1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/RuntimeLibcalls.h"
37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/ManagedStatic.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/Mutex.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetOptions.h"
65 #include "llvm/Target/TargetRegisterInfo.h"
66 #include "llvm/Target/TargetSubtargetInfo.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg) {
93   DEBUG(
94     dbgs() << Msg;
95     V.dump();
96   );
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //                              ConstantFPSDNode Class
101 //===----------------------------------------------------------------------===//
102 
103 /// isExactlyValue - We don't rely on operator== working on double values, as
104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
105 /// As such, this method can be used to do an exact bit-for-bit comparison of
106 /// two floating point values.
107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
108   return getValueAPF().bitwiseIsEqual(V);
109 }
110 
111 bool ConstantFPSDNode::isValueValidForType(EVT VT,
112                                            const APFloat& Val) {
113   assert(VT.isFloatingPoint() && "Can only convert between FP types");
114 
115   // convert modifies in place, so make a copy.
116   APFloat Val2 = APFloat(Val);
117   bool losesInfo;
118   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
119                       APFloat::rmNearestTiesToEven,
120                       &losesInfo);
121   return !losesInfo;
122 }
123 
124 //===----------------------------------------------------------------------===//
125 //                              ISD Namespace
126 //===----------------------------------------------------------------------===//
127 
128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
129   auto *BV = dyn_cast<BuildVectorSDNode>(N);
130   if (!BV)
131     return false;
132 
133   APInt SplatUndef;
134   unsigned SplatBitSize;
135   bool HasUndefs;
136   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
137   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
138                              EltSize) &&
139          EltSize == SplatBitSize;
140 }
141 
142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
143 // specializations of the more general isConstantSplatVector()?
144 
145 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
146   // Look through a bit convert.
147   while (N->getOpcode() == ISD::BITCAST)
148     N = N->getOperand(0).getNode();
149 
150   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151 
152   unsigned i = 0, e = N->getNumOperands();
153 
154   // Skip over all of the undef values.
155   while (i != e && N->getOperand(i).isUndef())
156     ++i;
157 
158   // Do not accept an all-undef vector.
159   if (i == e) return false;
160 
161   // Do not accept build_vectors that aren't all constants or which have non-~0
162   // elements. We have to be a bit careful here, as the type of the constant
163   // may not be the same as the type of the vector elements due to type
164   // legalization (the elements are promoted to a legal type for the target and
165   // a vector of a type may be legal when the base element type is not).
166   // We only want to check enough bits to cover the vector elements, because
167   // we care if the resultant vector is all ones, not whether the individual
168   // constants are.
169   SDValue NotZero = N->getOperand(i);
170   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
171   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
172     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
173       return false;
174   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
175     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
176       return false;
177   } else
178     return false;
179 
180   // Okay, we have at least one ~0 value, check to see if the rest match or are
181   // undefs. Even with the above element type twiddling, this should be OK, as
182   // the same type legalization should have applied to all the elements.
183   for (++i; i != e; ++i)
184     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
185       return false;
186   return true;
187 }
188 
189 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
190   // Look through a bit convert.
191   while (N->getOpcode() == ISD::BITCAST)
192     N = N->getOperand(0).getNode();
193 
194   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
195 
196   bool IsAllUndef = true;
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     IsAllUndef = false;
201     // Do not accept build_vectors that aren't all constants or which have non-0
202     // elements. We have to be a bit careful here, as the type of the constant
203     // may not be the same as the type of the vector elements due to type
204     // legalization (the elements are promoted to a legal type for the target
205     // and a vector of a type may be legal when the base element type is not).
206     // We only want to check enough bits to cover the vector elements, because
207     // we care if the resultant vector is all zeros, not whether the individual
208     // constants are.
209     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
210     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
211       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
212         return false;
213     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
214       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
215         return false;
216     } else
217       return false;
218   }
219 
220   // Do not accept an all-undef vector.
221   if (IsAllUndef)
222     return false;
223   return true;
224 }
225 
226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
227   if (N->getOpcode() != ISD::BUILD_VECTOR)
228     return false;
229 
230   for (const SDValue &Op : N->op_values()) {
231     if (Op.isUndef())
232       continue;
233     if (!isa<ConstantSDNode>(Op))
234       return false;
235   }
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantFPSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::allOperandsUndef(const SDNode *N) {
253   // Return false if the node has no operands.
254   // This is "logically inconsistent" with the definition of "all" but
255   // is probably the desired behavior.
256   if (N->getNumOperands() == 0)
257     return false;
258 
259   for (const SDValue &Op : N->op_values())
260     if (!Op.isUndef())
261       return false;
262 
263   return true;
264 }
265 
266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
267   switch (ExtType) {
268   case ISD::EXTLOAD:
269     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
270   case ISD::SEXTLOAD:
271     return ISD::SIGN_EXTEND;
272   case ISD::ZEXTLOAD:
273     return ISD::ZERO_EXTEND;
274   default:
275     break;
276   }
277 
278   llvm_unreachable("Invalid LoadExtType");
279 }
280 
281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
282   // To perform this operation, we just need to swap the L and G bits of the
283   // operation.
284   unsigned OldL = (Operation >> 2) & 1;
285   unsigned OldG = (Operation >> 1) & 1;
286   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
287                        (OldL << 1) |       // New G bit
288                        (OldG << 2));       // New L bit.
289 }
290 
291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
292   unsigned Operation = Op;
293   if (isInteger)
294     Operation ^= 7;   // Flip L, G, E bits, but not U.
295   else
296     Operation ^= 15;  // Flip all of the condition bits.
297 
298   if (Operation > ISD::SETTRUE2)
299     Operation &= ~8;  // Don't let N and U bits get set.
300 
301   return ISD::CondCode(Operation);
302 }
303 
304 /// For an integer comparison, return 1 if the comparison is a signed operation
305 /// and 2 if the result is an unsigned comparison. Return zero if the operation
306 /// does not depend on the sign of the input (setne and seteq).
307 static int isSignedOp(ISD::CondCode Opcode) {
308   switch (Opcode) {
309   default: llvm_unreachable("Illegal integer setcc operation!");
310   case ISD::SETEQ:
311   case ISD::SETNE: return 0;
312   case ISD::SETLT:
313   case ISD::SETLE:
314   case ISD::SETGT:
315   case ISD::SETGE: return 1;
316   case ISD::SETULT:
317   case ISD::SETULE:
318   case ISD::SETUGT:
319   case ISD::SETUGE: return 2;
320   }
321 }
322 
323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
324                                        bool IsInteger) {
325   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
326     // Cannot fold a signed integer setcc with an unsigned integer setcc.
327     return ISD::SETCC_INVALID;
328 
329   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
330 
331   // If the N and U bits get set, then the resultant comparison DOES suddenly
332   // care about orderedness, and it is true when ordered.
333   if (Op > ISD::SETTRUE2)
334     Op &= ~16;     // Clear the U bit if the N bit is set.
335 
336   // Canonicalize illegal integer setcc's.
337   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
338     Op = ISD::SETNE;
339 
340   return ISD::CondCode(Op);
341 }
342 
343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
344                                         bool IsInteger) {
345   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
346     // Cannot fold a signed setcc with an unsigned setcc.
347     return ISD::SETCC_INVALID;
348 
349   // Combine all of the condition bits.
350   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
351 
352   // Canonicalize illegal integer setcc's.
353   if (IsInteger) {
354     switch (Result) {
355     default: break;
356     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
357     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
358     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
359     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
360     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
361     }
362   }
363 
364   return Result;
365 }
366 
367 //===----------------------------------------------------------------------===//
368 //                           SDNode Profile Support
369 //===----------------------------------------------------------------------===//
370 
371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
373   ID.AddInteger(OpC);
374 }
375 
376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
377 /// solely with their pointer.
378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
379   ID.AddPointer(VTList.VTs);
380 }
381 
382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
383 static void AddNodeIDOperands(FoldingSetNodeID &ID,
384                               ArrayRef<SDValue> Ops) {
385   for (auto& Op : Ops) {
386     ID.AddPointer(Op.getNode());
387     ID.AddInteger(Op.getResNo());
388   }
389 }
390 
391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
392 static void AddNodeIDOperands(FoldingSetNodeID &ID,
393                               ArrayRef<SDUse> Ops) {
394   for (auto& Op : Ops) {
395     ID.AddPointer(Op.getNode());
396     ID.AddInteger(Op.getResNo());
397   }
398 }
399 
400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
401                           SDVTList VTList, ArrayRef<SDValue> OpList) {
402   AddNodeIDOpcode(ID, OpC);
403   AddNodeIDValueTypes(ID, VTList);
404   AddNodeIDOperands(ID, OpList);
405 }
406 
407 /// If this is an SDNode with special info, add this info to the NodeID data.
408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
409   switch (N->getOpcode()) {
410   case ISD::TargetExternalSymbol:
411   case ISD::ExternalSymbol:
412   case ISD::MCSymbol:
413     llvm_unreachable("Should only be used on nodes with operands");
414   default: break;  // Normal nodes don't need extra info.
415   case ISD::TargetConstant:
416   case ISD::Constant: {
417     const ConstantSDNode *C = cast<ConstantSDNode>(N);
418     ID.AddPointer(C->getConstantIntValue());
419     ID.AddBoolean(C->isOpaque());
420     break;
421   }
422   case ISD::TargetConstantFP:
423   case ISD::ConstantFP:
424     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
425     break;
426   case ISD::TargetGlobalAddress:
427   case ISD::GlobalAddress:
428   case ISD::TargetGlobalTLSAddress:
429   case ISD::GlobalTLSAddress: {
430     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
431     ID.AddPointer(GA->getGlobal());
432     ID.AddInteger(GA->getOffset());
433     ID.AddInteger(GA->getTargetFlags());
434     break;
435   }
436   case ISD::BasicBlock:
437     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
438     break;
439   case ISD::Register:
440     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
441     break;
442   case ISD::RegisterMask:
443     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
444     break;
445   case ISD::SRCVALUE:
446     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
447     break;
448   case ISD::FrameIndex:
449   case ISD::TargetFrameIndex:
450     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
451     break;
452   case ISD::JumpTable:
453   case ISD::TargetJumpTable:
454     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
455     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
456     break;
457   case ISD::ConstantPool:
458   case ISD::TargetConstantPool: {
459     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
460     ID.AddInteger(CP->getAlignment());
461     ID.AddInteger(CP->getOffset());
462     if (CP->isMachineConstantPoolEntry())
463       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
464     else
465       ID.AddPointer(CP->getConstVal());
466     ID.AddInteger(CP->getTargetFlags());
467     break;
468   }
469   case ISD::TargetIndex: {
470     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
471     ID.AddInteger(TI->getIndex());
472     ID.AddInteger(TI->getOffset());
473     ID.AddInteger(TI->getTargetFlags());
474     break;
475   }
476   case ISD::LOAD: {
477     const LoadSDNode *LD = cast<LoadSDNode>(N);
478     ID.AddInteger(LD->getMemoryVT().getRawBits());
479     ID.AddInteger(LD->getRawSubclassData());
480     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::STORE: {
484     const StoreSDNode *ST = cast<StoreSDNode>(N);
485     ID.AddInteger(ST->getMemoryVT().getRawBits());
486     ID.AddInteger(ST->getRawSubclassData());
487     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
488     break;
489   }
490   case ISD::ATOMIC_CMP_SWAP:
491   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
492   case ISD::ATOMIC_SWAP:
493   case ISD::ATOMIC_LOAD_ADD:
494   case ISD::ATOMIC_LOAD_SUB:
495   case ISD::ATOMIC_LOAD_AND:
496   case ISD::ATOMIC_LOAD_OR:
497   case ISD::ATOMIC_LOAD_XOR:
498   case ISD::ATOMIC_LOAD_NAND:
499   case ISD::ATOMIC_LOAD_MIN:
500   case ISD::ATOMIC_LOAD_MAX:
501   case ISD::ATOMIC_LOAD_UMIN:
502   case ISD::ATOMIC_LOAD_UMAX:
503   case ISD::ATOMIC_LOAD:
504   case ISD::ATOMIC_STORE: {
505     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
506     ID.AddInteger(AT->getMemoryVT().getRawBits());
507     ID.AddInteger(AT->getRawSubclassData());
508     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
509     break;
510   }
511   case ISD::PREFETCH: {
512     const MemSDNode *PF = cast<MemSDNode>(N);
513     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
514     break;
515   }
516   case ISD::VECTOR_SHUFFLE: {
517     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
518     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
519          i != e; ++i)
520       ID.AddInteger(SVN->getMaskElt(i));
521     break;
522   }
523   case ISD::TargetBlockAddress:
524   case ISD::BlockAddress: {
525     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
526     ID.AddPointer(BA->getBlockAddress());
527     ID.AddInteger(BA->getOffset());
528     ID.AddInteger(BA->getTargetFlags());
529     break;
530   }
531   } // end switch (N->getOpcode())
532 
533   // Target specific memory nodes could also have address spaces to check.
534   if (N->isTargetMemoryOpcode())
535     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
536 }
537 
538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
539 /// data.
540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
541   AddNodeIDOpcode(ID, N->getOpcode());
542   // Add the return value info.
543   AddNodeIDValueTypes(ID, N->getVTList());
544   // Add the operand info.
545   AddNodeIDOperands(ID, N->ops());
546 
547   // Handle SDNode leafs with special info.
548   AddNodeIDCustom(ID, N);
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                              SelectionDAG Class
553 //===----------------------------------------------------------------------===//
554 
555 /// doNotCSE - Return true if CSE should not be performed for this node.
556 static bool doNotCSE(SDNode *N) {
557   if (N->getValueType(0) == MVT::Glue)
558     return true; // Never CSE anything that produces a flag.
559 
560   switch (N->getOpcode()) {
561   default: break;
562   case ISD::HANDLENODE:
563   case ISD::EH_LABEL:
564     return true;   // Never CSE these nodes.
565   }
566 
567   // Check that remaining values produced are not flags.
568   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
569     if (N->getValueType(i) == MVT::Glue)
570       return true; // Never CSE anything that produces a flag.
571 
572   return false;
573 }
574 
575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
576 /// SelectionDAG.
577 void SelectionDAG::RemoveDeadNodes() {
578   // Create a dummy node (which is not added to allnodes), that adds a reference
579   // to the root node, preventing it from being deleted.
580   HandleSDNode Dummy(getRoot());
581 
582   SmallVector<SDNode*, 128> DeadNodes;
583 
584   // Add all obviously-dead nodes to the DeadNodes worklist.
585   for (SDNode &Node : allnodes())
586     if (Node.use_empty())
587       DeadNodes.push_back(&Node);
588 
589   RemoveDeadNodes(DeadNodes);
590 
591   // If the root changed (e.g. it was a dead load, update the root).
592   setRoot(Dummy.getValue());
593 }
594 
595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
596 /// given list, and any nodes that become unreachable as a result.
597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
598 
599   // Process the worklist, deleting the nodes and adding their uses to the
600   // worklist.
601   while (!DeadNodes.empty()) {
602     SDNode *N = DeadNodes.pop_back_val();
603     // Skip to next node if we've already managed to delete the node. This could
604     // happen if replacing a node causes a node previously added to the node to
605     // be deleted.
606     if (N->getOpcode() == ISD::DELETED_NODE)
607       continue;
608 
609     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
610       DUL->NodeDeleted(N, nullptr);
611 
612     // Take the node out of the appropriate CSE map.
613     RemoveNodeFromCSEMaps(N);
614 
615     // Next, brutally remove the operand list.  This is safe to do, as there are
616     // no cycles in the graph.
617     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
618       SDUse &Use = *I++;
619       SDNode *Operand = Use.getNode();
620       Use.set(SDValue());
621 
622       // Now that we removed this operand, see if there are no uses of it left.
623       if (Operand->use_empty())
624         DeadNodes.push_back(Operand);
625     }
626 
627     DeallocateNode(N);
628   }
629 }
630 
631 void SelectionDAG::RemoveDeadNode(SDNode *N){
632   SmallVector<SDNode*, 16> DeadNodes(1, N);
633 
634   // Create a dummy node that adds a reference to the root node, preventing
635   // it from being deleted.  (This matters if the root is an operand of the
636   // dead node.)
637   HandleSDNode Dummy(getRoot());
638 
639   RemoveDeadNodes(DeadNodes);
640 }
641 
642 void SelectionDAG::DeleteNode(SDNode *N) {
643   // First take this out of the appropriate CSE map.
644   RemoveNodeFromCSEMaps(N);
645 
646   // Finally, remove uses due to operands of this node, remove from the
647   // AllNodes list, and delete the node.
648   DeleteNodeNotInCSEMaps(N);
649 }
650 
651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
652   assert(N->getIterator() != AllNodes.begin() &&
653          "Cannot delete the entry node!");
654   assert(N->use_empty() && "Cannot delete a node that is not dead!");
655 
656   // Drop all of the operands and decrement used node's use counts.
657   N->DropOperands();
658 
659   DeallocateNode(N);
660 }
661 
662 void SDDbgInfo::erase(const SDNode *Node) {
663   DbgValMapType::iterator I = DbgValMap.find(Node);
664   if (I == DbgValMap.end())
665     return;
666   for (auto &Val: I->second)
667     Val->setIsInvalidated();
668   DbgValMap.erase(I);
669 }
670 
671 void SelectionDAG::DeallocateNode(SDNode *N) {
672   // If we have operands, deallocate them.
673   removeOperands(N);
674 
675   NodeAllocator.Deallocate(AllNodes.remove(N));
676 
677   // Set the opcode to DELETED_NODE to help catch bugs when node
678   // memory is reallocated.
679   // FIXME: There are places in SDag that have grown a dependency on the opcode
680   // value in the released node.
681   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
682   N->NodeType = ISD::DELETED_NODE;
683 
684   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
685   // them and forget about that node.
686   DbgInfo->erase(N);
687 }
688 
689 #ifndef NDEBUG
690 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
691 static void VerifySDNode(SDNode *N) {
692   switch (N->getOpcode()) {
693   default:
694     break;
695   case ISD::BUILD_PAIR: {
696     EVT VT = N->getValueType(0);
697     assert(N->getNumValues() == 1 && "Too many results!");
698     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
699            "Wrong return type!");
700     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
701     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
702            "Mismatched operand types!");
703     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
704            "Wrong operand type!");
705     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
706            "Wrong return type size");
707     break;
708   }
709   case ISD::BUILD_VECTOR: {
710     assert(N->getNumValues() == 1 && "Too many results!");
711     assert(N->getValueType(0).isVector() && "Wrong return type!");
712     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
713            "Wrong number of operands!");
714     EVT EltVT = N->getValueType(0).getVectorElementType();
715     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
716       assert((I->getValueType() == EltVT ||
717              (EltVT.isInteger() && I->getValueType().isInteger() &&
718               EltVT.bitsLE(I->getValueType()))) &&
719             "Wrong operand type!");
720       assert(I->getValueType() == N->getOperand(0).getValueType() &&
721              "Operands must all have the same type");
722     }
723     break;
724   }
725   }
726 }
727 #endif // NDEBUG
728 
729 /// \brief Insert a newly allocated node into the DAG.
730 ///
731 /// Handles insertion into the all nodes list and CSE map, as well as
732 /// verification and other common operations when a new node is allocated.
733 void SelectionDAG::InsertNode(SDNode *N) {
734   AllNodes.push_back(N);
735 #ifndef NDEBUG
736   N->PersistentId = NextPersistentId++;
737   VerifySDNode(N);
738 #endif
739 }
740 
741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
742 /// correspond to it.  This is useful when we're about to delete or repurpose
743 /// the node.  We don't want future request for structurally identical nodes
744 /// to return N anymore.
745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
746   bool Erased = false;
747   switch (N->getOpcode()) {
748   case ISD::HANDLENODE: return false;  // noop.
749   case ISD::CONDCODE:
750     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
751            "Cond code doesn't exist!");
752     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
753     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
754     break;
755   case ISD::ExternalSymbol:
756     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
757     break;
758   case ISD::TargetExternalSymbol: {
759     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
760     Erased = TargetExternalSymbols.erase(
761                std::pair<std::string,unsigned char>(ESN->getSymbol(),
762                                                     ESN->getTargetFlags()));
763     break;
764   }
765   case ISD::MCSymbol: {
766     auto *MCSN = cast<MCSymbolSDNode>(N);
767     Erased = MCSymbols.erase(MCSN->getMCSymbol());
768     break;
769   }
770   case ISD::VALUETYPE: {
771     EVT VT = cast<VTSDNode>(N)->getVT();
772     if (VT.isExtended()) {
773       Erased = ExtendedValueTypeNodes.erase(VT);
774     } else {
775       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
776       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
777     }
778     break;
779   }
780   default:
781     // Remove it from the CSE Map.
782     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
783     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
784     Erased = CSEMap.RemoveNode(N);
785     break;
786   }
787 #ifndef NDEBUG
788   // Verify that the node was actually in one of the CSE maps, unless it has a
789   // flag result (which cannot be CSE'd) or is one of the special cases that are
790   // not subject to CSE.
791   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
792       !N->isMachineOpcode() && !doNotCSE(N)) {
793     N->dump(this);
794     dbgs() << "\n";
795     llvm_unreachable("Node is not in map!");
796   }
797 #endif
798   return Erased;
799 }
800 
801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
802 /// maps and modified in place. Add it back to the CSE maps, unless an identical
803 /// node already exists, in which case transfer all its users to the existing
804 /// node. This transfer can potentially trigger recursive merging.
805 void
806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
807   // For node types that aren't CSE'd, just act as if no identical node
808   // already exists.
809   if (!doNotCSE(N)) {
810     SDNode *Existing = CSEMap.GetOrInsertNode(N);
811     if (Existing != N) {
812       // If there was already an existing matching node, use ReplaceAllUsesWith
813       // to replace the dead one with the existing one.  This can cause
814       // recursive merging of other unrelated nodes down the line.
815       ReplaceAllUsesWith(N, Existing);
816 
817       // N is now dead. Inform the listeners and delete it.
818       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
819         DUL->NodeDeleted(N, Existing);
820       DeleteNodeNotInCSEMaps(N);
821       return;
822     }
823   }
824 
825   // If the node doesn't already exist, we updated it.  Inform listeners.
826   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
827     DUL->NodeUpdated(N);
828 }
829 
830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
831 /// were replaced with those specified.  If this node is never memoized,
832 /// return null, otherwise return a pointer to the slot it would take.  If a
833 /// node already exists with these operands, the slot will be non-null.
834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
835                                            void *&InsertPos) {
836   if (doNotCSE(N))
837     return nullptr;
838 
839   SDValue Ops[] = { Op };
840   FoldingSetNodeID ID;
841   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
842   AddNodeIDCustom(ID, N);
843   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
844   if (Node)
845     Node->intersectFlagsWith(N->getFlags());
846   return Node;
847 }
848 
849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
850 /// were replaced with those specified.  If this node is never memoized,
851 /// return null, otherwise return a pointer to the slot it would take.  If a
852 /// node already exists with these operands, the slot will be non-null.
853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
854                                            SDValue Op1, SDValue Op2,
855                                            void *&InsertPos) {
856   if (doNotCSE(N))
857     return nullptr;
858 
859   SDValue Ops[] = { Op1, Op2 };
860   FoldingSetNodeID ID;
861   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
862   AddNodeIDCustom(ID, N);
863   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
864   if (Node)
865     Node->intersectFlagsWith(N->getFlags());
866   return Node;
867 }
868 
869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
870 /// were replaced with those specified.  If this node is never memoized,
871 /// return null, otherwise return a pointer to the slot it would take.  If a
872 /// node already exists with these operands, the slot will be non-null.
873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
874                                            void *&InsertPos) {
875   if (doNotCSE(N))
876     return nullptr;
877 
878   FoldingSetNodeID ID;
879   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
880   AddNodeIDCustom(ID, N);
881   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
882   if (Node)
883     Node->intersectFlagsWith(N->getFlags());
884   return Node;
885 }
886 
887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
888   Type *Ty = VT == MVT::iPTR ?
889                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
890                    VT.getTypeForEVT(*getContext());
891 
892   return getDataLayout().getABITypeAlignment(Ty);
893 }
894 
895 // EntryNode could meaningfully have debug info if we can find it...
896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
897     : TM(tm), OptLevel(OL),
898       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
899       Root(getEntryNode()) {
900   InsertNode(&EntryNode);
901   DbgInfo = new SDDbgInfo();
902 }
903 
904 void SelectionDAG::init(MachineFunction &NewMF,
905                         OptimizationRemarkEmitter &NewORE,
906                         Pass *PassPtr) {
907   MF = &NewMF;
908   SDAGISelPass = PassPtr;
909   ORE = &NewORE;
910   TLI = getSubtarget().getTargetLowering();
911   TSI = getSubtarget().getSelectionDAGInfo();
912   Context = &MF->getFunction()->getContext();
913 }
914 
915 SelectionDAG::~SelectionDAG() {
916   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
917   allnodes_clear();
918   OperandRecycler.clear(OperandAllocator);
919   delete DbgInfo;
920 }
921 
922 void SelectionDAG::allnodes_clear() {
923   assert(&*AllNodes.begin() == &EntryNode);
924   AllNodes.remove(AllNodes.begin());
925   while (!AllNodes.empty())
926     DeallocateNode(&AllNodes.front());
927 #ifndef NDEBUG
928   NextPersistentId = 0;
929 #endif
930 }
931 
932 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
933                                           void *&InsertPos) {
934   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
935   if (N) {
936     switch (N->getOpcode()) {
937     default: break;
938     case ISD::Constant:
939     case ISD::ConstantFP:
940       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
941                        "debug location.  Use another overload.");
942     }
943   }
944   return N;
945 }
946 
947 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
948                                           const SDLoc &DL, void *&InsertPos) {
949   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
950   if (N) {
951     switch (N->getOpcode()) {
952     case ISD::Constant:
953     case ISD::ConstantFP:
954       // Erase debug location from the node if the node is used at several
955       // different places. Do not propagate one location to all uses as it
956       // will cause a worse single stepping debugging experience.
957       if (N->getDebugLoc() != DL.getDebugLoc())
958         N->setDebugLoc(DebugLoc());
959       break;
960     default:
961       // When the node's point of use is located earlier in the instruction
962       // sequence than its prior point of use, update its debug info to the
963       // earlier location.
964       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
965         N->setDebugLoc(DL.getDebugLoc());
966       break;
967     }
968   }
969   return N;
970 }
971 
972 void SelectionDAG::clear() {
973   allnodes_clear();
974   OperandRecycler.clear(OperandAllocator);
975   OperandAllocator.Reset();
976   CSEMap.clear();
977 
978   ExtendedValueTypeNodes.clear();
979   ExternalSymbols.clear();
980   TargetExternalSymbols.clear();
981   MCSymbols.clear();
982   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
983             static_cast<CondCodeSDNode*>(nullptr));
984   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
985             static_cast<SDNode*>(nullptr));
986 
987   EntryNode.UseList = nullptr;
988   InsertNode(&EntryNode);
989   Root = getEntryNode();
990   DbgInfo->clear();
991 }
992 
993 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
994   return VT.bitsGT(Op.getValueType())
995              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
996              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
997 }
998 
999 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1000   return VT.bitsGT(Op.getValueType()) ?
1001     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1002     getNode(ISD::TRUNCATE, DL, VT, Op);
1003 }
1004 
1005 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1006   return VT.bitsGT(Op.getValueType()) ?
1007     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1008     getNode(ISD::TRUNCATE, DL, VT, Op);
1009 }
1010 
1011 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1012   return VT.bitsGT(Op.getValueType()) ?
1013     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1014     getNode(ISD::TRUNCATE, DL, VT, Op);
1015 }
1016 
1017 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1018                                         EVT OpVT) {
1019   if (VT.bitsLE(Op.getValueType()))
1020     return getNode(ISD::TRUNCATE, SL, VT, Op);
1021 
1022   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1023   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1024 }
1025 
1026 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1027   assert(!VT.isVector() &&
1028          "getZeroExtendInReg should use the vector element type instead of "
1029          "the vector type!");
1030   if (Op.getValueType() == VT) return Op;
1031   unsigned BitWidth = Op.getScalarValueSizeInBits();
1032   APInt Imm = APInt::getLowBitsSet(BitWidth,
1033                                    VT.getSizeInBits());
1034   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1035                  getConstant(Imm, DL, Op.getValueType()));
1036 }
1037 
1038 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1039                                               EVT VT) {
1040   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1041   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1042          "The sizes of the input and result must match in order to perform the "
1043          "extend in-register.");
1044   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1045          "The destination vector type must have fewer lanes than the input.");
1046   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1047 }
1048 
1049 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1050                                                EVT VT) {
1051   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1052   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1053          "The sizes of the input and result must match in order to perform the "
1054          "extend in-register.");
1055   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1056          "The destination vector type must have fewer lanes than the input.");
1057   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1058 }
1059 
1060 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1061                                                EVT VT) {
1062   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1063   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1064          "The sizes of the input and result must match in order to perform the "
1065          "extend in-register.");
1066   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1067          "The destination vector type must have fewer lanes than the input.");
1068   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1069 }
1070 
1071 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1072 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1073   EVT EltVT = VT.getScalarType();
1074   SDValue NegOne =
1075     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1076   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1077 }
1078 
1079 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1080   EVT EltVT = VT.getScalarType();
1081   SDValue TrueValue;
1082   switch (TLI->getBooleanContents(VT)) {
1083     case TargetLowering::ZeroOrOneBooleanContent:
1084     case TargetLowering::UndefinedBooleanContent:
1085       TrueValue = getConstant(1, DL, VT);
1086       break;
1087     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1088       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1089                               VT);
1090       break;
1091   }
1092   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1093 }
1094 
1095 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1096                                   bool isT, bool isO) {
1097   EVT EltVT = VT.getScalarType();
1098   assert((EltVT.getSizeInBits() >= 64 ||
1099          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1100          "getConstant with a uint64_t value that doesn't fit in the type!");
1101   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1102 }
1103 
1104 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1105                                   bool isT, bool isO) {
1106   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1107 }
1108 
1109 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1110                                   EVT VT, bool isT, bool isO) {
1111   assert(VT.isInteger() && "Cannot create FP integer constant!");
1112 
1113   EVT EltVT = VT.getScalarType();
1114   const ConstantInt *Elt = &Val;
1115 
1116   // In some cases the vector type is legal but the element type is illegal and
1117   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1118   // inserted value (the type does not need to match the vector element type).
1119   // Any extra bits introduced will be truncated away.
1120   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1121       TargetLowering::TypePromoteInteger) {
1122    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1123    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1124    Elt = ConstantInt::get(*getContext(), NewVal);
1125   }
1126   // In other cases the element type is illegal and needs to be expanded, for
1127   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1128   // the value into n parts and use a vector type with n-times the elements.
1129   // Then bitcast to the type requested.
1130   // Legalizing constants too early makes the DAGCombiner's job harder so we
1131   // only legalize if the DAG tells us we must produce legal types.
1132   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1133            TLI->getTypeAction(*getContext(), EltVT) ==
1134            TargetLowering::TypeExpandInteger) {
1135     const APInt &NewVal = Elt->getValue();
1136     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1137     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1138     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1139     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1140 
1141     // Check the temporary vector is the correct size. If this fails then
1142     // getTypeToTransformTo() probably returned a type whose size (in bits)
1143     // isn't a power-of-2 factor of the requested type size.
1144     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1145 
1146     SmallVector<SDValue, 2> EltParts;
1147     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1148       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1149                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1150                                      ViaEltVT, isT, isO));
1151     }
1152 
1153     // EltParts is currently in little endian order. If we actually want
1154     // big-endian order then reverse it now.
1155     if (getDataLayout().isBigEndian())
1156       std::reverse(EltParts.begin(), EltParts.end());
1157 
1158     // The elements must be reversed when the element order is different
1159     // to the endianness of the elements (because the BITCAST is itself a
1160     // vector shuffle in this situation). However, we do not need any code to
1161     // perform this reversal because getConstant() is producing a vector
1162     // splat.
1163     // This situation occurs in MIPS MSA.
1164 
1165     SmallVector<SDValue, 8> Ops;
1166     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1167       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1168 
1169     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1170     NewSDValueDbgMsg(V, "Creating constant: ");
1171     return V;
1172   }
1173 
1174   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1175          "APInt size does not match type size!");
1176   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1177   FoldingSetNodeID ID;
1178   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1179   ID.AddPointer(Elt);
1180   ID.AddBoolean(isO);
1181   void *IP = nullptr;
1182   SDNode *N = nullptr;
1183   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1184     if (!VT.isVector())
1185       return SDValue(N, 0);
1186 
1187   if (!N) {
1188     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1189     CSEMap.InsertNode(N, IP);
1190     InsertNode(N);
1191   }
1192 
1193   SDValue Result(N, 0);
1194   if (VT.isVector())
1195     Result = getSplatBuildVector(VT, DL, Result);
1196 
1197   NewSDValueDbgMsg(Result, "Creating constant: ");
1198   return Result;
1199 }
1200 
1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1202                                         bool isTarget) {
1203   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1204 }
1205 
1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1207                                     bool isTarget) {
1208   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1209 }
1210 
1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1212                                     EVT VT, bool isTarget) {
1213   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1214 
1215   EVT EltVT = VT.getScalarType();
1216 
1217   // Do the map lookup using the actual bit pattern for the floating point
1218   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1219   // we don't have issues with SNANs.
1220   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1221   FoldingSetNodeID ID;
1222   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1223   ID.AddPointer(&V);
1224   void *IP = nullptr;
1225   SDNode *N = nullptr;
1226   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1227     if (!VT.isVector())
1228       return SDValue(N, 0);
1229 
1230   if (!N) {
1231     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1232     CSEMap.InsertNode(N, IP);
1233     InsertNode(N);
1234   }
1235 
1236   SDValue Result(N, 0);
1237   if (VT.isVector())
1238     Result = getSplatBuildVector(VT, DL, Result);
1239   NewSDValueDbgMsg(Result, "Creating fp constant: ");
1240   return Result;
1241 }
1242 
1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1244                                     bool isTarget) {
1245   EVT EltVT = VT.getScalarType();
1246   if (EltVT == MVT::f32)
1247     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1248   else if (EltVT == MVT::f64)
1249     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1250   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1251            EltVT == MVT::f16) {
1252     bool Ignored;
1253     APFloat APF = APFloat(Val);
1254     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1255                 &Ignored);
1256     return getConstantFP(APF, DL, VT, isTarget);
1257   } else
1258     llvm_unreachable("Unsupported type in getConstantFP");
1259 }
1260 
1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1262                                        EVT VT, int64_t Offset, bool isTargetGA,
1263                                        unsigned char TargetFlags) {
1264   assert((TargetFlags == 0 || isTargetGA) &&
1265          "Cannot set target flags on target-independent globals");
1266 
1267   // Truncate (with sign-extension) the offset value to the pointer size.
1268   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1269   if (BitWidth < 64)
1270     Offset = SignExtend64(Offset, BitWidth);
1271 
1272   unsigned Opc;
1273   if (GV->isThreadLocal())
1274     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1275   else
1276     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1277 
1278   FoldingSetNodeID ID;
1279   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1280   ID.AddPointer(GV);
1281   ID.AddInteger(Offset);
1282   ID.AddInteger(TargetFlags);
1283   void *IP = nullptr;
1284   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1285     return SDValue(E, 0);
1286 
1287   auto *N = newSDNode<GlobalAddressSDNode>(
1288       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1289   CSEMap.InsertNode(N, IP);
1290     InsertNode(N);
1291   return SDValue(N, 0);
1292 }
1293 
1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1295   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1296   FoldingSetNodeID ID;
1297   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1298   ID.AddInteger(FI);
1299   void *IP = nullptr;
1300   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1301     return SDValue(E, 0);
1302 
1303   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1304   CSEMap.InsertNode(N, IP);
1305   InsertNode(N);
1306   return SDValue(N, 0);
1307 }
1308 
1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1310                                    unsigned char TargetFlags) {
1311   assert((TargetFlags == 0 || isTarget) &&
1312          "Cannot set target flags on target-independent jump tables");
1313   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1316   ID.AddInteger(JTI);
1317   ID.AddInteger(TargetFlags);
1318   void *IP = nullptr;
1319   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1320     return SDValue(E, 0);
1321 
1322   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1323   CSEMap.InsertNode(N, IP);
1324   InsertNode(N);
1325   return SDValue(N, 0);
1326 }
1327 
1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1329                                       unsigned Alignment, int Offset,
1330                                       bool isTarget,
1331                                       unsigned char TargetFlags) {
1332   assert((TargetFlags == 0 || isTarget) &&
1333          "Cannot set target flags on target-independent globals");
1334   if (Alignment == 0)
1335     Alignment = MF->getFunction()->optForSize()
1336                     ? getDataLayout().getABITypeAlignment(C->getType())
1337                     : getDataLayout().getPrefTypeAlignment(C->getType());
1338   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1339   FoldingSetNodeID ID;
1340   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1341   ID.AddInteger(Alignment);
1342   ID.AddInteger(Offset);
1343   ID.AddPointer(C);
1344   ID.AddInteger(TargetFlags);
1345   void *IP = nullptr;
1346   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1347     return SDValue(E, 0);
1348 
1349   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1350                                           TargetFlags);
1351   CSEMap.InsertNode(N, IP);
1352   InsertNode(N);
1353   return SDValue(N, 0);
1354 }
1355 
1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1357                                       unsigned Alignment, int Offset,
1358                                       bool isTarget,
1359                                       unsigned char TargetFlags) {
1360   assert((TargetFlags == 0 || isTarget) &&
1361          "Cannot set target flags on target-independent globals");
1362   if (Alignment == 0)
1363     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1364   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1365   FoldingSetNodeID ID;
1366   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1367   ID.AddInteger(Alignment);
1368   ID.AddInteger(Offset);
1369   C->addSelectionDAGCSEId(ID);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1376                                           TargetFlags);
1377   CSEMap.InsertNode(N, IP);
1378   InsertNode(N);
1379   return SDValue(N, 0);
1380 }
1381 
1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1383                                      unsigned char TargetFlags) {
1384   FoldingSetNodeID ID;
1385   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1386   ID.AddInteger(Index);
1387   ID.AddInteger(Offset);
1388   ID.AddInteger(TargetFlags);
1389   void *IP = nullptr;
1390   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1391     return SDValue(E, 0);
1392 
1393   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1394   CSEMap.InsertNode(N, IP);
1395   InsertNode(N);
1396   return SDValue(N, 0);
1397 }
1398 
1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1402   ID.AddPointer(MBB);
1403   void *IP = nullptr;
1404   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1405     return SDValue(E, 0);
1406 
1407   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1408   CSEMap.InsertNode(N, IP);
1409   InsertNode(N);
1410   return SDValue(N, 0);
1411 }
1412 
1413 SDValue SelectionDAG::getValueType(EVT VT) {
1414   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1415       ValueTypeNodes.size())
1416     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1417 
1418   SDNode *&N = VT.isExtended() ?
1419     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1420 
1421   if (N) return SDValue(N, 0);
1422   N = newSDNode<VTSDNode>(VT);
1423   InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426 
1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1428   SDNode *&N = ExternalSymbols[Sym];
1429   if (N) return SDValue(N, 0);
1430   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1431   InsertNode(N);
1432   return SDValue(N, 0);
1433 }
1434 
1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1436   SDNode *&N = MCSymbols[Sym];
1437   if (N)
1438     return SDValue(N, 0);
1439   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1440   InsertNode(N);
1441   return SDValue(N, 0);
1442 }
1443 
1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1445                                               unsigned char TargetFlags) {
1446   SDNode *&N =
1447     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1448                                                                TargetFlags)];
1449   if (N) return SDValue(N, 0);
1450   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1456   if ((unsigned)Cond >= CondCodeNodes.size())
1457     CondCodeNodes.resize(Cond+1);
1458 
1459   if (!CondCodeNodes[Cond]) {
1460     auto *N = newSDNode<CondCodeSDNode>(Cond);
1461     CondCodeNodes[Cond] = N;
1462     InsertNode(N);
1463   }
1464 
1465   return SDValue(CondCodeNodes[Cond], 0);
1466 }
1467 
1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1471   std::swap(N1, N2);
1472   ShuffleVectorSDNode::commuteMask(M);
1473 }
1474 
1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1476                                        SDValue N2, ArrayRef<int> Mask) {
1477   assert(VT.getVectorNumElements() == Mask.size() &&
1478            "Must have the same number of vector elements as mask elements!");
1479   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1480          "Invalid VECTOR_SHUFFLE");
1481 
1482   // Canonicalize shuffle undef, undef -> undef
1483   if (N1.isUndef() && N2.isUndef())
1484     return getUNDEF(VT);
1485 
1486   // Validate that all indices in Mask are within the range of the elements
1487   // input to the shuffle.
1488   int NElts = Mask.size();
1489   assert(llvm::all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1490          "Index out of range");
1491 
1492   // Copy the mask so we can do any needed cleanup.
1493   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1494 
1495   // Canonicalize shuffle v, v -> v, undef
1496   if (N1 == N2) {
1497     N2 = getUNDEF(VT);
1498     for (int i = 0; i != NElts; ++i)
1499       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1500   }
1501 
1502   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1503   if (N1.isUndef())
1504     commuteShuffle(N1, N2, MaskVec);
1505 
1506   // If shuffling a splat, try to blend the splat instead. We do this here so
1507   // that even when this arises during lowering we don't have to re-handle it.
1508   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1509     BitVector UndefElements;
1510     SDValue Splat = BV->getSplatValue(&UndefElements);
1511     if (!Splat)
1512       return;
1513 
1514     for (int i = 0; i < NElts; ++i) {
1515       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1516         continue;
1517 
1518       // If this input comes from undef, mark it as such.
1519       if (UndefElements[MaskVec[i] - Offset]) {
1520         MaskVec[i] = -1;
1521         continue;
1522       }
1523 
1524       // If we can blend a non-undef lane, use that instead.
1525       if (!UndefElements[i])
1526         MaskVec[i] = i + Offset;
1527     }
1528   };
1529   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1530     BlendSplat(N1BV, 0);
1531   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1532     BlendSplat(N2BV, NElts);
1533 
1534   // Canonicalize all index into lhs, -> shuffle lhs, undef
1535   // Canonicalize all index into rhs, -> shuffle rhs, undef
1536   bool AllLHS = true, AllRHS = true;
1537   bool N2Undef = N2.isUndef();
1538   for (int i = 0; i != NElts; ++i) {
1539     if (MaskVec[i] >= NElts) {
1540       if (N2Undef)
1541         MaskVec[i] = -1;
1542       else
1543         AllLHS = false;
1544     } else if (MaskVec[i] >= 0) {
1545       AllRHS = false;
1546     }
1547   }
1548   if (AllLHS && AllRHS)
1549     return getUNDEF(VT);
1550   if (AllLHS && !N2Undef)
1551     N2 = getUNDEF(VT);
1552   if (AllRHS) {
1553     N1 = getUNDEF(VT);
1554     commuteShuffle(N1, N2, MaskVec);
1555   }
1556   // Reset our undef status after accounting for the mask.
1557   N2Undef = N2.isUndef();
1558   // Re-check whether both sides ended up undef.
1559   if (N1.isUndef() && N2Undef)
1560     return getUNDEF(VT);
1561 
1562   // If Identity shuffle return that node.
1563   bool Identity = true, AllSame = true;
1564   for (int i = 0; i != NElts; ++i) {
1565     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1566     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1567   }
1568   if (Identity && NElts)
1569     return N1;
1570 
1571   // Shuffling a constant splat doesn't change the result.
1572   if (N2Undef) {
1573     SDValue V = N1;
1574 
1575     // Look through any bitcasts. We check that these don't change the number
1576     // (and size) of elements and just changes their types.
1577     while (V.getOpcode() == ISD::BITCAST)
1578       V = V->getOperand(0);
1579 
1580     // A splat should always show up as a build vector node.
1581     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1582       BitVector UndefElements;
1583       SDValue Splat = BV->getSplatValue(&UndefElements);
1584       // If this is a splat of an undef, shuffling it is also undef.
1585       if (Splat && Splat.isUndef())
1586         return getUNDEF(VT);
1587 
1588       bool SameNumElts =
1589           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1590 
1591       // We only have a splat which can skip shuffles if there is a splatted
1592       // value and no undef lanes rearranged by the shuffle.
1593       if (Splat && UndefElements.none()) {
1594         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1595         // number of elements match or the value splatted is a zero constant.
1596         if (SameNumElts)
1597           return N1;
1598         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1599           if (C->isNullValue())
1600             return N1;
1601       }
1602 
1603       // If the shuffle itself creates a splat, build the vector directly.
1604       if (AllSame && SameNumElts) {
1605         EVT BuildVT = BV->getValueType(0);
1606         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1607         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1608 
1609         // We may have jumped through bitcasts, so the type of the
1610         // BUILD_VECTOR may not match the type of the shuffle.
1611         if (BuildVT != VT)
1612           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1613         return NewBV;
1614       }
1615     }
1616   }
1617 
1618   FoldingSetNodeID ID;
1619   SDValue Ops[2] = { N1, N2 };
1620   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1621   for (int i = 0; i != NElts; ++i)
1622     ID.AddInteger(MaskVec[i]);
1623 
1624   void* IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1626     return SDValue(E, 0);
1627 
1628   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1629   // SDNode doesn't have access to it.  This memory will be "leaked" when
1630   // the node is deallocated, but recovered when the NodeAllocator is released.
1631   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1632   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1633 
1634   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1635                                            dl.getDebugLoc(), MaskAlloc);
1636   createOperands(N, Ops);
1637 
1638   CSEMap.InsertNode(N, IP);
1639   InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1644   MVT VT = SV.getSimpleValueType(0);
1645   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1646   ShuffleVectorSDNode::commuteMask(MaskVec);
1647 
1648   SDValue Op0 = SV.getOperand(0);
1649   SDValue Op1 = SV.getOperand(1);
1650   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1651 }
1652 
1653 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1654   FoldingSetNodeID ID;
1655   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1656   ID.AddInteger(RegNo);
1657   void *IP = nullptr;
1658   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1659     return SDValue(E, 0);
1660 
1661   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1662   CSEMap.InsertNode(N, IP);
1663   InsertNode(N);
1664   return SDValue(N, 0);
1665 }
1666 
1667 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1670   ID.AddPointer(RegMask);
1671   void *IP = nullptr;
1672   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1673     return SDValue(E, 0);
1674 
1675   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1676   CSEMap.InsertNode(N, IP);
1677   InsertNode(N);
1678   return SDValue(N, 0);
1679 }
1680 
1681 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1682                                  MCSymbol *Label) {
1683   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1684 }
1685 
1686 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1687                                    SDValue Root, MCSymbol *Label) {
1688   FoldingSetNodeID ID;
1689   SDValue Ops[] = { Root };
1690   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1691   ID.AddPointer(Label);
1692   void *IP = nullptr;
1693   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1694     return SDValue(E, 0);
1695 
1696   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1697   createOperands(N, Ops);
1698 
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   return SDValue(N, 0);
1702 }
1703 
1704 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1705                                       int64_t Offset,
1706                                       bool isTarget,
1707                                       unsigned char TargetFlags) {
1708   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1709 
1710   FoldingSetNodeID ID;
1711   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1712   ID.AddPointer(BA);
1713   ID.AddInteger(Offset);
1714   ID.AddInteger(TargetFlags);
1715   void *IP = nullptr;
1716   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1717     return SDValue(E, 0);
1718 
1719   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1720   CSEMap.InsertNode(N, IP);
1721   InsertNode(N);
1722   return SDValue(N, 0);
1723 }
1724 
1725 SDValue SelectionDAG::getSrcValue(const Value *V) {
1726   assert((!V || V->getType()->isPointerTy()) &&
1727          "SrcValue is not a pointer?");
1728 
1729   FoldingSetNodeID ID;
1730   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1731   ID.AddPointer(V);
1732 
1733   void *IP = nullptr;
1734   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1735     return SDValue(E, 0);
1736 
1737   auto *N = newSDNode<SrcValueSDNode>(V);
1738   CSEMap.InsertNode(N, IP);
1739   InsertNode(N);
1740   return SDValue(N, 0);
1741 }
1742 
1743 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1744   FoldingSetNodeID ID;
1745   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1746   ID.AddPointer(MD);
1747 
1748   void *IP = nullptr;
1749   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750     return SDValue(E, 0);
1751 
1752   auto *N = newSDNode<MDNodeSDNode>(MD);
1753   CSEMap.InsertNode(N, IP);
1754   InsertNode(N);
1755   return SDValue(N, 0);
1756 }
1757 
1758 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1759   if (VT == V.getValueType())
1760     return V;
1761 
1762   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1763 }
1764 
1765 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1766                                        unsigned SrcAS, unsigned DestAS) {
1767   SDValue Ops[] = {Ptr};
1768   FoldingSetNodeID ID;
1769   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1770   ID.AddInteger(SrcAS);
1771   ID.AddInteger(DestAS);
1772 
1773   void *IP = nullptr;
1774   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1775     return SDValue(E, 0);
1776 
1777   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1778                                            VT, SrcAS, DestAS);
1779   createOperands(N, Ops);
1780 
1781   CSEMap.InsertNode(N, IP);
1782   InsertNode(N);
1783   return SDValue(N, 0);
1784 }
1785 
1786 /// getShiftAmountOperand - Return the specified value casted to
1787 /// the target's desired shift amount type.
1788 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1789   EVT OpTy = Op.getValueType();
1790   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1791   if (OpTy == ShTy || OpTy.isVector()) return Op;
1792 
1793   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1794 }
1795 
1796 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1797   SDLoc dl(Node);
1798   const TargetLowering &TLI = getTargetLoweringInfo();
1799   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1800   EVT VT = Node->getValueType(0);
1801   SDValue Tmp1 = Node->getOperand(0);
1802   SDValue Tmp2 = Node->getOperand(1);
1803   unsigned Align = Node->getConstantOperandVal(3);
1804 
1805   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1806                                Tmp2, MachinePointerInfo(V));
1807   SDValue VAList = VAListLoad;
1808 
1809   if (Align > TLI.getMinStackArgumentAlignment()) {
1810     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1811 
1812     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1813                      getConstant(Align - 1, dl, VAList.getValueType()));
1814 
1815     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1816                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1817   }
1818 
1819   // Increment the pointer, VAList, to the next vaarg
1820   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1821                  getConstant(getDataLayout().getTypeAllocSize(
1822                                                VT.getTypeForEVT(*getContext())),
1823                              dl, VAList.getValueType()));
1824   // Store the incremented VAList to the legalized pointer
1825   Tmp1 =
1826       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1827   // Load the actual argument out of the pointer VAList
1828   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1829 }
1830 
1831 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1832   SDLoc dl(Node);
1833   const TargetLowering &TLI = getTargetLoweringInfo();
1834   // This defaults to loading a pointer from the input and storing it to the
1835   // output, returning the chain.
1836   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1837   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1838   SDValue Tmp1 =
1839       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1840               Node->getOperand(2), MachinePointerInfo(VS));
1841   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1842                   MachinePointerInfo(VD));
1843 }
1844 
1845 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1846   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1847   unsigned ByteSize = VT.getStoreSize();
1848   Type *Ty = VT.getTypeForEVT(*getContext());
1849   unsigned StackAlign =
1850       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1851 
1852   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1853   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1854 }
1855 
1856 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1857   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1858   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1859   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1860   const DataLayout &DL = getDataLayout();
1861   unsigned Align =
1862       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1863 
1864   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1865   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1866   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1867 }
1868 
1869 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1870                                 ISD::CondCode Cond, const SDLoc &dl) {
1871   // These setcc operations always fold.
1872   switch (Cond) {
1873   default: break;
1874   case ISD::SETFALSE:
1875   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1876   case ISD::SETTRUE:
1877   case ISD::SETTRUE2: {
1878     TargetLowering::BooleanContent Cnt =
1879         TLI->getBooleanContents(N1->getValueType(0));
1880     return getConstant(
1881         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1882         VT);
1883   }
1884 
1885   case ISD::SETOEQ:
1886   case ISD::SETOGT:
1887   case ISD::SETOGE:
1888   case ISD::SETOLT:
1889   case ISD::SETOLE:
1890   case ISD::SETONE:
1891   case ISD::SETO:
1892   case ISD::SETUO:
1893   case ISD::SETUEQ:
1894   case ISD::SETUNE:
1895     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1896     break;
1897   }
1898 
1899   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1900     const APInt &C2 = N2C->getAPIntValue();
1901     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1902       const APInt &C1 = N1C->getAPIntValue();
1903 
1904       switch (Cond) {
1905       default: llvm_unreachable("Unknown integer setcc!");
1906       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1907       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1908       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1909       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1910       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1911       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1912       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1913       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1914       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1915       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1916       }
1917     }
1918   }
1919   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1920     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1921       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1922       switch (Cond) {
1923       default: break;
1924       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1925                           return getUNDEF(VT);
1926                         LLVM_FALLTHROUGH;
1927       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1928       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1929                           return getUNDEF(VT);
1930                         LLVM_FALLTHROUGH;
1931       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1932                                            R==APFloat::cmpLessThan, dl, VT);
1933       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1934                           return getUNDEF(VT);
1935                         LLVM_FALLTHROUGH;
1936       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1937       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1938                           return getUNDEF(VT);
1939                         LLVM_FALLTHROUGH;
1940       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1941       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1942                           return getUNDEF(VT);
1943                         LLVM_FALLTHROUGH;
1944       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1945                                            R==APFloat::cmpEqual, dl, VT);
1946       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1947                           return getUNDEF(VT);
1948                         LLVM_FALLTHROUGH;
1949       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1950                                            R==APFloat::cmpEqual, dl, VT);
1951       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1952       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1953       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1954                                            R==APFloat::cmpEqual, dl, VT);
1955       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1956       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1957                                            R==APFloat::cmpLessThan, dl, VT);
1958       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1959                                            R==APFloat::cmpUnordered, dl, VT);
1960       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1961       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1962       }
1963     } else {
1964       // Ensure that the constant occurs on the RHS.
1965       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1966       MVT CompVT = N1.getValueType().getSimpleVT();
1967       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1968         return SDValue();
1969 
1970       return getSetCC(dl, VT, N2, N1, SwappedCond);
1971     }
1972   }
1973 
1974   // Could not fold it.
1975   return SDValue();
1976 }
1977 
1978 /// See if the specified operand can be simplified with the knowledge that only
1979 /// the bits specified by Mask are used.
1980 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
1981   switch (V.getOpcode()) {
1982   default:
1983     break;
1984   case ISD::Constant: {
1985     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
1986     assert(CV && "Const value should be ConstSDNode.");
1987     const APInt &CVal = CV->getAPIntValue();
1988     APInt NewVal = CVal & Mask;
1989     if (NewVal != CVal)
1990       return getConstant(NewVal, SDLoc(V), V.getValueType());
1991     break;
1992   }
1993   case ISD::OR:
1994   case ISD::XOR:
1995     // If the LHS or RHS don't contribute bits to the or, drop them.
1996     if (MaskedValueIsZero(V.getOperand(0), Mask))
1997       return V.getOperand(1);
1998     if (MaskedValueIsZero(V.getOperand(1), Mask))
1999       return V.getOperand(0);
2000     break;
2001   case ISD::SRL:
2002     // Only look at single-use SRLs.
2003     if (!V.getNode()->hasOneUse())
2004       break;
2005     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2006       // See if we can recursively simplify the LHS.
2007       unsigned Amt = RHSC->getZExtValue();
2008 
2009       // Watch out for shift count overflow though.
2010       if (Amt >= Mask.getBitWidth())
2011         break;
2012       APInt NewMask = Mask << Amt;
2013       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2014         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2015                        V.getOperand(1));
2016     }
2017     break;
2018   case ISD::AND: {
2019     // X & -1 -> X (ignoring bits which aren't demanded).
2020     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2021     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2022       return V.getOperand(0);
2023     break;
2024   }
2025   case ISD::ANY_EXTEND: {
2026     SDValue Src = V.getOperand(0);
2027     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2028     // Being conservative here - only peek through if we only demand bits in the
2029     // non-extended source (even though the extended bits are technically undef).
2030     if (Mask.getActiveBits() > SrcBitWidth)
2031       break;
2032     APInt SrcMask = Mask.trunc(SrcBitWidth);
2033     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2034       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2035     break;
2036   }
2037   }
2038   return SDValue();
2039 }
2040 
2041 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2042 /// use this predicate to simplify operations downstream.
2043 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2044   unsigned BitWidth = Op.getScalarValueSizeInBits();
2045   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2046 }
2047 
2048 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2049 /// this predicate to simplify operations downstream.  Mask is known to be zero
2050 /// for bits that V cannot have.
2051 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2052                                      unsigned Depth) const {
2053   KnownBits Known;
2054   computeKnownBits(Op, Known, Depth);
2055   return Mask.isSubsetOf(Known.Zero);
2056 }
2057 
2058 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2059 /// is less than the element bit-width of the shift node, return it.
2060 static const APInt *getValidShiftAmountConstant(SDValue V) {
2061   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2062     // Shifting more than the bitwidth is not valid.
2063     const APInt &ShAmt = SA->getAPIntValue();
2064     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2065       return &ShAmt;
2066   }
2067   return nullptr;
2068 }
2069 
2070 /// Determine which bits of Op are known to be either zero or one and return
2071 /// them in Known. For vectors, the known bits are those that are shared by
2072 /// every vector element.
2073 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2074                                     unsigned Depth) const {
2075   EVT VT = Op.getValueType();
2076   APInt DemandedElts = VT.isVector()
2077                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2078                            : APInt(1, 1);
2079   computeKnownBits(Op, Known, DemandedElts, Depth);
2080 }
2081 
2082 /// Determine which bits of Op are known to be either zero or one and return
2083 /// them in Known. The DemandedElts argument allows us to only collect the known
2084 /// bits that are shared by the requested vector elements.
2085 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2086                                     const APInt &DemandedElts,
2087                                     unsigned Depth) const {
2088   unsigned BitWidth = Op.getScalarValueSizeInBits();
2089 
2090   Known = KnownBits(BitWidth);   // Don't know anything.
2091   if (Depth == 6)
2092     return;  // Limit search depth.
2093 
2094   KnownBits Known2;
2095   unsigned NumElts = DemandedElts.getBitWidth();
2096 
2097   if (!DemandedElts)
2098     return;  // No demanded elts, better to assume we don't know anything.
2099 
2100   unsigned Opcode = Op.getOpcode();
2101   switch (Opcode) {
2102   case ISD::Constant:
2103     // We know all of the bits for a constant!
2104     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
2105     Known.Zero = ~Known.One;
2106     break;
2107   case ISD::BUILD_VECTOR:
2108     // Collect the known bits that are shared by every demanded vector element.
2109     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2110            "Unexpected vector size");
2111     Known.Zero.setAllBits(); Known.One.setAllBits();
2112     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2113       if (!DemandedElts[i])
2114         continue;
2115 
2116       SDValue SrcOp = Op.getOperand(i);
2117       computeKnownBits(SrcOp, Known2, Depth + 1);
2118 
2119       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2120       if (SrcOp.getValueSizeInBits() != BitWidth) {
2121         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2122                "Expected BUILD_VECTOR implicit truncation");
2123         Known2 = Known2.trunc(BitWidth);
2124       }
2125 
2126       // Known bits are the values that are shared by every demanded element.
2127       Known.One &= Known2.One;
2128       Known.Zero &= Known2.Zero;
2129 
2130       // If we don't know any bits, early out.
2131       if (!Known.One && !Known.Zero)
2132         break;
2133     }
2134     break;
2135   case ISD::VECTOR_SHUFFLE: {
2136     // Collect the known bits that are shared by every vector element referenced
2137     // by the shuffle.
2138     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2139     Known.Zero.setAllBits(); Known.One.setAllBits();
2140     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2141     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2142     for (unsigned i = 0; i != NumElts; ++i) {
2143       if (!DemandedElts[i])
2144         continue;
2145 
2146       int M = SVN->getMaskElt(i);
2147       if (M < 0) {
2148         // For UNDEF elements, we don't know anything about the common state of
2149         // the shuffle result.
2150         Known.resetAll();
2151         DemandedLHS.clearAllBits();
2152         DemandedRHS.clearAllBits();
2153         break;
2154       }
2155 
2156       if ((unsigned)M < NumElts)
2157         DemandedLHS.setBit((unsigned)M % NumElts);
2158       else
2159         DemandedRHS.setBit((unsigned)M % NumElts);
2160     }
2161     // Known bits are the values that are shared by every demanded element.
2162     if (!!DemandedLHS) {
2163       SDValue LHS = Op.getOperand(0);
2164       computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
2165       Known.One &= Known2.One;
2166       Known.Zero &= Known2.Zero;
2167     }
2168     // If we don't know any bits, early out.
2169     if (!Known.One && !Known.Zero)
2170       break;
2171     if (!!DemandedRHS) {
2172       SDValue RHS = Op.getOperand(1);
2173       computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
2174       Known.One &= Known2.One;
2175       Known.Zero &= Known2.Zero;
2176     }
2177     break;
2178   }
2179   case ISD::CONCAT_VECTORS: {
2180     // Split DemandedElts and test each of the demanded subvectors.
2181     Known.Zero.setAllBits(); Known.One.setAllBits();
2182     EVT SubVectorVT = Op.getOperand(0).getValueType();
2183     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2184     unsigned NumSubVectors = Op.getNumOperands();
2185     for (unsigned i = 0; i != NumSubVectors; ++i) {
2186       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2187       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2188       if (!!DemandedSub) {
2189         SDValue Sub = Op.getOperand(i);
2190         computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
2191         Known.One &= Known2.One;
2192         Known.Zero &= Known2.Zero;
2193       }
2194       // If we don't know any bits, early out.
2195       if (!Known.One && !Known.Zero)
2196         break;
2197     }
2198     break;
2199   }
2200   case ISD::EXTRACT_SUBVECTOR: {
2201     // If we know the element index, just demand that subvector elements,
2202     // otherwise demand them all.
2203     SDValue Src = Op.getOperand(0);
2204     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2205     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2206     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2207       // Offset the demanded elts by the subvector index.
2208       uint64_t Idx = SubIdx->getZExtValue();
2209       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2210       computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
2211     } else {
2212       computeKnownBits(Src, Known, Depth + 1);
2213     }
2214     break;
2215   }
2216   case ISD::BITCAST: {
2217     SDValue N0 = Op.getOperand(0);
2218     unsigned SubBitWidth = N0.getScalarValueSizeInBits();
2219 
2220     // Ignore bitcasts from floating point.
2221     if (!N0.getValueType().isInteger())
2222       break;
2223 
2224     // Fast handling of 'identity' bitcasts.
2225     if (BitWidth == SubBitWidth) {
2226       computeKnownBits(N0, Known, DemandedElts, Depth + 1);
2227       break;
2228     }
2229 
2230     // Support big-endian targets when it becomes useful.
2231     bool IsLE = getDataLayout().isLittleEndian();
2232     if (!IsLE)
2233       break;
2234 
2235     // Bitcast 'small element' vector to 'large element' scalar/vector.
2236     if ((BitWidth % SubBitWidth) == 0) {
2237       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2238 
2239       // Collect known bits for the (larger) output by collecting the known
2240       // bits from each set of sub elements and shift these into place.
2241       // We need to separately call computeKnownBits for each set of
2242       // sub elements as the knownbits for each is likely to be different.
2243       unsigned SubScale = BitWidth / SubBitWidth;
2244       APInt SubDemandedElts(NumElts * SubScale, 0);
2245       for (unsigned i = 0; i != NumElts; ++i)
2246         if (DemandedElts[i])
2247           SubDemandedElts.setBit(i * SubScale);
2248 
2249       for (unsigned i = 0; i != SubScale; ++i) {
2250         computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
2251                          Depth + 1);
2252         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i);
2253         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i);
2254       }
2255     }
2256 
2257     // Bitcast 'large element' scalar/vector to 'small element' vector.
2258     if ((SubBitWidth % BitWidth) == 0) {
2259       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2260 
2261       // Collect known bits for the (smaller) output by collecting the known
2262       // bits from the overlapping larger input elements and extracting the
2263       // sub sections we actually care about.
2264       unsigned SubScale = SubBitWidth / BitWidth;
2265       APInt SubDemandedElts(NumElts / SubScale, 0);
2266       for (unsigned i = 0; i != NumElts; ++i)
2267         if (DemandedElts[i])
2268           SubDemandedElts.setBit(i / SubScale);
2269 
2270       computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
2271 
2272       Known.Zero.setAllBits(); Known.One.setAllBits();
2273       for (unsigned i = 0; i != NumElts; ++i)
2274         if (DemandedElts[i]) {
2275           unsigned Offset = (i % SubScale) * BitWidth;
2276           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2277           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2278           // If we don't know any bits, early out.
2279           if (!Known.One && !Known.Zero)
2280             break;
2281         }
2282     }
2283     break;
2284   }
2285   case ISD::AND:
2286     // If either the LHS or the RHS are Zero, the result is zero.
2287     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2288     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2289 
2290     // Output known-1 bits are only known if set in both the LHS & RHS.
2291     Known.One &= Known2.One;
2292     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2293     Known.Zero |= Known2.Zero;
2294     break;
2295   case ISD::OR:
2296     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2297     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2298 
2299     // Output known-0 bits are only known if clear in both the LHS & RHS.
2300     Known.Zero &= Known2.Zero;
2301     // Output known-1 are known to be set if set in either the LHS | RHS.
2302     Known.One |= Known2.One;
2303     break;
2304   case ISD::XOR: {
2305     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2306     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2307 
2308     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2309     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2310     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2311     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2312     Known.Zero = KnownZeroOut;
2313     break;
2314   }
2315   case ISD::MUL: {
2316     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2317     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2318 
2319     // If low bits are zero in either operand, output low known-0 bits.
2320     // Also compute a conservative estimate for high known-0 bits.
2321     // More trickiness is possible, but this is sufficient for the
2322     // interesting case of alignment computation.
2323     unsigned TrailZ = Known.countMinTrailingZeros() +
2324                       Known2.countMinTrailingZeros();
2325     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2326                                Known2.countMinLeadingZeros(),
2327                                BitWidth) - BitWidth;
2328 
2329     Known.resetAll();
2330     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2331     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2332     break;
2333   }
2334   case ISD::UDIV: {
2335     // For the purposes of computing leading zeros we can conservatively
2336     // treat a udiv as a logical right shift by the power of 2 known to
2337     // be less than the denominator.
2338     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2339     unsigned LeadZ = Known2.countMinLeadingZeros();
2340 
2341     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2342     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2343     if (RHSMaxLeadingZeros != BitWidth)
2344       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2345 
2346     Known.Zero.setHighBits(LeadZ);
2347     break;
2348   }
2349   case ISD::SELECT:
2350     computeKnownBits(Op.getOperand(2), Known, Depth+1);
2351     // If we don't know any bits, early out.
2352     if (!Known.One && !Known.Zero)
2353       break;
2354     computeKnownBits(Op.getOperand(1), Known2, Depth+1);
2355 
2356     // Only known if known in both the LHS and RHS.
2357     Known.One &= Known2.One;
2358     Known.Zero &= Known2.Zero;
2359     break;
2360   case ISD::SELECT_CC:
2361     computeKnownBits(Op.getOperand(3), Known, Depth+1);
2362     // If we don't know any bits, early out.
2363     if (!Known.One && !Known.Zero)
2364       break;
2365     computeKnownBits(Op.getOperand(2), Known2, Depth+1);
2366 
2367     // Only known if known in both the LHS and RHS.
2368     Known.One &= Known2.One;
2369     Known.Zero &= Known2.Zero;
2370     break;
2371   case ISD::SMULO:
2372   case ISD::UMULO:
2373     if (Op.getResNo() != 1)
2374       break;
2375     // The boolean result conforms to getBooleanContents.
2376     // If we know the result of a setcc has the top bits zero, use this info.
2377     // We know that we have an integer-based boolean since these operations
2378     // are only available for integer.
2379     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2380             TargetLowering::ZeroOrOneBooleanContent &&
2381         BitWidth > 1)
2382       Known.Zero.setBitsFrom(1);
2383     break;
2384   case ISD::SETCC:
2385     // If we know the result of a setcc has the top bits zero, use this info.
2386     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2387             TargetLowering::ZeroOrOneBooleanContent &&
2388         BitWidth > 1)
2389       Known.Zero.setBitsFrom(1);
2390     break;
2391   case ISD::SHL:
2392     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2393       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2394       Known.Zero <<= *ShAmt;
2395       Known.One <<= *ShAmt;
2396       // Low bits are known zero.
2397       Known.Zero.setLowBits(ShAmt->getZExtValue());
2398     }
2399     break;
2400   case ISD::SRL:
2401     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2402       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2403       Known.Zero.lshrInPlace(*ShAmt);
2404       Known.One.lshrInPlace(*ShAmt);
2405       // High bits are known zero.
2406       Known.Zero.setHighBits(ShAmt->getZExtValue());
2407     }
2408     break;
2409   case ISD::SRA:
2410     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2411       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2412       Known.Zero.lshrInPlace(*ShAmt);
2413       Known.One.lshrInPlace(*ShAmt);
2414       // If we know the value of the sign bit, then we know it is copied across
2415       // the high bits by the shift amount.
2416       APInt SignMask = APInt::getSignMask(BitWidth);
2417       SignMask.lshrInPlace(*ShAmt);  // Adjust to where it is now in the mask.
2418       if (Known.Zero.intersects(SignMask)) {
2419         Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero.
2420       } else if (Known.One.intersects(SignMask)) {
2421         Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one.
2422       }
2423     }
2424     break;
2425   case ISD::SIGN_EXTEND_INREG: {
2426     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2427     unsigned EBits = EVT.getScalarSizeInBits();
2428 
2429     // Sign extension.  Compute the demanded bits in the result that are not
2430     // present in the input.
2431     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2432 
2433     APInt InSignMask = APInt::getSignMask(EBits);
2434     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2435 
2436     // If the sign extended bits are demanded, we know that the sign
2437     // bit is demanded.
2438     InSignMask = InSignMask.zext(BitWidth);
2439     if (NewBits.getBoolValue())
2440       InputDemandedBits |= InSignMask;
2441 
2442     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2443     Known.One &= InputDemandedBits;
2444     Known.Zero &= InputDemandedBits;
2445 
2446     // If the sign bit of the input is known set or clear, then we know the
2447     // top bits of the result.
2448     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2449       Known.Zero |= NewBits;
2450       Known.One  &= ~NewBits;
2451     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2452       Known.One  |= NewBits;
2453       Known.Zero &= ~NewBits;
2454     } else {                              // Input sign bit unknown
2455       Known.Zero &= ~NewBits;
2456       Known.One  &= ~NewBits;
2457     }
2458     break;
2459   }
2460   case ISD::CTTZ:
2461   case ISD::CTTZ_ZERO_UNDEF: {
2462     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2463     // If we have a known 1, its position is our upper bound.
2464     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2465     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2466     Known.Zero.setBitsFrom(LowBits);
2467     break;
2468   }
2469   case ISD::CTLZ:
2470   case ISD::CTLZ_ZERO_UNDEF: {
2471     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2472     // If we have a known 1, its position is our upper bound.
2473     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2474     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2475     Known.Zero.setBitsFrom(LowBits);
2476     break;
2477   }
2478   case ISD::CTPOP: {
2479     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2480     // If we know some of the bits are zero, they can't be one.
2481     unsigned PossibleOnes = Known2.countMaxPopulation();
2482     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2483     break;
2484   }
2485   case ISD::LOAD: {
2486     LoadSDNode *LD = cast<LoadSDNode>(Op);
2487     // If this is a ZEXTLoad and we are looking at the loaded value.
2488     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2489       EVT VT = LD->getMemoryVT();
2490       unsigned MemBits = VT.getScalarSizeInBits();
2491       Known.Zero.setBitsFrom(MemBits);
2492     } else if (const MDNode *Ranges = LD->getRanges()) {
2493       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2494         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2495     }
2496     break;
2497   }
2498   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2499     EVT InVT = Op.getOperand(0).getValueType();
2500     unsigned InBits = InVT.getScalarSizeInBits();
2501     Known = Known.trunc(InBits);
2502     computeKnownBits(Op.getOperand(0), Known,
2503                      DemandedElts.zext(InVT.getVectorNumElements()),
2504                      Depth + 1);
2505     Known = Known.zext(BitWidth);
2506     Known.Zero.setBitsFrom(InBits);
2507     break;
2508   }
2509   case ISD::ZERO_EXTEND: {
2510     EVT InVT = Op.getOperand(0).getValueType();
2511     unsigned InBits = InVT.getScalarSizeInBits();
2512     Known = Known.trunc(InBits);
2513     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2514     Known = Known.zext(BitWidth);
2515     Known.Zero.setBitsFrom(InBits);
2516     break;
2517   }
2518   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2519   case ISD::SIGN_EXTEND: {
2520     EVT InVT = Op.getOperand(0).getValueType();
2521     unsigned InBits = InVT.getScalarSizeInBits();
2522 
2523     Known = Known.trunc(InBits);
2524     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2525 
2526     // If the sign bit is known to be zero or one, then sext will extend
2527     // it to the top bits, else it will just zext.
2528     Known = Known.sext(BitWidth);
2529     break;
2530   }
2531   case ISD::ANY_EXTEND: {
2532     EVT InVT = Op.getOperand(0).getValueType();
2533     unsigned InBits = InVT.getScalarSizeInBits();
2534     Known = Known.trunc(InBits);
2535     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2536     Known = Known.zext(BitWidth);
2537     break;
2538   }
2539   case ISD::TRUNCATE: {
2540     EVT InVT = Op.getOperand(0).getValueType();
2541     unsigned InBits = InVT.getScalarSizeInBits();
2542     Known = Known.zext(InBits);
2543     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2544     Known = Known.trunc(BitWidth);
2545     break;
2546   }
2547   case ISD::AssertZext: {
2548     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2549     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2550     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2551     Known.Zero |= (~InMask);
2552     Known.One  &= (~Known.Zero);
2553     break;
2554   }
2555   case ISD::FGETSIGN:
2556     // All bits are zero except the low bit.
2557     Known.Zero.setBitsFrom(1);
2558     break;
2559   case ISD::USUBO:
2560   case ISD::SSUBO:
2561     if (Op.getResNo() == 1) {
2562       // If we know the result of a setcc has the top bits zero, use this info.
2563       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2564               TargetLowering::ZeroOrOneBooleanContent &&
2565           BitWidth > 1)
2566         Known.Zero.setBitsFrom(1);
2567       break;
2568     }
2569     LLVM_FALLTHROUGH;
2570   case ISD::SUB:
2571   case ISD::SUBC: {
2572     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2573       // We know that the top bits of C-X are clear if X contains less bits
2574       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2575       // positive if we can prove that X is >= 0 and < 16.
2576       if (CLHS->getAPIntValue().isNonNegative()) {
2577         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2578         // NLZ can't be BitWidth with no sign bit
2579         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2580         computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2581                          Depth + 1);
2582 
2583         // If all of the MaskV bits are known to be zero, then we know the
2584         // output top bits are zero, because we now know that the output is
2585         // from [0-C].
2586         if ((Known2.Zero & MaskV) == MaskV) {
2587           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2588           // Top bits known zero.
2589           Known.Zero.setHighBits(NLZ2);
2590         }
2591       }
2592     }
2593 
2594     // If low bits are know to be zero in both operands, then we know they are
2595     // going to be 0 in the result. Both addition and complement operations
2596     // preserve the low zero bits.
2597     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2598     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2599     if (KnownZeroLow == 0)
2600       break;
2601 
2602     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2603     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2604     Known.Zero.setLowBits(KnownZeroLow);
2605     break;
2606   }
2607   case ISD::UADDO:
2608   case ISD::SADDO:
2609   case ISD::ADDCARRY:
2610     if (Op.getResNo() == 1) {
2611       // If we know the result of a setcc has the top bits zero, use this info.
2612       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2613               TargetLowering::ZeroOrOneBooleanContent &&
2614           BitWidth > 1)
2615         Known.Zero.setBitsFrom(1);
2616       break;
2617     }
2618     LLVM_FALLTHROUGH;
2619   case ISD::ADD:
2620   case ISD::ADDC:
2621   case ISD::ADDE: {
2622     // Output known-0 bits are known if clear or set in both the low clear bits
2623     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2624     // low 3 bits clear.
2625     // Output known-0 bits are also known if the top bits of each input are
2626     // known to be clear. For example, if one input has the top 10 bits clear
2627     // and the other has the top 8 bits clear, we know the top 7 bits of the
2628     // output must be clear.
2629     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2630     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2631     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2632 
2633     computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2634                      Depth + 1);
2635     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2636     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2637 
2638     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2639       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2640       // use this information if we know (at least) that the low two bits are
2641       // clear. We then return to the caller that the low bit is unknown but
2642       // that other bits are known zero.
2643       if (KnownZeroLow >= 2)
2644         Known.Zero.setBits(1, KnownZeroLow);
2645       break;
2646     }
2647 
2648     Known.Zero.setLowBits(KnownZeroLow);
2649     if (KnownZeroHigh > 1)
2650       Known.Zero.setHighBits(KnownZeroHigh - 1);
2651     break;
2652   }
2653   case ISD::SREM:
2654     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2655       const APInt &RA = Rem->getAPIntValue().abs();
2656       if (RA.isPowerOf2()) {
2657         APInt LowBits = RA - 1;
2658         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2659 
2660         // The low bits of the first operand are unchanged by the srem.
2661         Known.Zero = Known2.Zero & LowBits;
2662         Known.One = Known2.One & LowBits;
2663 
2664         // If the first operand is non-negative or has all low bits zero, then
2665         // the upper bits are all zero.
2666         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2667           Known.Zero |= ~LowBits;
2668 
2669         // If the first operand is negative and not all low bits are zero, then
2670         // the upper bits are all one.
2671         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2672           Known.One |= ~LowBits;
2673         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2674       }
2675     }
2676     break;
2677   case ISD::UREM: {
2678     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2679       const APInt &RA = Rem->getAPIntValue();
2680       if (RA.isPowerOf2()) {
2681         APInt LowBits = (RA - 1);
2682         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2683 
2684         // The upper bits are all zero, the lower ones are unchanged.
2685         Known.Zero = Known2.Zero | ~LowBits;
2686         Known.One = Known2.One & LowBits;
2687         break;
2688       }
2689     }
2690 
2691     // Since the result is less than or equal to either operand, any leading
2692     // zero bits in either operand must also exist in the result.
2693     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2694     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2695 
2696     uint32_t Leaders =
2697         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2698     Known.resetAll();
2699     Known.Zero.setHighBits(Leaders);
2700     break;
2701   }
2702   case ISD::EXTRACT_ELEMENT: {
2703     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2704     const unsigned Index = Op.getConstantOperandVal(1);
2705     const unsigned BitWidth = Op.getValueSizeInBits();
2706 
2707     // Remove low part of known bits mask
2708     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2709     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2710 
2711     // Remove high part of known bit mask
2712     Known = Known.trunc(BitWidth);
2713     break;
2714   }
2715   case ISD::EXTRACT_VECTOR_ELT: {
2716     SDValue InVec = Op.getOperand(0);
2717     SDValue EltNo = Op.getOperand(1);
2718     EVT VecVT = InVec.getValueType();
2719     const unsigned BitWidth = Op.getValueSizeInBits();
2720     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2721     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2722     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2723     // anything about the extended bits.
2724     if (BitWidth > EltBitWidth)
2725       Known = Known.trunc(EltBitWidth);
2726     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2727     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2728       // If we know the element index, just demand that vector element.
2729       unsigned Idx = ConstEltNo->getZExtValue();
2730       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2731       computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
2732     } else {
2733       // Unknown element index, so ignore DemandedElts and demand them all.
2734       computeKnownBits(InVec, Known, Depth + 1);
2735     }
2736     if (BitWidth > EltBitWidth)
2737       Known = Known.zext(BitWidth);
2738     break;
2739   }
2740   case ISD::INSERT_VECTOR_ELT: {
2741     SDValue InVec = Op.getOperand(0);
2742     SDValue InVal = Op.getOperand(1);
2743     SDValue EltNo = Op.getOperand(2);
2744 
2745     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2746     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2747       // If we know the element index, split the demand between the
2748       // source vector and the inserted element.
2749       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2750       unsigned EltIdx = CEltNo->getZExtValue();
2751 
2752       // If we demand the inserted element then add its common known bits.
2753       if (DemandedElts[EltIdx]) {
2754         computeKnownBits(InVal, Known2, Depth + 1);
2755         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2756         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2757       }
2758 
2759       // If we demand the source vector then add its common known bits, ensuring
2760       // that we don't demand the inserted element.
2761       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2762       if (!!VectorElts) {
2763         computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
2764         Known.One &= Known2.One;
2765         Known.Zero &= Known2.Zero;
2766       }
2767     } else {
2768       // Unknown element index, so ignore DemandedElts and demand them all.
2769       computeKnownBits(InVec, Known, Depth + 1);
2770       computeKnownBits(InVal, Known2, Depth + 1);
2771       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2772       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2773     }
2774     break;
2775   }
2776   case ISD::BITREVERSE: {
2777     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2778     Known.Zero = Known2.Zero.reverseBits();
2779     Known.One = Known2.One.reverseBits();
2780     break;
2781   }
2782   case ISD::BSWAP: {
2783     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2784     Known.Zero = Known2.Zero.byteSwap();
2785     Known.One = Known2.One.byteSwap();
2786     break;
2787   }
2788   case ISD::ABS: {
2789     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2790 
2791     // If the source's MSB is zero then we know the rest of the bits already.
2792     if (Known2.isNonNegative()) {
2793       Known.Zero = Known2.Zero;
2794       Known.One = Known2.One;
2795       break;
2796     }
2797 
2798     // We only know that the absolute values's MSB will be zero iff there is
2799     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2800     Known2.One.clearSignBit();
2801     if (Known2.One.getBoolValue()) {
2802       Known.Zero = APInt::getSignMask(BitWidth);
2803       break;
2804     }
2805     break;
2806   }
2807   case ISD::UMIN: {
2808     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2809     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2810 
2811     // UMIN - we know that the result will have the maximum of the
2812     // known zero leading bits of the inputs.
2813     unsigned LeadZero = Known.countMinLeadingZeros();
2814     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2815 
2816     Known.Zero &= Known2.Zero;
2817     Known.One &= Known2.One;
2818     Known.Zero.setHighBits(LeadZero);
2819     break;
2820   }
2821   case ISD::UMAX: {
2822     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2823                      Depth + 1);
2824     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2825 
2826     // UMAX - we know that the result will have the maximum of the
2827     // known one leading bits of the inputs.
2828     unsigned LeadOne = Known.countMinLeadingOnes();
2829     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2830 
2831     Known.Zero &= Known2.Zero;
2832     Known.One &= Known2.One;
2833     Known.One.setHighBits(LeadOne);
2834     break;
2835   }
2836   case ISD::SMIN:
2837   case ISD::SMAX: {
2838     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2839                      Depth + 1);
2840     // If we don't know any bits, early out.
2841     if (!Known.One && !Known.Zero)
2842       break;
2843     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2844     Known.Zero &= Known2.Zero;
2845     Known.One &= Known2.One;
2846     break;
2847   }
2848   case ISD::FrameIndex:
2849   case ISD::TargetFrameIndex:
2850     if (unsigned Align = InferPtrAlignment(Op)) {
2851       // The low bits are known zero if the pointer is aligned.
2852       Known.Zero.setLowBits(Log2_32(Align));
2853       break;
2854     }
2855     break;
2856 
2857   default:
2858     if (Opcode < ISD::BUILTIN_OP_END)
2859       break;
2860     LLVM_FALLTHROUGH;
2861   case ISD::INTRINSIC_WO_CHAIN:
2862   case ISD::INTRINSIC_W_CHAIN:
2863   case ISD::INTRINSIC_VOID:
2864     // Allow the target to implement this method for its nodes.
2865     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
2866     break;
2867   }
2868 
2869   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2870 }
2871 
2872 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
2873                                                              SDValue N1) const {
2874   // X + 0 never overflow
2875   if (isNullConstant(N1))
2876     return OFK_Never;
2877 
2878   KnownBits N1Known;
2879   computeKnownBits(N1, N1Known);
2880   if (N1Known.Zero.getBoolValue()) {
2881     KnownBits N0Known;
2882     computeKnownBits(N0, N0Known);
2883 
2884     bool overflow;
2885     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
2886     if (!overflow)
2887       return OFK_Never;
2888   }
2889 
2890   // mulhi + 1 never overflow
2891   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
2892       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
2893     return OFK_Never;
2894 
2895   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
2896     KnownBits N0Known;
2897     computeKnownBits(N0, N0Known);
2898 
2899     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
2900       return OFK_Never;
2901   }
2902 
2903   return OFK_Sometime;
2904 }
2905 
2906 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2907   EVT OpVT = Val.getValueType();
2908   unsigned BitWidth = OpVT.getScalarSizeInBits();
2909 
2910   // Is the constant a known power of 2?
2911   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
2912     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2913 
2914   // A left-shift of a constant one will have exactly one bit set because
2915   // shifting the bit off the end is undefined.
2916   if (Val.getOpcode() == ISD::SHL) {
2917     auto *C = isConstOrConstSplat(Val.getOperand(0));
2918     if (C && C->getAPIntValue() == 1)
2919       return true;
2920   }
2921 
2922   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2923   // one bit set.
2924   if (Val.getOpcode() == ISD::SRL) {
2925     auto *C = isConstOrConstSplat(Val.getOperand(0));
2926     if (C && C->getAPIntValue().isSignMask())
2927       return true;
2928   }
2929 
2930   // Are all operands of a build vector constant powers of two?
2931   if (Val.getOpcode() == ISD::BUILD_VECTOR)
2932     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
2933           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
2934             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2935           return false;
2936         }))
2937       return true;
2938 
2939   // More could be done here, though the above checks are enough
2940   // to handle some common cases.
2941 
2942   // Fall back to computeKnownBits to catch other known cases.
2943   KnownBits Known;
2944   computeKnownBits(Val, Known);
2945   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
2946 }
2947 
2948 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2949   EVT VT = Op.getValueType();
2950   APInt DemandedElts = VT.isVector()
2951                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2952                            : APInt(1, 1);
2953   return ComputeNumSignBits(Op, DemandedElts, Depth);
2954 }
2955 
2956 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
2957                                           unsigned Depth) const {
2958   EVT VT = Op.getValueType();
2959   assert(VT.isInteger() && "Invalid VT!");
2960   unsigned VTBits = VT.getScalarSizeInBits();
2961   unsigned NumElts = DemandedElts.getBitWidth();
2962   unsigned Tmp, Tmp2;
2963   unsigned FirstAnswer = 1;
2964 
2965   if (Depth == 6)
2966     return 1;  // Limit search depth.
2967 
2968   if (!DemandedElts)
2969     return 1;  // No demanded elts, better to assume we don't know anything.
2970 
2971   switch (Op.getOpcode()) {
2972   default: break;
2973   case ISD::AssertSext:
2974     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2975     return VTBits-Tmp+1;
2976   case ISD::AssertZext:
2977     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2978     return VTBits-Tmp;
2979 
2980   case ISD::Constant: {
2981     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2982     return Val.getNumSignBits();
2983   }
2984 
2985   case ISD::BUILD_VECTOR:
2986     Tmp = VTBits;
2987     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
2988       if (!DemandedElts[i])
2989         continue;
2990 
2991       SDValue SrcOp = Op.getOperand(i);
2992       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
2993 
2994       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2995       if (SrcOp.getValueSizeInBits() != VTBits) {
2996         assert(SrcOp.getValueSizeInBits() > VTBits &&
2997                "Expected BUILD_VECTOR implicit truncation");
2998         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
2999         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3000       }
3001       Tmp = std::min(Tmp, Tmp2);
3002     }
3003     return Tmp;
3004 
3005   case ISD::VECTOR_SHUFFLE: {
3006     // Collect the minimum number of sign bits that are shared by every vector
3007     // element referenced by the shuffle.
3008     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3009     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3010     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3011     for (unsigned i = 0; i != NumElts; ++i) {
3012       int M = SVN->getMaskElt(i);
3013       if (!DemandedElts[i])
3014         continue;
3015       // For UNDEF elements, we don't know anything about the common state of
3016       // the shuffle result.
3017       if (M < 0)
3018         return 1;
3019       if ((unsigned)M < NumElts)
3020         DemandedLHS.setBit((unsigned)M % NumElts);
3021       else
3022         DemandedRHS.setBit((unsigned)M % NumElts);
3023     }
3024     Tmp = std::numeric_limits<unsigned>::max();
3025     if (!!DemandedLHS)
3026       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3027     if (!!DemandedRHS) {
3028       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3029       Tmp = std::min(Tmp, Tmp2);
3030     }
3031     // If we don't know anything, early out and try computeKnownBits fall-back.
3032     if (Tmp == 1)
3033       break;
3034     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3035     return Tmp;
3036   }
3037 
3038   case ISD::SIGN_EXTEND:
3039   case ISD::SIGN_EXTEND_VECTOR_INREG:
3040     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3041     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
3042 
3043   case ISD::SIGN_EXTEND_INREG:
3044     // Max of the input and what this extends.
3045     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3046     Tmp = VTBits-Tmp+1;
3047 
3048     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3049     return std::max(Tmp, Tmp2);
3050 
3051   case ISD::SRA:
3052     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3053     // SRA X, C   -> adds C sign bits.
3054     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
3055       APInt ShiftVal = C->getAPIntValue();
3056       ShiftVal += Tmp;
3057       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3058     }
3059     return Tmp;
3060   case ISD::SHL:
3061     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
3062       // shl destroys sign bits.
3063       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3064       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3065           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3066       return Tmp - C->getZExtValue();
3067     }
3068     break;
3069   case ISD::AND:
3070   case ISD::OR:
3071   case ISD::XOR:    // NOT is handled here.
3072     // Logical binary ops preserve the number of sign bits at the worst.
3073     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3074     if (Tmp != 1) {
3075       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3076       FirstAnswer = std::min(Tmp, Tmp2);
3077       // We computed what we know about the sign bits as our first
3078       // answer. Now proceed to the generic code that uses
3079       // computeKnownBits, and pick whichever answer is better.
3080     }
3081     break;
3082 
3083   case ISD::SELECT:
3084     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3085     if (Tmp == 1) return 1;  // Early out.
3086     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
3087     return std::min(Tmp, Tmp2);
3088   case ISD::SELECT_CC:
3089     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
3090     if (Tmp == 1) return 1;  // Early out.
3091     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
3092     return std::min(Tmp, Tmp2);
3093   case ISD::SMIN:
3094   case ISD::SMAX:
3095   case ISD::UMIN:
3096   case ISD::UMAX:
3097     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3098     if (Tmp == 1)
3099       return 1;  // Early out.
3100     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3101     return std::min(Tmp, Tmp2);
3102   case ISD::SADDO:
3103   case ISD::UADDO:
3104   case ISD::SSUBO:
3105   case ISD::USUBO:
3106   case ISD::SMULO:
3107   case ISD::UMULO:
3108     if (Op.getResNo() != 1)
3109       break;
3110     // The boolean result conforms to getBooleanContents.  Fall through.
3111     // If setcc returns 0/-1, all bits are sign bits.
3112     // We know that we have an integer-based boolean since these operations
3113     // are only available for integer.
3114     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3115         TargetLowering::ZeroOrNegativeOneBooleanContent)
3116       return VTBits;
3117     break;
3118   case ISD::SETCC:
3119     // If setcc returns 0/-1, all bits are sign bits.
3120     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3121         TargetLowering::ZeroOrNegativeOneBooleanContent)
3122       return VTBits;
3123     break;
3124   case ISD::ROTL:
3125   case ISD::ROTR:
3126     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3127       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
3128 
3129       // Handle rotate right by N like a rotate left by 32-N.
3130       if (Op.getOpcode() == ISD::ROTR)
3131         RotAmt = (VTBits-RotAmt) & (VTBits-1);
3132 
3133       // If we aren't rotating out all of the known-in sign bits, return the
3134       // number that are left.  This handles rotl(sext(x), 1) for example.
3135       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3136       if (Tmp > RotAmt+1) return Tmp-RotAmt;
3137     }
3138     break;
3139   case ISD::ADD:
3140   case ISD::ADDC:
3141     // Add can have at most one carry bit.  Thus we know that the output
3142     // is, at worst, one more bit than the inputs.
3143     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3144     if (Tmp == 1) return 1;  // Early out.
3145 
3146     // Special case decrementing a value (ADD X, -1):
3147     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3148       if (CRHS->isAllOnesValue()) {
3149         KnownBits Known;
3150         computeKnownBits(Op.getOperand(0), Known, Depth+1);
3151 
3152         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3153         // sign bits set.
3154         if ((Known.Zero | 1).isAllOnesValue())
3155           return VTBits;
3156 
3157         // If we are subtracting one from a positive number, there is no carry
3158         // out of the result.
3159         if (Known.isNonNegative())
3160           return Tmp;
3161       }
3162 
3163     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3164     if (Tmp2 == 1) return 1;
3165     return std::min(Tmp, Tmp2)-1;
3166 
3167   case ISD::SUB:
3168     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3169     if (Tmp2 == 1) return 1;
3170 
3171     // Handle NEG.
3172     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3173       if (CLHS->isNullValue()) {
3174         KnownBits Known;
3175         computeKnownBits(Op.getOperand(1), Known, Depth+1);
3176         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3177         // sign bits set.
3178         if ((Known.Zero | 1).isAllOnesValue())
3179           return VTBits;
3180 
3181         // If the input is known to be positive (the sign bit is known clear),
3182         // the output of the NEG has the same number of sign bits as the input.
3183         if (Known.isNonNegative())
3184           return Tmp2;
3185 
3186         // Otherwise, we treat this like a SUB.
3187       }
3188 
3189     // Sub can have at most one carry bit.  Thus we know that the output
3190     // is, at worst, one more bit than the inputs.
3191     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3192     if (Tmp == 1) return 1;  // Early out.
3193     return std::min(Tmp, Tmp2)-1;
3194   case ISD::TRUNCATE: {
3195     // Check if the sign bits of source go down as far as the truncated value.
3196     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3197     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3198     if (NumSrcSignBits > (NumSrcBits - VTBits))
3199       return NumSrcSignBits - (NumSrcBits - VTBits);
3200     break;
3201   }
3202   case ISD::EXTRACT_ELEMENT: {
3203     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3204     const int BitWidth = Op.getValueSizeInBits();
3205     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3206 
3207     // Get reverse index (starting from 1), Op1 value indexes elements from
3208     // little end. Sign starts at big end.
3209     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3210 
3211     // If the sign portion ends in our element the subtraction gives correct
3212     // result. Otherwise it gives either negative or > bitwidth result
3213     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3214   }
3215   case ISD::INSERT_VECTOR_ELT: {
3216     SDValue InVec = Op.getOperand(0);
3217     SDValue InVal = Op.getOperand(1);
3218     SDValue EltNo = Op.getOperand(2);
3219     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3220 
3221     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3222     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3223       // If we know the element index, split the demand between the
3224       // source vector and the inserted element.
3225       unsigned EltIdx = CEltNo->getZExtValue();
3226 
3227       // If we demand the inserted element then get its sign bits.
3228       Tmp = std::numeric_limits<unsigned>::max();
3229       if (DemandedElts[EltIdx]) {
3230         // TODO - handle implicit truncation of inserted elements.
3231         if (InVal.getScalarValueSizeInBits() != VTBits)
3232           break;
3233         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3234       }
3235 
3236       // If we demand the source vector then get its sign bits, and determine
3237       // the minimum.
3238       APInt VectorElts = DemandedElts;
3239       VectorElts.clearBit(EltIdx);
3240       if (!!VectorElts) {
3241         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3242         Tmp = std::min(Tmp, Tmp2);
3243       }
3244     } else {
3245       // Unknown element index, so ignore DemandedElts and demand them all.
3246       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3247       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3248       Tmp = std::min(Tmp, Tmp2);
3249     }
3250     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3251     return Tmp;
3252   }
3253   case ISD::EXTRACT_VECTOR_ELT: {
3254     SDValue InVec = Op.getOperand(0);
3255     SDValue EltNo = Op.getOperand(1);
3256     EVT VecVT = InVec.getValueType();
3257     const unsigned BitWidth = Op.getValueSizeInBits();
3258     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3259     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3260 
3261     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3262     // anything about sign bits. But if the sizes match we can derive knowledge
3263     // about sign bits from the vector operand.
3264     if (BitWidth != EltBitWidth)
3265       break;
3266 
3267     // If we know the element index, just demand that vector element, else for
3268     // an unknown element index, ignore DemandedElts and demand them all.
3269     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3270     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3271     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3272       DemandedSrcElts =
3273           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3274 
3275     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3276   }
3277   case ISD::EXTRACT_SUBVECTOR: {
3278     // If we know the element index, just demand that subvector elements,
3279     // otherwise demand them all.
3280     SDValue Src = Op.getOperand(0);
3281     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3282     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3283     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3284       // Offset the demanded elts by the subvector index.
3285       uint64_t Idx = SubIdx->getZExtValue();
3286       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
3287       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3288     }
3289     return ComputeNumSignBits(Src, Depth + 1);
3290   }
3291   case ISD::CONCAT_VECTORS:
3292     // Determine the minimum number of sign bits across all demanded
3293     // elts of the input vectors. Early out if the result is already 1.
3294     Tmp = std::numeric_limits<unsigned>::max();
3295     EVT SubVectorVT = Op.getOperand(0).getValueType();
3296     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3297     unsigned NumSubVectors = Op.getNumOperands();
3298     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3299       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3300       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3301       if (!DemandedSub)
3302         continue;
3303       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3304       Tmp = std::min(Tmp, Tmp2);
3305     }
3306     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3307     return Tmp;
3308   }
3309 
3310   // If we are looking at the loaded value of the SDNode.
3311   if (Op.getResNo() == 0) {
3312     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3313     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3314       unsigned ExtType = LD->getExtensionType();
3315       switch (ExtType) {
3316         default: break;
3317         case ISD::SEXTLOAD:    // '17' bits known
3318           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3319           return VTBits-Tmp+1;
3320         case ISD::ZEXTLOAD:    // '16' bits known
3321           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3322           return VTBits-Tmp;
3323       }
3324     }
3325   }
3326 
3327   // Allow the target to implement this method for its nodes.
3328   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3329       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3330       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3331       Op.getOpcode() == ISD::INTRINSIC_VOID) {
3332     unsigned NumBits =
3333         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3334     if (NumBits > 1)
3335       FirstAnswer = std::max(FirstAnswer, NumBits);
3336   }
3337 
3338   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3339   // use this information.
3340   KnownBits Known;
3341   computeKnownBits(Op, Known, DemandedElts, Depth);
3342 
3343   APInt Mask;
3344   if (Known.isNonNegative()) {        // sign bit is 0
3345     Mask = Known.Zero;
3346   } else if (Known.isNegative()) {  // sign bit is 1;
3347     Mask = Known.One;
3348   } else {
3349     // Nothing known.
3350     return FirstAnswer;
3351   }
3352 
3353   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3354   // the number of identical bits in the top of the input value.
3355   Mask = ~Mask;
3356   Mask <<= Mask.getBitWidth()-VTBits;
3357   // Return # leading zeros.  We use 'min' here in case Val was zero before
3358   // shifting.  We don't want to return '64' as for an i32 "0".
3359   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3360 }
3361 
3362 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3363   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3364       !isa<ConstantSDNode>(Op.getOperand(1)))
3365     return false;
3366 
3367   if (Op.getOpcode() == ISD::OR &&
3368       !MaskedValueIsZero(Op.getOperand(0),
3369                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3370     return false;
3371 
3372   return true;
3373 }
3374 
3375 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3376   // If we're told that NaNs won't happen, assume they won't.
3377   if (getTarget().Options.NoNaNsFPMath)
3378     return true;
3379 
3380   if (Op->getFlags().hasNoNaNs())
3381     return true;
3382 
3383   // If the value is a constant, we can obviously see if it is a NaN or not.
3384   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3385     return !C->getValueAPF().isNaN();
3386 
3387   // TODO: Recognize more cases here.
3388 
3389   return false;
3390 }
3391 
3392 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3393   // If the value is a constant, we can obviously see if it is a zero or not.
3394   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3395     return !C->isZero();
3396 
3397   // TODO: Recognize more cases here.
3398   switch (Op.getOpcode()) {
3399   default: break;
3400   case ISD::OR:
3401     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3402       return !C->isNullValue();
3403     break;
3404   }
3405 
3406   return false;
3407 }
3408 
3409 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3410   // Check the obvious case.
3411   if (A == B) return true;
3412 
3413   // For for negative and positive zero.
3414   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3415     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3416       if (CA->isZero() && CB->isZero()) return true;
3417 
3418   // Otherwise they may not be equal.
3419   return false;
3420 }
3421 
3422 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3423   assert(A.getValueType() == B.getValueType() &&
3424          "Values must have the same type");
3425   KnownBits AKnown, BKnown;
3426   computeKnownBits(A, AKnown);
3427   computeKnownBits(B, BKnown);
3428   return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
3429 }
3430 
3431 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3432                                   ArrayRef<SDValue> Ops,
3433                                   SelectionDAG &DAG) {
3434   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3435   assert(llvm::all_of(Ops,
3436                       [Ops](SDValue Op) {
3437                         return Ops[0].getValueType() == Op.getValueType();
3438                       }) &&
3439          "Concatenation of vectors with inconsistent value types!");
3440   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3441              VT.getVectorNumElements() &&
3442          "Incorrect element count in vector concatenation!");
3443 
3444   if (Ops.size() == 1)
3445     return Ops[0];
3446 
3447   // Concat of UNDEFs is UNDEF.
3448   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3449     return DAG.getUNDEF(VT);
3450 
3451   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3452   // simplified to one big BUILD_VECTOR.
3453   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3454   EVT SVT = VT.getScalarType();
3455   SmallVector<SDValue, 16> Elts;
3456   for (SDValue Op : Ops) {
3457     EVT OpVT = Op.getValueType();
3458     if (Op.isUndef())
3459       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3460     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3461       Elts.append(Op->op_begin(), Op->op_end());
3462     else
3463       return SDValue();
3464   }
3465 
3466   // BUILD_VECTOR requires all inputs to be of the same type, find the
3467   // maximum type and extend them all.
3468   for (SDValue Op : Elts)
3469     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3470 
3471   if (SVT.bitsGT(VT.getScalarType()))
3472     for (SDValue &Op : Elts)
3473       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3474                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3475                : DAG.getSExtOrTrunc(Op, DL, SVT);
3476 
3477   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3478   NewSDValueDbgMsg(V, "New node fold concat vectors: ");
3479   return V;
3480 }
3481 
3482 /// Gets or creates the specified node.
3483 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3484   FoldingSetNodeID ID;
3485   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3486   void *IP = nullptr;
3487   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3488     return SDValue(E, 0);
3489 
3490   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3491                               getVTList(VT));
3492   CSEMap.InsertNode(N, IP);
3493 
3494   InsertNode(N);
3495   SDValue V = SDValue(N, 0);
3496   NewSDValueDbgMsg(V, "Creating new node: ");
3497   return V;
3498 }
3499 
3500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3501                               SDValue Operand, const SDNodeFlags Flags) {
3502   // Constant fold unary operations with an integer constant operand. Even
3503   // opaque constant will be folded, because the folding of unary operations
3504   // doesn't create new constants with different values. Nevertheless, the
3505   // opaque flag is preserved during folding to prevent future folding with
3506   // other constants.
3507   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3508     const APInt &Val = C->getAPIntValue();
3509     switch (Opcode) {
3510     default: break;
3511     case ISD::SIGN_EXTEND:
3512       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3513                          C->isTargetOpcode(), C->isOpaque());
3514     case ISD::ANY_EXTEND:
3515     case ISD::ZERO_EXTEND:
3516     case ISD::TRUNCATE:
3517       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3518                          C->isTargetOpcode(), C->isOpaque());
3519     case ISD::UINT_TO_FP:
3520     case ISD::SINT_TO_FP: {
3521       APFloat apf(EVTToAPFloatSemantics(VT),
3522                   APInt::getNullValue(VT.getSizeInBits()));
3523       (void)apf.convertFromAPInt(Val,
3524                                  Opcode==ISD::SINT_TO_FP,
3525                                  APFloat::rmNearestTiesToEven);
3526       return getConstantFP(apf, DL, VT);
3527     }
3528     case ISD::BITCAST:
3529       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3530         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3531       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3532         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3533       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3534         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3535       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3536         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3537       break;
3538     case ISD::ABS:
3539       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3540                          C->isOpaque());
3541     case ISD::BITREVERSE:
3542       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3543                          C->isOpaque());
3544     case ISD::BSWAP:
3545       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3546                          C->isOpaque());
3547     case ISD::CTPOP:
3548       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3549                          C->isOpaque());
3550     case ISD::CTLZ:
3551     case ISD::CTLZ_ZERO_UNDEF:
3552       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3553                          C->isOpaque());
3554     case ISD::CTTZ:
3555     case ISD::CTTZ_ZERO_UNDEF:
3556       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3557                          C->isOpaque());
3558     case ISD::FP16_TO_FP: {
3559       bool Ignored;
3560       APFloat FPV(APFloat::IEEEhalf(),
3561                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3562 
3563       // This can return overflow, underflow, or inexact; we don't care.
3564       // FIXME need to be more flexible about rounding mode.
3565       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3566                         APFloat::rmNearestTiesToEven, &Ignored);
3567       return getConstantFP(FPV, DL, VT);
3568     }
3569     }
3570   }
3571 
3572   // Constant fold unary operations with a floating point constant operand.
3573   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3574     APFloat V = C->getValueAPF();    // make copy
3575     switch (Opcode) {
3576     case ISD::FNEG:
3577       V.changeSign();
3578       return getConstantFP(V, DL, VT);
3579     case ISD::FABS:
3580       V.clearSign();
3581       return getConstantFP(V, DL, VT);
3582     case ISD::FCEIL: {
3583       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3584       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3585         return getConstantFP(V, DL, VT);
3586       break;
3587     }
3588     case ISD::FTRUNC: {
3589       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3590       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3591         return getConstantFP(V, DL, VT);
3592       break;
3593     }
3594     case ISD::FFLOOR: {
3595       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3596       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3597         return getConstantFP(V, DL, VT);
3598       break;
3599     }
3600     case ISD::FP_EXTEND: {
3601       bool ignored;
3602       // This can return overflow, underflow, or inexact; we don't care.
3603       // FIXME need to be more flexible about rounding mode.
3604       (void)V.convert(EVTToAPFloatSemantics(VT),
3605                       APFloat::rmNearestTiesToEven, &ignored);
3606       return getConstantFP(V, DL, VT);
3607     }
3608     case ISD::FP_TO_SINT:
3609     case ISD::FP_TO_UINT: {
3610       bool ignored;
3611       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3612       // FIXME need to be more flexible about rounding mode.
3613       APFloat::opStatus s =
3614           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3615       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3616         break;
3617       return getConstant(IntVal, DL, VT);
3618     }
3619     case ISD::BITCAST:
3620       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3621         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3622       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3623         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3624       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3625         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3626       break;
3627     case ISD::FP_TO_FP16: {
3628       bool Ignored;
3629       // This can return overflow, underflow, or inexact; we don't care.
3630       // FIXME need to be more flexible about rounding mode.
3631       (void)V.convert(APFloat::IEEEhalf(),
3632                       APFloat::rmNearestTiesToEven, &Ignored);
3633       return getConstant(V.bitcastToAPInt(), DL, VT);
3634     }
3635     }
3636   }
3637 
3638   // Constant fold unary operations with a vector integer or float operand.
3639   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3640     if (BV->isConstant()) {
3641       switch (Opcode) {
3642       default:
3643         // FIXME: Entirely reasonable to perform folding of other unary
3644         // operations here as the need arises.
3645         break;
3646       case ISD::FNEG:
3647       case ISD::FABS:
3648       case ISD::FCEIL:
3649       case ISD::FTRUNC:
3650       case ISD::FFLOOR:
3651       case ISD::FP_EXTEND:
3652       case ISD::FP_TO_SINT:
3653       case ISD::FP_TO_UINT:
3654       case ISD::TRUNCATE:
3655       case ISD::UINT_TO_FP:
3656       case ISD::SINT_TO_FP:
3657       case ISD::ABS:
3658       case ISD::BITREVERSE:
3659       case ISD::BSWAP:
3660       case ISD::CTLZ:
3661       case ISD::CTLZ_ZERO_UNDEF:
3662       case ISD::CTTZ:
3663       case ISD::CTTZ_ZERO_UNDEF:
3664       case ISD::CTPOP: {
3665         SDValue Ops = { Operand };
3666         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3667           return Fold;
3668       }
3669       }
3670     }
3671   }
3672 
3673   unsigned OpOpcode = Operand.getNode()->getOpcode();
3674   switch (Opcode) {
3675   case ISD::TokenFactor:
3676   case ISD::MERGE_VALUES:
3677   case ISD::CONCAT_VECTORS:
3678     return Operand;         // Factor, merge or concat of one node?  No need.
3679   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3680   case ISD::FP_EXTEND:
3681     assert(VT.isFloatingPoint() &&
3682            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3683     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3684     assert((!VT.isVector() ||
3685             VT.getVectorNumElements() ==
3686             Operand.getValueType().getVectorNumElements()) &&
3687            "Vector element count mismatch!");
3688     assert(Operand.getValueType().bitsLT(VT) &&
3689            "Invalid fpext node, dst < src!");
3690     if (Operand.isUndef())
3691       return getUNDEF(VT);
3692     break;
3693   case ISD::SIGN_EXTEND:
3694     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3695            "Invalid SIGN_EXTEND!");
3696     if (Operand.getValueType() == VT) return Operand;   // noop extension
3697     assert((!VT.isVector() ||
3698             VT.getVectorNumElements() ==
3699             Operand.getValueType().getVectorNumElements()) &&
3700            "Vector element count mismatch!");
3701     assert(Operand.getValueType().bitsLT(VT) &&
3702            "Invalid sext node, dst < src!");
3703     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3704       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3705     else if (OpOpcode == ISD::UNDEF)
3706       // sext(undef) = 0, because the top bits will all be the same.
3707       return getConstant(0, DL, VT);
3708     break;
3709   case ISD::ZERO_EXTEND:
3710     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3711            "Invalid ZERO_EXTEND!");
3712     if (Operand.getValueType() == VT) return Operand;   // noop extension
3713     assert((!VT.isVector() ||
3714             VT.getVectorNumElements() ==
3715             Operand.getValueType().getVectorNumElements()) &&
3716            "Vector element count mismatch!");
3717     assert(Operand.getValueType().bitsLT(VT) &&
3718            "Invalid zext node, dst < src!");
3719     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3720       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
3721     else if (OpOpcode == ISD::UNDEF)
3722       // zext(undef) = 0, because the top bits will be zero.
3723       return getConstant(0, DL, VT);
3724     break;
3725   case ISD::ANY_EXTEND:
3726     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3727            "Invalid ANY_EXTEND!");
3728     if (Operand.getValueType() == VT) return Operand;   // noop extension
3729     assert((!VT.isVector() ||
3730             VT.getVectorNumElements() ==
3731             Operand.getValueType().getVectorNumElements()) &&
3732            "Vector element count mismatch!");
3733     assert(Operand.getValueType().bitsLT(VT) &&
3734            "Invalid anyext node, dst < src!");
3735 
3736     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3737         OpOpcode == ISD::ANY_EXTEND)
3738       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3739       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3740     else if (OpOpcode == ISD::UNDEF)
3741       return getUNDEF(VT);
3742 
3743     // (ext (trunx x)) -> x
3744     if (OpOpcode == ISD::TRUNCATE) {
3745       SDValue OpOp = Operand.getOperand(0);
3746       if (OpOp.getValueType() == VT)
3747         return OpOp;
3748     }
3749     break;
3750   case ISD::TRUNCATE:
3751     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3752            "Invalid TRUNCATE!");
3753     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3754     assert((!VT.isVector() ||
3755             VT.getVectorNumElements() ==
3756             Operand.getValueType().getVectorNumElements()) &&
3757            "Vector element count mismatch!");
3758     assert(Operand.getValueType().bitsGT(VT) &&
3759            "Invalid truncate node, src < dst!");
3760     if (OpOpcode == ISD::TRUNCATE)
3761       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3762     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3763         OpOpcode == ISD::ANY_EXTEND) {
3764       // If the source is smaller than the dest, we still need an extend.
3765       if (Operand.getOperand(0).getValueType().getScalarType()
3766             .bitsLT(VT.getScalarType()))
3767         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3768       if (Operand.getOperand(0).getValueType().bitsGT(VT))
3769         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3770       return Operand.getOperand(0);
3771     }
3772     if (OpOpcode == ISD::UNDEF)
3773       return getUNDEF(VT);
3774     break;
3775   case ISD::ABS:
3776     assert(VT.isInteger() && VT == Operand.getValueType() &&
3777            "Invalid ABS!");
3778     if (OpOpcode == ISD::UNDEF)
3779       return getUNDEF(VT);
3780     break;
3781   case ISD::BSWAP:
3782     assert(VT.isInteger() && VT == Operand.getValueType() &&
3783            "Invalid BSWAP!");
3784     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3785            "BSWAP types must be a multiple of 16 bits!");
3786     if (OpOpcode == ISD::UNDEF)
3787       return getUNDEF(VT);
3788     break;
3789   case ISD::BITREVERSE:
3790     assert(VT.isInteger() && VT == Operand.getValueType() &&
3791            "Invalid BITREVERSE!");
3792     if (OpOpcode == ISD::UNDEF)
3793       return getUNDEF(VT);
3794     break;
3795   case ISD::BITCAST:
3796     // Basic sanity checking.
3797     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3798            "Cannot BITCAST between types of different sizes!");
3799     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3800     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3801       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3802     if (OpOpcode == ISD::UNDEF)
3803       return getUNDEF(VT);
3804     break;
3805   case ISD::SCALAR_TO_VECTOR:
3806     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3807            (VT.getVectorElementType() == Operand.getValueType() ||
3808             (VT.getVectorElementType().isInteger() &&
3809              Operand.getValueType().isInteger() &&
3810              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3811            "Illegal SCALAR_TO_VECTOR node!");
3812     if (OpOpcode == ISD::UNDEF)
3813       return getUNDEF(VT);
3814     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3815     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3816         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3817         Operand.getConstantOperandVal(1) == 0 &&
3818         Operand.getOperand(0).getValueType() == VT)
3819       return Operand.getOperand(0);
3820     break;
3821   case ISD::FNEG:
3822     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3823     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3824       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3825       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
3826                      Operand.getOperand(0), Operand.getNode()->getFlags());
3827     if (OpOpcode == ISD::FNEG)  // --X -> X
3828       return Operand.getOperand(0);
3829     break;
3830   case ISD::FABS:
3831     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3832       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
3833     break;
3834   }
3835 
3836   SDNode *N;
3837   SDVTList VTs = getVTList(VT);
3838   SDValue Ops[] = {Operand};
3839   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3840     FoldingSetNodeID ID;
3841     AddNodeIDNode(ID, Opcode, VTs, Ops);
3842     void *IP = nullptr;
3843     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
3844       E->intersectFlagsWith(Flags);
3845       return SDValue(E, 0);
3846     }
3847 
3848     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3849     N->setFlags(Flags);
3850     createOperands(N, Ops);
3851     CSEMap.InsertNode(N, IP);
3852   } else {
3853     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3854     createOperands(N, Ops);
3855   }
3856 
3857   InsertNode(N);
3858   SDValue V = SDValue(N, 0);
3859   NewSDValueDbgMsg(V, "Creating new node: ");
3860   return V;
3861 }
3862 
3863 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3864                                         const APInt &C2) {
3865   switch (Opcode) {
3866   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3867   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3868   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3869   case ISD::AND:  return std::make_pair(C1 & C2, true);
3870   case ISD::OR:   return std::make_pair(C1 | C2, true);
3871   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3872   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3873   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3874   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3875   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3876   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3877   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3878   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3879   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3880   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3881   case ISD::UDIV:
3882     if (!C2.getBoolValue())
3883       break;
3884     return std::make_pair(C1.udiv(C2), true);
3885   case ISD::UREM:
3886     if (!C2.getBoolValue())
3887       break;
3888     return std::make_pair(C1.urem(C2), true);
3889   case ISD::SDIV:
3890     if (!C2.getBoolValue())
3891       break;
3892     return std::make_pair(C1.sdiv(C2), true);
3893   case ISD::SREM:
3894     if (!C2.getBoolValue())
3895       break;
3896     return std::make_pair(C1.srem(C2), true);
3897   }
3898   return std::make_pair(APInt(1, 0), false);
3899 }
3900 
3901 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3902                                              EVT VT, const ConstantSDNode *Cst1,
3903                                              const ConstantSDNode *Cst2) {
3904   if (Cst1->isOpaque() || Cst2->isOpaque())
3905     return SDValue();
3906 
3907   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3908                                             Cst2->getAPIntValue());
3909   if (!Folded.second)
3910     return SDValue();
3911   return getConstant(Folded.first, DL, VT);
3912 }
3913 
3914 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3915                                        const GlobalAddressSDNode *GA,
3916                                        const SDNode *N2) {
3917   if (GA->getOpcode() != ISD::GlobalAddress)
3918     return SDValue();
3919   if (!TLI->isOffsetFoldingLegal(GA))
3920     return SDValue();
3921   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3922   if (!Cst2)
3923     return SDValue();
3924   int64_t Offset = Cst2->getSExtValue();
3925   switch (Opcode) {
3926   case ISD::ADD: break;
3927   case ISD::SUB: Offset = -uint64_t(Offset); break;
3928   default: return SDValue();
3929   }
3930   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3931                           GA->getOffset() + uint64_t(Offset));
3932 }
3933 
3934 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
3935   switch (Opcode) {
3936   case ISD::SDIV:
3937   case ISD::UDIV:
3938   case ISD::SREM:
3939   case ISD::UREM: {
3940     // If a divisor is zero/undef or any element of a divisor vector is
3941     // zero/undef, the whole op is undef.
3942     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
3943     SDValue Divisor = Ops[1];
3944     if (Divisor.isUndef() || isNullConstant(Divisor))
3945       return true;
3946 
3947     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
3948            llvm::any_of(Divisor->op_values(),
3949                         [](SDValue V) { return V.isUndef() ||
3950                                         isNullConstant(V); });
3951     // TODO: Handle signed overflow.
3952   }
3953   // TODO: Handle oversized shifts.
3954   default:
3955     return false;
3956   }
3957 }
3958 
3959 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3960                                              EVT VT, SDNode *Cst1,
3961                                              SDNode *Cst2) {
3962   // If the opcode is a target-specific ISD node, there's nothing we can
3963   // do here and the operand rules may not line up with the below, so
3964   // bail early.
3965   if (Opcode >= ISD::BUILTIN_OP_END)
3966     return SDValue();
3967 
3968   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
3969     return getUNDEF(VT);
3970 
3971   // Handle the case of two scalars.
3972   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3973     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3974       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3975       assert((!Folded || !VT.isVector()) &&
3976              "Can't fold vectors ops with scalar operands");
3977       return Folded;
3978     }
3979   }
3980 
3981   // fold (add Sym, c) -> Sym+c
3982   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3983     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3984   if (TLI->isCommutativeBinOp(Opcode))
3985     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3986       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3987 
3988   // For vectors extract each constant element into Inputs so we can constant
3989   // fold them individually.
3990   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3991   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3992   if (!BV1 || !BV2)
3993     return SDValue();
3994 
3995   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3996 
3997   EVT SVT = VT.getScalarType();
3998   EVT LegalSVT = SVT;
3999   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4000     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4001     if (LegalSVT.bitsLT(SVT))
4002       return SDValue();
4003   }
4004   SmallVector<SDValue, 4> Outputs;
4005   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4006     SDValue V1 = BV1->getOperand(I);
4007     SDValue V2 = BV2->getOperand(I);
4008 
4009     if (SVT.isInteger()) {
4010         if (V1->getValueType(0).bitsGT(SVT))
4011           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4012         if (V2->getValueType(0).bitsGT(SVT))
4013           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4014     }
4015 
4016     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4017       return SDValue();
4018 
4019     // Fold one vector element.
4020     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4021     if (LegalSVT != SVT)
4022       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4023 
4024     // Scalar folding only succeeded if the result is a constant or UNDEF.
4025     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4026         ScalarResult.getOpcode() != ISD::ConstantFP)
4027       return SDValue();
4028     Outputs.push_back(ScalarResult);
4029   }
4030 
4031   assert(VT.getVectorNumElements() == Outputs.size() &&
4032          "Vector size mismatch!");
4033 
4034   // We may have a vector type but a scalar result. Create a splat.
4035   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4036 
4037   // Build a big vector out of the scalar elements we generated.
4038   return getBuildVector(VT, SDLoc(), Outputs);
4039 }
4040 
4041 // TODO: Merge with FoldConstantArithmetic
4042 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4043                                                    const SDLoc &DL, EVT VT,
4044                                                    ArrayRef<SDValue> Ops,
4045                                                    const SDNodeFlags Flags) {
4046   // If the opcode is a target-specific ISD node, there's nothing we can
4047   // do here and the operand rules may not line up with the below, so
4048   // bail early.
4049   if (Opcode >= ISD::BUILTIN_OP_END)
4050     return SDValue();
4051 
4052   if (isUndef(Opcode, Ops))
4053     return getUNDEF(VT);
4054 
4055   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4056   if (!VT.isVector())
4057     return SDValue();
4058 
4059   unsigned NumElts = VT.getVectorNumElements();
4060 
4061   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4062     return !Op.getValueType().isVector() ||
4063            Op.getValueType().getVectorNumElements() == NumElts;
4064   };
4065 
4066   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4067     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4068     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4069            (BV && BV->isConstant());
4070   };
4071 
4072   // All operands must be vector types with the same number of elements as
4073   // the result type and must be either UNDEF or a build vector of constant
4074   // or UNDEF scalars.
4075   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4076       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4077     return SDValue();
4078 
4079   // If we are comparing vectors, then the result needs to be a i1 boolean
4080   // that is then sign-extended back to the legal result type.
4081   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4082 
4083   // Find legal integer scalar type for constant promotion and
4084   // ensure that its scalar size is at least as large as source.
4085   EVT LegalSVT = VT.getScalarType();
4086   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4087     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4088     if (LegalSVT.bitsLT(VT.getScalarType()))
4089       return SDValue();
4090   }
4091 
4092   // Constant fold each scalar lane separately.
4093   SmallVector<SDValue, 4> ScalarResults;
4094   for (unsigned i = 0; i != NumElts; i++) {
4095     SmallVector<SDValue, 4> ScalarOps;
4096     for (SDValue Op : Ops) {
4097       EVT InSVT = Op.getValueType().getScalarType();
4098       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4099       if (!InBV) {
4100         // We've checked that this is UNDEF or a constant of some kind.
4101         if (Op.isUndef())
4102           ScalarOps.push_back(getUNDEF(InSVT));
4103         else
4104           ScalarOps.push_back(Op);
4105         continue;
4106       }
4107 
4108       SDValue ScalarOp = InBV->getOperand(i);
4109       EVT ScalarVT = ScalarOp.getValueType();
4110 
4111       // Build vector (integer) scalar operands may need implicit
4112       // truncation - do this before constant folding.
4113       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4114         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4115 
4116       ScalarOps.push_back(ScalarOp);
4117     }
4118 
4119     // Constant fold the scalar operands.
4120     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4121 
4122     // Legalize the (integer) scalar constant if necessary.
4123     if (LegalSVT != SVT)
4124       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4125 
4126     // Scalar folding only succeeded if the result is a constant or UNDEF.
4127     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4128         ScalarResult.getOpcode() != ISD::ConstantFP)
4129       return SDValue();
4130     ScalarResults.push_back(ScalarResult);
4131   }
4132 
4133   SDValue V = getBuildVector(VT, DL, ScalarResults);
4134   NewSDValueDbgMsg(V, "New node fold constant vector: ");
4135   return V;
4136 }
4137 
4138 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4139                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4140   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4141   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4142   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4143   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4144 
4145   // Canonicalize constant to RHS if commutative.
4146   if (TLI->isCommutativeBinOp(Opcode)) {
4147     if (N1C && !N2C) {
4148       std::swap(N1C, N2C);
4149       std::swap(N1, N2);
4150     } else if (N1CFP && !N2CFP) {
4151       std::swap(N1CFP, N2CFP);
4152       std::swap(N1, N2);
4153     }
4154   }
4155 
4156   switch (Opcode) {
4157   default: break;
4158   case ISD::TokenFactor:
4159     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4160            N2.getValueType() == MVT::Other && "Invalid token factor!");
4161     // Fold trivial token factors.
4162     if (N1.getOpcode() == ISD::EntryToken) return N2;
4163     if (N2.getOpcode() == ISD::EntryToken) return N1;
4164     if (N1 == N2) return N1;
4165     break;
4166   case ISD::CONCAT_VECTORS: {
4167     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4168     SDValue Ops[] = {N1, N2};
4169     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4170       return V;
4171     break;
4172   }
4173   case ISD::AND:
4174     assert(VT.isInteger() && "This operator does not apply to FP types!");
4175     assert(N1.getValueType() == N2.getValueType() &&
4176            N1.getValueType() == VT && "Binary operator types must match!");
4177     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4178     // worth handling here.
4179     if (N2C && N2C->isNullValue())
4180       return N2;
4181     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4182       return N1;
4183     break;
4184   case ISD::OR:
4185   case ISD::XOR:
4186   case ISD::ADD:
4187   case ISD::SUB:
4188     assert(VT.isInteger() && "This operator does not apply to FP types!");
4189     assert(N1.getValueType() == N2.getValueType() &&
4190            N1.getValueType() == VT && "Binary operator types must match!");
4191     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4192     // it's worth handling here.
4193     if (N2C && N2C->isNullValue())
4194       return N1;
4195     break;
4196   case ISD::UDIV:
4197   case ISD::UREM:
4198   case ISD::MULHU:
4199   case ISD::MULHS:
4200   case ISD::MUL:
4201   case ISD::SDIV:
4202   case ISD::SREM:
4203   case ISD::SMIN:
4204   case ISD::SMAX:
4205   case ISD::UMIN:
4206   case ISD::UMAX:
4207     assert(VT.isInteger() && "This operator does not apply to FP types!");
4208     assert(N1.getValueType() == N2.getValueType() &&
4209            N1.getValueType() == VT && "Binary operator types must match!");
4210     break;
4211   case ISD::FADD:
4212   case ISD::FSUB:
4213   case ISD::FMUL:
4214   case ISD::FDIV:
4215   case ISD::FREM:
4216     if (getTarget().Options.UnsafeFPMath) {
4217       if (Opcode == ISD::FADD) {
4218         // x+0 --> x
4219         if (N2CFP && N2CFP->getValueAPF().isZero())
4220           return N1;
4221       } else if (Opcode == ISD::FSUB) {
4222         // x-0 --> x
4223         if (N2CFP && N2CFP->getValueAPF().isZero())
4224           return N1;
4225       } else if (Opcode == ISD::FMUL) {
4226         // x*0 --> 0
4227         if (N2CFP && N2CFP->isZero())
4228           return N2;
4229         // x*1 --> x
4230         if (N2CFP && N2CFP->isExactlyValue(1.0))
4231           return N1;
4232       }
4233     }
4234     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4235     assert(N1.getValueType() == N2.getValueType() &&
4236            N1.getValueType() == VT && "Binary operator types must match!");
4237     break;
4238   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4239     assert(N1.getValueType() == VT &&
4240            N1.getValueType().isFloatingPoint() &&
4241            N2.getValueType().isFloatingPoint() &&
4242            "Invalid FCOPYSIGN!");
4243     break;
4244   case ISD::SHL:
4245   case ISD::SRA:
4246   case ISD::SRL:
4247   case ISD::ROTL:
4248   case ISD::ROTR:
4249     assert(VT == N1.getValueType() &&
4250            "Shift operators return type must be the same as their first arg");
4251     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4252            "Shifts only work on integers");
4253     assert((!VT.isVector() || VT == N2.getValueType()) &&
4254            "Vector shift amounts must be in the same as their first arg");
4255     // Verify that the shift amount VT is bit enough to hold valid shift
4256     // amounts.  This catches things like trying to shift an i1024 value by an
4257     // i8, which is easy to fall into in generic code that uses
4258     // TLI.getShiftAmount().
4259     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4260            "Invalid use of small shift amount with oversized value!");
4261 
4262     // Always fold shifts of i1 values so the code generator doesn't need to
4263     // handle them.  Since we know the size of the shift has to be less than the
4264     // size of the value, the shift/rotate count is guaranteed to be zero.
4265     if (VT == MVT::i1)
4266       return N1;
4267     if (N2C && N2C->isNullValue())
4268       return N1;
4269     break;
4270   case ISD::FP_ROUND_INREG: {
4271     EVT EVT = cast<VTSDNode>(N2)->getVT();
4272     assert(VT == N1.getValueType() && "Not an inreg round!");
4273     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4274            "Cannot FP_ROUND_INREG integer types");
4275     assert(EVT.isVector() == VT.isVector() &&
4276            "FP_ROUND_INREG type should be vector iff the operand "
4277            "type is vector!");
4278     assert((!EVT.isVector() ||
4279             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4280            "Vector element counts must match in FP_ROUND_INREG");
4281     assert(EVT.bitsLE(VT) && "Not rounding down!");
4282     (void)EVT;
4283     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4284     break;
4285   }
4286   case ISD::FP_ROUND:
4287     assert(VT.isFloatingPoint() &&
4288            N1.getValueType().isFloatingPoint() &&
4289            VT.bitsLE(N1.getValueType()) &&
4290            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4291            "Invalid FP_ROUND!");
4292     if (N1.getValueType() == VT) return N1;  // noop conversion.
4293     break;
4294   case ISD::AssertSext:
4295   case ISD::AssertZext: {
4296     EVT EVT = cast<VTSDNode>(N2)->getVT();
4297     assert(VT == N1.getValueType() && "Not an inreg extend!");
4298     assert(VT.isInteger() && EVT.isInteger() &&
4299            "Cannot *_EXTEND_INREG FP types");
4300     assert(!EVT.isVector() &&
4301            "AssertSExt/AssertZExt type should be the vector element type "
4302            "rather than the vector type!");
4303     assert(EVT.bitsLE(VT) && "Not extending!");
4304     if (VT == EVT) return N1; // noop assertion.
4305     break;
4306   }
4307   case ISD::SIGN_EXTEND_INREG: {
4308     EVT EVT = cast<VTSDNode>(N2)->getVT();
4309     assert(VT == N1.getValueType() && "Not an inreg extend!");
4310     assert(VT.isInteger() && EVT.isInteger() &&
4311            "Cannot *_EXTEND_INREG FP types");
4312     assert(EVT.isVector() == VT.isVector() &&
4313            "SIGN_EXTEND_INREG type should be vector iff the operand "
4314            "type is vector!");
4315     assert((!EVT.isVector() ||
4316             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4317            "Vector element counts must match in SIGN_EXTEND_INREG");
4318     assert(EVT.bitsLE(VT) && "Not extending!");
4319     if (EVT == VT) return N1;  // Not actually extending
4320 
4321     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4322       unsigned FromBits = EVT.getScalarSizeInBits();
4323       Val <<= Val.getBitWidth() - FromBits;
4324       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4325       return getConstant(Val, DL, ConstantVT);
4326     };
4327 
4328     if (N1C) {
4329       const APInt &Val = N1C->getAPIntValue();
4330       return SignExtendInReg(Val, VT);
4331     }
4332     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4333       SmallVector<SDValue, 8> Ops;
4334       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4335       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4336         SDValue Op = N1.getOperand(i);
4337         if (Op.isUndef()) {
4338           Ops.push_back(getUNDEF(OpVT));
4339           continue;
4340         }
4341         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4342         APInt Val = C->getAPIntValue();
4343         Ops.push_back(SignExtendInReg(Val, OpVT));
4344       }
4345       return getBuildVector(VT, DL, Ops);
4346     }
4347     break;
4348   }
4349   case ISD::EXTRACT_VECTOR_ELT:
4350     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4351     if (N1.isUndef())
4352       return getUNDEF(VT);
4353 
4354     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4355     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4356       return getUNDEF(VT);
4357 
4358     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4359     // expanding copies of large vectors from registers.
4360     if (N2C &&
4361         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4362         N1.getNumOperands() > 0) {
4363       unsigned Factor =
4364         N1.getOperand(0).getValueType().getVectorNumElements();
4365       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4366                      N1.getOperand(N2C->getZExtValue() / Factor),
4367                      getConstant(N2C->getZExtValue() % Factor, DL,
4368                                  N2.getValueType()));
4369     }
4370 
4371     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4372     // expanding large vector constants.
4373     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4374       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4375 
4376       if (VT != Elt.getValueType())
4377         // If the vector element type is not legal, the BUILD_VECTOR operands
4378         // are promoted and implicitly truncated, and the result implicitly
4379         // extended. Make that explicit here.
4380         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4381 
4382       return Elt;
4383     }
4384 
4385     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4386     // operations are lowered to scalars.
4387     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4388       // If the indices are the same, return the inserted element else
4389       // if the indices are known different, extract the element from
4390       // the original vector.
4391       SDValue N1Op2 = N1.getOperand(2);
4392       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4393 
4394       if (N1Op2C && N2C) {
4395         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4396           if (VT == N1.getOperand(1).getValueType())
4397             return N1.getOperand(1);
4398           else
4399             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4400         }
4401 
4402         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4403       }
4404     }
4405 
4406     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4407     // when vector types are scalarized and v1iX is legal.
4408     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4409     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4410         N1.getValueType().getVectorNumElements() == 1) {
4411       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4412                      N1.getOperand(1));
4413     }
4414     break;
4415   case ISD::EXTRACT_ELEMENT:
4416     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4417     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4418            (N1.getValueType().isInteger() == VT.isInteger()) &&
4419            N1.getValueType() != VT &&
4420            "Wrong types for EXTRACT_ELEMENT!");
4421 
4422     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4423     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4424     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4425     if (N1.getOpcode() == ISD::BUILD_PAIR)
4426       return N1.getOperand(N2C->getZExtValue());
4427 
4428     // EXTRACT_ELEMENT of a constant int is also very common.
4429     if (N1C) {
4430       unsigned ElementSize = VT.getSizeInBits();
4431       unsigned Shift = ElementSize * N2C->getZExtValue();
4432       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4433       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4434     }
4435     break;
4436   case ISD::EXTRACT_SUBVECTOR:
4437     if (VT.isSimple() && N1.getValueType().isSimple()) {
4438       assert(VT.isVector() && N1.getValueType().isVector() &&
4439              "Extract subvector VTs must be a vectors!");
4440       assert(VT.getVectorElementType() ==
4441              N1.getValueType().getVectorElementType() &&
4442              "Extract subvector VTs must have the same element type!");
4443       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4444              "Extract subvector must be from larger vector to smaller vector!");
4445 
4446       if (N2C) {
4447         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4448                 <= N1.getValueType().getVectorNumElements())
4449                && "Extract subvector overflow!");
4450       }
4451 
4452       // Trivial extraction.
4453       if (VT.getSimpleVT() == N1.getSimpleValueType())
4454         return N1;
4455 
4456       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4457       if (N1.isUndef())
4458         return getUNDEF(VT);
4459 
4460       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4461       // the concat have the same type as the extract.
4462       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4463           N1.getNumOperands() > 0 &&
4464           VT == N1.getOperand(0).getValueType()) {
4465         unsigned Factor = VT.getVectorNumElements();
4466         return N1.getOperand(N2C->getZExtValue() / Factor);
4467       }
4468 
4469       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4470       // during shuffle legalization.
4471       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4472           VT == N1.getOperand(1).getValueType())
4473         return N1.getOperand(1);
4474     }
4475     break;
4476   }
4477 
4478   // Perform trivial constant folding.
4479   if (SDValue SV =
4480           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4481     return SV;
4482 
4483   // Constant fold FP operations.
4484   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4485   if (N1CFP) {
4486     if (N2CFP) {
4487       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4488       APFloat::opStatus s;
4489       switch (Opcode) {
4490       case ISD::FADD:
4491         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4492         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4493           return getConstantFP(V1, DL, VT);
4494         break;
4495       case ISD::FSUB:
4496         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4497         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4498           return getConstantFP(V1, DL, VT);
4499         break;
4500       case ISD::FMUL:
4501         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4502         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4503           return getConstantFP(V1, DL, VT);
4504         break;
4505       case ISD::FDIV:
4506         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4507         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4508                                  s!=APFloat::opDivByZero)) {
4509           return getConstantFP(V1, DL, VT);
4510         }
4511         break;
4512       case ISD::FREM :
4513         s = V1.mod(V2);
4514         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4515                                  s!=APFloat::opDivByZero)) {
4516           return getConstantFP(V1, DL, VT);
4517         }
4518         break;
4519       case ISD::FCOPYSIGN:
4520         V1.copySign(V2);
4521         return getConstantFP(V1, DL, VT);
4522       default: break;
4523       }
4524     }
4525 
4526     if (Opcode == ISD::FP_ROUND) {
4527       APFloat V = N1CFP->getValueAPF();    // make copy
4528       bool ignored;
4529       // This can return overflow, underflow, or inexact; we don't care.
4530       // FIXME need to be more flexible about rounding mode.
4531       (void)V.convert(EVTToAPFloatSemantics(VT),
4532                       APFloat::rmNearestTiesToEven, &ignored);
4533       return getConstantFP(V, DL, VT);
4534     }
4535   }
4536 
4537   // Canonicalize an UNDEF to the RHS, even over a constant.
4538   if (N1.isUndef()) {
4539     if (TLI->isCommutativeBinOp(Opcode)) {
4540       std::swap(N1, N2);
4541     } else {
4542       switch (Opcode) {
4543       case ISD::FP_ROUND_INREG:
4544       case ISD::SIGN_EXTEND_INREG:
4545       case ISD::SUB:
4546       case ISD::FSUB:
4547       case ISD::FDIV:
4548       case ISD::FREM:
4549       case ISD::SRA:
4550         return N1;     // fold op(undef, arg2) -> undef
4551       case ISD::UDIV:
4552       case ISD::SDIV:
4553       case ISD::UREM:
4554       case ISD::SREM:
4555       case ISD::SRL:
4556       case ISD::SHL:
4557         if (!VT.isVector())
4558           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4559         // For vectors, we can't easily build an all zero vector, just return
4560         // the LHS.
4561         return N2;
4562       }
4563     }
4564   }
4565 
4566   // Fold a bunch of operators when the RHS is undef.
4567   if (N2.isUndef()) {
4568     switch (Opcode) {
4569     case ISD::XOR:
4570       if (N1.isUndef())
4571         // Handle undef ^ undef -> 0 special case. This is a common
4572         // idiom (misuse).
4573         return getConstant(0, DL, VT);
4574       LLVM_FALLTHROUGH;
4575     case ISD::ADD:
4576     case ISD::ADDC:
4577     case ISD::ADDE:
4578     case ISD::SUB:
4579     case ISD::UDIV:
4580     case ISD::SDIV:
4581     case ISD::UREM:
4582     case ISD::SREM:
4583       return N2;       // fold op(arg1, undef) -> undef
4584     case ISD::FADD:
4585     case ISD::FSUB:
4586     case ISD::FMUL:
4587     case ISD::FDIV:
4588     case ISD::FREM:
4589       if (getTarget().Options.UnsafeFPMath)
4590         return N2;
4591       break;
4592     case ISD::MUL:
4593     case ISD::AND:
4594     case ISD::SRL:
4595     case ISD::SHL:
4596       if (!VT.isVector())
4597         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4598       // For vectors, we can't easily build an all zero vector, just return
4599       // the LHS.
4600       return N1;
4601     case ISD::OR:
4602       if (!VT.isVector())
4603         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4604       // For vectors, we can't easily build an all one vector, just return
4605       // the LHS.
4606       return N1;
4607     case ISD::SRA:
4608       return N1;
4609     }
4610   }
4611 
4612   // Memoize this node if possible.
4613   SDNode *N;
4614   SDVTList VTs = getVTList(VT);
4615   SDValue Ops[] = {N1, N2};
4616   if (VT != MVT::Glue) {
4617     FoldingSetNodeID ID;
4618     AddNodeIDNode(ID, Opcode, VTs, Ops);
4619     void *IP = nullptr;
4620     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4621       E->intersectFlagsWith(Flags);
4622       return SDValue(E, 0);
4623     }
4624 
4625     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4626     N->setFlags(Flags);
4627     createOperands(N, Ops);
4628     CSEMap.InsertNode(N, IP);
4629   } else {
4630     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4631     createOperands(N, Ops);
4632   }
4633 
4634   InsertNode(N);
4635   SDValue V = SDValue(N, 0);
4636   NewSDValueDbgMsg(V, "Creating new node: ");
4637   return V;
4638 }
4639 
4640 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4641                               SDValue N1, SDValue N2, SDValue N3) {
4642   // Perform various simplifications.
4643   switch (Opcode) {
4644   case ISD::FMA: {
4645     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4646     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4647     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4648     if (N1CFP && N2CFP && N3CFP) {
4649       APFloat  V1 = N1CFP->getValueAPF();
4650       const APFloat &V2 = N2CFP->getValueAPF();
4651       const APFloat &V3 = N3CFP->getValueAPF();
4652       APFloat::opStatus s =
4653         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4654       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4655         return getConstantFP(V1, DL, VT);
4656     }
4657     break;
4658   }
4659   case ISD::CONCAT_VECTORS: {
4660     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4661     SDValue Ops[] = {N1, N2, N3};
4662     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4663       return V;
4664     break;
4665   }
4666   case ISD::SETCC: {
4667     // Use FoldSetCC to simplify SETCC's.
4668     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4669       return V;
4670     // Vector constant folding.
4671     SDValue Ops[] = {N1, N2, N3};
4672     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
4673       NewSDValueDbgMsg(V, "New node vector constant folding: ");
4674       return V;
4675     }
4676     break;
4677   }
4678   case ISD::SELECT:
4679     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4680      if (N1C->getZExtValue())
4681        return N2;             // select true, X, Y -> X
4682      return N3;             // select false, X, Y -> Y
4683     }
4684 
4685     if (N2 == N3) return N2;   // select C, X, X -> X
4686     break;
4687   case ISD::VECTOR_SHUFFLE:
4688     llvm_unreachable("should use getVectorShuffle constructor!");
4689   case ISD::INSERT_VECTOR_ELT: {
4690     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4691     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4692     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4693       return getUNDEF(VT);
4694     break;
4695   }
4696   case ISD::INSERT_SUBVECTOR: {
4697     SDValue Index = N3;
4698     if (VT.isSimple() && N1.getValueType().isSimple()
4699         && N2.getValueType().isSimple()) {
4700       assert(VT.isVector() && N1.getValueType().isVector() &&
4701              N2.getValueType().isVector() &&
4702              "Insert subvector VTs must be a vectors");
4703       assert(VT == N1.getValueType() &&
4704              "Dest and insert subvector source types must match!");
4705       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4706              "Insert subvector must be from smaller vector to larger vector!");
4707       if (isa<ConstantSDNode>(Index)) {
4708         assert((N2.getValueType().getVectorNumElements() +
4709                 cast<ConstantSDNode>(Index)->getZExtValue()
4710                 <= VT.getVectorNumElements())
4711                && "Insert subvector overflow!");
4712       }
4713 
4714       // Trivial insertion.
4715       if (VT.getSimpleVT() == N2.getSimpleValueType())
4716         return N2;
4717     }
4718     break;
4719   }
4720   case ISD::BITCAST:
4721     // Fold bit_convert nodes from a type to themselves.
4722     if (N1.getValueType() == VT)
4723       return N1;
4724     break;
4725   }
4726 
4727   // Memoize node if it doesn't produce a flag.
4728   SDNode *N;
4729   SDVTList VTs = getVTList(VT);
4730   SDValue Ops[] = {N1, N2, N3};
4731   if (VT != MVT::Glue) {
4732     FoldingSetNodeID ID;
4733     AddNodeIDNode(ID, Opcode, VTs, Ops);
4734     void *IP = nullptr;
4735     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4736       return SDValue(E, 0);
4737 
4738     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4739     createOperands(N, Ops);
4740     CSEMap.InsertNode(N, IP);
4741   } else {
4742     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4743     createOperands(N, Ops);
4744   }
4745 
4746   InsertNode(N);
4747   SDValue V = SDValue(N, 0);
4748   NewSDValueDbgMsg(V, "Creating new node: ");
4749   return V;
4750 }
4751 
4752 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4753                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4754   SDValue Ops[] = { N1, N2, N3, N4 };
4755   return getNode(Opcode, DL, VT, Ops);
4756 }
4757 
4758 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4759                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4760                               SDValue N5) {
4761   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4762   return getNode(Opcode, DL, VT, Ops);
4763 }
4764 
4765 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4766 /// the incoming stack arguments to be loaded from the stack.
4767 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4768   SmallVector<SDValue, 8> ArgChains;
4769 
4770   // Include the original chain at the beginning of the list. When this is
4771   // used by target LowerCall hooks, this helps legalize find the
4772   // CALLSEQ_BEGIN node.
4773   ArgChains.push_back(Chain);
4774 
4775   // Add a chain value for each stack argument.
4776   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4777        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4778     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4779       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4780         if (FI->getIndex() < 0)
4781           ArgChains.push_back(SDValue(L, 1));
4782 
4783   // Build a tokenfactor for all the chains.
4784   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4785 }
4786 
4787 /// getMemsetValue - Vectorized representation of the memset value
4788 /// operand.
4789 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4790                               const SDLoc &dl) {
4791   assert(!Value.isUndef());
4792 
4793   unsigned NumBits = VT.getScalarSizeInBits();
4794   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4795     assert(C->getAPIntValue().getBitWidth() == 8);
4796     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4797     if (VT.isInteger())
4798       return DAG.getConstant(Val, dl, VT);
4799     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4800                              VT);
4801   }
4802 
4803   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4804   EVT IntVT = VT.getScalarType();
4805   if (!IntVT.isInteger())
4806     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4807 
4808   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4809   if (NumBits > 8) {
4810     // Use a multiplication with 0x010101... to extend the input to the
4811     // required length.
4812     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4813     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4814                         DAG.getConstant(Magic, dl, IntVT));
4815   }
4816 
4817   if (VT != Value.getValueType() && !VT.isInteger())
4818     Value = DAG.getBitcast(VT.getScalarType(), Value);
4819   if (VT != Value.getValueType())
4820     Value = DAG.getSplatBuildVector(VT, dl, Value);
4821 
4822   return Value;
4823 }
4824 
4825 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4826 /// used when a memcpy is turned into a memset when the source is a constant
4827 /// string ptr.
4828 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4829                                   const TargetLowering &TLI,
4830                                   const ConstantDataArraySlice &Slice) {
4831   // Handle vector with all elements zero.
4832   if (Slice.Array == nullptr) {
4833     if (VT.isInteger())
4834       return DAG.getConstant(0, dl, VT);
4835     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4836       return DAG.getConstantFP(0.0, dl, VT);
4837     else if (VT.isVector()) {
4838       unsigned NumElts = VT.getVectorNumElements();
4839       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4840       return DAG.getNode(ISD::BITCAST, dl, VT,
4841                          DAG.getConstant(0, dl,
4842                                          EVT::getVectorVT(*DAG.getContext(),
4843                                                           EltVT, NumElts)));
4844     } else
4845       llvm_unreachable("Expected type!");
4846   }
4847 
4848   assert(!VT.isVector() && "Can't handle vector type here!");
4849   unsigned NumVTBits = VT.getSizeInBits();
4850   unsigned NumVTBytes = NumVTBits / 8;
4851   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
4852 
4853   APInt Val(NumVTBits, 0);
4854   if (DAG.getDataLayout().isLittleEndian()) {
4855     for (unsigned i = 0; i != NumBytes; ++i)
4856       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
4857   } else {
4858     for (unsigned i = 0; i != NumBytes; ++i)
4859       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
4860   }
4861 
4862   // If the "cost" of materializing the integer immediate is less than the cost
4863   // of a load, then it is cost effective to turn the load into the immediate.
4864   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4865   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4866     return DAG.getConstant(Val, dl, VT);
4867   return SDValue(nullptr, 0);
4868 }
4869 
4870 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4871                                            const SDLoc &DL) {
4872   EVT VT = Base.getValueType();
4873   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4874 }
4875 
4876 /// Returns true if memcpy source is constant data.
4877 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
4878   uint64_t SrcDelta = 0;
4879   GlobalAddressSDNode *G = nullptr;
4880   if (Src.getOpcode() == ISD::GlobalAddress)
4881     G = cast<GlobalAddressSDNode>(Src);
4882   else if (Src.getOpcode() == ISD::ADD &&
4883            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4884            Src.getOperand(1).getOpcode() == ISD::Constant) {
4885     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4886     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4887   }
4888   if (!G)
4889     return false;
4890 
4891   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
4892                                   SrcDelta + G->getOffset());
4893 }
4894 
4895 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4896 /// Return true if the number of memory ops is below the threshold (Limit).
4897 /// It returns the types of the sequence of memory ops to perform
4898 /// memset / memcpy by reference.
4899 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4900                                      unsigned Limit, uint64_t Size,
4901                                      unsigned DstAlign, unsigned SrcAlign,
4902                                      bool IsMemset,
4903                                      bool ZeroMemset,
4904                                      bool MemcpyStrSrc,
4905                                      bool AllowOverlap,
4906                                      unsigned DstAS, unsigned SrcAS,
4907                                      SelectionDAG &DAG,
4908                                      const TargetLowering &TLI) {
4909   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4910          "Expecting memcpy / memset source to meet alignment requirement!");
4911   // If 'SrcAlign' is zero, that means the memory operation does not need to
4912   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4913   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4914   // is the specified alignment of the memory operation. If it is zero, that
4915   // means it's possible to change the alignment of the destination.
4916   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4917   // not need to be loaded.
4918   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4919                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4920                                    DAG.getMachineFunction());
4921 
4922   if (VT == MVT::Other) {
4923     // Use the largest integer type whose alignment constraints are satisfied.
4924     // We only need to check DstAlign here as SrcAlign is always greater or
4925     // equal to DstAlign (or zero).
4926     VT = MVT::i64;
4927     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
4928            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
4929       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
4930     assert(VT.isInteger());
4931 
4932     // Find the largest legal integer type.
4933     MVT LVT = MVT::i64;
4934     while (!TLI.isTypeLegal(LVT))
4935       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4936     assert(LVT.isInteger());
4937 
4938     // If the type we've chosen is larger than the largest legal integer type
4939     // then use that instead.
4940     if (VT.bitsGT(LVT))
4941       VT = LVT;
4942   }
4943 
4944   unsigned NumMemOps = 0;
4945   while (Size != 0) {
4946     unsigned VTSize = VT.getSizeInBits() / 8;
4947     while (VTSize > Size) {
4948       // For now, only use non-vector load / store's for the left-over pieces.
4949       EVT NewVT = VT;
4950       unsigned NewVTSize;
4951 
4952       bool Found = false;
4953       if (VT.isVector() || VT.isFloatingPoint()) {
4954         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4955         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4956             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4957           Found = true;
4958         else if (NewVT == MVT::i64 &&
4959                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4960                  TLI.isSafeMemOpType(MVT::f64)) {
4961           // i64 is usually not legal on 32-bit targets, but f64 may be.
4962           NewVT = MVT::f64;
4963           Found = true;
4964         }
4965       }
4966 
4967       if (!Found) {
4968         do {
4969           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4970           if (NewVT == MVT::i8)
4971             break;
4972         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4973       }
4974       NewVTSize = NewVT.getSizeInBits() / 8;
4975 
4976       // If the new VT cannot cover all of the remaining bits, then consider
4977       // issuing a (or a pair of) unaligned and overlapping load / store.
4978       // FIXME: Only does this for 64-bit or more since we don't have proper
4979       // cost model for unaligned load / store.
4980       bool Fast;
4981       if (NumMemOps && AllowOverlap &&
4982           VTSize >= 8 && NewVTSize < Size &&
4983           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4984         VTSize = Size;
4985       else {
4986         VT = NewVT;
4987         VTSize = NewVTSize;
4988       }
4989     }
4990 
4991     if (++NumMemOps > Limit)
4992       return false;
4993 
4994     MemOps.push_back(VT);
4995     Size -= VTSize;
4996   }
4997 
4998   return true;
4999 }
5000 
5001 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5002   // On Darwin, -Os means optimize for size without hurting performance, so
5003   // only really optimize for size when -Oz (MinSize) is used.
5004   if (MF.getTarget().getTargetTriple().isOSDarwin())
5005     return MF.getFunction()->optForMinSize();
5006   return MF.getFunction()->optForSize();
5007 }
5008 
5009 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5010                                        SDValue Chain, SDValue Dst, SDValue Src,
5011                                        uint64_t Size, unsigned Align,
5012                                        bool isVol, bool AlwaysInline,
5013                                        MachinePointerInfo DstPtrInfo,
5014                                        MachinePointerInfo SrcPtrInfo) {
5015   // Turn a memcpy of undef to nop.
5016   if (Src.isUndef())
5017     return Chain;
5018 
5019   // Expand memcpy to a series of load and store ops if the size operand falls
5020   // below a certain threshold.
5021   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5022   // rather than maybe a humongous number of loads and stores.
5023   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5024   const DataLayout &DL = DAG.getDataLayout();
5025   LLVMContext &C = *DAG.getContext();
5026   std::vector<EVT> MemOps;
5027   bool DstAlignCanChange = false;
5028   MachineFunction &MF = DAG.getMachineFunction();
5029   MachineFrameInfo &MFI = MF.getFrameInfo();
5030   bool OptSize = shouldLowerMemFuncForSize(MF);
5031   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5032   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5033     DstAlignCanChange = true;
5034   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5035   if (Align > SrcAlign)
5036     SrcAlign = Align;
5037   ConstantDataArraySlice Slice;
5038   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5039   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5040   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5041 
5042   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5043                                 (DstAlignCanChange ? 0 : Align),
5044                                 (isZeroConstant ? 0 : SrcAlign),
5045                                 false, false, CopyFromConstant, true,
5046                                 DstPtrInfo.getAddrSpace(),
5047                                 SrcPtrInfo.getAddrSpace(),
5048                                 DAG, TLI))
5049     return SDValue();
5050 
5051   if (DstAlignCanChange) {
5052     Type *Ty = MemOps[0].getTypeForEVT(C);
5053     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5054 
5055     // Don't promote to an alignment that would require dynamic stack
5056     // realignment.
5057     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5058     if (!TRI->needsStackRealignment(MF))
5059       while (NewAlign > Align &&
5060              DL.exceedsNaturalStackAlignment(NewAlign))
5061           NewAlign /= 2;
5062 
5063     if (NewAlign > Align) {
5064       // Give the stack frame object a larger alignment if needed.
5065       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5066         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5067       Align = NewAlign;
5068     }
5069   }
5070 
5071   MachineMemOperand::Flags MMOFlags =
5072       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5073   SmallVector<SDValue, 8> OutChains;
5074   unsigned NumMemOps = MemOps.size();
5075   uint64_t SrcOff = 0, DstOff = 0;
5076   for (unsigned i = 0; i != NumMemOps; ++i) {
5077     EVT VT = MemOps[i];
5078     unsigned VTSize = VT.getSizeInBits() / 8;
5079     SDValue Value, Store;
5080 
5081     if (VTSize > Size) {
5082       // Issuing an unaligned load / store pair  that overlaps with the previous
5083       // pair. Adjust the offset accordingly.
5084       assert(i == NumMemOps-1 && i != 0);
5085       SrcOff -= VTSize - Size;
5086       DstOff -= VTSize - Size;
5087     }
5088 
5089     if (CopyFromConstant &&
5090         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5091       // It's unlikely a store of a vector immediate can be done in a single
5092       // instruction. It would require a load from a constantpool first.
5093       // We only handle zero vectors here.
5094       // FIXME: Handle other cases where store of vector immediate is done in
5095       // a single instruction.
5096       ConstantDataArraySlice SubSlice;
5097       if (SrcOff < Slice.Length) {
5098         SubSlice = Slice;
5099         SubSlice.move(SrcOff);
5100       } else {
5101         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5102         SubSlice.Array = nullptr;
5103         SubSlice.Offset = 0;
5104         SubSlice.Length = VTSize;
5105       }
5106       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5107       if (Value.getNode())
5108         Store = DAG.getStore(Chain, dl, Value,
5109                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5110                              DstPtrInfo.getWithOffset(DstOff), Align,
5111                              MMOFlags);
5112     }
5113 
5114     if (!Store.getNode()) {
5115       // The type might not be legal for the target.  This should only happen
5116       // if the type is smaller than a legal type, as on PPC, so the right
5117       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5118       // to Load/Store if NVT==VT.
5119       // FIXME does the case above also need this?
5120       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5121       assert(NVT.bitsGE(VT));
5122 
5123       bool isDereferenceable =
5124         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5125       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5126       if (isDereferenceable)
5127         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5128 
5129       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5130                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5131                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5132                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5133       OutChains.push_back(Value.getValue(1));
5134       Store = DAG.getTruncStore(
5135           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5136           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5137     }
5138     OutChains.push_back(Store);
5139     SrcOff += VTSize;
5140     DstOff += VTSize;
5141     Size -= VTSize;
5142   }
5143 
5144   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5145 }
5146 
5147 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5148                                         SDValue Chain, SDValue Dst, SDValue Src,
5149                                         uint64_t Size, unsigned Align,
5150                                         bool isVol, bool AlwaysInline,
5151                                         MachinePointerInfo DstPtrInfo,
5152                                         MachinePointerInfo SrcPtrInfo) {
5153   // Turn a memmove of undef to nop.
5154   if (Src.isUndef())
5155     return Chain;
5156 
5157   // Expand memmove to a series of load and store ops if the size operand falls
5158   // below a certain threshold.
5159   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5160   const DataLayout &DL = DAG.getDataLayout();
5161   LLVMContext &C = *DAG.getContext();
5162   std::vector<EVT> MemOps;
5163   bool DstAlignCanChange = false;
5164   MachineFunction &MF = DAG.getMachineFunction();
5165   MachineFrameInfo &MFI = MF.getFrameInfo();
5166   bool OptSize = shouldLowerMemFuncForSize(MF);
5167   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5168   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5169     DstAlignCanChange = true;
5170   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5171   if (Align > SrcAlign)
5172     SrcAlign = Align;
5173   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5174 
5175   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5176                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5177                                 false, false, false, false,
5178                                 DstPtrInfo.getAddrSpace(),
5179                                 SrcPtrInfo.getAddrSpace(),
5180                                 DAG, TLI))
5181     return SDValue();
5182 
5183   if (DstAlignCanChange) {
5184     Type *Ty = MemOps[0].getTypeForEVT(C);
5185     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5186     if (NewAlign > Align) {
5187       // Give the stack frame object a larger alignment if needed.
5188       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5189         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5190       Align = NewAlign;
5191     }
5192   }
5193 
5194   MachineMemOperand::Flags MMOFlags =
5195       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5196   uint64_t SrcOff = 0, DstOff = 0;
5197   SmallVector<SDValue, 8> LoadValues;
5198   SmallVector<SDValue, 8> LoadChains;
5199   SmallVector<SDValue, 8> OutChains;
5200   unsigned NumMemOps = MemOps.size();
5201   for (unsigned i = 0; i < NumMemOps; i++) {
5202     EVT VT = MemOps[i];
5203     unsigned VTSize = VT.getSizeInBits() / 8;
5204     SDValue Value;
5205 
5206     bool isDereferenceable =
5207       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5208     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5209     if (isDereferenceable)
5210       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5211 
5212     Value =
5213         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5214                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5215     LoadValues.push_back(Value);
5216     LoadChains.push_back(Value.getValue(1));
5217     SrcOff += VTSize;
5218   }
5219   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5220   OutChains.clear();
5221   for (unsigned i = 0; i < NumMemOps; i++) {
5222     EVT VT = MemOps[i];
5223     unsigned VTSize = VT.getSizeInBits() / 8;
5224     SDValue Store;
5225 
5226     Store = DAG.getStore(Chain, dl, LoadValues[i],
5227                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5228                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5229     OutChains.push_back(Store);
5230     DstOff += VTSize;
5231   }
5232 
5233   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5234 }
5235 
5236 /// \brief Lower the call to 'memset' intrinsic function into a series of store
5237 /// operations.
5238 ///
5239 /// \param DAG Selection DAG where lowered code is placed.
5240 /// \param dl Link to corresponding IR location.
5241 /// \param Chain Control flow dependency.
5242 /// \param Dst Pointer to destination memory location.
5243 /// \param Src Value of byte to write into the memory.
5244 /// \param Size Number of bytes to write.
5245 /// \param Align Alignment of the destination in bytes.
5246 /// \param isVol True if destination is volatile.
5247 /// \param DstPtrInfo IR information on the memory pointer.
5248 /// \returns New head in the control flow, if lowering was successful, empty
5249 /// SDValue otherwise.
5250 ///
5251 /// The function tries to replace 'llvm.memset' intrinsic with several store
5252 /// operations and value calculation code. This is usually profitable for small
5253 /// memory size.
5254 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5255                                SDValue Chain, SDValue Dst, SDValue Src,
5256                                uint64_t Size, unsigned Align, bool isVol,
5257                                MachinePointerInfo DstPtrInfo) {
5258   // Turn a memset of undef to nop.
5259   if (Src.isUndef())
5260     return Chain;
5261 
5262   // Expand memset to a series of load/store ops if the size operand
5263   // falls below a certain threshold.
5264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5265   std::vector<EVT> MemOps;
5266   bool DstAlignCanChange = false;
5267   MachineFunction &MF = DAG.getMachineFunction();
5268   MachineFrameInfo &MFI = MF.getFrameInfo();
5269   bool OptSize = shouldLowerMemFuncForSize(MF);
5270   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5271   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5272     DstAlignCanChange = true;
5273   bool IsZeroVal =
5274     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5275   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5276                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5277                                 true, IsZeroVal, false, true,
5278                                 DstPtrInfo.getAddrSpace(), ~0u,
5279                                 DAG, TLI))
5280     return SDValue();
5281 
5282   if (DstAlignCanChange) {
5283     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5284     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5285     if (NewAlign > Align) {
5286       // Give the stack frame object a larger alignment if needed.
5287       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5288         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5289       Align = NewAlign;
5290     }
5291   }
5292 
5293   SmallVector<SDValue, 8> OutChains;
5294   uint64_t DstOff = 0;
5295   unsigned NumMemOps = MemOps.size();
5296 
5297   // Find the largest store and generate the bit pattern for it.
5298   EVT LargestVT = MemOps[0];
5299   for (unsigned i = 1; i < NumMemOps; i++)
5300     if (MemOps[i].bitsGT(LargestVT))
5301       LargestVT = MemOps[i];
5302   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5303 
5304   for (unsigned i = 0; i < NumMemOps; i++) {
5305     EVT VT = MemOps[i];
5306     unsigned VTSize = VT.getSizeInBits() / 8;
5307     if (VTSize > Size) {
5308       // Issuing an unaligned load / store pair  that overlaps with the previous
5309       // pair. Adjust the offset accordingly.
5310       assert(i == NumMemOps-1 && i != 0);
5311       DstOff -= VTSize - Size;
5312     }
5313 
5314     // If this store is smaller than the largest store see whether we can get
5315     // the smaller value for free with a truncate.
5316     SDValue Value = MemSetValue;
5317     if (VT.bitsLT(LargestVT)) {
5318       if (!LargestVT.isVector() && !VT.isVector() &&
5319           TLI.isTruncateFree(LargestVT, VT))
5320         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5321       else
5322         Value = getMemsetValue(Src, VT, DAG, dl);
5323     }
5324     assert(Value.getValueType() == VT && "Value with wrong type.");
5325     SDValue Store = DAG.getStore(
5326         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5327         DstPtrInfo.getWithOffset(DstOff), Align,
5328         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5329     OutChains.push_back(Store);
5330     DstOff += VT.getSizeInBits() / 8;
5331     Size -= VTSize;
5332   }
5333 
5334   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5335 }
5336 
5337 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5338                                             unsigned AS) {
5339   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5340   // pointer operands can be losslessly bitcasted to pointers of address space 0
5341   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5342     report_fatal_error("cannot lower memory intrinsic in address space " +
5343                        Twine(AS));
5344   }
5345 }
5346 
5347 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5348                                 SDValue Src, SDValue Size, unsigned Align,
5349                                 bool isVol, bool AlwaysInline, bool isTailCall,
5350                                 MachinePointerInfo DstPtrInfo,
5351                                 MachinePointerInfo SrcPtrInfo) {
5352   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5353 
5354   // Check to see if we should lower the memcpy to loads and stores first.
5355   // For cases within the target-specified limits, this is the best choice.
5356   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5357   if (ConstantSize) {
5358     // Memcpy with size zero? Just return the original chain.
5359     if (ConstantSize->isNullValue())
5360       return Chain;
5361 
5362     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5363                                              ConstantSize->getZExtValue(),Align,
5364                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5365     if (Result.getNode())
5366       return Result;
5367   }
5368 
5369   // Then check to see if we should lower the memcpy with target-specific
5370   // code. If the target chooses to do this, this is the next best.
5371   if (TSI) {
5372     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5373         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5374         DstPtrInfo, SrcPtrInfo);
5375     if (Result.getNode())
5376       return Result;
5377   }
5378 
5379   // If we really need inline code and the target declined to provide it,
5380   // use a (potentially long) sequence of loads and stores.
5381   if (AlwaysInline) {
5382     assert(ConstantSize && "AlwaysInline requires a constant size!");
5383     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5384                                    ConstantSize->getZExtValue(), Align, isVol,
5385                                    true, DstPtrInfo, SrcPtrInfo);
5386   }
5387 
5388   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5389   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5390 
5391   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5392   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5393   // respect volatile, so they may do things like read or write memory
5394   // beyond the given memory regions. But fixing this isn't easy, and most
5395   // people don't care.
5396 
5397   // Emit a library call.
5398   TargetLowering::ArgListTy Args;
5399   TargetLowering::ArgListEntry Entry;
5400   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5401   Entry.Node = Dst; Args.push_back(Entry);
5402   Entry.Node = Src; Args.push_back(Entry);
5403   Entry.Node = Size; Args.push_back(Entry);
5404   // FIXME: pass in SDLoc
5405   TargetLowering::CallLoweringInfo CLI(*this);
5406   CLI.setDebugLoc(dl)
5407       .setChain(Chain)
5408       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5409                     Dst.getValueType().getTypeForEVT(*getContext()),
5410                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5411                                       TLI->getPointerTy(getDataLayout())),
5412                     std::move(Args))
5413       .setDiscardResult()
5414       .setTailCall(isTailCall);
5415 
5416   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5417   return CallResult.second;
5418 }
5419 
5420 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5421                                  SDValue Src, SDValue Size, unsigned Align,
5422                                  bool isVol, bool isTailCall,
5423                                  MachinePointerInfo DstPtrInfo,
5424                                  MachinePointerInfo SrcPtrInfo) {
5425   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5426 
5427   // Check to see if we should lower the memmove to loads and stores first.
5428   // For cases within the target-specified limits, this is the best choice.
5429   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5430   if (ConstantSize) {
5431     // Memmove with size zero? Just return the original chain.
5432     if (ConstantSize->isNullValue())
5433       return Chain;
5434 
5435     SDValue Result =
5436       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5437                                ConstantSize->getZExtValue(), Align, isVol,
5438                                false, DstPtrInfo, SrcPtrInfo);
5439     if (Result.getNode())
5440       return Result;
5441   }
5442 
5443   // Then check to see if we should lower the memmove with target-specific
5444   // code. If the target chooses to do this, this is the next best.
5445   if (TSI) {
5446     SDValue Result = TSI->EmitTargetCodeForMemmove(
5447         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5448     if (Result.getNode())
5449       return Result;
5450   }
5451 
5452   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5453   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5454 
5455   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5456   // not be safe.  See memcpy above for more details.
5457 
5458   // Emit a library call.
5459   TargetLowering::ArgListTy Args;
5460   TargetLowering::ArgListEntry Entry;
5461   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5462   Entry.Node = Dst; Args.push_back(Entry);
5463   Entry.Node = Src; Args.push_back(Entry);
5464   Entry.Node = Size; Args.push_back(Entry);
5465   // FIXME:  pass in SDLoc
5466   TargetLowering::CallLoweringInfo CLI(*this);
5467   CLI.setDebugLoc(dl)
5468       .setChain(Chain)
5469       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5470                     Dst.getValueType().getTypeForEVT(*getContext()),
5471                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5472                                       TLI->getPointerTy(getDataLayout())),
5473                     std::move(Args))
5474       .setDiscardResult()
5475       .setTailCall(isTailCall);
5476 
5477   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5478   return CallResult.second;
5479 }
5480 
5481 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5482                                 SDValue Src, SDValue Size, unsigned Align,
5483                                 bool isVol, bool isTailCall,
5484                                 MachinePointerInfo DstPtrInfo) {
5485   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5486 
5487   // Check to see if we should lower the memset to stores first.
5488   // For cases within the target-specified limits, this is the best choice.
5489   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5490   if (ConstantSize) {
5491     // Memset with size zero? Just return the original chain.
5492     if (ConstantSize->isNullValue())
5493       return Chain;
5494 
5495     SDValue Result =
5496       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5497                       Align, isVol, DstPtrInfo);
5498 
5499     if (Result.getNode())
5500       return Result;
5501   }
5502 
5503   // Then check to see if we should lower the memset with target-specific
5504   // code. If the target chooses to do this, this is the next best.
5505   if (TSI) {
5506     SDValue Result = TSI->EmitTargetCodeForMemset(
5507         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5508     if (Result.getNode())
5509       return Result;
5510   }
5511 
5512   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5513 
5514   // Emit a library call.
5515   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5516   TargetLowering::ArgListTy Args;
5517   TargetLowering::ArgListEntry Entry;
5518   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5519   Args.push_back(Entry);
5520   Entry.Node = Src;
5521   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5522   Args.push_back(Entry);
5523   Entry.Node = Size;
5524   Entry.Ty = IntPtrTy;
5525   Args.push_back(Entry);
5526 
5527   // FIXME: pass in SDLoc
5528   TargetLowering::CallLoweringInfo CLI(*this);
5529   CLI.setDebugLoc(dl)
5530       .setChain(Chain)
5531       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5532                     Dst.getValueType().getTypeForEVT(*getContext()),
5533                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5534                                       TLI->getPointerTy(getDataLayout())),
5535                     std::move(Args))
5536       .setDiscardResult()
5537       .setTailCall(isTailCall);
5538 
5539   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5540   return CallResult.second;
5541 }
5542 
5543 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5544                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5545                                 MachineMemOperand *MMO) {
5546   FoldingSetNodeID ID;
5547   ID.AddInteger(MemVT.getRawBits());
5548   AddNodeIDNode(ID, Opcode, VTList, Ops);
5549   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5550   void* IP = nullptr;
5551   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5552     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5553     return SDValue(E, 0);
5554   }
5555 
5556   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5557                                     VTList, MemVT, MMO);
5558   createOperands(N, Ops);
5559 
5560   CSEMap.InsertNode(N, IP);
5561   InsertNode(N);
5562   return SDValue(N, 0);
5563 }
5564 
5565 SDValue SelectionDAG::getAtomicCmpSwap(
5566     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5567     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5568     unsigned Alignment, AtomicOrdering SuccessOrdering,
5569     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
5570   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5571          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5572   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5573 
5574   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5575     Alignment = getEVTAlignment(MemVT);
5576 
5577   MachineFunction &MF = getMachineFunction();
5578 
5579   // FIXME: Volatile isn't really correct; we should keep track of atomic
5580   // orderings in the memoperand.
5581   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5582                MachineMemOperand::MOStore;
5583   MachineMemOperand *MMO =
5584     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5585                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
5586                             FailureOrdering);
5587 
5588   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5589 }
5590 
5591 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5592                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5593                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5594                                        MachineMemOperand *MMO) {
5595   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5596          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5597   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5598 
5599   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5600   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5601 }
5602 
5603 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5604                                 SDValue Chain, SDValue Ptr, SDValue Val,
5605                                 const Value *PtrVal, unsigned Alignment,
5606                                 AtomicOrdering Ordering,
5607                                 SyncScope::ID SSID) {
5608   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5609     Alignment = getEVTAlignment(MemVT);
5610 
5611   MachineFunction &MF = getMachineFunction();
5612   // An atomic store does not load. An atomic load does not store.
5613   // (An atomicrmw obviously both loads and stores.)
5614   // For now, atomics are considered to be volatile always, and they are
5615   // chained as such.
5616   // FIXME: Volatile isn't really correct; we should keep track of atomic
5617   // orderings in the memoperand.
5618   auto Flags = MachineMemOperand::MOVolatile;
5619   if (Opcode != ISD::ATOMIC_STORE)
5620     Flags |= MachineMemOperand::MOLoad;
5621   if (Opcode != ISD::ATOMIC_LOAD)
5622     Flags |= MachineMemOperand::MOStore;
5623 
5624   MachineMemOperand *MMO =
5625     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5626                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5627                             nullptr, SSID, Ordering);
5628 
5629   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5630 }
5631 
5632 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5633                                 SDValue Chain, SDValue Ptr, SDValue Val,
5634                                 MachineMemOperand *MMO) {
5635   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5636           Opcode == ISD::ATOMIC_LOAD_SUB ||
5637           Opcode == ISD::ATOMIC_LOAD_AND ||
5638           Opcode == ISD::ATOMIC_LOAD_OR ||
5639           Opcode == ISD::ATOMIC_LOAD_XOR ||
5640           Opcode == ISD::ATOMIC_LOAD_NAND ||
5641           Opcode == ISD::ATOMIC_LOAD_MIN ||
5642           Opcode == ISD::ATOMIC_LOAD_MAX ||
5643           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5644           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5645           Opcode == ISD::ATOMIC_SWAP ||
5646           Opcode == ISD::ATOMIC_STORE) &&
5647          "Invalid Atomic Op");
5648 
5649   EVT VT = Val.getValueType();
5650 
5651   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5652                                                getVTList(VT, MVT::Other);
5653   SDValue Ops[] = {Chain, Ptr, Val};
5654   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5655 }
5656 
5657 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5658                                 EVT VT, SDValue Chain, SDValue Ptr,
5659                                 MachineMemOperand *MMO) {
5660   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5661 
5662   SDVTList VTs = getVTList(VT, MVT::Other);
5663   SDValue Ops[] = {Chain, Ptr};
5664   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5665 }
5666 
5667 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5668 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5669   if (Ops.size() == 1)
5670     return Ops[0];
5671 
5672   SmallVector<EVT, 4> VTs;
5673   VTs.reserve(Ops.size());
5674   for (unsigned i = 0; i < Ops.size(); ++i)
5675     VTs.push_back(Ops[i].getValueType());
5676   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5677 }
5678 
5679 SDValue SelectionDAG::getMemIntrinsicNode(
5680     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5681     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
5682     bool ReadMem, bool WriteMem, unsigned Size) {
5683   if (Align == 0)  // Ensure that codegen never sees alignment 0
5684     Align = getEVTAlignment(MemVT);
5685 
5686   MachineFunction &MF = getMachineFunction();
5687   auto Flags = MachineMemOperand::MONone;
5688   if (WriteMem)
5689     Flags |= MachineMemOperand::MOStore;
5690   if (ReadMem)
5691     Flags |= MachineMemOperand::MOLoad;
5692   if (Vol)
5693     Flags |= MachineMemOperand::MOVolatile;
5694   if (!Size)
5695     Size = MemVT.getStoreSize();
5696   MachineMemOperand *MMO =
5697     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5698 
5699   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5700 }
5701 
5702 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5703                                           SDVTList VTList,
5704                                           ArrayRef<SDValue> Ops, EVT MemVT,
5705                                           MachineMemOperand *MMO) {
5706   assert((Opcode == ISD::INTRINSIC_VOID ||
5707           Opcode == ISD::INTRINSIC_W_CHAIN ||
5708           Opcode == ISD::PREFETCH ||
5709           Opcode == ISD::LIFETIME_START ||
5710           Opcode == ISD::LIFETIME_END ||
5711           ((int)Opcode <= std::numeric_limits<int>::max() &&
5712            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5713          "Opcode is not a memory-accessing opcode!");
5714 
5715   // Memoize the node unless it returns a flag.
5716   MemIntrinsicSDNode *N;
5717   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5718     FoldingSetNodeID ID;
5719     AddNodeIDNode(ID, Opcode, VTList, Ops);
5720     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5721     void *IP = nullptr;
5722     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5723       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5724       return SDValue(E, 0);
5725     }
5726 
5727     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5728                                       VTList, MemVT, MMO);
5729     createOperands(N, Ops);
5730 
5731   CSEMap.InsertNode(N, IP);
5732   } else {
5733     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5734                                       VTList, MemVT, MMO);
5735     createOperands(N, Ops);
5736   }
5737   InsertNode(N);
5738   return SDValue(N, 0);
5739 }
5740 
5741 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5742 /// MachinePointerInfo record from it.  This is particularly useful because the
5743 /// code generator has many cases where it doesn't bother passing in a
5744 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5745 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5746                                            int64_t Offset = 0) {
5747   // If this is FI+Offset, we can model it.
5748   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5749     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5750                                              FI->getIndex(), Offset);
5751 
5752   // If this is (FI+Offset1)+Offset2, we can model it.
5753   if (Ptr.getOpcode() != ISD::ADD ||
5754       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5755       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5756     return MachinePointerInfo();
5757 
5758   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5759   return MachinePointerInfo::getFixedStack(
5760       DAG.getMachineFunction(), FI,
5761       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5762 }
5763 
5764 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5765 /// MachinePointerInfo record from it.  This is particularly useful because the
5766 /// code generator has many cases where it doesn't bother passing in a
5767 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5768 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5769                                            SDValue OffsetOp) {
5770   // If the 'Offset' value isn't a constant, we can't handle this.
5771   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5772     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5773   if (OffsetOp.isUndef())
5774     return InferPointerInfo(DAG, Ptr);
5775   return MachinePointerInfo();
5776 }
5777 
5778 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5779                               EVT VT, const SDLoc &dl, SDValue Chain,
5780                               SDValue Ptr, SDValue Offset,
5781                               MachinePointerInfo PtrInfo, EVT MemVT,
5782                               unsigned Alignment,
5783                               MachineMemOperand::Flags MMOFlags,
5784                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5785   assert(Chain.getValueType() == MVT::Other &&
5786         "Invalid chain type");
5787   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5788     Alignment = getEVTAlignment(MemVT);
5789 
5790   MMOFlags |= MachineMemOperand::MOLoad;
5791   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5792   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5793   // clients.
5794   if (PtrInfo.V.isNull())
5795     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5796 
5797   MachineFunction &MF = getMachineFunction();
5798   MachineMemOperand *MMO = MF.getMachineMemOperand(
5799       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5800   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5801 }
5802 
5803 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5804                               EVT VT, const SDLoc &dl, SDValue Chain,
5805                               SDValue Ptr, SDValue Offset, EVT MemVT,
5806                               MachineMemOperand *MMO) {
5807   if (VT == MemVT) {
5808     ExtType = ISD::NON_EXTLOAD;
5809   } else if (ExtType == ISD::NON_EXTLOAD) {
5810     assert(VT == MemVT && "Non-extending load from different memory type!");
5811   } else {
5812     // Extending load.
5813     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5814            "Should only be an extending load, not truncating!");
5815     assert(VT.isInteger() == MemVT.isInteger() &&
5816            "Cannot convert from FP to Int or Int -> FP!");
5817     assert(VT.isVector() == MemVT.isVector() &&
5818            "Cannot use an ext load to convert to or from a vector!");
5819     assert((!VT.isVector() ||
5820             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5821            "Cannot use an ext load to change the number of vector elements!");
5822   }
5823 
5824   bool Indexed = AM != ISD::UNINDEXED;
5825   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5826 
5827   SDVTList VTs = Indexed ?
5828     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5829   SDValue Ops[] = { Chain, Ptr, Offset };
5830   FoldingSetNodeID ID;
5831   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5832   ID.AddInteger(MemVT.getRawBits());
5833   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5834       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5835   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5836   void *IP = nullptr;
5837   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5838     cast<LoadSDNode>(E)->refineAlignment(MMO);
5839     return SDValue(E, 0);
5840   }
5841   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5842                                   ExtType, MemVT, MMO);
5843   createOperands(N, Ops);
5844 
5845   CSEMap.InsertNode(N, IP);
5846   InsertNode(N);
5847   return SDValue(N, 0);
5848 }
5849 
5850 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5851                               SDValue Ptr, MachinePointerInfo PtrInfo,
5852                               unsigned Alignment,
5853                               MachineMemOperand::Flags MMOFlags,
5854                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5855   SDValue Undef = getUNDEF(Ptr.getValueType());
5856   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5857                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5858 }
5859 
5860 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5861                               SDValue Ptr, MachineMemOperand *MMO) {
5862   SDValue Undef = getUNDEF(Ptr.getValueType());
5863   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5864                  VT, MMO);
5865 }
5866 
5867 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5868                                  EVT VT, SDValue Chain, SDValue Ptr,
5869                                  MachinePointerInfo PtrInfo, EVT MemVT,
5870                                  unsigned Alignment,
5871                                  MachineMemOperand::Flags MMOFlags,
5872                                  const AAMDNodes &AAInfo) {
5873   SDValue Undef = getUNDEF(Ptr.getValueType());
5874   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5875                  MemVT, Alignment, MMOFlags, AAInfo);
5876 }
5877 
5878 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5879                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5880                                  MachineMemOperand *MMO) {
5881   SDValue Undef = getUNDEF(Ptr.getValueType());
5882   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5883                  MemVT, MMO);
5884 }
5885 
5886 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5887                                      SDValue Base, SDValue Offset,
5888                                      ISD::MemIndexedMode AM) {
5889   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5890   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5891   // Don't propagate the invariant or dereferenceable flags.
5892   auto MMOFlags =
5893       LD->getMemOperand()->getFlags() &
5894       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5895   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5896                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5897                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5898                  LD->getAAInfo());
5899 }
5900 
5901 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5902                                SDValue Ptr, MachinePointerInfo PtrInfo,
5903                                unsigned Alignment,
5904                                MachineMemOperand::Flags MMOFlags,
5905                                const AAMDNodes &AAInfo) {
5906   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5907   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5908     Alignment = getEVTAlignment(Val.getValueType());
5909 
5910   MMOFlags |= MachineMemOperand::MOStore;
5911   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5912 
5913   if (PtrInfo.V.isNull())
5914     PtrInfo = InferPointerInfo(*this, Ptr);
5915 
5916   MachineFunction &MF = getMachineFunction();
5917   MachineMemOperand *MMO = MF.getMachineMemOperand(
5918       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5919   return getStore(Chain, dl, Val, Ptr, MMO);
5920 }
5921 
5922 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5923                                SDValue Ptr, MachineMemOperand *MMO) {
5924   assert(Chain.getValueType() == MVT::Other &&
5925         "Invalid chain type");
5926   EVT VT = Val.getValueType();
5927   SDVTList VTs = getVTList(MVT::Other);
5928   SDValue Undef = getUNDEF(Ptr.getValueType());
5929   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5930   FoldingSetNodeID ID;
5931   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5932   ID.AddInteger(VT.getRawBits());
5933   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5934       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5935   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5936   void *IP = nullptr;
5937   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5938     cast<StoreSDNode>(E)->refineAlignment(MMO);
5939     return SDValue(E, 0);
5940   }
5941   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5942                                    ISD::UNINDEXED, false, VT, MMO);
5943   createOperands(N, Ops);
5944 
5945   CSEMap.InsertNode(N, IP);
5946   InsertNode(N);
5947   return SDValue(N, 0);
5948 }
5949 
5950 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5951                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5952                                     EVT SVT, unsigned Alignment,
5953                                     MachineMemOperand::Flags MMOFlags,
5954                                     const AAMDNodes &AAInfo) {
5955   assert(Chain.getValueType() == MVT::Other &&
5956         "Invalid chain type");
5957   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5958     Alignment = getEVTAlignment(SVT);
5959 
5960   MMOFlags |= MachineMemOperand::MOStore;
5961   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5962 
5963   if (PtrInfo.V.isNull())
5964     PtrInfo = InferPointerInfo(*this, Ptr);
5965 
5966   MachineFunction &MF = getMachineFunction();
5967   MachineMemOperand *MMO = MF.getMachineMemOperand(
5968       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5969   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5970 }
5971 
5972 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5973                                     SDValue Ptr, EVT SVT,
5974                                     MachineMemOperand *MMO) {
5975   EVT VT = Val.getValueType();
5976 
5977   assert(Chain.getValueType() == MVT::Other &&
5978         "Invalid chain type");
5979   if (VT == SVT)
5980     return getStore(Chain, dl, Val, Ptr, MMO);
5981 
5982   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5983          "Should only be a truncating store, not extending!");
5984   assert(VT.isInteger() == SVT.isInteger() &&
5985          "Can't do FP-INT conversion!");
5986   assert(VT.isVector() == SVT.isVector() &&
5987          "Cannot use trunc store to convert to or from a vector!");
5988   assert((!VT.isVector() ||
5989           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5990          "Cannot use trunc store to change the number of vector elements!");
5991 
5992   SDVTList VTs = getVTList(MVT::Other);
5993   SDValue Undef = getUNDEF(Ptr.getValueType());
5994   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5995   FoldingSetNodeID ID;
5996   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5997   ID.AddInteger(SVT.getRawBits());
5998   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5999       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6000   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6001   void *IP = nullptr;
6002   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6003     cast<StoreSDNode>(E)->refineAlignment(MMO);
6004     return SDValue(E, 0);
6005   }
6006   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6007                                    ISD::UNINDEXED, true, SVT, MMO);
6008   createOperands(N, Ops);
6009 
6010   CSEMap.InsertNode(N, IP);
6011   InsertNode(N);
6012   return SDValue(N, 0);
6013 }
6014 
6015 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6016                                       SDValue Base, SDValue Offset,
6017                                       ISD::MemIndexedMode AM) {
6018   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6019   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6020   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6021   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6022   FoldingSetNodeID ID;
6023   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6024   ID.AddInteger(ST->getMemoryVT().getRawBits());
6025   ID.AddInteger(ST->getRawSubclassData());
6026   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6027   void *IP = nullptr;
6028   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6029     return SDValue(E, 0);
6030 
6031   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6032                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6033                                    ST->getMemOperand());
6034   createOperands(N, Ops);
6035 
6036   CSEMap.InsertNode(N, IP);
6037   InsertNode(N);
6038   return SDValue(N, 0);
6039 }
6040 
6041 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6042                                     SDValue Ptr, SDValue Mask, SDValue Src0,
6043                                     EVT MemVT, MachineMemOperand *MMO,
6044                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6045   SDVTList VTs = getVTList(VT, MVT::Other);
6046   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
6047   FoldingSetNodeID ID;
6048   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6049   ID.AddInteger(VT.getRawBits());
6050   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6051       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6052   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6053   void *IP = nullptr;
6054   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6055     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6056     return SDValue(E, 0);
6057   }
6058   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6059                                         ExtTy, isExpanding, MemVT, MMO);
6060   createOperands(N, Ops);
6061 
6062   CSEMap.InsertNode(N, IP);
6063   InsertNode(N);
6064   return SDValue(N, 0);
6065 }
6066 
6067 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6068                                      SDValue Val, SDValue Ptr, SDValue Mask,
6069                                      EVT MemVT, MachineMemOperand *MMO,
6070                                      bool IsTruncating, bool IsCompressing) {
6071   assert(Chain.getValueType() == MVT::Other &&
6072         "Invalid chain type");
6073   EVT VT = Val.getValueType();
6074   SDVTList VTs = getVTList(MVT::Other);
6075   SDValue Ops[] = { Chain, Ptr, Mask, Val };
6076   FoldingSetNodeID ID;
6077   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6078   ID.AddInteger(VT.getRawBits());
6079   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6080       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6081   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6082   void *IP = nullptr;
6083   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6084     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6085     return SDValue(E, 0);
6086   }
6087   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6088                                          IsTruncating, IsCompressing, MemVT, MMO);
6089   createOperands(N, Ops);
6090 
6091   CSEMap.InsertNode(N, IP);
6092   InsertNode(N);
6093   return SDValue(N, 0);
6094 }
6095 
6096 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6097                                       ArrayRef<SDValue> Ops,
6098                                       MachineMemOperand *MMO) {
6099   assert(Ops.size() == 5 && "Incompatible number of operands");
6100 
6101   FoldingSetNodeID ID;
6102   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6103   ID.AddInteger(VT.getRawBits());
6104   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6105       dl.getIROrder(), VTs, VT, MMO));
6106   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6107   void *IP = nullptr;
6108   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6109     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6110     return SDValue(E, 0);
6111   }
6112 
6113   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6114                                           VTs, VT, MMO);
6115   createOperands(N, Ops);
6116 
6117   assert(N->getValue().getValueType() == N->getValueType(0) &&
6118          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6119   assert(N->getMask().getValueType().getVectorNumElements() ==
6120              N->getValueType(0).getVectorNumElements() &&
6121          "Vector width mismatch between mask and data");
6122   assert(N->getIndex().getValueType().getVectorNumElements() ==
6123              N->getValueType(0).getVectorNumElements() &&
6124          "Vector width mismatch between index and data");
6125 
6126   CSEMap.InsertNode(N, IP);
6127   InsertNode(N);
6128   return SDValue(N, 0);
6129 }
6130 
6131 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6132                                        ArrayRef<SDValue> Ops,
6133                                        MachineMemOperand *MMO) {
6134   assert(Ops.size() == 5 && "Incompatible number of operands");
6135 
6136   FoldingSetNodeID ID;
6137   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6138   ID.AddInteger(VT.getRawBits());
6139   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6140       dl.getIROrder(), VTs, VT, MMO));
6141   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6142   void *IP = nullptr;
6143   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6144     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6145     return SDValue(E, 0);
6146   }
6147   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6148                                            VTs, VT, MMO);
6149   createOperands(N, Ops);
6150 
6151   assert(N->getMask().getValueType().getVectorNumElements() ==
6152              N->getValue().getValueType().getVectorNumElements() &&
6153          "Vector width mismatch between mask and data");
6154   assert(N->getIndex().getValueType().getVectorNumElements() ==
6155              N->getValue().getValueType().getVectorNumElements() &&
6156          "Vector width mismatch between index and data");
6157 
6158   CSEMap.InsertNode(N, IP);
6159   InsertNode(N);
6160   return SDValue(N, 0);
6161 }
6162 
6163 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6164                                SDValue Ptr, SDValue SV, unsigned Align) {
6165   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6166   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6167 }
6168 
6169 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6170                               ArrayRef<SDUse> Ops) {
6171   switch (Ops.size()) {
6172   case 0: return getNode(Opcode, DL, VT);
6173   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6174   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6175   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6176   default: break;
6177   }
6178 
6179   // Copy from an SDUse array into an SDValue array for use with
6180   // the regular getNode logic.
6181   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6182   return getNode(Opcode, DL, VT, NewOps);
6183 }
6184 
6185 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6186                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6187   unsigned NumOps = Ops.size();
6188   switch (NumOps) {
6189   case 0: return getNode(Opcode, DL, VT);
6190   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6191   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6192   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6193   default: break;
6194   }
6195 
6196   switch (Opcode) {
6197   default: break;
6198   case ISD::CONCAT_VECTORS:
6199     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6200     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6201       return V;
6202     break;
6203   case ISD::SELECT_CC:
6204     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6205     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6206            "LHS and RHS of condition must have same type!");
6207     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6208            "True and False arms of SelectCC must have same type!");
6209     assert(Ops[2].getValueType() == VT &&
6210            "select_cc node must be of same type as true and false value!");
6211     break;
6212   case ISD::BR_CC:
6213     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6214     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6215            "LHS/RHS of comparison should match types!");
6216     break;
6217   }
6218 
6219   // Memoize nodes.
6220   SDNode *N;
6221   SDVTList VTs = getVTList(VT);
6222 
6223   if (VT != MVT::Glue) {
6224     FoldingSetNodeID ID;
6225     AddNodeIDNode(ID, Opcode, VTs, Ops);
6226     void *IP = nullptr;
6227 
6228     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6229       return SDValue(E, 0);
6230 
6231     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6232     createOperands(N, Ops);
6233 
6234     CSEMap.InsertNode(N, IP);
6235   } else {
6236     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6237     createOperands(N, Ops);
6238   }
6239 
6240   InsertNode(N);
6241   return SDValue(N, 0);
6242 }
6243 
6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6245                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6246   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6247 }
6248 
6249 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6250                               ArrayRef<SDValue> Ops) {
6251   if (VTList.NumVTs == 1)
6252     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6253 
6254 #if 0
6255   switch (Opcode) {
6256   // FIXME: figure out how to safely handle things like
6257   // int foo(int x) { return 1 << (x & 255); }
6258   // int bar() { return foo(256); }
6259   case ISD::SRA_PARTS:
6260   case ISD::SRL_PARTS:
6261   case ISD::SHL_PARTS:
6262     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6263         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6264       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6265     else if (N3.getOpcode() == ISD::AND)
6266       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6267         // If the and is only masking out bits that cannot effect the shift,
6268         // eliminate the and.
6269         unsigned NumBits = VT.getScalarSizeInBits()*2;
6270         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6271           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6272       }
6273     break;
6274   }
6275 #endif
6276 
6277   // Memoize the node unless it returns a flag.
6278   SDNode *N;
6279   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6280     FoldingSetNodeID ID;
6281     AddNodeIDNode(ID, Opcode, VTList, Ops);
6282     void *IP = nullptr;
6283     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6284       return SDValue(E, 0);
6285 
6286     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6287     createOperands(N, Ops);
6288     CSEMap.InsertNode(N, IP);
6289   } else {
6290     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6291     createOperands(N, Ops);
6292   }
6293   InsertNode(N);
6294   return SDValue(N, 0);
6295 }
6296 
6297 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6298                               SDVTList VTList) {
6299   return getNode(Opcode, DL, VTList, None);
6300 }
6301 
6302 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6303                               SDValue N1) {
6304   SDValue Ops[] = { N1 };
6305   return getNode(Opcode, DL, VTList, Ops);
6306 }
6307 
6308 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6309                               SDValue N1, SDValue N2) {
6310   SDValue Ops[] = { N1, N2 };
6311   return getNode(Opcode, DL, VTList, Ops);
6312 }
6313 
6314 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6315                               SDValue N1, SDValue N2, SDValue N3) {
6316   SDValue Ops[] = { N1, N2, N3 };
6317   return getNode(Opcode, DL, VTList, Ops);
6318 }
6319 
6320 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6321                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6322   SDValue Ops[] = { N1, N2, N3, N4 };
6323   return getNode(Opcode, DL, VTList, Ops);
6324 }
6325 
6326 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6327                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6328                               SDValue N5) {
6329   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6330   return getNode(Opcode, DL, VTList, Ops);
6331 }
6332 
6333 SDVTList SelectionDAG::getVTList(EVT VT) {
6334   return makeVTList(SDNode::getValueTypeList(VT), 1);
6335 }
6336 
6337 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6338   FoldingSetNodeID ID;
6339   ID.AddInteger(2U);
6340   ID.AddInteger(VT1.getRawBits());
6341   ID.AddInteger(VT2.getRawBits());
6342 
6343   void *IP = nullptr;
6344   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6345   if (!Result) {
6346     EVT *Array = Allocator.Allocate<EVT>(2);
6347     Array[0] = VT1;
6348     Array[1] = VT2;
6349     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6350     VTListMap.InsertNode(Result, IP);
6351   }
6352   return Result->getSDVTList();
6353 }
6354 
6355 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6356   FoldingSetNodeID ID;
6357   ID.AddInteger(3U);
6358   ID.AddInteger(VT1.getRawBits());
6359   ID.AddInteger(VT2.getRawBits());
6360   ID.AddInteger(VT3.getRawBits());
6361 
6362   void *IP = nullptr;
6363   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6364   if (!Result) {
6365     EVT *Array = Allocator.Allocate<EVT>(3);
6366     Array[0] = VT1;
6367     Array[1] = VT2;
6368     Array[2] = VT3;
6369     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6370     VTListMap.InsertNode(Result, IP);
6371   }
6372   return Result->getSDVTList();
6373 }
6374 
6375 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6376   FoldingSetNodeID ID;
6377   ID.AddInteger(4U);
6378   ID.AddInteger(VT1.getRawBits());
6379   ID.AddInteger(VT2.getRawBits());
6380   ID.AddInteger(VT3.getRawBits());
6381   ID.AddInteger(VT4.getRawBits());
6382 
6383   void *IP = nullptr;
6384   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6385   if (!Result) {
6386     EVT *Array = Allocator.Allocate<EVT>(4);
6387     Array[0] = VT1;
6388     Array[1] = VT2;
6389     Array[2] = VT3;
6390     Array[3] = VT4;
6391     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6392     VTListMap.InsertNode(Result, IP);
6393   }
6394   return Result->getSDVTList();
6395 }
6396 
6397 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6398   unsigned NumVTs = VTs.size();
6399   FoldingSetNodeID ID;
6400   ID.AddInteger(NumVTs);
6401   for (unsigned index = 0; index < NumVTs; index++) {
6402     ID.AddInteger(VTs[index].getRawBits());
6403   }
6404 
6405   void *IP = nullptr;
6406   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6407   if (!Result) {
6408     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6409     std::copy(VTs.begin(), VTs.end(), Array);
6410     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6411     VTListMap.InsertNode(Result, IP);
6412   }
6413   return Result->getSDVTList();
6414 }
6415 
6416 
6417 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6418 /// specified operands.  If the resultant node already exists in the DAG,
6419 /// this does not modify the specified node, instead it returns the node that
6420 /// already exists.  If the resultant node does not exist in the DAG, the
6421 /// input node is returned.  As a degenerate case, if you specify the same
6422 /// input operands as the node already has, the input node is returned.
6423 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6424   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6425 
6426   // Check to see if there is no change.
6427   if (Op == N->getOperand(0)) return N;
6428 
6429   // See if the modified node already exists.
6430   void *InsertPos = nullptr;
6431   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6432     return Existing;
6433 
6434   // Nope it doesn't.  Remove the node from its current place in the maps.
6435   if (InsertPos)
6436     if (!RemoveNodeFromCSEMaps(N))
6437       InsertPos = nullptr;
6438 
6439   // Now we update the operands.
6440   N->OperandList[0].set(Op);
6441 
6442   // If this gets put into a CSE map, add it.
6443   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6444   return N;
6445 }
6446 
6447 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6448   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6449 
6450   // Check to see if there is no change.
6451   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6452     return N;   // No operands changed, just return the input node.
6453 
6454   // See if the modified node already exists.
6455   void *InsertPos = nullptr;
6456   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6457     return Existing;
6458 
6459   // Nope it doesn't.  Remove the node from its current place in the maps.
6460   if (InsertPos)
6461     if (!RemoveNodeFromCSEMaps(N))
6462       InsertPos = nullptr;
6463 
6464   // Now we update the operands.
6465   if (N->OperandList[0] != Op1)
6466     N->OperandList[0].set(Op1);
6467   if (N->OperandList[1] != Op2)
6468     N->OperandList[1].set(Op2);
6469 
6470   // If this gets put into a CSE map, add it.
6471   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6472   return N;
6473 }
6474 
6475 SDNode *SelectionDAG::
6476 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6477   SDValue Ops[] = { Op1, Op2, Op3 };
6478   return UpdateNodeOperands(N, Ops);
6479 }
6480 
6481 SDNode *SelectionDAG::
6482 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6483                    SDValue Op3, SDValue Op4) {
6484   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6485   return UpdateNodeOperands(N, Ops);
6486 }
6487 
6488 SDNode *SelectionDAG::
6489 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6490                    SDValue Op3, SDValue Op4, SDValue Op5) {
6491   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6492   return UpdateNodeOperands(N, Ops);
6493 }
6494 
6495 SDNode *SelectionDAG::
6496 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6497   unsigned NumOps = Ops.size();
6498   assert(N->getNumOperands() == NumOps &&
6499          "Update with wrong number of operands");
6500 
6501   // If no operands changed just return the input node.
6502   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6503     return N;
6504 
6505   // See if the modified node already exists.
6506   void *InsertPos = nullptr;
6507   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6508     return Existing;
6509 
6510   // Nope it doesn't.  Remove the node from its current place in the maps.
6511   if (InsertPos)
6512     if (!RemoveNodeFromCSEMaps(N))
6513       InsertPos = nullptr;
6514 
6515   // Now we update the operands.
6516   for (unsigned i = 0; i != NumOps; ++i)
6517     if (N->OperandList[i] != Ops[i])
6518       N->OperandList[i].set(Ops[i]);
6519 
6520   // If this gets put into a CSE map, add it.
6521   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6522   return N;
6523 }
6524 
6525 /// DropOperands - Release the operands and set this node to have
6526 /// zero operands.
6527 void SDNode::DropOperands() {
6528   // Unlike the code in MorphNodeTo that does this, we don't need to
6529   // watch for dead nodes here.
6530   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6531     SDUse &Use = *I++;
6532     Use.set(SDValue());
6533   }
6534 }
6535 
6536 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6537 /// machine opcode.
6538 ///
6539 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6540                                    EVT VT) {
6541   SDVTList VTs = getVTList(VT);
6542   return SelectNodeTo(N, MachineOpc, VTs, None);
6543 }
6544 
6545 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6546                                    EVT VT, SDValue Op1) {
6547   SDVTList VTs = getVTList(VT);
6548   SDValue Ops[] = { Op1 };
6549   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6550 }
6551 
6552 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6553                                    EVT VT, SDValue Op1,
6554                                    SDValue Op2) {
6555   SDVTList VTs = getVTList(VT);
6556   SDValue Ops[] = { Op1, Op2 };
6557   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6558 }
6559 
6560 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6561                                    EVT VT, SDValue Op1,
6562                                    SDValue Op2, SDValue Op3) {
6563   SDVTList VTs = getVTList(VT);
6564   SDValue Ops[] = { Op1, Op2, Op3 };
6565   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6566 }
6567 
6568 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6569                                    EVT VT, ArrayRef<SDValue> Ops) {
6570   SDVTList VTs = getVTList(VT);
6571   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6572 }
6573 
6574 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6575                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6576   SDVTList VTs = getVTList(VT1, VT2);
6577   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6578 }
6579 
6580 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6581                                    EVT VT1, EVT VT2) {
6582   SDVTList VTs = getVTList(VT1, VT2);
6583   return SelectNodeTo(N, MachineOpc, VTs, None);
6584 }
6585 
6586 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6587                                    EVT VT1, EVT VT2, EVT VT3,
6588                                    ArrayRef<SDValue> Ops) {
6589   SDVTList VTs = getVTList(VT1, VT2, VT3);
6590   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6591 }
6592 
6593 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6594                                    EVT VT1, EVT VT2,
6595                                    SDValue Op1, SDValue Op2) {
6596   SDVTList VTs = getVTList(VT1, VT2);
6597   SDValue Ops[] = { Op1, Op2 };
6598   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6599 }
6600 
6601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6602                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6603   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6604   // Reset the NodeID to -1.
6605   New->setNodeId(-1);
6606   if (New != N) {
6607     ReplaceAllUsesWith(N, New);
6608     RemoveDeadNode(N);
6609   }
6610   return New;
6611 }
6612 
6613 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
6614 /// the line number information on the merged node since it is not possible to
6615 /// preserve the information that operation is associated with multiple lines.
6616 /// This will make the debugger working better at -O0, were there is a higher
6617 /// probability having other instructions associated with that line.
6618 ///
6619 /// For IROrder, we keep the smaller of the two
6620 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
6621   DebugLoc NLoc = N->getDebugLoc();
6622   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6623     N->setDebugLoc(DebugLoc());
6624   }
6625   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6626   N->setIROrder(Order);
6627   return N;
6628 }
6629 
6630 /// MorphNodeTo - This *mutates* the specified node to have the specified
6631 /// return type, opcode, and operands.
6632 ///
6633 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6634 /// node of the specified opcode and operands, it returns that node instead of
6635 /// the current one.  Note that the SDLoc need not be the same.
6636 ///
6637 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6638 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6639 /// node, and because it doesn't require CSE recalculation for any of
6640 /// the node's users.
6641 ///
6642 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6643 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6644 /// the legalizer which maintain worklists that would need to be updated when
6645 /// deleting things.
6646 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6647                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6648   // If an identical node already exists, use it.
6649   void *IP = nullptr;
6650   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6651     FoldingSetNodeID ID;
6652     AddNodeIDNode(ID, Opc, VTs, Ops);
6653     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6654       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
6655   }
6656 
6657   if (!RemoveNodeFromCSEMaps(N))
6658     IP = nullptr;
6659 
6660   // Start the morphing.
6661   N->NodeType = Opc;
6662   N->ValueList = VTs.VTs;
6663   N->NumValues = VTs.NumVTs;
6664 
6665   // Clear the operands list, updating used nodes to remove this from their
6666   // use list.  Keep track of any operands that become dead as a result.
6667   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6668   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6669     SDUse &Use = *I++;
6670     SDNode *Used = Use.getNode();
6671     Use.set(SDValue());
6672     if (Used->use_empty())
6673       DeadNodeSet.insert(Used);
6674   }
6675 
6676   // For MachineNode, initialize the memory references information.
6677   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6678     MN->setMemRefs(nullptr, nullptr);
6679 
6680   // Swap for an appropriately sized array from the recycler.
6681   removeOperands(N);
6682   createOperands(N, Ops);
6683 
6684   // Delete any nodes that are still dead after adding the uses for the
6685   // new operands.
6686   if (!DeadNodeSet.empty()) {
6687     SmallVector<SDNode *, 16> DeadNodes;
6688     for (SDNode *N : DeadNodeSet)
6689       if (N->use_empty())
6690         DeadNodes.push_back(N);
6691     RemoveDeadNodes(DeadNodes);
6692   }
6693 
6694   if (IP)
6695     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6696   return N;
6697 }
6698 
6699 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
6700   unsigned OrigOpc = Node->getOpcode();
6701   unsigned NewOpc;
6702   bool IsUnary = false;
6703   bool IsTernary = false;
6704   switch (OrigOpc) {
6705   default:
6706     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
6707   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
6708   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
6709   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
6710   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
6711   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
6712   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
6713   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
6714   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
6715   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
6716   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
6717   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
6718   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
6719   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
6720   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
6721   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
6722   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
6723   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
6724   case ISD::STRICT_FNEARBYINT:
6725     NewOpc = ISD::FNEARBYINT;
6726     IsUnary = true;
6727     break;
6728   }
6729 
6730   // We're taking this node out of the chain, so we need to re-link things.
6731   SDValue InputChain = Node->getOperand(0);
6732   SDValue OutputChain = SDValue(Node, 1);
6733   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
6734 
6735   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
6736   SDNode *Res = nullptr;
6737   if (IsUnary)
6738     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
6739   else if (IsTernary)
6740     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
6741                                            Node->getOperand(2),
6742                                            Node->getOperand(3)});
6743   else
6744     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
6745                                            Node->getOperand(2) });
6746 
6747   // MorphNodeTo can operate in two ways: if an existing node with the
6748   // specified operands exists, it can just return it.  Otherwise, it
6749   // updates the node in place to have the requested operands.
6750   if (Res == Node) {
6751     // If we updated the node in place, reset the node ID.  To the isel,
6752     // this should be just like a newly allocated machine node.
6753     Res->setNodeId(-1);
6754   } else {
6755     ReplaceAllUsesWith(Node, Res);
6756     RemoveDeadNode(Node);
6757   }
6758 
6759   return Res;
6760 }
6761 
6762 /// getMachineNode - These are used for target selectors to create a new node
6763 /// with specified return type(s), MachineInstr opcode, and operands.
6764 ///
6765 /// Note that getMachineNode returns the resultant node.  If there is already a
6766 /// node of the specified opcode and operands, it returns that node instead of
6767 /// the current one.
6768 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6769                                             EVT VT) {
6770   SDVTList VTs = getVTList(VT);
6771   return getMachineNode(Opcode, dl, VTs, None);
6772 }
6773 
6774 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6775                                             EVT VT, SDValue Op1) {
6776   SDVTList VTs = getVTList(VT);
6777   SDValue Ops[] = { Op1 };
6778   return getMachineNode(Opcode, dl, VTs, Ops);
6779 }
6780 
6781 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6782                                             EVT VT, SDValue Op1, SDValue Op2) {
6783   SDVTList VTs = getVTList(VT);
6784   SDValue Ops[] = { Op1, Op2 };
6785   return getMachineNode(Opcode, dl, VTs, Ops);
6786 }
6787 
6788 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6789                                             EVT VT, SDValue Op1, SDValue Op2,
6790                                             SDValue Op3) {
6791   SDVTList VTs = getVTList(VT);
6792   SDValue Ops[] = { Op1, Op2, Op3 };
6793   return getMachineNode(Opcode, dl, VTs, Ops);
6794 }
6795 
6796 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6797                                             EVT VT, ArrayRef<SDValue> Ops) {
6798   SDVTList VTs = getVTList(VT);
6799   return getMachineNode(Opcode, dl, VTs, Ops);
6800 }
6801 
6802 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6803                                             EVT VT1, EVT VT2, SDValue Op1,
6804                                             SDValue Op2) {
6805   SDVTList VTs = getVTList(VT1, VT2);
6806   SDValue Ops[] = { Op1, Op2 };
6807   return getMachineNode(Opcode, dl, VTs, Ops);
6808 }
6809 
6810 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6811                                             EVT VT1, EVT VT2, SDValue Op1,
6812                                             SDValue Op2, SDValue Op3) {
6813   SDVTList VTs = getVTList(VT1, VT2);
6814   SDValue Ops[] = { Op1, Op2, Op3 };
6815   return getMachineNode(Opcode, dl, VTs, Ops);
6816 }
6817 
6818 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6819                                             EVT VT1, EVT VT2,
6820                                             ArrayRef<SDValue> Ops) {
6821   SDVTList VTs = getVTList(VT1, VT2);
6822   return getMachineNode(Opcode, dl, VTs, Ops);
6823 }
6824 
6825 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6826                                             EVT VT1, EVT VT2, EVT VT3,
6827                                             SDValue Op1, SDValue Op2) {
6828   SDVTList VTs = getVTList(VT1, VT2, VT3);
6829   SDValue Ops[] = { Op1, Op2 };
6830   return getMachineNode(Opcode, dl, VTs, Ops);
6831 }
6832 
6833 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6834                                             EVT VT1, EVT VT2, EVT VT3,
6835                                             SDValue Op1, SDValue Op2,
6836                                             SDValue Op3) {
6837   SDVTList VTs = getVTList(VT1, VT2, VT3);
6838   SDValue Ops[] = { Op1, Op2, Op3 };
6839   return getMachineNode(Opcode, dl, VTs, Ops);
6840 }
6841 
6842 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6843                                             EVT VT1, EVT VT2, EVT VT3,
6844                                             ArrayRef<SDValue> Ops) {
6845   SDVTList VTs = getVTList(VT1, VT2, VT3);
6846   return getMachineNode(Opcode, dl, VTs, Ops);
6847 }
6848 
6849 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6850                                             ArrayRef<EVT> ResultTys,
6851                                             ArrayRef<SDValue> Ops) {
6852   SDVTList VTs = getVTList(ResultTys);
6853   return getMachineNode(Opcode, dl, VTs, Ops);
6854 }
6855 
6856 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6857                                             SDVTList VTs,
6858                                             ArrayRef<SDValue> Ops) {
6859   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6860   MachineSDNode *N;
6861   void *IP = nullptr;
6862 
6863   if (DoCSE) {
6864     FoldingSetNodeID ID;
6865     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6866     IP = nullptr;
6867     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6868       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
6869     }
6870   }
6871 
6872   // Allocate a new MachineSDNode.
6873   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6874   createOperands(N, Ops);
6875 
6876   if (DoCSE)
6877     CSEMap.InsertNode(N, IP);
6878 
6879   InsertNode(N);
6880   return N;
6881 }
6882 
6883 /// getTargetExtractSubreg - A convenience function for creating
6884 /// TargetOpcode::EXTRACT_SUBREG nodes.
6885 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6886                                              SDValue Operand) {
6887   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6888   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6889                                   VT, Operand, SRIdxVal);
6890   return SDValue(Subreg, 0);
6891 }
6892 
6893 /// getTargetInsertSubreg - A convenience function for creating
6894 /// TargetOpcode::INSERT_SUBREG nodes.
6895 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6896                                             SDValue Operand, SDValue Subreg) {
6897   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6898   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6899                                   VT, Operand, Subreg, SRIdxVal);
6900   return SDValue(Result, 0);
6901 }
6902 
6903 /// getNodeIfExists - Get the specified node if it's already available, or
6904 /// else return NULL.
6905 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6906                                       ArrayRef<SDValue> Ops,
6907                                       const SDNodeFlags Flags) {
6908   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6909     FoldingSetNodeID ID;
6910     AddNodeIDNode(ID, Opcode, VTList, Ops);
6911     void *IP = nullptr;
6912     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6913       E->intersectFlagsWith(Flags);
6914       return E;
6915     }
6916   }
6917   return nullptr;
6918 }
6919 
6920 /// getDbgValue - Creates a SDDbgValue node.
6921 ///
6922 /// SDNode
6923 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
6924                                       SDNode *N, unsigned R, bool IsIndirect,
6925                                       const DebugLoc &DL, unsigned O) {
6926   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6927          "Expected inlined-at fields to agree");
6928   return new (DbgInfo->getAlloc())
6929       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
6930 }
6931 
6932 /// Constant
6933 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
6934                                               DIExpression *Expr,
6935                                               const Value *C,
6936                                               const DebugLoc &DL, unsigned O) {
6937   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6938          "Expected inlined-at fields to agree");
6939   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
6940 }
6941 
6942 /// FrameIndex
6943 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
6944                                                 DIExpression *Expr, unsigned FI,
6945                                                 const DebugLoc &DL,
6946                                                 unsigned O) {
6947   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6948          "Expected inlined-at fields to agree");
6949   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O);
6950 }
6951 
6952 namespace {
6953 
6954 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6955 /// pointed to by a use iterator is deleted, increment the use iterator
6956 /// so that it doesn't dangle.
6957 ///
6958 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6959   SDNode::use_iterator &UI;
6960   SDNode::use_iterator &UE;
6961 
6962   void NodeDeleted(SDNode *N, SDNode *E) override {
6963     // Increment the iterator as needed.
6964     while (UI != UE && N == *UI)
6965       ++UI;
6966   }
6967 
6968 public:
6969   RAUWUpdateListener(SelectionDAG &d,
6970                      SDNode::use_iterator &ui,
6971                      SDNode::use_iterator &ue)
6972     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6973 };
6974 
6975 } // end anonymous namespace
6976 
6977 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6978 /// This can cause recursive merging of nodes in the DAG.
6979 ///
6980 /// This version assumes From has a single result value.
6981 ///
6982 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6983   SDNode *From = FromN.getNode();
6984   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6985          "Cannot replace with this method!");
6986   assert(From != To.getNode() && "Cannot replace uses of with self");
6987 
6988   // Preserve Debug Values
6989   TransferDbgValues(FromN, To);
6990 
6991   // Iterate over all the existing uses of From. New uses will be added
6992   // to the beginning of the use list, which we avoid visiting.
6993   // This specifically avoids visiting uses of From that arise while the
6994   // replacement is happening, because any such uses would be the result
6995   // of CSE: If an existing node looks like From after one of its operands
6996   // is replaced by To, we don't want to replace of all its users with To
6997   // too. See PR3018 for more info.
6998   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6999   RAUWUpdateListener Listener(*this, UI, UE);
7000   while (UI != UE) {
7001     SDNode *User = *UI;
7002 
7003     // This node is about to morph, remove its old self from the CSE maps.
7004     RemoveNodeFromCSEMaps(User);
7005 
7006     // A user can appear in a use list multiple times, and when this
7007     // happens the uses are usually next to each other in the list.
7008     // To help reduce the number of CSE recomputations, process all
7009     // the uses of this user that we can find this way.
7010     do {
7011       SDUse &Use = UI.getUse();
7012       ++UI;
7013       Use.set(To);
7014     } while (UI != UE && *UI == User);
7015 
7016     // Now that we have modified User, add it back to the CSE maps.  If it
7017     // already exists there, recursively merge the results together.
7018     AddModifiedNodeToCSEMaps(User);
7019   }
7020 
7021   // If we just RAUW'd the root, take note.
7022   if (FromN == getRoot())
7023     setRoot(To);
7024 }
7025 
7026 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7027 /// This can cause recursive merging of nodes in the DAG.
7028 ///
7029 /// This version assumes that for each value of From, there is a
7030 /// corresponding value in To in the same position with the same type.
7031 ///
7032 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7033 #ifndef NDEBUG
7034   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7035     assert((!From->hasAnyUseOfValue(i) ||
7036             From->getValueType(i) == To->getValueType(i)) &&
7037            "Cannot use this version of ReplaceAllUsesWith!");
7038 #endif
7039 
7040   // Handle the trivial case.
7041   if (From == To)
7042     return;
7043 
7044   // Preserve Debug Info. Only do this if there's a use.
7045   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7046     if (From->hasAnyUseOfValue(i)) {
7047       assert((i < To->getNumValues()) && "Invalid To location");
7048       TransferDbgValues(SDValue(From, i), SDValue(To, i));
7049     }
7050 
7051   // Iterate over just the existing users of From. See the comments in
7052   // the ReplaceAllUsesWith above.
7053   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7054   RAUWUpdateListener Listener(*this, UI, UE);
7055   while (UI != UE) {
7056     SDNode *User = *UI;
7057 
7058     // This node is about to morph, remove its old self from the CSE maps.
7059     RemoveNodeFromCSEMaps(User);
7060 
7061     // A user can appear in a use list multiple times, and when this
7062     // happens the uses are usually next to each other in the list.
7063     // To help reduce the number of CSE recomputations, process all
7064     // the uses of this user that we can find this way.
7065     do {
7066       SDUse &Use = UI.getUse();
7067       ++UI;
7068       Use.setNode(To);
7069     } while (UI != UE && *UI == User);
7070 
7071     // Now that we have modified User, add it back to the CSE maps.  If it
7072     // already exists there, recursively merge the results together.
7073     AddModifiedNodeToCSEMaps(User);
7074   }
7075 
7076   // If we just RAUW'd the root, take note.
7077   if (From == getRoot().getNode())
7078     setRoot(SDValue(To, getRoot().getResNo()));
7079 }
7080 
7081 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7082 /// This can cause recursive merging of nodes in the DAG.
7083 ///
7084 /// This version can replace From with any result values.  To must match the
7085 /// number and types of values returned by From.
7086 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7087   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7088     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7089 
7090   // Preserve Debug Info.
7091   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7092     TransferDbgValues(SDValue(From, i), *To);
7093 
7094   // Iterate over just the existing users of From. See the comments in
7095   // the ReplaceAllUsesWith above.
7096   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7097   RAUWUpdateListener Listener(*this, UI, UE);
7098   while (UI != UE) {
7099     SDNode *User = *UI;
7100 
7101     // This node is about to morph, remove its old self from the CSE maps.
7102     RemoveNodeFromCSEMaps(User);
7103 
7104     // A user can appear in a use list multiple times, and when this
7105     // happens the uses are usually next to each other in the list.
7106     // To help reduce the number of CSE recomputations, process all
7107     // the uses of this user that we can find this way.
7108     do {
7109       SDUse &Use = UI.getUse();
7110       const SDValue &ToOp = To[Use.getResNo()];
7111       ++UI;
7112       Use.set(ToOp);
7113     } while (UI != UE && *UI == User);
7114 
7115     // Now that we have modified User, add it back to the CSE maps.  If it
7116     // already exists there, recursively merge the results together.
7117     AddModifiedNodeToCSEMaps(User);
7118   }
7119 
7120   // If we just RAUW'd the root, take note.
7121   if (From == getRoot().getNode())
7122     setRoot(SDValue(To[getRoot().getResNo()]));
7123 }
7124 
7125 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7126 /// uses of other values produced by From.getNode() alone.  The Deleted
7127 /// vector is handled the same way as for ReplaceAllUsesWith.
7128 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7129   // Handle the really simple, really trivial case efficiently.
7130   if (From == To) return;
7131 
7132   // Handle the simple, trivial, case efficiently.
7133   if (From.getNode()->getNumValues() == 1) {
7134     ReplaceAllUsesWith(From, To);
7135     return;
7136   }
7137 
7138   // Preserve Debug Info.
7139   TransferDbgValues(From, To);
7140 
7141   // Iterate over just the existing users of From. See the comments in
7142   // the ReplaceAllUsesWith above.
7143   SDNode::use_iterator UI = From.getNode()->use_begin(),
7144                        UE = From.getNode()->use_end();
7145   RAUWUpdateListener Listener(*this, UI, UE);
7146   while (UI != UE) {
7147     SDNode *User = *UI;
7148     bool UserRemovedFromCSEMaps = false;
7149 
7150     // A user can appear in a use list multiple times, and when this
7151     // happens the uses are usually next to each other in the list.
7152     // To help reduce the number of CSE recomputations, process all
7153     // the uses of this user that we can find this way.
7154     do {
7155       SDUse &Use = UI.getUse();
7156 
7157       // Skip uses of different values from the same node.
7158       if (Use.getResNo() != From.getResNo()) {
7159         ++UI;
7160         continue;
7161       }
7162 
7163       // If this node hasn't been modified yet, it's still in the CSE maps,
7164       // so remove its old self from the CSE maps.
7165       if (!UserRemovedFromCSEMaps) {
7166         RemoveNodeFromCSEMaps(User);
7167         UserRemovedFromCSEMaps = true;
7168       }
7169 
7170       ++UI;
7171       Use.set(To);
7172     } while (UI != UE && *UI == User);
7173 
7174     // We are iterating over all uses of the From node, so if a use
7175     // doesn't use the specific value, no changes are made.
7176     if (!UserRemovedFromCSEMaps)
7177       continue;
7178 
7179     // Now that we have modified User, add it back to the CSE maps.  If it
7180     // already exists there, recursively merge the results together.
7181     AddModifiedNodeToCSEMaps(User);
7182   }
7183 
7184   // If we just RAUW'd the root, take note.
7185   if (From == getRoot())
7186     setRoot(To);
7187 }
7188 
7189 namespace {
7190 
7191   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7192   /// to record information about a use.
7193   struct UseMemo {
7194     SDNode *User;
7195     unsigned Index;
7196     SDUse *Use;
7197   };
7198 
7199   /// operator< - Sort Memos by User.
7200   bool operator<(const UseMemo &L, const UseMemo &R) {
7201     return (intptr_t)L.User < (intptr_t)R.User;
7202   }
7203 
7204 } // end anonymous namespace
7205 
7206 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7207 /// uses of other values produced by From.getNode() alone.  The same value
7208 /// may appear in both the From and To list.  The Deleted vector is
7209 /// handled the same way as for ReplaceAllUsesWith.
7210 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7211                                               const SDValue *To,
7212                                               unsigned Num){
7213   // Handle the simple, trivial case efficiently.
7214   if (Num == 1)
7215     return ReplaceAllUsesOfValueWith(*From, *To);
7216 
7217   TransferDbgValues(*From, *To);
7218 
7219   // Read up all the uses and make records of them. This helps
7220   // processing new uses that are introduced during the
7221   // replacement process.
7222   SmallVector<UseMemo, 4> Uses;
7223   for (unsigned i = 0; i != Num; ++i) {
7224     unsigned FromResNo = From[i].getResNo();
7225     SDNode *FromNode = From[i].getNode();
7226     for (SDNode::use_iterator UI = FromNode->use_begin(),
7227          E = FromNode->use_end(); UI != E; ++UI) {
7228       SDUse &Use = UI.getUse();
7229       if (Use.getResNo() == FromResNo) {
7230         UseMemo Memo = { *UI, i, &Use };
7231         Uses.push_back(Memo);
7232       }
7233     }
7234   }
7235 
7236   // Sort the uses, so that all the uses from a given User are together.
7237   std::sort(Uses.begin(), Uses.end());
7238 
7239   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
7240        UseIndex != UseIndexEnd; ) {
7241     // We know that this user uses some value of From.  If it is the right
7242     // value, update it.
7243     SDNode *User = Uses[UseIndex].User;
7244 
7245     // This node is about to morph, remove its old self from the CSE maps.
7246     RemoveNodeFromCSEMaps(User);
7247 
7248     // The Uses array is sorted, so all the uses for a given User
7249     // are next to each other in the list.
7250     // To help reduce the number of CSE recomputations, process all
7251     // the uses of this user that we can find this way.
7252     do {
7253       unsigned i = Uses[UseIndex].Index;
7254       SDUse &Use = *Uses[UseIndex].Use;
7255       ++UseIndex;
7256 
7257       Use.set(To[i]);
7258     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
7259 
7260     // Now that we have modified User, add it back to the CSE maps.  If it
7261     // already exists there, recursively merge the results together.
7262     AddModifiedNodeToCSEMaps(User);
7263   }
7264 }
7265 
7266 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
7267 /// based on their topological order. It returns the maximum id and a vector
7268 /// of the SDNodes* in assigned order by reference.
7269 unsigned SelectionDAG::AssignTopologicalOrder() {
7270   unsigned DAGSize = 0;
7271 
7272   // SortedPos tracks the progress of the algorithm. Nodes before it are
7273   // sorted, nodes after it are unsorted. When the algorithm completes
7274   // it is at the end of the list.
7275   allnodes_iterator SortedPos = allnodes_begin();
7276 
7277   // Visit all the nodes. Move nodes with no operands to the front of
7278   // the list immediately. Annotate nodes that do have operands with their
7279   // operand count. Before we do this, the Node Id fields of the nodes
7280   // may contain arbitrary values. After, the Node Id fields for nodes
7281   // before SortedPos will contain the topological sort index, and the
7282   // Node Id fields for nodes At SortedPos and after will contain the
7283   // count of outstanding operands.
7284   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
7285     SDNode *N = &*I++;
7286     checkForCycles(N, this);
7287     unsigned Degree = N->getNumOperands();
7288     if (Degree == 0) {
7289       // A node with no uses, add it to the result array immediately.
7290       N->setNodeId(DAGSize++);
7291       allnodes_iterator Q(N);
7292       if (Q != SortedPos)
7293         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
7294       assert(SortedPos != AllNodes.end() && "Overran node list");
7295       ++SortedPos;
7296     } else {
7297       // Temporarily use the Node Id as scratch space for the degree count.
7298       N->setNodeId(Degree);
7299     }
7300   }
7301 
7302   // Visit all the nodes. As we iterate, move nodes into sorted order,
7303   // such that by the time the end is reached all nodes will be sorted.
7304   for (SDNode &Node : allnodes()) {
7305     SDNode *N = &Node;
7306     checkForCycles(N, this);
7307     // N is in sorted position, so all its uses have one less operand
7308     // that needs to be sorted.
7309     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7310          UI != UE; ++UI) {
7311       SDNode *P = *UI;
7312       unsigned Degree = P->getNodeId();
7313       assert(Degree != 0 && "Invalid node degree");
7314       --Degree;
7315       if (Degree == 0) {
7316         // All of P's operands are sorted, so P may sorted now.
7317         P->setNodeId(DAGSize++);
7318         if (P->getIterator() != SortedPos)
7319           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7320         assert(SortedPos != AllNodes.end() && "Overran node list");
7321         ++SortedPos;
7322       } else {
7323         // Update P's outstanding operand count.
7324         P->setNodeId(Degree);
7325       }
7326     }
7327     if (Node.getIterator() == SortedPos) {
7328 #ifndef NDEBUG
7329       allnodes_iterator I(N);
7330       SDNode *S = &*++I;
7331       dbgs() << "Overran sorted position:\n";
7332       S->dumprFull(this); dbgs() << "\n";
7333       dbgs() << "Checking if this is due to cycles\n";
7334       checkForCycles(this, true);
7335 #endif
7336       llvm_unreachable(nullptr);
7337     }
7338   }
7339 
7340   assert(SortedPos == AllNodes.end() &&
7341          "Topological sort incomplete!");
7342   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
7343          "First node in topological sort is not the entry token!");
7344   assert(AllNodes.front().getNodeId() == 0 &&
7345          "First node in topological sort has non-zero id!");
7346   assert(AllNodes.front().getNumOperands() == 0 &&
7347          "First node in topological sort has operands!");
7348   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
7349          "Last node in topologic sort has unexpected id!");
7350   assert(AllNodes.back().use_empty() &&
7351          "Last node in topologic sort has users!");
7352   assert(DAGSize == allnodes_size() && "Node count mismatch!");
7353   return DAGSize;
7354 }
7355 
7356 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
7357 /// value is produced by SD.
7358 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
7359   if (SD) {
7360     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
7361     SD->setHasDebugValue(true);
7362   }
7363   DbgInfo->add(DB, SD, isParameter);
7364 }
7365 
7366 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
7367 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
7368   if (From == To || !From.getNode()->getHasDebugValue())
7369     return;
7370   SDNode *FromNode = From.getNode();
7371   SDNode *ToNode = To.getNode();
7372   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
7373   SmallVector<SDDbgValue *, 2> ClonedDVs;
7374   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
7375        I != E; ++I) {
7376     SDDbgValue *Dbg = *I;
7377     // Only add Dbgvalues attached to same ResNo.
7378     if (Dbg->getKind() == SDDbgValue::SDNODE &&
7379         Dbg->getSDNode() == From.getNode() &&
7380         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
7381       assert(FromNode != ToNode &&
7382              "Should not transfer Debug Values intranode");
7383       SDDbgValue *Clone = getDbgValue(Dbg->getVariable(), Dbg->getExpression(),
7384                                       ToNode, To.getResNo(), Dbg->isIndirect(),
7385                                       Dbg->getDebugLoc(), Dbg->getOrder());
7386       ClonedDVs.push_back(Clone);
7387       Dbg->setIsInvalidated();
7388     }
7389   }
7390   for (SDDbgValue *I : ClonedDVs)
7391     AddDbgValue(I, ToNode, false);
7392 }
7393 
7394 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
7395                                                    SDValue NewMemOp) {
7396   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
7397   // The new memory operation must have the same position as the old load in
7398   // terms of memory dependency. Create a TokenFactor for the old load and new
7399   // memory operation and update uses of the old load's output chain to use that
7400   // TokenFactor.
7401   SDValue OldChain = SDValue(OldLoad, 1);
7402   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
7403   if (!OldLoad->hasAnyUseOfValue(1))
7404     return NewChain;
7405 
7406   SDValue TokenFactor =
7407       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
7408   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
7409   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
7410   return TokenFactor;
7411 }
7412 
7413 //===----------------------------------------------------------------------===//
7414 //                              SDNode Class
7415 //===----------------------------------------------------------------------===//
7416 
7417 bool llvm::isNullConstant(SDValue V) {
7418   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7419   return Const != nullptr && Const->isNullValue();
7420 }
7421 
7422 bool llvm::isNullFPConstant(SDValue V) {
7423   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
7424   return Const != nullptr && Const->isZero() && !Const->isNegative();
7425 }
7426 
7427 bool llvm::isAllOnesConstant(SDValue V) {
7428   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7429   return Const != nullptr && Const->isAllOnesValue();
7430 }
7431 
7432 bool llvm::isOneConstant(SDValue V) {
7433   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7434   return Const != nullptr && Const->isOne();
7435 }
7436 
7437 bool llvm::isBitwiseNot(SDValue V) {
7438   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
7439 }
7440 
7441 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
7442   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
7443     return CN;
7444 
7445   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7446     BitVector UndefElements;
7447     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
7448 
7449     // BuildVectors can truncate their operands. Ignore that case here.
7450     // FIXME: We blindly ignore splats which include undef which is overly
7451     // pessimistic.
7452     if (CN && UndefElements.none() &&
7453         CN->getValueType(0) == N.getValueType().getScalarType())
7454       return CN;
7455   }
7456 
7457   return nullptr;
7458 }
7459 
7460 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
7461   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
7462     return CN;
7463 
7464   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7465     BitVector UndefElements;
7466     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
7467 
7468     if (CN && UndefElements.none())
7469       return CN;
7470   }
7471 
7472   return nullptr;
7473 }
7474 
7475 HandleSDNode::~HandleSDNode() {
7476   DropOperands();
7477 }
7478 
7479 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
7480                                          const DebugLoc &DL,
7481                                          const GlobalValue *GA, EVT VT,
7482                                          int64_t o, unsigned char TF)
7483     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
7484   TheGlobal = GA;
7485 }
7486 
7487 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
7488                                          EVT VT, unsigned SrcAS,
7489                                          unsigned DestAS)
7490     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
7491       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
7492 
7493 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
7494                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
7495     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
7496   MemSDNodeBits.IsVolatile = MMO->isVolatile();
7497   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
7498   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
7499   MemSDNodeBits.IsInvariant = MMO->isInvariant();
7500 
7501   // We check here that the size of the memory operand fits within the size of
7502   // the MMO. This is because the MMO might indicate only a possible address
7503   // range instead of specifying the affected memory addresses precisely.
7504   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
7505 }
7506 
7507 /// Profile - Gather unique data for the node.
7508 ///
7509 void SDNode::Profile(FoldingSetNodeID &ID) const {
7510   AddNodeIDNode(ID, this);
7511 }
7512 
7513 namespace {
7514 
7515   struct EVTArray {
7516     std::vector<EVT> VTs;
7517 
7518     EVTArray() {
7519       VTs.reserve(MVT::LAST_VALUETYPE);
7520       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
7521         VTs.push_back(MVT((MVT::SimpleValueType)i));
7522     }
7523   };
7524 
7525 } // end anonymous namespace
7526 
7527 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
7528 static ManagedStatic<EVTArray> SimpleVTArray;
7529 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
7530 
7531 /// getValueTypeList - Return a pointer to the specified value type.
7532 ///
7533 const EVT *SDNode::getValueTypeList(EVT VT) {
7534   if (VT.isExtended()) {
7535     sys::SmartScopedLock<true> Lock(*VTMutex);
7536     return &(*EVTs->insert(VT).first);
7537   } else {
7538     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
7539            "Value type out of range!");
7540     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
7541   }
7542 }
7543 
7544 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
7545 /// indicated value.  This method ignores uses of other values defined by this
7546 /// operation.
7547 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
7548   assert(Value < getNumValues() && "Bad value!");
7549 
7550   // TODO: Only iterate over uses of a given value of the node
7551   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
7552     if (UI.getUse().getResNo() == Value) {
7553       if (NUses == 0)
7554         return false;
7555       --NUses;
7556     }
7557   }
7558 
7559   // Found exactly the right number of uses?
7560   return NUses == 0;
7561 }
7562 
7563 /// hasAnyUseOfValue - Return true if there are any use of the indicated
7564 /// value. This method ignores uses of other values defined by this operation.
7565 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
7566   assert(Value < getNumValues() && "Bad value!");
7567 
7568   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
7569     if (UI.getUse().getResNo() == Value)
7570       return true;
7571 
7572   return false;
7573 }
7574 
7575 /// isOnlyUserOf - Return true if this node is the only use of N.
7576 bool SDNode::isOnlyUserOf(const SDNode *N) const {
7577   bool Seen = false;
7578   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7579     SDNode *User = *I;
7580     if (User == this)
7581       Seen = true;
7582     else
7583       return false;
7584   }
7585 
7586   return Seen;
7587 }
7588 
7589 /// Return true if the only users of N are contained in Nodes.
7590 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
7591   bool Seen = false;
7592   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7593     SDNode *User = *I;
7594     if (llvm::any_of(Nodes,
7595                      [&User](const SDNode *Node) { return User == Node; }))
7596       Seen = true;
7597     else
7598       return false;
7599   }
7600 
7601   return Seen;
7602 }
7603 
7604 /// isOperand - Return true if this node is an operand of N.
7605 bool SDValue::isOperandOf(const SDNode *N) const {
7606   for (const SDValue &Op : N->op_values())
7607     if (*this == Op)
7608       return true;
7609   return false;
7610 }
7611 
7612 bool SDNode::isOperandOf(const SDNode *N) const {
7613   for (const SDValue &Op : N->op_values())
7614     if (this == Op.getNode())
7615       return true;
7616   return false;
7617 }
7618 
7619 /// reachesChainWithoutSideEffects - Return true if this operand (which must
7620 /// be a chain) reaches the specified operand without crossing any
7621 /// side-effecting instructions on any chain path.  In practice, this looks
7622 /// through token factors and non-volatile loads.  In order to remain efficient,
7623 /// this only looks a couple of nodes in, it does not do an exhaustive search.
7624 ///
7625 /// Note that we only need to examine chains when we're searching for
7626 /// side-effects; SelectionDAG requires that all side-effects are represented
7627 /// by chains, even if another operand would force a specific ordering. This
7628 /// constraint is necessary to allow transformations like splitting loads.
7629 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
7630                                              unsigned Depth) const {
7631   if (*this == Dest) return true;
7632 
7633   // Don't search too deeply, we just want to be able to see through
7634   // TokenFactor's etc.
7635   if (Depth == 0) return false;
7636 
7637   // If this is a token factor, all inputs to the TF happen in parallel.
7638   if (getOpcode() == ISD::TokenFactor) {
7639     // First, try a shallow search.
7640     if (is_contained((*this)->ops(), Dest)) {
7641       // We found the chain we want as an operand of this TokenFactor.
7642       // Essentially, we reach the chain without side-effects if we could
7643       // serialize the TokenFactor into a simple chain of operations with
7644       // Dest as the last operation. This is automatically true if the
7645       // chain has one use: there are no other ordering constraints.
7646       // If the chain has more than one use, we give up: some other
7647       // use of Dest might force a side-effect between Dest and the current
7648       // node.
7649       if (Dest.hasOneUse())
7650         return true;
7651     }
7652     // Next, try a deep search: check whether every operand of the TokenFactor
7653     // reaches Dest.
7654     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
7655       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
7656     });
7657   }
7658 
7659   // Loads don't have side effects, look through them.
7660   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
7661     if (!Ld->isVolatile())
7662       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
7663   }
7664   return false;
7665 }
7666 
7667 bool SDNode::hasPredecessor(const SDNode *N) const {
7668   SmallPtrSet<const SDNode *, 32> Visited;
7669   SmallVector<const SDNode *, 16> Worklist;
7670   Worklist.push_back(this);
7671   return hasPredecessorHelper(N, Visited, Worklist);
7672 }
7673 
7674 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
7675   this->Flags.intersectWith(Flags);
7676 }
7677 
7678 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7679   assert(N->getNumValues() == 1 &&
7680          "Can't unroll a vector with multiple results!");
7681 
7682   EVT VT = N->getValueType(0);
7683   unsigned NE = VT.getVectorNumElements();
7684   EVT EltVT = VT.getVectorElementType();
7685   SDLoc dl(N);
7686 
7687   SmallVector<SDValue, 8> Scalars;
7688   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7689 
7690   // If ResNE is 0, fully unroll the vector op.
7691   if (ResNE == 0)
7692     ResNE = NE;
7693   else if (NE > ResNE)
7694     NE = ResNE;
7695 
7696   unsigned i;
7697   for (i= 0; i != NE; ++i) {
7698     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7699       SDValue Operand = N->getOperand(j);
7700       EVT OperandVT = Operand.getValueType();
7701       if (OperandVT.isVector()) {
7702         // A vector operand; extract a single element.
7703         EVT OperandEltVT = OperandVT.getVectorElementType();
7704         Operands[j] =
7705             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7706                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7707       } else {
7708         // A scalar operand; just use it as is.
7709         Operands[j] = Operand;
7710       }
7711     }
7712 
7713     switch (N->getOpcode()) {
7714     default: {
7715       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7716                                 N->getFlags()));
7717       break;
7718     }
7719     case ISD::VSELECT:
7720       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7721       break;
7722     case ISD::SHL:
7723     case ISD::SRA:
7724     case ISD::SRL:
7725     case ISD::ROTL:
7726     case ISD::ROTR:
7727       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7728                                getShiftAmountOperand(Operands[0].getValueType(),
7729                                                      Operands[1])));
7730       break;
7731     case ISD::SIGN_EXTEND_INREG:
7732     case ISD::FP_ROUND_INREG: {
7733       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7734       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7735                                 Operands[0],
7736                                 getValueType(ExtVT)));
7737     }
7738     }
7739   }
7740 
7741   for (; i < ResNE; ++i)
7742     Scalars.push_back(getUNDEF(EltVT));
7743 
7744   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
7745   return getBuildVector(VecVT, dl, Scalars);
7746 }
7747 
7748 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7749                                                   LoadSDNode *Base,
7750                                                   unsigned Bytes,
7751                                                   int Dist) const {
7752   if (LD->isVolatile() || Base->isVolatile())
7753     return false;
7754   if (LD->isIndexed() || Base->isIndexed())
7755     return false;
7756   if (LD->getChain() != Base->getChain())
7757     return false;
7758   EVT VT = LD->getValueType(0);
7759   if (VT.getSizeInBits() / 8 != Bytes)
7760     return false;
7761 
7762   SDValue Loc = LD->getOperand(1);
7763   SDValue BaseLoc = Base->getOperand(1);
7764 
7765   auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this);
7766   auto LocDecomp = BaseIndexOffset::match(Loc, *this);
7767 
7768   int64_t Offset = 0;
7769   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
7770     return (Dist * Bytes == Offset);
7771   return false;
7772 }
7773 
7774 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7775 /// it cannot be inferred.
7776 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7777   // If this is a GlobalAddress + cst, return the alignment.
7778   const GlobalValue *GV;
7779   int64_t GVOffset = 0;
7780   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7781     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7782     KnownBits Known(PtrWidth);
7783     llvm::computeKnownBits(GV, Known, getDataLayout());
7784     unsigned AlignBits = Known.countMinTrailingZeros();
7785     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7786     if (Align)
7787       return MinAlign(Align, GVOffset);
7788   }
7789 
7790   // If this is a direct reference to a stack slot, use information about the
7791   // stack slot's alignment.
7792   int FrameIdx = 1 << 31;
7793   int64_t FrameOffset = 0;
7794   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7795     FrameIdx = FI->getIndex();
7796   } else if (isBaseWithConstantOffset(Ptr) &&
7797              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7798     // Handle FI+Cst
7799     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7800     FrameOffset = Ptr.getConstantOperandVal(1);
7801   }
7802 
7803   if (FrameIdx != (1 << 31)) {
7804     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7805     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7806                                     FrameOffset);
7807     return FIInfoAlign;
7808   }
7809 
7810   return 0;
7811 }
7812 
7813 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7814 /// which is split (or expanded) into two not necessarily identical pieces.
7815 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7816   // Currently all types are split in half.
7817   EVT LoVT, HiVT;
7818   if (!VT.isVector())
7819     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7820   else
7821     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
7822 
7823   return std::make_pair(LoVT, HiVT);
7824 }
7825 
7826 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7827 /// low/high part.
7828 std::pair<SDValue, SDValue>
7829 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7830                           const EVT &HiVT) {
7831   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7832          N.getValueType().getVectorNumElements() &&
7833          "More vector elements requested than available!");
7834   SDValue Lo, Hi;
7835   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7836                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7837   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7838                getConstant(LoVT.getVectorNumElements(), DL,
7839                            TLI->getVectorIdxTy(getDataLayout())));
7840   return std::make_pair(Lo, Hi);
7841 }
7842 
7843 void SelectionDAG::ExtractVectorElements(SDValue Op,
7844                                          SmallVectorImpl<SDValue> &Args,
7845                                          unsigned Start, unsigned Count) {
7846   EVT VT = Op.getValueType();
7847   if (Count == 0)
7848     Count = VT.getVectorNumElements();
7849 
7850   EVT EltVT = VT.getVectorElementType();
7851   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7852   SDLoc SL(Op);
7853   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7854     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7855                            Op, getConstant(i, SL, IdxTy)));
7856   }
7857 }
7858 
7859 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7860 unsigned GlobalAddressSDNode::getAddressSpace() const {
7861   return getGlobal()->getType()->getAddressSpace();
7862 }
7863 
7864 Type *ConstantPoolSDNode::getType() const {
7865   if (isMachineConstantPoolEntry())
7866     return Val.MachineCPVal->getType();
7867   return Val.ConstVal->getType();
7868 }
7869 
7870 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
7871                                         unsigned &SplatBitSize,
7872                                         bool &HasAnyUndefs,
7873                                         unsigned MinSplatBits,
7874                                         bool IsBigEndian) const {
7875   EVT VT = getValueType(0);
7876   assert(VT.isVector() && "Expected a vector type");
7877   unsigned VecWidth = VT.getSizeInBits();
7878   if (MinSplatBits > VecWidth)
7879     return false;
7880 
7881   // FIXME: The widths are based on this node's type, but build vectors can
7882   // truncate their operands.
7883   SplatValue = APInt(VecWidth, 0);
7884   SplatUndef = APInt(VecWidth, 0);
7885 
7886   // Get the bits. Bits with undefined values (when the corresponding element
7887   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7888   // in SplatValue. If any of the values are not constant, give up and return
7889   // false.
7890   unsigned int NumOps = getNumOperands();
7891   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
7892   unsigned EltWidth = VT.getScalarSizeInBits();
7893 
7894   for (unsigned j = 0; j < NumOps; ++j) {
7895     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
7896     SDValue OpVal = getOperand(i);
7897     unsigned BitPos = j * EltWidth;
7898 
7899     if (OpVal.isUndef())
7900       SplatUndef.setBits(BitPos, BitPos + EltWidth);
7901     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
7902       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
7903     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7904       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
7905     else
7906       return false;
7907   }
7908 
7909   // The build_vector is all constants or undefs. Find the smallest element
7910   // size that splats the vector.
7911   HasAnyUndefs = (SplatUndef != 0);
7912 
7913   // FIXME: This does not work for vectors with elements less than 8 bits.
7914   while (VecWidth > 8) {
7915     unsigned HalfSize = VecWidth / 2;
7916     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7917     APInt LowValue = SplatValue.trunc(HalfSize);
7918     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7919     APInt LowUndef = SplatUndef.trunc(HalfSize);
7920 
7921     // If the two halves do not match (ignoring undef bits), stop here.
7922     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7923         MinSplatBits > HalfSize)
7924       break;
7925 
7926     SplatValue = HighValue | LowValue;
7927     SplatUndef = HighUndef & LowUndef;
7928 
7929     VecWidth = HalfSize;
7930   }
7931 
7932   SplatBitSize = VecWidth;
7933   return true;
7934 }
7935 
7936 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7937   if (UndefElements) {
7938     UndefElements->clear();
7939     UndefElements->resize(getNumOperands());
7940   }
7941   SDValue Splatted;
7942   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7943     SDValue Op = getOperand(i);
7944     if (Op.isUndef()) {
7945       if (UndefElements)
7946         (*UndefElements)[i] = true;
7947     } else if (!Splatted) {
7948       Splatted = Op;
7949     } else if (Splatted != Op) {
7950       return SDValue();
7951     }
7952   }
7953 
7954   if (!Splatted) {
7955     assert(getOperand(0).isUndef() &&
7956            "Can only have a splat without a constant for all undefs.");
7957     return getOperand(0);
7958   }
7959 
7960   return Splatted;
7961 }
7962 
7963 ConstantSDNode *
7964 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7965   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7966 }
7967 
7968 ConstantFPSDNode *
7969 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7970   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7971 }
7972 
7973 int32_t
7974 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7975                                                    uint32_t BitWidth) const {
7976   if (ConstantFPSDNode *CN =
7977           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7978     bool IsExact;
7979     APSInt IntVal(BitWidth);
7980     const APFloat &APF = CN->getValueAPF();
7981     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7982             APFloat::opOK ||
7983         !IsExact)
7984       return -1;
7985 
7986     return IntVal.exactLogBase2();
7987   }
7988   return -1;
7989 }
7990 
7991 bool BuildVectorSDNode::isConstant() const {
7992   for (const SDValue &Op : op_values()) {
7993     unsigned Opc = Op.getOpcode();
7994     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7995       return false;
7996   }
7997   return true;
7998 }
7999 
8000 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8001   // Find the first non-undef value in the shuffle mask.
8002   unsigned i, e;
8003   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8004     /* search */;
8005 
8006   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8007 
8008   // Make sure all remaining elements are either undef or the same as the first
8009   // non-undef value.
8010   for (int Idx = Mask[i]; i != e; ++i)
8011     if (Mask[i] >= 0 && Mask[i] != Idx)
8012       return false;
8013   return true;
8014 }
8015 
8016 // \brief Returns the SDNode if it is a constant integer BuildVector
8017 // or constant integer.
8018 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8019   if (isa<ConstantSDNode>(N))
8020     return N.getNode();
8021   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8022     return N.getNode();
8023   // Treat a GlobalAddress supporting constant offset folding as a
8024   // constant integer.
8025   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8026     if (GA->getOpcode() == ISD::GlobalAddress &&
8027         TLI->isOffsetFoldingLegal(GA))
8028       return GA;
8029   return nullptr;
8030 }
8031 
8032 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8033   if (isa<ConstantFPSDNode>(N))
8034     return N.getNode();
8035 
8036   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8037     return N.getNode();
8038 
8039   return nullptr;
8040 }
8041 
8042 #ifndef NDEBUG
8043 static void checkForCyclesHelper(const SDNode *N,
8044                                  SmallPtrSetImpl<const SDNode*> &Visited,
8045                                  SmallPtrSetImpl<const SDNode*> &Checked,
8046                                  const llvm::SelectionDAG *DAG) {
8047   // If this node has already been checked, don't check it again.
8048   if (Checked.count(N))
8049     return;
8050 
8051   // If a node has already been visited on this depth-first walk, reject it as
8052   // a cycle.
8053   if (!Visited.insert(N).second) {
8054     errs() << "Detected cycle in SelectionDAG\n";
8055     dbgs() << "Offending node:\n";
8056     N->dumprFull(DAG); dbgs() << "\n";
8057     abort();
8058   }
8059 
8060   for (const SDValue &Op : N->op_values())
8061     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8062 
8063   Checked.insert(N);
8064   Visited.erase(N);
8065 }
8066 #endif
8067 
8068 void llvm::checkForCycles(const llvm::SDNode *N,
8069                           const llvm::SelectionDAG *DAG,
8070                           bool force) {
8071 #ifndef NDEBUG
8072   bool check = force;
8073 #ifdef EXPENSIVE_CHECKS
8074   check = true;
8075 #endif  // EXPENSIVE_CHECKS
8076   if (check) {
8077     assert(N && "Checking nonexistent SDNode");
8078     SmallPtrSet<const SDNode*, 32> visited;
8079     SmallPtrSet<const SDNode*, 32> checked;
8080     checkForCyclesHelper(N, visited, checked, DAG);
8081   }
8082 #endif  // !NDEBUG
8083 }
8084 
8085 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8086   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8087 }
8088