *Operand = Use.getNode(); 725 Use.set(SDValue()); 726 727 // Now that we removed this operand, see if there are no uses of it left. 728 if (Operand->use_empty()) 729 DeadNodes.push_back(Operand); 730 } 731 732 DeallocateNode(N); 733 } 734 } 735 736 void SelectionDAG::RemoveDeadNode(SDNode *N){ 737 SmallVector<SDNode*, 16> DeadNodes(1, N); 738 739 // Create a dummy node that adds a reference to the root node, preventing 740 // it from being deleted. (This matters if the root is an operand of the 741 // dead node.) 742 HandleSDNode Dummy(getRoot()); 743 744 RemoveDeadNodes(DeadNodes); 745 } 746 747 void SelectionDAG::DeleteNode(SDNode *N) { 748 // First take this out of the appropriate CSE map. 749 RemoveNodeFromCSEMaps(N); 750 751 // Finally, remove uses due to operands of this node, remove from the 752 // AllNodes list, and delete the node. 753 DeleteNodeNotInCSEMaps(N); 754 } 755 756 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 757 assert(N->getIterator() != AllNodes.begin() && 758 "Cannot delete the entry node!"); 759 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 760 761 // Drop all of the operands and decrement used node's use counts. 762 N->DropOperands(); 763 764 DeallocateNode(N); 765 } 766 767 void SDDbgInfo::erase(const SDNode *Node) { 768 DbgValMapType::iterator I = DbgValMap.find(Node); 769 if (I == DbgValMap.end()) 770 return; 771 for (auto &Val: I->second) 772 Val->setIsInvalidated(); 773 DbgValMap.erase(I); 774 } 775 776 void SelectionDAG::DeallocateNode(SDNode *N) { 777 // If we have operands, deallocate them. 778 removeOperands(N); 779 780 NodeAllocator.Deallocate(AllNodes.remove(N)); 781 782 // Set the opcode to DELETED_NODE to help catch bugs when node 783 // memory is reallocated. 784 // FIXME: There are places in SDag that have grown a dependency on the opcode 785 // value in the released node. 786 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 787 N->NodeType = ISD::DELETED_NODE; 788 789 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 790 // them and forget about that node. 791 DbgInfo->erase(N); 792 } 793 794 #ifndef NDEBUG 795 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 796 static void VerifySDNode(SDNode *N) { 797 switch (N->getOpcode()) { 798 default: 799 break; 800 case ISD::BUILD_PAIR: { 801 EVT VT = N->getValueType(0); 802 assert(N->getNumValues() == 1 && "Too many results!"); 803 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 804 "Wrong return type!"); 805 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 806 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 807 "Mismatched operand types!"); 808 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 809 "Wrong operand type!"); 810 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 811 "Wrong return type size"); 812 break; 813 } 814 case ISD::BUILD_VECTOR: { 815 assert(N->getNumValues() == 1 && "Too many results!"); 816 assert(N->getValueType(0).isVector() && "Wrong return type!"); 817 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 818 "Wrong number of operands!"); 819 EVT EltVT = N->getValueType(0).getVectorElementType(); 820 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 821 assert((I->getValueType() == EltVT || 822 (EltVT.isInteger() && I->getValueType().isInteger() && 823 EltVT.bitsLE(I->getValueType()))) && 824 "Wrong operand type!"); 825 assert(I->getValueType() == N->getOperand(0).getValueType() && 826 "Operands must all have the same type"); 827 } 828 break; 829 } 830 } 831 } 832 #endif // NDEBUG 833 834 /// Insert a newly allocated node into the DAG. 835 /// 836 /// Handles insertion into the all nodes list and CSE map, as well as 837 /// verification and other common operations when a new node is allocated. 838 void SelectionDAG::InsertNode(SDNode *N) { 839 AllNodes.push_back(N); 840 #ifndef NDEBUG 841 N->PersistentId = NextPersistentId++; 842 VerifySDNode(N); 843 #endif 844 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 845 DUL->NodeInserted(N); 846 } 847 848 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 849 /// correspond to it. This is useful when we're about to delete or repurpose 850 /// the node. We don't want future request for structurally identical nodes 851 /// to return N anymore. 852 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 853 bool Erased = false; 854 switch (N->getOpcode()) { 855 case ISD::HANDLENODE: return false; // noop. 856 case ISD::CONDCODE: 857 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 858 "Cond code doesn't exist!"); 859 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 860 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 861 break; 862 case ISD::ExternalSymbol: 863 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 864 break; 865 case ISD::TargetExternalSymbol: { 866 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 867 Erased = TargetExternalSymbols.erase( 868 std::pair<std::string,unsigned char>(ESN->getSymbol(), 869 ESN->getTargetFlags())); 870 break; 871 } 872 case ISD::MCSymbol: { 873 auto *MCSN = cast<MCSymbolSDNode>(N); 874 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 875 break; 876 } 877 case ISD::VALUETYPE: { 878 EVT VT = cast<VTSDNode>(N)->getVT(); 879 if (VT.isExtended()) { 880 Erased = ExtendedValueTypeNodes.erase(VT); 881 } else { 882 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 883 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 884 } 885 break; 886 } 887 default: 888 // Remove it from the CSE Map. 889 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 890 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 891 Erased = CSEMap.RemoveNode(N); 892 break; 893 } 894 #ifndef NDEBUG 895 // Verify that the node was actually in one of the CSE maps, unless it has a 896 // flag result (which cannot be CSE'd) or is one of the special cases that are 897 // not subject to CSE. 898 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 899 !N->isMachineOpcode() && !doNotCSE(N)) { 900 N->dump(this); 901 dbgs() << "\n"; 902 llvm_unreachable("Node is not in map!"); 903 } 904 #endif 905 return Erased; 906 } 907 908 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 909 /// maps and modified in place. Add it back to the CSE maps, unless an identical 910 /// node already exists, in which case transfer all its users to the existing 911 /// node. This transfer can potentially trigger recursive merging. 912 void 913 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 914 // For node types that aren't CSE'd, just act as if no identical node 915 // already exists. 916 if (!doNotCSE(N)) { 917 SDNode *Existing = CSEMap.GetOrInsertNode(N); 918 if (Existing != N) { 919 // If there was already an existing matching node, use ReplaceAllUsesWith 920 // to replace the dead one with the existing one. This can cause 921 // recursive merging of other unrelated nodes down the line. 922 ReplaceAllUsesWith(N, Existing); 923 924 // N is now dead. Inform the listeners and delete it. 925 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 926 DUL->NodeDeleted(N, Existing); 927 DeleteNodeNotInCSEMaps(N); 928 return; 929 } 930 } 931 932 // If the node doesn't already exist, we updated it. Inform listeners. 933 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 934 DUL->NodeUpdated(N); 935 } 936 937 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 938 /// were replaced with those specified. If this node is never memoized, 939 /// return null, otherwise return a pointer to the slot it would take. If a 940 /// node already exists with these operands, the slot will be non-null. 941 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 942 void *&InsertPos) { 943 if (doNotCSE(N)) 944 return nullptr; 945 946 SDValue Ops[] = { Op }; 947 FoldingSetNodeID ID; 948 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 949 AddNodeIDCustom(ID, N); 950 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 951 if (Node) 952 Node->intersectFlagsWith(N->getFlags()); 953 return Node; 954 } 955 956 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 957 /// were replaced with those specified. If this node is never memoized, 958 /// return null, otherwise return a pointer to the slot it would take. If a 959 /// node already exists with these operands, the slot will be non-null. 960 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 961 SDValue Op1, SDValue Op2, 962 void *&InsertPos) { 963 if (doNotCSE(N)) 964 return nullptr; 965 966 SDValue Ops[] = { Op1, Op2 }; 967 FoldingSetNodeID ID; 968 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 969 AddNodeIDCustom(ID, N); 970 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 971 if (Node) 972 Node->intersectFlagsWith(N->getFlags()); 973 return Node; 974 } 975 976 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 977 /// were replaced with those specified. If this node is never memoized, 978 /// return null, otherwise return a pointer to the slot it would take. If a 979 /// node already exists with these operands, the slot will be non-null. 980 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 981 void *&InsertPos) { 982 if (doNotCSE(N)) 983 return nullptr; 984 985 FoldingSetNodeID ID; 986 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 987 AddNodeIDCustom(ID, N); 988 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 989 if (Node) 990 Node->intersectFlagsWith(N->getFlags()); 991 return Node; 992 } 993 994 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 995 Type *Ty = VT == MVT::iPTR ? 996 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 997 VT.getTypeForEVT(*getContext()); 998 999 return getDataLayout().getABITypeAlignment(Ty); 1000 } 1001 1002 // EntryNode could meaningfully have debug info if we can find it... 1003 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1004 : TM(tm), OptLevel(OL), 1005 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1006 Root(getEntryNode()) { 1007 InsertNode(&EntryNode); 1008 DbgInfo = new SDDbgInfo(); 1009 } 1010 1011 void SelectionDAG::init(MachineFunction &NewMF, 1012 OptimizationRemarkEmitter &NewORE, 1013 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1014 LegacyDivergenceAnalysis * Divergence) { 1015 MF = &NewMF; 1016 SDAGISelPass = PassPtr; 1017 ORE = &NewORE; 1018 TLI = getSubtarget().getTargetLowering(); 1019 TSI = getSubtarget().getSelectionDAGInfo(); 1020 LibInfo = LibraryInfo; 1021 Context = &MF->getFunction().getContext(); 1022 DA = Divergence; 1023 } 1024 1025 SelectionDAG::~SelectionDAG() { 1026 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1027 allnodes_clear(); 1028 OperandRecycler.clear(OperandAllocator); 1029 delete DbgInfo; 1030 } 1031 1032 void SelectionDAG::allnodes_clear() { 1033 assert(&*AllNodes.begin() == &EntryNode); 1034 AllNodes.remove(AllNodes.begin()); 1035 while (!AllNodes.empty()) 1036 DeallocateNode(&AllNodes.front()); 1037 #ifndef NDEBUG 1038 NextPersistentId = 0; 1039 #endif 1040 } 1041 1042 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1043 void *&InsertPos) { 1044 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1045 if (N) { 1046 switch (N->getOpcode()) { 1047 default: break; 1048 case ISD::Constant: 1049 case ISD::ConstantFP: 1050 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1051 "debug location. Use another overload."); 1052 } 1053 } 1054 return N; 1055 } 1056 1057 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1058 const SDLoc &DL, void *&InsertPos) { 1059 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1060 if (N) { 1061 switch (N->getOpcode()) { 1062 case ISD::Constant: 1063 case ISD::ConstantFP: 1064 // Erase debug location from the node if the node is used at several 1065 // different places. Do not propagate one location to all uses as it 1066 // will cause a worse single stepping debugging experience. 1067 if (N->getDebugLoc() != DL.getDebugLoc()) 1068 N->setDebugLoc(DebugLoc()); 1069 break; 1070 default: 1071 // When the node's point of use is located earlier in the instruction 1072 // sequence than its prior point of use, update its debug info to the 1073 // earlier location. 1074 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1075 N->setDebugLoc(DL.getDebugLoc()); 1076 break; 1077 } 1078 } 1079 return N; 1080 } 1081 1082 void SelectionDAG::clear() { 1083 allnodes_clear(); 1084 OperandRecycler.clear(OperandAllocator); 1085 OperandAllocator.Reset(); 1086 CSEMap.clear(); 1087 1088 ExtendedValueTypeNodes.clear(); 1089 ExternalSymbols.clear(); 1090 TargetExternalSymbols.clear(); 1091 MCSymbols.clear(); 1092 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1093 static_cast<CondCodeSDNode*>(nullptr)); 1094 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1095 static_cast<SDNode*>(nullptr)); 1096 1097 EntryNode.UseList = nullptr; 1098 InsertNode(&EntryNode); 1099 Root = getEntryNode(); 1100 DbgInfo->clear(); 1101 } 1102 1103 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1104 return VT.bitsGT(Op.getValueType()) 1105 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1106 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1107 } 1108 1109 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1110 return VT.bitsGT(Op.getValueType()) ? 1111 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1112 getNode(ISD::TRUNCATE, DL, VT, Op); 1113 } 1114 1115 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1116 return VT.bitsGT(Op.getValueType()) ? 1117 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1118 getNode(ISD::TRUNCATE, DL, VT, Op); 1119 } 1120 1121 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1122 return VT.bitsGT(Op.getValueType()) ? 1123 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1124 getNode(ISD::TRUNCATE, DL, VT, Op); 1125 } 1126 1127 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1128 EVT OpVT) { 1129 if (VT.bitsLE(Op.getValueType())) 1130 return getNode(ISD::TRUNCATE, SL, VT, Op); 1131 1132 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1133 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1134 } 1135 1136 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1137 assert(!VT.isVector() && 1138 "getZeroExtendInReg should use the vector element type instead of " 1139 "the vector type!"); 1140 if (Op.getValueType().getScalarType() == VT) return Op; 1141 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1142 APInt Imm = APInt::getLowBitsSet(BitWidth, 1143 VT.getSizeInBits()); 1144 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1145 getConstant(Imm, DL, Op.getValueType())); 1146 } 1147 1148 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1149 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1150 EVT EltVT = VT.getScalarType(); 1151 SDValue NegOne = 1152 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1153 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1154 } 1155 1156 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1157 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1158 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1159 } 1160 1161 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1162 EVT OpVT) { 1163 if (!V) 1164 return getConstant(0, DL, VT); 1165 1166 switch (TLI->getBooleanContents(OpVT)) { 1167 case TargetLowering::ZeroOrOneBooleanContent: 1168 case TargetLowering::UndefinedBooleanContent: 1169 return getConstant(1, DL, VT); 1170 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1171 return getAllOnesConstant(DL, VT); 1172 } 1173 llvm_unreachable("Unexpected boolean content enum!"); 1174 } 1175 1176 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1177 bool isT, bool isO) { 1178 EVT EltVT = VT.getScalarType(); 1179 assert((EltVT.getSizeInBits() >= 64 || 1180 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1181 "getConstant with a uint64_t value that doesn't fit in the type!"); 1182 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1183 } 1184 1185 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1186 bool isT, bool isO) { 1187 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1188 } 1189 1190 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1191 EVT VT, bool isT, bool isO) { 1192 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1193 1194 EVT EltVT = VT.getScalarType(); 1195 const ConstantInt *Elt = &Val; 1196 1197 // In some cases the vector type is legal but the element type is illegal and 1198 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1199 // inserted value (the type does not need to match the vector element type). 1200 // Any extra bits introduced will be truncated away. 1201 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1202 TargetLowering::TypePromoteInteger) { 1203 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1204 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1205 Elt = ConstantInt::get(*getContext(), NewVal); 1206 } 1207 // In other cases the element type is illegal and needs to be expanded, for 1208 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1209 // the value into n parts and use a vector type with n-times the elements. 1210 // Then bitcast to the type requested. 1211 // Legalizing constants too early makes the DAGCombiner's job harder so we 1212 // only legalize if the DAG tells us we must produce legal types. 1213 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1214 TLI->getTypeAction(*getContext(), EltVT) == 1215 TargetLowering::TypeExpandInteger) { 1216 const APInt &NewVal = Elt->getValue(); 1217 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1218 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1219 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1220 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1221 1222 // Check the temporary vector is the correct size. If this fails then 1223 // getTypeToTransformTo() probably returned a type whose size (in bits) 1224 // isn't a power-of-2 factor of the requested type size. 1225 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1226 1227 SmallVector<SDValue, 2> EltParts; 1228 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1229 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1230 .zextOrTrunc(ViaEltSizeInBits), DL, 1231 ViaEltVT, isT, isO)); 1232 } 1233 1234 // EltParts is currently in little endian order. If we actually want 1235 // big-endian order then reverse it now. 1236 if (getDataLayout().isBigEndian()) 1237 std::reverse(EltParts.begin(), EltParts.end()); 1238 1239 // The elements must be reversed when the element order is different 1240 // to the endianness of the elements (because the BITCAST is itself a 1241 // vector shuffle in this situation). However, we do not need any code to 1242 // perform this reversal because getConstant() is producing a vector 1243 // splat. 1244 // This situation occurs in MIPS MSA. 1245 1246 SmallVector<SDValue, 8> Ops; 1247 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1248 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1249 1250 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1251 return V; 1252 } 1253 1254 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1255 "APInt size does not match type size!"); 1256 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1257 FoldingSetNodeID ID; 1258 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1259 ID.AddPointer(Elt); 1260 ID.AddBoolean(isO); 1261 void *IP = nullptr; 1262 SDNode *N = nullptr; 1263 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1264 if (!VT.isVector()) 1265 return SDValue(N, 0); 1266 1267 if (!N) { 1268 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1269 CSEMap.InsertNode(N, IP); 1270 InsertNode(N); 1271 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1272 } 1273 1274 SDValue Result(N, 0); 1275 if (VT.isVector()) 1276 Result = getSplatBuildVector(VT, DL, Result); 1277 1278 return Result; 1279 } 1280 1281 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1282 bool isTarget) { 1283 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1284 } 1285 1286 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1287 const SDLoc &DL, bool LegalTypes) { 1288 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1289 return getConstant(Val, DL, ShiftVT); 1290 } 1291 1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1293 bool isTarget) { 1294 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1295 } 1296 1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1298 EVT VT, bool isTarget) { 1299 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1300 1301 EVT EltVT = VT.getScalarType(); 1302 1303 // Do the map lookup using the actual bit pattern for the floating point 1304 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1305 // we don't have issues with SNANs. 1306 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1307 FoldingSetNodeID ID; 1308 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1309 ID.AddPointer(&V); 1310 void *IP = nullptr; 1311 SDNode *N = nullptr; 1312 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1313 if (!VT.isVector()) 1314 return SDValue(N, 0); 1315 1316 if (!N) { 1317 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1318 CSEMap.InsertNode(N, IP); 1319 InsertNode(N); 1320 } 1321 1322 SDValue Result(N, 0); 1323 if (VT.isVector()) 1324 Result = getSplatBuildVector(VT, DL, Result); 1325 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1326 return Result; 1327 } 1328 1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1330 bool isTarget) { 1331 EVT EltVT = VT.getScalarType(); 1332 if (EltVT == MVT::f32) 1333 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1334 else if (EltVT == MVT::f64) 1335 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1336 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1337 EltVT == MVT::f16) { 1338 bool Ignored; 1339 APFloat APF = APFloat(Val); 1340 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1341 &Ignored); 1342 return getConstantFP(APF, DL, VT, isTarget); 1343 } else 1344 llvm_unreachable("Unsupported type in getConstantFP"); 1345 } 1346 1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1348 EVT VT, int64_t Offset, bool isTargetGA, 1349 unsigned char TargetFlags) { 1350 assert((TargetFlags == 0 || isTargetGA) && 1351 "Cannot set target flags on target-independent globals"); 1352 1353 // Truncate (with sign-extension) the offset value to the pointer size. 1354 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1355 if (BitWidth < 64) 1356 Offset = SignExtend64(Offset, BitWidth); 1357 1358 unsigned Opc; 1359 if (GV->isThreadLocal()) 1360 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1361 else 1362 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1363 1364 FoldingSetNodeID ID; 1365 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1366 ID.AddPointer(GV); 1367 ID.AddInteger(Offset); 1368 ID.AddInteger(TargetFlags); 1369 void *IP = nullptr; 1370 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1371 return SDValue(E, 0); 1372 1373 auto *N = newSDNode<GlobalAddressSDNode>( 1374 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1375 CSEMap.InsertNode(N, IP); 1376 InsertNode(N); 1377 return SDValue(N, 0); 1378 } 1379 1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1381 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1382 FoldingSetNodeID ID; 1383 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1384 ID.AddInteger(FI); 1385 void *IP = nullptr; 1386 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1387 return SDValue(E, 0); 1388 1389 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1390 CSEMap.InsertNode(N, IP); 1391 InsertNode(N); 1392 return SDValue(N, 0); 1393 } 1394 1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1396 unsigned char TargetFlags) { 1397 assert((TargetFlags == 0 || isTarget) && 1398 "Cannot set target flags on target-independent jump tables"); 1399 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1402 ID.AddInteger(JTI); 1403 ID.AddInteger(TargetFlags); 1404 void *IP = nullptr; 1405 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1406 return SDValue(E, 0); 1407 1408 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1409 CSEMap.InsertNode(N, IP); 1410 InsertNode(N); 1411 return SDValue(N, 0); 1412 } 1413 1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1415 unsigned Alignment, int Offset, 1416 bool isTarget, 1417 unsigned char TargetFlags) { 1418 assert((TargetFlags == 0 || isTarget) && 1419 "Cannot set target flags on target-independent globals"); 1420 if (Alignment == 0) 1421 Alignment = MF->getFunction().hasOptSize() 1422 ? getDataLayout().getABITypeAlignment(C->getType()) 1423 : getDataLayout().getPrefTypeAlignment(C->getType()); 1424 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1425 FoldingSetNodeID ID; 1426 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1427 ID.AddInteger(Alignment); 1428 ID.AddInteger(Offset); 1429 ID.AddPointer(C); 1430 ID.AddInteger(TargetFlags); 1431 void *IP = nullptr; 1432 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1433 return SDValue(E, 0); 1434 1435 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1436 TargetFlags); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 return SDValue(N, 0); 1440 } 1441 1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1443 unsigned Alignment, int Offset, 1444 bool isTarget, 1445 unsigned char TargetFlags) { 1446 assert((TargetFlags == 0 || isTarget) && 1447 "Cannot set target flags on target-independent globals"); 1448 if (Alignment == 0) 1449 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1450 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1451 FoldingSetNodeID ID; 1452 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1453 ID.AddInteger(Alignment); 1454 ID.AddInteger(Offset); 1455 C->addSelectionDAGCSEId(ID); 1456 ID.AddInteger(TargetFlags); 1457 void *IP = nullptr; 1458 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1459 return SDValue(E, 0); 1460 1461 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1462 TargetFlags); 1463 CSEMap.InsertNode(N, IP); 1464 InsertNode(N); 1465 return SDValue(N, 0); 1466 } 1467 1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1469 unsigned char TargetFlags) { 1470 FoldingSetNodeID ID; 1471 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1472 ID.AddInteger(Index); 1473 ID.AddInteger(Offset); 1474 ID.AddInteger(TargetFlags); 1475 void *IP = nullptr; 1476 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1477 return SDValue(E, 0); 1478 1479 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1480 CSEMap.InsertNode(N, IP); 1481 InsertNode(N); 1482 return SDValue(N, 0); 1483 } 1484 1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1486 FoldingSetNodeID ID; 1487 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1488 ID.AddPointer(MBB); 1489 void *IP = nullptr; 1490 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1491 return SDValue(E, 0); 1492 1493 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1494 CSEMap.InsertNode(N, IP); 1495 InsertNode(N); 1496 return SDValue(N, 0); 1497 } 1498 1499 SDValue SelectionDAG::getValueType(EVT VT) { 1500 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1501 ValueTypeNodes.size()) 1502 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1503 1504 SDNode *&N = VT.isExtended() ? 1505 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1506 1507 if (N) return SDValue(N, 0); 1508 N = newSDNode<VTSDNode>(VT); 1509 InsertNode(N); 1510 return SDValue(N, 0); 1511 } 1512 1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1514 SDNode *&N = ExternalSymbols[Sym]; 1515 if (N) return SDValue(N, 0); 1516 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1517 InsertNode(N); 1518 return SDValue(N, 0); 1519 } 1520 1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1522 SDNode *&N = MCSymbols[Sym]; 1523 if (N) 1524 return SDValue(N, 0); 1525 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1526 InsertNode(N); 1527 return SDValue(N, 0); 1528 } 1529 1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1531 unsigned char TargetFlags) { 1532 SDNode *&N = 1533 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1534 TargetFlags)]; 1535 if (N) return SDValue(N, 0); 1536 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1537 InsertNode(N); 1538 return SDValue(N, 0); 1539 } 1540 1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1542 if ((unsigned)Cond >= CondCodeNodes.size()) 1543 CondCodeNodes.resize(Cond+1); 1544 1545 if (!CondCodeNodes[Cond]) { 1546 auto *N = newSDNode<CondCodeSDNode>(Cond); 1547 CondCodeNodes[Cond] = N; 1548 InsertNode(N); 1549 } 1550 1551 return SDValue(CondCodeNodes[Cond], 0); 1552 } 1553 1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1557 std::swap(N1, N2); 1558 ShuffleVectorSDNode::commuteMask(M); 1559 } 1560 1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1562 SDValue N2, ArrayRef<int> Mask) { 1563 assert(VT.getVectorNumElements() == Mask.size() && 1564 "Must have the same number of vector elements as mask elements!"); 1565 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1566 "Invalid VECTOR_SHUFFLE"); 1567 1568 // Canonicalize shuffle undef, undef -> undef 1569 if (N1.isUndef() && N2.isUndef()) 1570 return getUNDEF(VT); 1571 1572 // Validate that all indices in Mask are within the range of the elements 1573 // input to the shuffle. 1574 int NElts = Mask.size(); 1575 assert(llvm::all_of(Mask, 1576 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1577 "Index out of range"); 1578 1579 // Copy the mask so we can do any needed cleanup. 1580 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1581 1582 // Canonicalize shuffle v, v -> v, undef 1583 if (N1 == N2) { 1584 N2 = getUNDEF(VT); 1585 for (int i = 0; i != NElts; ++i) 1586 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1587 } 1588 1589 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1590 if (N1.isUndef()) 1591 commuteShuffle(N1, N2, MaskVec); 1592 1593 if (TLI->hasVectorBlend()) { 1594 // If shuffling a splat, try to blend the splat instead. We do this here so 1595 // that even when this arises during lowering we don't have to re-handle it. 1596 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1597 BitVector UndefElements; 1598 SDValue Splat = BV->getSplatValue(&UndefElements); 1599 if (!Splat) 1600 return; 1601 1602 for (int i = 0; i < NElts; ++i) { 1603 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1604 continue; 1605 1606 // If this input comes from undef, mark it as such. 1607 if (UndefElements[MaskVec[i] - Offset]) { 1608 MaskVec[i] = -1; 1609 continue; 1610 } 1611 1612 // If we can blend a non-undef lane, use that instead. 1613 if (!UndefElements[i]) 1614 MaskVec[i] = i + Offset; 1615 } 1616 }; 1617 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1618 BlendSplat(N1BV, 0); 1619 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1620 BlendSplat(N2BV, NElts); 1621 } 1622 1623 // Canonicalize all index into lhs, -> shuffle lhs, undef 1624 // Canonicalize all index into rhs, -> shuffle rhs, undef 1625 bool AllLHS = true, AllRHS = true; 1626 bool N2Undef = N2.isUndef(); 1627 for (int i = 0; i != NElts; ++i) { 1628 if (MaskVec[i] >= NElts) { 1629 if (N2Undef) 1630 MaskVec[i] = -1; 1631 else 1632 AllLHS = false; 1633 } else if (MaskVec[i] >= 0) { 1634 AllRHS = false; 1635 } 1636 } 1637 if (AllLHS && AllRHS) 1638 return getUNDEF(VT); 1639 if (AllLHS && !N2Undef) 1640 N2 = getUNDEF(VT); 1641 if (AllRHS) { 1642 N1 = getUNDEF(VT); 1643 commuteShuffle(N1, N2, MaskVec); 1644 } 1645 // Reset our undef status after accounting for the mask. 1646 N2Undef = N2.isUndef(); 1647 // Re-check whether both sides ended up undef. 1648 if (N1.isUndef() && N2Undef) 1649 return getUNDEF(VT); 1650 1651 // If Identity shuffle return that node. 1652 bool Identity = true, AllSame = true; 1653 for (int i = 0; i != NElts; ++i) { 1654 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1655 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1656 } 1657 if (Identity && NElts) 1658 return N1; 1659 1660 // Shuffling a constant splat doesn't change the result. 1661 if (N2Undef) { 1662 SDValue V = N1; 1663 1664 // Look through any bitcasts. We check that these don't change the number 1665 // (and size) of elements and just changes their types. 1666 while (V.getOpcode() == ISD::BITCAST) 1667 V = V->getOperand(0); 1668 1669 // A splat should always show up as a build vector node. 1670 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1671 BitVector UndefElements; 1672 SDValue Splat = BV->getSplatValue(&UndefElements); 1673 // If this is a splat of an undef, shuffling it is also undef. 1674 if (Splat && Splat.isUndef()) 1675 return getUNDEF(VT); 1676 1677 bool SameNumElts = 1678 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1679 1680 // We only have a splat which can skip shuffles if there is a splatted 1681 // value and no undef lanes rearranged by the shuffle. 1682 if (Splat && UndefElements.none()) { 1683 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1684 // number of elements match or the value splatted is a zero constant. 1685 if (SameNumElts) 1686 return N1; 1687 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1688 if (C->isNullValue()) 1689 return N1; 1690 } 1691 1692 // If the shuffle itself creates a splat, build the vector directly. 1693 if (AllSame && SameNumElts) { 1694 EVT BuildVT = BV->getValueType(0); 1695 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1696 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1697 1698 // We may have jumped through bitcasts, so the type of the 1699 // BUILD_VECTOR may not match the type of the shuffle. 1700 if (BuildVT != VT) 1701 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1702 return NewBV; 1703 } 1704 } 1705 } 1706 1707 FoldingSetNodeID ID; 1708 SDValue Ops[2] = { N1, N2 }; 1709 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1710 for (int i = 0; i != NElts; ++i) 1711 ID.AddInteger(MaskVec[i]); 1712 1713 void* IP = nullptr; 1714 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1715 return SDValue(E, 0); 1716 1717 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1718 // SDNode doesn't have access to it. This memory will be "leaked" when 1719 // the node is deallocated, but recovered when the NodeAllocator is released. 1720 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1721 llvm::copy(MaskVec, MaskAlloc); 1722 1723 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1724 dl.getDebugLoc(), MaskAlloc); 1725 createOperands(N, Ops); 1726 1727 CSEMap.InsertNode(N, IP); 1728 InsertNode(N); 1729 SDValue V = SDValue(N, 0); 1730 NewSDValueDbgMsg(V, "Creating new node: ", this); 1731 return V; 1732 } 1733 1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1735 EVT VT = SV.getValueType(0); 1736 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1737 ShuffleVectorSDNode::commuteMask(MaskVec); 1738 1739 SDValue Op0 = SV.getOperand(0); 1740 SDValue Op1 = SV.getOperand(1); 1741 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1742 } 1743 1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1745 FoldingSetNodeID ID; 1746 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1747 ID.AddInteger(RegNo); 1748 void *IP = nullptr; 1749 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1750 return SDValue(E, 0); 1751 1752 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1753 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1754 CSEMap.InsertNode(N, IP); 1755 InsertNode(N); 1756 return SDValue(N, 0); 1757 } 1758 1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1760 FoldingSetNodeID ID; 1761 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1762 ID.AddPointer(RegMask); 1763 void *IP = nullptr; 1764 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1765 return SDValue(E, 0); 1766 1767 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1768 CSEMap.InsertNode(N, IP); 1769 InsertNode(N); 1770 return SDValue(N, 0); 1771 } 1772 1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1774 MCSymbol *Label) { 1775 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1776 } 1777 1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1779 SDValue Root, MCSymbol *Label) { 1780 FoldingSetNodeID ID; 1781 SDValue Ops[] = { Root }; 1782 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1783 ID.AddPointer(Label); 1784 void *IP = nullptr; 1785 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1786 return SDValue(E, 0); 1787 1788 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1789 createOperands(N, Ops); 1790 1791 CSEMap.InsertNode(N, IP); 1792 InsertNode(N); 1793 return SDValue(N, 0); 1794 } 1795 1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1797 int64_t Offset, 1798 bool isTarget, 1799 unsigned char TargetFlags) { 1800 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1801 1802 FoldingSetNodeID ID; 1803 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1804 ID.AddPointer(BA); 1805 ID.AddInteger(Offset); 1806 ID.AddInteger(TargetFlags); 1807 void *IP = nullptr; 1808 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1809 return SDValue(E, 0); 1810 1811 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getSrcValue(const Value *V) { 1818 assert((!V || V->getType()->isPointerTy()) && 1819 "SrcValue is not a pointer?"); 1820 1821 FoldingSetNodeID ID; 1822 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1823 ID.AddPointer(V); 1824 1825 void *IP = nullptr; 1826 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1827 return SDValue(E, 0); 1828 1829 auto *N = newSDNode<SrcValueSDNode>(V); 1830 CSEMap.InsertNode(N, IP); 1831 InsertNode(N); 1832 return SDValue(N, 0); 1833 } 1834 1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1836 FoldingSetNodeID ID; 1837 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1838 ID.AddPointer(MD); 1839 1840 void *IP = nullptr; 1841 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1842 return SDValue(E, 0); 1843 1844 auto *N = newSDNode<MDNodeSDNode>(MD); 1845 CSEMap.InsertNode(N, IP); 1846 InsertNode(N); 1847 return SDValue(N, 0); 1848 } 1849 1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1851 if (VT == V.getValueType()) 1852 return V; 1853 1854 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1855 } 1856 1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1858 unsigned SrcAS, unsigned DestAS) { 1859 SDValue Ops[] = {Ptr}; 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1862 ID.AddInteger(SrcAS); 1863 ID.AddInteger(DestAS); 1864 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1870 VT, SrcAS, DestAS); 1871 createOperands(N, Ops); 1872 1873 CSEMap.InsertNode(N, IP); 1874 InsertNode(N); 1875 return SDValue(N, 0); 1876 } 1877 1878 /// getShiftAmountOperand - Return the specified value casted to 1879 /// the target's desired shift amount type. 1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1881 EVT OpTy = Op.getValueType(); 1882 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1883 if (OpTy == ShTy || OpTy.isVector()) return Op; 1884 1885 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1886 } 1887 1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1889 SDLoc dl(Node); 1890 const TargetLowering &TLI = getTargetLoweringInfo(); 1891 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1892 EVT VT = Node->getValueType(0); 1893 SDValue Tmp1 = Node->getOperand(0); 1894 SDValue Tmp2 = Node->getOperand(1); 1895 unsigned Align = Node->getConstantOperandVal(3); 1896 1897 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1898 Tmp2, MachinePointerInfo(V)); 1899 SDValue VAList = VAListLoad; 1900 1901 if (Align > TLI.getMinStackArgumentAlignment()) { 1902 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1903 1904 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1905 getConstant(Align - 1, dl, VAList.getValueType())); 1906 1907 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1908 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1909 } 1910 1911 // Increment the pointer, VAList, to the next vaarg 1912 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1913 getConstant(getDataLayout().getTypeAllocSize( 1914 VT.getTypeForEVT(*getContext())), 1915 dl, VAList.getValueType())); 1916 // Store the incremented VAList to the legalized pointer 1917 Tmp1 = 1918 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1919 // Load the actual argument out of the pointer VAList 1920 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1921 } 1922 1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1924 SDLoc dl(Node); 1925 const TargetLowering &TLI = getTargetLoweringInfo(); 1926 // This defaults to loading a pointer from the input and storing it to the 1927 // output, returning the chain. 1928 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1929 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1930 SDValue Tmp1 = 1931 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1932 Node->getOperand(2), MachinePointerInfo(VS)); 1933 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1934 MachinePointerInfo(VD)); 1935 } 1936 1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1938 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1939 unsigned ByteSize = VT.getStoreSize(); 1940 Type *Ty = VT.getTypeForEVT(*getContext()); 1941 unsigned StackAlign = 1942 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1943 1944 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1945 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1946 } 1947 1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1949 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1950 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1951 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1952 const DataLayout &DL = getDataLayout(); 1953 unsigned Align = 1954 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1955 1956 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1957 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1958 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1959 } 1960 1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1962 ISD::CondCode Cond, const SDLoc &dl) { 1963 EVT OpVT = N1.getValueType(); 1964 1965 // These setcc operations always fold. 1966 switch (Cond) { 1967 default: break; 1968 case ISD::SETFALSE: 1969 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1970 case ISD::SETTRUE: 1971 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1972 1973 case ISD::SETOEQ: 1974 case ISD::SETOGT: 1975 case ISD::SETOGE: 1976 case ISD::SETOLT: 1977 case ISD::SETOLE: 1978 case ISD::SETONE: 1979 case ISD::SETO: 1980 case ISD::SETUO: 1981 case ISD::SETUEQ: 1982 case ISD::SETUNE: 1983 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1984 break; 1985 } 1986 1987 if (OpVT.isInteger()) { 1988 // For EQ and NE, we can always pick a value for the undef to make the 1989 // predicate pass or fail, so we can return undef. 1990 // Matches behavior in llvm::ConstantFoldCompareInstruction. 1991 // icmp eq/ne X, undef -> undef. 1992 if ((N1.isUndef() || N2.isUndef()) && 1993 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 1994 return getUNDEF(VT); 1995 1996 // If both operands are undef, we can return undef for int comparison. 1997 // icmp undef, undef -> undef. 1998 if (N1.isUndef() && N2.isUndef()) 1999 return getUNDEF(VT); 2000 2001 // icmp X, X -> true/false 2002 // icmp X, undef -> true/false because undef could be X. 2003 if (N1 == N2) 2004 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2005 } 2006 2007 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2008 const APInt &C2 = N2C->getAPIntValue(); 2009 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2010 const APInt &C1 = N1C->getAPIntValue(); 2011 2012 switch (Cond) { 2013 default: llvm_unreachable("Unknown integer setcc!"); 2014 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2015 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2016 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2017 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2018 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2019 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2020 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2021 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2022 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2023 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2024 } 2025 } 2026 } 2027 2028 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2029 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2030 2031 if (N1CFP && N2CFP) { 2032 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2033 switch (Cond) { 2034 default: break; 2035 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2036 return getUNDEF(VT); 2037 LLVM_FALLTHROUGH; 2038 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2039 OpVT); 2040 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2041 return getUNDEF(VT); 2042 LLVM_FALLTHROUGH; 2043 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2044 R==APFloat::cmpLessThan, dl, VT, 2045 OpVT); 2046 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2047 return getUNDEF(VT); 2048 LLVM_FALLTHROUGH; 2049 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2050 OpVT); 2051 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2052 return getUNDEF(VT); 2053 LLVM_FALLTHROUGH; 2054 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2055 VT, OpVT); 2056 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2057 return getUNDEF(VT); 2058 LLVM_FALLTHROUGH; 2059 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2060 R==APFloat::cmpEqual, dl, VT, 2061 OpVT); 2062 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2063 return getUNDEF(VT); 2064 LLVM_FALLTHROUGH; 2065 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2066 R==APFloat::cmpEqual, dl, VT, OpVT); 2067 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2068 OpVT); 2069 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2070 OpVT); 2071 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2072 R==APFloat::cmpEqual, dl, VT, 2073 OpVT); 2074 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2075 OpVT); 2076 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2077 R==APFloat::cmpLessThan, dl, VT, 2078 OpVT); 2079 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2080 R==APFloat::cmpUnordered, dl, VT, 2081 OpVT); 2082 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2083 VT, OpVT); 2084 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2085 OpVT); 2086 } 2087 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2088 // Ensure that the constant occurs on the RHS. 2089 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2090 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2091 return SDValue(); 2092 return getSetCC(dl, VT, N2, N1, SwappedCond); 2093 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2094 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2095 // If an operand is known to be a nan (or undef that could be a nan), we can 2096 // fold it. 2097 // Choosing NaN for the undef will always make unordered comparison succeed 2098 // and ordered comparison fails. 2099 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2100 switch (ISD::getUnorderedFlavor(Cond)) { 2101 default: 2102 llvm_unreachable("Unknown flavor!"); 2103 case 0: // Known false. 2104 return getBoolConstant(false, dl, VT, OpVT); 2105 case 1: // Known true. 2106 return getBoolConstant(true, dl, VT, OpVT); 2107 case 2: // Undefined. 2108 return getUNDEF(VT); 2109 } 2110 } 2111 2112 // Could not fold it. 2113 return SDValue(); 2114 } 2115 2116 /// See if the specified operand can be simplified with the knowledge that only 2117 /// the bits specified by Mask are used. 2118 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 2119 switch (V.getOpcode()) { 2120 default: 2121 break; 2122 case ISD::Constant: { 2123 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 2124 assert(CV && "Const value should be ConstSDNode."); 2125 const APInt &CVal = CV->getAPIntValue(); 2126 APInt NewVal = CVal & Mask; 2127 if (NewVal != CVal) 2128 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2129 break; 2130 } 2131 case ISD::OR: 2132 case ISD::XOR: 2133 // If the LHS or RHS don't contribute bits to the or, drop them. 2134 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2135 return V.getOperand(1); 2136 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2137 return V.getOperand(0); 2138 break; 2139 case ISD::SRL: 2140 // Only look at single-use SRLs. 2141 if (!V.getNode()->hasOneUse()) 2142 break; 2143 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2144 // See if we can recursively simplify the LHS. 2145 unsigned Amt = RHSC->getZExtValue(); 2146 2147 // Watch out for shift count overflow though. 2148 if (Amt >= Mask.getBitWidth()) 2149 break; 2150 APInt NewMask = Mask << Amt; 2151 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2152 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2153 V.getOperand(1)); 2154 } 2155 break; 2156 case ISD::AND: { 2157 // X & -1 -> X (ignoring bits which aren't demanded). 2158 // Also handle the case where masked out bits in X are known to be zero. 2159 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2160 const APInt &AndVal = RHSC->getAPIntValue(); 2161 if (Mask.isSubsetOf(AndVal) || 2162 Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal)) 2163 return V.getOperand(0); 2164 } 2165 break; 2166 } 2167 case ISD::ANY_EXTEND: { 2168 SDValue Src = V.getOperand(0); 2169 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2170 // Being conservative here - only peek through if we only demand bits in the 2171 // non-extended source (even though the extended bits are technically undef). 2172 if (Mask.getActiveBits() > SrcBitWidth) 2173 break; 2174 APInt SrcMask = Mask.trunc(SrcBitWidth); 2175 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2176 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2177 break; 2178 } 2179 case ISD::SIGN_EXTEND_INREG: 2180 EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT(); 2181 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2182 2183 // If none of the extended bits are demanded, eliminate the sextinreg. 2184 if (Mask.getActiveBits() <= ExVTBits) 2185 return V.getOperand(0); 2186 2187 break; 2188 } 2189 return SDValue(); 2190 } 2191 2192 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2193 /// use this predicate to simplify operations downstream. 2194 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2195 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2196 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2197 } 2198 2199 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2200 /// this predicate to simplify operations downstream. Mask is known to be zero 2201 /// for bits that V cannot have. 2202 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2203 unsigned Depth) const { 2204 return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero); 2205 } 2206 2207 /// isSplatValue - Return true if the vector V has the same value 2208 /// across all DemandedElts. 2209 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2210 APInt &UndefElts) { 2211 if (!DemandedElts) 2212 return false; // No demanded elts, better to assume we don't know anything. 2213 2214 EVT VT = V.getValueType(); 2215 assert(VT.isVector() && "Vector type expected"); 2216 2217 unsigned NumElts = VT.getVectorNumElements(); 2218 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2219 UndefElts = APInt::getNullValue(NumElts); 2220 2221 switch (V.getOpcode()) { 2222 case ISD::BUILD_VECTOR: { 2223 SDValue Scl; 2224 for (unsigned i = 0; i != NumElts; ++i) { 2225 SDValue Op = V.getOperand(i); 2226 if (Op.isUndef()) { 2227 UndefElts.setBit(i); 2228 continue; 2229 } 2230 if (!DemandedElts[i]) 2231 continue; 2232 if (Scl && Scl != Op) 2233 return false; 2234 Scl = Op; 2235 } 2236 return true; 2237 } 2238 case ISD::VECTOR_SHUFFLE: { 2239 // Check if this is a shuffle node doing a splat. 2240 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2241 int SplatIndex = -1; 2242 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2243 for (int i = 0; i != (int)NumElts; ++i) { 2244 int M = Mask[i]; 2245 if (M < 0) { 2246 UndefElts.setBit(i); 2247 continue; 2248 } 2249 if (!DemandedElts[i]) 2250 continue; 2251 if (0 <= SplatIndex && SplatIndex != M) 2252 return false; 2253 SplatIndex = M; 2254 } 2255 return true; 2256 } 2257 case ISD::EXTRACT_SUBVECTOR: { 2258 SDValue Src = V.getOperand(0); 2259 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2260 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2261 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2262 // Offset the demanded elts by the subvector index. 2263 uint64_t Idx = SubIdx->getZExtValue(); 2264 APInt UndefSrcElts; 2265 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2266 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2267 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2268 return true; 2269 } 2270 } 2271 break; 2272 } 2273 case ISD::ADD: 2274 case ISD::SUB: 2275 case ISD::AND: { 2276 APInt UndefLHS, UndefRHS; 2277 SDValue LHS = V.getOperand(0); 2278 SDValue RHS = V.getOperand(1); 2279 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2280 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2281 UndefElts = UndefLHS | UndefRHS; 2282 return true; 2283 } 2284 break; 2285 } 2286 } 2287 2288 return false; 2289 } 2290 2291 /// Helper wrapper to main isSplatValue function. 2292 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2293 EVT VT = V.getValueType(); 2294 assert(VT.isVector() && "Vector type expected"); 2295 unsigned NumElts = VT.getVectorNumElements(); 2296 2297 APInt UndefElts; 2298 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2299 return isSplatValue(V, DemandedElts, UndefElts) && 2300 (AllowUndefs || !UndefElts); 2301 } 2302 2303 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2304 /// is less than the element bit-width of the shift node, return it. 2305 static const APInt *getValidShiftAmountConstant(SDValue V) { 2306 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2307 // Shifting more than the bitwidth is not valid. 2308 const APInt &ShAmt = SA->getAPIntValue(); 2309 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2310 return &ShAmt; 2311 } 2312 return nullptr; 2313 } 2314 2315 /// Determine which bits of Op are known to be either zero or one and return 2316 /// them in Known. For vectors, the known bits are those that are shared by 2317 /// every vector element. 2318 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2319 EVT VT = Op.getValueType(); 2320 APInt DemandedElts = VT.isVector() 2321 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2322 : APInt(1, 1); 2323 return computeKnownBits(Op, DemandedElts, Depth); 2324 } 2325 2326 /// Determine which bits of Op are known to be either zero or one and return 2327 /// them in Known. The DemandedElts argument allows us to only collect the known 2328 /// bits that are shared by the requested vector elements. 2329 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2330 unsigned Depth) const { 2331 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2332 2333 KnownBits Known(BitWidth); // Don't know anything. 2334 2335 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2336 // We know all of the bits for a constant! 2337 Known.One = C->getAPIntValue(); 2338 Known.Zero = ~Known.One; 2339 return Known; 2340 } 2341 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2342 // We know all of the bits for a constant fp! 2343 Known.One = C->getValueAPF().bitcastToAPInt(); 2344 Known.Zero = ~Known.One; 2345 return Known; 2346 } 2347 2348 if (Depth == 6) 2349 return Known; // Limit search depth. 2350 2351 KnownBits Known2; 2352 unsigned NumElts = DemandedElts.getBitWidth(); 2353 assert((!Op.getValueType().isVector() || 2354 NumElts == Op.getValueType().getVectorNumElements()) && 2355 "Unexpected vector size"); 2356 2357 if (!DemandedElts) 2358 return Known; // No demanded elts, better to assume we don't know anything. 2359 2360 unsigned Opcode = Op.getOpcode(); 2361 switch (Opcode) { 2362 case ISD::BUILD_VECTOR: 2363 // Collect the known bits that are shared by every demanded vector element. 2364 Known.Zero.setAllBits(); Known.One.setAllBits(); 2365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2366 if (!DemandedElts[i]) 2367 continue; 2368 2369 SDValue SrcOp = Op.getOperand(i); 2370 Known2 = computeKnownBits(SrcOp, Depth + 1); 2371 2372 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2373 if (SrcOp.getValueSizeInBits() != BitWidth) { 2374 assert(SrcOp.getValueSizeInBits() > BitWidth && 2375 "Expected BUILD_VECTOR implicit truncation"); 2376 Known2 = Known2.trunc(BitWidth); 2377 } 2378 2379 // Known bits are the values that are shared by every demanded element. 2380 Known.One &= Known2.One; 2381 Known.Zero &= Known2.Zero; 2382 2383 // If we don't know any bits, early out. 2384 if (Known.isUnknown()) 2385 break; 2386 } 2387 break; 2388 case ISD::VECTOR_SHUFFLE: { 2389 // Collect the known bits that are shared by every vector element referenced 2390 // by the shuffle. 2391 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2392 Known.Zero.setAllBits(); Known.One.setAllBits(); 2393 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2394 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2395 for (unsigned i = 0; i != NumElts; ++i) { 2396 if (!DemandedElts[i]) 2397 continue; 2398 2399 int M = SVN->getMaskElt(i); 2400 if (M < 0) { 2401 // For UNDEF elements, we don't know anything about the common state of 2402 // the shuffle result. 2403 Known.resetAll(); 2404 DemandedLHS.clearAllBits(); 2405 DemandedRHS.clearAllBits(); 2406 break; 2407 } 2408 2409 if ((unsigned)M < NumElts) 2410 DemandedLHS.setBit((unsigned)M % NumElts); 2411 else 2412 DemandedRHS.setBit((unsigned)M % NumElts); 2413 } 2414 // Known bits are the values that are shared by every demanded element. 2415 if (!!DemandedLHS) { 2416 SDValue LHS = Op.getOperand(0); 2417 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2418 Known.One &= Known2.One; 2419 Known.Zero &= Known2.Zero; 2420 } 2421 // If we don't know any bits, early out. 2422 if (Known.isUnknown()) 2423 break; 2424 if (!!DemandedRHS) { 2425 SDValue RHS = Op.getOperand(1); 2426 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2427 Known.One &= Known2.One; 2428 Known.Zero &= Known2.Zero; 2429 } 2430 break; 2431 } 2432 case ISD::CONCAT_VECTORS: { 2433 // Split DemandedElts and test each of the demanded subvectors. 2434 Known.Zero.setAllBits(); Known.One.setAllBits(); 2435 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2436 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2437 unsigned NumSubVectors = Op.getNumOperands(); 2438 for (unsigned i = 0; i != NumSubVectors; ++i) { 2439 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2440 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2441 if (!!DemandedSub) { 2442 SDValue Sub = Op.getOperand(i); 2443 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2444 Known.One &= Known2.One; 2445 Known.Zero &= Known2.Zero; 2446 } 2447 // If we don't know any bits, early out. 2448 if (Known.isUnknown()) 2449 break; 2450 } 2451 break; 2452 } 2453 case ISD::INSERT_SUBVECTOR: { 2454 // If we know the element index, demand any elements from the subvector and 2455 // the remainder from the src its inserted into, otherwise demand them all. 2456 SDValue Src = Op.getOperand(0); 2457 SDValue Sub = Op.getOperand(1); 2458 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2459 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2460 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2461 Known.One.setAllBits(); 2462 Known.Zero.setAllBits(); 2463 uint64_t Idx = SubIdx->getZExtValue(); 2464 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2465 if (!!DemandedSubElts) { 2466 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2467 if (Known.isUnknown()) 2468 break; // early-out. 2469 } 2470 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2471 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2472 if (!!DemandedSrcElts) { 2473 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2474 Known.One &= Known2.One; 2475 Known.Zero &= Known2.Zero; 2476 } 2477 } else { 2478 Known = computeKnownBits(Sub, Depth + 1); 2479 if (Known.isUnknown()) 2480 break; // early-out. 2481 Known2 = computeKnownBits(Src, Depth + 1); 2482 Known.One &= Known2.One; 2483 Known.Zero &= Known2.Zero; 2484 } 2485 break; 2486 } 2487 case ISD::EXTRACT_SUBVECTOR: { 2488 // If we know the element index, just demand that subvector elements, 2489 // otherwise demand them all. 2490 SDValue Src = Op.getOperand(0); 2491 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2492 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2493 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2494 // Offset the demanded elts by the subvector index. 2495 uint64_t Idx = SubIdx->getZExtValue(); 2496 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2497 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2498 } else { 2499 Known = computeKnownBits(Src, Depth + 1); 2500 } 2501 break; 2502 } 2503 case ISD::SCALAR_TO_VECTOR: { 2504 // We know about scalar_to_vector as much as we know about it source, 2505 // which becomes the first element of otherwise unknown vector. 2506 if (DemandedElts != 1) 2507 break; 2508 2509 SDValue N0 = Op.getOperand(0); 2510 Known = computeKnownBits(N0, Depth + 1); 2511 if (N0.getValueSizeInBits() != BitWidth) 2512 Known = Known.trunc(BitWidth); 2513 2514 break; 2515 } 2516 case ISD::BITCAST: { 2517 SDValue N0 = Op.getOperand(0); 2518 EVT SubVT = N0.getValueType(); 2519 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2520 2521 // Ignore bitcasts from unsupported types. 2522 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2523 break; 2524 2525 // Fast handling of 'identity' bitcasts. 2526 if (BitWidth == SubBitWidth) { 2527 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2528 break; 2529 } 2530 2531 bool IsLE = getDataLayout().isLittleEndian(); 2532 2533 // Bitcast 'small element' vector to 'large element' scalar/vector. 2534 if ((BitWidth % SubBitWidth) == 0) { 2535 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2536 2537 // Collect known bits for the (larger) output by collecting the known 2538 // bits from each set of sub elements and shift these into place. 2539 // We need to separately call computeKnownBits for each set of 2540 // sub elements as the knownbits for each is likely to be different. 2541 unsigned SubScale = BitWidth / SubBitWidth; 2542 APInt SubDemandedElts(NumElts * SubScale, 0); 2543 for (unsigned i = 0; i != NumElts; ++i) 2544 if (DemandedElts[i]) 2545 SubDemandedElts.setBit(i * SubScale); 2546 2547 for (unsigned i = 0; i != SubScale; ++i) { 2548 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2549 Depth + 1); 2550 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2551 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2552 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2553 } 2554 } 2555 2556 // Bitcast 'large element' scalar/vector to 'small element' vector. 2557 if ((SubBitWidth % BitWidth) == 0) { 2558 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2559 2560 // Collect known bits for the (smaller) output by collecting the known 2561 // bits from the overlapping larger input elements and extracting the 2562 // sub sections we actually care about. 2563 unsigned SubScale = SubBitWidth / BitWidth; 2564 APInt SubDemandedElts(NumElts / SubScale, 0); 2565 for (unsigned i = 0; i != NumElts; ++i) 2566 if (DemandedElts[i]) 2567 SubDemandedElts.setBit(i / SubScale); 2568 2569 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2570 2571 Known.Zero.setAllBits(); Known.One.setAllBits(); 2572 for (unsigned i = 0; i != NumElts; ++i) 2573 if (DemandedElts[i]) { 2574 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2575 unsigned Offset = (Shifts % SubScale) * BitWidth; 2576 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2577 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2578 // If we don't know any bits, early out. 2579 if (Known.isUnknown()) 2580 break; 2581 } 2582 } 2583 break; 2584 } 2585 case ISD::AND: 2586 // If either the LHS or the RHS are Zero, the result is zero. 2587 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2588 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2589 2590 // Output known-1 bits are only known if set in both the LHS & RHS. 2591 Known.One &= Known2.One; 2592 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2593 Known.Zero |= Known2.Zero; 2594 break; 2595 case ISD::OR: 2596 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2597 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2598 2599 // Output known-0 bits are only known if clear in both the LHS & RHS. 2600 Known.Zero &= Known2.Zero; 2601 // Output known-1 are known to be set if set in either the LHS | RHS. 2602 Known.One |= Known2.One; 2603 break; 2604 case ISD::XOR: { 2605 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2606 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2607 2608 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2609 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2610 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2611 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2612 Known.Zero = KnownZeroOut; 2613 break; 2614 } 2615 case ISD::MUL: { 2616 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2617 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2618 2619 // If low bits are zero in either operand, output low known-0 bits. 2620 // Also compute a conservative estimate for high known-0 bits. 2621 // More trickiness is possible, but this is sufficient for the 2622 // interesting case of alignment computation. 2623 unsigned TrailZ = Known.countMinTrailingZeros() + 2624 Known2.countMinTrailingZeros(); 2625 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2626 Known2.countMinLeadingZeros(), 2627 BitWidth) - BitWidth; 2628 2629 Known.resetAll(); 2630 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2631 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2632 break; 2633 } 2634 case ISD::UDIV: { 2635 // For the purposes of computing leading zeros we can conservatively 2636 // treat a udiv as a logical right shift by the power of 2 known to 2637 // be less than the denominator. 2638 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2639 unsigned LeadZ = Known2.countMinLeadingZeros(); 2640 2641 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2642 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2643 if (RHSMaxLeadingZeros != BitWidth) 2644 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2645 2646 Known.Zero.setHighBits(LeadZ); 2647 break; 2648 } 2649 case ISD::SELECT: 2650 case ISD::VSELECT: 2651 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2652 // If we don't know any bits, early out. 2653 if (Known.isUnknown()) 2654 break; 2655 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2656 2657 // Only known if known in both the LHS and RHS. 2658 Known.One &= Known2.One; 2659 Known.Zero &= Known2.Zero; 2660 break; 2661 case ISD::SELECT_CC: 2662 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2663 // If we don't know any bits, early out. 2664 if (Known.isUnknown()) 2665 break; 2666 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2667 2668 // Only known if known in both the LHS and RHS. 2669 Known.One &= Known2.One; 2670 Known.Zero &= Known2.Zero; 2671 break; 2672 case ISD::SMULO: 2673 case ISD::UMULO: 2674 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2675 if (Op.getResNo() != 1) 2676 break; 2677 // The boolean result conforms to getBooleanContents. 2678 // If we know the result of a setcc has the top bits zero, use this info. 2679 // We know that we have an integer-based boolean since these operations 2680 // are only available for integer. 2681 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2682 TargetLowering::ZeroOrOneBooleanContent && 2683 BitWidth > 1) 2684 Known.Zero.setBitsFrom(1); 2685 break; 2686 case ISD::SETCC: 2687 // If we know the result of a setcc has the top bits zero, use this info. 2688 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2689 TargetLowering::ZeroOrOneBooleanContent && 2690 BitWidth > 1) 2691 Known.Zero.setBitsFrom(1); 2692 break; 2693 case ISD::SHL: 2694 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2695 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2696 unsigned Shift = ShAmt->getZExtValue(); 2697 Known.Zero <<= Shift; 2698 Known.One <<= Shift; 2699 // Low bits are known zero. 2700 Known.Zero.setLowBits(Shift); 2701 } 2702 break; 2703 case ISD::SRL: 2704 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2705 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2706 unsigned Shift = ShAmt->getZExtValue(); 2707 Known.Zero.lshrInPlace(Shift); 2708 Known.One.lshrInPlace(Shift); 2709 // High bits are known zero. 2710 Known.Zero.setHighBits(Shift); 2711 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2712 // If the shift amount is a vector of constants see if we can bound 2713 // the number of upper zero bits. 2714 unsigned ShiftAmountMin = BitWidth; 2715 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2716 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2717 const APInt &ShAmt = C->getAPIntValue(); 2718 if (ShAmt.ult(BitWidth)) { 2719 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2720 ShAmt.getZExtValue()); 2721 continue; 2722 } 2723 } 2724 // Don't know anything. 2725 ShiftAmountMin = 0; 2726 break; 2727 } 2728 2729 Known.Zero.setHighBits(ShiftAmountMin); 2730 } 2731 break; 2732 case ISD::SRA: 2733 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2734 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2735 unsigned Shift = ShAmt->getZExtValue(); 2736 // Sign extend known zero/one bit (else is unknown). 2737 Known.Zero.ashrInPlace(Shift); 2738 Known.One.ashrInPlace(Shift); 2739 } 2740 break; 2741 case ISD::FSHL: 2742 case ISD::FSHR: 2743 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2744 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2745 2746 // For fshl, 0-shift returns the 1st arg. 2747 // For fshr, 0-shift returns the 2nd arg. 2748 if (Amt == 0) { 2749 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2750 DemandedElts, Depth + 1); 2751 break; 2752 } 2753 2754 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2755 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2756 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2757 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2758 if (Opcode == ISD::FSHL) { 2759 Known.One <<= Amt; 2760 Known.Zero <<= Amt; 2761 Known2.One.lshrInPlace(BitWidth - Amt); 2762 Known2.Zero.lshrInPlace(BitWidth - Amt); 2763 } else { 2764 Known.One <<= BitWidth - Amt; 2765 Known.Zero <<= BitWidth - Amt; 2766 Known2.One.lshrInPlace(Amt); 2767 Known2.Zero.lshrInPlace(Amt); 2768 } 2769 Known.One |= Known2.One; 2770 Known.Zero |= Known2.Zero; 2771 } 2772 break; 2773 case ISD::SIGN_EXTEND_INREG: { 2774 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2775 unsigned EBits = EVT.getScalarSizeInBits(); 2776 2777 // Sign extension. Compute the demanded bits in the result that are not 2778 // present in the input. 2779 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2780 2781 APInt InSignMask = APInt::getSignMask(EBits); 2782 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2783 2784 // If the sign extended bits are demanded, we know that the sign 2785 // bit is demanded. 2786 InSignMask = InSignMask.zext(BitWidth); 2787 if (NewBits.getBoolValue()) 2788 InputDemandedBits |= InSignMask; 2789 2790 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2791 Known.One &= InputDemandedBits; 2792 Known.Zero &= InputDemandedBits; 2793 2794 // If the sign bit of the input is known set or clear, then we know the 2795 // top bits of the result. 2796 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2797 Known.Zero |= NewBits; 2798 Known.One &= ~NewBits; 2799 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2800 Known.One |= NewBits; 2801 Known.Zero &= ~NewBits; 2802 } else { // Input sign bit unknown 2803 Known.Zero &= ~NewBits; 2804 Known.One &= ~NewBits; 2805 } 2806 break; 2807 } 2808 case ISD::CTTZ: 2809 case ISD::CTTZ_ZERO_UNDEF: { 2810 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2811 // If we have a known 1, its position is our upper bound. 2812 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2813 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2814 Known.Zero.setBitsFrom(LowBits); 2815 break; 2816 } 2817 case ISD::CTLZ: 2818 case ISD::CTLZ_ZERO_UNDEF: { 2819 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2820 // If we have a known 1, its position is our upper bound. 2821 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2822 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2823 Known.Zero.setBitsFrom(LowBits); 2824 break; 2825 } 2826 case ISD::CTPOP: { 2827 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2828 // If we know some of the bits are zero, they can't be one. 2829 unsigned PossibleOnes = Known2.countMaxPopulation(); 2830 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2831 break; 2832 } 2833 case ISD::LOAD: { 2834 LoadSDNode *LD = cast<LoadSDNode>(Op); 2835 // If this is a ZEXTLoad and we are looking at the loaded value. 2836 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2837 EVT VT = LD->getMemoryVT(); 2838 unsigned MemBits = VT.getScalarSizeInBits(); 2839 Known.Zero.setBitsFrom(MemBits); 2840 } else if (const MDNode *Ranges = LD->getRanges()) { 2841 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2842 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2843 } 2844 break; 2845 } 2846 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2847 EVT InVT = Op.getOperand(0).getValueType(); 2848 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2849 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2850 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2851 break; 2852 } 2853 case ISD::ZERO_EXTEND: { 2854 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2855 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2856 break; 2857 } 2858 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2859 EVT InVT = Op.getOperand(0).getValueType(); 2860 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2861 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2862 // If the sign bit is known to be zero or one, then sext will extend 2863 // it to the top bits, else it will just zext. 2864 Known = Known.sext(BitWidth); 2865 break; 2866 } 2867 case ISD::SIGN_EXTEND: { 2868 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2869 // If the sign bit is known to be zero or one, then sext will extend 2870 // it to the top bits, else it will just zext. 2871 Known = Known.sext(BitWidth); 2872 break; 2873 } 2874 case ISD::ANY_EXTEND: { 2875 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2876 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 2877 break; 2878 } 2879 case ISD::TRUNCATE: { 2880 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2881 Known = Known.trunc(BitWidth); 2882 break; 2883 } 2884 case ISD::AssertZext: { 2885 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2886 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2887 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2888 Known.Zero |= (~InMask); 2889 Known.One &= (~Known.Zero); 2890 break; 2891 } 2892 case ISD::FGETSIGN: 2893 // All bits are zero except the low bit. 2894 Known.Zero.setBitsFrom(1); 2895 break; 2896 case ISD::USUBO: 2897 case ISD::SSUBO: 2898 if (Op.getResNo() == 1) { 2899 // If we know the result of a setcc has the top bits zero, use this info. 2900 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2901 TargetLowering::ZeroOrOneBooleanContent && 2902 BitWidth > 1) 2903 Known.Zero.setBitsFrom(1); 2904 break; 2905 } 2906 LLVM_FALLTHROUGH; 2907 case ISD::SUB: 2908 case ISD::SUBC: { 2909 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2910 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2911 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 2912 Known, Known2); 2913 break; 2914 } 2915 case ISD::UADDO: 2916 case ISD::SADDO: 2917 case ISD::ADDCARRY: 2918 if (Op.getResNo() == 1) { 2919 // If we know the result of a setcc has the top bits zero, use this info. 2920 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2921 TargetLowering::ZeroOrOneBooleanContent && 2922 BitWidth > 1) 2923 Known.Zero.setBitsFrom(1); 2924 break; 2925 } 2926 LLVM_FALLTHROUGH; 2927 case ISD::ADD: 2928 case ISD::ADDC: 2929 case ISD::ADDE: { 2930 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 2931 2932 // With ADDE and ADDCARRY, a carry bit may be added in. 2933 KnownBits Carry(1); 2934 if (Opcode == ISD::ADDE) 2935 // Can't track carry from glue, set carry to unknown. 2936 Carry.resetAll(); 2937 else if (Opcode == ISD::ADDCARRY) 2938 // TODO: Compute known bits for the carry operand. Not sure if it is worth 2939 // the trouble (how often will we find a known carry bit). And I haven't 2940 // tested this very much yet, but something like this might work: 2941 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 2942 // Carry = Carry.zextOrTrunc(1, false); 2943 Carry.resetAll(); 2944 else 2945 Carry.setAllZero(); 2946 2947 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2948 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2949 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 2950 break; 2951 } 2952 case ISD::SREM: 2953 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2954 const APInt &RA = Rem->getAPIntValue().abs(); 2955 if (RA.isPowerOf2()) { 2956 APInt LowBits = RA - 1; 2957 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2958 2959 // The low bits of the first operand are unchanged by the srem. 2960 Known.Zero = Known2.Zero & LowBits; 2961 Known.One = Known2.One & LowBits; 2962 2963 // If the first operand is non-negative or has all low bits zero, then 2964 // the upper bits are all zero. 2965 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2966 Known.Zero |= ~LowBits; 2967 2968 // If the first operand is negative and not all low bits are zero, then 2969 // the upper bits are all one. 2970 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2971 Known.One |= ~LowBits; 2972 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2973 } 2974 } 2975 break; 2976 case ISD::UREM: { 2977 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2978 const APInt &RA = Rem->getAPIntValue(); 2979 if (RA.isPowerOf2()) { 2980 APInt LowBits = (RA - 1); 2981 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2982 2983 // The upper bits are all zero, the lower ones are unchanged. 2984 Known.Zero = Known2.Zero | ~LowBits; 2985 Known.One = Known2.One & LowBits; 2986 break; 2987 } 2988 } 2989 2990 // Since the result is less than or equal to either operand, any leading 2991 // zero bits in either operand must also exist in the result. 2992 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2993 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2994 2995 uint32_t Leaders = 2996 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2997 Known.resetAll(); 2998 Known.Zero.setHighBits(Leaders); 2999 break; 3000 } 3001 case ISD::EXTRACT_ELEMENT: { 3002 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3003 const unsigned Index = Op.getConstantOperandVal(1); 3004 const unsigned BitWidth = Op.getValueSizeInBits(); 3005 3006 // Remove low part of known bits mask 3007 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 3008 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 3009 3010 // Remove high part of known bit mask 3011 Known = Known.trunc(BitWidth); 3012 break; 3013 } 3014 case ISD::EXTRACT_VECTOR_ELT: { 3015 SDValue InVec = Op.getOperand(0); 3016 SDValue EltNo = Op.getOperand(1); 3017 EVT VecVT = InVec.getValueType(); 3018 const unsigned BitWidth = Op.getValueSizeInBits(); 3019 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3020 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3021 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3022 // anything about the extended bits. 3023 if (BitWidth > EltBitWidth) 3024 Known = Known.trunc(EltBitWidth); 3025 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3026 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3027 // If we know the element index, just demand that vector element. 3028 unsigned Idx = ConstEltNo->getZExtValue(); 3029 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3030 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3031 } else { 3032 // Unknown element index, so ignore DemandedElts and demand them all. 3033 Known = computeKnownBits(InVec, Depth + 1); 3034 } 3035 if (BitWidth > EltBitWidth) 3036 Known = Known.zext(BitWidth, false /* => any extend */); 3037 break; 3038 } 3039 case ISD::INSERT_VECTOR_ELT: { 3040 SDValue InVec = Op.getOperand(0); 3041 SDValue InVal = Op.getOperand(1); 3042 SDValue EltNo = Op.getOperand(2); 3043 3044 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3045 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3046 // If we know the element index, split the demand between the 3047 // source vector and the inserted element. 3048 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3049 unsigned EltIdx = CEltNo->getZExtValue(); 3050 3051 // If we demand the inserted element then add its common known bits. 3052 if (DemandedElts[EltIdx]) { 3053 Known2 = computeKnownBits(InVal, Depth + 1); 3054 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3055 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3056 } 3057 3058 // If we demand the source vector then add its common known bits, ensuring 3059 // that we don't demand the inserted element. 3060 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3061 if (!!VectorElts) { 3062 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3063 Known.One &= Known2.One; 3064 Known.Zero &= Known2.Zero; 3065 } 3066 } else { 3067 // Unknown element index, so ignore DemandedElts and demand them all. 3068 Known = computeKnownBits(InVec, Depth + 1); 3069 Known2 = computeKnownBits(InVal, Depth + 1); 3070 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3071 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3072 } 3073 break; 3074 } 3075 case ISD::BITREVERSE: { 3076 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3077 Known.Zero = Known2.Zero.reverseBits(); 3078 Known.One = Known2.One.reverseBits(); 3079 break; 3080 } 3081 case ISD::BSWAP: { 3082 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known.Zero = Known2.Zero.byteSwap(); 3084 Known.One = Known2.One.byteSwap(); 3085 break; 3086 } 3087 case ISD::ABS: { 3088 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3089 3090 // If the source's MSB is zero then we know the rest of the bits already. 3091 if (Known2.isNonNegative()) { 3092 Known.Zero = Known2.Zero; 3093 Known.One = Known2.One; 3094 break; 3095 } 3096 3097 // We only know that the absolute values's MSB will be zero iff there is 3098 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3099 Known2.One.clearSignBit(); 3100 if (Known2.One.getBoolValue()) { 3101 Known.Zero = APInt::getSignMask(BitWidth); 3102 break; 3103 } 3104 break; 3105 } 3106 case ISD::UMIN: { 3107 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3108 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3109 3110 // UMIN - we know that the result will have the maximum of the 3111 // known zero leading bits of the inputs. 3112 unsigned LeadZero = Known.countMinLeadingZeros(); 3113 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3114 3115 Known.Zero &= Known2.Zero; 3116 Known.One &= Known2.One; 3117 Known.Zero.setHighBits(LeadZero); 3118 break; 3119 } 3120 case ISD::UMAX: { 3121 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3122 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3123 3124 // UMAX - we know that the result will have the maximum of the 3125 // known one leading bits of the inputs. 3126 unsigned LeadOne = Known.countMinLeadingOnes(); 3127 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3128 3129 Known.Zero &= Known2.Zero; 3130 Known.One &= Known2.One; 3131 Known.One.setHighBits(LeadOne); 3132 break; 3133 } 3134 case ISD::SMIN: 3135 case ISD::SMAX: { 3136 // If we have a clamp pattern, we know that the number of sign bits will be 3137 // the minimum of the clamp min/max range. 3138 bool IsMax = (Opcode == ISD::SMAX); 3139 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3140 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3141 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3142 CstHigh = 3143 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3144 if (CstLow && CstHigh) { 3145 if (!IsMax) 3146 std::swap(CstLow, CstHigh); 3147 3148 const APInt &ValueLow = CstLow->getAPIntValue(); 3149 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3150 if (ValueLow.sle(ValueHigh)) { 3151 unsigned LowSignBits = ValueLow.getNumSignBits(); 3152 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3153 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3154 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3155 Known.One.setHighBits(MinSignBits); 3156 break; 3157 } 3158 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3159 Known.Zero.setHighBits(MinSignBits); 3160 break; 3161 } 3162 } 3163 } 3164 3165 // Fallback - just get the shared known bits of the operands. 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 if (Known.isUnknown()) break; // Early-out 3168 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3169 Known.Zero &= Known2.Zero; 3170 Known.One &= Known2.One; 3171 break; 3172 } 3173 case ISD::FrameIndex: 3174 case ISD::TargetFrameIndex: 3175 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3176 break; 3177 3178 default: 3179 if (Opcode < ISD::BUILTIN_OP_END) 3180 break; 3181 LLVM_FALLTHROUGH; 3182 case ISD::INTRINSIC_WO_CHAIN: 3183 case ISD::INTRINSIC_W_CHAIN: 3184 case ISD::INTRINSIC_VOID: 3185 // Allow the target to implement this method for its nodes. 3186 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3187 break; 3188 } 3189 3190 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3191 return Known; 3192 } 3193 3194 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3195 SDValue N1) const { 3196 // X + 0 never overflow 3197 if (isNullConstant(N1)) 3198 return OFK_Never; 3199 3200 KnownBits N1Known = computeKnownBits(N1); 3201 if (N1Known.Zero.getBoolValue()) { 3202 KnownBits N0Known = computeKnownBits(N0); 3203 3204 bool overflow; 3205 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3206 if (!overflow) 3207 return OFK_Never; 3208 } 3209 3210 // mulhi + 1 never overflow 3211 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3212 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3213 return OFK_Never; 3214 3215 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3216 KnownBits N0Known = computeKnownBits(N0); 3217 3218 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3219 return OFK_Never; 3220 } 3221 3222 return OFK_Sometime; 3223 } 3224 3225 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3226 EVT OpVT = Val.getValueType(); 3227 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3228 3229 // Is the constant a known power of 2? 3230 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3231 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3232 3233 // A left-shift of a constant one will have exactly one bit set because 3234 // shifting the bit off the end is undefined. 3235 if (Val.getOpcode() == ISD::SHL) { 3236 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3237 if (C && C->getAPIntValue() == 1) 3238 return true; 3239 } 3240 3241 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3242 // one bit set. 3243 if (Val.getOpcode() == ISD::SRL) { 3244 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3245 if (C && C->getAPIntValue().isSignMask()) 3246 return true; 3247 } 3248 3249 // Are all operands of a build vector constant powers of two? 3250 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3251 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3252 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3253 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3254 return false; 3255 })) 3256 return true; 3257 3258 // More could be done here, though the above checks are enough 3259 // to handle some common cases. 3260 3261 // Fall back to computeKnownBits to catch other known cases. 3262 KnownBits Known = computeKnownBits(Val); 3263 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3264 } 3265 3266 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3267 EVT VT = Op.getValueType(); 3268 APInt DemandedElts = VT.isVector() 3269 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3270 : APInt(1, 1); 3271 return ComputeNumSignBits(Op, DemandedElts, Depth); 3272 } 3273 3274 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3275 unsigned Depth) const { 3276 EVT VT = Op.getValueType(); 3277 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3278 unsigned VTBits = VT.getScalarSizeInBits(); 3279 unsigned NumElts = DemandedElts.getBitWidth(); 3280 unsigned Tmp, Tmp2; 3281 unsigned FirstAnswer = 1; 3282 3283 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3284 const APInt &Val = C->getAPIntValue(); 3285 return Val.getNumSignBits(); 3286 } 3287 3288 if (Depth == 6) 3289 return 1; // Limit search depth. 3290 3291 if (!DemandedElts) 3292 return 1; // No demanded elts, better to assume we don't know anything. 3293 3294 unsigned Opcode = Op.getOpcode(); 3295 switch (Opcode) { 3296 default: break; 3297 case ISD::AssertSext: 3298 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3299 return VTBits-Tmp+1; 3300 case ISD::AssertZext: 3301 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3302 return VTBits-Tmp; 3303 3304 case ISD::BUILD_VECTOR: 3305 Tmp = VTBits; 3306 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3307 if (!DemandedElts[i]) 3308 continue; 3309 3310 SDValue SrcOp = Op.getOperand(i); 3311 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3312 3313 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3314 if (SrcOp.getValueSizeInBits() != VTBits) { 3315 assert(SrcOp.getValueSizeInBits() > VTBits && 3316 "Expected BUILD_VECTOR implicit truncation"); 3317 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3318 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3319 } 3320 Tmp = std::min(Tmp, Tmp2); 3321 } 3322 return Tmp; 3323 3324 case ISD::VECTOR_SHUFFLE: { 3325 // Collect the minimum number of sign bits that are shared by every vector 3326 // element referenced by the shuffle. 3327 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3328 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3329 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3330 for (unsigned i = 0; i != NumElts; ++i) { 3331 int M = SVN->getMaskElt(i); 3332 if (!DemandedElts[i]) 3333 continue; 3334 // For UNDEF elements, we don't know anything about the common state of 3335 // the shuffle result. 3336 if (M < 0) 3337 return 1; 3338 if ((unsigned)M < NumElts) 3339 DemandedLHS.setBit((unsigned)M % NumElts); 3340 else 3341 DemandedRHS.setBit((unsigned)M % NumElts); 3342 } 3343 Tmp = std::numeric_limits<unsigned>::max(); 3344 if (!!DemandedLHS) 3345 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3346 if (!!DemandedRHS) { 3347 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3348 Tmp = std::min(Tmp, Tmp2); 3349 } 3350 // If we don't know anything, early out and try computeKnownBits fall-back. 3351 if (Tmp == 1) 3352 break; 3353 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3354 return Tmp; 3355 } 3356 3357 case ISD::BITCAST: { 3358 SDValue N0 = Op.getOperand(0); 3359 EVT SrcVT = N0.getValueType(); 3360 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3361 3362 // Ignore bitcasts from unsupported types.. 3363 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3364 break; 3365 3366 // Fast handling of 'identity' bitcasts. 3367 if (VTBits == SrcBits) 3368 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3369 3370 bool IsLE = getDataLayout().isLittleEndian(); 3371 3372 // Bitcast 'large element' scalar/vector to 'small element' vector. 3373 if ((SrcBits % VTBits) == 0) { 3374 assert(VT.isVector() && "Expected bitcast to vector"); 3375 3376 unsigned Scale = SrcBits / VTBits; 3377 APInt SrcDemandedElts(NumElts / Scale, 0); 3378 for (unsigned i = 0; i != NumElts; ++i) 3379 if (DemandedElts[i]) 3380 SrcDemandedElts.setBit(i / Scale); 3381 3382 // Fast case - sign splat can be simply split across the small elements. 3383 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3384 if (Tmp == SrcBits) 3385 return VTBits; 3386 3387 // Slow case - determine how far the sign extends into each sub-element. 3388 Tmp2 = VTBits; 3389 for (unsigned i = 0; i != NumElts; ++i) 3390 if (DemandedElts[i]) { 3391 unsigned SubOffset = i % Scale; 3392 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3393 SubOffset = SubOffset * VTBits; 3394 if (Tmp <= SubOffset) 3395 return 1; 3396 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3397 } 3398 return Tmp2; 3399 } 3400 break; 3401 } 3402 3403 case ISD::SIGN_EXTEND: 3404 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3405 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3406 case ISD::SIGN_EXTEND_INREG: 3407 // Max of the input and what this extends. 3408 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3409 Tmp = VTBits-Tmp+1; 3410 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3411 return std::max(Tmp, Tmp2); 3412 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3413 SDValue Src = Op.getOperand(0); 3414 EVT SrcVT = Src.getValueType(); 3415 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3416 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3417 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3418 } 3419 3420 case ISD::SRA: 3421 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3422 // SRA X, C -> adds C sign bits. 3423 if (ConstantSDNode *C = 3424 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3425 APInt ShiftVal = C->getAPIntValue(); 3426 ShiftVal += Tmp; 3427 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3428 } 3429 return Tmp; 3430 case ISD::SHL: 3431 if (ConstantSDNode *C = 3432 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3433 // shl destroys sign bits. 3434 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3435 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3436 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3437 return Tmp - C->getZExtValue(); 3438 } 3439 break; 3440 case ISD::AND: 3441 case ISD::OR: 3442 case ISD::XOR: // NOT is handled here. 3443 // Logical binary ops preserve the number of sign bits at the worst. 3444 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3445 if (Tmp != 1) { 3446 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3447 FirstAnswer = std::min(Tmp, Tmp2); 3448 // We computed what we know about the sign bits as our first 3449 // answer. Now proceed to the generic code that uses 3450 // computeKnownBits, and pick whichever answer is better. 3451 } 3452 break; 3453 3454 case ISD::SELECT: 3455 case ISD::VSELECT: 3456 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3457 if (Tmp == 1) return 1; // Early out. 3458 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3459 return std::min(Tmp, Tmp2); 3460 case ISD::SELECT_CC: 3461 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3462 if (Tmp == 1) return 1; // Early out. 3463 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3464 return std::min(Tmp, Tmp2); 3465 3466 case ISD::SMIN: 3467 case ISD::SMAX: { 3468 // If we have a clamp pattern, we know that the number of sign bits will be 3469 // the minimum of the clamp min/max range. 3470 bool IsMax = (Opcode == ISD::SMAX); 3471 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3472 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3473 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3474 CstHigh = 3475 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3476 if (CstLow && CstHigh) { 3477 if (!IsMax) 3478 std::swap(CstLow, CstHigh); 3479 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3480 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3481 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3482 return std::min(Tmp, Tmp2); 3483 } 3484 } 3485 3486 // Fallback - just get the minimum number of sign bits of the operands. 3487 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3488 if (Tmp == 1) 3489 return 1; // Early out. 3490 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3491 return std::min(Tmp, Tmp2); 3492 } 3493 case ISD::UMIN: 3494 case ISD::UMAX: 3495 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3496 if (Tmp == 1) 3497 return 1; // Early out. 3498 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3499 return std::min(Tmp, Tmp2); 3500 case ISD::SADDO: 3501 case ISD::UADDO: 3502 case ISD::SSUBO: 3503 case ISD::USUBO: 3504 case ISD::SMULO: 3505 case ISD::UMULO: 3506 if (Op.getResNo() != 1) 3507 break; 3508 // The boolean result conforms to getBooleanContents. Fall through. 3509 // If setcc returns 0/-1, all bits are sign bits. 3510 // We know that we have an integer-based boolean since these operations 3511 // are only available for integer. 3512 if (TLI->getBooleanContents(VT.isVector(), false) == 3513 TargetLowering::ZeroOrNegativeOneBooleanContent) 3514 return VTBits; 3515 break; 3516 case ISD::SETCC: 3517 // If setcc returns 0/-1, all bits are sign bits. 3518 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3519 TargetLowering::ZeroOrNegativeOneBooleanContent) 3520 return VTBits; 3521 break; 3522 case ISD::ROTL: 3523 case ISD::ROTR: 3524 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3525 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3526 3527 // Handle rotate right by N like a rotate left by 32-N. 3528 if (Opcode == ISD::ROTR) 3529 RotAmt = (VTBits - RotAmt) % VTBits; 3530 3531 // If we aren't rotating out all of the known-in sign bits, return the 3532 // number that are left. This handles rotl(sext(x), 1) for example. 3533 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3534 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3535 } 3536 break; 3537 case ISD::ADD: 3538 case ISD::ADDC: 3539 // Add can have at most one carry bit. Thus we know that the output 3540 // is, at worst, one more bit than the inputs. 3541 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3542 if (Tmp == 1) return 1; // Early out. 3543 3544 // Special case decrementing a value (ADD X, -1): 3545 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3546 if (CRHS->isAllOnesValue()) { 3547 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3548 3549 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3550 // sign bits set. 3551 if ((Known.Zero | 1).isAllOnesValue()) 3552 return VTBits; 3553 3554 // If we are subtracting one from a positive number, there is no carry 3555 // out of the result. 3556 if (Known.isNonNegative()) 3557 return Tmp; 3558 } 3559 3560 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3561 if (Tmp2 == 1) return 1; 3562 return std::min(Tmp, Tmp2)-1; 3563 3564 case ISD::SUB: 3565 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3566 if (Tmp2 == 1) return 1; 3567 3568 // Handle NEG. 3569 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3570 if (CLHS->isNullValue()) { 3571 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3572 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3573 // sign bits set. 3574 if ((Known.Zero | 1).isAllOnesValue()) 3575 return VTBits; 3576 3577 // If the input is known to be positive (the sign bit is known clear), 3578 // the output of the NEG has the same number of sign bits as the input. 3579 if (Known.isNonNegative()) 3580 return Tmp2; 3581 3582 // Otherwise, we treat this like a SUB. 3583 } 3584 3585 // Sub can have at most one carry bit. Thus we know that the output 3586 // is, at worst, one more bit than the inputs. 3587 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3588 if (Tmp == 1) return 1; // Early out. 3589 return std::min(Tmp, Tmp2)-1; 3590 case ISD::TRUNCATE: { 3591 // Check if the sign bits of source go down as far as the truncated value. 3592 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3593 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3594 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3595 return NumSrcSignBits - (NumSrcBits - VTBits); 3596 break; 3597 } 3598 case ISD::EXTRACT_ELEMENT: { 3599 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3600 const int BitWidth = Op.getValueSizeInBits(); 3601 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3602 3603 // Get reverse index (starting from 1), Op1 value indexes elements from 3604 // little end. Sign starts at big end. 3605 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3606 3607 // If the sign portion ends in our element the subtraction gives correct 3608 // result. Otherwise it gives either negative or > bitwidth result 3609 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3610 } 3611 case ISD::INSERT_VECTOR_ELT: { 3612 SDValue InVec = Op.getOperand(0); 3613 SDValue InVal = Op.getOperand(1); 3614 SDValue EltNo = Op.getOperand(2); 3615 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3616 3617 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3618 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3619 // If we know the element index, split the demand between the 3620 // source vector and the inserted element. 3621 unsigned EltIdx = CEltNo->getZExtValue(); 3622 3623 // If we demand the inserted element then get its sign bits. 3624 Tmp = std::numeric_limits<unsigned>::max(); 3625 if (DemandedElts[EltIdx]) { 3626 // TODO - handle implicit truncation of inserted elements. 3627 if (InVal.getScalarValueSizeInBits() != VTBits) 3628 break; 3629 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3630 } 3631 3632 // If we demand the source vector then get its sign bits, and determine 3633 // the minimum. 3634 APInt VectorElts = DemandedElts; 3635 VectorElts.clearBit(EltIdx); 3636 if (!!VectorElts) { 3637 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3638 Tmp = std::min(Tmp, Tmp2); 3639 } 3640 } else { 3641 // Unknown element index, so ignore DemandedElts and demand them all. 3642 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3643 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3644 Tmp = std::min(Tmp, Tmp2); 3645 } 3646 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3647 return Tmp; 3648 } 3649 case ISD::EXTRACT_VECTOR_ELT: { 3650 SDValue InVec = Op.getOperand(0); 3651 SDValue EltNo = Op.getOperand(1); 3652 EVT VecVT = InVec.getValueType(); 3653 const unsigned BitWidth = Op.getValueSizeInBits(); 3654 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3655 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3656 3657 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3658 // anything about sign bits. But if the sizes match we can derive knowledge 3659 // about sign bits from the vector operand. 3660 if (BitWidth != EltBitWidth) 3661 break; 3662 3663 // If we know the element index, just demand that vector element, else for 3664 // an unknown element index, ignore DemandedElts and demand them all. 3665 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3666 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3667 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3668 DemandedSrcElts = 3669 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3670 3671 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3672 } 3673 case ISD::EXTRACT_SUBVECTOR: { 3674 // If we know the element index, just demand that subvector elements, 3675 // otherwise demand them all. 3676 SDValue Src = Op.getOperand(0); 3677 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3678 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3679 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3680 // Offset the demanded elts by the subvector index. 3681 uint64_t Idx = SubIdx->getZExtValue(); 3682 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3683 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3684 } 3685 return ComputeNumSignBits(Src, Depth + 1); 3686 } 3687 case ISD::CONCAT_VECTORS: { 3688 // Determine the minimum number of sign bits across all demanded 3689 // elts of the input vectors. Early out if the result is already 1. 3690 Tmp = std::numeric_limits<unsigned>::max(); 3691 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3692 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3693 unsigned NumSubVectors = Op.getNumOperands(); 3694 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3695 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3696 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3697 if (!DemandedSub) 3698 continue; 3699 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3700 Tmp = std::min(Tmp, Tmp2); 3701 } 3702 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3703 return Tmp; 3704 } 3705 case ISD::INSERT_SUBVECTOR: { 3706 // If we know the element index, demand any elements from the subvector and 3707 // the remainder from the src its inserted into, otherwise demand them all. 3708 SDValue Src = Op.getOperand(0); 3709 SDValue Sub = Op.getOperand(1); 3710 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3711 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3712 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3713 Tmp = std::numeric_limits<unsigned>::max(); 3714 uint64_t Idx = SubIdx->getZExtValue(); 3715 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3716 if (!!DemandedSubElts) { 3717 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3718 if (Tmp == 1) return 1; // early-out 3719 } 3720 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3721 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3722 if (!!DemandedSrcElts) { 3723 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3724 Tmp = std::min(Tmp, Tmp2); 3725 } 3726 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3727 return Tmp; 3728 } 3729 3730 // Not able to determine the index so just assume worst case. 3731 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3732 if (Tmp == 1) return 1; // early-out 3733 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3734 Tmp = std::min(Tmp, Tmp2); 3735 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3736 return Tmp; 3737 } 3738 } 3739 3740 // If we are looking at the loaded value of the SDNode. 3741 if (Op.getResNo() == 0) { 3742 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3743 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3744 unsigned ExtType = LD->getExtensionType(); 3745 switch (ExtType) { 3746 default: break; 3747 case ISD::SEXTLOAD: // '17' bits known 3748 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3749 return VTBits-Tmp+1; 3750 case ISD::ZEXTLOAD: // '16' bits known 3751 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3752 return VTBits-Tmp; 3753 } 3754 } 3755 } 3756 3757 // Allow the target to implement this method for its nodes. 3758 if (Opcode >= ISD::BUILTIN_OP_END || 3759 Opcode == ISD::INTRINSIC_WO_CHAIN || 3760 Opcode == ISD::INTRINSIC_W_CHAIN || 3761 Opcode == ISD::INTRINSIC_VOID) { 3762 unsigned NumBits = 3763 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3764 if (NumBits > 1) 3765 FirstAnswer = std::max(FirstAnswer, NumBits); 3766 } 3767 3768 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3769 // use this information. 3770 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3771 3772 APInt Mask; 3773 if (Known.isNonNegative()) { // sign bit is 0 3774 Mask = Known.Zero; 3775 } else if (Known.isNegative()) { // sign bit is 1; 3776 Mask = Known.One; 3777 } else { 3778 // Nothing known. 3779 return FirstAnswer; 3780 } 3781 3782 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3783 // the number of identical bits in the top of the input value. 3784 Mask = ~Mask; 3785 Mask <<= Mask.getBitWidth()-VTBits; 3786 // Return # leading zeros. We use 'min' here in case Val was zero before 3787 // shifting. We don't want to return '64' as for an i32 "0". 3788 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3789 } 3790 3791 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3792 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3793 !isa<ConstantSDNode>(Op.getOperand(1))) 3794 return false; 3795 3796 if (Op.getOpcode() == ISD::OR && 3797 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3798 return false; 3799 3800 return true; 3801 } 3802 3803 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3804 // If we're told that NaNs won't happen, assume they won't. 3805 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3806 return true; 3807 3808 if (Depth == 6) 3809 return false; // Limit search depth. 3810 3811 // TODO: Handle vectors. 3812 // If the value is a constant, we can obviously see if it is a NaN or not. 3813 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3814 return !C->getValueAPF().isNaN() || 3815 (SNaN && !C->getValueAPF().isSignaling()); 3816 } 3817 3818 unsigned Opcode = Op.getOpcode(); 3819 switch (Opcode) { 3820 case ISD::FADD: 3821 case ISD::FSUB: 3822 case ISD::FMUL: 3823 case ISD::FDIV: 3824 case ISD::FREM: 3825 case ISD::FSIN: 3826 case ISD::FCOS: { 3827 if (SNaN) 3828 return true; 3829 // TODO: Need isKnownNeverInfinity 3830 return false; 3831 } 3832 case ISD::FCANONICALIZE: 3833 case ISD::FEXP: 3834 case ISD::FEXP2: 3835 case ISD::FTRUNC: 3836 case ISD::FFLOOR: 3837 case ISD::FCEIL: 3838 case ISD::FROUND: 3839 case ISD::FRINT: 3840 case ISD::FNEARBYINT: { 3841 if (SNaN) 3842 return true; 3843 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3844 } 3845 case ISD::FABS: 3846 case ISD::FNEG: 3847 case ISD::FCOPYSIGN: { 3848 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3849 } 3850 case ISD::SELECT: 3851 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3852 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3853 case ISD::FP_EXTEND: 3854 case ISD::FP_ROUND: { 3855 if (SNaN) 3856 return true; 3857 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3858 } 3859 case ISD::SINT_TO_FP: 3860 case ISD::UINT_TO_FP: 3861 return true; 3862 case ISD::FMA: 3863 case ISD::FMAD: { 3864 if (SNaN) 3865 return true; 3866 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3867 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3868 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3869 } 3870 case ISD::FSQRT: // Need is known positive 3871 case ISD::FLOG: 3872 case ISD::FLOG2: 3873 case ISD::FLOG10: 3874 case ISD::FPOWI: 3875 case ISD::FPOW: { 3876 if (SNaN) 3877 return true; 3878 // TODO: Refine on operand 3879 return false; 3880 } 3881 case ISD::FMINNUM: 3882 case ISD::FMAXNUM: { 3883 // Only one needs to be known not-nan, since it will be returned if the 3884 // other ends up being one. 3885 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 3886 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 3887 } 3888 case ISD::FMINNUM_IEEE: 3889 case ISD::FMAXNUM_IEEE: { 3890 if (SNaN) 3891 return true; 3892 // This can return a NaN if either operand is an sNaN, or if both operands 3893 // are NaN. 3894 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 3895 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 3896 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 3897 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 3898 } 3899 case ISD::FMINIMUM: 3900 case ISD::FMAXIMUM: { 3901 // TODO: Does this quiet or return the origina NaN as-is? 3902 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3903 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 3904 } 3905 case ISD::EXTRACT_VECTOR_ELT: { 3906 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3907 } 3908 default: 3909 if (Opcode >= ISD::BUILTIN_OP_END || 3910 Opcode == ISD::INTRINSIC_WO_CHAIN || 3911 Opcode == ISD::INTRINSIC_W_CHAIN || 3912 Opcode == ISD::INTRINSIC_VOID) { 3913 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 3914 } 3915 3916 return false; 3917 } 3918 } 3919 3920 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 3921 assert(Op.getValueType().isFloatingPoint() && 3922 "Floating point type expected"); 3923 3924 // If the value is a constant, we can obviously see if it is a zero or not. 3925 // TODO: Add BuildVector support. 3926 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3927 return !C->isZero(); 3928 return false; 3929 } 3930 3931 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3932 assert(!Op.getValueType().isFloatingPoint() && 3933 "Floating point types unsupported - use isKnownNeverZeroFloat"); 3934 3935 // If the value is a constant, we can obviously see if it is a zero or not. 3936 if (ISD::matchUnaryPredicate( 3937 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 3938 return true; 3939 3940 // TODO: Recognize more cases here. 3941 switch (Op.getOpcode()) { 3942 default: break; 3943 case ISD::OR: 3944 if (isKnownNeverZero(Op.getOperand(1)) || 3945 isKnownNeverZero(Op.getOperand(0))) 3946 return true; 3947 break; 3948 } 3949 3950 return false; 3951 } 3952 3953 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3954 // Check the obvious case. 3955 if (A == B) return true; 3956 3957 // For for negative and positive zero. 3958 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3959 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3960 if (CA->isZero() && CB->isZero()) return true; 3961 3962 // Otherwise they may not be equal. 3963 return false; 3964 } 3965 3966 // FIXME: unify with llvm::haveNoCommonBitsSet. 3967 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 3968 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3969 assert(A.getValueType() == B.getValueType() && 3970 "Values must have the same type"); 3971 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 3972 } 3973 3974 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 3975 ArrayRef<SDValue> Ops, 3976 SelectionDAG &DAG) { 3977 int NumOps = Ops.size(); 3978 assert(NumOps != 0 && "Can't build an empty vector!"); 3979 assert(VT.getVectorNumElements() == (unsigned)NumOps && 3980 "Incorrect element count in BUILD_VECTOR!"); 3981 3982 // BUILD_VECTOR of UNDEFs is UNDEF. 3983 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3984 return DAG.getUNDEF(VT); 3985 3986 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 3987 SDValue IdentitySrc; 3988 bool IsIdentity = true; 3989 for (int i = 0; i != NumOps; ++i) { 3990 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 3991 Ops[i].getOperand(0).getValueType() != VT || 3992 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 3993 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 3994 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 3995 IsIdentity = false; 3996 break; 3997 } 3998 IdentitySrc = Ops[i].getOperand(0); 3999 } 4000 if (IsIdentity) 4001 return IdentitySrc; 4002 4003 return SDValue(); 4004 } 4005 4006 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4007 ArrayRef<SDValue> Ops, 4008 SelectionDAG &DAG) { 4009 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4010 assert(llvm::all_of(Ops, 4011 [Ops](SDValue Op) { 4012 return Ops[0].getValueType() == Op.getValueType(); 4013 }) && 4014 "Concatenation of vectors with inconsistent value types!"); 4015 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4016 VT.getVectorNumElements() && 4017 "Incorrect element count in vector concatenation!"); 4018 4019 if (Ops.size() == 1) 4020 return Ops[0]; 4021 4022 // Concat of UNDEFs is UNDEF. 4023 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4024 return DAG.getUNDEF(VT); 4025 4026 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4027 // simplified to one big BUILD_VECTOR. 4028 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4029 EVT SVT = VT.getScalarType(); 4030 SmallVector<SDValue, 16> Elts; 4031 for (SDValue Op : Ops) { 4032 EVT OpVT = Op.getValueType(); 4033 if (Op.isUndef()) 4034 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4035 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4036 Elts.append(Op->op_begin(), Op->op_end()); 4037 else 4038 return SDValue(); 4039 } 4040 4041 // BUILD_VECTOR requires all inputs to be of the same type, find the 4042 // maximum type and extend them all. 4043 for (SDValue Op : Elts) 4044 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4045 4046 if (SVT.bitsGT(VT.getScalarType())) 4047 for (SDValue &Op : Elts) 4048 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4049 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4050 : DAG.getSExtOrTrunc(Op, DL, SVT); 4051 4052 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4053 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4054 return V; 4055 } 4056 4057 /// Gets or creates the specified node. 4058 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4059 FoldingSetNodeID ID; 4060 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4061 void *IP = nullptr; 4062 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4063 return SDValue(E, 0); 4064 4065 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4066 getVTList(VT)); 4067 CSEMap.InsertNode(N, IP); 4068 4069 InsertNode(N); 4070 SDValue V = SDValue(N, 0); 4071 NewSDValueDbgMsg(V, "Creating new node: ", this); 4072 return V; 4073 } 4074 4075 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4076 SDValue Operand, const SDNodeFlags Flags) { 4077 // Constant fold unary operations with an integer constant operand. Even 4078 // opaque constant will be folded, because the folding of unary operations 4079 // doesn't create new constants with different values. Nevertheless, the 4080 // opaque flag is preserved during folding to prevent future folding with 4081 // other constants. 4082 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4083 const APInt &Val = C->getAPIntValue(); 4084 switch (Opcode) { 4085 default: break; 4086 case ISD::SIGN_EXTEND: 4087 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4088 C->isTargetOpcode(), C->isOpaque()); 4089 case ISD::TRUNCATE: 4090 if (C->isOpaque()) 4091 break; 4092 LLVM_FALLTHROUGH; 4093 case ISD::ANY_EXTEND: 4094 case ISD::ZERO_EXTEND: 4095 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4096 C->isTargetOpcode(), C->isOpaque()); 4097 case ISD::UINT_TO_FP: 4098 case ISD::SINT_TO_FP: { 4099 APFloat apf(EVTToAPFloatSemantics(VT), 4100 APInt::getNullValue(VT.getSizeInBits())); 4101 (void)apf.convertFromAPInt(Val, 4102 Opcode==ISD::SINT_TO_FP, 4103 APFloat::rmNearestTiesToEven); 4104 return getConstantFP(apf, DL, VT); 4105 } 4106 case ISD::BITCAST: 4107 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4108 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4109 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4110 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4111 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4112 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4113 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4114 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4115 break; 4116 case ISD::ABS: 4117 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4118 C->isOpaque()); 4119 case ISD::BITREVERSE: 4120 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4121 C->isOpaque()); 4122 case ISD::BSWAP: 4123 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4124 C->isOpaque()); 4125 case ISD::CTPOP: 4126 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4127 C->isOpaque()); 4128 case ISD::CTLZ: 4129 case ISD::CTLZ_ZERO_UNDEF: 4130 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4131 C->isOpaque()); 4132 case ISD::CTTZ: 4133 case ISD::CTTZ_ZERO_UNDEF: 4134 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4135 C->isOpaque()); 4136 case ISD::FP16_TO_FP: { 4137 bool Ignored; 4138 APFloat FPV(APFloat::IEEEhalf(), 4139 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4140 4141 // This can return overflow, underflow, or inexact; we don't care. 4142 // FIXME need to be more flexible about rounding mode. 4143 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4144 APFloat::rmNearestTiesToEven, &Ignored); 4145 return getConstantFP(FPV, DL, VT); 4146 } 4147 } 4148 } 4149 4150 // Constant fold unary operations with a floating point constant operand. 4151 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4152 APFloat V = C->getValueAPF(); // make copy 4153 switch (Opcode) { 4154 case ISD::FNEG: 4155 V.changeSign(); 4156 return getConstantFP(V, DL, VT); 4157 case ISD::FABS: 4158 V.clearSign(); 4159 return getConstantFP(V, DL, VT); 4160 case ISD::FCEIL: { 4161 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4162 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4163 return getConstantFP(V, DL, VT); 4164 break; 4165 } 4166 case ISD::FTRUNC: { 4167 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4168 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4169 return getConstantFP(V, DL, VT); 4170 break; 4171 } 4172 case ISD::FFLOOR: { 4173 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4174 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4175 return getConstantFP(V, DL, VT); 4176 break; 4177 } 4178 case ISD::FP_EXTEND: { 4179 bool ignored; 4180 // This can return overflow, underflow, or inexact; we don't care. 4181 // FIXME need to be more flexible about rounding mode. 4182 (void)V.convert(EVTToAPFloatSemantics(VT), 4183 APFloat::rmNearestTiesToEven, &ignored); 4184 return getConstantFP(V, DL, VT); 4185 } 4186 case ISD::FP_TO_SINT: 4187 case ISD::FP_TO_UINT: { 4188 bool ignored; 4189 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4190 // FIXME need to be more flexible about rounding mode. 4191 APFloat::opStatus s = 4192 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4193 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4194 break; 4195 return getConstant(IntVal, DL, VT); 4196 } 4197 case ISD::BITCAST: 4198 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4199 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4200 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4201 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4202 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4203 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4204 break; 4205 case ISD::FP_TO_FP16: { 4206 bool Ignored; 4207 // This can return overflow, underflow, or inexact; we don't care. 4208 // FIXME need to be more flexible about rounding mode. 4209 (void)V.convert(APFloat::IEEEhalf(), 4210 APFloat::rmNearestTiesToEven, &Ignored); 4211 return getConstant(V.bitcastToAPInt(), DL, VT); 4212 } 4213 } 4214 } 4215 4216 // Constant fold unary operations with a vector integer or float operand. 4217 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4218 if (BV->isConstant()) { 4219 switch (Opcode) { 4220 default: 4221 // FIXME: Entirely reasonable to perform folding of other unary 4222 // operations here as the need arises. 4223 break; 4224 case ISD::FNEG: 4225 case ISD::FABS: 4226 case ISD::FCEIL: 4227 case ISD::FTRUNC: 4228 case ISD::FFLOOR: 4229 case ISD::FP_EXTEND: 4230 case ISD::FP_TO_SINT: 4231 case ISD::FP_TO_UINT: 4232 case ISD::TRUNCATE: 4233 case ISD::ANY_EXTEND: 4234 case ISD::ZERO_EXTEND: 4235 case ISD::SIGN_EXTEND: 4236 case ISD::UINT_TO_FP: 4237 case ISD::SINT_TO_FP: 4238 case ISD::ABS: 4239 case ISD::BITREVERSE: 4240 case ISD::BSWAP: 4241 case ISD::CTLZ: 4242 case ISD::CTLZ_ZERO_UNDEF: 4243 case ISD::CTTZ: 4244 case ISD::CTTZ_ZERO_UNDEF: 4245 case ISD::CTPOP: { 4246 SDValue Ops = { Operand }; 4247 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4248 return Fold; 4249 } 4250 } 4251 } 4252 } 4253 4254 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4255 switch (Opcode) { 4256 case ISD::TokenFactor: 4257 case ISD::MERGE_VALUES: 4258 case ISD::CONCAT_VECTORS: 4259 return Operand; // Factor, merge or concat of one node? No need. 4260 case ISD::BUILD_VECTOR: { 4261 // Attempt to simplify BUILD_VECTOR. 4262 SDValue Ops[] = {Operand}; 4263 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4264 return V; 4265 break; 4266 } 4267 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4268 case ISD::FP_EXTEND: 4269 assert(VT.isFloatingPoint() && 4270 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4271 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4272 assert((!VT.isVector() || 4273 VT.getVectorNumElements() == 4274 Operand.getValueType().getVectorNumElements()) && 4275 "Vector element count mismatch!"); 4276 assert(Operand.getValueType().bitsLT(VT) && 4277 "Invalid fpext node, dst < src!"); 4278 if (Operand.isUndef()) 4279 return getUNDEF(VT); 4280 break; 4281 case ISD::SIGN_EXTEND: 4282 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4283 "Invalid SIGN_EXTEND!"); 4284 if (Operand.getValueType() == VT) return Operand; // noop extension 4285 assert((!VT.isVector() || 4286 VT.getVectorNumElements() == 4287 Operand.getValueType().getVectorNumElements()) && 4288 "Vector element count mismatch!"); 4289 assert(Operand.getValueType().bitsLT(VT) && 4290 "Invalid sext node, dst < src!"); 4291 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4292 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4293 else if (OpOpcode == ISD::UNDEF) 4294 // sext(undef) = 0, because the top bits will all be the same. 4295 return getConstant(0, DL, VT); 4296 break; 4297 case ISD::ZERO_EXTEND: 4298 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4299 "Invalid ZERO_EXTEND!"); 4300 if (Operand.getValueType() == VT) return Operand; // noop extension 4301 assert((!VT.isVector() || 4302 VT.getVectorNumElements() == 4303 Operand.getValueType().getVectorNumElements()) && 4304 "Vector element count mismatch!"); 4305 assert(Operand.getValueType().bitsLT(VT) && 4306 "Invalid zext node, dst < src!"); 4307 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4308 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4309 else if (OpOpcode == ISD::UNDEF) 4310 // zext(undef) = 0, because the top bits will be zero. 4311 return getConstant(0, DL, VT); 4312 break; 4313 case ISD::ANY_EXTEND: 4314 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4315 "Invalid ANY_EXTEND!"); 4316 if (Operand.getValueType() == VT) return Operand; // noop extension 4317 assert((!VT.isVector() || 4318 VT.getVectorNumElements() == 4319 Operand.getValueType().getVectorNumElements()) && 4320 "Vector element count mismatch!"); 4321 assert(Operand.getValueType().bitsLT(VT) && 4322 "Invalid anyext node, dst < src!"); 4323 4324 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4325 OpOpcode == ISD::ANY_EXTEND) 4326 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4327 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4328 else if (OpOpcode == ISD::UNDEF) 4329 return getUNDEF(VT); 4330 4331 // (ext (trunc x)) -> x 4332 if (OpOpcode == ISD::TRUNCATE) { 4333 SDValue OpOp = Operand.getOperand(0); 4334 if (OpOp.getValueType() == VT) { 4335 transferDbgValues(Operand, OpOp); 4336 return OpOp; 4337 } 4338 } 4339 break; 4340 case ISD::TRUNCATE: 4341 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4342 "Invalid TRUNCATE!"); 4343 if (Operand.getValueType() == VT) return Operand; // noop truncate 4344 assert((!VT.isVector() || 4345 VT.getVectorNumElements() == 4346 Operand.getValueType().getVectorNumElements()) && 4347 "Vector element count mismatch!"); 4348 assert(Operand.getValueType().bitsGT(VT) && 4349 "Invalid truncate node, src < dst!"); 4350 if (OpOpcode == ISD::TRUNCATE) 4351 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4352 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4353 OpOpcode == ISD::ANY_EXTEND) { 4354 // If the source is smaller than the dest, we still need an extend. 4355 if (Operand.getOperand(0).getValueType().getScalarType() 4356 .bitsLT(VT.getScalarType())) 4357 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4358 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4359 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4360 return Operand.getOperand(0); 4361 } 4362 if (OpOpcode == ISD::UNDEF) 4363 return getUNDEF(VT); 4364 break; 4365 case ISD::ANY_EXTEND_VECTOR_INREG: 4366 case ISD::ZERO_EXTEND_VECTOR_INREG: 4367 case ISD::SIGN_EXTEND_VECTOR_INREG: 4368 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4369 assert(Operand.getValueType().bitsLE(VT) && 4370 "The input must be the same size or smaller than the result."); 4371 assert(VT.getVectorNumElements() < 4372 Operand.getValueType().getVectorNumElements() && 4373 "The destination vector type must have fewer lanes than the input."); 4374 break; 4375 case ISD::ABS: 4376 assert(VT.isInteger() && VT == Operand.getValueType() && 4377 "Invalid ABS!"); 4378 if (OpOpcode == ISD::UNDEF) 4379 return getUNDEF(VT); 4380 break; 4381 case ISD::BSWAP: 4382 assert(VT.isInteger() && VT == Operand.getValueType() && 4383 "Invalid BSWAP!"); 4384 assert((VT.getScalarSizeInBits() % 16 == 0) && 4385 "BSWAP types must be a multiple of 16 bits!"); 4386 if (OpOpcode == ISD::UNDEF) 4387 return getUNDEF(VT); 4388 break; 4389 case ISD::BITREVERSE: 4390 assert(VT.isInteger() && VT == Operand.getValueType() && 4391 "Invalid BITREVERSE!"); 4392 if (OpOpcode == ISD::UNDEF) 4393 return getUNDEF(VT); 4394 break; 4395 case ISD::BITCAST: 4396 // Basic sanity checking. 4397 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4398 "Cannot BITCAST between types of different sizes!"); 4399 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4400 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4401 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4402 if (OpOpcode == ISD::UNDEF) 4403 return getUNDEF(VT); 4404 break; 4405 case ISD::SCALAR_TO_VECTOR: 4406 assert(VT.isVector() && !Operand.getValueType().isVector() && 4407 (VT.getVectorElementType() == Operand.getValueType() || 4408 (VT.getVectorElementType().isInteger() && 4409 Operand.getValueType().isInteger() && 4410 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4411 "Illegal SCALAR_TO_VECTOR node!"); 4412 if (OpOpcode == ISD::UNDEF) 4413 return getUNDEF(VT); 4414 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4415 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4416 isa<ConstantSDNode>(Operand.getOperand(1)) && 4417 Operand.getConstantOperandVal(1) == 0 && 4418 Operand.getOperand(0).getValueType() == VT) 4419 return Operand.getOperand(0); 4420 break; 4421 case ISD::FNEG: 4422 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4423 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && 4424 OpOpcode == ISD::FSUB) 4425 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4426 Operand.getOperand(0), Flags); 4427 if (OpOpcode == ISD::FNEG) // --X -> X 4428 return Operand.getOperand(0); 4429 break; 4430 case ISD::FABS: 4431 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4432 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4433 break; 4434 } 4435 4436 SDNode *N; 4437 SDVTList VTs = getVTList(VT); 4438 SDValue Ops[] = {Operand}; 4439 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4440 FoldingSetNodeID ID; 4441 AddNodeIDNode(ID, Opcode, VTs, Ops); 4442 void *IP = nullptr; 4443 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4444 E->intersectFlagsWith(Flags); 4445 return SDValue(E, 0); 4446 } 4447 4448 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4449 N->setFlags(Flags); 4450 createOperands(N, Ops); 4451 CSEMap.InsertNode(N, IP); 4452 } else { 4453 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4454 createOperands(N, Ops); 4455 } 4456 4457 InsertNode(N); 4458 SDValue V = SDValue(N, 0); 4459 NewSDValueDbgMsg(V, "Creating new node: ", this); 4460 return V; 4461 } 4462 4463 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4464 const APInt &C2) { 4465 switch (Opcode) { 4466 case ISD::ADD: return std::make_pair(C1 + C2, true); 4467 case ISD::SUB: return std::make_pair(C1 - C2, true); 4468 case ISD::MUL: return std::make_pair(C1 * C2, true); 4469 case ISD::AND: return std::make_pair(C1 & C2, true); 4470 case ISD::OR: return std::make_pair(C1 | C2, true); 4471 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4472 case ISD::SHL: return std::make_pair(C1 << C2, true); 4473 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4474 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4475 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4476 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4477 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4478 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4479 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4480 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4481 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4482 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4483 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4484 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4485 case ISD::UDIV: 4486 if (!C2.getBoolValue()) 4487 break; 4488 return std::make_pair(C1.udiv(C2), true); 4489 case ISD::UREM: 4490 if (!C2.getBoolValue()) 4491 break; 4492 return std::make_pair(C1.urem(C2), true); 4493 case ISD::SDIV: 4494 if (!C2.getBoolValue()) 4495 break; 4496 return std::make_pair(C1.sdiv(C2), true); 4497 case ISD::SREM: 4498 if (!C2.getBoolValue()) 4499 break; 4500 return std::make_pair(C1.srem(C2), true); 4501 } 4502 return std::make_pair(APInt(1, 0), false); 4503 } 4504 4505 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4506 EVT VT, const ConstantSDNode *C1, 4507 const ConstantSDNode *C2) { 4508 if (C1->isOpaque() || C2->isOpaque()) 4509 return SDValue(); 4510 4511 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4512 C2->getAPIntValue()); 4513 if (!Folded.second) 4514 return SDValue(); 4515 return getConstant(Folded.first, DL, VT); 4516 } 4517 4518 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4519 const GlobalAddressSDNode *GA, 4520 const SDNode *N2) { 4521 if (GA->getOpcode() != ISD::GlobalAddress) 4522 return SDValue(); 4523 if (!TLI->isOffsetFoldingLegal(GA)) 4524 return SDValue(); 4525 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4526 if (!C2) 4527 return SDValue(); 4528 int64_t Offset = C2->getSExtValue(); 4529 switch (Opcode) { 4530 case ISD::ADD: break; 4531 case ISD::SUB: Offset = -uint64_t(Offset); break; 4532 default: return SDValue(); 4533 } 4534 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4535 GA->getOffset() + uint64_t(Offset)); 4536 } 4537 4538 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4539 switch (Opcode) { 4540 case ISD::SDIV: 4541 case ISD::UDIV: 4542 case ISD::SREM: 4543 case ISD::UREM: { 4544 // If a divisor is zero/undef or any element of a divisor vector is 4545 // zero/undef, the whole op is undef. 4546 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4547 SDValue Divisor = Ops[1]; 4548 if (Divisor.isUndef() || isNullConstant(Divisor)) 4549 return true; 4550 4551 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4552 llvm::any_of(Divisor->op_values(), 4553 [](SDValue V) { return V.isUndef() || 4554 isNullConstant(V); }); 4555 // TODO: Handle signed overflow. 4556 } 4557 // TODO: Handle oversized shifts. 4558 default: 4559 return false; 4560 } 4561 } 4562 4563 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4564 EVT VT, SDNode *N1, SDNode *N2) { 4565 // If the opcode is a target-specific ISD node, there's nothing we can 4566 // do here and the operand rules may not line up with the below, so 4567 // bail early. 4568 if (Opcode >= ISD::BUILTIN_OP_END) 4569 return SDValue(); 4570 4571 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4572 return getUNDEF(VT); 4573 4574 // Handle the case of two scalars. 4575 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4576 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4577 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4578 assert((!Folded || !VT.isVector()) && 4579 "Can't fold vectors ops with scalar operands"); 4580 return Folded; 4581 } 4582 } 4583 4584 // fold (add Sym, c) -> Sym+c 4585 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4586 return FoldSymbolOffset(Opcode, VT, GA, N2); 4587 if (TLI->isCommutativeBinOp(Opcode)) 4588 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4589 return FoldSymbolOffset(Opcode, VT, GA, N1); 4590 4591 // For vectors, extract each constant element and fold them individually. 4592 // Either input may be an undef value. 4593 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4594 if (!BV1 && !N1->isUndef()) 4595 return SDValue(); 4596 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4597 if (!BV2 && !N2->isUndef()) 4598 return SDValue(); 4599 // If both operands are undef, that's handled the same way as scalars. 4600 if (!BV1 && !BV2) 4601 return SDValue(); 4602 4603 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4604 "Vector binop with different number of elements in operands?"); 4605 4606 EVT SVT = VT.getScalarType(); 4607 EVT LegalSVT = SVT; 4608 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4609 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4610 if (LegalSVT.bitsLT(SVT)) 4611 return SDValue(); 4612 } 4613 SmallVector<SDValue, 4> Outputs; 4614 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4615 for (unsigned I = 0; I != NumOps; ++I) { 4616 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4617 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4618 if (SVT.isInteger()) { 4619 if (V1->getValueType(0).bitsGT(SVT)) 4620 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4621 if (V2->getValueType(0).bitsGT(SVT)) 4622 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4623 } 4624 4625 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4626 return SDValue(); 4627 4628 // Fold one vector element. 4629 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4630 if (LegalSVT != SVT) 4631 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4632 4633 // Scalar folding only succeeded if the result is a constant or UNDEF. 4634 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4635 ScalarResult.getOpcode() != ISD::ConstantFP) 4636 return SDValue(); 4637 Outputs.push_back(ScalarResult); 4638 } 4639 4640 assert(VT.getVectorNumElements() == Outputs.size() && 4641 "Vector size mismatch!"); 4642 4643 // We may have a vector type but a scalar result. Create a splat. 4644 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4645 4646 // Build a big vector out of the scalar elements we generated. 4647 return getBuildVector(VT, SDLoc(), Outputs); 4648 } 4649 4650 // TODO: Merge with FoldConstantArithmetic 4651 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4652 const SDLoc &DL, EVT VT, 4653 ArrayRef<SDValue> Ops, 4654 const SDNodeFlags Flags) { 4655 // If the opcode is a target-specific ISD node, there's nothing we can 4656 // do here and the operand rules may not line up with the below, so 4657 // bail early. 4658 if (Opcode >= ISD::BUILTIN_OP_END) 4659 return SDValue(); 4660 4661 if (isUndef(Opcode, Ops)) 4662 return getUNDEF(VT); 4663 4664 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4665 if (!VT.isVector()) 4666 return SDValue(); 4667 4668 unsigned NumElts = VT.getVectorNumElements(); 4669 4670 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4671 return !Op.getValueType().isVector() || 4672 Op.getValueType().getVectorNumElements() == NumElts; 4673 }; 4674 4675 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4676 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4677 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4678 (BV && BV->isConstant()); 4679 }; 4680 4681 // All operands must be vector types with the same number of elements as 4682 // the result type and must be either UNDEF or a build vector of constant 4683 // or UNDEF scalars. 4684 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4685 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4686 return SDValue(); 4687 4688 // If we are comparing vectors, then the result needs to be a i1 boolean 4689 // that is then sign-extended back to the legal result type. 4690 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4691 4692 // Find legal integer scalar type for constant promotion and 4693 // ensure that its scalar size is at least as large as source. 4694 EVT LegalSVT = VT.getScalarType(); 4695 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4696 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4697 if (LegalSVT.bitsLT(VT.getScalarType())) 4698 return SDValue(); 4699 } 4700 4701 // Constant fold each scalar lane separately. 4702 SmallVector<SDValue, 4> ScalarResults; 4703 for (unsigned i = 0; i != NumElts; i++) { 4704 SmallVector<SDValue, 4> ScalarOps; 4705 for (SDValue Op : Ops) { 4706 EVT InSVT = Op.getValueType().getScalarType(); 4707 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4708 if (!InBV) { 4709 // We've checked that this is UNDEF or a constant of some kind. 4710 if (Op.isUndef()) 4711 ScalarOps.push_back(getUNDEF(InSVT)); 4712 else 4713 ScalarOps.push_back(Op); 4714 continue; 4715 } 4716 4717 SDValue ScalarOp = InBV->getOperand(i); 4718 EVT ScalarVT = ScalarOp.getValueType(); 4719 4720 // Build vector (integer) scalar operands may need implicit 4721 // truncation - do this before constant folding. 4722 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4723 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4724 4725 ScalarOps.push_back(ScalarOp); 4726 } 4727 4728 // Constant fold the scalar operands. 4729 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4730 4731 // Legalize the (integer) scalar constant if necessary. 4732 if (LegalSVT != SVT) 4733 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4734 4735 // Scalar folding only succeeded if the result is a constant or UNDEF. 4736 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4737 ScalarResult.getOpcode() != ISD::ConstantFP) 4738 return SDValue(); 4739 ScalarResults.push_back(ScalarResult); 4740 } 4741 4742 SDValue V = getBuildVector(VT, DL, ScalarResults); 4743 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4744 return V; 4745 } 4746 4747 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4748 EVT VT, SDValue N1, SDValue N2) { 4749 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4750 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4751 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4752 if (N1CFP && N2CFP) { 4753 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4754 APFloat::opStatus Status; 4755 switch (Opcode) { 4756 case ISD::FADD: 4757 Status = C1.add(C2, APFloat::rmNearestTiesToEven); 4758 if (!HasFPExceptions || Status != APFloat::opInvalidOp) 4759 return getConstantFP(C1, DL, VT); 4760 break; 4761 case ISD::FSUB: 4762 Status = C1.subtract(C2, APFloat::rmNearestTiesToEven); 4763 if (!HasFPExceptions || Status != APFloat::opInvalidOp) 4764 return getConstantFP(C1, DL, VT); 4765 break; 4766 case ISD::FMUL: 4767 Status = C1.multiply(C2, APFloat::rmNearestTiesToEven); 4768 if (!HasFPExceptions || Status != APFloat::opInvalidOp) 4769 return getConstantFP(C1, DL, VT); 4770 break; 4771 case ISD::FDIV: 4772 Status = C1.divide(C2, APFloat::rmNearestTiesToEven); 4773 if (!HasFPExceptions || (Status != APFloat::opInvalidOp && 4774 Status != APFloat::opDivByZero)) { 4775 return getConstantFP(C1, DL, VT); 4776 } 4777 break; 4778 case ISD::FREM: 4779 Status = C1.mod(C2); 4780 if (!HasFPExceptions || (Status != APFloat::opInvalidOp && 4781 Status != APFloat::opDivByZero)) { 4782 return getConstantFP(C1, DL, VT); 4783 } 4784 break; 4785 case ISD::FCOPYSIGN: 4786 C1.copySign(C2); 4787 return getConstantFP(C1, DL, VT); 4788 default: break; 4789 } 4790 } 4791 if (N1CFP && Opcode == ISD::FP_ROUND) { 4792 APFloat C1 = N1CFP->getValueAPF(); // make copy 4793 bool Unused; 4794 // This can return overflow, underflow, or inexact; we don't care. 4795 // FIXME need to be more flexible about rounding mode. 4796 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 4797 &Unused); 4798 return getConstantFP(C1, DL, VT); 4799 } 4800 4801 switch (Opcode) { 4802 case ISD::FADD: 4803 case ISD::FSUB: 4804 case ISD::FMUL: 4805 case ISD::FDIV: 4806 case ISD::FREM: 4807 // If both operands are undef, the result is undef. If 1 operand is undef, 4808 // the result is NaN. This should match the behavior of the IR optimizer. 4809 if (N1.isUndef() && N2.isUndef()) 4810 return getUNDEF(VT); 4811 if (N1.isUndef() || N2.isUndef()) 4812 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 4813 } 4814 return SDValue(); 4815 } 4816 4817 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4818 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4819 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4820 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4821 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4822 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4823 4824 // Canonicalize constant to RHS if commutative. 4825 if (TLI->isCommutativeBinOp(Opcode)) { 4826 if (N1C && !N2C) { 4827 std::swap(N1C, N2C); 4828 std::swap(N1, N2); 4829 } else if (N1CFP && !N2CFP) { 4830 std::swap(N1CFP, N2CFP); 4831 std::swap(N1, N2); 4832 } 4833 } 4834 4835 switch (Opcode) { 4836 default: break; 4837 case ISD::TokenFactor: 4838 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4839 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4840 // Fold trivial token factors. 4841 if (N1.getOpcode() == ISD::EntryToken) return N2; 4842 if (N2.getOpcode() == ISD::EntryToken) return N1; 4843 if (N1 == N2) return N1; 4844 break; 4845 case ISD::BUILD_VECTOR: { 4846 // Attempt to simplify BUILD_VECTOR. 4847 SDValue Ops[] = {N1, N2}; 4848 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4849 return V; 4850 break; 4851 } 4852 case ISD::CONCAT_VECTORS: { 4853 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4854 SDValue Ops[] = {N1, N2}; 4855 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4856 return V; 4857 break; 4858 } 4859 case ISD::AND: 4860 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4861 assert(N1.getValueType() == N2.getValueType() && 4862 N1.getValueType() == VT && "Binary operator types must match!"); 4863 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4864 // worth handling here. 4865 if (N2C && N2C->isNullValue()) 4866 return N2; 4867 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4868 return N1; 4869 break; 4870 case ISD::OR: 4871 case ISD::XOR: 4872 case ISD::ADD: 4873 case ISD::SUB: 4874 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4875 assert(N1.getValueType() == N2.getValueType() && 4876 N1.getValueType() == VT && "Binary operator types must match!"); 4877 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4878 // it's worth handling here. 4879 if (N2C && N2C->isNullValue()) 4880 return N1; 4881 break; 4882 case ISD::UDIV: 4883 case ISD::UREM: 4884 case ISD::MULHU: 4885 case ISD::MULHS: 4886 case ISD::MUL: 4887 case ISD::SDIV: 4888 case ISD::SREM: 4889 case ISD::SMIN: 4890 case ISD::SMAX: 4891 case ISD::UMIN: 4892 case ISD::UMAX: 4893 case ISD::SADDSAT: 4894 case ISD::SSUBSAT: 4895 case ISD::UADDSAT: 4896 case ISD::USUBSAT: 4897 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4898 assert(N1.getValueType() == N2.getValueType() && 4899 N1.getValueType() == VT && "Binary operator types must match!"); 4900 break; 4901 case ISD::FADD: 4902 case ISD::FSUB: 4903 case ISD::FMUL: 4904 case ISD::FDIV: 4905 case ISD::FREM: 4906 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4907 assert(N1.getValueType() == N2.getValueType() && 4908 N1.getValueType() == VT && "Binary operator types must match!"); 4909 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 4910 return V; 4911 break; 4912 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4913 assert(N1.getValueType() == VT && 4914 N1.getValueType().isFloatingPoint() && 4915 N2.getValueType().isFloatingPoint() && 4916 "Invalid FCOPYSIGN!"); 4917 break; 4918 case ISD::SHL: 4919 case ISD::SRA: 4920 case ISD::SRL: 4921 if (SDValue V = simplifyShift(N1, N2)) 4922 return V; 4923 LLVM_FALLTHROUGH; 4924 case ISD::ROTL: 4925 case ISD::ROTR: 4926 assert(VT == N1.getValueType() && 4927 "Shift operators return type must be the same as their first arg"); 4928 assert(VT.isInteger() && N2.getValueType().isInteger() && 4929 "Shifts only work on integers"); 4930 assert((!VT.isVector() || VT == N2.getValueType()) && 4931 "Vector shift amounts must be in the same as their first arg"); 4932 // Verify that the shift amount VT is big enough to hold valid shift 4933 // amounts. This catches things like trying to shift an i1024 value by an 4934 // i8, which is easy to fall into in generic code that uses 4935 // TLI.getShiftAmount(). 4936 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4937 "Invalid use of small shift amount with oversized value!"); 4938 4939 // Always fold shifts of i1 values so the code generator doesn't need to 4940 // handle them. Since we know the size of the shift has to be less than the 4941 // size of the value, the shift/rotate count is guaranteed to be zero. 4942 if (VT == MVT::i1) 4943 return N1; 4944 if (N2C && N2C->isNullValue()) 4945 return N1; 4946 break; 4947 case ISD::FP_ROUND_INREG: { 4948 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4949 assert(VT == N1.getValueType() && "Not an inreg round!"); 4950 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4951 "Cannot FP_ROUND_INREG integer types"); 4952 assert(EVT.isVector() == VT.isVector() && 4953 "FP_ROUND_INREG type should be vector iff the operand " 4954 "type is vector!"); 4955 assert((!EVT.isVector() || 4956 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4957 "Vector element counts must match in FP_ROUND_INREG"); 4958 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4959 (void)EVT; 4960 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4961 break; 4962 } 4963 case ISD::FP_ROUND: 4964 assert(VT.isFloatingPoint() && 4965 N1.getValueType().isFloatingPoint() && 4966 VT.bitsLE(N1.getValueType()) && 4967 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4968 "Invalid FP_ROUND!"); 4969 if (N1.getValueType() == VT) return N1; // noop conversion. 4970 break; 4971 case ISD::AssertSext: 4972 case ISD::AssertZext: { 4973 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4974 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4975 assert(VT.isInteger() && EVT.isInteger() && 4976 "Cannot *_EXTEND_INREG FP types"); 4977 assert(!EVT.isVector() && 4978 "AssertSExt/AssertZExt type should be the vector element type " 4979 "rather than the vector type!"); 4980 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 4981 if (VT.getScalarType() == EVT) return N1; // noop assertion. 4982 break; 4983 } 4984 case ISD::SIGN_EXTEND_INREG: { 4985 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4986 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4987 assert(VT.isInteger() && EVT.isInteger() && 4988 "Cannot *_EXTEND_INREG FP types"); 4989 assert(EVT.isVector() == VT.isVector() && 4990 "SIGN_EXTEND_INREG type should be vector iff the operand " 4991 "type is vector!"); 4992 assert((!EVT.isVector() || 4993 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4994 "Vector element counts must match in SIGN_EXTEND_INREG"); 4995 assert(EVT.bitsLE(VT) && "Not extending!"); 4996 if (EVT == VT) return N1; // Not actually extending 4997 4998 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4999 unsigned FromBits = EVT.getScalarSizeInBits(); 5000 Val <<= Val.getBitWidth() - FromBits; 5001 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5002 return getConstant(Val, DL, ConstantVT); 5003 }; 5004 5005 if (N1C) { 5006 const APInt &Val = N1C->getAPIntValue(); 5007 return SignExtendInReg(Val, VT); 5008 } 5009 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5010 SmallVector<SDValue, 8> Ops; 5011 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5012 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5013 SDValue Op = N1.getOperand(i); 5014 if (Op.isUndef()) { 5015 Ops.push_back(getUNDEF(OpVT)); 5016 continue; 5017 } 5018 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5019 APInt Val = C->getAPIntValue(); 5020 Ops.push_back(SignExtendInReg(Val, OpVT)); 5021 } 5022 return getBuildVector(VT, DL, Ops); 5023 } 5024 break; 5025 } 5026 case ISD::EXTRACT_VECTOR_ELT: 5027 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5028 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5029 element type of the vector."); 5030 5031 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5032 if (N1.isUndef()) 5033 return getUNDEF(VT); 5034 5035 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5036 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5037 return getUNDEF(VT); 5038 5039 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5040 // expanding copies of large vectors from registers. 5041 if (N2C && 5042 N1.getOpcode() == ISD::CONCAT_VECTORS && 5043 N1.getNumOperands() > 0) { 5044 unsigned Factor = 5045 N1.getOperand(0).getValueType().getVectorNumElements(); 5046 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5047 N1.getOperand(N2C->getZExtValue() / Factor), 5048 getConstant(N2C->getZExtValue() % Factor, DL, 5049 N2.getValueType())); 5050 } 5051 5052 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5053 // expanding large vector constants. 5054 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5055 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5056 5057 if (VT != Elt.getValueType()) 5058 // If the vector element type is not legal, the BUILD_VECTOR operands 5059 // are promoted and implicitly truncated, and the result implicitly 5060 // extended. Make that explicit here. 5061 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5062 5063 return Elt; 5064 } 5065 5066 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5067 // operations are lowered to scalars. 5068 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5069 // If the indices are the same, return the inserted element else 5070 // if the indices are known different, extract the element from 5071 // the original vector. 5072 SDValue N1Op2 = N1.getOperand(2); 5073 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5074 5075 if (N1Op2C && N2C) { 5076 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5077 if (VT == N1.getOperand(1).getValueType()) 5078 return N1.getOperand(1); 5079 else 5080 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5081 } 5082 5083 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5084 } 5085 } 5086 5087 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5088 // when vector types are scalarized and v1iX is legal. 5089 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5090 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5091 N1.getValueType().getVectorNumElements() == 1) { 5092 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5093 N1.getOperand(1)); 5094 } 5095 break; 5096 case ISD::EXTRACT_ELEMENT: 5097 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5098 assert(!N1.getValueType().isVector() && !VT.isVector() && 5099 (N1.getValueType().isInteger() == VT.isInteger()) && 5100 N1.getValueType() != VT && 5101 "Wrong types for EXTRACT_ELEMENT!"); 5102 5103 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5104 // 64-bit integers into 32-bit parts. Instead of building the extract of 5105 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5106 if (N1.getOpcode() == ISD::BUILD_PAIR) 5107 return N1.getOperand(N2C->getZExtValue()); 5108 5109 // EXTRACT_ELEMENT of a constant int is also very common. 5110 if (N1C) { 5111 unsigned ElementSize = VT.getSizeInBits(); 5112 unsigned Shift = ElementSize * N2C->getZExtValue(); 5113 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5114 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5115 } 5116 break; 5117 case ISD::EXTRACT_SUBVECTOR: 5118 if (VT.isSimple() && N1.getValueType().isSimple()) { 5119 assert(VT.isVector() && N1.getValueType().isVector() && 5120 "Extract subvector VTs must be a vectors!"); 5121 assert(VT.getVectorElementType() == 5122 N1.getValueType().getVectorElementType() && 5123 "Extract subvector VTs must have the same element type!"); 5124 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5125 "Extract subvector must be from larger vector to smaller vector!"); 5126 5127 if (N2C) { 5128 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5129 <= N1.getValueType().getVectorNumElements()) 5130 && "Extract subvector overflow!"); 5131 } 5132 5133 // Trivial extraction. 5134 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5135 return N1; 5136 5137 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5138 if (N1.isUndef()) 5139 return getUNDEF(VT); 5140 5141 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5142 // the concat have the same type as the extract. 5143 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5144 N1.getNumOperands() > 0 && 5145 VT == N1.getOperand(0).getValueType()) { 5146 unsigned Factor = VT.getVectorNumElements(); 5147 return N1.getOperand(N2C->getZExtValue() / Factor); 5148 } 5149 5150 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5151 // during shuffle legalization. 5152 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5153 VT == N1.getOperand(1).getValueType()) 5154 return N1.getOperand(1); 5155 } 5156 break; 5157 } 5158 5159 // Perform trivial constant folding. 5160 if (SDValue SV = 5161 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5162 return SV; 5163 5164 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5165 return V; 5166 5167 // Canonicalize an UNDEF to the RHS, even over a constant. 5168 if (N1.isUndef()) { 5169 if (TLI->isCommutativeBinOp(Opcode)) { 5170 std::swap(N1, N2); 5171 } else { 5172 switch (Opcode) { 5173 case ISD::FP_ROUND_INREG: 5174 case ISD::SIGN_EXTEND_INREG: 5175 case ISD::SUB: 5176 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5177 case ISD::UDIV: 5178 case ISD::SDIV: 5179 case ISD::UREM: 5180 case ISD::SREM: 5181 case ISD::SSUBSAT: 5182 case ISD::USUBSAT: 5183 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5184 } 5185 } 5186 } 5187 5188 // Fold a bunch of operators when the RHS is undef. 5189 if (N2.isUndef()) { 5190 switch (Opcode) { 5191 case ISD::XOR: 5192 if (N1.isUndef()) 5193 // Handle undef ^ undef -> 0 special case. This is a common 5194 // idiom (misuse). 5195 return getConstant(0, DL, VT); 5196 LLVM_FALLTHROUGH; 5197 case ISD::ADD: 5198 case ISD::SUB: 5199 case ISD::UDIV: 5200 case ISD::SDIV: 5201 case ISD::UREM: 5202 case ISD::SREM: 5203 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5204 case ISD::MUL: 5205 case ISD::AND: 5206 case ISD::SSUBSAT: 5207 case ISD::USUBSAT: 5208 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5209 case ISD::OR: 5210 case ISD::SADDSAT: 5211 case ISD::UADDSAT: 5212 return getAllOnesConstant(DL, VT); 5213 } 5214 } 5215 5216 // Memoize this node if possible. 5217 SDNode *N; 5218 SDVTList VTs = getVTList(VT); 5219 SDValue Ops[] = {N1, N2}; 5220 if (VT != MVT::Glue) { 5221 FoldingSetNodeID ID; 5222 AddNodeIDNode(ID, Opcode, VTs, Ops); 5223 void *IP = nullptr; 5224 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5225 E->intersectFlagsWith(Flags); 5226 return SDValue(E, 0); 5227 } 5228 5229 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5230 N->setFlags(Flags); 5231 createOperands(N, Ops); 5232 CSEMap.InsertNode(N, IP); 5233 } else { 5234 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5235 createOperands(N, Ops); 5236 } 5237 5238 InsertNode(N); 5239 SDValue V = SDValue(N, 0); 5240 NewSDValueDbgMsg(V, "Creating new node: ", this); 5241 return V; 5242 } 5243 5244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5245 SDValue N1, SDValue N2, SDValue N3, 5246 const SDNodeFlags Flags) { 5247 // Perform various simplifications. 5248 switch (Opcode) { 5249 case ISD::FMA: { 5250 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5251 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5252 N3.getValueType() == VT && "FMA types must match!"); 5253 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5254 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5255 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5256 if (N1CFP && N2CFP && N3CFP) { 5257 APFloat V1 = N1CFP->getValueAPF(); 5258 const APFloat &V2 = N2CFP->getValueAPF(); 5259 const APFloat &V3 = N3CFP->getValueAPF(); 5260 APFloat::opStatus s = 5261 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5262 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 5263 return getConstantFP(V1, DL, VT); 5264 } 5265 break; 5266 } 5267 case ISD::BUILD_VECTOR: { 5268 // Attempt to simplify BUILD_VECTOR. 5269 SDValue Ops[] = {N1, N2, N3}; 5270 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5271 return V; 5272 break; 5273 } 5274 case ISD::CONCAT_VECTORS: { 5275 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5276 SDValue Ops[] = {N1, N2, N3}; 5277 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5278 return V; 5279 break; 5280 } 5281 case ISD::SETCC: { 5282 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5283 assert(N1.getValueType() == N2.getValueType() && 5284 "SETCC operands must have the same type!"); 5285 assert(VT.isVector() == N1.getValueType().isVector() && 5286 "SETCC type should be vector iff the operand type is vector!"); 5287 assert((!VT.isVector() || 5288 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5289 "SETCC vector element counts must match!"); 5290 // Use FoldSetCC to simplify SETCC's. 5291 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5292 return V; 5293 // Vector constant folding. 5294 SDValue Ops[] = {N1, N2, N3}; 5295 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5296 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5297 return V; 5298 } 5299 break; 5300 } 5301 case ISD::SELECT: 5302 case ISD::VSELECT: 5303 if (SDValue V = simplifySelect(N1, N2, N3)) 5304 return V; 5305 break; 5306 case ISD::VECTOR_SHUFFLE: 5307 llvm_unreachable("should use getVectorShuffle constructor!"); 5308 case ISD::INSERT_VECTOR_ELT: { 5309 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5310 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5311 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5312 return getUNDEF(VT); 5313 break; 5314 } 5315 case ISD::INSERT_SUBVECTOR: { 5316 SDValue Index = N3; 5317 if (VT.isSimple() && N1.getValueType().isSimple() 5318 && N2.getValueType().isSimple()) { 5319 assert(VT.isVector() && N1.getValueType().isVector() && 5320 N2.getValueType().isVector() && 5321 "Insert subvector VTs must be a vectors"); 5322 assert(VT == N1.getValueType() && 5323 "Dest and insert subvector source types must match!"); 5324 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5325 "Insert subvector must be from smaller vector to larger vector!"); 5326 if (isa<ConstantSDNode>(Index)) { 5327 assert((N2.getValueType().getVectorNumElements() + 5328 cast<ConstantSDNode>(Index)->getZExtValue() 5329 <= VT.getVectorNumElements()) 5330 && "Insert subvector overflow!"); 5331 } 5332 5333 // Trivial insertion. 5334 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5335 return N2; 5336 } 5337 break; 5338 } 5339 case ISD::BITCAST: 5340 // Fold bit_convert nodes from a type to themselves. 5341 if (N1.getValueType() == VT) 5342 return N1; 5343 break; 5344 } 5345 5346 // Memoize node if it doesn't produce a flag. 5347 SDNode *N; 5348 SDVTList VTs = getVTList(VT); 5349 SDValue Ops[] = {N1, N2, N3}; 5350 if (VT != MVT::Glue) { 5351 FoldingSetNodeID ID; 5352 AddNodeIDNode(ID, Opcode, VTs, Ops); 5353 void *IP = nullptr; 5354 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5355 E->intersectFlagsWith(Flags); 5356 return SDValue(E, 0); 5357 } 5358 5359 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5360 N->setFlags(Flags); 5361 createOperands(N, Ops); 5362 CSEMap.InsertNode(N, IP); 5363 } else { 5364 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5365 createOperands(N, Ops); 5366 } 5367 5368 InsertNode(N); 5369 SDValue V = SDValue(N, 0); 5370 NewSDValueDbgMsg(V, "Creating new node: ", this); 5371 return V; 5372 } 5373 5374 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5375 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5376 SDValue Ops[] = { N1, N2, N3, N4 }; 5377 return getNode(Opcode, DL, VT, Ops); 5378 } 5379 5380 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5381 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5382 SDValue N5) { 5383 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5384 return getNode(Opcode, DL, VT, Ops); 5385 } 5386 5387 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5388 /// the incoming stack arguments to be loaded from the stack. 5389 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5390 SmallVector<SDValue, 8> ArgChains; 5391 5392 // Include the original chain at the beginning of the list. When this is 5393 // used by target LowerCall hooks, this helps legalize find the 5394 // CALLSEQ_BEGIN node. 5395 ArgChains.push_back(Chain); 5396 5397 // Add a chain value for each stack argument. 5398 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5399 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5400 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5401 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5402 if (FI->getIndex() < 0) 5403 ArgChains.push_back(SDValue(L, 1)); 5404 5405 // Build a tokenfactor for all the chains. 5406 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5407 } 5408 5409 /// getMemsetValue - Vectorized representation of the memset value 5410 /// operand. 5411 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5412 const SDLoc &dl) { 5413 assert(!Value.isUndef()); 5414 5415 unsigned NumBits = VT.getScalarSizeInBits(); 5416 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5417 assert(C->getAPIntValue().getBitWidth() == 8); 5418 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5419 if (VT.isInteger()) { 5420 bool IsOpaque = VT.getSizeInBits() > 64 || 5421 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5422 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5423 } 5424 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5425 VT); 5426 } 5427 5428 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5429 EVT IntVT = VT.getScalarType(); 5430 if (!IntVT.isInteger()) 5431 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5432 5433 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5434 if (NumBits > 8) { 5435 // Use a multiplication with 0x010101... to extend the input to the 5436 // required length. 5437 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5438 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5439 DAG.getConstant(Magic, dl, IntVT)); 5440 } 5441 5442 if (VT != Value.getValueType() && !VT.isInteger()) 5443 Value = DAG.getBitcast(VT.getScalarType(), Value); 5444 if (VT != Value.getValueType()) 5445 Value = DAG.getSplatBuildVector(VT, dl, Value); 5446 5447 return Value; 5448 } 5449 5450 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5451 /// used when a memcpy is turned into a memset when the source is a constant 5452 /// string ptr. 5453 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5454 const TargetLowering &TLI, 5455 const ConstantDataArraySlice &Slice) { 5456 // Handle vector with all elements zero. 5457 if (Slice.Array == nullptr) { 5458 if (VT.isInteger()) 5459 return DAG.getConstant(0, dl, VT); 5460 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5461 return DAG.getConstantFP(0.0, dl, VT); 5462 else if (VT.isVector()) { 5463 unsigned NumElts = VT.getVectorNumElements(); 5464 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5465 return DAG.getNode(ISD::BITCAST, dl, VT, 5466 DAG.getConstant(0, dl, 5467 EVT::getVectorVT(*DAG.getContext(), 5468 EltVT, NumElts))); 5469 } else 5470 llvm_unreachable("Expected type!"); 5471 } 5472 5473 assert(!VT.isVector() && "Can't handle vector type here!"); 5474 unsigned NumVTBits = VT.getSizeInBits(); 5475 unsigned NumVTBytes = NumVTBits / 8; 5476 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5477 5478 APInt Val(NumVTBits, 0); 5479 if (DAG.getDataLayout().isLittleEndian()) { 5480 for (unsigned i = 0; i != NumBytes; ++i) 5481 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5482 } else { 5483 for (unsigned i = 0; i != NumBytes; ++i) 5484 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5485 } 5486 5487 // If the "cost" of materializing the integer immediate is less than the cost 5488 // of a load, then it is cost effective to turn the load into the immediate. 5489 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5490 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5491 return DAG.getConstant(Val, dl, VT); 5492 return SDValue(nullptr, 0); 5493 } 5494 5495 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5496 const SDLoc &DL) { 5497 EVT VT = Base.getValueType(); 5498 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5499 } 5500 5501 /// Returns true if memcpy source is constant data. 5502 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5503 uint64_t SrcDelta = 0; 5504 GlobalAddressSDNode *G = nullptr; 5505 if (Src.getOpcode() == ISD::GlobalAddress) 5506 G = cast<GlobalAddressSDNode>(Src); 5507 else if (Src.getOpcode() == ISD::ADD && 5508 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5509 Src.getOperand(1).getOpcode() == ISD::Constant) { 5510 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5511 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5512 } 5513 if (!G) 5514 return false; 5515 5516 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5517 SrcDelta + G->getOffset()); 5518 } 5519 5520 /// Determines the optimal series of memory ops to replace the memset / memcpy. 5521 /// Return true if the number of memory ops is below the threshold (Limit). 5522 /// It returns the types of the sequence of memory ops to perform 5523 /// memset / memcpy by reference. 5524 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 5525 unsigned Limit, uint64_t Size, 5526 unsigned DstAlign, unsigned SrcAlign, 5527 bool IsMemset, 5528 bool ZeroMemset, 5529 bool MemcpyStrSrc, 5530 bool AllowOverlap, 5531 unsigned DstAS, unsigned SrcAS, 5532 SelectionDAG &DAG, 5533 const TargetLowering &TLI) { 5534 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5535 "Expecting memcpy / memset source to meet alignment requirement!"); 5536 // If 'SrcAlign' is zero, that means the memory operation does not need to 5537 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5538 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5539 // is the specified alignment of the memory operation. If it is zero, that 5540 // means it's possible to change the alignment of the destination. 5541 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5542 // not need to be loaded. 5543 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5544 IsMemset, ZeroMemset, MemcpyStrSrc, 5545 DAG.getMachineFunction()); 5546 5547 if (VT == MVT::Other) { 5548 // Use the largest integer type whose alignment constraints are satisfied. 5549 // We only need to check DstAlign here as SrcAlign is always greater or 5550 // equal to DstAlign (or zero). 5551 VT = MVT::i64; 5552 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5553 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5554 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5555 assert(VT.isInteger()); 5556 5557 // Find the largest legal integer type. 5558 MVT LVT = MVT::i64; 5559 while (!TLI.isTypeLegal(LVT)) 5560 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5561 assert(LVT.isInteger()); 5562 5563 // If the type we've chosen is larger than the largest legal integer type 5564 // then use that instead. 5565 if (VT.bitsGT(LVT)) 5566 VT = LVT; 5567 } 5568 5569 unsigned NumMemOps = 0; 5570 while (Size != 0) { 5571 unsigned VTSize = VT.getSizeInBits() / 8; 5572 while (VTSize > Size) { 5573 // For now, only use non-vector load / store's for the left-over pieces. 5574 EVT NewVT = VT; 5575 unsigned NewVTSize; 5576 5577 bool Found = false; 5578 if (VT.isVector() || VT.isFloatingPoint()) { 5579 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5580 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5581 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5582 Found = true; 5583 else if (NewVT == MVT::i64 && 5584 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5585 TLI.isSafeMemOpType(MVT::f64)) { 5586 // i64 is usually not legal on 32-bit targets, but f64 may be. 5587 NewVT = MVT::f64; 5588 Found = true; 5589 } 5590 } 5591 5592 if (!Found) { 5593 do { 5594 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5595 if (NewVT == MVT::i8) 5596 break; 5597 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5598 } 5599 NewVTSize = NewVT.getSizeInBits() / 8; 5600 5601 // If the new VT cannot cover all of the remaining bits, then consider 5602 // issuing a (or a pair of) unaligned and overlapping load / store. 5603 bool Fast; 5604 if (NumMemOps && AllowOverlap && NewVTSize < Size && 5605 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && 5606 Fast) 5607 VTSize = Size; 5608 else { 5609 VT = NewVT; 5610 VTSize = NewVTSize; 5611 } 5612 } 5613 5614 if (++NumMemOps > Limit) 5615 return false; 5616 5617 MemOps.push_back(VT); 5618 Size -= VTSize; 5619 } 5620 5621 return true; 5622 } 5623 5624 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5625 // On Darwin, -Os means optimize for size without hurting performance, so 5626 // only really optimize for size when -Oz (MinSize) is used. 5627 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5628 return MF.getFunction().hasMinSize(); 5629 return MF.getFunction().hasOptSize(); 5630 } 5631 5632 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5633 SmallVector<SDValue, 32> &OutChains, unsigned From, 5634 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5635 SmallVector<SDValue, 16> &OutStoreChains) { 5636 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5637 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5638 SmallVector<SDValue, 16> GluedLoadChains; 5639 for (unsigned i = From; i < To; ++i) { 5640 OutChains.push_back(OutLoadChains[i]); 5641 GluedLoadChains.push_back(OutLoadChains[i]); 5642 } 5643 5644 // Chain for all loads. 5645 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5646 GluedLoadChains); 5647 5648 for (unsigned i = From; i < To; ++i) { 5649 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5650 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5651 ST->getBasePtr(), ST->getMemoryVT(), 5652 ST->getMemOperand()); 5653 OutChains.push_back(NewStore); 5654 } 5655 } 5656 5657 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5658 SDValue Chain, SDValue Dst, SDValue Src, 5659 uint64_t Size, unsigned Align, 5660 bool isVol, bool AlwaysInline, 5661 MachinePointerInfo DstPtrInfo, 5662 MachinePointerInfo SrcPtrInfo) { 5663 // Turn a memcpy of undef to nop. 5664 if (Src.isUndef()) 5665 return Chain; 5666 5667 // Expand memcpy to a series of load and store ops if the size operand falls 5668 // below a certain threshold. 5669 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5670 // rather than maybe a humongous number of loads and stores. 5671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5672 const DataLayout &DL = DAG.getDataLayout(); 5673 LLVMContext &C = *DAG.getContext(); 5674 std::vector<EVT> MemOps; 5675 bool DstAlignCanChange = false; 5676 MachineFunction &MF = DAG.getMachineFunction(); 5677 MachineFrameInfo &MFI = MF.getFrameInfo(); 5678 bool OptSize = shouldLowerMemFuncForSize(MF); 5679 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5680 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5681 DstAlignCanChange = true; 5682 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5683 if (Align > SrcAlign) 5684 SrcAlign = Align; 5685 ConstantDataArraySlice Slice; 5686 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5687 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5688 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5689 5690 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5691 (DstAlignCanChange ? 0 : Align), 5692 (isZeroConstant ? 0 : SrcAlign), 5693 false, false, CopyFromConstant, true, 5694 DstPtrInfo.getAddrSpace(), 5695 SrcPtrInfo.getAddrSpace(), 5696 DAG, TLI)) 5697 return SDValue(); 5698 5699 if (DstAlignCanChange) { 5700 Type *Ty = MemOps[0].getTypeForEVT(C); 5701 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5702 5703 // Don't promote to an alignment that would require dynamic stack 5704 // realignment. 5705 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5706 if (!TRI->needsStackRealignment(MF)) 5707 while (NewAlign > Align && 5708 DL.exceedsNaturalStackAlignment(NewAlign)) 5709 NewAlign /= 2; 5710 5711 if (NewAlign > Align) { 5712 // Give the stack frame object a larger alignment if needed. 5713 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5714 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5715 Align = NewAlign; 5716 } 5717 } 5718 5719 MachineMemOperand::Flags MMOFlags = 5720 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5721 SmallVector<SDValue, 16> OutLoadChains; 5722 SmallVector<SDValue, 16> OutStoreChains; 5723 SmallVector<SDValue, 32> OutChains; 5724 unsigned NumMemOps = MemOps.size(); 5725 uint64_t SrcOff = 0, DstOff = 0; 5726 for (unsigned i = 0; i != NumMemOps; ++i) { 5727 EVT VT = MemOps[i]; 5728 unsigned VTSize = VT.getSizeInBits() / 8; 5729 SDValue Value, Store; 5730 5731 if (VTSize > Size) { 5732 // Issuing an unaligned load / store pair that overlaps with the previous 5733 // pair. Adjust the offset accordingly. 5734 assert(i == NumMemOps-1 && i != 0); 5735 SrcOff -= VTSize - Size; 5736 DstOff -= VTSize - Size; 5737 } 5738 5739 if (CopyFromConstant && 5740 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5741 // It's unlikely a store of a vector immediate can be done in a single 5742 // instruction. It would require a load from a constantpool first. 5743 // We only handle zero vectors here. 5744 // FIXME: Handle other cases where store of vector immediate is done in 5745 // a single instruction. 5746 ConstantDataArraySlice SubSlice; 5747 if (SrcOff < Slice.Length) { 5748 SubSlice = Slice; 5749 SubSlice.move(SrcOff); 5750 } else { 5751 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5752 SubSlice.Array = nullptr; 5753 SubSlice.Offset = 0; 5754 SubSlice.Length = VTSize; 5755 } 5756 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5757 if (Value.getNode()) { 5758 Store = DAG.getStore(Chain, dl, Value, 5759 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5760 DstPtrInfo.getWithOffset(DstOff), Align, 5761 MMOFlags); 5762 OutChains.push_back(Store); 5763 } 5764 } 5765 5766 if (!Store.getNode()) { 5767 // The type might not be legal for the target. This should only happen 5768 // if the type is smaller than a legal type, as on PPC, so the right 5769 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5770 // to Load/Store if NVT==VT. 5771 // FIXME does the case above also need this? 5772 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5773 assert(NVT.bitsGE(VT)); 5774 5775 bool isDereferenceable = 5776 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5777 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5778 if (isDereferenceable) 5779 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5780 5781 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5782 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5783 SrcPtrInfo.getWithOffset(SrcOff), VT, 5784 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5785 OutLoadChains.push_back(Value.getValue(1)); 5786 5787 Store = DAG.getTruncStore( 5788 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5789 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5790 OutStoreChains.push_back(Store); 5791 } 5792 SrcOff += VTSize; 5793 DstOff += VTSize; 5794 Size -= VTSize; 5795 } 5796 5797 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5798 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5799 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5800 5801 if (NumLdStInMemcpy) { 5802 // It may be that memcpy might be converted to memset if it's memcpy 5803 // of constants. In such a case, we won't have loads and stores, but 5804 // just stores. In the absence of loads, there is nothing to gang up. 5805 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5806 // If target does not care, just leave as it. 5807 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5808 OutChains.push_back(OutLoadChains[i]); 5809 OutChains.push_back(OutStoreChains[i]); 5810 } 5811 } else { 5812 // Ld/St less than/equal limit set by target. 5813 if (NumLdStInMemcpy <= GluedLdStLimit) { 5814 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5815 NumLdStInMemcpy, OutLoadChains, 5816 OutStoreChains); 5817 } else { 5818 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5819 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5820 unsigned GlueIter = 0; 5821 5822 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5823 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5824 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5825 5826 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5827 OutLoadChains, OutStoreChains); 5828 GlueIter += GluedLdStLimit; 5829 } 5830 5831 // Residual ld/st. 5832 if (RemainingLdStInMemcpy) { 5833 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5834 RemainingLdStInMemcpy, OutLoadChains, 5835 OutStoreChains); 5836 } 5837 } 5838 } 5839 } 5840 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5841 } 5842 5843 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5844 SDValue Chain, SDValue Dst, SDValue Src, 5845 uint64_t Size, unsigned Align, 5846 bool isVol, bool AlwaysInline, 5847 MachinePointerInfo DstPtrInfo, 5848 MachinePointerInfo SrcPtrInfo) { 5849 // Turn a memmove of undef to nop. 5850 if (Src.isUndef()) 5851 return Chain; 5852 5853 // Expand memmove to a series of load and store ops if the size operand falls 5854 // below a certain threshold. 5855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5856 const DataLayout &DL = DAG.getDataLayout(); 5857 LLVMContext &C = *DAG.getContext(); 5858 std::vector<EVT> MemOps; 5859 bool DstAlignCanChange = false; 5860 MachineFunction &MF = DAG.getMachineFunction(); 5861 MachineFrameInfo &MFI = MF.getFrameInfo(); 5862 bool OptSize = shouldLowerMemFuncForSize(MF); 5863 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5864 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5865 DstAlignCanChange = true; 5866 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5867 if (Align > SrcAlign) 5868 SrcAlign = Align; 5869 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5870 5871 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5872 (DstAlignCanChange ? 0 : Align), SrcAlign, 5873 false, false, false, false, 5874 DstPtrInfo.getAddrSpace(), 5875 SrcPtrInfo.getAddrSpace(), 5876 DAG, TLI)) 5877 return SDValue(); 5878 5879 if (DstAlignCanChange) { 5880 Type *Ty = MemOps[0].getTypeForEVT(C); 5881 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5882 if (NewAlign > Align) { 5883 // Give the stack frame object a larger alignment if needed. 5884 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5885 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5886 Align = NewAlign; 5887 } 5888 } 5889 5890 MachineMemOperand::Flags MMOFlags = 5891 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5892 uint64_t SrcOff = 0, DstOff = 0; 5893 SmallVector<SDValue, 8> LoadValues; 5894 SmallVector<SDValue, 8> LoadChains; 5895 SmallVector<SDValue, 8> OutChains; 5896 unsigned NumMemOps = MemOps.size(); 5897 for (unsigned i = 0; i < NumMemOps; i++) { 5898 EVT VT = MemOps[i]; 5899 unsigned VTSize = VT.getSizeInBits() / 8; 5900 SDValue Value; 5901 5902 bool isDereferenceable = 5903 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5904 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5905 if (isDereferenceable) 5906 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5907 5908 Value = 5909 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5910 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5911 LoadValues.push_back(Value); 5912 LoadChains.push_back(Value.getValue(1)); 5913 SrcOff += VTSize; 5914 } 5915 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5916 OutChains.clear(); 5917 for (unsigned i = 0; i < NumMemOps; i++) { 5918 EVT VT = MemOps[i]; 5919 unsigned VTSize = VT.getSizeInBits() / 8; 5920 SDValue Store; 5921 5922 Store = DAG.getStore(Chain, dl, LoadValues[i], 5923 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5924 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5925 OutChains.push_back(Store); 5926 DstOff += VTSize; 5927 } 5928 5929 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5930 } 5931 5932 /// Lower the call to 'memset' intrinsic function into a series of store 5933 /// operations. 5934 /// 5935 /// \param DAG Selection DAG where lowered code is placed. 5936 /// \param dl Link to corresponding IR location. 5937 /// \param Chain Control flow dependency. 5938 /// \param Dst Pointer to destination memory location. 5939 /// \param Src Value of byte to write into the memory. 5940 /// \param Size Number of bytes to write. 5941 /// \param Align Alignment of the destination in bytes. 5942 /// \param isVol True if destination is volatile. 5943 /// \param DstPtrInfo IR information on the memory pointer. 5944 /// \returns New head in the control flow, if lowering was successful, empty 5945 /// SDValue otherwise. 5946 /// 5947 /// The function tries to replace 'llvm.memset' intrinsic with several store 5948 /// operations and value calculation code. This is usually profitable for small 5949 /// memory size. 5950 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5951 SDValue Chain, SDValue Dst, SDValue Src, 5952 uint64_t Size, unsigned Align, bool isVol, 5953 MachinePointerInfo DstPtrInfo) { 5954 // Turn a memset of undef to nop. 5955 if (Src.isUndef()) 5956 return Chain; 5957 5958 // Expand memset to a series of load/store ops if the size operand 5959 // falls below a certain threshold. 5960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5961 std::vector<EVT> MemOps; 5962 bool DstAlignCanChange = false; 5963 MachineFunction &MF = DAG.getMachineFunction(); 5964 MachineFrameInfo &MFI = MF.getFrameInfo(); 5965 bool OptSize = shouldLowerMemFuncForSize(MF); 5966 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5967 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5968 DstAlignCanChange = true; 5969 bool IsZeroVal = 5970 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5971 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5972 Size, (DstAlignCanChange ? 0 : Align), 0, 5973 true, IsZeroVal, false, true, 5974 DstPtrInfo.getAddrSpace(), ~0u, 5975 DAG, TLI)) 5976 return SDValue(); 5977 5978 if (DstAlignCanChange) { 5979 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5980 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5981 if (NewAlign > Align) { 5982 // Give the stack frame object a larger alignment if needed. 5983 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5984 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5985 Align = NewAlign; 5986 } 5987 } 5988 5989 SmallVector<SDValue, 8> OutChains; 5990 uint64_t DstOff = 0; 5991 unsigned NumMemOps = MemOps.size(); 5992 5993 // Find the largest store and generate the bit pattern for it. 5994 EVT LargestVT = MemOps[0]; 5995 for (unsigned i = 1; i < NumMemOps; i++) 5996 if (MemOps[i].bitsGT(LargestVT)) 5997 LargestVT = MemOps[i]; 5998 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5999 6000 for (unsigned i = 0; i < NumMemOps; i++) { 6001 EVT VT = MemOps[i]; 6002 unsigned VTSize = VT.getSizeInBits() / 8; 6003 if (VTSize > Size) { 6004 // Issuing an unaligned load / store pair that overlaps with the previous 6005 // pair. Adjust the offset accordingly. 6006 assert(i == NumMemOps-1 && i != 0); 6007 DstOff -= VTSize - Size; 6008 } 6009 6010 // If this store is smaller than the largest store see whether we can get 6011 // the smaller value for free with a truncate. 6012 SDValue Value = MemSetValue; 6013 if (VT.bitsLT(LargestVT)) { 6014 if (!LargestVT.isVector() && !VT.isVector() && 6015 TLI.isTruncateFree(LargestVT, VT)) 6016 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6017 else 6018 Value = getMemsetValue(Src, VT, DAG, dl); 6019 } 6020 assert(Value.getValueType() == VT && "Value with wrong type."); 6021 SDValue Store = DAG.getStore( 6022 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6023 DstPtrInfo.getWithOffset(DstOff), Align, 6024 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6025 OutChains.push_back(Store); 6026 DstOff += VT.getSizeInBits() / 8; 6027 Size -= VTSize; 6028 } 6029 6030 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6031 } 6032 6033 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6034 unsigned AS) { 6035 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6036 // pointer operands can be losslessly bitcasted to pointers of address space 0 6037 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6038 report_fatal_error("cannot lower memory intrinsic in address space " + 6039 Twine(AS)); 6040 } 6041 } 6042 6043 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6044 SDValue Src, SDValue Size, unsigned Align, 6045 bool isVol, bool AlwaysInline, bool isTailCall, 6046 MachinePointerInfo DstPtrInfo, 6047 MachinePointerInfo SrcPtrInfo) { 6048 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6049 6050 // Check to see if we should lower the memcpy to loads and stores first. 6051 // For cases within the target-specified limits, this is the best choice. 6052 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6053 if (ConstantSize) { 6054 // Memcpy with size zero? Just return the original chain. 6055 if (ConstantSize->isNullValue()) 6056 return Chain; 6057 6058 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6059 ConstantSize->getZExtValue(),Align, 6060 isVol, false, DstPtrInfo, SrcPtrInfo); 6061 if (Result.getNode()) 6062 return Result; 6063 } 6064 6065 // Then check to see if we should lower the memcpy with target-specific 6066 // code. If the target chooses to do this, this is the next best. 6067 if (TSI) { 6068 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6069 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6070 DstPtrInfo, SrcPtrInfo); 6071 if (Result.getNode()) 6072 return Result; 6073 } 6074 6075 // If we really need inline code and the target declined to provide it, 6076 // use a (potentially long) sequence of loads and stores. 6077 if (AlwaysInline) { 6078 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6079 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6080 ConstantSize->getZExtValue(), Align, isVol, 6081 true, DstPtrInfo, SrcPtrInfo); 6082 } 6083 6084 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6085 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6086 6087 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6088 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6089 // respect volatile, so they may do things like read or write memory 6090 // beyond the given memory regions. But fixing this isn't easy, and most 6091 // people don't care. 6092 6093 // Emit a library call. 6094 TargetLowering::ArgListTy Args; 6095 TargetLowering::ArgListEntry Entry; 6096 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6097 Entry.Node = Dst; Args.push_back(Entry); 6098 Entry.Node = Src; Args.push_back(Entry); 6099 6100 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6101 Entry.Node = Size; Args.push_back(Entry); 6102 // FIXME: pass in SDLoc 6103 TargetLowering::CallLoweringInfo CLI(*this); 6104 CLI.setDebugLoc(dl) 6105 .setChain(Chain) 6106 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6107 Dst.getValueType().getTypeForEVT(*getContext()), 6108 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6109 TLI->getPointerTy(getDataLayout())), 6110 std::move(Args)) 6111 .setDiscardResult() 6112 .setTailCall(isTailCall); 6113 6114 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6115 return CallResult.second; 6116 } 6117 6118 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6119 SDValue Dst, unsigned DstAlign, 6120 SDValue Src, unsigned SrcAlign, 6121 SDValue Size, Type *SizeTy, 6122 unsigned ElemSz, bool isTailCall, 6123 MachinePointerInfo DstPtrInfo, 6124 MachinePointerInfo SrcPtrInfo) { 6125 // Emit a library call. 6126 TargetLowering::ArgListTy Args; 6127 TargetLowering::ArgListEntry Entry; 6128 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6129 Entry.Node = Dst; 6130 Args.push_back(Entry); 6131 6132 Entry.Node = Src; 6133 Args.push_back(Entry); 6134 6135 Entry.Ty = SizeTy; 6136 Entry.Node = Size; 6137 Args.push_back(Entry); 6138 6139 RTLIB::Libcall LibraryCall = 6140 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6141 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6142 report_fatal_error("Unsupported element size"); 6143 6144 TargetLowering::CallLoweringInfo CLI(*this); 6145 CLI.setDebugLoc(dl) 6146 .setChain(Chain) 6147 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6148 Type::getVoidTy(*getContext()), 6149 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6150 TLI->getPointerTy(getDataLayout())), 6151 std::move(Args)) 6152 .setDiscardResult() 6153 .setTailCall(isTailCall); 6154 6155 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6156 return CallResult.second; 6157 } 6158 6159 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6160 SDValue Src, SDValue Size, unsigned Align, 6161 bool isVol, bool isTailCall, 6162 MachinePointerInfo DstPtrInfo, 6163 MachinePointerInfo SrcPtrInfo) { 6164 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6165 6166 // Check to see if we should lower the memmove to loads and stores first. 6167 // For cases within the target-specified limits, this is the best choice. 6168 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6169 if (ConstantSize) { 6170 // Memmove with size zero? Just return the original chain. 6171 if (ConstantSize->isNullValue()) 6172 return Chain; 6173 6174 SDValue Result = 6175 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6176 ConstantSize->getZExtValue(), Align, isVol, 6177 false, DstPtrInfo, SrcPtrInfo); 6178 if (Result.getNode()) 6179 return Result; 6180 } 6181 6182 // Then check to see if we should lower the memmove with target-specific 6183 // code. If the target chooses to do this, this is the next best. 6184 if (TSI) { 6185 SDValue Result = TSI->EmitTargetCodeForMemmove( 6186 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6187 if (Result.getNode()) 6188 return Result; 6189 } 6190 6191 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6192 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6193 6194 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6195 // not be safe. See memcpy above for more details. 6196 6197 // Emit a library call. 6198 TargetLowering::ArgListTy Args; 6199 TargetLowering::ArgListEntry Entry; 6200 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6201 Entry.Node = Dst; Args.push_back(Entry); 6202 Entry.Node = Src; Args.push_back(Entry); 6203 6204 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6205 Entry.Node = Size; Args.push_back(Entry); 6206 // FIXME: pass in SDLoc 6207 TargetLowering::CallLoweringInfo CLI(*this); 6208 CLI.setDebugLoc(dl) 6209 .setChain(Chain) 6210 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6211 Dst.getValueType().getTypeForEVT(*getContext()), 6212 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6213 TLI->getPointerTy(getDataLayout())), 6214 std::move(Args)) 6215 .setDiscardResult() 6216 .setTailCall(isTailCall); 6217 6218 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6219 return CallResult.second; 6220 } 6221 6222 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6223 SDValue Dst, unsigned DstAlign, 6224 SDValue Src, unsigned SrcAlign, 6225 SDValue Size, Type *SizeTy, 6226 unsigned ElemSz, bool isTailCall, 6227 MachinePointerInfo DstPtrInfo, 6228 MachinePointerInfo SrcPtrInfo) { 6229 // Emit a library call. 6230 TargetLowering::ArgListTy Args; 6231 TargetLowering::ArgListEntry Entry; 6232 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6233 Entry.Node = Dst; 6234 Args.push_back(Entry); 6235 6236 Entry.Node = Src; 6237 Args.push_back(Entry); 6238 6239 Entry.Ty = SizeTy; 6240 Entry.Node = Size; 6241 Args.push_back(Entry); 6242 6243 RTLIB::Libcall LibraryCall = 6244 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6245 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6246 report_fatal_error("Unsupported element size"); 6247 6248 TargetLowering::CallLoweringInfo CLI(*this); 6249 CLI.setDebugLoc(dl) 6250 .setChain(Chain) 6251 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6252 Type::getVoidTy(*getContext()), 6253 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6254 TLI->getPointerTy(getDataLayout())), 6255 std::move(Args)) 6256 .setDiscardResult() 6257 .setTailCall(isTailCall); 6258 6259 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6260 return CallResult.second; 6261 } 6262 6263 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6264 SDValue Src, SDValue Size, unsigned Align, 6265 bool isVol, bool isTailCall, 6266 MachinePointerInfo DstPtrInfo) { 6267 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6268 6269 // Check to see if we should lower the memset to stores first. 6270 // For cases within the target-specified limits, this is the best choice. 6271 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6272 if (ConstantSize) { 6273 // Memset with size zero? Just return the original chain. 6274 if (ConstantSize->isNullValue()) 6275 return Chain; 6276 6277 SDValue Result = 6278 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6279 Align, isVol, DstPtrInfo); 6280 6281 if (Result.getNode()) 6282 return Result; 6283 } 6284 6285 // Then check to see if we should lower the memset with target-specific 6286 // code. If the target chooses to do this, this is the next best. 6287 if (TSI) { 6288 SDValue Result = TSI->EmitTargetCodeForMemset( 6289 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6290 if (Result.getNode()) 6291 return Result; 6292 } 6293 6294 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6295 6296 // Emit a library call. 6297 TargetLowering::ArgListTy Args; 6298 TargetLowering::ArgListEntry Entry; 6299 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6300 Args.push_back(Entry); 6301 Entry.Node = Src; 6302 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6303 Args.push_back(Entry); 6304 Entry.Node = Size; 6305 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6306 Args.push_back(Entry); 6307 6308 // FIXME: pass in SDLoc 6309 TargetLowering::CallLoweringInfo CLI(*this); 6310 CLI.setDebugLoc(dl) 6311 .setChain(Chain) 6312 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6313 Dst.getValueType().getTypeForEVT(*getContext()), 6314 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6315 TLI->getPointerTy(getDataLayout())), 6316 std::move(Args)) 6317 .setDiscardResult() 6318 .setTailCall(isTailCall); 6319 6320 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6321 return CallResult.second; 6322 } 6323 6324 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6325 SDValue Dst, unsigned DstAlign, 6326 SDValue Value, SDValue Size, Type *SizeTy, 6327 unsigned ElemSz, bool isTailCall, 6328 MachinePointerInfo DstPtrInfo) { 6329 // Emit a library call. 6330 TargetLowering::ArgListTy Args; 6331 TargetLowering::ArgListEntry Entry; 6332 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6333 Entry.Node = Dst; 6334 Args.push_back(Entry); 6335 6336 Entry.Ty = Type::getInt8Ty(*getContext()); 6337 Entry.Node = Value; 6338 Args.push_back(Entry); 6339 6340 Entry.Ty = SizeTy; 6341 Entry.Node = Size; 6342 Args.push_back(Entry); 6343 6344 RTLIB::Libcall LibraryCall = 6345 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6346 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6347 report_fatal_error("Unsupported element size"); 6348 6349 TargetLowering::CallLoweringInfo CLI(*this); 6350 CLI.setDebugLoc(dl) 6351 .setChain(Chain) 6352 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6353 Type::getVoidTy(*getContext()), 6354 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6355 TLI->getPointerTy(getDataLayout())), 6356 std::move(Args)) 6357 .setDiscardResult() 6358 .setTailCall(isTailCall); 6359 6360 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6361 return CallResult.second; 6362 } 6363 6364 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6365 SDVTList VTList, ArrayRef<SDValue> Ops, 6366 MachineMemOperand *MMO) { 6367 FoldingSetNodeID ID; 6368 ID.AddInteger(MemVT.getRawBits()); 6369 AddNodeIDNode(ID, Opcode, VTList, Ops); 6370 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6371 void* IP = nullptr; 6372 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6373 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6374 return SDValue(E, 0); 6375 } 6376 6377 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6378 VTList, MemVT, MMO); 6379 createOperands(N, Ops); 6380 6381 CSEMap.InsertNode(N, IP); 6382 InsertNode(N); 6383 return SDValue(N, 0); 6384 } 6385 6386 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6387 EVT MemVT, SDVTList VTs, SDValue Chain, 6388 SDValue Ptr, SDValue Cmp, SDValue Swp, 6389 MachineMemOperand *MMO) { 6390 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6391 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6392 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6393 6394 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6395 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6396 } 6397 6398 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6399 SDValue Chain, SDValue Ptr, SDValue Val, 6400 MachineMemOperand *MMO) { 6401 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6402 Opcode == ISD::ATOMIC_LOAD_SUB || 6403 Opcode == ISD::ATOMIC_LOAD_AND || 6404 Opcode == ISD::ATOMIC_LOAD_CLR || 6405 Opcode == ISD::ATOMIC_LOAD_OR || 6406 Opcode == ISD::ATOMIC_LOAD_XOR || 6407 Opcode == ISD::ATOMIC_LOAD_NAND || 6408 Opcode == ISD::ATOMIC_LOAD_MIN || 6409 Opcode == ISD::ATOMIC_LOAD_MAX || 6410 Opcode == ISD::ATOMIC_LOAD_UMIN || 6411 Opcode == ISD::ATOMIC_LOAD_UMAX || 6412 Opcode == ISD::ATOMIC_LOAD_FADD || 6413 Opcode == ISD::ATOMIC_LOAD_FSUB || 6414 Opcode == ISD::ATOMIC_SWAP || 6415 Opcode == ISD::ATOMIC_STORE) && 6416 "Invalid Atomic Op"); 6417 6418 EVT VT = Val.getValueType(); 6419 6420 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6421 getVTList(VT, MVT::Other); 6422 SDValue Ops[] = {Chain, Ptr, Val}; 6423 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6424 } 6425 6426 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6427 EVT VT, SDValue Chain, SDValue Ptr, 6428 MachineMemOperand *MMO) { 6429 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6430 6431 SDVTList VTs = getVTList(VT, MVT::Other); 6432 SDValue Ops[] = {Chain, Ptr}; 6433 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6434 } 6435 6436 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6437 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6438 if (Ops.size() == 1) 6439 return Ops[0]; 6440 6441 SmallVector<EVT, 4> VTs; 6442 VTs.reserve(Ops.size()); 6443 for (unsigned i = 0; i < Ops.size(); ++i) 6444 VTs.push_back(Ops[i].getValueType()); 6445 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6446 } 6447 6448 SDValue SelectionDAG::getMemIntrinsicNode( 6449 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6450 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6451 MachineMemOperand::Flags Flags, unsigned Size) { 6452 if (Align == 0) // Ensure that codegen never sees alignment 0 6453 Align = getEVTAlignment(MemVT); 6454 6455 if (!Size) 6456 Size = MemVT.getStoreSize(); 6457 6458 MachineFunction &MF = getMachineFunction(); 6459 MachineMemOperand *MMO = 6460 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 6461 6462 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6463 } 6464 6465 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6466 SDVTList VTList, 6467 ArrayRef<SDValue> Ops, EVT MemVT, 6468 MachineMemOperand *MMO) { 6469 assert((Opcode == ISD::INTRINSIC_VOID || 6470 Opcode == ISD::INTRINSIC_W_CHAIN || 6471 Opcode == ISD::PREFETCH || 6472 Opcode == ISD::LIFETIME_START || 6473 Opcode == ISD::LIFETIME_END || 6474 ((int)Opcode <= std::numeric_limits<int>::max() && 6475 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6476 "Opcode is not a memory-accessing opcode!"); 6477 6478 // Memoize the node unless it returns a flag. 6479 MemIntrinsicSDNode *N; 6480 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6481 FoldingSetNodeID ID; 6482 AddNodeIDNode(ID, Opcode, VTList, Ops); 6483 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6484 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6485 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6486 void *IP = nullptr; 6487 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6488 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6489 return SDValue(E, 0); 6490 } 6491 6492 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6493 VTList, MemVT, MMO); 6494 createOperands(N, Ops); 6495 6496 CSEMap.InsertNode(N, IP); 6497 } else { 6498 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6499 VTList, MemVT, MMO); 6500 createOperands(N, Ops); 6501 } 6502 InsertNode(N); 6503 return SDValue(N, 0); 6504 } 6505 6506 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6507 SDValue Chain, int FrameIndex, 6508 int64_t Size, int64_t Offset) { 6509 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6510 const auto VTs = getVTList(MVT::Other); 6511 SDValue Ops[2] = { 6512 Chain, 6513 getFrameIndex(FrameIndex, 6514 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6515 true)}; 6516 6517 FoldingSetNodeID ID; 6518 AddNodeIDNode(ID, Opcode, VTs, Ops); 6519 ID.AddInteger(FrameIndex); 6520 ID.AddInteger(Size); 6521 ID.AddInteger(Offset); 6522 void *IP = nullptr; 6523 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6524 return SDValue(E, 0); 6525 6526 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6527 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6528 createOperands(N, Ops); 6529 CSEMap.InsertNode(N, IP); 6530 InsertNode(N); 6531 SDValue V(N, 0); 6532 NewSDValueDbgMsg(V, "Creating new node: ", this); 6533 return V; 6534 } 6535 6536 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6537 /// MachinePointerInfo record from it. This is particularly useful because the 6538 /// code generator has many cases where it doesn't bother passing in a 6539 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6540 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6541 SelectionDAG &DAG, SDValue Ptr, 6542 int64_t Offset = 0) { 6543 // If this is FI+Offset, we can model it. 6544 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6545 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6546 FI->getIndex(), Offset); 6547 6548 // If this is (FI+Offset1)+Offset2, we can model it. 6549 if (Ptr.getOpcode() != ISD::ADD || 6550 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6551 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6552 return Info; 6553 6554 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6555 return MachinePointerInfo::getFixedStack( 6556 DAG.getMachineFunction(), FI, 6557 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6558 } 6559 6560 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6561 /// MachinePointerInfo record from it. This is particularly useful because the 6562 /// code generator has many cases where it doesn't bother passing in a 6563 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6564 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6565 SelectionDAG &DAG, SDValue Ptr, 6566 SDValue OffsetOp) { 6567 // If the 'Offset' value isn't a constant, we can't handle this. 6568 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6569 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6570 if (OffsetOp.isUndef()) 6571 return InferPointerInfo(Info, DAG, Ptr); 6572 return Info; 6573 } 6574 6575 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6576 EVT VT, const SDLoc &dl, SDValue Chain, 6577 SDValue Ptr, SDValue Offset, 6578 MachinePointerInfo PtrInfo, EVT MemVT, 6579 unsigned Alignment, 6580 MachineMemOperand::Flags MMOFlags, 6581 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6582 assert(Chain.getValueType() == MVT::Other && 6583 "Invalid chain type"); 6584 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6585 Alignment = getEVTAlignment(MemVT); 6586 6587 MMOFlags |= MachineMemOperand::MOLoad; 6588 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6589 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6590 // clients. 6591 if (PtrInfo.V.isNull()) 6592 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6593 6594 MachineFunction &MF = getMachineFunction(); 6595 MachineMemOperand *MMO = MF.getMachineMemOperand( 6596 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6597 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6598 } 6599 6600 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6601 EVT VT, const SDLoc &dl, SDValue Chain, 6602 SDValue Ptr, SDValue Offset, EVT MemVT, 6603 MachineMemOperand *MMO) { 6604 if (VT == MemVT) { 6605 ExtType = ISD::NON_EXTLOAD; 6606 } else if (ExtType == ISD::NON_EXTLOAD) { 6607 assert(VT == MemVT && "Non-extending load from different memory type!"); 6608 } else { 6609 // Extending load. 6610 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6611 "Should only be an extending load, not truncating!"); 6612 assert(VT.isInteger() == MemVT.isInteger() && 6613 "Cannot convert from FP to Int or Int -> FP!"); 6614 assert(VT.isVector() == MemVT.isVector() && 6615 "Cannot use an ext load to convert to or from a vector!"); 6616 assert((!VT.isVector() || 6617 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6618 "Cannot use an ext load to change the number of vector elements!"); 6619 } 6620 6621 bool Indexed = AM != ISD::UNINDEXED; 6622 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6623 6624 SDVTList VTs = Indexed ? 6625 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6626 SDValue Ops[] = { Chain, Ptr, Offset }; 6627 FoldingSetNodeID ID; 6628 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6629 ID.AddInteger(MemVT.getRawBits()); 6630 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6631 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6632 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6633 void *IP = nullptr; 6634 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6635 cast<LoadSDNode>(E)->refineAlignment(MMO); 6636 return SDValue(E, 0); 6637 } 6638 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6639 ExtType, MemVT, MMO); 6640 createOperands(N, Ops); 6641 6642 CSEMap.InsertNode(N, IP); 6643 InsertNode(N); 6644 SDValue V(N, 0); 6645 NewSDValueDbgMsg(V, "Creating new node: ", this); 6646 return V; 6647 } 6648 6649 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6650 SDValue Ptr, MachinePointerInfo PtrInfo, 6651 unsigned Alignment, 6652 MachineMemOperand::Flags MMOFlags, 6653 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6654 SDValue Undef = getUNDEF(Ptr.getValueType()); 6655 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6656 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6657 } 6658 6659 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6660 SDValue Ptr, MachineMemOperand *MMO) { 6661 SDValue Undef = getUNDEF(Ptr.getValueType()); 6662 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6663 VT, MMO); 6664 } 6665 6666 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6667 EVT VT, SDValue Chain, SDValue Ptr, 6668 MachinePointerInfo PtrInfo, EVT MemVT, 6669 unsigned Alignment, 6670 MachineMemOperand::Flags MMOFlags, 6671 const AAMDNodes &AAInfo) { 6672 SDValue Undef = getUNDEF(Ptr.getValueType()); 6673 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6674 MemVT, Alignment, MMOFlags, AAInfo); 6675 } 6676 6677 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6678 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6679 MachineMemOperand *MMO) { 6680 SDValue Undef = getUNDEF(Ptr.getValueType()); 6681 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6682 MemVT, MMO); 6683 } 6684 6685 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6686 SDValue Base, SDValue Offset, 6687 ISD::MemIndexedMode AM) { 6688 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6689 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6690 // Don't propagate the invariant or dereferenceable flags. 6691 auto MMOFlags = 6692 LD->getMemOperand()->getFlags() & 6693 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6694 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6695 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6696 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6697 LD->getAAInfo()); 6698 } 6699 6700 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6701 SDValue Ptr, MachinePointerInfo PtrInfo, 6702 unsigned Alignment, 6703 MachineMemOperand::Flags MMOFlags, 6704 const AAMDNodes &AAInfo) { 6705 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6706 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6707 Alignment = getEVTAlignment(Val.getValueType()); 6708 6709 MMOFlags |= MachineMemOperand::MOStore; 6710 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6711 6712 if (PtrInfo.V.isNull()) 6713 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6714 6715 MachineFunction &MF = getMachineFunction(); 6716 MachineMemOperand *MMO = MF.getMachineMemOperand( 6717 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6718 return getStore(Chain, dl, Val, Ptr, MMO); 6719 } 6720 6721 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6722 SDValue Ptr, MachineMemOperand *MMO) { 6723 assert(Chain.getValueType() == MVT::Other && 6724 "Invalid chain type"); 6725 EVT VT = Val.getValueType(); 6726 SDVTList VTs = getVTList(MVT::Other); 6727 SDValue Undef = getUNDEF(Ptr.getValueType()); 6728 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6729 FoldingSetNodeID ID; 6730 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6731 ID.AddInteger(VT.getRawBits()); 6732 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6733 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6734 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6735 void *IP = nullptr; 6736 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6737 cast<StoreSDNode>(E)->refineAlignment(MMO); 6738 return SDValue(E, 0); 6739 } 6740 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6741 ISD::UNINDEXED, false, VT, MMO); 6742 createOperands(N, Ops); 6743 6744 CSEMap.InsertNode(N, IP); 6745 InsertNode(N); 6746 SDValue V(N, 0); 6747 NewSDValueDbgMsg(V, "Creating new node: ", this); 6748 return V; 6749 } 6750 6751 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6752 SDValue Ptr, MachinePointerInfo PtrInfo, 6753 EVT SVT, unsigned Alignment, 6754 MachineMemOperand::Flags MMOFlags, 6755 const AAMDNodes &AAInfo) { 6756 assert(Chain.getValueType() == MVT::Other && 6757 "Invalid chain type"); 6758 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6759 Alignment = getEVTAlignment(SVT); 6760 6761 MMOFlags |= MachineMemOperand::MOStore; 6762 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6763 6764 if (PtrInfo.V.isNull()) 6765 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6766 6767 MachineFunction &MF = getMachineFunction(); 6768 MachineMemOperand *MMO = MF.getMachineMemOperand( 6769 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6770 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6771 } 6772 6773 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6774 SDValue Ptr, EVT SVT, 6775 MachineMemOperand *MMO) { 6776 EVT VT = Val.getValueType(); 6777 6778 assert(Chain.getValueType() == MVT::Other && 6779 "Invalid chain type"); 6780 if (VT == SVT) 6781 return getStore(Chain, dl, Val, Ptr, MMO); 6782 6783 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6784 "Should only be a truncating store, not extending!"); 6785 assert(VT.isInteger() == SVT.isInteger() && 6786 "Can't do FP-INT conversion!"); 6787 assert(VT.isVector() == SVT.isVector() && 6788 "Cannot use trunc store to convert to or from a vector!"); 6789 assert((!VT.isVector() || 6790 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6791 "Cannot use trunc store to change the number of vector elements!"); 6792 6793 SDVTList VTs = getVTList(MVT::Other); 6794 SDValue Undef = getUNDEF(Ptr.getValueType()); 6795 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6796 FoldingSetNodeID ID; 6797 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6798 ID.AddInteger(SVT.getRawBits()); 6799 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6800 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6801 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6802 void *IP = nullptr; 6803 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6804 cast<StoreSDNode>(E)->refineAlignment(MMO); 6805 return SDValue(E, 0); 6806 } 6807 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6808 ISD::UNINDEXED, true, SVT, MMO); 6809 createOperands(N, Ops); 6810 6811 CSEMap.InsertNode(N, IP); 6812 InsertNode(N); 6813 SDValue V(N, 0); 6814 NewSDValueDbgMsg(V, "Creating new node: ", this); 6815 return V; 6816 } 6817 6818 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6819 SDValue Base, SDValue Offset, 6820 ISD::MemIndexedMode AM) { 6821 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6822 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6823 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6824 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6825 FoldingSetNodeID ID; 6826 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6827 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6828 ID.AddInteger(ST->getRawSubclassData()); 6829 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6830 void *IP = nullptr; 6831 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6832 return SDValue(E, 0); 6833 6834 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6835 ST->isTruncatingStore(), ST->getMemoryVT(), 6836 ST->getMemOperand()); 6837 createOperands(N, Ops); 6838 6839 CSEMap.InsertNode(N, IP); 6840 InsertNode(N); 6841 SDValue V(N, 0); 6842 NewSDValueDbgMsg(V, "Creating new node: ", this); 6843 return V; 6844 } 6845 6846 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6847 SDValue Ptr, SDValue Mask, SDValue PassThru, 6848 EVT MemVT, MachineMemOperand *MMO, 6849 ISD::LoadExtType ExtTy, bool isExpanding) { 6850 SDVTList VTs = getVTList(VT, MVT::Other); 6851 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6852 FoldingSetNodeID ID; 6853 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6854 ID.AddInteger(VT.getRawBits()); 6855 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6856 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6857 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6858 void *IP = nullptr; 6859 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6860 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6861 return SDValue(E, 0); 6862 } 6863 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6864 ExtTy, isExpanding, MemVT, MMO); 6865 createOperands(N, Ops); 6866 6867 CSEMap.InsertNode(N, IP); 6868 InsertNode(N); 6869 SDValue V(N, 0); 6870 NewSDValueDbgMsg(V, "Creating new node: ", this); 6871 return V; 6872 } 6873 6874 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6875 SDValue Val, SDValue Ptr, SDValue Mask, 6876 EVT MemVT, MachineMemOperand *MMO, 6877 bool IsTruncating, bool IsCompressing) { 6878 assert(Chain.getValueType() == MVT::Other && 6879 "Invalid chain type"); 6880 EVT VT = Val.getValueType(); 6881 SDVTList VTs = getVTList(MVT::Other); 6882 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6883 FoldingSetNodeID ID; 6884 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6885 ID.AddInteger(VT.getRawBits()); 6886 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6887 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6888 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6889 void *IP = nullptr; 6890 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6891 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6892 return SDValue(E, 0); 6893 } 6894 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6895 IsTruncating, IsCompressing, MemVT, MMO); 6896 createOperands(N, Ops); 6897 6898 CSEMap.InsertNode(N, IP); 6899 InsertNode(N); 6900 SDValue V(N, 0); 6901 NewSDValueDbgMsg(V, "Creating new node: ", this); 6902 return V; 6903 } 6904 6905 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6906 ArrayRef<SDValue> Ops, 6907 MachineMemOperand *MMO) { 6908 assert(Ops.size() == 6 && "Incompatible number of operands"); 6909 6910 FoldingSetNodeID ID; 6911 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6912 ID.AddInteger(VT.getRawBits()); 6913 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6914 dl.getIROrder(), VTs, VT, MMO)); 6915 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6916 void *IP = nullptr; 6917 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6918 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6919 return SDValue(E, 0); 6920 } 6921 6922 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6923 VTs, VT, MMO); 6924 createOperands(N, Ops); 6925 6926 assert(N->getPassThru().getValueType() == N->getValueType(0) && 6927 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6928 assert(N->getMask().getValueType().getVectorNumElements() == 6929 N->getValueType(0).getVectorNumElements() && 6930 "Vector width mismatch between mask and data"); 6931 assert(N->getIndex().getValueType().getVectorNumElements() >= 6932 N->getValueType(0).getVectorNumElements() && 6933 "Vector width mismatch between index and data"); 6934 assert(isa<ConstantSDNode>(N->getScale()) && 6935 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6936 "Scale should be a constant power of 2"); 6937 6938 CSEMap.InsertNode(N, IP); 6939 InsertNode(N); 6940 SDValue V(N, 0); 6941 NewSDValueDbgMsg(V, "Creating new node: ", this); 6942 return V; 6943 } 6944 6945 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6946 ArrayRef<SDValue> Ops, 6947 MachineMemOperand *MMO) { 6948 assert(Ops.size() == 6 && "Incompatible number of operands"); 6949 6950 FoldingSetNodeID ID; 6951 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6952 ID.AddInteger(VT.getRawBits()); 6953 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6954 dl.getIROrder(), VTs, VT, MMO)); 6955 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6956 void *IP = nullptr; 6957 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6958 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6959 return SDValue(E, 0); 6960 } 6961 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6962 VTs, VT, MMO); 6963 createOperands(N, Ops); 6964 6965 assert(N->getMask().getValueType().getVectorNumElements() == 6966 N->getValue().getValueType().getVectorNumElements() && 6967 "Vector width mismatch between mask and data"); 6968 assert(N->getIndex().getValueType().getVectorNumElements() >= 6969 N->getValue().getValueType().getVectorNumElements() && 6970 "Vector width mismatch between index and data"); 6971 assert(isa<ConstantSDNode>(N->getScale()) && 6972 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6973 "Scale should be a constant power of 2"); 6974 6975 CSEMap.InsertNode(N, IP); 6976 InsertNode(N); 6977 SDValue V(N, 0); 6978 NewSDValueDbgMsg(V, "Creating new node: ", this); 6979 return V; 6980 } 6981 6982 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 6983 // select undef, T, F --> T (if T is a constant), otherwise F 6984 // select, ?, undef, F --> F 6985 // select, ?, T, undef --> T 6986 if (Cond.isUndef()) 6987 return isConstantValueOfAnyType(T) ? T : F; 6988 if (T.isUndef()) 6989 return F; 6990 if (F.isUndef()) 6991 return T; 6992 6993 // select true, T, F --> T 6994 // select false, T, F --> F 6995 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 6996 return CondC->isNullValue() ? F : T; 6997 6998 // TODO: This should simplify VSELECT with constant condition using something 6999 // like this (but check boolean contents to be complete?): 7000 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7001 // return T; 7002 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7003 // return F; 7004 7005 // select ?, T, T --> T 7006 if (T == F) 7007 return T; 7008 7009 return SDValue(); 7010 } 7011 7012 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7013 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7014 if (X.isUndef()) 7015 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7016 // shift X, undef --> undef (because it may shift by the bitwidth) 7017 if (Y.isUndef()) 7018 return getUNDEF(X.getValueType()); 7019 7020 // shift 0, Y --> 0 7021 // shift X, 0 --> X 7022 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7023 return X; 7024 7025 // shift X, C >= bitwidth(X) --> undef 7026 // All vector elements must be too big (or undef) to avoid partial undefs. 7027 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7028 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7029 }; 7030 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7031 return getUNDEF(X.getValueType()); 7032 7033 return SDValue(); 7034 } 7035 7036 // TODO: Use fast-math-flags to enable more simplifications. 7037 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7038 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7039 if (!YC) 7040 return SDValue(); 7041 7042 // X + -0.0 --> X 7043 if (Opcode == ISD::FADD) 7044 if (YC->getValueAPF().isNegZero()) 7045 return X; 7046 7047 // X - +0.0 --> X 7048 if (Opcode == ISD::FSUB) 7049 if (YC->getValueAPF().isPosZero()) 7050 return X; 7051 7052 // X * 1.0 --> X 7053 // X / 1.0 --> X 7054 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7055 if (YC->getValueAPF().isExactlyValue(1.0)) 7056 return X; 7057 7058 return SDValue(); 7059 } 7060 7061 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7062 SDValue Ptr, SDValue SV, unsigned Align) { 7063 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7064 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7065 } 7066 7067 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7068 ArrayRef<SDUse> Ops) { 7069 switch (Ops.size()) { 7070 case 0: return getNode(Opcode, DL, VT); 7071 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7072 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7073 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7074 default: break; 7075 } 7076 7077 // Copy from an SDUse array into an SDValue array for use with 7078 // the regular getNode logic. 7079 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7080 return getNode(Opcode, DL, VT, NewOps); 7081 } 7082 7083 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7084 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7085 unsigned NumOps = Ops.size(); 7086 switch (NumOps) { 7087 case 0: return getNode(Opcode, DL, VT); 7088 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7089 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7090 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7091 default: break; 7092 } 7093 7094 switch (Opcode) { 7095 default: break; 7096 case ISD::BUILD_VECTOR: 7097 // Attempt to simplify BUILD_VECTOR. 7098 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7099 return V; 7100 break; 7101 case ISD::CONCAT_VECTORS: 7102 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 7103 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 7104 return V; 7105 break; 7106 case ISD::SELECT_CC: 7107 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7108 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7109 "LHS and RHS of condition must have same type!"); 7110 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7111 "True and False arms of SelectCC must have same type!"); 7112 assert(Ops[2].getValueType() == VT && 7113 "select_cc node must be of same type as true and false value!"); 7114 break; 7115 case ISD::BR_CC: 7116 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7117 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7118 "LHS/RHS of comparison should match types!"); 7119 break; 7120 } 7121 7122 // Memoize nodes. 7123 SDNode *N; 7124 SDVTList VTs = getVTList(VT); 7125 7126 if (VT != MVT::Glue) { 7127 FoldingSetNodeID ID; 7128 AddNodeIDNode(ID, Opcode, VTs, Ops); 7129 void *IP = nullptr; 7130 7131 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7132 return SDValue(E, 0); 7133 7134 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7135 createOperands(N, Ops); 7136 7137 CSEMap.InsertNode(N, IP); 7138 } else { 7139 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7140 createOperands(N, Ops); 7141 } 7142 7143 InsertNode(N); 7144 SDValue V(N, 0); 7145 NewSDValueDbgMsg(V, "Creating new node: ", this); 7146 return V; 7147 } 7148 7149 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7150 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7151 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7152 } 7153 7154 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7155 ArrayRef<SDValue> Ops) { 7156 if (VTList.NumVTs == 1) 7157 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7158 7159 #if 0 7160 switch (Opcode) { 7161 // FIXME: figure out how to safely handle things like 7162 // int foo(int x) { return 1 << (x & 255); } 7163 // int bar() { return foo(256); } 7164 case ISD::SRA_PARTS: 7165 case ISD::SRL_PARTS: 7166 case ISD::SHL_PARTS: 7167 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7168 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7169 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7170 else if (N3.getOpcode() == ISD::AND) 7171 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7172 // If the and is only masking out bits that cannot effect the shift, 7173 // eliminate the and. 7174 unsigned NumBits = VT.getScalarSizeInBits()*2; 7175 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7176 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7177 } 7178 break; 7179 } 7180 #endif 7181 7182 // Memoize the node unless it returns a flag. 7183 SDNode *N; 7184 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7185 FoldingSetNodeID ID; 7186 AddNodeIDNode(ID, Opcode, VTList, Ops); 7187 void *IP = nullptr; 7188 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7189 return SDValue(E, 0); 7190 7191 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7192 createOperands(N, Ops); 7193 CSEMap.InsertNode(N, IP); 7194 } else { 7195 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7196 createOperands(N, Ops); 7197 } 7198 InsertNode(N); 7199 SDValue V(N, 0); 7200 NewSDValueDbgMsg(V, "Creating new node: ", this); 7201 return V; 7202 } 7203 7204 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7205 SDVTList VTList) { 7206 return getNode(Opcode, DL, VTList, None); 7207 } 7208 7209 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7210 SDValue N1) { 7211 SDValue Ops[] = { N1 }; 7212 return getNode(Opcode, DL, VTList, Ops); 7213 } 7214 7215 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7216 SDValue N1, SDValue N2) { 7217 SDValue Ops[] = { N1, N2 }; 7218 return getNode(Opcode, DL, VTList, Ops); 7219 } 7220 7221 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7222 SDValue N1, SDValue N2, SDValue N3) { 7223 SDValue Ops[] = { N1, N2, N3 }; 7224 return getNode(Opcode, DL, VTList, Ops); 7225 } 7226 7227 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7228 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7229 SDValue Ops[] = { N1, N2, N3, N4 }; 7230 return getNode(Opcode, DL, VTList, Ops); 7231 } 7232 7233 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7234 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7235 SDValue N5) { 7236 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7237 return getNode(Opcode, DL, VTList, Ops); 7238 } 7239 7240 SDVTList SelectionDAG::getVTList(EVT VT) { 7241 return makeVTList(SDNode::getValueTypeList(VT), 1); 7242 } 7243 7244 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7245 FoldingSetNodeID ID; 7246 ID.AddInteger(2U); 7247 ID.AddInteger(VT1.getRawBits()); 7248 ID.AddInteger(VT2.getRawBits()); 7249 7250 void *IP = nullptr; 7251 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7252 if (!Result) { 7253 EVT *Array = Allocator.Allocate<EVT>(2); 7254 Array[0] = VT1; 7255 Array[1] = VT2; 7256 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7257 VTListMap.InsertNode(Result, IP); 7258 } 7259 return Result->getSDVTList(); 7260 } 7261 7262 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7263 FoldingSetNodeID ID; 7264 ID.AddInteger(3U); 7265 ID.AddInteger(VT1.getRawBits()); 7266 ID.AddInteger(VT2.getRawBits()); 7267 ID.AddInteger(VT3.getRawBits()); 7268 7269 void *IP = nullptr; 7270 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7271 if (!Result) { 7272 EVT *Array = Allocator.Allocate<EVT>(3); 7273 Array[0] = VT1; 7274 Array[1] = VT2; 7275 Array[2] = VT3; 7276 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7277 VTListMap.InsertNode(Result, IP); 7278 } 7279 return Result->getSDVTList(); 7280 } 7281 7282 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7283 FoldingSetNodeID ID; 7284 ID.AddInteger(4U); 7285 ID.AddInteger(VT1.getRawBits()); 7286 ID.AddInteger(VT2.getRawBits()); 7287 ID.AddInteger(VT3.getRawBits()); 7288 ID.AddInteger(VT4.getRawBits()); 7289 7290 void *IP = nullptr; 7291 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7292 if (!Result) { 7293 EVT *Array = Allocator.Allocate<EVT>(4); 7294 Array[0] = VT1; 7295 Array[1] = VT2; 7296 Array[2] = VT3; 7297 Array[3] = VT4; 7298 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7299 VTListMap.InsertNode(Result, IP); 7300 } 7301 return Result->getSDVTList(); 7302 } 7303 7304 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7305 unsigned NumVTs = VTs.size(); 7306 FoldingSetNodeID ID; 7307 ID.AddInteger(NumVTs); 7308 for (unsigned index = 0; index < NumVTs; index++) { 7309 ID.AddInteger(VTs[index].getRawBits()); 7310 } 7311 7312 void *IP = nullptr; 7313 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7314 if (!Result) { 7315 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7316 llvm::copy(VTs, Array); 7317 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7318 VTListMap.InsertNode(Result, IP); 7319 } 7320 return Result->getSDVTList(); 7321 } 7322 7323 7324 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7325 /// specified operands. If the resultant node already exists in the DAG, 7326 /// this does not modify the specified node, instead it returns the node that 7327 /// already exists. If the resultant node does not exist in the DAG, the 7328 /// input node is returned. As a degenerate case, if you specify the same 7329 /// input operands as the node already has, the input node is returned. 7330 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7331 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7332 7333 // Check to see if there is no change. 7334 if (Op == N->getOperand(0)) return N; 7335 7336 // See if the modified node already exists. 7337 void *InsertPos = nullptr; 7338 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7339 return Existing; 7340 7341 // Nope it doesn't. Remove the node from its current place in the maps. 7342 if (InsertPos) 7343 if (!RemoveNodeFromCSEMaps(N)) 7344 InsertPos = nullptr; 7345 7346 // Now we update the operands. 7347 N->OperandList[0].set(Op); 7348 7349 updateDivergence(N); 7350 // If this gets put into a CSE map, add it. 7351 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7352 return N; 7353 } 7354 7355 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7356 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7357 7358 // Check to see if there is no change. 7359 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7360 return N; // No operands changed, just return the input node. 7361 7362 // See if the modified node already exists. 7363 void *InsertPos = nullptr; 7364 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7365 return Existing; 7366 7367 // Nope it doesn't. Remove the node from its current place in the maps. 7368 if (InsertPos) 7369 if (!RemoveNodeFromCSEMaps(N)) 7370 InsertPos = nullptr; 7371 7372 // Now we update the operands. 7373 if (N->OperandList[0] != Op1) 7374 N->OperandList[0].set(Op1); 7375 if (N->OperandList[1] != Op2) 7376 N->OperandList[1].set(Op2); 7377 7378 updateDivergence(N); 7379 // If this gets put into a CSE map, add it. 7380 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7381 return N; 7382 } 7383 7384 SDNode *SelectionDAG:: 7385 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7386 SDValue Ops[] = { Op1, Op2, Op3 }; 7387 return UpdateNodeOperands(N, Ops); 7388 } 7389 7390 SDNode *SelectionDAG:: 7391 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7392 SDValue Op3, SDValue Op4) { 7393 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7394 return UpdateNodeOperands(N, Ops); 7395 } 7396 7397 SDNode *SelectionDAG:: 7398 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7399 SDValue Op3, SDValue Op4, SDValue Op5) { 7400 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7401 return UpdateNodeOperands(N, Ops); 7402 } 7403 7404 SDNode *SelectionDAG:: 7405 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7406 unsigned NumOps = Ops.size(); 7407 assert(N->getNumOperands() == NumOps && 7408 "Update with wrong number of operands"); 7409 7410 // If no operands changed just return the input node. 7411 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7412 return N; 7413 7414 // See if the modified node already exists. 7415 void *InsertPos = nullptr; 7416 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7417 return Existing; 7418 7419 // Nope it doesn't. Remove the node from its current place in the maps. 7420 if (InsertPos) 7421 if (!RemoveNodeFromCSEMaps(N)) 7422 InsertPos = nullptr; 7423 7424 // Now we update the operands. 7425 for (unsigned i = 0; i != NumOps; ++i) 7426 if (N->OperandList[i] != Ops[i]) 7427 N->OperandList[i].set(Ops[i]); 7428 7429 updateDivergence(N); 7430 // If this gets put into a CSE map, add it. 7431 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7432 return N; 7433 } 7434 7435 /// DropOperands - Release the operands and set this node to have 7436 /// zero operands. 7437 void SDNode::DropOperands() { 7438 // Unlike the code in MorphNodeTo that does this, we don't need to 7439 // watch for dead nodes here. 7440 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7441 SDUse &Use = *I++; 7442 Use.set(SDValue()); 7443 } 7444 } 7445 7446 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7447 ArrayRef<MachineMemOperand *> NewMemRefs) { 7448 if (NewMemRefs.empty()) { 7449 N->clearMemRefs(); 7450 return; 7451 } 7452 7453 // Check if we can avoid allocating by storing a single reference directly. 7454 if (NewMemRefs.size() == 1) { 7455 N->MemRefs = NewMemRefs[0]; 7456 N->NumMemRefs = 1; 7457 return; 7458 } 7459 7460 MachineMemOperand **MemRefsBuffer = 7461 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7462 llvm::copy(NewMemRefs, MemRefsBuffer); 7463 N->MemRefs = MemRefsBuffer; 7464 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7465 } 7466 7467 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7468 /// machine opcode. 7469 /// 7470 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7471 EVT VT) { 7472 SDVTList VTs = getVTList(VT); 7473 return SelectNodeTo(N, MachineOpc, VTs, None); 7474 } 7475 7476 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7477 EVT VT, SDValue Op1) { 7478 SDVTList VTs = getVTList(VT); 7479 SDValue Ops[] = { Op1 }; 7480 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7481 } 7482 7483 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7484 EVT VT, SDValue Op1, 7485 SDValue Op2) { 7486 SDVTList VTs = getVTList(VT); 7487 SDValue Ops[] = { Op1, Op2 }; 7488 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7489 } 7490 7491 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7492 EVT VT, SDValue Op1, 7493 SDValue Op2, SDValue Op3) { 7494 SDVTList VTs = getVTList(VT); 7495 SDValue Ops[] = { Op1, Op2, Op3 }; 7496 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7497 } 7498 7499 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7500 EVT VT, ArrayRef<SDValue> Ops) { 7501 SDVTList VTs = getVTList(VT); 7502 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7503 } 7504 7505 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7506 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7507 SDVTList VTs = getVTList(VT1, VT2); 7508 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7509 } 7510 7511 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7512 EVT VT1, EVT VT2) { 7513 SDVTList VTs = getVTList(VT1, VT2); 7514 return SelectNodeTo(N, MachineOpc, VTs, None); 7515 } 7516 7517 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7518 EVT VT1, EVT VT2, EVT VT3, 7519 ArrayRef<SDValue> Ops) { 7520 SDVTList VTs = getVTList(VT1, VT2, VT3); 7521 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7522 } 7523 7524 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7525 EVT VT1, EVT VT2, 7526 SDValue Op1, SDValue Op2) { 7527 SDVTList VTs = getVTList(VT1, VT2); 7528 SDValue Ops[] = { Op1, Op2 }; 7529 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7530 } 7531 7532 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7533 SDVTList VTs,ArrayRef<SDValue> Ops) { 7534 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7535 // Reset the NodeID to -1. 7536 New->setNodeId(-1); 7537 if (New != N) { 7538 ReplaceAllUsesWith(N, New); 7539 RemoveDeadNode(N); 7540 } 7541 return New; 7542 } 7543 7544 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7545 /// the line number information on the merged node since it is not possible to 7546 /// preserve the information that operation is associated with multiple lines. 7547 /// This will make the debugger working better at -O0, were there is a higher 7548 /// probability having other instructions associated with that line. 7549 /// 7550 /// For IROrder, we keep the smaller of the two 7551 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7552 DebugLoc NLoc = N->getDebugLoc(); 7553 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7554 N->setDebugLoc(DebugLoc()); 7555 } 7556 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7557 N->setIROrder(Order); 7558 return N; 7559 } 7560 7561 /// MorphNodeTo - This *mutates* the specified node to have the specified 7562 /// return type, opcode, and operands. 7563 /// 7564 /// Note that MorphNodeTo returns the resultant node. If there is already a 7565 /// node of the specified opcode and operands, it returns that node instead of 7566 /// the current one. Note that the SDLoc need not be the same. 7567 /// 7568 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7569 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7570 /// node, and because it doesn't require CSE recalculation for any of 7571 /// the node's users. 7572 /// 7573 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7574 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7575 /// the legalizer which maintain worklists that would need to be updated when 7576 /// deleting things. 7577 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7578 SDVTList VTs, ArrayRef<SDValue> Ops) { 7579 // If an identical node already exists, use it. 7580 void *IP = nullptr; 7581 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7582 FoldingSetNodeID ID; 7583 AddNodeIDNode(ID, Opc, VTs, Ops); 7584 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7585 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7586 } 7587 7588 if (!RemoveNodeFromCSEMaps(N)) 7589 IP = nullptr; 7590 7591 // Start the morphing. 7592 N->NodeType = Opc; 7593 N->ValueList = VTs.VTs; 7594 N->NumValues = VTs.NumVTs; 7595 7596 // Clear the operands list, updating used nodes to remove this from their 7597 // use list. Keep track of any operands that become dead as a result. 7598 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7599 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7600 SDUse &Use = *I++; 7601 SDNode *Used = Use.getNode(); 7602 Use.set(SDValue()); 7603 if (Used->use_empty()) 7604 DeadNodeSet.insert(Used); 7605 } 7606 7607 // For MachineNode, initialize the memory references information. 7608 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7609 MN->clearMemRefs(); 7610 7611 // Swap for an appropriately sized array from the recycler. 7612 removeOperands(N); 7613 createOperands(N, Ops); 7614 7615 // Delete any nodes that are still dead after adding the uses for the 7616 // new operands. 7617 if (!DeadNodeSet.empty()) { 7618 SmallVector<SDNode *, 16> DeadNodes; 7619 for (SDNode *N : DeadNodeSet) 7620 if (N->use_empty()) 7621 DeadNodes.push_back(N); 7622 RemoveDeadNodes(DeadNodes); 7623 } 7624 7625 if (IP) 7626 CSEMap.InsertNode(N, IP); // Memoize the new node. 7627 return N; 7628 } 7629 7630 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7631 unsigned OrigOpc = Node->getOpcode(); 7632 unsigned NewOpc; 7633 bool IsUnary = false; 7634 bool IsTernary = false; 7635 switch (OrigOpc) { 7636 default: 7637 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7638 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7639 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7640 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7641 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7642 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7643 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 7644 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 7645 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7646 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7647 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 7648 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 7649 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 7650 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 7651 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 7652 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 7653 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 7654 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 7655 case ISD::STRICT_FNEARBYINT: 7656 NewOpc = ISD::FNEARBYINT; 7657 IsUnary = true; 7658 break; 7659 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7660 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7661 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break; 7662 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break; 7663 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break; 7664 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break; 7665 } 7666 7667 // We're taking this node out of the chain, so we need to re-link things. 7668 SDValue InputChain = Node->getOperand(0); 7669 SDValue OutputChain = SDValue(Node, 1); 7670 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7671 7672 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 7673 SDNode *Res = nullptr; 7674 if (IsUnary) 7675 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 7676 else if (IsTernary) 7677 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7678 Node->getOperand(2), 7679 Node->getOperand(3)}); 7680 else 7681 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7682 Node->getOperand(2) }); 7683 7684 // MorphNodeTo can operate in two ways: if an existing node with the 7685 // specified operands exists, it can just return it. Otherwise, it 7686 // updates the node in place to have the requested operands. 7687 if (Res == Node) { 7688 // If we updated the node in place, reset the node ID. To the isel, 7689 // this should be just like a newly allocated machine node. 7690 Res->setNodeId(-1); 7691 } else { 7692 ReplaceAllUsesWith(Node, Res); 7693 RemoveDeadNode(Node); 7694 } 7695 7696 return Res; 7697 } 7698 7699 /// getMachineNode - These are used for target selectors to create a new node 7700 /// with specified return type(s), MachineInstr opcode, and operands. 7701 /// 7702 /// Note that getMachineNode returns the resultant node. If there is already a 7703 /// node of the specified opcode and operands, it returns that node instead of 7704 /// the current one. 7705 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7706 EVT VT) { 7707 SDVTList VTs = getVTList(VT); 7708 return getMachineNode(Opcode, dl, VTs, None); 7709 } 7710 7711 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7712 EVT VT, SDValue Op1) { 7713 SDVTList VTs = getVTList(VT); 7714 SDValue Ops[] = { Op1 }; 7715 return getMachineNode(Opcode, dl, VTs, Ops); 7716 } 7717 7718 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7719 EVT VT, SDValue Op1, SDValue Op2) { 7720 SDVTList VTs = getVTList(VT); 7721 SDValue Ops[] = { Op1, Op2 }; 7722 return getMachineNode(Opcode, dl, VTs, Ops); 7723 } 7724 7725 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7726 EVT VT, SDValue Op1, SDValue Op2, 7727 SDValue Op3) { 7728 SDVTList VTs = getVTList(VT); 7729 SDValue Ops[] = { Op1, Op2, Op3 }; 7730 return getMachineNode(Opcode, dl, VTs, Ops); 7731 } 7732 7733 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7734 EVT VT, ArrayRef<SDValue> Ops) { 7735 SDVTList VTs = getVTList(VT); 7736 return getMachineNode(Opcode, dl, VTs, Ops); 7737 } 7738 7739 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7740 EVT VT1, EVT VT2, SDValue Op1, 7741 SDValue Op2) { 7742 SDVTList VTs = getVTList(VT1, VT2); 7743 SDValue Ops[] = { Op1, Op2 }; 7744 return getMachineNode(Opcode, dl, VTs, Ops); 7745 } 7746 7747 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7748 EVT VT1, EVT VT2, SDValue Op1, 7749 SDValue Op2, SDValue Op3) { 7750 SDVTList VTs = getVTList(VT1, VT2); 7751 SDValue Ops[] = { Op1, Op2, Op3 }; 7752 return getMachineNode(Opcode, dl, VTs, Ops); 7753 } 7754 7755 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7756 EVT VT1, EVT VT2, 7757 ArrayRef<SDValue> Ops) { 7758 SDVTList VTs = getVTList(VT1, VT2); 7759 return getMachineNode(Opcode, dl, VTs, Ops); 7760 } 7761 7762 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7763 EVT VT1, EVT VT2, EVT VT3, 7764 SDValue Op1, SDValue Op2) { 7765 SDVTList VTs = getVTList(VT1, VT2, VT3); 7766 SDValue Ops[] = { Op1, Op2 }; 7767 return getMachineNode(Opcode, dl, VTs, Ops); 7768 } 7769 7770 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7771 EVT VT1, EVT VT2, EVT VT3, 7772 SDValue Op1, SDValue Op2, 7773 SDValue Op3) { 7774 SDVTList VTs = getVTList(VT1, VT2, VT3); 7775 SDValue Ops[] = { Op1, Op2, Op3 }; 7776 return getMachineNode(Opcode, dl, VTs, Ops); 7777 } 7778 7779 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7780 EVT VT1, EVT VT2, EVT VT3, 7781 ArrayRef<SDValue> Ops) { 7782 SDVTList VTs = getVTList(VT1, VT2, VT3); 7783 return getMachineNode(Opcode, dl, VTs, Ops); 7784 } 7785 7786 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7787 ArrayRef<EVT> ResultTys, 7788 ArrayRef<SDValue> Ops) { 7789 SDVTList VTs = getVTList(ResultTys); 7790 return getMachineNode(Opcode, dl, VTs, Ops); 7791 } 7792 7793 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7794 SDVTList VTs, 7795 ArrayRef<SDValue> Ops) { 7796 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7797 MachineSDNode *N; 7798 void *IP = nullptr; 7799 7800 if (DoCSE) { 7801 FoldingSetNodeID ID; 7802 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7803 IP = nullptr; 7804 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7805 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7806 } 7807 } 7808 7809 // Allocate a new MachineSDNode. 7810 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7811 createOperands(N, Ops); 7812 7813 if (DoCSE) 7814 CSEMap.InsertNode(N, IP); 7815 7816 InsertNode(N); 7817 return N; 7818 } 7819 7820 /// getTargetExtractSubreg - A convenience function for creating 7821 /// TargetOpcode::EXTRACT_SUBREG nodes. 7822 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7823 SDValue Operand) { 7824 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7825 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7826 VT, Operand, SRIdxVal); 7827 return SDValue(Subreg, 0); 7828 } 7829 7830 /// getTargetInsertSubreg - A convenience function for creating 7831 /// TargetOpcode::INSERT_SUBREG nodes. 7832 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7833 SDValue Operand, SDValue Subreg) { 7834 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7835 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7836 VT, Operand, Subreg, SRIdxVal); 7837 return SDValue(Result, 0); 7838 } 7839 7840 /// getNodeIfExists - Get the specified node if it's already available, or 7841 /// else return NULL. 7842 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7843 ArrayRef<SDValue> Ops, 7844 const SDNodeFlags Flags) { 7845 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7846 FoldingSetNodeID ID; 7847 AddNodeIDNode(ID, Opcode, VTList, Ops); 7848 void *IP = nullptr; 7849 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7850 E->intersectFlagsWith(Flags); 7851 return E; 7852 } 7853 } 7854 return nullptr; 7855 } 7856 7857 /// getDbgValue - Creates a SDDbgValue node. 7858 /// 7859 /// SDNode 7860 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7861 SDNode *N, unsigned R, bool IsIndirect, 7862 const DebugLoc &DL, unsigned O) { 7863 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7864 "Expected inlined-at fields to agree"); 7865 return new (DbgInfo->getAlloc()) 7866 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7867 } 7868 7869 /// Constant 7870 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7871 DIExpression *Expr, 7872 const Value *C, 7873 const DebugLoc &DL, unsigned O) { 7874 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7875 "Expected inlined-at fields to agree"); 7876 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7877 } 7878 7879 /// FrameIndex 7880 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7881 DIExpression *Expr, unsigned FI, 7882 bool IsIndirect, 7883 const DebugLoc &DL, 7884 unsigned O) { 7885 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7886 "Expected inlined-at fields to agree"); 7887 return new (DbgInfo->getAlloc()) 7888 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7889 } 7890 7891 /// VReg 7892 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7893 DIExpression *Expr, 7894 unsigned VReg, bool IsIndirect, 7895 const DebugLoc &DL, unsigned O) { 7896 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7897 "Expected inlined-at fields to agree"); 7898 return new (DbgInfo->getAlloc()) 7899 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 7900 } 7901 7902 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7903 unsigned OffsetInBits, unsigned SizeInBits, 7904 bool InvalidateDbg) { 7905 SDNode *FromNode = From.getNode(); 7906 SDNode *ToNode = To.getNode(); 7907 assert(FromNode && ToNode && "Can't modify dbg values"); 7908 7909 // PR35338 7910 // TODO: assert(From != To && "Redundant dbg value transfer"); 7911 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7912 if (From == To || FromNode == ToNode) 7913 return; 7914 7915 if (!FromNode->getHasDebugValue()) 7916 return; 7917 7918 SmallVector<SDDbgValue *, 2> ClonedDVs; 7919 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7920 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7921 continue; 7922 7923 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7924 7925 // Just transfer the dbg value attached to From. 7926 if (Dbg->getResNo() != From.getResNo()) 7927 continue; 7928 7929 DIVariable *Var = Dbg->getVariable(); 7930 auto *Expr = Dbg->getExpression(); 7931 // If a fragment is requested, update the expression. 7932 if (SizeInBits) { 7933 // When splitting a larger (e.g., sign-extended) value whose 7934 // lower bits are described with an SDDbgValue, do not attempt 7935 // to transfer the SDDbgValue to the upper bits. 7936 if (auto FI = Expr->getFragmentInfo()) 7937 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7938 continue; 7939 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7940 SizeInBits); 7941 if (!Fragment) 7942 continue; 7943 Expr = *Fragment; 7944 } 7945 // Clone the SDDbgValue and move it to To. 7946 SDDbgValue *Clone = 7947 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7948 Dbg->getDebugLoc(), Dbg->getOrder()); 7949 ClonedDVs.push_back(Clone); 7950 7951 if (InvalidateDbg) { 7952 // Invalidate value and indicate the SDDbgValue should not be emitted. 7953 Dbg->setIsInvalidated(); 7954 Dbg->setIsEmitted(); 7955 } 7956 } 7957 7958 for (SDDbgValue *Dbg : ClonedDVs) 7959 AddDbgValue(Dbg, ToNode, false); 7960 } 7961 7962 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7963 if (!N.getHasDebugValue()) 7964 return; 7965 7966 SmallVector<SDDbgValue *, 2> ClonedDVs; 7967 for (auto DV : GetDbgValues(&N)) { 7968 if (DV->isInvalidated()) 7969 continue; 7970 switch (N.getOpcode()) { 7971 default: 7972 break; 7973 case ISD::ADD: 7974 SDValue N0 = N.getOperand(0); 7975 SDValue N1 = N.getOperand(1); 7976 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7977 isConstantIntBuildVectorOrConstantInt(N1)) { 7978 uint64_t Offset = N.getConstantOperandVal(1); 7979 // Rewrite an ADD constant node into a DIExpression. Since we are 7980 // performing arithmetic to compute the variable's *value* in the 7981 // DIExpression, we need to mark the expression with a 7982 // DW_OP_stack_value. 7983 auto *DIExpr = DV->getExpression(); 7984 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7985 DIExpression::NoDeref, 7986 DIExpression::WithStackValue); 7987 SDDbgValue *Clone = 7988 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7989 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7990 ClonedDVs.push_back(Clone); 7991 DV->setIsInvalidated(); 7992 DV->setIsEmitted(); 7993 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 7994 N0.getNode()->dumprFull(this); 7995 dbgs() << " into " << *DIExpr << '\n'); 7996 } 7997 } 7998 } 7999 8000 for (SDDbgValue *Dbg : ClonedDVs) 8001 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8002 } 8003 8004 /// Creates a SDDbgLabel node. 8005 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8006 const DebugLoc &DL, unsigned O) { 8007 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8008 "Expected inlined-at fields to agree"); 8009 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8010 } 8011 8012 namespace { 8013 8014 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8015 /// pointed to by a use iterator is deleted, increment the use iterator 8016 /// so that it doesn't dangle. 8017 /// 8018 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8019 SDNode::use_iterator &UI; 8020 SDNode::use_iterator &UE; 8021 8022 void NodeDeleted(SDNode *N, SDNode *E) override { 8023 // Increment the iterator as needed. 8024 while (UI != UE && N == *UI) 8025 ++UI; 8026 } 8027 8028 public: 8029 RAUWUpdateListener(SelectionDAG &d, 8030 SDNode::use_iterator &ui, 8031 SDNode::use_iterator &ue) 8032 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8033 }; 8034 8035 } // end anonymous namespace 8036 8037 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8038 /// This can cause recursive merging of nodes in the DAG. 8039 /// 8040 /// This version assumes From has a single result value. 8041 /// 8042 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8043 SDNode *From = FromN.getNode(); 8044 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8045 "Cannot replace with this method!"); 8046 assert(From != To.getNode() && "Cannot replace uses of with self"); 8047 8048 // Preserve Debug Values 8049 transferDbgValues(FromN, To); 8050 8051 // Iterate over all the existing uses of From. New uses will be added 8052 // to the beginning of the use list, which we avoid visiting. 8053 // This specifically avoids visiting uses of From that arise while the 8054 // replacement is happening, because any such uses would be the result 8055 // of CSE: If an existing node looks like From after one of its operands 8056 // is replaced by To, we don't want to replace of all its users with To 8057 // too. See PR3018 for more info. 8058 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8059 RAUWUpdateListener Listener(*this, UI, UE); 8060 while (UI != UE) { 8061 SDNode *User = *UI; 8062 8063 // This node is about to morph, remove its old self from the CSE maps. 8064 RemoveNodeFromCSEMaps(User); 8065 8066 // A user can appear in a use list multiple times, and when this 8067 // happens the uses are usually next to each other in the list. 8068 // To help reduce the number of CSE recomputations, process all 8069 // the uses of this user that we can find this way. 8070 do { 8071 SDUse &Use = UI.getUse(); 8072 ++UI; 8073 Use.set(To); 8074 if (To->isDivergent() != From->isDivergent()) 8075 updateDivergence(User); 8076 } while (UI != UE && *UI == User); 8077 // Now that we have modified User, add it back to the CSE maps. If it 8078 // already exists there, recursively merge the results together. 8079 AddModifiedNodeToCSEMaps(User); 8080 } 8081 8082 // If we just RAUW'd the root, take note. 8083 if (FromN == getRoot()) 8084 setRoot(To); 8085 } 8086 8087 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8088 /// This can cause recursive merging of nodes in the DAG. 8089 /// 8090 /// This version assumes that for each value of From, there is a 8091 /// corresponding value in To in the same position with the same type. 8092 /// 8093 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8094 #ifndef NDEBUG 8095 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8096 assert((!From->hasAnyUseOfValue(i) || 8097 From->getValueType(i) == To->getValueType(i)) && 8098 "Cannot use this version of ReplaceAllUsesWith!"); 8099 #endif 8100 8101 // Handle the trivial case. 8102 if (From == To) 8103 return; 8104 8105 // Preserve Debug Info. Only do this if there's a use. 8106 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8107 if (From->hasAnyUseOfValue(i)) { 8108 assert((i < To->getNumValues()) && "Invalid To location"); 8109 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8110 } 8111 8112 // Iterate over just the existing users of From. See the comments in 8113 // the ReplaceAllUsesWith above. 8114 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8115 RAUWUpdateListener Listener(*this, UI, UE); 8116 while (UI != UE) { 8117 SDNode *User = *UI; 8118 8119 // This node is about to morph, remove its old self from the CSE maps. 8120 RemoveNodeFromCSEMaps(User); 8121 8122 // A user can appear in a use list multiple times, and when this 8123 // happens the uses are usually next to each other in the list. 8124 // To help reduce the number of CSE recomputations, process all 8125 // the uses of this user that we can find this way. 8126 do { 8127 SDUse &Use = UI.getUse(); 8128 ++UI; 8129 Use.setNode(To); 8130 if (To->isDivergent() != From->isDivergent()) 8131 updateDivergence(User); 8132 } while (UI != UE && *UI == User); 8133 8134 // Now that we have modified User, add it back to the CSE maps. If it 8135 // already exists there, recursively merge the results together. 8136 AddModifiedNodeToCSEMaps(User); 8137 } 8138 8139 // If we just RAUW'd the root, take note. 8140 if (From == getRoot().getNode()) 8141 setRoot(SDValue(To, getRoot().getResNo())); 8142 } 8143 8144 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8145 /// This can cause recursive merging of nodes in the DAG. 8146 /// 8147 /// This version can replace From with any result values. To must match the 8148 /// number and types of values returned by From. 8149 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8150 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8151 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8152 8153 // Preserve Debug Info. 8154 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8155 transferDbgValues(SDValue(From, i), To[i]); 8156 8157 // Iterate over just the existing users of From. See the comments in 8158 // the ReplaceAllUsesWith above. 8159 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8160 RAUWUpdateListener Listener(*this, UI, UE); 8161 while (UI != UE) { 8162 SDNode *User = *UI; 8163 8164 // This node is about to morph, remove its old self from the CSE maps. 8165 RemoveNodeFromCSEMaps(User); 8166 8167 // A user can appear in a use list multiple times, and when this happens the 8168 // uses are usually next to each other in the list. To help reduce the 8169 // number of CSE and divergence recomputations, process all the uses of this 8170 // user that we can find this way. 8171 bool To_IsDivergent = false; 8172 do { 8173 SDUse &Use = UI.getUse(); 8174 const SDValue &ToOp = To[Use.getResNo()]; 8175 ++UI; 8176 Use.set(ToOp); 8177 To_IsDivergent |= ToOp->isDivergent(); 8178 } while (UI != UE && *UI == User); 8179 8180 if (To_IsDivergent != From->isDivergent()) 8181 updateDivergence(User); 8182 8183 // Now that we have modified User, add it back to the CSE maps. If it 8184 // already exists there, recursively merge the results together. 8185 AddModifiedNodeToCSEMaps(User); 8186 } 8187 8188 // If we just RAUW'd the root, take note. 8189 if (From == getRoot().getNode()) 8190 setRoot(SDValue(To[getRoot().getResNo()])); 8191 } 8192 8193 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8194 /// uses of other values produced by From.getNode() alone. The Deleted 8195 /// vector is handled the same way as for ReplaceAllUsesWith. 8196 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8197 // Handle the really simple, really trivial case efficiently. 8198 if (From == To) return; 8199 8200 // Handle the simple, trivial, case efficiently. 8201 if (From.getNode()->getNumValues() == 1) { 8202 ReplaceAllUsesWith(From, To); 8203 return; 8204 } 8205 8206 // Preserve Debug Info. 8207 transferDbgValues(From, To); 8208 8209 // Iterate over just the existing users of From. See the comments in 8210 // the ReplaceAllUsesWith above. 8211 SDNode::use_iterator UI = From.getNode()->use_begin(), 8212 UE = From.getNode()->use_end(); 8213 RAUWUpdateListener Listener(*this, UI, UE); 8214 while (UI != UE) { 8215 SDNode *User = *UI; 8216 bool UserRemovedFromCSEMaps = false; 8217 8218 // A user can appear in a use list multiple times, and when this 8219 // happens the uses are usually next to each other in the list. 8220 // To help reduce the number of CSE recomputations, process all 8221 // the uses of this user that we can find this way. 8222 do { 8223 SDUse &Use = UI.getUse(); 8224 8225 // Skip uses of different values from the same node. 8226 if (Use.getResNo() != From.getResNo()) { 8227 ++UI; 8228 continue; 8229 } 8230 8231 // If this node hasn't been modified yet, it's still in the CSE maps, 8232 // so remove its old self from the CSE maps. 8233 if (!UserRemovedFromCSEMaps) { 8234 RemoveNodeFromCSEMaps(User); 8235 UserRemovedFromCSEMaps = true; 8236 } 8237 8238 ++UI; 8239 Use.set(To); 8240 if (To->isDivergent() != From->isDivergent()) 8241 updateDivergence(User); 8242 } while (UI != UE && *UI == User); 8243 // We are iterating over all uses of the From node, so if a use 8244 // doesn't use the specific value, no changes are made. 8245 if (!UserRemovedFromCSEMaps) 8246 continue; 8247 8248 // Now that we have modified User, add it back to the CSE maps. If it 8249 // already exists there, recursively merge the results together. 8250 AddModifiedNodeToCSEMaps(User); 8251 } 8252 8253 // If we just RAUW'd the root, take note. 8254 if (From == getRoot()) 8255 setRoot(To); 8256 } 8257 8258 namespace { 8259 8260 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8261 /// to record information about a use. 8262 struct UseMemo { 8263 SDNode *User; 8264 unsigned Index; 8265 SDUse *Use; 8266 }; 8267 8268 /// operator< - Sort Memos by User. 8269 bool operator<(const UseMemo &L, const UseMemo &R) { 8270 return (intptr_t)L.User < (intptr_t)R.User; 8271 } 8272 8273 } // end anonymous namespace 8274 8275 void SelectionDAG::updateDivergence(SDNode * N) 8276 { 8277 if (TLI->isSDNodeAlwaysUniform(N)) 8278 return; 8279 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8280 for (auto &Op : N->ops()) { 8281 if (Op.Val.getValueType() != MVT::Other) 8282 IsDivergent |= Op.getNode()->isDivergent(); 8283 } 8284 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8285 N->SDNodeBits.IsDivergent = IsDivergent; 8286 for (auto U : N->uses()) { 8287 updateDivergence(U); 8288 } 8289 } 8290 } 8291 8292 8293 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) { 8294 DenseMap<SDNode *, unsigned> Degree; 8295 Order.reserve(AllNodes.size()); 8296 for (auto & N : allnodes()) { 8297 unsigned NOps = N.getNumOperands(); 8298 Degree[&N] = NOps; 8299 if (0 == NOps) 8300 Order.push_back(&N); 8301 } 8302 for (std::vector<SDNode *>::iterator I = Order.begin(); 8303 I!=Order.end();++I) { 8304 SDNode * N = *I; 8305 for (auto U : N->uses()) { 8306 unsigned &UnsortedOps = Degree[U]; 8307 if (0 == --UnsortedOps) 8308 Order.push_back(U); 8309 } 8310 } 8311 } 8312 8313 #ifndef NDEBUG 8314 void SelectionDAG::VerifyDAGDiverence() 8315 { 8316 std::vector<SDNode*> TopoOrder; 8317 CreateTopologicalOrder(TopoOrder); 8318 const TargetLowering &TLI = getTargetLoweringInfo(); 8319 DenseMap<const SDNode *, bool> DivergenceMap; 8320 for (auto &N : allnodes()) { 8321 DivergenceMap[&N] = false; 8322 } 8323 for (auto N : TopoOrder) { 8324 bool IsDivergent = DivergenceMap[N]; 8325 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8326 for (auto &Op : N->ops()) { 8327 if (Op.Val.getValueType() != MVT::Other) 8328 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8329 } 8330 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8331 DivergenceMap[N] = true; 8332 } 8333 } 8334 for (auto &N : allnodes()) { 8335 (void)N; 8336 assert(DivergenceMap[&N] == N.isDivergent() && 8337 "Divergence bit inconsistency detected\n"); 8338 } 8339 } 8340 #endif 8341 8342 8343 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8344 /// uses of other values produced by From.getNode() alone. The same value 8345 /// may appear in both the From and To list. The Deleted vector is 8346 /// handled the same way as for ReplaceAllUsesWith. 8347 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8348 const SDValue *To, 8349 unsigned Num){ 8350 // Handle the simple, trivial case efficiently. 8351 if (Num == 1) 8352 return ReplaceAllUsesOfValueWith(*From, *To); 8353 8354 transferDbgValues(*From, *To); 8355 8356 // Read up all the uses and make records of them. This helps 8357 // processing new uses that are introduced during the 8358 // replacement process. 8359 SmallVector<UseMemo, 4> Uses; 8360 for (unsigned i = 0; i != Num; ++i) { 8361 unsigned FromResNo = From[i].getResNo(); 8362 SDNode *FromNode = From[i].getNode(); 8363 for (SDNode::use_iterator UI = FromNode->use_begin(), 8364 E = FromNode->use_end(); UI != E; ++UI) { 8365 SDUse &Use = UI.getUse(); 8366 if (Use.getResNo() == FromResNo) { 8367 UseMemo Memo = { *UI, i, &Use }; 8368 Uses.push_back(Memo); 8369 } 8370 } 8371 } 8372 8373 // Sort the uses, so that all the uses from a given User are together. 8374 llvm::sort(Uses); 8375 8376 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8377 UseIndex != UseIndexEnd; ) { 8378 // We know that this user uses some value of From. If it is the right 8379 // value, update it. 8380 SDNode *User = Uses[UseIndex].User; 8381 8382 // This node is about to morph, remove its old self from the CSE maps. 8383 RemoveNodeFromCSEMaps(User); 8384 8385 // The Uses array is sorted, so all the uses for a given User 8386 // are next to each other in the list. 8387 // To help reduce the number of CSE recomputations, process all 8388 // the uses of this user that we can find this way. 8389 do { 8390 unsigned i = Uses[UseIndex].Index; 8391 SDUse &Use = *Uses[UseIndex].Use; 8392 ++UseIndex; 8393 8394 Use.set(To[i]); 8395 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8396 8397 // Now that we have modified User, add it back to the CSE maps. If it 8398 // already exists there, recursively merge the results together. 8399 AddModifiedNodeToCSEMaps(User); 8400 } 8401 } 8402 8403 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8404 /// based on their topological order. It returns the maximum id and a vector 8405 /// of the SDNodes* in assigned order by reference. 8406 unsigned SelectionDAG::AssignTopologicalOrder() { 8407 unsigned DAGSize = 0; 8408 8409 // SortedPos tracks the progress of the algorithm. Nodes before it are 8410 // sorted, nodes after it are unsorted. When the algorithm completes 8411 // it is at the end of the list. 8412 allnodes_iterator SortedPos = allnodes_begin(); 8413 8414 // Visit all the nodes. Move nodes with no operands to the front of 8415 // the list immediately. Annotate nodes that do have operands with their 8416 // operand count. Before we do this, the Node Id fields of the nodes 8417 // may contain arbitrary values. After, the Node Id fields for nodes 8418 // before SortedPos will contain the topological sort index, and the 8419 // Node Id fields for nodes At SortedPos and after will contain the 8420 // count of outstanding operands. 8421 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8422 SDNode *N = &*I++; 8423 checkForCycles(N, this); 8424 unsigned Degree = N->getNumOperands(); 8425 if (Degree == 0) { 8426 // A node with no uses, add it to the result array immediately. 8427 N->setNodeId(DAGSize++); 8428 allnodes_iterator Q(N); 8429 if (Q != SortedPos) 8430 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8431 assert(SortedPos != AllNodes.end() && "Overran node list"); 8432 ++SortedPos; 8433 } else { 8434 // Temporarily use the Node Id as scratch space for the degree count. 8435 N->setNodeId(Degree); 8436 } 8437 } 8438 8439 // Visit all the nodes. As we iterate, move nodes into sorted order, 8440 // such that by the time the end is reached all nodes will be sorted. 8441 for (SDNode &Node : allnodes()) { 8442 SDNode *N = &Node; 8443 checkForCycles(N, this); 8444 // N is in sorted position, so all its uses have one less operand 8445 // that needs to be sorted. 8446 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8447 UI != UE; ++UI) { 8448 SDNode *P = *UI; 8449 unsigned Degree = P->getNodeId(); 8450 assert(Degree != 0 && "Invalid node degree"); 8451 --Degree; 8452 if (Degree == 0) { 8453 // All of P's operands are sorted, so P may sorted now. 8454 P->setNodeId(DAGSize++); 8455 if (P->getIterator() != SortedPos) 8456 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8457 assert(SortedPos != AllNodes.end() && "Overran node list"); 8458 ++SortedPos; 8459 } else { 8460 // Update P's outstanding operand count. 8461 P->setNodeId(Degree); 8462 } 8463 } 8464 if (Node.getIterator() == SortedPos) { 8465 #ifndef NDEBUG 8466 allnodes_iterator I(N); 8467 SDNode *S = &*++I; 8468 dbgs() << "Overran sorted position:\n"; 8469 S->dumprFull(this); dbgs() << "\n"; 8470 dbgs() << "Checking if this is due to cycles\n"; 8471 checkForCycles(this, true); 8472 #endif 8473 llvm_unreachable(nullptr); 8474 } 8475 } 8476 8477 assert(SortedPos == AllNodes.end() && 8478 "Topological sort incomplete!"); 8479 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8480 "First node in topological sort is not the entry token!"); 8481 assert(AllNodes.front().getNodeId() == 0 && 8482 "First node in topological sort has non-zero id!"); 8483 assert(AllNodes.front().getNumOperands() == 0 && 8484 "First node in topological sort has operands!"); 8485 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8486 "Last node in topologic sort has unexpected id!"); 8487 assert(AllNodes.back().use_empty() && 8488 "Last node in topologic sort has users!"); 8489 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8490 return DAGSize; 8491 } 8492 8493 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8494 /// value is produced by SD. 8495 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8496 if (SD) { 8497 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8498 SD->setHasDebugValue(true); 8499 } 8500 DbgInfo->add(DB, SD, isParameter); 8501 } 8502 8503 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8504 DbgInfo->add(DB); 8505 } 8506 8507 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8508 SDValue NewMemOp) { 8509 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8510 // The new memory operation must have the same position as the old load in 8511 // terms of memory dependency. Create a TokenFactor for the old load and new 8512 // memory operation and update uses of the old load's output chain to use that 8513 // TokenFactor. 8514 SDValue OldChain = SDValue(OldLoad, 1); 8515 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8516 if (!OldLoad->hasAnyUseOfValue(1)) 8517 return NewChain; 8518 8519 SDValue TokenFactor = 8520 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8521 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8522 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8523 return TokenFactor; 8524 } 8525 8526 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8527 Function **OutFunction) { 8528 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8529 8530 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8531 auto *Module = MF->getFunction().getParent(); 8532 auto *Function = Module->getFunction(Symbol); 8533 8534 if (OutFunction != nullptr) 8535 *OutFunction = Function; 8536 8537 if (Function != nullptr) { 8538 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8539 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8540 } 8541 8542 std::string ErrorStr; 8543 raw_string_ostream ErrorFormatter(ErrorStr); 8544 8545 ErrorFormatter << "Undefined external symbol "; 8546 ErrorFormatter << '"' << Symbol << '"'; 8547 ErrorFormatter.flush(); 8548 8549 report_fatal_error(ErrorStr); 8550 } 8551 8552 //===----------------------------------------------------------------------===// 8553 // SDNode Class 8554 //===----------------------------------------------------------------------===// 8555 8556 bool llvm::isNullConstant(SDValue V) { 8557 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8558 return Const != nullptr && Const->isNullValue(); 8559 } 8560 8561 bool llvm::isNullFPConstant(SDValue V) { 8562 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8563 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8564 } 8565 8566 bool llvm::isAllOnesConstant(SDValue V) { 8567 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8568 return Const != nullptr && Const->isAllOnesValue(); 8569 } 8570 8571 bool llvm::isOneConstant(SDValue V) { 8572 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8573 return Const != nullptr && Const->isOne(); 8574 } 8575 8576 SDValue llvm::peekThroughBitcasts(SDValue V) { 8577 while (V.getOpcode() == ISD::BITCAST) 8578 V = V.getOperand(0); 8579 return V; 8580 } 8581 8582 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8583 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8584 V = V.getOperand(0); 8585 return V; 8586 } 8587 8588 bool llvm::isBitwiseNot(SDValue V) { 8589 if (V.getOpcode() != ISD::XOR) 8590 return false; 8591 ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1))); 8592 return C && C->isAllOnesValue(); 8593 } 8594 8595 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) { 8596 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8597 return CN; 8598 8599 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8600 BitVector UndefElements; 8601 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8602 8603 // BuildVectors can truncate their operands. Ignore that case here. 8604 if (CN && (UndefElements.none() || AllowUndefs) && 8605 CN->getValueType(0) == N.getValueType().getScalarType()) 8606 return CN; 8607 } 8608 8609 return nullptr; 8610 } 8611 8612 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8613 bool AllowUndefs) { 8614 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8615 return CN; 8616 8617 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8618 BitVector UndefElements; 8619 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8620 8621 // BuildVectors can truncate their operands. Ignore that case here. 8622 if (CN && (UndefElements.none() || AllowUndefs) && 8623 CN->getValueType(0) == N.getValueType().getScalarType()) 8624 return CN; 8625 } 8626 8627 return nullptr; 8628 } 8629 8630 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8631 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8632 return CN; 8633 8634 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8635 BitVector UndefElements; 8636 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8637 if (CN && (UndefElements.none() || AllowUndefs)) 8638 return CN; 8639 } 8640 8641 return nullptr; 8642 } 8643 8644 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8645 const APInt &DemandedElts, 8646 bool AllowUndefs) { 8647 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8648 return CN; 8649 8650 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8651 BitVector UndefElements; 8652 ConstantFPSDNode *CN = 8653 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8654 if (CN && (UndefElements.none() || AllowUndefs)) 8655 return CN; 8656 } 8657 8658 return nullptr; 8659 } 8660 8661 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8662 // TODO: may want to use peekThroughBitcast() here. 8663 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8664 return C && C->isNullValue(); 8665 } 8666 8667 bool llvm::isOneOrOneSplat(SDValue N) { 8668 // TODO: may want to use peekThroughBitcast() here. 8669 unsigned BitWidth = N.getScalarValueSizeInBits(); 8670 ConstantSDNode *C = isConstOrConstSplat(N); 8671 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8672 } 8673 8674 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8675 N = peekThroughBitcasts(N); 8676 unsigned BitWidth = N.getScalarValueSizeInBits(); 8677 ConstantSDNode *C = isConstOrConstSplat(N); 8678 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8679 } 8680 8681 HandleSDNode::~HandleSDNode() { 8682 DropOperands(); 8683 } 8684 8685 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8686 const DebugLoc &DL, 8687 const GlobalValue *GA, EVT VT, 8688 int64_t o, unsigned char TF) 8689 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8690 TheGlobal = GA; 8691 } 8692 8693 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8694 EVT VT, unsigned SrcAS, 8695 unsigned DestAS) 8696 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8697 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8698 8699 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8700 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8701 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8702 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8703 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8704 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8705 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8706 8707 // We check here that the size of the memory operand fits within the size of 8708 // the MMO. This is because the MMO might indicate only a possible address 8709 // range instead of specifying the affected memory addresses precisely. 8710 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8711 } 8712 8713 /// Profile - Gather unique data for the node. 8714 /// 8715 void SDNode::Profile(FoldingSetNodeID &ID) const { 8716 AddNodeIDNode(ID, this); 8717 } 8718 8719 namespace { 8720 8721 struct EVTArray { 8722 std::vector<EVT> VTs; 8723 8724 EVTArray() { 8725 VTs.reserve(MVT::LAST_VALUETYPE); 8726 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8727 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8728 } 8729 }; 8730 8731 } // end anonymous namespace 8732 8733 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8734 static ManagedStatic<EVTArray> SimpleVTArray; 8735 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8736 8737 /// getValueTypeList - Return a pointer to the specified value type. 8738 /// 8739 const EVT *SDNode::getValueTypeList(EVT VT) { 8740 if (VT.isExtended()) { 8741 sys::SmartScopedLock<true> Lock(*VTMutex); 8742 return &(*EVTs->insert(VT).first); 8743 } else { 8744 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8745 "Value type out of range!"); 8746 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8747 } 8748 } 8749 8750 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8751 /// indicated value. This method ignores uses of other values defined by this 8752 /// operation. 8753 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8754 assert(Value < getNumValues() && "Bad value!"); 8755 8756 // TODO: Only iterate over uses of a given value of the node 8757 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8758 if (UI.getUse().getResNo() == Value) { 8759 if (NUses == 0) 8760 return false; 8761 --NUses; 8762 } 8763 } 8764 8765 // Found exactly the right number of uses? 8766 return NUses == 0; 8767 } 8768 8769 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8770 /// value. This method ignores uses of other values defined by this operation. 8771 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8772 assert(Value < getNumValues() && "Bad value!"); 8773 8774 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8775 if (UI.getUse().getResNo() == Value) 8776 return true; 8777 8778 return false; 8779 } 8780 8781 /// isOnlyUserOf - Return true if this node is the only use of N. 8782 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8783 bool Seen = false; 8784 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8785 SDNode *User = *I; 8786 if (User == this) 8787 Seen = true; 8788 else 8789 return false; 8790 } 8791 8792 return Seen; 8793 } 8794 8795 /// Return true if the only users of N are contained in Nodes. 8796 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8797 bool Seen = false; 8798 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8799 SDNode *User = *I; 8800 if (llvm::any_of(Nodes, 8801 [&User](const SDNode *Node) { return User == Node; })) 8802 Seen = true; 8803 else 8804 return false; 8805 } 8806 8807 return Seen; 8808 } 8809 8810 /// isOperand - Return true if this node is an operand of N. 8811 bool SDValue::isOperandOf(const SDNode *N) const { 8812 for (const SDValue &Op : N->op_values()) 8813 if (*this == Op) 8814 return true; 8815 return false; 8816 } 8817 8818 bool SDNode::isOperandOf(const SDNode *N) const { 8819 for (const SDValue &Op : N->op_values()) 8820 if (this == Op.getNode()) 8821 return true; 8822 return false; 8823 } 8824 8825 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8826 /// be a chain) reaches the specified operand without crossing any 8827 /// side-effecting instructions on any chain path. In practice, this looks 8828 /// through token factors and non-volatile loads. In order to remain efficient, 8829 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8830 /// 8831 /// Note that we only need to examine chains when we're searching for 8832 /// side-effects; SelectionDAG requires that all side-effects are represented 8833 /// by chains, even if another operand would force a specific ordering. This 8834 /// constraint is necessary to allow transformations like splitting loads. 8835 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8836 unsigned Depth) const { 8837 if (*this == Dest) return true; 8838 8839 // Don't search too deeply, we just want to be able to see through 8840 // TokenFactor's etc. 8841 if (Depth == 0) return false; 8842 8843 // If this is a token factor, all inputs to the TF happen in parallel. 8844 if (getOpcode() == ISD::TokenFactor) { 8845 // First, try a shallow search. 8846 if (is_contained((*this)->ops(), Dest)) { 8847 // We found the chain we want as an operand of this TokenFactor. 8848 // Essentially, we reach the chain without side-effects if we could 8849 // serialize the TokenFactor into a simple chain of operations with 8850 // Dest as the last operation. This is automatically true if the 8851 // chain has one use: there are no other ordering constraints. 8852 // If the chain has more than one use, we give up: some other 8853 // use of Dest might force a side-effect between Dest and the current 8854 // node. 8855 if (Dest.hasOneUse()) 8856 return true; 8857 } 8858 // Next, try a deep search: check whether every operand of the TokenFactor 8859 // reaches Dest. 8860 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8861 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8862 }); 8863 } 8864 8865 // Loads don't have side effects, look through them. 8866 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8867 if (!Ld->isVolatile()) 8868 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8869 } 8870 return false; 8871 } 8872 8873 bool SDNode::hasPredecessor(const SDNode *N) const { 8874 SmallPtrSet<const SDNode *, 32> Visited; 8875 SmallVector<const SDNode *, 16> Worklist; 8876 Worklist.push_back(this); 8877 return hasPredecessorHelper(N, Visited, Worklist); 8878 } 8879 8880 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8881 this->Flags.intersectWith(Flags); 8882 } 8883 8884 SDValue 8885 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8886 ArrayRef<ISD::NodeType> CandidateBinOps) { 8887 // The pattern must end in an extract from index 0. 8888 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8889 !isNullConstant(Extract->getOperand(1))) 8890 return SDValue(); 8891 8892 SDValue Op = Extract->getOperand(0); 8893 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 8894 8895 // Match against one of the candidate binary ops. 8896 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 8897 return Op.getOpcode() == unsigned(BinOp); 8898 })) 8899 return SDValue(); 8900 8901 // At each stage, we're looking for something that looks like: 8902 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 8903 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 8904 // i32 undef, i32 undef, i32 undef, i32 undef> 8905 // %a = binop <8 x i32> %op, %s 8906 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 8907 // we expect something like: 8908 // <4,5,6,7,u,u,u,u> 8909 // <2,3,u,u,u,u,u,u> 8910 // <1,u,u,u,u,u,u,u> 8911 unsigned CandidateBinOp = Op.getOpcode(); 8912 for (unsigned i = 0; i < Stages; ++i) { 8913 if (Op.getOpcode() != CandidateBinOp) 8914 return SDValue(); 8915 8916 SDValue Op0 = Op.getOperand(0); 8917 SDValue Op1 = Op.getOperand(1); 8918 8919 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 8920 if (Shuffle) { 8921 Op = Op1; 8922 } else { 8923 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 8924 Op = Op0; 8925 } 8926 8927 // The first operand of the shuffle should be the same as the other operand 8928 // of the binop. 8929 if (!Shuffle || Shuffle->getOperand(0) != Op) 8930 return SDValue(); 8931 8932 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 8933 for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) 8934 if (Shuffle->getMaskElt(Index) != MaskEnd + Index) 8935 return SDValue(); 8936 } 8937 8938 BinOp = (ISD::NodeType)CandidateBinOp; 8939 return Op; 8940 } 8941 8942 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 8943 assert(N->getNumValues() == 1 && 8944 "Can't unroll a vector with multiple results!"); 8945 8946 EVT VT = N->getValueType(0); 8947 unsigned NE = VT.getVectorNumElements(); 8948 EVT EltVT = VT.getVectorElementType(); 8949 SDLoc dl(N); 8950 8951 SmallVector<SDValue, 8> Scalars; 8952 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 8953 8954 // If ResNE is 0, fully unroll the vector op. 8955 if (ResNE == 0) 8956 ResNE = NE; 8957 else if (NE > ResNE) 8958 NE = ResNE; 8959 8960 unsigned i; 8961 for (i= 0; i != NE; ++i) { 8962 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 8963 SDValue Operand = N->getOperand(j); 8964 EVT OperandVT = Operand.getValueType(); 8965 if (OperandVT.isVector()) { 8966 // A vector operand; extract a single element. 8967 EVT OperandEltVT = OperandVT.getVectorElementType(); 8968 Operands[j] = 8969 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 8970 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 8971 } else { 8972 // A scalar operand; just use it as is. 8973 Operands[j] = Operand; 8974 } 8975 } 8976 8977 switch (N->getOpcode()) { 8978 default: { 8979 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 8980 N->getFlags())); 8981 break; 8982 } 8983 case ISD::VSELECT: 8984 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 8985 break; 8986 case ISD::SHL: 8987 case ISD::SRA: 8988 case ISD::SRL: 8989 case ISD::ROTL: 8990 case ISD::ROTR: 8991 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 8992 getShiftAmountOperand(Operands[0].getValueType(), 8993 Operands[1]))); 8994 break; 8995 case ISD::SIGN_EXTEND_INREG: 8996 case ISD::FP_ROUND_INREG: { 8997 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 8998 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 8999 Operands[0], 9000 getValueType(ExtVT))); 9001 } 9002 } 9003 } 9004 9005 for (; i < ResNE; ++i) 9006 Scalars.push_back(getUNDEF(EltVT)); 9007 9008 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9009 return getBuildVector(VecVT, dl, Scalars); 9010 } 9011 9012 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9013 SDNode *N, unsigned ResNE) { 9014 unsigned Opcode = N->getOpcode(); 9015 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9016 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9017 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9018 "Expected an overflow opcode"); 9019 9020 EVT ResVT = N->getValueType(0); 9021 EVT OvVT = N->getValueType(1); 9022 EVT ResEltVT = ResVT.getVectorElementType(); 9023 EVT OvEltVT = OvVT.getVectorElementType(); 9024 SDLoc dl(N); 9025 9026 // If ResNE is 0, fully unroll the vector op. 9027 unsigned NE = ResVT.getVectorNumElements(); 9028 if (ResNE == 0) 9029 ResNE = NE; 9030 else if (NE > ResNE) 9031 NE = ResNE; 9032 9033 SmallVector<SDValue, 8> LHSScalars; 9034 SmallVector<SDValue, 8> RHSScalars; 9035 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9036 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9037 9038 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9039 SDVTList VTs = getVTList(ResEltVT, SVT); 9040 SmallVector<SDValue, 8> ResScalars; 9041 SmallVector<SDValue, 8> OvScalars; 9042 for (unsigned i = 0; i < NE; ++i) { 9043 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9044 SDValue Ov = 9045 getSelect(dl, OvEltVT, Res.getValue(1), 9046 getBoolConstant(true, dl, OvEltVT, ResVT), 9047 getConstant(0, dl, OvEltVT)); 9048 9049 ResScalars.push_back(Res); 9050 OvScalars.push_back(Ov); 9051 } 9052 9053 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9054 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9055 9056 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9057 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9058 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9059 getBuildVector(NewOvVT, dl, OvScalars)); 9060 } 9061 9062 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9063 LoadSDNode *Base, 9064 unsigned Bytes, 9065 int Dist) const { 9066 if (LD->isVolatile() || Base->isVolatile()) 9067 return false; 9068 if (LD->isIndexed() || Base->isIndexed()) 9069 return false; 9070 if (LD->getChain() != Base->getChain()) 9071 return false; 9072 EVT VT = LD->getValueType(0); 9073 if (VT.getSizeInBits() / 8 != Bytes) 9074 return false; 9075 9076 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9077 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9078 9079 int64_t Offset = 0; 9080 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9081 return (Dist * Bytes == Offset); 9082 return false; 9083 } 9084 9085 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9086 /// it cannot be inferred. 9087 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9088 // If this is a GlobalAddress + cst, return the alignment. 9089 const GlobalValue *GV; 9090 int64_t GVOffset = 0; 9091 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9092 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9093 KnownBits Known(IdxWidth); 9094 llvm::computeKnownBits(GV, Known, getDataLayout()); 9095 unsigned AlignBits = Known.countMinTrailingZeros(); 9096 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9097 if (Align) 9098 return MinAlign(Align, GVOffset); 9099 } 9100 9101 // If this is a direct reference to a stack slot, use information about the 9102 // stack slot's alignment. 9103 int FrameIdx = 1 << 31; 9104 int64_t FrameOffset = 0; 9105 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9106 FrameIdx = FI->getIndex(); 9107 } else if (isBaseWithConstantOffset(Ptr) && 9108 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9109 // Handle FI+Cst 9110 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9111 FrameOffset = Ptr.getConstantOperandVal(1); 9112 } 9113 9114 if (FrameIdx != (1 << 31)) { 9115 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9116 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9117 FrameOffset); 9118 return FIInfoAlign; 9119 } 9120 9121 return 0; 9122 } 9123 9124 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9125 /// which is split (or expanded) into two not necessarily identical pieces. 9126 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9127 // Currently all types are split in half. 9128 EVT LoVT, HiVT; 9129 if (!VT.isVector()) 9130 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9131 else 9132 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9133 9134 return std::make_pair(LoVT, HiVT); 9135 } 9136 9137 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9138 /// low/high part. 9139 std::pair<SDValue, SDValue> 9140 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9141 const EVT &HiVT) { 9142 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9143 N.getValueType().getVectorNumElements() && 9144 "More vector elements requested than available!"); 9145 SDValue Lo, Hi; 9146 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9147 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9148 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9149 getConstant(LoVT.getVectorNumElements(), DL, 9150 TLI->getVectorIdxTy(getDataLayout()))); 9151 return std::make_pair(Lo, Hi); 9152 } 9153 9154 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9155 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9156 EVT VT = N.getValueType(); 9157 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9158 NextPowerOf2(VT.getVectorNumElements())); 9159 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9160 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9161 } 9162 9163 void SelectionDAG::ExtractVectorElements(SDValue Op, 9164 SmallVectorImpl<SDValue> &Args, 9165 unsigned Start, unsigned Count) { 9166 EVT VT = Op.getValueType(); 9167 if (Count == 0) 9168 Count = VT.getVectorNumElements(); 9169 9170 EVT EltVT = VT.getVectorElementType(); 9171 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9172 SDLoc SL(Op); 9173 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9174 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9175 Op, getConstant(i, SL, IdxTy))); 9176 } 9177 } 9178 9179 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9180 unsigned GlobalAddressSDNode::getAddressSpace() const { 9181 return getGlobal()->getType()->getAddressSpace(); 9182 } 9183 9184 Type *ConstantPoolSDNode::getType() const { 9185 if (isMachineConstantPoolEntry()) 9186 return Val.MachineCPVal->getType(); 9187 return Val.ConstVal->getType(); 9188 } 9189 9190 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9191 unsigned &SplatBitSize, 9192 bool &HasAnyUndefs, 9193 unsigned MinSplatBits, 9194 bool IsBigEndian) const { 9195 EVT VT = getValueType(0); 9196 assert(VT.isVector() && "Expected a vector type"); 9197 unsigned VecWidth = VT.getSizeInBits(); 9198 if (MinSplatBits > VecWidth) 9199 return false; 9200 9201 // FIXME: The widths are based on this node's type, but build vectors can 9202 // truncate their operands. 9203 SplatValue = APInt(VecWidth, 0); 9204 SplatUndef = APInt(VecWidth, 0); 9205 9206 // Get the bits. Bits with undefined values (when the corresponding element 9207 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9208 // in SplatValue. If any of the values are not constant, give up and return 9209 // false. 9210 unsigned int NumOps = getNumOperands(); 9211 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9212 unsigned EltWidth = VT.getScalarSizeInBits(); 9213 9214 for (unsigned j = 0; j < NumOps; ++j) { 9215 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9216 SDValue OpVal = getOperand(i); 9217 unsigned BitPos = j * EltWidth; 9218 9219 if (OpVal.isUndef()) 9220 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9221 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9222 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9223 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9224 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9225 else 9226 return false; 9227 } 9228 9229 // The build_vector is all constants or undefs. Find the smallest element 9230 // size that splats the vector. 9231 HasAnyUndefs = (SplatUndef != 0); 9232 9233 // FIXME: This does not work for vectors with elements less than 8 bits. 9234 while (VecWidth > 8) { 9235 unsigned HalfSize = VecWidth / 2; 9236 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9237 APInt LowValue = SplatValue.trunc(HalfSize); 9238 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9239 APInt LowUndef = SplatUndef.trunc(HalfSize); 9240 9241 // If the two halves do not match (ignoring undef bits), stop here. 9242 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9243 MinSplatBits > HalfSize) 9244 break; 9245 9246 SplatValue = HighValue | LowValue; 9247 SplatUndef = HighUndef & LowUndef; 9248 9249 VecWidth = HalfSize; 9250 } 9251 9252 SplatBitSize = VecWidth; 9253 return true; 9254 } 9255 9256 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9257 BitVector *UndefElements) const { 9258 if (UndefElements) { 9259 UndefElements->clear(); 9260 UndefElements->resize(getNumOperands()); 9261 } 9262 assert(getNumOperands() == DemandedElts.getBitWidth() && 9263 "Unexpected vector size"); 9264 if (!DemandedElts) 9265 return SDValue(); 9266 SDValue Splatted; 9267 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9268 if (!DemandedElts[i]) 9269 continue; 9270 SDValue Op = getOperand(i); 9271 if (Op.isUndef()) { 9272 if (UndefElements) 9273 (*UndefElements)[i] = true; 9274 } else if (!Splatted) { 9275 Splatted = Op; 9276 } else if (Splatted != Op) { 9277 return SDValue(); 9278 } 9279 } 9280 9281 if (!Splatted) { 9282 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9283 assert(getOperand(FirstDemandedIdx).isUndef() && 9284 "Can only have a splat without a constant for all undefs."); 9285 return getOperand(FirstDemandedIdx); 9286 } 9287 9288 return Splatted; 9289 } 9290 9291 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9292 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9293 return getSplatValue(DemandedElts, UndefElements); 9294 } 9295 9296 ConstantSDNode * 9297 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9298 BitVector *UndefElements) const { 9299 return dyn_cast_or_null<ConstantSDNode>( 9300 getSplatValue(DemandedElts, UndefElements)); 9301 } 9302 9303 ConstantSDNode * 9304 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9305 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9306 } 9307 9308 ConstantFPSDNode * 9309 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9310 BitVector *UndefElements) const { 9311 return dyn_cast_or_null<ConstantFPSDNode>( 9312 getSplatValue(DemandedElts, UndefElements)); 9313 } 9314 9315 ConstantFPSDNode * 9316 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9317 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9318 } 9319 9320 int32_t 9321 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9322 uint32_t BitWidth) const { 9323 if (ConstantFPSDNode *CN = 9324 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9325 bool IsExact; 9326 APSInt IntVal(BitWidth); 9327 const APFloat &APF = CN->getValueAPF(); 9328 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9329 APFloat::opOK || 9330 !IsExact) 9331 return -1; 9332 9333 return IntVal.exactLogBase2(); 9334 } 9335 return -1; 9336 } 9337 9338 bool BuildVectorSDNode::isConstant() const { 9339 for (const SDValue &Op : op_values()) { 9340 unsigned Opc = Op.getOpcode(); 9341 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9342 return false; 9343 } 9344 return true; 9345 } 9346 9347 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9348 // Find the first non-undef value in the shuffle mask. 9349 unsigned i, e; 9350 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9351 /* search */; 9352 9353 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 9354 9355 // Make sure all remaining elements are either undef or the same as the first 9356 // non-undef value. 9357 for (int Idx = Mask[i]; i != e; ++i) 9358 if (Mask[i] >= 0 && Mask[i] != Idx) 9359 return false; 9360 return true; 9361 } 9362 9363 // Returns the SDNode if it is a constant integer BuildVector 9364 // or constant integer. 9365 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9366 if (isa<ConstantSDNode>(N)) 9367 return N.getNode(); 9368 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9369 return N.getNode(); 9370 // Treat a GlobalAddress supporting constant offset folding as a 9371 // constant integer. 9372 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9373 if (GA->getOpcode() == ISD::GlobalAddress && 9374 TLI->isOffsetFoldingLegal(GA)) 9375 return GA; 9376 return nullptr; 9377 } 9378 9379 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9380 if (isa<ConstantFPSDNode>(N)) 9381 return N.getNode(); 9382 9383 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9384 return N.getNode(); 9385 9386 return nullptr; 9387 } 9388 9389 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9390 assert(!Node->OperandList && "Node already has operands"); 9391 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9392 "too many operands to fit into SDNode"); 9393 SDUse *Ops = OperandRecycler.allocate( 9394 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9395 9396 bool IsDivergent = false; 9397 for (unsigned I = 0; I != Vals.size(); ++I) { 9398 Ops[I].setUser(Node); 9399 Ops[I].setInitial(Vals[I]); 9400 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9401 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9402 } 9403 Node->NumOperands = Vals.size(); 9404 Node->OperandList = Ops; 9405 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9406 if (!TLI->isSDNodeAlwaysUniform(Node)) 9407 Node->SDNodeBits.IsDivergent = IsDivergent; 9408 checkForCycles(Node); 9409 } 9410 9411 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9412 SmallVectorImpl<SDValue> &Vals) { 9413 size_t Limit = SDNode::getMaxNumOperands(); 9414 while (Vals.size() > Limit) { 9415 unsigned SliceIdx = Vals.size() - Limit; 9416 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9417 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9418 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9419 Vals.emplace_back(NewTF); 9420 } 9421 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9422 } 9423 9424 #ifndef NDEBUG 9425 static void checkForCyclesHelper(const SDNode *N, 9426 SmallPtrSetImpl<const SDNode*> &Visited, 9427 SmallPtrSetImpl<const SDNode*> &Checked, 9428 const llvm::SelectionDAG *DAG) { 9429 // If this node has already been checked, don't check it again. 9430 if (Checked.count(N)) 9431 return; 9432 9433 // If a node has already been visited on this depth-first walk, reject it as 9434 // a cycle. 9435 if (!Visited.insert(N).second) { 9436 errs() << "Detected cycle in SelectionDAG\n"; 9437 dbgs() << "Offending node:\n"; 9438 N->dumprFull(DAG); dbgs() << "\n"; 9439 abort(); 9440 } 9441 9442 for (const SDValue &Op : N->op_values()) 9443 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9444 9445 Checked.insert(N); 9446 Visited.erase(N); 9447 } 9448 #endif 9449 9450 void llvm::checkForCycles(const llvm::SDNode *N, 9451 const llvm::SelectionDAG *DAG, 9452 bool force) { 9453 #ifndef NDEBUG 9454 bool check = force; 9455 #ifdef EXPENSIVE_CHECKS 9456 check = true; 9457 #endif // EXPENSIVE_CHECKS 9458 if (check) { 9459 assert(N && "Checking nonexistent SDNode"); 9460 SmallPtrSet<const SDNode*, 32> visited; 9461 SmallPtrSet<const SDNode*, 32> checked; 9462 checkForCyclesHelper(N, visited, checked, DAG); 9463 } 9464 #endif // !NDEBUG 9465 } 9466 9467 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9468 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9469 } 9470