1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/Constant.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/ManagedStatic.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/Mutex.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetOptions.h" 65 #include "llvm/Target/TargetRegisterInfo.h" 66 #include "llvm/Target/TargetSubtargetInfo.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg) { 93 DEBUG( 94 dbgs() << Msg; 95 V.dump(); 96 ); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConstantFPSDNode Class 101 //===----------------------------------------------------------------------===// 102 103 /// isExactlyValue - We don't rely on operator== working on double values, as 104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 105 /// As such, this method can be used to do an exact bit-for-bit comparison of 106 /// two floating point values. 107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 108 return getValueAPF().bitwiseIsEqual(V); 109 } 110 111 bool ConstantFPSDNode::isValueValidForType(EVT VT, 112 const APFloat& Val) { 113 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 114 115 // convert modifies in place, so make a copy. 116 APFloat Val2 = APFloat(Val); 117 bool losesInfo; 118 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 119 APFloat::rmNearestTiesToEven, 120 &losesInfo); 121 return !losesInfo; 122 } 123 124 //===----------------------------------------------------------------------===// 125 // ISD Namespace 126 //===----------------------------------------------------------------------===// 127 128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 129 auto *BV = dyn_cast<BuildVectorSDNode>(N); 130 if (!BV) 131 return false; 132 133 APInt SplatUndef; 134 unsigned SplatBitSize; 135 bool HasUndefs; 136 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 137 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 138 EltSize) && 139 EltSize == SplatBitSize; 140 } 141 142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 143 // specializations of the more general isConstantSplatVector()? 144 145 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 unsigned i = 0, e = N->getNumOperands(); 153 154 // Skip over all of the undef values. 155 while (i != e && N->getOperand(i).isUndef()) 156 ++i; 157 158 // Do not accept an all-undef vector. 159 if (i == e) return false; 160 161 // Do not accept build_vectors that aren't all constants or which have non-~0 162 // elements. We have to be a bit careful here, as the type of the constant 163 // may not be the same as the type of the vector elements due to type 164 // legalization (the elements are promoted to a legal type for the target and 165 // a vector of a type may be legal when the base element type is not). 166 // We only want to check enough bits to cover the vector elements, because 167 // we care if the resultant vector is all ones, not whether the individual 168 // constants are. 169 SDValue NotZero = N->getOperand(i); 170 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 172 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 173 return false; 174 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 175 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 176 return false; 177 } else 178 return false; 179 180 // Okay, we have at least one ~0 value, check to see if the rest match or are 181 // undefs. Even with the above element type twiddling, this should be OK, as 182 // the same type legalization should have applied to all the elements. 183 for (++i; i != e; ++i) 184 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 185 return false; 186 return true; 187 } 188 189 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 190 // Look through a bit convert. 191 while (N->getOpcode() == ISD::BITCAST) 192 N = N->getOperand(0).getNode(); 193 194 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 195 196 bool IsAllUndef = true; 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 IsAllUndef = false; 201 // Do not accept build_vectors that aren't all constants or which have non-0 202 // elements. We have to be a bit careful here, as the type of the constant 203 // may not be the same as the type of the vector elements due to type 204 // legalization (the elements are promoted to a legal type for the target 205 // and a vector of a type may be legal when the base element type is not). 206 // We only want to check enough bits to cover the vector elements, because 207 // we care if the resultant vector is all zeros, not whether the individual 208 // constants are. 209 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 210 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 211 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 212 return false; 213 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 214 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 215 return false; 216 } else 217 return false; 218 } 219 220 // Do not accept an all-undef vector. 221 if (IsAllUndef) 222 return false; 223 return true; 224 } 225 226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 227 if (N->getOpcode() != ISD::BUILD_VECTOR) 228 return false; 229 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 if (!isa<ConstantSDNode>(Op)) 234 return false; 235 } 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantFPSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::allOperandsUndef(const SDNode *N) { 253 // Return false if the node has no operands. 254 // This is "logically inconsistent" with the definition of "all" but 255 // is probably the desired behavior. 256 if (N->getNumOperands() == 0) 257 return false; 258 259 for (const SDValue &Op : N->op_values()) 260 if (!Op.isUndef()) 261 return false; 262 263 return true; 264 } 265 266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 267 switch (ExtType) { 268 case ISD::EXTLOAD: 269 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 270 case ISD::SEXTLOAD: 271 return ISD::SIGN_EXTEND; 272 case ISD::ZEXTLOAD: 273 return ISD::ZERO_EXTEND; 274 default: 275 break; 276 } 277 278 llvm_unreachable("Invalid LoadExtType"); 279 } 280 281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 282 // To perform this operation, we just need to swap the L and G bits of the 283 // operation. 284 unsigned OldL = (Operation >> 2) & 1; 285 unsigned OldG = (Operation >> 1) & 1; 286 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 287 (OldL << 1) | // New G bit 288 (OldG << 2)); // New L bit. 289 } 290 291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 292 unsigned Operation = Op; 293 if (isInteger) 294 Operation ^= 7; // Flip L, G, E bits, but not U. 295 else 296 Operation ^= 15; // Flip all of the condition bits. 297 298 if (Operation > ISD::SETTRUE2) 299 Operation &= ~8; // Don't let N and U bits get set. 300 301 return ISD::CondCode(Operation); 302 } 303 304 /// For an integer comparison, return 1 if the comparison is a signed operation 305 /// and 2 if the result is an unsigned comparison. Return zero if the operation 306 /// does not depend on the sign of the input (setne and seteq). 307 static int isSignedOp(ISD::CondCode Opcode) { 308 switch (Opcode) { 309 default: llvm_unreachable("Illegal integer setcc operation!"); 310 case ISD::SETEQ: 311 case ISD::SETNE: return 0; 312 case ISD::SETLT: 313 case ISD::SETLE: 314 case ISD::SETGT: 315 case ISD::SETGE: return 1; 316 case ISD::SETULT: 317 case ISD::SETULE: 318 case ISD::SETUGT: 319 case ISD::SETUGE: return 2; 320 } 321 } 322 323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 324 bool IsInteger) { 325 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 326 // Cannot fold a signed integer setcc with an unsigned integer setcc. 327 return ISD::SETCC_INVALID; 328 329 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 330 331 // If the N and U bits get set, then the resultant comparison DOES suddenly 332 // care about orderedness, and it is true when ordered. 333 if (Op > ISD::SETTRUE2) 334 Op &= ~16; // Clear the U bit if the N bit is set. 335 336 // Canonicalize illegal integer setcc's. 337 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 338 Op = ISD::SETNE; 339 340 return ISD::CondCode(Op); 341 } 342 343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 344 bool IsInteger) { 345 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 346 // Cannot fold a signed setcc with an unsigned setcc. 347 return ISD::SETCC_INVALID; 348 349 // Combine all of the condition bits. 350 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 351 352 // Canonicalize illegal integer setcc's. 353 if (IsInteger) { 354 switch (Result) { 355 default: break; 356 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 357 case ISD::SETOEQ: // SETEQ & SETU[LG]E 358 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 359 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 360 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 361 } 362 } 363 364 return Result; 365 } 366 367 //===----------------------------------------------------------------------===// 368 // SDNode Profile Support 369 //===----------------------------------------------------------------------===// 370 371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 373 ID.AddInteger(OpC); 374 } 375 376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 377 /// solely with their pointer. 378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 379 ID.AddPointer(VTList.VTs); 380 } 381 382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 383 static void AddNodeIDOperands(FoldingSetNodeID &ID, 384 ArrayRef<SDValue> Ops) { 385 for (auto& Op : Ops) { 386 ID.AddPointer(Op.getNode()); 387 ID.AddInteger(Op.getResNo()); 388 } 389 } 390 391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 392 static void AddNodeIDOperands(FoldingSetNodeID &ID, 393 ArrayRef<SDUse> Ops) { 394 for (auto& Op : Ops) { 395 ID.AddPointer(Op.getNode()); 396 ID.AddInteger(Op.getResNo()); 397 } 398 } 399 400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 401 SDVTList VTList, ArrayRef<SDValue> OpList) { 402 AddNodeIDOpcode(ID, OpC); 403 AddNodeIDValueTypes(ID, VTList); 404 AddNodeIDOperands(ID, OpList); 405 } 406 407 /// If this is an SDNode with special info, add this info to the NodeID data. 408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 409 switch (N->getOpcode()) { 410 case ISD::TargetExternalSymbol: 411 case ISD::ExternalSymbol: 412 case ISD::MCSymbol: 413 llvm_unreachable("Should only be used on nodes with operands"); 414 default: break; // Normal nodes don't need extra info. 415 case ISD::TargetConstant: 416 case ISD::Constant: { 417 const ConstantSDNode *C = cast<ConstantSDNode>(N); 418 ID.AddPointer(C->getConstantIntValue()); 419 ID.AddBoolean(C->isOpaque()); 420 break; 421 } 422 case ISD::TargetConstantFP: 423 case ISD::ConstantFP: 424 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 425 break; 426 case ISD::TargetGlobalAddress: 427 case ISD::GlobalAddress: 428 case ISD::TargetGlobalTLSAddress: 429 case ISD::GlobalTLSAddress: { 430 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 431 ID.AddPointer(GA->getGlobal()); 432 ID.AddInteger(GA->getOffset()); 433 ID.AddInteger(GA->getTargetFlags()); 434 break; 435 } 436 case ISD::BasicBlock: 437 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 438 break; 439 case ISD::Register: 440 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 441 break; 442 case ISD::RegisterMask: 443 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 444 break; 445 case ISD::SRCVALUE: 446 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 447 break; 448 case ISD::FrameIndex: 449 case ISD::TargetFrameIndex: 450 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 451 break; 452 case ISD::JumpTable: 453 case ISD::TargetJumpTable: 454 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 455 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 456 break; 457 case ISD::ConstantPool: 458 case ISD::TargetConstantPool: { 459 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 460 ID.AddInteger(CP->getAlignment()); 461 ID.AddInteger(CP->getOffset()); 462 if (CP->isMachineConstantPoolEntry()) 463 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 464 else 465 ID.AddPointer(CP->getConstVal()); 466 ID.AddInteger(CP->getTargetFlags()); 467 break; 468 } 469 case ISD::TargetIndex: { 470 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 471 ID.AddInteger(TI->getIndex()); 472 ID.AddInteger(TI->getOffset()); 473 ID.AddInteger(TI->getTargetFlags()); 474 break; 475 } 476 case ISD::LOAD: { 477 const LoadSDNode *LD = cast<LoadSDNode>(N); 478 ID.AddInteger(LD->getMemoryVT().getRawBits()); 479 ID.AddInteger(LD->getRawSubclassData()); 480 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::STORE: { 484 const StoreSDNode *ST = cast<StoreSDNode>(N); 485 ID.AddInteger(ST->getMemoryVT().getRawBits()); 486 ID.AddInteger(ST->getRawSubclassData()); 487 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 488 break; 489 } 490 case ISD::ATOMIC_CMP_SWAP: 491 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 492 case ISD::ATOMIC_SWAP: 493 case ISD::ATOMIC_LOAD_ADD: 494 case ISD::ATOMIC_LOAD_SUB: 495 case ISD::ATOMIC_LOAD_AND: 496 case ISD::ATOMIC_LOAD_OR: 497 case ISD::ATOMIC_LOAD_XOR: 498 case ISD::ATOMIC_LOAD_NAND: 499 case ISD::ATOMIC_LOAD_MIN: 500 case ISD::ATOMIC_LOAD_MAX: 501 case ISD::ATOMIC_LOAD_UMIN: 502 case ISD::ATOMIC_LOAD_UMAX: 503 case ISD::ATOMIC_LOAD: 504 case ISD::ATOMIC_STORE: { 505 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 506 ID.AddInteger(AT->getMemoryVT().getRawBits()); 507 ID.AddInteger(AT->getRawSubclassData()); 508 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 509 break; 510 } 511 case ISD::PREFETCH: { 512 const MemSDNode *PF = cast<MemSDNode>(N); 513 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 514 break; 515 } 516 case ISD::VECTOR_SHUFFLE: { 517 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 518 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 519 i != e; ++i) 520 ID.AddInteger(SVN->getMaskElt(i)); 521 break; 522 } 523 case ISD::TargetBlockAddress: 524 case ISD::BlockAddress: { 525 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 526 ID.AddPointer(BA->getBlockAddress()); 527 ID.AddInteger(BA->getOffset()); 528 ID.AddInteger(BA->getTargetFlags()); 529 break; 530 } 531 } // end switch (N->getOpcode()) 532 533 // Target specific memory nodes could also have address spaces to check. 534 if (N->isTargetMemoryOpcode()) 535 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 536 } 537 538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 539 /// data. 540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 541 AddNodeIDOpcode(ID, N->getOpcode()); 542 // Add the return value info. 543 AddNodeIDValueTypes(ID, N->getVTList()); 544 // Add the operand info. 545 AddNodeIDOperands(ID, N->ops()); 546 547 // Handle SDNode leafs with special info. 548 AddNodeIDCustom(ID, N); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SelectionDAG Class 553 //===----------------------------------------------------------------------===// 554 555 /// doNotCSE - Return true if CSE should not be performed for this node. 556 static bool doNotCSE(SDNode *N) { 557 if (N->getValueType(0) == MVT::Glue) 558 return true; // Never CSE anything that produces a flag. 559 560 switch (N->getOpcode()) { 561 default: break; 562 case ISD::HANDLENODE: 563 case ISD::EH_LABEL: 564 return true; // Never CSE these nodes. 565 } 566 567 // Check that remaining values produced are not flags. 568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 569 if (N->getValueType(i) == MVT::Glue) 570 return true; // Never CSE anything that produces a flag. 571 572 return false; 573 } 574 575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 576 /// SelectionDAG. 577 void SelectionDAG::RemoveDeadNodes() { 578 // Create a dummy node (which is not added to allnodes), that adds a reference 579 // to the root node, preventing it from being deleted. 580 HandleSDNode Dummy(getRoot()); 581 582 SmallVector<SDNode*, 128> DeadNodes; 583 584 // Add all obviously-dead nodes to the DeadNodes worklist. 585 for (SDNode &Node : allnodes()) 586 if (Node.use_empty()) 587 DeadNodes.push_back(&Node); 588 589 RemoveDeadNodes(DeadNodes); 590 591 // If the root changed (e.g. it was a dead load, update the root). 592 setRoot(Dummy.getValue()); 593 } 594 595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 596 /// given list, and any nodes that become unreachable as a result. 597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 598 599 // Process the worklist, deleting the nodes and adding their uses to the 600 // worklist. 601 while (!DeadNodes.empty()) { 602 SDNode *N = DeadNodes.pop_back_val(); 603 // Skip to next node if we've already managed to delete the node. This could 604 // happen if replacing a node causes a node previously added to the node to 605 // be deleted. 606 if (N->getOpcode() == ISD::DELETED_NODE) 607 continue; 608 609 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 610 DUL->NodeDeleted(N, nullptr); 611 612 // Take the node out of the appropriate CSE map. 613 RemoveNodeFromCSEMaps(N); 614 615 // Next, brutally remove the operand list. This is safe to do, as there are 616 // no cycles in the graph. 617 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 618 SDUse &Use = *I++; 619 SDNode *Operand = Use.getNode(); 620 Use.set(SDValue()); 621 622 // Now that we removed this operand, see if there are no uses of it left. 623 if (Operand->use_empty()) 624 DeadNodes.push_back(Operand); 625 } 626 627 DeallocateNode(N); 628 } 629 } 630 631 void SelectionDAG::RemoveDeadNode(SDNode *N){ 632 SmallVector<SDNode*, 16> DeadNodes(1, N); 633 634 // Create a dummy node that adds a reference to the root node, preventing 635 // it from being deleted. (This matters if the root is an operand of the 636 // dead node.) 637 HandleSDNode Dummy(getRoot()); 638 639 RemoveDeadNodes(DeadNodes); 640 } 641 642 void SelectionDAG::DeleteNode(SDNode *N) { 643 // First take this out of the appropriate CSE map. 644 RemoveNodeFromCSEMaps(N); 645 646 // Finally, remove uses due to operands of this node, remove from the 647 // AllNodes list, and delete the node. 648 DeleteNodeNotInCSEMaps(N); 649 } 650 651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 652 assert(N->getIterator() != AllNodes.begin() && 653 "Cannot delete the entry node!"); 654 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 655 656 // Drop all of the operands and decrement used node's use counts. 657 N->DropOperands(); 658 659 DeallocateNode(N); 660 } 661 662 void SDDbgInfo::erase(const SDNode *Node) { 663 DbgValMapType::iterator I = DbgValMap.find(Node); 664 if (I == DbgValMap.end()) 665 return; 666 for (auto &Val: I->second) 667 Val->setIsInvalidated(); 668 DbgValMap.erase(I); 669 } 670 671 void SelectionDAG::DeallocateNode(SDNode *N) { 672 // If we have operands, deallocate them. 673 removeOperands(N); 674 675 NodeAllocator.Deallocate(AllNodes.remove(N)); 676 677 // Set the opcode to DELETED_NODE to help catch bugs when node 678 // memory is reallocated. 679 // FIXME: There are places in SDag that have grown a dependency on the opcode 680 // value in the released node. 681 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 682 N->NodeType = ISD::DELETED_NODE; 683 684 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 685 // them and forget about that node. 686 DbgInfo->erase(N); 687 } 688 689 #ifndef NDEBUG 690 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 691 static void VerifySDNode(SDNode *N) { 692 switch (N->getOpcode()) { 693 default: 694 break; 695 case ISD::BUILD_PAIR: { 696 EVT VT = N->getValueType(0); 697 assert(N->getNumValues() == 1 && "Too many results!"); 698 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 699 "Wrong return type!"); 700 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 701 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 702 "Mismatched operand types!"); 703 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 704 "Wrong operand type!"); 705 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 706 "Wrong return type size"); 707 break; 708 } 709 case ISD::BUILD_VECTOR: { 710 assert(N->getNumValues() == 1 && "Too many results!"); 711 assert(N->getValueType(0).isVector() && "Wrong return type!"); 712 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 713 "Wrong number of operands!"); 714 EVT EltVT = N->getValueType(0).getVectorElementType(); 715 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 716 assert((I->getValueType() == EltVT || 717 (EltVT.isInteger() && I->getValueType().isInteger() && 718 EltVT.bitsLE(I->getValueType()))) && 719 "Wrong operand type!"); 720 assert(I->getValueType() == N->getOperand(0).getValueType() && 721 "Operands must all have the same type"); 722 } 723 break; 724 } 725 } 726 } 727 #endif // NDEBUG 728 729 /// \brief Insert a newly allocated node into the DAG. 730 /// 731 /// Handles insertion into the all nodes list and CSE map, as well as 732 /// verification and other common operations when a new node is allocated. 733 void SelectionDAG::InsertNode(SDNode *N) { 734 AllNodes.push_back(N); 735 #ifndef NDEBUG 736 N->PersistentId = NextPersistentId++; 737 VerifySDNode(N); 738 #endif 739 } 740 741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 742 /// correspond to it. This is useful when we're about to delete or repurpose 743 /// the node. We don't want future request for structurally identical nodes 744 /// to return N anymore. 745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 746 bool Erased = false; 747 switch (N->getOpcode()) { 748 case ISD::HANDLENODE: return false; // noop. 749 case ISD::CONDCODE: 750 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 751 "Cond code doesn't exist!"); 752 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 753 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 754 break; 755 case ISD::ExternalSymbol: 756 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 757 break; 758 case ISD::TargetExternalSymbol: { 759 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 760 Erased = TargetExternalSymbols.erase( 761 std::pair<std::string,unsigned char>(ESN->getSymbol(), 762 ESN->getTargetFlags())); 763 break; 764 } 765 case ISD::MCSymbol: { 766 auto *MCSN = cast<MCSymbolSDNode>(N); 767 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 768 break; 769 } 770 case ISD::VALUETYPE: { 771 EVT VT = cast<VTSDNode>(N)->getVT(); 772 if (VT.isExtended()) { 773 Erased = ExtendedValueTypeNodes.erase(VT); 774 } else { 775 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 776 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 777 } 778 break; 779 } 780 default: 781 // Remove it from the CSE Map. 782 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 783 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 784 Erased = CSEMap.RemoveNode(N); 785 break; 786 } 787 #ifndef NDEBUG 788 // Verify that the node was actually in one of the CSE maps, unless it has a 789 // flag result (which cannot be CSE'd) or is one of the special cases that are 790 // not subject to CSE. 791 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 792 !N->isMachineOpcode() && !doNotCSE(N)) { 793 N->dump(this); 794 dbgs() << "\n"; 795 llvm_unreachable("Node is not in map!"); 796 } 797 #endif 798 return Erased; 799 } 800 801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 802 /// maps and modified in place. Add it back to the CSE maps, unless an identical 803 /// node already exists, in which case transfer all its users to the existing 804 /// node. This transfer can potentially trigger recursive merging. 805 void 806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 807 // For node types that aren't CSE'd, just act as if no identical node 808 // already exists. 809 if (!doNotCSE(N)) { 810 SDNode *Existing = CSEMap.GetOrInsertNode(N); 811 if (Existing != N) { 812 // If there was already an existing matching node, use ReplaceAllUsesWith 813 // to replace the dead one with the existing one. This can cause 814 // recursive merging of other unrelated nodes down the line. 815 ReplaceAllUsesWith(N, Existing); 816 817 // N is now dead. Inform the listeners and delete it. 818 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 819 DUL->NodeDeleted(N, Existing); 820 DeleteNodeNotInCSEMaps(N); 821 return; 822 } 823 } 824 825 // If the node doesn't already exist, we updated it. Inform listeners. 826 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 827 DUL->NodeUpdated(N); 828 } 829 830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 831 /// were replaced with those specified. If this node is never memoized, 832 /// return null, otherwise return a pointer to the slot it would take. If a 833 /// node already exists with these operands, the slot will be non-null. 834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 835 void *&InsertPos) { 836 if (doNotCSE(N)) 837 return nullptr; 838 839 SDValue Ops[] = { Op }; 840 FoldingSetNodeID ID; 841 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 842 AddNodeIDCustom(ID, N); 843 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 844 if (Node) 845 Node->intersectFlagsWith(N->getFlags()); 846 return Node; 847 } 848 849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 850 /// were replaced with those specified. If this node is never memoized, 851 /// return null, otherwise return a pointer to the slot it would take. If a 852 /// node already exists with these operands, the slot will be non-null. 853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 854 SDValue Op1, SDValue Op2, 855 void *&InsertPos) { 856 if (doNotCSE(N)) 857 return nullptr; 858 859 SDValue Ops[] = { Op1, Op2 }; 860 FoldingSetNodeID ID; 861 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 862 AddNodeIDCustom(ID, N); 863 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 864 if (Node) 865 Node->intersectFlagsWith(N->getFlags()); 866 return Node; 867 } 868 869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 870 /// were replaced with those specified. If this node is never memoized, 871 /// return null, otherwise return a pointer to the slot it would take. If a 872 /// node already exists with these operands, the slot will be non-null. 873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 874 void *&InsertPos) { 875 if (doNotCSE(N)) 876 return nullptr; 877 878 FoldingSetNodeID ID; 879 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 880 AddNodeIDCustom(ID, N); 881 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 882 if (Node) 883 Node->intersectFlagsWith(N->getFlags()); 884 return Node; 885 } 886 887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 888 Type *Ty = VT == MVT::iPTR ? 889 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 890 VT.getTypeForEVT(*getContext()); 891 892 return getDataLayout().getABITypeAlignment(Ty); 893 } 894 895 // EntryNode could meaningfully have debug info if we can find it... 896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 897 : TM(tm), OptLevel(OL), 898 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 899 Root(getEntryNode()) { 900 InsertNode(&EntryNode); 901 DbgInfo = new SDDbgInfo(); 902 } 903 904 void SelectionDAG::init(MachineFunction &NewMF, 905 OptimizationRemarkEmitter &NewORE, 906 Pass *PassPtr) { 907 MF = &NewMF; 908 SDAGISelPass = PassPtr; 909 ORE = &NewORE; 910 TLI = getSubtarget().getTargetLowering(); 911 TSI = getSubtarget().getSelectionDAGInfo(); 912 Context = &MF->getFunction()->getContext(); 913 } 914 915 SelectionDAG::~SelectionDAG() { 916 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 917 allnodes_clear(); 918 OperandRecycler.clear(OperandAllocator); 919 delete DbgInfo; 920 } 921 922 void SelectionDAG::allnodes_clear() { 923 assert(&*AllNodes.begin() == &EntryNode); 924 AllNodes.remove(AllNodes.begin()); 925 while (!AllNodes.empty()) 926 DeallocateNode(&AllNodes.front()); 927 #ifndef NDEBUG 928 NextPersistentId = 0; 929 #endif 930 } 931 932 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 933 void *&InsertPos) { 934 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 935 if (N) { 936 switch (N->getOpcode()) { 937 default: break; 938 case ISD::Constant: 939 case ISD::ConstantFP: 940 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 941 "debug location. Use another overload."); 942 } 943 } 944 return N; 945 } 946 947 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 948 const SDLoc &DL, void *&InsertPos) { 949 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 950 if (N) { 951 switch (N->getOpcode()) { 952 case ISD::Constant: 953 case ISD::ConstantFP: 954 // Erase debug location from the node if the node is used at several 955 // different places. Do not propagate one location to all uses as it 956 // will cause a worse single stepping debugging experience. 957 if (N->getDebugLoc() != DL.getDebugLoc()) 958 N->setDebugLoc(DebugLoc()); 959 break; 960 default: 961 // When the node's point of use is located earlier in the instruction 962 // sequence than its prior point of use, update its debug info to the 963 // earlier location. 964 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 965 N->setDebugLoc(DL.getDebugLoc()); 966 break; 967 } 968 } 969 return N; 970 } 971 972 void SelectionDAG::clear() { 973 allnodes_clear(); 974 OperandRecycler.clear(OperandAllocator); 975 OperandAllocator.Reset(); 976 CSEMap.clear(); 977 978 ExtendedValueTypeNodes.clear(); 979 ExternalSymbols.clear(); 980 TargetExternalSymbols.clear(); 981 MCSymbols.clear(); 982 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 983 static_cast<CondCodeSDNode*>(nullptr)); 984 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 985 static_cast<SDNode*>(nullptr)); 986 987 EntryNode.UseList = nullptr; 988 InsertNode(&EntryNode); 989 Root = getEntryNode(); 990 DbgInfo->clear(); 991 } 992 993 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 994 return VT.bitsGT(Op.getValueType()) 995 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 996 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 997 } 998 999 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1000 return VT.bitsGT(Op.getValueType()) ? 1001 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1002 getNode(ISD::TRUNCATE, DL, VT, Op); 1003 } 1004 1005 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1006 return VT.bitsGT(Op.getValueType()) ? 1007 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1008 getNode(ISD::TRUNCATE, DL, VT, Op); 1009 } 1010 1011 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1012 return VT.bitsGT(Op.getValueType()) ? 1013 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1014 getNode(ISD::TRUNCATE, DL, VT, Op); 1015 } 1016 1017 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1018 EVT OpVT) { 1019 if (VT.bitsLE(Op.getValueType())) 1020 return getNode(ISD::TRUNCATE, SL, VT, Op); 1021 1022 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1023 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1024 } 1025 1026 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1027 assert(!VT.isVector() && 1028 "getZeroExtendInReg should use the vector element type instead of " 1029 "the vector type!"); 1030 if (Op.getValueType() == VT) return Op; 1031 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1032 APInt Imm = APInt::getLowBitsSet(BitWidth, 1033 VT.getSizeInBits()); 1034 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1035 getConstant(Imm, DL, Op.getValueType())); 1036 } 1037 1038 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1039 EVT VT) { 1040 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1041 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1042 "The sizes of the input and result must match in order to perform the " 1043 "extend in-register."); 1044 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1045 "The destination vector type must have fewer lanes than the input."); 1046 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1047 } 1048 1049 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1050 EVT VT) { 1051 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1052 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1053 "The sizes of the input and result must match in order to perform the " 1054 "extend in-register."); 1055 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1056 "The destination vector type must have fewer lanes than the input."); 1057 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1058 } 1059 1060 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1061 EVT VT) { 1062 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1063 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1064 "The sizes of the input and result must match in order to perform the " 1065 "extend in-register."); 1066 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1067 "The destination vector type must have fewer lanes than the input."); 1068 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1069 } 1070 1071 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1072 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1073 EVT EltVT = VT.getScalarType(); 1074 SDValue NegOne = 1075 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1076 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1077 } 1078 1079 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1080 EVT EltVT = VT.getScalarType(); 1081 SDValue TrueValue; 1082 switch (TLI->getBooleanContents(VT)) { 1083 case TargetLowering::ZeroOrOneBooleanContent: 1084 case TargetLowering::UndefinedBooleanContent: 1085 TrueValue = getConstant(1, DL, VT); 1086 break; 1087 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1088 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1089 VT); 1090 break; 1091 } 1092 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1093 } 1094 1095 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1096 bool isT, bool isO) { 1097 EVT EltVT = VT.getScalarType(); 1098 assert((EltVT.getSizeInBits() >= 64 || 1099 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1100 "getConstant with a uint64_t value that doesn't fit in the type!"); 1101 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1102 } 1103 1104 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1105 bool isT, bool isO) { 1106 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1107 } 1108 1109 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1110 EVT VT, bool isT, bool isO) { 1111 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1112 1113 EVT EltVT = VT.getScalarType(); 1114 const ConstantInt *Elt = &Val; 1115 1116 // In some cases the vector type is legal but the element type is illegal and 1117 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1118 // inserted value (the type does not need to match the vector element type). 1119 // Any extra bits introduced will be truncated away. 1120 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1121 TargetLowering::TypePromoteInteger) { 1122 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1123 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1124 Elt = ConstantInt::get(*getContext(), NewVal); 1125 } 1126 // In other cases the element type is illegal and needs to be expanded, for 1127 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1128 // the value into n parts and use a vector type with n-times the elements. 1129 // Then bitcast to the type requested. 1130 // Legalizing constants too early makes the DAGCombiner's job harder so we 1131 // only legalize if the DAG tells us we must produce legal types. 1132 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1133 TLI->getTypeAction(*getContext(), EltVT) == 1134 TargetLowering::TypeExpandInteger) { 1135 const APInt &NewVal = Elt->getValue(); 1136 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1137 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1138 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1139 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1140 1141 // Check the temporary vector is the correct size. If this fails then 1142 // getTypeToTransformTo() probably returned a type whose size (in bits) 1143 // isn't a power-of-2 factor of the requested type size. 1144 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1145 1146 SmallVector<SDValue, 2> EltParts; 1147 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1148 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1149 .zextOrTrunc(ViaEltSizeInBits), DL, 1150 ViaEltVT, isT, isO)); 1151 } 1152 1153 // EltParts is currently in little endian order. If we actually want 1154 // big-endian order then reverse it now. 1155 if (getDataLayout().isBigEndian()) 1156 std::reverse(EltParts.begin(), EltParts.end()); 1157 1158 // The elements must be reversed when the element order is different 1159 // to the endianness of the elements (because the BITCAST is itself a 1160 // vector shuffle in this situation). However, we do not need any code to 1161 // perform this reversal because getConstant() is producing a vector 1162 // splat. 1163 // This situation occurs in MIPS MSA. 1164 1165 SmallVector<SDValue, 8> Ops; 1166 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1167 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1168 1169 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1170 NewSDValueDbgMsg(V, "Creating constant: "); 1171 return V; 1172 } 1173 1174 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1175 "APInt size does not match type size!"); 1176 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1177 FoldingSetNodeID ID; 1178 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1179 ID.AddPointer(Elt); 1180 ID.AddBoolean(isO); 1181 void *IP = nullptr; 1182 SDNode *N = nullptr; 1183 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1184 if (!VT.isVector()) 1185 return SDValue(N, 0); 1186 1187 if (!N) { 1188 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1189 CSEMap.InsertNode(N, IP); 1190 InsertNode(N); 1191 } 1192 1193 SDValue Result(N, 0); 1194 if (VT.isVector()) 1195 Result = getSplatBuildVector(VT, DL, Result); 1196 1197 NewSDValueDbgMsg(Result, "Creating constant: "); 1198 return Result; 1199 } 1200 1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1202 bool isTarget) { 1203 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1204 } 1205 1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1207 bool isTarget) { 1208 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1209 } 1210 1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1212 EVT VT, bool isTarget) { 1213 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1214 1215 EVT EltVT = VT.getScalarType(); 1216 1217 // Do the map lookup using the actual bit pattern for the floating point 1218 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1219 // we don't have issues with SNANs. 1220 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1221 FoldingSetNodeID ID; 1222 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1223 ID.AddPointer(&V); 1224 void *IP = nullptr; 1225 SDNode *N = nullptr; 1226 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1227 if (!VT.isVector()) 1228 return SDValue(N, 0); 1229 1230 if (!N) { 1231 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1232 CSEMap.InsertNode(N, IP); 1233 InsertNode(N); 1234 } 1235 1236 SDValue Result(N, 0); 1237 if (VT.isVector()) 1238 Result = getSplatBuildVector(VT, DL, Result); 1239 NewSDValueDbgMsg(Result, "Creating fp constant: "); 1240 return Result; 1241 } 1242 1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1244 bool isTarget) { 1245 EVT EltVT = VT.getScalarType(); 1246 if (EltVT == MVT::f32) 1247 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1248 else if (EltVT == MVT::f64) 1249 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1250 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1251 EltVT == MVT::f16) { 1252 bool Ignored; 1253 APFloat APF = APFloat(Val); 1254 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1255 &Ignored); 1256 return getConstantFP(APF, DL, VT, isTarget); 1257 } else 1258 llvm_unreachable("Unsupported type in getConstantFP"); 1259 } 1260 1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1262 EVT VT, int64_t Offset, bool isTargetGA, 1263 unsigned char TargetFlags) { 1264 assert((TargetFlags == 0 || isTargetGA) && 1265 "Cannot set target flags on target-independent globals"); 1266 1267 // Truncate (with sign-extension) the offset value to the pointer size. 1268 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1269 if (BitWidth < 64) 1270 Offset = SignExtend64(Offset, BitWidth); 1271 1272 unsigned Opc; 1273 if (GV->isThreadLocal()) 1274 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1275 else 1276 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1277 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddPointer(GV); 1281 ID.AddInteger(Offset); 1282 ID.AddInteger(TargetFlags); 1283 void *IP = nullptr; 1284 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1285 return SDValue(E, 0); 1286 1287 auto *N = newSDNode<GlobalAddressSDNode>( 1288 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1289 CSEMap.InsertNode(N, IP); 1290 InsertNode(N); 1291 return SDValue(N, 0); 1292 } 1293 1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1295 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1296 FoldingSetNodeID ID; 1297 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1298 ID.AddInteger(FI); 1299 void *IP = nullptr; 1300 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1301 return SDValue(E, 0); 1302 1303 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1304 CSEMap.InsertNode(N, IP); 1305 InsertNode(N); 1306 return SDValue(N, 0); 1307 } 1308 1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1310 unsigned char TargetFlags) { 1311 assert((TargetFlags == 0 || isTarget) && 1312 "Cannot set target flags on target-independent jump tables"); 1313 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1316 ID.AddInteger(JTI); 1317 ID.AddInteger(TargetFlags); 1318 void *IP = nullptr; 1319 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1320 return SDValue(E, 0); 1321 1322 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1323 CSEMap.InsertNode(N, IP); 1324 InsertNode(N); 1325 return SDValue(N, 0); 1326 } 1327 1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1329 unsigned Alignment, int Offset, 1330 bool isTarget, 1331 unsigned char TargetFlags) { 1332 assert((TargetFlags == 0 || isTarget) && 1333 "Cannot set target flags on target-independent globals"); 1334 if (Alignment == 0) 1335 Alignment = MF->getFunction()->optForSize() 1336 ? getDataLayout().getABITypeAlignment(C->getType()) 1337 : getDataLayout().getPrefTypeAlignment(C->getType()); 1338 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1339 FoldingSetNodeID ID; 1340 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1341 ID.AddInteger(Alignment); 1342 ID.AddInteger(Offset); 1343 ID.AddPointer(C); 1344 ID.AddInteger(TargetFlags); 1345 void *IP = nullptr; 1346 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1347 return SDValue(E, 0); 1348 1349 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1350 TargetFlags); 1351 CSEMap.InsertNode(N, IP); 1352 InsertNode(N); 1353 return SDValue(N, 0); 1354 } 1355 1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1357 unsigned Alignment, int Offset, 1358 bool isTarget, 1359 unsigned char TargetFlags) { 1360 assert((TargetFlags == 0 || isTarget) && 1361 "Cannot set target flags on target-independent globals"); 1362 if (Alignment == 0) 1363 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1364 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(Alignment); 1368 ID.AddInteger(Offset); 1369 C->addSelectionDAGCSEId(ID); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1376 TargetFlags); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 return SDValue(N, 0); 1380 } 1381 1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1383 unsigned char TargetFlags) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1386 ID.AddInteger(Index); 1387 ID.AddInteger(Offset); 1388 ID.AddInteger(TargetFlags); 1389 void *IP = nullptr; 1390 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1391 return SDValue(E, 0); 1392 1393 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1394 CSEMap.InsertNode(N, IP); 1395 InsertNode(N); 1396 return SDValue(N, 0); 1397 } 1398 1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1402 ID.AddPointer(MBB); 1403 void *IP = nullptr; 1404 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1405 return SDValue(E, 0); 1406 1407 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1408 CSEMap.InsertNode(N, IP); 1409 InsertNode(N); 1410 return SDValue(N, 0); 1411 } 1412 1413 SDValue SelectionDAG::getValueType(EVT VT) { 1414 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1415 ValueTypeNodes.size()) 1416 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1417 1418 SDNode *&N = VT.isExtended() ? 1419 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1420 1421 if (N) return SDValue(N, 0); 1422 N = newSDNode<VTSDNode>(VT); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1428 SDNode *&N = ExternalSymbols[Sym]; 1429 if (N) return SDValue(N, 0); 1430 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1436 SDNode *&N = MCSymbols[Sym]; 1437 if (N) 1438 return SDValue(N, 0); 1439 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1440 InsertNode(N); 1441 return SDValue(N, 0); 1442 } 1443 1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1445 unsigned char TargetFlags) { 1446 SDNode *&N = 1447 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1448 TargetFlags)]; 1449 if (N) return SDValue(N, 0); 1450 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1456 if ((unsigned)Cond >= CondCodeNodes.size()) 1457 CondCodeNodes.resize(Cond+1); 1458 1459 if (!CondCodeNodes[Cond]) { 1460 auto *N = newSDNode<CondCodeSDNode>(Cond); 1461 CondCodeNodes[Cond] = N; 1462 InsertNode(N); 1463 } 1464 1465 return SDValue(CondCodeNodes[Cond], 0); 1466 } 1467 1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1471 std::swap(N1, N2); 1472 ShuffleVectorSDNode::commuteMask(M); 1473 } 1474 1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1476 SDValue N2, ArrayRef<int> Mask) { 1477 assert(VT.getVectorNumElements() == Mask.size() && 1478 "Must have the same number of vector elements as mask elements!"); 1479 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1480 "Invalid VECTOR_SHUFFLE"); 1481 1482 // Canonicalize shuffle undef, undef -> undef 1483 if (N1.isUndef() && N2.isUndef()) 1484 return getUNDEF(VT); 1485 1486 // Validate that all indices in Mask are within the range of the elements 1487 // input to the shuffle. 1488 int NElts = Mask.size(); 1489 assert(llvm::all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1490 "Index out of range"); 1491 1492 // Copy the mask so we can do any needed cleanup. 1493 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1494 1495 // Canonicalize shuffle v, v -> v, undef 1496 if (N1 == N2) { 1497 N2 = getUNDEF(VT); 1498 for (int i = 0; i != NElts; ++i) 1499 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1500 } 1501 1502 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1503 if (N1.isUndef()) 1504 commuteShuffle(N1, N2, MaskVec); 1505 1506 // If shuffling a splat, try to blend the splat instead. We do this here so 1507 // that even when this arises during lowering we don't have to re-handle it. 1508 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1509 BitVector UndefElements; 1510 SDValue Splat = BV->getSplatValue(&UndefElements); 1511 if (!Splat) 1512 return; 1513 1514 for (int i = 0; i < NElts; ++i) { 1515 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1516 continue; 1517 1518 // If this input comes from undef, mark it as such. 1519 if (UndefElements[MaskVec[i] - Offset]) { 1520 MaskVec[i] = -1; 1521 continue; 1522 } 1523 1524 // If we can blend a non-undef lane, use that instead. 1525 if (!UndefElements[i]) 1526 MaskVec[i] = i + Offset; 1527 } 1528 }; 1529 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1530 BlendSplat(N1BV, 0); 1531 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1532 BlendSplat(N2BV, NElts); 1533 1534 // Canonicalize all index into lhs, -> shuffle lhs, undef 1535 // Canonicalize all index into rhs, -> shuffle rhs, undef 1536 bool AllLHS = true, AllRHS = true; 1537 bool N2Undef = N2.isUndef(); 1538 for (int i = 0; i != NElts; ++i) { 1539 if (MaskVec[i] >= NElts) { 1540 if (N2Undef) 1541 MaskVec[i] = -1; 1542 else 1543 AllLHS = false; 1544 } else if (MaskVec[i] >= 0) { 1545 AllRHS = false; 1546 } 1547 } 1548 if (AllLHS && AllRHS) 1549 return getUNDEF(VT); 1550 if (AllLHS && !N2Undef) 1551 N2 = getUNDEF(VT); 1552 if (AllRHS) { 1553 N1 = getUNDEF(VT); 1554 commuteShuffle(N1, N2, MaskVec); 1555 } 1556 // Reset our undef status after accounting for the mask. 1557 N2Undef = N2.isUndef(); 1558 // Re-check whether both sides ended up undef. 1559 if (N1.isUndef() && N2Undef) 1560 return getUNDEF(VT); 1561 1562 // If Identity shuffle return that node. 1563 bool Identity = true, AllSame = true; 1564 for (int i = 0; i != NElts; ++i) { 1565 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1566 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1567 } 1568 if (Identity && NElts) 1569 return N1; 1570 1571 // Shuffling a constant splat doesn't change the result. 1572 if (N2Undef) { 1573 SDValue V = N1; 1574 1575 // Look through any bitcasts. We check that these don't change the number 1576 // (and size) of elements and just changes their types. 1577 while (V.getOpcode() == ISD::BITCAST) 1578 V = V->getOperand(0); 1579 1580 // A splat should always show up as a build vector node. 1581 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1582 BitVector UndefElements; 1583 SDValue Splat = BV->getSplatValue(&UndefElements); 1584 // If this is a splat of an undef, shuffling it is also undef. 1585 if (Splat && Splat.isUndef()) 1586 return getUNDEF(VT); 1587 1588 bool SameNumElts = 1589 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1590 1591 // We only have a splat which can skip shuffles if there is a splatted 1592 // value and no undef lanes rearranged by the shuffle. 1593 if (Splat && UndefElements.none()) { 1594 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1595 // number of elements match or the value splatted is a zero constant. 1596 if (SameNumElts) 1597 return N1; 1598 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1599 if (C->isNullValue()) 1600 return N1; 1601 } 1602 1603 // If the shuffle itself creates a splat, build the vector directly. 1604 if (AllSame && SameNumElts) { 1605 EVT BuildVT = BV->getValueType(0); 1606 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1607 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1608 1609 // We may have jumped through bitcasts, so the type of the 1610 // BUILD_VECTOR may not match the type of the shuffle. 1611 if (BuildVT != VT) 1612 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1613 return NewBV; 1614 } 1615 } 1616 } 1617 1618 FoldingSetNodeID ID; 1619 SDValue Ops[2] = { N1, N2 }; 1620 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1621 for (int i = 0; i != NElts; ++i) 1622 ID.AddInteger(MaskVec[i]); 1623 1624 void* IP = nullptr; 1625 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1626 return SDValue(E, 0); 1627 1628 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1629 // SDNode doesn't have access to it. This memory will be "leaked" when 1630 // the node is deallocated, but recovered when the NodeAllocator is released. 1631 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1632 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1633 1634 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1635 dl.getDebugLoc(), MaskAlloc); 1636 createOperands(N, Ops); 1637 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1644 MVT VT = SV.getSimpleValueType(0); 1645 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1646 ShuffleVectorSDNode::commuteMask(MaskVec); 1647 1648 SDValue Op0 = SV.getOperand(0); 1649 SDValue Op1 = SV.getOperand(1); 1650 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1651 } 1652 1653 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1654 FoldingSetNodeID ID; 1655 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1656 ID.AddInteger(RegNo); 1657 void *IP = nullptr; 1658 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1659 return SDValue(E, 0); 1660 1661 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1662 CSEMap.InsertNode(N, IP); 1663 InsertNode(N); 1664 return SDValue(N, 0); 1665 } 1666 1667 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1668 FoldingSetNodeID ID; 1669 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1670 ID.AddPointer(RegMask); 1671 void *IP = nullptr; 1672 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1673 return SDValue(E, 0); 1674 1675 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1676 CSEMap.InsertNode(N, IP); 1677 InsertNode(N); 1678 return SDValue(N, 0); 1679 } 1680 1681 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1682 MCSymbol *Label) { 1683 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1684 } 1685 1686 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1687 SDValue Root, MCSymbol *Label) { 1688 FoldingSetNodeID ID; 1689 SDValue Ops[] = { Root }; 1690 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1691 ID.AddPointer(Label); 1692 void *IP = nullptr; 1693 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1694 return SDValue(E, 0); 1695 1696 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1697 createOperands(N, Ops); 1698 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 return SDValue(N, 0); 1702 } 1703 1704 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1705 int64_t Offset, 1706 bool isTarget, 1707 unsigned char TargetFlags) { 1708 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1709 1710 FoldingSetNodeID ID; 1711 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1712 ID.AddPointer(BA); 1713 ID.AddInteger(Offset); 1714 ID.AddInteger(TargetFlags); 1715 void *IP = nullptr; 1716 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1717 return SDValue(E, 0); 1718 1719 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1720 CSEMap.InsertNode(N, IP); 1721 InsertNode(N); 1722 return SDValue(N, 0); 1723 } 1724 1725 SDValue SelectionDAG::getSrcValue(const Value *V) { 1726 assert((!V || V->getType()->isPointerTy()) && 1727 "SrcValue is not a pointer?"); 1728 1729 FoldingSetNodeID ID; 1730 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1731 ID.AddPointer(V); 1732 1733 void *IP = nullptr; 1734 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1735 return SDValue(E, 0); 1736 1737 auto *N = newSDNode<SrcValueSDNode>(V); 1738 CSEMap.InsertNode(N, IP); 1739 InsertNode(N); 1740 return SDValue(N, 0); 1741 } 1742 1743 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1744 FoldingSetNodeID ID; 1745 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1746 ID.AddPointer(MD); 1747 1748 void *IP = nullptr; 1749 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1750 return SDValue(E, 0); 1751 1752 auto *N = newSDNode<MDNodeSDNode>(MD); 1753 CSEMap.InsertNode(N, IP); 1754 InsertNode(N); 1755 return SDValue(N, 0); 1756 } 1757 1758 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1759 if (VT == V.getValueType()) 1760 return V; 1761 1762 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1763 } 1764 1765 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1766 unsigned SrcAS, unsigned DestAS) { 1767 SDValue Ops[] = {Ptr}; 1768 FoldingSetNodeID ID; 1769 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1770 ID.AddInteger(SrcAS); 1771 ID.AddInteger(DestAS); 1772 1773 void *IP = nullptr; 1774 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1775 return SDValue(E, 0); 1776 1777 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1778 VT, SrcAS, DestAS); 1779 createOperands(N, Ops); 1780 1781 CSEMap.InsertNode(N, IP); 1782 InsertNode(N); 1783 return SDValue(N, 0); 1784 } 1785 1786 /// getShiftAmountOperand - Return the specified value casted to 1787 /// the target's desired shift amount type. 1788 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1789 EVT OpTy = Op.getValueType(); 1790 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1791 if (OpTy == ShTy || OpTy.isVector()) return Op; 1792 1793 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1794 } 1795 1796 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1797 SDLoc dl(Node); 1798 const TargetLowering &TLI = getTargetLoweringInfo(); 1799 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1800 EVT VT = Node->getValueType(0); 1801 SDValue Tmp1 = Node->getOperand(0); 1802 SDValue Tmp2 = Node->getOperand(1); 1803 unsigned Align = Node->getConstantOperandVal(3); 1804 1805 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1806 Tmp2, MachinePointerInfo(V)); 1807 SDValue VAList = VAListLoad; 1808 1809 if (Align > TLI.getMinStackArgumentAlignment()) { 1810 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1811 1812 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1813 getConstant(Align - 1, dl, VAList.getValueType())); 1814 1815 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1816 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1817 } 1818 1819 // Increment the pointer, VAList, to the next vaarg 1820 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1821 getConstant(getDataLayout().getTypeAllocSize( 1822 VT.getTypeForEVT(*getContext())), 1823 dl, VAList.getValueType())); 1824 // Store the incremented VAList to the legalized pointer 1825 Tmp1 = 1826 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1827 // Load the actual argument out of the pointer VAList 1828 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1829 } 1830 1831 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1832 SDLoc dl(Node); 1833 const TargetLowering &TLI = getTargetLoweringInfo(); 1834 // This defaults to loading a pointer from the input and storing it to the 1835 // output, returning the chain. 1836 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1837 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1838 SDValue Tmp1 = 1839 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1840 Node->getOperand(2), MachinePointerInfo(VS)); 1841 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1842 MachinePointerInfo(VD)); 1843 } 1844 1845 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1846 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1847 unsigned ByteSize = VT.getStoreSize(); 1848 Type *Ty = VT.getTypeForEVT(*getContext()); 1849 unsigned StackAlign = 1850 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1851 1852 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1853 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1854 } 1855 1856 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1857 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1858 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1859 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1860 const DataLayout &DL = getDataLayout(); 1861 unsigned Align = 1862 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1863 1864 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1865 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1866 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1867 } 1868 1869 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1870 ISD::CondCode Cond, const SDLoc &dl) { 1871 // These setcc operations always fold. 1872 switch (Cond) { 1873 default: break; 1874 case ISD::SETFALSE: 1875 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1876 case ISD::SETTRUE: 1877 case ISD::SETTRUE2: { 1878 TargetLowering::BooleanContent Cnt = 1879 TLI->getBooleanContents(N1->getValueType(0)); 1880 return getConstant( 1881 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1882 VT); 1883 } 1884 1885 case ISD::SETOEQ: 1886 case ISD::SETOGT: 1887 case ISD::SETOGE: 1888 case ISD::SETOLT: 1889 case ISD::SETOLE: 1890 case ISD::SETONE: 1891 case ISD::SETO: 1892 case ISD::SETUO: 1893 case ISD::SETUEQ: 1894 case ISD::SETUNE: 1895 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1896 break; 1897 } 1898 1899 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1900 const APInt &C2 = N2C->getAPIntValue(); 1901 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1902 const APInt &C1 = N1C->getAPIntValue(); 1903 1904 switch (Cond) { 1905 default: llvm_unreachable("Unknown integer setcc!"); 1906 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1907 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1908 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1909 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1910 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1911 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1912 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1913 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1914 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1915 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1916 } 1917 } 1918 } 1919 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1920 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1921 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1922 switch (Cond) { 1923 default: break; 1924 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1925 return getUNDEF(VT); 1926 LLVM_FALLTHROUGH; 1927 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1928 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1929 return getUNDEF(VT); 1930 LLVM_FALLTHROUGH; 1931 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1932 R==APFloat::cmpLessThan, dl, VT); 1933 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1934 return getUNDEF(VT); 1935 LLVM_FALLTHROUGH; 1936 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1937 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1938 return getUNDEF(VT); 1939 LLVM_FALLTHROUGH; 1940 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1941 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1942 return getUNDEF(VT); 1943 LLVM_FALLTHROUGH; 1944 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1945 R==APFloat::cmpEqual, dl, VT); 1946 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1947 return getUNDEF(VT); 1948 LLVM_FALLTHROUGH; 1949 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1950 R==APFloat::cmpEqual, dl, VT); 1951 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1952 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1953 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1954 R==APFloat::cmpEqual, dl, VT); 1955 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1956 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1957 R==APFloat::cmpLessThan, dl, VT); 1958 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1959 R==APFloat::cmpUnordered, dl, VT); 1960 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1961 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1962 } 1963 } else { 1964 // Ensure that the constant occurs on the RHS. 1965 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1966 MVT CompVT = N1.getValueType().getSimpleVT(); 1967 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1968 return SDValue(); 1969 1970 return getSetCC(dl, VT, N2, N1, SwappedCond); 1971 } 1972 } 1973 1974 // Could not fold it. 1975 return SDValue(); 1976 } 1977 1978 /// See if the specified operand can be simplified with the knowledge that only 1979 /// the bits specified by Mask are used. 1980 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 1981 switch (V.getOpcode()) { 1982 default: 1983 break; 1984 case ISD::Constant: { 1985 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 1986 assert(CV && "Const value should be ConstSDNode."); 1987 const APInt &CVal = CV->getAPIntValue(); 1988 APInt NewVal = CVal & Mask; 1989 if (NewVal != CVal) 1990 return getConstant(NewVal, SDLoc(V), V.getValueType()); 1991 break; 1992 } 1993 case ISD::OR: 1994 case ISD::XOR: 1995 // If the LHS or RHS don't contribute bits to the or, drop them. 1996 if (MaskedValueIsZero(V.getOperand(0), Mask)) 1997 return V.getOperand(1); 1998 if (MaskedValueIsZero(V.getOperand(1), Mask)) 1999 return V.getOperand(0); 2000 break; 2001 case ISD::SRL: 2002 // Only look at single-use SRLs. 2003 if (!V.getNode()->hasOneUse()) 2004 break; 2005 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2006 // See if we can recursively simplify the LHS. 2007 unsigned Amt = RHSC->getZExtValue(); 2008 2009 // Watch out for shift count overflow though. 2010 if (Amt >= Mask.getBitWidth()) 2011 break; 2012 APInt NewMask = Mask << Amt; 2013 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2014 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2015 V.getOperand(1)); 2016 } 2017 break; 2018 case ISD::AND: { 2019 // X & -1 -> X (ignoring bits which aren't demanded). 2020 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2021 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2022 return V.getOperand(0); 2023 break; 2024 } 2025 case ISD::ANY_EXTEND: { 2026 SDValue Src = V.getOperand(0); 2027 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2028 // Being conservative here - only peek through if we only demand bits in the 2029 // non-extended source (even though the extended bits are technically undef). 2030 if (Mask.getActiveBits() > SrcBitWidth) 2031 break; 2032 APInt SrcMask = Mask.trunc(SrcBitWidth); 2033 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2034 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2035 break; 2036 } 2037 } 2038 return SDValue(); 2039 } 2040 2041 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2042 /// use this predicate to simplify operations downstream. 2043 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2044 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2045 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2046 } 2047 2048 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2049 /// this predicate to simplify operations downstream. Mask is known to be zero 2050 /// for bits that V cannot have. 2051 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2052 unsigned Depth) const { 2053 KnownBits Known; 2054 computeKnownBits(Op, Known, Depth); 2055 return Mask.isSubsetOf(Known.Zero); 2056 } 2057 2058 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2059 /// is less than the element bit-width of the shift node, return it. 2060 static const APInt *getValidShiftAmountConstant(SDValue V) { 2061 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2062 // Shifting more than the bitwidth is not valid. 2063 const APInt &ShAmt = SA->getAPIntValue(); 2064 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2065 return &ShAmt; 2066 } 2067 return nullptr; 2068 } 2069 2070 /// Determine which bits of Op are known to be either zero or one and return 2071 /// them in Known. For vectors, the known bits are those that are shared by 2072 /// every vector element. 2073 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2074 unsigned Depth) const { 2075 EVT VT = Op.getValueType(); 2076 APInt DemandedElts = VT.isVector() 2077 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2078 : APInt(1, 1); 2079 computeKnownBits(Op, Known, DemandedElts, Depth); 2080 } 2081 2082 /// Determine which bits of Op are known to be either zero or one and return 2083 /// them in Known. The DemandedElts argument allows us to only collect the known 2084 /// bits that are shared by the requested vector elements. 2085 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2086 const APInt &DemandedElts, 2087 unsigned Depth) const { 2088 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2089 2090 Known = KnownBits(BitWidth); // Don't know anything. 2091 if (Depth == 6) 2092 return; // Limit search depth. 2093 2094 KnownBits Known2; 2095 unsigned NumElts = DemandedElts.getBitWidth(); 2096 2097 if (!DemandedElts) 2098 return; // No demanded elts, better to assume we don't know anything. 2099 2100 unsigned Opcode = Op.getOpcode(); 2101 switch (Opcode) { 2102 case ISD::Constant: 2103 // We know all of the bits for a constant! 2104 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 2105 Known.Zero = ~Known.One; 2106 break; 2107 case ISD::BUILD_VECTOR: 2108 // Collect the known bits that are shared by every demanded vector element. 2109 assert(NumElts == Op.getValueType().getVectorNumElements() && 2110 "Unexpected vector size"); 2111 Known.Zero.setAllBits(); Known.One.setAllBits(); 2112 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2113 if (!DemandedElts[i]) 2114 continue; 2115 2116 SDValue SrcOp = Op.getOperand(i); 2117 computeKnownBits(SrcOp, Known2, Depth + 1); 2118 2119 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2120 if (SrcOp.getValueSizeInBits() != BitWidth) { 2121 assert(SrcOp.getValueSizeInBits() > BitWidth && 2122 "Expected BUILD_VECTOR implicit truncation"); 2123 Known2 = Known2.trunc(BitWidth); 2124 } 2125 2126 // Known bits are the values that are shared by every demanded element. 2127 Known.One &= Known2.One; 2128 Known.Zero &= Known2.Zero; 2129 2130 // If we don't know any bits, early out. 2131 if (!Known.One && !Known.Zero) 2132 break; 2133 } 2134 break; 2135 case ISD::VECTOR_SHUFFLE: { 2136 // Collect the known bits that are shared by every vector element referenced 2137 // by the shuffle. 2138 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2139 Known.Zero.setAllBits(); Known.One.setAllBits(); 2140 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2141 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2142 for (unsigned i = 0; i != NumElts; ++i) { 2143 if (!DemandedElts[i]) 2144 continue; 2145 2146 int M = SVN->getMaskElt(i); 2147 if (M < 0) { 2148 // For UNDEF elements, we don't know anything about the common state of 2149 // the shuffle result. 2150 Known.resetAll(); 2151 DemandedLHS.clearAllBits(); 2152 DemandedRHS.clearAllBits(); 2153 break; 2154 } 2155 2156 if ((unsigned)M < NumElts) 2157 DemandedLHS.setBit((unsigned)M % NumElts); 2158 else 2159 DemandedRHS.setBit((unsigned)M % NumElts); 2160 } 2161 // Known bits are the values that are shared by every demanded element. 2162 if (!!DemandedLHS) { 2163 SDValue LHS = Op.getOperand(0); 2164 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2165 Known.One &= Known2.One; 2166 Known.Zero &= Known2.Zero; 2167 } 2168 // If we don't know any bits, early out. 2169 if (!Known.One && !Known.Zero) 2170 break; 2171 if (!!DemandedRHS) { 2172 SDValue RHS = Op.getOperand(1); 2173 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2174 Known.One &= Known2.One; 2175 Known.Zero &= Known2.Zero; 2176 } 2177 break; 2178 } 2179 case ISD::CONCAT_VECTORS: { 2180 // Split DemandedElts and test each of the demanded subvectors. 2181 Known.Zero.setAllBits(); Known.One.setAllBits(); 2182 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2183 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2184 unsigned NumSubVectors = Op.getNumOperands(); 2185 for (unsigned i = 0; i != NumSubVectors; ++i) { 2186 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2187 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2188 if (!!DemandedSub) { 2189 SDValue Sub = Op.getOperand(i); 2190 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2191 Known.One &= Known2.One; 2192 Known.Zero &= Known2.Zero; 2193 } 2194 // If we don't know any bits, early out. 2195 if (!Known.One && !Known.Zero) 2196 break; 2197 } 2198 break; 2199 } 2200 case ISD::EXTRACT_SUBVECTOR: { 2201 // If we know the element index, just demand that subvector elements, 2202 // otherwise demand them all. 2203 SDValue Src = Op.getOperand(0); 2204 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2205 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2206 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2207 // Offset the demanded elts by the subvector index. 2208 uint64_t Idx = SubIdx->getZExtValue(); 2209 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2210 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2211 } else { 2212 computeKnownBits(Src, Known, Depth + 1); 2213 } 2214 break; 2215 } 2216 case ISD::BITCAST: { 2217 SDValue N0 = Op.getOperand(0); 2218 unsigned SubBitWidth = N0.getScalarValueSizeInBits(); 2219 2220 // Ignore bitcasts from floating point. 2221 if (!N0.getValueType().isInteger()) 2222 break; 2223 2224 // Fast handling of 'identity' bitcasts. 2225 if (BitWidth == SubBitWidth) { 2226 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2227 break; 2228 } 2229 2230 // Support big-endian targets when it becomes useful. 2231 bool IsLE = getDataLayout().isLittleEndian(); 2232 if (!IsLE) 2233 break; 2234 2235 // Bitcast 'small element' vector to 'large element' scalar/vector. 2236 if ((BitWidth % SubBitWidth) == 0) { 2237 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2238 2239 // Collect known bits for the (larger) output by collecting the known 2240 // bits from each set of sub elements and shift these into place. 2241 // We need to separately call computeKnownBits for each set of 2242 // sub elements as the knownbits for each is likely to be different. 2243 unsigned SubScale = BitWidth / SubBitWidth; 2244 APInt SubDemandedElts(NumElts * SubScale, 0); 2245 for (unsigned i = 0; i != NumElts; ++i) 2246 if (DemandedElts[i]) 2247 SubDemandedElts.setBit(i * SubScale); 2248 2249 for (unsigned i = 0; i != SubScale; ++i) { 2250 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2251 Depth + 1); 2252 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2253 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2254 } 2255 } 2256 2257 // Bitcast 'large element' scalar/vector to 'small element' vector. 2258 if ((SubBitWidth % BitWidth) == 0) { 2259 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2260 2261 // Collect known bits for the (smaller) output by collecting the known 2262 // bits from the overlapping larger input elements and extracting the 2263 // sub sections we actually care about. 2264 unsigned SubScale = SubBitWidth / BitWidth; 2265 APInt SubDemandedElts(NumElts / SubScale, 0); 2266 for (unsigned i = 0; i != NumElts; ++i) 2267 if (DemandedElts[i]) 2268 SubDemandedElts.setBit(i / SubScale); 2269 2270 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2271 2272 Known.Zero.setAllBits(); Known.One.setAllBits(); 2273 for (unsigned i = 0; i != NumElts; ++i) 2274 if (DemandedElts[i]) { 2275 unsigned Offset = (i % SubScale) * BitWidth; 2276 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2277 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2278 // If we don't know any bits, early out. 2279 if (!Known.One && !Known.Zero) 2280 break; 2281 } 2282 } 2283 break; 2284 } 2285 case ISD::AND: 2286 // If either the LHS or the RHS are Zero, the result is zero. 2287 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2288 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2289 2290 // Output known-1 bits are only known if set in both the LHS & RHS. 2291 Known.One &= Known2.One; 2292 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2293 Known.Zero |= Known2.Zero; 2294 break; 2295 case ISD::OR: 2296 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2297 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2298 2299 // Output known-0 bits are only known if clear in both the LHS & RHS. 2300 Known.Zero &= Known2.Zero; 2301 // Output known-1 are known to be set if set in either the LHS | RHS. 2302 Known.One |= Known2.One; 2303 break; 2304 case ISD::XOR: { 2305 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2306 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2307 2308 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2309 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2310 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2311 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2312 Known.Zero = KnownZeroOut; 2313 break; 2314 } 2315 case ISD::MUL: { 2316 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2317 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2318 2319 // If low bits are zero in either operand, output low known-0 bits. 2320 // Also compute a conservative estimate for high known-0 bits. 2321 // More trickiness is possible, but this is sufficient for the 2322 // interesting case of alignment computation. 2323 unsigned TrailZ = Known.countMinTrailingZeros() + 2324 Known2.countMinTrailingZeros(); 2325 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2326 Known2.countMinLeadingZeros(), 2327 BitWidth) - BitWidth; 2328 2329 Known.resetAll(); 2330 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2331 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2332 break; 2333 } 2334 case ISD::UDIV: { 2335 // For the purposes of computing leading zeros we can conservatively 2336 // treat a udiv as a logical right shift by the power of 2 known to 2337 // be less than the denominator. 2338 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2339 unsigned LeadZ = Known2.countMinLeadingZeros(); 2340 2341 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2342 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2343 if (RHSMaxLeadingZeros != BitWidth) 2344 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2345 2346 Known.Zero.setHighBits(LeadZ); 2347 break; 2348 } 2349 case ISD::SELECT: 2350 computeKnownBits(Op.getOperand(2), Known, Depth+1); 2351 // If we don't know any bits, early out. 2352 if (!Known.One && !Known.Zero) 2353 break; 2354 computeKnownBits(Op.getOperand(1), Known2, Depth+1); 2355 2356 // Only known if known in both the LHS and RHS. 2357 Known.One &= Known2.One; 2358 Known.Zero &= Known2.Zero; 2359 break; 2360 case ISD::SELECT_CC: 2361 computeKnownBits(Op.getOperand(3), Known, Depth+1); 2362 // If we don't know any bits, early out. 2363 if (!Known.One && !Known.Zero) 2364 break; 2365 computeKnownBits(Op.getOperand(2), Known2, Depth+1); 2366 2367 // Only known if known in both the LHS and RHS. 2368 Known.One &= Known2.One; 2369 Known.Zero &= Known2.Zero; 2370 break; 2371 case ISD::SMULO: 2372 case ISD::UMULO: 2373 if (Op.getResNo() != 1) 2374 break; 2375 // The boolean result conforms to getBooleanContents. 2376 // If we know the result of a setcc has the top bits zero, use this info. 2377 // We know that we have an integer-based boolean since these operations 2378 // are only available for integer. 2379 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2380 TargetLowering::ZeroOrOneBooleanContent && 2381 BitWidth > 1) 2382 Known.Zero.setBitsFrom(1); 2383 break; 2384 case ISD::SETCC: 2385 // If we know the result of a setcc has the top bits zero, use this info. 2386 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2387 TargetLowering::ZeroOrOneBooleanContent && 2388 BitWidth > 1) 2389 Known.Zero.setBitsFrom(1); 2390 break; 2391 case ISD::SHL: 2392 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2393 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2394 Known.Zero <<= *ShAmt; 2395 Known.One <<= *ShAmt; 2396 // Low bits are known zero. 2397 Known.Zero.setLowBits(ShAmt->getZExtValue()); 2398 } 2399 break; 2400 case ISD::SRL: 2401 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2402 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2403 Known.Zero.lshrInPlace(*ShAmt); 2404 Known.One.lshrInPlace(*ShAmt); 2405 // High bits are known zero. 2406 Known.Zero.setHighBits(ShAmt->getZExtValue()); 2407 } 2408 break; 2409 case ISD::SRA: 2410 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2411 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2412 Known.Zero.lshrInPlace(*ShAmt); 2413 Known.One.lshrInPlace(*ShAmt); 2414 // If we know the value of the sign bit, then we know it is copied across 2415 // the high bits by the shift amount. 2416 APInt SignMask = APInt::getSignMask(BitWidth); 2417 SignMask.lshrInPlace(*ShAmt); // Adjust to where it is now in the mask. 2418 if (Known.Zero.intersects(SignMask)) { 2419 Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero. 2420 } else if (Known.One.intersects(SignMask)) { 2421 Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one. 2422 } 2423 } 2424 break; 2425 case ISD::SIGN_EXTEND_INREG: { 2426 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2427 unsigned EBits = EVT.getScalarSizeInBits(); 2428 2429 // Sign extension. Compute the demanded bits in the result that are not 2430 // present in the input. 2431 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2432 2433 APInt InSignMask = APInt::getSignMask(EBits); 2434 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2435 2436 // If the sign extended bits are demanded, we know that the sign 2437 // bit is demanded. 2438 InSignMask = InSignMask.zext(BitWidth); 2439 if (NewBits.getBoolValue()) 2440 InputDemandedBits |= InSignMask; 2441 2442 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2443 Known.One &= InputDemandedBits; 2444 Known.Zero &= InputDemandedBits; 2445 2446 // If the sign bit of the input is known set or clear, then we know the 2447 // top bits of the result. 2448 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2449 Known.Zero |= NewBits; 2450 Known.One &= ~NewBits; 2451 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2452 Known.One |= NewBits; 2453 Known.Zero &= ~NewBits; 2454 } else { // Input sign bit unknown 2455 Known.Zero &= ~NewBits; 2456 Known.One &= ~NewBits; 2457 } 2458 break; 2459 } 2460 case ISD::CTTZ: 2461 case ISD::CTTZ_ZERO_UNDEF: { 2462 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2463 // If we have a known 1, its position is our upper bound. 2464 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2465 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2466 Known.Zero.setBitsFrom(LowBits); 2467 break; 2468 } 2469 case ISD::CTLZ: 2470 case ISD::CTLZ_ZERO_UNDEF: { 2471 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2472 // If we have a known 1, its position is our upper bound. 2473 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2474 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2475 Known.Zero.setBitsFrom(LowBits); 2476 break; 2477 } 2478 case ISD::CTPOP: { 2479 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2480 // If we know some of the bits are zero, they can't be one. 2481 unsigned PossibleOnes = Known2.countMaxPopulation(); 2482 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2483 break; 2484 } 2485 case ISD::LOAD: { 2486 LoadSDNode *LD = cast<LoadSDNode>(Op); 2487 // If this is a ZEXTLoad and we are looking at the loaded value. 2488 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2489 EVT VT = LD->getMemoryVT(); 2490 unsigned MemBits = VT.getScalarSizeInBits(); 2491 Known.Zero.setBitsFrom(MemBits); 2492 } else if (const MDNode *Ranges = LD->getRanges()) { 2493 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2494 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2495 } 2496 break; 2497 } 2498 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2499 EVT InVT = Op.getOperand(0).getValueType(); 2500 unsigned InBits = InVT.getScalarSizeInBits(); 2501 Known = Known.trunc(InBits); 2502 computeKnownBits(Op.getOperand(0), Known, 2503 DemandedElts.zext(InVT.getVectorNumElements()), 2504 Depth + 1); 2505 Known = Known.zext(BitWidth); 2506 Known.Zero.setBitsFrom(InBits); 2507 break; 2508 } 2509 case ISD::ZERO_EXTEND: { 2510 EVT InVT = Op.getOperand(0).getValueType(); 2511 unsigned InBits = InVT.getScalarSizeInBits(); 2512 Known = Known.trunc(InBits); 2513 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2514 Known = Known.zext(BitWidth); 2515 Known.Zero.setBitsFrom(InBits); 2516 break; 2517 } 2518 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2519 case ISD::SIGN_EXTEND: { 2520 EVT InVT = Op.getOperand(0).getValueType(); 2521 unsigned InBits = InVT.getScalarSizeInBits(); 2522 2523 Known = Known.trunc(InBits); 2524 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2525 2526 // If the sign bit is known to be zero or one, then sext will extend 2527 // it to the top bits, else it will just zext. 2528 Known = Known.sext(BitWidth); 2529 break; 2530 } 2531 case ISD::ANY_EXTEND: { 2532 EVT InVT = Op.getOperand(0).getValueType(); 2533 unsigned InBits = InVT.getScalarSizeInBits(); 2534 Known = Known.trunc(InBits); 2535 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2536 Known = Known.zext(BitWidth); 2537 break; 2538 } 2539 case ISD::TRUNCATE: { 2540 EVT InVT = Op.getOperand(0).getValueType(); 2541 unsigned InBits = InVT.getScalarSizeInBits(); 2542 Known = Known.zext(InBits); 2543 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2544 Known = Known.trunc(BitWidth); 2545 break; 2546 } 2547 case ISD::AssertZext: { 2548 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2549 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2550 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2551 Known.Zero |= (~InMask); 2552 Known.One &= (~Known.Zero); 2553 break; 2554 } 2555 case ISD::FGETSIGN: 2556 // All bits are zero except the low bit. 2557 Known.Zero.setBitsFrom(1); 2558 break; 2559 case ISD::USUBO: 2560 case ISD::SSUBO: 2561 if (Op.getResNo() == 1) { 2562 // If we know the result of a setcc has the top bits zero, use this info. 2563 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2564 TargetLowering::ZeroOrOneBooleanContent && 2565 BitWidth > 1) 2566 Known.Zero.setBitsFrom(1); 2567 break; 2568 } 2569 LLVM_FALLTHROUGH; 2570 case ISD::SUB: 2571 case ISD::SUBC: { 2572 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2573 // We know that the top bits of C-X are clear if X contains less bits 2574 // than C (i.e. no wrap-around can happen). For example, 20-X is 2575 // positive if we can prove that X is >= 0 and < 16. 2576 if (CLHS->getAPIntValue().isNonNegative()) { 2577 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2578 // NLZ can't be BitWidth with no sign bit 2579 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2580 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2581 Depth + 1); 2582 2583 // If all of the MaskV bits are known to be zero, then we know the 2584 // output top bits are zero, because we now know that the output is 2585 // from [0-C]. 2586 if ((Known2.Zero & MaskV) == MaskV) { 2587 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2588 // Top bits known zero. 2589 Known.Zero.setHighBits(NLZ2); 2590 } 2591 } 2592 } 2593 2594 // If low bits are know to be zero in both operands, then we know they are 2595 // going to be 0 in the result. Both addition and complement operations 2596 // preserve the low zero bits. 2597 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2598 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2599 if (KnownZeroLow == 0) 2600 break; 2601 2602 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2603 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2604 Known.Zero.setLowBits(KnownZeroLow); 2605 break; 2606 } 2607 case ISD::UADDO: 2608 case ISD::SADDO: 2609 case ISD::ADDCARRY: 2610 if (Op.getResNo() == 1) { 2611 // If we know the result of a setcc has the top bits zero, use this info. 2612 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2613 TargetLowering::ZeroOrOneBooleanContent && 2614 BitWidth > 1) 2615 Known.Zero.setBitsFrom(1); 2616 break; 2617 } 2618 LLVM_FALLTHROUGH; 2619 case ISD::ADD: 2620 case ISD::ADDC: 2621 case ISD::ADDE: { 2622 // Output known-0 bits are known if clear or set in both the low clear bits 2623 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2624 // low 3 bits clear. 2625 // Output known-0 bits are also known if the top bits of each input are 2626 // known to be clear. For example, if one input has the top 10 bits clear 2627 // and the other has the top 8 bits clear, we know the top 7 bits of the 2628 // output must be clear. 2629 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2630 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2631 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2632 2633 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2634 Depth + 1); 2635 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2636 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2637 2638 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2639 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2640 // use this information if we know (at least) that the low two bits are 2641 // clear. We then return to the caller that the low bit is unknown but 2642 // that other bits are known zero. 2643 if (KnownZeroLow >= 2) 2644 Known.Zero.setBits(1, KnownZeroLow); 2645 break; 2646 } 2647 2648 Known.Zero.setLowBits(KnownZeroLow); 2649 if (KnownZeroHigh > 1) 2650 Known.Zero.setHighBits(KnownZeroHigh - 1); 2651 break; 2652 } 2653 case ISD::SREM: 2654 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2655 const APInt &RA = Rem->getAPIntValue().abs(); 2656 if (RA.isPowerOf2()) { 2657 APInt LowBits = RA - 1; 2658 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2659 2660 // The low bits of the first operand are unchanged by the srem. 2661 Known.Zero = Known2.Zero & LowBits; 2662 Known.One = Known2.One & LowBits; 2663 2664 // If the first operand is non-negative or has all low bits zero, then 2665 // the upper bits are all zero. 2666 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2667 Known.Zero |= ~LowBits; 2668 2669 // If the first operand is negative and not all low bits are zero, then 2670 // the upper bits are all one. 2671 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2672 Known.One |= ~LowBits; 2673 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2674 } 2675 } 2676 break; 2677 case ISD::UREM: { 2678 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2679 const APInt &RA = Rem->getAPIntValue(); 2680 if (RA.isPowerOf2()) { 2681 APInt LowBits = (RA - 1); 2682 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2683 2684 // The upper bits are all zero, the lower ones are unchanged. 2685 Known.Zero = Known2.Zero | ~LowBits; 2686 Known.One = Known2.One & LowBits; 2687 break; 2688 } 2689 } 2690 2691 // Since the result is less than or equal to either operand, any leading 2692 // zero bits in either operand must also exist in the result. 2693 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2694 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2695 2696 uint32_t Leaders = 2697 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2698 Known.resetAll(); 2699 Known.Zero.setHighBits(Leaders); 2700 break; 2701 } 2702 case ISD::EXTRACT_ELEMENT: { 2703 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2704 const unsigned Index = Op.getConstantOperandVal(1); 2705 const unsigned BitWidth = Op.getValueSizeInBits(); 2706 2707 // Remove low part of known bits mask 2708 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2709 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2710 2711 // Remove high part of known bit mask 2712 Known = Known.trunc(BitWidth); 2713 break; 2714 } 2715 case ISD::EXTRACT_VECTOR_ELT: { 2716 SDValue InVec = Op.getOperand(0); 2717 SDValue EltNo = Op.getOperand(1); 2718 EVT VecVT = InVec.getValueType(); 2719 const unsigned BitWidth = Op.getValueSizeInBits(); 2720 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2721 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2722 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2723 // anything about the extended bits. 2724 if (BitWidth > EltBitWidth) 2725 Known = Known.trunc(EltBitWidth); 2726 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2727 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2728 // If we know the element index, just demand that vector element. 2729 unsigned Idx = ConstEltNo->getZExtValue(); 2730 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2731 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2732 } else { 2733 // Unknown element index, so ignore DemandedElts and demand them all. 2734 computeKnownBits(InVec, Known, Depth + 1); 2735 } 2736 if (BitWidth > EltBitWidth) 2737 Known = Known.zext(BitWidth); 2738 break; 2739 } 2740 case ISD::INSERT_VECTOR_ELT: { 2741 SDValue InVec = Op.getOperand(0); 2742 SDValue InVal = Op.getOperand(1); 2743 SDValue EltNo = Op.getOperand(2); 2744 2745 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2746 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2747 // If we know the element index, split the demand between the 2748 // source vector and the inserted element. 2749 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2750 unsigned EltIdx = CEltNo->getZExtValue(); 2751 2752 // If we demand the inserted element then add its common known bits. 2753 if (DemandedElts[EltIdx]) { 2754 computeKnownBits(InVal, Known2, Depth + 1); 2755 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2756 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2757 } 2758 2759 // If we demand the source vector then add its common known bits, ensuring 2760 // that we don't demand the inserted element. 2761 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2762 if (!!VectorElts) { 2763 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2764 Known.One &= Known2.One; 2765 Known.Zero &= Known2.Zero; 2766 } 2767 } else { 2768 // Unknown element index, so ignore DemandedElts and demand them all. 2769 computeKnownBits(InVec, Known, Depth + 1); 2770 computeKnownBits(InVal, Known2, Depth + 1); 2771 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2772 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2773 } 2774 break; 2775 } 2776 case ISD::BITREVERSE: { 2777 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2778 Known.Zero = Known2.Zero.reverseBits(); 2779 Known.One = Known2.One.reverseBits(); 2780 break; 2781 } 2782 case ISD::BSWAP: { 2783 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2784 Known.Zero = Known2.Zero.byteSwap(); 2785 Known.One = Known2.One.byteSwap(); 2786 break; 2787 } 2788 case ISD::ABS: { 2789 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2790 2791 // If the source's MSB is zero then we know the rest of the bits already. 2792 if (Known2.isNonNegative()) { 2793 Known.Zero = Known2.Zero; 2794 Known.One = Known2.One; 2795 break; 2796 } 2797 2798 // We only know that the absolute values's MSB will be zero iff there is 2799 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2800 Known2.One.clearSignBit(); 2801 if (Known2.One.getBoolValue()) { 2802 Known.Zero = APInt::getSignMask(BitWidth); 2803 break; 2804 } 2805 break; 2806 } 2807 case ISD::UMIN: { 2808 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2809 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2810 2811 // UMIN - we know that the result will have the maximum of the 2812 // known zero leading bits of the inputs. 2813 unsigned LeadZero = Known.countMinLeadingZeros(); 2814 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2815 2816 Known.Zero &= Known2.Zero; 2817 Known.One &= Known2.One; 2818 Known.Zero.setHighBits(LeadZero); 2819 break; 2820 } 2821 case ISD::UMAX: { 2822 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2823 Depth + 1); 2824 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2825 2826 // UMAX - we know that the result will have the maximum of the 2827 // known one leading bits of the inputs. 2828 unsigned LeadOne = Known.countMinLeadingOnes(); 2829 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2830 2831 Known.Zero &= Known2.Zero; 2832 Known.One &= Known2.One; 2833 Known.One.setHighBits(LeadOne); 2834 break; 2835 } 2836 case ISD::SMIN: 2837 case ISD::SMAX: { 2838 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2839 Depth + 1); 2840 // If we don't know any bits, early out. 2841 if (!Known.One && !Known.Zero) 2842 break; 2843 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2844 Known.Zero &= Known2.Zero; 2845 Known.One &= Known2.One; 2846 break; 2847 } 2848 case ISD::FrameIndex: 2849 case ISD::TargetFrameIndex: 2850 if (unsigned Align = InferPtrAlignment(Op)) { 2851 // The low bits are known zero if the pointer is aligned. 2852 Known.Zero.setLowBits(Log2_32(Align)); 2853 break; 2854 } 2855 break; 2856 2857 default: 2858 if (Opcode < ISD::BUILTIN_OP_END) 2859 break; 2860 LLVM_FALLTHROUGH; 2861 case ISD::INTRINSIC_WO_CHAIN: 2862 case ISD::INTRINSIC_W_CHAIN: 2863 case ISD::INTRINSIC_VOID: 2864 // Allow the target to implement this method for its nodes. 2865 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 2866 break; 2867 } 2868 2869 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2870 } 2871 2872 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2873 SDValue N1) const { 2874 // X + 0 never overflow 2875 if (isNullConstant(N1)) 2876 return OFK_Never; 2877 2878 KnownBits N1Known; 2879 computeKnownBits(N1, N1Known); 2880 if (N1Known.Zero.getBoolValue()) { 2881 KnownBits N0Known; 2882 computeKnownBits(N0, N0Known); 2883 2884 bool overflow; 2885 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 2886 if (!overflow) 2887 return OFK_Never; 2888 } 2889 2890 // mulhi + 1 never overflow 2891 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2892 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 2893 return OFK_Never; 2894 2895 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2896 KnownBits N0Known; 2897 computeKnownBits(N0, N0Known); 2898 2899 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 2900 return OFK_Never; 2901 } 2902 2903 return OFK_Sometime; 2904 } 2905 2906 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2907 EVT OpVT = Val.getValueType(); 2908 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2909 2910 // Is the constant a known power of 2? 2911 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2912 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2913 2914 // A left-shift of a constant one will have exactly one bit set because 2915 // shifting the bit off the end is undefined. 2916 if (Val.getOpcode() == ISD::SHL) { 2917 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2918 if (C && C->getAPIntValue() == 1) 2919 return true; 2920 } 2921 2922 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2923 // one bit set. 2924 if (Val.getOpcode() == ISD::SRL) { 2925 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2926 if (C && C->getAPIntValue().isSignMask()) 2927 return true; 2928 } 2929 2930 // Are all operands of a build vector constant powers of two? 2931 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2932 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2933 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2934 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2935 return false; 2936 })) 2937 return true; 2938 2939 // More could be done here, though the above checks are enough 2940 // to handle some common cases. 2941 2942 // Fall back to computeKnownBits to catch other known cases. 2943 KnownBits Known; 2944 computeKnownBits(Val, Known); 2945 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 2946 } 2947 2948 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2949 EVT VT = Op.getValueType(); 2950 APInt DemandedElts = VT.isVector() 2951 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2952 : APInt(1, 1); 2953 return ComputeNumSignBits(Op, DemandedElts, Depth); 2954 } 2955 2956 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 2957 unsigned Depth) const { 2958 EVT VT = Op.getValueType(); 2959 assert(VT.isInteger() && "Invalid VT!"); 2960 unsigned VTBits = VT.getScalarSizeInBits(); 2961 unsigned NumElts = DemandedElts.getBitWidth(); 2962 unsigned Tmp, Tmp2; 2963 unsigned FirstAnswer = 1; 2964 2965 if (Depth == 6) 2966 return 1; // Limit search depth. 2967 2968 if (!DemandedElts) 2969 return 1; // No demanded elts, better to assume we don't know anything. 2970 2971 switch (Op.getOpcode()) { 2972 default: break; 2973 case ISD::AssertSext: 2974 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2975 return VTBits-Tmp+1; 2976 case ISD::AssertZext: 2977 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2978 return VTBits-Tmp; 2979 2980 case ISD::Constant: { 2981 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2982 return Val.getNumSignBits(); 2983 } 2984 2985 case ISD::BUILD_VECTOR: 2986 Tmp = VTBits; 2987 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 2988 if (!DemandedElts[i]) 2989 continue; 2990 2991 SDValue SrcOp = Op.getOperand(i); 2992 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 2993 2994 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2995 if (SrcOp.getValueSizeInBits() != VTBits) { 2996 assert(SrcOp.getValueSizeInBits() > VTBits && 2997 "Expected BUILD_VECTOR implicit truncation"); 2998 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 2999 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3000 } 3001 Tmp = std::min(Tmp, Tmp2); 3002 } 3003 return Tmp; 3004 3005 case ISD::VECTOR_SHUFFLE: { 3006 // Collect the minimum number of sign bits that are shared by every vector 3007 // element referenced by the shuffle. 3008 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3009 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3010 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3011 for (unsigned i = 0; i != NumElts; ++i) { 3012 int M = SVN->getMaskElt(i); 3013 if (!DemandedElts[i]) 3014 continue; 3015 // For UNDEF elements, we don't know anything about the common state of 3016 // the shuffle result. 3017 if (M < 0) 3018 return 1; 3019 if ((unsigned)M < NumElts) 3020 DemandedLHS.setBit((unsigned)M % NumElts); 3021 else 3022 DemandedRHS.setBit((unsigned)M % NumElts); 3023 } 3024 Tmp = std::numeric_limits<unsigned>::max(); 3025 if (!!DemandedLHS) 3026 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3027 if (!!DemandedRHS) { 3028 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3029 Tmp = std::min(Tmp, Tmp2); 3030 } 3031 // If we don't know anything, early out and try computeKnownBits fall-back. 3032 if (Tmp == 1) 3033 break; 3034 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3035 return Tmp; 3036 } 3037 3038 case ISD::SIGN_EXTEND: 3039 case ISD::SIGN_EXTEND_VECTOR_INREG: 3040 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3041 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 3042 3043 case ISD::SIGN_EXTEND_INREG: 3044 // Max of the input and what this extends. 3045 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3046 Tmp = VTBits-Tmp+1; 3047 3048 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3049 return std::max(Tmp, Tmp2); 3050 3051 case ISD::SRA: 3052 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3053 // SRA X, C -> adds C sign bits. 3054 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 3055 APInt ShiftVal = C->getAPIntValue(); 3056 ShiftVal += Tmp; 3057 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3058 } 3059 return Tmp; 3060 case ISD::SHL: 3061 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 3062 // shl destroys sign bits. 3063 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3064 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3065 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3066 return Tmp - C->getZExtValue(); 3067 } 3068 break; 3069 case ISD::AND: 3070 case ISD::OR: 3071 case ISD::XOR: // NOT is handled here. 3072 // Logical binary ops preserve the number of sign bits at the worst. 3073 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3074 if (Tmp != 1) { 3075 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3076 FirstAnswer = std::min(Tmp, Tmp2); 3077 // We computed what we know about the sign bits as our first 3078 // answer. Now proceed to the generic code that uses 3079 // computeKnownBits, and pick whichever answer is better. 3080 } 3081 break; 3082 3083 case ISD::SELECT: 3084 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3085 if (Tmp == 1) return 1; // Early out. 3086 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 3087 return std::min(Tmp, Tmp2); 3088 case ISD::SELECT_CC: 3089 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 3090 if (Tmp == 1) return 1; // Early out. 3091 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 3092 return std::min(Tmp, Tmp2); 3093 case ISD::SMIN: 3094 case ISD::SMAX: 3095 case ISD::UMIN: 3096 case ISD::UMAX: 3097 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3098 if (Tmp == 1) 3099 return 1; // Early out. 3100 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3101 return std::min(Tmp, Tmp2); 3102 case ISD::SADDO: 3103 case ISD::UADDO: 3104 case ISD::SSUBO: 3105 case ISD::USUBO: 3106 case ISD::SMULO: 3107 case ISD::UMULO: 3108 if (Op.getResNo() != 1) 3109 break; 3110 // The boolean result conforms to getBooleanContents. Fall through. 3111 // If setcc returns 0/-1, all bits are sign bits. 3112 // We know that we have an integer-based boolean since these operations 3113 // are only available for integer. 3114 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3115 TargetLowering::ZeroOrNegativeOneBooleanContent) 3116 return VTBits; 3117 break; 3118 case ISD::SETCC: 3119 // If setcc returns 0/-1, all bits are sign bits. 3120 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3121 TargetLowering::ZeroOrNegativeOneBooleanContent) 3122 return VTBits; 3123 break; 3124 case ISD::ROTL: 3125 case ISD::ROTR: 3126 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3127 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 3128 3129 // Handle rotate right by N like a rotate left by 32-N. 3130 if (Op.getOpcode() == ISD::ROTR) 3131 RotAmt = (VTBits-RotAmt) & (VTBits-1); 3132 3133 // If we aren't rotating out all of the known-in sign bits, return the 3134 // number that are left. This handles rotl(sext(x), 1) for example. 3135 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3136 if (Tmp > RotAmt+1) return Tmp-RotAmt; 3137 } 3138 break; 3139 case ISD::ADD: 3140 case ISD::ADDC: 3141 // Add can have at most one carry bit. Thus we know that the output 3142 // is, at worst, one more bit than the inputs. 3143 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3144 if (Tmp == 1) return 1; // Early out. 3145 3146 // Special case decrementing a value (ADD X, -1): 3147 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3148 if (CRHS->isAllOnesValue()) { 3149 KnownBits Known; 3150 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3151 3152 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3153 // sign bits set. 3154 if ((Known.Zero | 1).isAllOnesValue()) 3155 return VTBits; 3156 3157 // If we are subtracting one from a positive number, there is no carry 3158 // out of the result. 3159 if (Known.isNonNegative()) 3160 return Tmp; 3161 } 3162 3163 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3164 if (Tmp2 == 1) return 1; 3165 return std::min(Tmp, Tmp2)-1; 3166 3167 case ISD::SUB: 3168 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3169 if (Tmp2 == 1) return 1; 3170 3171 // Handle NEG. 3172 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3173 if (CLHS->isNullValue()) { 3174 KnownBits Known; 3175 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3176 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3177 // sign bits set. 3178 if ((Known.Zero | 1).isAllOnesValue()) 3179 return VTBits; 3180 3181 // If the input is known to be positive (the sign bit is known clear), 3182 // the output of the NEG has the same number of sign bits as the input. 3183 if (Known.isNonNegative()) 3184 return Tmp2; 3185 3186 // Otherwise, we treat this like a SUB. 3187 } 3188 3189 // Sub can have at most one carry bit. Thus we know that the output 3190 // is, at worst, one more bit than the inputs. 3191 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3192 if (Tmp == 1) return 1; // Early out. 3193 return std::min(Tmp, Tmp2)-1; 3194 case ISD::TRUNCATE: { 3195 // Check if the sign bits of source go down as far as the truncated value. 3196 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3197 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3198 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3199 return NumSrcSignBits - (NumSrcBits - VTBits); 3200 break; 3201 } 3202 case ISD::EXTRACT_ELEMENT: { 3203 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3204 const int BitWidth = Op.getValueSizeInBits(); 3205 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3206 3207 // Get reverse index (starting from 1), Op1 value indexes elements from 3208 // little end. Sign starts at big end. 3209 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3210 3211 // If the sign portion ends in our element the subtraction gives correct 3212 // result. Otherwise it gives either negative or > bitwidth result 3213 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3214 } 3215 case ISD::INSERT_VECTOR_ELT: { 3216 SDValue InVec = Op.getOperand(0); 3217 SDValue InVal = Op.getOperand(1); 3218 SDValue EltNo = Op.getOperand(2); 3219 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3220 3221 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3222 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3223 // If we know the element index, split the demand between the 3224 // source vector and the inserted element. 3225 unsigned EltIdx = CEltNo->getZExtValue(); 3226 3227 // If we demand the inserted element then get its sign bits. 3228 Tmp = std::numeric_limits<unsigned>::max(); 3229 if (DemandedElts[EltIdx]) { 3230 // TODO - handle implicit truncation of inserted elements. 3231 if (InVal.getScalarValueSizeInBits() != VTBits) 3232 break; 3233 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3234 } 3235 3236 // If we demand the source vector then get its sign bits, and determine 3237 // the minimum. 3238 APInt VectorElts = DemandedElts; 3239 VectorElts.clearBit(EltIdx); 3240 if (!!VectorElts) { 3241 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3242 Tmp = std::min(Tmp, Tmp2); 3243 } 3244 } else { 3245 // Unknown element index, so ignore DemandedElts and demand them all. 3246 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3247 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3248 Tmp = std::min(Tmp, Tmp2); 3249 } 3250 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3251 return Tmp; 3252 } 3253 case ISD::EXTRACT_VECTOR_ELT: { 3254 SDValue InVec = Op.getOperand(0); 3255 SDValue EltNo = Op.getOperand(1); 3256 EVT VecVT = InVec.getValueType(); 3257 const unsigned BitWidth = Op.getValueSizeInBits(); 3258 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3259 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3260 3261 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3262 // anything about sign bits. But if the sizes match we can derive knowledge 3263 // about sign bits from the vector operand. 3264 if (BitWidth != EltBitWidth) 3265 break; 3266 3267 // If we know the element index, just demand that vector element, else for 3268 // an unknown element index, ignore DemandedElts and demand them all. 3269 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3270 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3271 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3272 DemandedSrcElts = 3273 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3274 3275 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3276 } 3277 case ISD::EXTRACT_SUBVECTOR: { 3278 // If we know the element index, just demand that subvector elements, 3279 // otherwise demand them all. 3280 SDValue Src = Op.getOperand(0); 3281 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3282 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3283 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3284 // Offset the demanded elts by the subvector index. 3285 uint64_t Idx = SubIdx->getZExtValue(); 3286 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3287 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3288 } 3289 return ComputeNumSignBits(Src, Depth + 1); 3290 } 3291 case ISD::CONCAT_VECTORS: 3292 // Determine the minimum number of sign bits across all demanded 3293 // elts of the input vectors. Early out if the result is already 1. 3294 Tmp = std::numeric_limits<unsigned>::max(); 3295 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3296 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3297 unsigned NumSubVectors = Op.getNumOperands(); 3298 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3299 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3300 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3301 if (!DemandedSub) 3302 continue; 3303 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3304 Tmp = std::min(Tmp, Tmp2); 3305 } 3306 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3307 return Tmp; 3308 } 3309 3310 // If we are looking at the loaded value of the SDNode. 3311 if (Op.getResNo() == 0) { 3312 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3313 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3314 unsigned ExtType = LD->getExtensionType(); 3315 switch (ExtType) { 3316 default: break; 3317 case ISD::SEXTLOAD: // '17' bits known 3318 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3319 return VTBits-Tmp+1; 3320 case ISD::ZEXTLOAD: // '16' bits known 3321 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3322 return VTBits-Tmp; 3323 } 3324 } 3325 } 3326 3327 // Allow the target to implement this method for its nodes. 3328 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3329 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3330 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3331 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3332 unsigned NumBits = 3333 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3334 if (NumBits > 1) 3335 FirstAnswer = std::max(FirstAnswer, NumBits); 3336 } 3337 3338 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3339 // use this information. 3340 KnownBits Known; 3341 computeKnownBits(Op, Known, DemandedElts, Depth); 3342 3343 APInt Mask; 3344 if (Known.isNonNegative()) { // sign bit is 0 3345 Mask = Known.Zero; 3346 } else if (Known.isNegative()) { // sign bit is 1; 3347 Mask = Known.One; 3348 } else { 3349 // Nothing known. 3350 return FirstAnswer; 3351 } 3352 3353 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3354 // the number of identical bits in the top of the input value. 3355 Mask = ~Mask; 3356 Mask <<= Mask.getBitWidth()-VTBits; 3357 // Return # leading zeros. We use 'min' here in case Val was zero before 3358 // shifting. We don't want to return '64' as for an i32 "0". 3359 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3360 } 3361 3362 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3363 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3364 !isa<ConstantSDNode>(Op.getOperand(1))) 3365 return false; 3366 3367 if (Op.getOpcode() == ISD::OR && 3368 !MaskedValueIsZero(Op.getOperand(0), 3369 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3370 return false; 3371 3372 return true; 3373 } 3374 3375 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3376 // If we're told that NaNs won't happen, assume they won't. 3377 if (getTarget().Options.NoNaNsFPMath) 3378 return true; 3379 3380 if (Op->getFlags().hasNoNaNs()) 3381 return true; 3382 3383 // If the value is a constant, we can obviously see if it is a NaN or not. 3384 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3385 return !C->getValueAPF().isNaN(); 3386 3387 // TODO: Recognize more cases here. 3388 3389 return false; 3390 } 3391 3392 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3393 // If the value is a constant, we can obviously see if it is a zero or not. 3394 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3395 return !C->isZero(); 3396 3397 // TODO: Recognize more cases here. 3398 switch (Op.getOpcode()) { 3399 default: break; 3400 case ISD::OR: 3401 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3402 return !C->isNullValue(); 3403 break; 3404 } 3405 3406 return false; 3407 } 3408 3409 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3410 // Check the obvious case. 3411 if (A == B) return true; 3412 3413 // For for negative and positive zero. 3414 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3415 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3416 if (CA->isZero() && CB->isZero()) return true; 3417 3418 // Otherwise they may not be equal. 3419 return false; 3420 } 3421 3422 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3423 assert(A.getValueType() == B.getValueType() && 3424 "Values must have the same type"); 3425 KnownBits AKnown, BKnown; 3426 computeKnownBits(A, AKnown); 3427 computeKnownBits(B, BKnown); 3428 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3429 } 3430 3431 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3432 ArrayRef<SDValue> Ops, 3433 SelectionDAG &DAG) { 3434 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3435 assert(llvm::all_of(Ops, 3436 [Ops](SDValue Op) { 3437 return Ops[0].getValueType() == Op.getValueType(); 3438 }) && 3439 "Concatenation of vectors with inconsistent value types!"); 3440 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3441 VT.getVectorNumElements() && 3442 "Incorrect element count in vector concatenation!"); 3443 3444 if (Ops.size() == 1) 3445 return Ops[0]; 3446 3447 // Concat of UNDEFs is UNDEF. 3448 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3449 return DAG.getUNDEF(VT); 3450 3451 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3452 // simplified to one big BUILD_VECTOR. 3453 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3454 EVT SVT = VT.getScalarType(); 3455 SmallVector<SDValue, 16> Elts; 3456 for (SDValue Op : Ops) { 3457 EVT OpVT = Op.getValueType(); 3458 if (Op.isUndef()) 3459 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3460 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3461 Elts.append(Op->op_begin(), Op->op_end()); 3462 else 3463 return SDValue(); 3464 } 3465 3466 // BUILD_VECTOR requires all inputs to be of the same type, find the 3467 // maximum type and extend them all. 3468 for (SDValue Op : Elts) 3469 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3470 3471 if (SVT.bitsGT(VT.getScalarType())) 3472 for (SDValue &Op : Elts) 3473 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3474 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3475 : DAG.getSExtOrTrunc(Op, DL, SVT); 3476 3477 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3478 NewSDValueDbgMsg(V, "New node fold concat vectors: "); 3479 return V; 3480 } 3481 3482 /// Gets or creates the specified node. 3483 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3484 FoldingSetNodeID ID; 3485 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3486 void *IP = nullptr; 3487 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3488 return SDValue(E, 0); 3489 3490 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3491 getVTList(VT)); 3492 CSEMap.InsertNode(N, IP); 3493 3494 InsertNode(N); 3495 SDValue V = SDValue(N, 0); 3496 NewSDValueDbgMsg(V, "Creating new node: "); 3497 return V; 3498 } 3499 3500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3501 SDValue Operand, const SDNodeFlags Flags) { 3502 // Constant fold unary operations with an integer constant operand. Even 3503 // opaque constant will be folded, because the folding of unary operations 3504 // doesn't create new constants with different values. Nevertheless, the 3505 // opaque flag is preserved during folding to prevent future folding with 3506 // other constants. 3507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3508 const APInt &Val = C->getAPIntValue(); 3509 switch (Opcode) { 3510 default: break; 3511 case ISD::SIGN_EXTEND: 3512 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3513 C->isTargetOpcode(), C->isOpaque()); 3514 case ISD::ANY_EXTEND: 3515 case ISD::ZERO_EXTEND: 3516 case ISD::TRUNCATE: 3517 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3518 C->isTargetOpcode(), C->isOpaque()); 3519 case ISD::UINT_TO_FP: 3520 case ISD::SINT_TO_FP: { 3521 APFloat apf(EVTToAPFloatSemantics(VT), 3522 APInt::getNullValue(VT.getSizeInBits())); 3523 (void)apf.convertFromAPInt(Val, 3524 Opcode==ISD::SINT_TO_FP, 3525 APFloat::rmNearestTiesToEven); 3526 return getConstantFP(apf, DL, VT); 3527 } 3528 case ISD::BITCAST: 3529 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3530 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3531 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3532 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3533 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3534 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3535 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3536 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3537 break; 3538 case ISD::ABS: 3539 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3540 C->isOpaque()); 3541 case ISD::BITREVERSE: 3542 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3543 C->isOpaque()); 3544 case ISD::BSWAP: 3545 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3546 C->isOpaque()); 3547 case ISD::CTPOP: 3548 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3549 C->isOpaque()); 3550 case ISD::CTLZ: 3551 case ISD::CTLZ_ZERO_UNDEF: 3552 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3553 C->isOpaque()); 3554 case ISD::CTTZ: 3555 case ISD::CTTZ_ZERO_UNDEF: 3556 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3557 C->isOpaque()); 3558 case ISD::FP16_TO_FP: { 3559 bool Ignored; 3560 APFloat FPV(APFloat::IEEEhalf(), 3561 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3562 3563 // This can return overflow, underflow, or inexact; we don't care. 3564 // FIXME need to be more flexible about rounding mode. 3565 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3566 APFloat::rmNearestTiesToEven, &Ignored); 3567 return getConstantFP(FPV, DL, VT); 3568 } 3569 } 3570 } 3571 3572 // Constant fold unary operations with a floating point constant operand. 3573 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3574 APFloat V = C->getValueAPF(); // make copy 3575 switch (Opcode) { 3576 case ISD::FNEG: 3577 V.changeSign(); 3578 return getConstantFP(V, DL, VT); 3579 case ISD::FABS: 3580 V.clearSign(); 3581 return getConstantFP(V, DL, VT); 3582 case ISD::FCEIL: { 3583 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3584 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3585 return getConstantFP(V, DL, VT); 3586 break; 3587 } 3588 case ISD::FTRUNC: { 3589 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3590 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3591 return getConstantFP(V, DL, VT); 3592 break; 3593 } 3594 case ISD::FFLOOR: { 3595 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3596 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3597 return getConstantFP(V, DL, VT); 3598 break; 3599 } 3600 case ISD::FP_EXTEND: { 3601 bool ignored; 3602 // This can return overflow, underflow, or inexact; we don't care. 3603 // FIXME need to be more flexible about rounding mode. 3604 (void)V.convert(EVTToAPFloatSemantics(VT), 3605 APFloat::rmNearestTiesToEven, &ignored); 3606 return getConstantFP(V, DL, VT); 3607 } 3608 case ISD::FP_TO_SINT: 3609 case ISD::FP_TO_UINT: { 3610 bool ignored; 3611 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3612 // FIXME need to be more flexible about rounding mode. 3613 APFloat::opStatus s = 3614 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3615 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3616 break; 3617 return getConstant(IntVal, DL, VT); 3618 } 3619 case ISD::BITCAST: 3620 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3621 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3622 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3623 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3624 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3625 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3626 break; 3627 case ISD::FP_TO_FP16: { 3628 bool Ignored; 3629 // This can return overflow, underflow, or inexact; we don't care. 3630 // FIXME need to be more flexible about rounding mode. 3631 (void)V.convert(APFloat::IEEEhalf(), 3632 APFloat::rmNearestTiesToEven, &Ignored); 3633 return getConstant(V.bitcastToAPInt(), DL, VT); 3634 } 3635 } 3636 } 3637 3638 // Constant fold unary operations with a vector integer or float operand. 3639 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3640 if (BV->isConstant()) { 3641 switch (Opcode) { 3642 default: 3643 // FIXME: Entirely reasonable to perform folding of other unary 3644 // operations here as the need arises. 3645 break; 3646 case ISD::FNEG: 3647 case ISD::FABS: 3648 case ISD::FCEIL: 3649 case ISD::FTRUNC: 3650 case ISD::FFLOOR: 3651 case ISD::FP_EXTEND: 3652 case ISD::FP_TO_SINT: 3653 case ISD::FP_TO_UINT: 3654 case ISD::TRUNCATE: 3655 case ISD::UINT_TO_FP: 3656 case ISD::SINT_TO_FP: 3657 case ISD::ABS: 3658 case ISD::BITREVERSE: 3659 case ISD::BSWAP: 3660 case ISD::CTLZ: 3661 case ISD::CTLZ_ZERO_UNDEF: 3662 case ISD::CTTZ: 3663 case ISD::CTTZ_ZERO_UNDEF: 3664 case ISD::CTPOP: { 3665 SDValue Ops = { Operand }; 3666 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3667 return Fold; 3668 } 3669 } 3670 } 3671 } 3672 3673 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3674 switch (Opcode) { 3675 case ISD::TokenFactor: 3676 case ISD::MERGE_VALUES: 3677 case ISD::CONCAT_VECTORS: 3678 return Operand; // Factor, merge or concat of one node? No need. 3679 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3680 case ISD::FP_EXTEND: 3681 assert(VT.isFloatingPoint() && 3682 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3683 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3684 assert((!VT.isVector() || 3685 VT.getVectorNumElements() == 3686 Operand.getValueType().getVectorNumElements()) && 3687 "Vector element count mismatch!"); 3688 assert(Operand.getValueType().bitsLT(VT) && 3689 "Invalid fpext node, dst < src!"); 3690 if (Operand.isUndef()) 3691 return getUNDEF(VT); 3692 break; 3693 case ISD::SIGN_EXTEND: 3694 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3695 "Invalid SIGN_EXTEND!"); 3696 if (Operand.getValueType() == VT) return Operand; // noop extension 3697 assert((!VT.isVector() || 3698 VT.getVectorNumElements() == 3699 Operand.getValueType().getVectorNumElements()) && 3700 "Vector element count mismatch!"); 3701 assert(Operand.getValueType().bitsLT(VT) && 3702 "Invalid sext node, dst < src!"); 3703 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3704 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3705 else if (OpOpcode == ISD::UNDEF) 3706 // sext(undef) = 0, because the top bits will all be the same. 3707 return getConstant(0, DL, VT); 3708 break; 3709 case ISD::ZERO_EXTEND: 3710 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3711 "Invalid ZERO_EXTEND!"); 3712 if (Operand.getValueType() == VT) return Operand; // noop extension 3713 assert((!VT.isVector() || 3714 VT.getVectorNumElements() == 3715 Operand.getValueType().getVectorNumElements()) && 3716 "Vector element count mismatch!"); 3717 assert(Operand.getValueType().bitsLT(VT) && 3718 "Invalid zext node, dst < src!"); 3719 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3720 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3721 else if (OpOpcode == ISD::UNDEF) 3722 // zext(undef) = 0, because the top bits will be zero. 3723 return getConstant(0, DL, VT); 3724 break; 3725 case ISD::ANY_EXTEND: 3726 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3727 "Invalid ANY_EXTEND!"); 3728 if (Operand.getValueType() == VT) return Operand; // noop extension 3729 assert((!VT.isVector() || 3730 VT.getVectorNumElements() == 3731 Operand.getValueType().getVectorNumElements()) && 3732 "Vector element count mismatch!"); 3733 assert(Operand.getValueType().bitsLT(VT) && 3734 "Invalid anyext node, dst < src!"); 3735 3736 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3737 OpOpcode == ISD::ANY_EXTEND) 3738 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3739 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3740 else if (OpOpcode == ISD::UNDEF) 3741 return getUNDEF(VT); 3742 3743 // (ext (trunx x)) -> x 3744 if (OpOpcode == ISD::TRUNCATE) { 3745 SDValue OpOp = Operand.getOperand(0); 3746 if (OpOp.getValueType() == VT) 3747 return OpOp; 3748 } 3749 break; 3750 case ISD::TRUNCATE: 3751 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3752 "Invalid TRUNCATE!"); 3753 if (Operand.getValueType() == VT) return Operand; // noop truncate 3754 assert((!VT.isVector() || 3755 VT.getVectorNumElements() == 3756 Operand.getValueType().getVectorNumElements()) && 3757 "Vector element count mismatch!"); 3758 assert(Operand.getValueType().bitsGT(VT) && 3759 "Invalid truncate node, src < dst!"); 3760 if (OpOpcode == ISD::TRUNCATE) 3761 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3762 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3763 OpOpcode == ISD::ANY_EXTEND) { 3764 // If the source is smaller than the dest, we still need an extend. 3765 if (Operand.getOperand(0).getValueType().getScalarType() 3766 .bitsLT(VT.getScalarType())) 3767 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3768 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3769 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3770 return Operand.getOperand(0); 3771 } 3772 if (OpOpcode == ISD::UNDEF) 3773 return getUNDEF(VT); 3774 break; 3775 case ISD::ABS: 3776 assert(VT.isInteger() && VT == Operand.getValueType() && 3777 "Invalid ABS!"); 3778 if (OpOpcode == ISD::UNDEF) 3779 return getUNDEF(VT); 3780 break; 3781 case ISD::BSWAP: 3782 assert(VT.isInteger() && VT == Operand.getValueType() && 3783 "Invalid BSWAP!"); 3784 assert((VT.getScalarSizeInBits() % 16 == 0) && 3785 "BSWAP types must be a multiple of 16 bits!"); 3786 if (OpOpcode == ISD::UNDEF) 3787 return getUNDEF(VT); 3788 break; 3789 case ISD::BITREVERSE: 3790 assert(VT.isInteger() && VT == Operand.getValueType() && 3791 "Invalid BITREVERSE!"); 3792 if (OpOpcode == ISD::UNDEF) 3793 return getUNDEF(VT); 3794 break; 3795 case ISD::BITCAST: 3796 // Basic sanity checking. 3797 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3798 "Cannot BITCAST between types of different sizes!"); 3799 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3800 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3801 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3802 if (OpOpcode == ISD::UNDEF) 3803 return getUNDEF(VT); 3804 break; 3805 case ISD::SCALAR_TO_VECTOR: 3806 assert(VT.isVector() && !Operand.getValueType().isVector() && 3807 (VT.getVectorElementType() == Operand.getValueType() || 3808 (VT.getVectorElementType().isInteger() && 3809 Operand.getValueType().isInteger() && 3810 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3811 "Illegal SCALAR_TO_VECTOR node!"); 3812 if (OpOpcode == ISD::UNDEF) 3813 return getUNDEF(VT); 3814 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3815 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3816 isa<ConstantSDNode>(Operand.getOperand(1)) && 3817 Operand.getConstantOperandVal(1) == 0 && 3818 Operand.getOperand(0).getValueType() == VT) 3819 return Operand.getOperand(0); 3820 break; 3821 case ISD::FNEG: 3822 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3823 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3824 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3825 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 3826 Operand.getOperand(0), Operand.getNode()->getFlags()); 3827 if (OpOpcode == ISD::FNEG) // --X -> X 3828 return Operand.getOperand(0); 3829 break; 3830 case ISD::FABS: 3831 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3832 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 3833 break; 3834 } 3835 3836 SDNode *N; 3837 SDVTList VTs = getVTList(VT); 3838 SDValue Ops[] = {Operand}; 3839 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3840 FoldingSetNodeID ID; 3841 AddNodeIDNode(ID, Opcode, VTs, Ops); 3842 void *IP = nullptr; 3843 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3844 E->intersectFlagsWith(Flags); 3845 return SDValue(E, 0); 3846 } 3847 3848 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3849 N->setFlags(Flags); 3850 createOperands(N, Ops); 3851 CSEMap.InsertNode(N, IP); 3852 } else { 3853 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3854 createOperands(N, Ops); 3855 } 3856 3857 InsertNode(N); 3858 SDValue V = SDValue(N, 0); 3859 NewSDValueDbgMsg(V, "Creating new node: "); 3860 return V; 3861 } 3862 3863 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3864 const APInt &C2) { 3865 switch (Opcode) { 3866 case ISD::ADD: return std::make_pair(C1 + C2, true); 3867 case ISD::SUB: return std::make_pair(C1 - C2, true); 3868 case ISD::MUL: return std::make_pair(C1 * C2, true); 3869 case ISD::AND: return std::make_pair(C1 & C2, true); 3870 case ISD::OR: return std::make_pair(C1 | C2, true); 3871 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3872 case ISD::SHL: return std::make_pair(C1 << C2, true); 3873 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3874 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3875 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3876 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3877 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3878 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3879 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3880 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3881 case ISD::UDIV: 3882 if (!C2.getBoolValue()) 3883 break; 3884 return std::make_pair(C1.udiv(C2), true); 3885 case ISD::UREM: 3886 if (!C2.getBoolValue()) 3887 break; 3888 return std::make_pair(C1.urem(C2), true); 3889 case ISD::SDIV: 3890 if (!C2.getBoolValue()) 3891 break; 3892 return std::make_pair(C1.sdiv(C2), true); 3893 case ISD::SREM: 3894 if (!C2.getBoolValue()) 3895 break; 3896 return std::make_pair(C1.srem(C2), true); 3897 } 3898 return std::make_pair(APInt(1, 0), false); 3899 } 3900 3901 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3902 EVT VT, const ConstantSDNode *Cst1, 3903 const ConstantSDNode *Cst2) { 3904 if (Cst1->isOpaque() || Cst2->isOpaque()) 3905 return SDValue(); 3906 3907 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3908 Cst2->getAPIntValue()); 3909 if (!Folded.second) 3910 return SDValue(); 3911 return getConstant(Folded.first, DL, VT); 3912 } 3913 3914 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3915 const GlobalAddressSDNode *GA, 3916 const SDNode *N2) { 3917 if (GA->getOpcode() != ISD::GlobalAddress) 3918 return SDValue(); 3919 if (!TLI->isOffsetFoldingLegal(GA)) 3920 return SDValue(); 3921 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3922 if (!Cst2) 3923 return SDValue(); 3924 int64_t Offset = Cst2->getSExtValue(); 3925 switch (Opcode) { 3926 case ISD::ADD: break; 3927 case ISD::SUB: Offset = -uint64_t(Offset); break; 3928 default: return SDValue(); 3929 } 3930 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3931 GA->getOffset() + uint64_t(Offset)); 3932 } 3933 3934 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 3935 switch (Opcode) { 3936 case ISD::SDIV: 3937 case ISD::UDIV: 3938 case ISD::SREM: 3939 case ISD::UREM: { 3940 // If a divisor is zero/undef or any element of a divisor vector is 3941 // zero/undef, the whole op is undef. 3942 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 3943 SDValue Divisor = Ops[1]; 3944 if (Divisor.isUndef() || isNullConstant(Divisor)) 3945 return true; 3946 3947 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 3948 llvm::any_of(Divisor->op_values(), 3949 [](SDValue V) { return V.isUndef() || 3950 isNullConstant(V); }); 3951 // TODO: Handle signed overflow. 3952 } 3953 // TODO: Handle oversized shifts. 3954 default: 3955 return false; 3956 } 3957 } 3958 3959 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3960 EVT VT, SDNode *Cst1, 3961 SDNode *Cst2) { 3962 // If the opcode is a target-specific ISD node, there's nothing we can 3963 // do here and the operand rules may not line up with the below, so 3964 // bail early. 3965 if (Opcode >= ISD::BUILTIN_OP_END) 3966 return SDValue(); 3967 3968 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 3969 return getUNDEF(VT); 3970 3971 // Handle the case of two scalars. 3972 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3973 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3974 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3975 assert((!Folded || !VT.isVector()) && 3976 "Can't fold vectors ops with scalar operands"); 3977 return Folded; 3978 } 3979 } 3980 3981 // fold (add Sym, c) -> Sym+c 3982 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3983 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3984 if (TLI->isCommutativeBinOp(Opcode)) 3985 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3986 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3987 3988 // For vectors extract each constant element into Inputs so we can constant 3989 // fold them individually. 3990 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3991 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3992 if (!BV1 || !BV2) 3993 return SDValue(); 3994 3995 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3996 3997 EVT SVT = VT.getScalarType(); 3998 EVT LegalSVT = SVT; 3999 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4000 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4001 if (LegalSVT.bitsLT(SVT)) 4002 return SDValue(); 4003 } 4004 SmallVector<SDValue, 4> Outputs; 4005 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4006 SDValue V1 = BV1->getOperand(I); 4007 SDValue V2 = BV2->getOperand(I); 4008 4009 if (SVT.isInteger()) { 4010 if (V1->getValueType(0).bitsGT(SVT)) 4011 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4012 if (V2->getValueType(0).bitsGT(SVT)) 4013 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4014 } 4015 4016 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4017 return SDValue(); 4018 4019 // Fold one vector element. 4020 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4021 if (LegalSVT != SVT) 4022 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4023 4024 // Scalar folding only succeeded if the result is a constant or UNDEF. 4025 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4026 ScalarResult.getOpcode() != ISD::ConstantFP) 4027 return SDValue(); 4028 Outputs.push_back(ScalarResult); 4029 } 4030 4031 assert(VT.getVectorNumElements() == Outputs.size() && 4032 "Vector size mismatch!"); 4033 4034 // We may have a vector type but a scalar result. Create a splat. 4035 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4036 4037 // Build a big vector out of the scalar elements we generated. 4038 return getBuildVector(VT, SDLoc(), Outputs); 4039 } 4040 4041 // TODO: Merge with FoldConstantArithmetic 4042 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4043 const SDLoc &DL, EVT VT, 4044 ArrayRef<SDValue> Ops, 4045 const SDNodeFlags Flags) { 4046 // If the opcode is a target-specific ISD node, there's nothing we can 4047 // do here and the operand rules may not line up with the below, so 4048 // bail early. 4049 if (Opcode >= ISD::BUILTIN_OP_END) 4050 return SDValue(); 4051 4052 if (isUndef(Opcode, Ops)) 4053 return getUNDEF(VT); 4054 4055 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4056 if (!VT.isVector()) 4057 return SDValue(); 4058 4059 unsigned NumElts = VT.getVectorNumElements(); 4060 4061 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4062 return !Op.getValueType().isVector() || 4063 Op.getValueType().getVectorNumElements() == NumElts; 4064 }; 4065 4066 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4067 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4068 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4069 (BV && BV->isConstant()); 4070 }; 4071 4072 // All operands must be vector types with the same number of elements as 4073 // the result type and must be either UNDEF or a build vector of constant 4074 // or UNDEF scalars. 4075 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4076 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4077 return SDValue(); 4078 4079 // If we are comparing vectors, then the result needs to be a i1 boolean 4080 // that is then sign-extended back to the legal result type. 4081 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4082 4083 // Find legal integer scalar type for constant promotion and 4084 // ensure that its scalar size is at least as large as source. 4085 EVT LegalSVT = VT.getScalarType(); 4086 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4087 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4088 if (LegalSVT.bitsLT(VT.getScalarType())) 4089 return SDValue(); 4090 } 4091 4092 // Constant fold each scalar lane separately. 4093 SmallVector<SDValue, 4> ScalarResults; 4094 for (unsigned i = 0; i != NumElts; i++) { 4095 SmallVector<SDValue, 4> ScalarOps; 4096 for (SDValue Op : Ops) { 4097 EVT InSVT = Op.getValueType().getScalarType(); 4098 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4099 if (!InBV) { 4100 // We've checked that this is UNDEF or a constant of some kind. 4101 if (Op.isUndef()) 4102 ScalarOps.push_back(getUNDEF(InSVT)); 4103 else 4104 ScalarOps.push_back(Op); 4105 continue; 4106 } 4107 4108 SDValue ScalarOp = InBV->getOperand(i); 4109 EVT ScalarVT = ScalarOp.getValueType(); 4110 4111 // Build vector (integer) scalar operands may need implicit 4112 // truncation - do this before constant folding. 4113 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4114 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4115 4116 ScalarOps.push_back(ScalarOp); 4117 } 4118 4119 // Constant fold the scalar operands. 4120 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4121 4122 // Legalize the (integer) scalar constant if necessary. 4123 if (LegalSVT != SVT) 4124 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4125 4126 // Scalar folding only succeeded if the result is a constant or UNDEF. 4127 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4128 ScalarResult.getOpcode() != ISD::ConstantFP) 4129 return SDValue(); 4130 ScalarResults.push_back(ScalarResult); 4131 } 4132 4133 SDValue V = getBuildVector(VT, DL, ScalarResults); 4134 NewSDValueDbgMsg(V, "New node fold constant vector: "); 4135 return V; 4136 } 4137 4138 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4139 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4140 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4141 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4142 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4143 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4144 4145 // Canonicalize constant to RHS if commutative. 4146 if (TLI->isCommutativeBinOp(Opcode)) { 4147 if (N1C && !N2C) { 4148 std::swap(N1C, N2C); 4149 std::swap(N1, N2); 4150 } else if (N1CFP && !N2CFP) { 4151 std::swap(N1CFP, N2CFP); 4152 std::swap(N1, N2); 4153 } 4154 } 4155 4156 switch (Opcode) { 4157 default: break; 4158 case ISD::TokenFactor: 4159 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4160 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4161 // Fold trivial token factors. 4162 if (N1.getOpcode() == ISD::EntryToken) return N2; 4163 if (N2.getOpcode() == ISD::EntryToken) return N1; 4164 if (N1 == N2) return N1; 4165 break; 4166 case ISD::CONCAT_VECTORS: { 4167 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4168 SDValue Ops[] = {N1, N2}; 4169 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4170 return V; 4171 break; 4172 } 4173 case ISD::AND: 4174 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4175 assert(N1.getValueType() == N2.getValueType() && 4176 N1.getValueType() == VT && "Binary operator types must match!"); 4177 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4178 // worth handling here. 4179 if (N2C && N2C->isNullValue()) 4180 return N2; 4181 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4182 return N1; 4183 break; 4184 case ISD::OR: 4185 case ISD::XOR: 4186 case ISD::ADD: 4187 case ISD::SUB: 4188 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4189 assert(N1.getValueType() == N2.getValueType() && 4190 N1.getValueType() == VT && "Binary operator types must match!"); 4191 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4192 // it's worth handling here. 4193 if (N2C && N2C->isNullValue()) 4194 return N1; 4195 break; 4196 case ISD::UDIV: 4197 case ISD::UREM: 4198 case ISD::MULHU: 4199 case ISD::MULHS: 4200 case ISD::MUL: 4201 case ISD::SDIV: 4202 case ISD::SREM: 4203 case ISD::SMIN: 4204 case ISD::SMAX: 4205 case ISD::UMIN: 4206 case ISD::UMAX: 4207 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4208 assert(N1.getValueType() == N2.getValueType() && 4209 N1.getValueType() == VT && "Binary operator types must match!"); 4210 break; 4211 case ISD::FADD: 4212 case ISD::FSUB: 4213 case ISD::FMUL: 4214 case ISD::FDIV: 4215 case ISD::FREM: 4216 if (getTarget().Options.UnsafeFPMath) { 4217 if (Opcode == ISD::FADD) { 4218 // x+0 --> x 4219 if (N2CFP && N2CFP->getValueAPF().isZero()) 4220 return N1; 4221 } else if (Opcode == ISD::FSUB) { 4222 // x-0 --> x 4223 if (N2CFP && N2CFP->getValueAPF().isZero()) 4224 return N1; 4225 } else if (Opcode == ISD::FMUL) { 4226 // x*0 --> 0 4227 if (N2CFP && N2CFP->isZero()) 4228 return N2; 4229 // x*1 --> x 4230 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4231 return N1; 4232 } 4233 } 4234 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4235 assert(N1.getValueType() == N2.getValueType() && 4236 N1.getValueType() == VT && "Binary operator types must match!"); 4237 break; 4238 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4239 assert(N1.getValueType() == VT && 4240 N1.getValueType().isFloatingPoint() && 4241 N2.getValueType().isFloatingPoint() && 4242 "Invalid FCOPYSIGN!"); 4243 break; 4244 case ISD::SHL: 4245 case ISD::SRA: 4246 case ISD::SRL: 4247 case ISD::ROTL: 4248 case ISD::ROTR: 4249 assert(VT == N1.getValueType() && 4250 "Shift operators return type must be the same as their first arg"); 4251 assert(VT.isInteger() && N2.getValueType().isInteger() && 4252 "Shifts only work on integers"); 4253 assert((!VT.isVector() || VT == N2.getValueType()) && 4254 "Vector shift amounts must be in the same as their first arg"); 4255 // Verify that the shift amount VT is bit enough to hold valid shift 4256 // amounts. This catches things like trying to shift an i1024 value by an 4257 // i8, which is easy to fall into in generic code that uses 4258 // TLI.getShiftAmount(). 4259 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4260 "Invalid use of small shift amount with oversized value!"); 4261 4262 // Always fold shifts of i1 values so the code generator doesn't need to 4263 // handle them. Since we know the size of the shift has to be less than the 4264 // size of the value, the shift/rotate count is guaranteed to be zero. 4265 if (VT == MVT::i1) 4266 return N1; 4267 if (N2C && N2C->isNullValue()) 4268 return N1; 4269 break; 4270 case ISD::FP_ROUND_INREG: { 4271 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4272 assert(VT == N1.getValueType() && "Not an inreg round!"); 4273 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4274 "Cannot FP_ROUND_INREG integer types"); 4275 assert(EVT.isVector() == VT.isVector() && 4276 "FP_ROUND_INREG type should be vector iff the operand " 4277 "type is vector!"); 4278 assert((!EVT.isVector() || 4279 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4280 "Vector element counts must match in FP_ROUND_INREG"); 4281 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4282 (void)EVT; 4283 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4284 break; 4285 } 4286 case ISD::FP_ROUND: 4287 assert(VT.isFloatingPoint() && 4288 N1.getValueType().isFloatingPoint() && 4289 VT.bitsLE(N1.getValueType()) && 4290 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4291 "Invalid FP_ROUND!"); 4292 if (N1.getValueType() == VT) return N1; // noop conversion. 4293 break; 4294 case ISD::AssertSext: 4295 case ISD::AssertZext: { 4296 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4297 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4298 assert(VT.isInteger() && EVT.isInteger() && 4299 "Cannot *_EXTEND_INREG FP types"); 4300 assert(!EVT.isVector() && 4301 "AssertSExt/AssertZExt type should be the vector element type " 4302 "rather than the vector type!"); 4303 assert(EVT.bitsLE(VT) && "Not extending!"); 4304 if (VT == EVT) return N1; // noop assertion. 4305 break; 4306 } 4307 case ISD::SIGN_EXTEND_INREG: { 4308 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4309 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4310 assert(VT.isInteger() && EVT.isInteger() && 4311 "Cannot *_EXTEND_INREG FP types"); 4312 assert(EVT.isVector() == VT.isVector() && 4313 "SIGN_EXTEND_INREG type should be vector iff the operand " 4314 "type is vector!"); 4315 assert((!EVT.isVector() || 4316 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4317 "Vector element counts must match in SIGN_EXTEND_INREG"); 4318 assert(EVT.bitsLE(VT) && "Not extending!"); 4319 if (EVT == VT) return N1; // Not actually extending 4320 4321 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4322 unsigned FromBits = EVT.getScalarSizeInBits(); 4323 Val <<= Val.getBitWidth() - FromBits; 4324 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4325 return getConstant(Val, DL, ConstantVT); 4326 }; 4327 4328 if (N1C) { 4329 const APInt &Val = N1C->getAPIntValue(); 4330 return SignExtendInReg(Val, VT); 4331 } 4332 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4333 SmallVector<SDValue, 8> Ops; 4334 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4335 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4336 SDValue Op = N1.getOperand(i); 4337 if (Op.isUndef()) { 4338 Ops.push_back(getUNDEF(OpVT)); 4339 continue; 4340 } 4341 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4342 APInt Val = C->getAPIntValue(); 4343 Ops.push_back(SignExtendInReg(Val, OpVT)); 4344 } 4345 return getBuildVector(VT, DL, Ops); 4346 } 4347 break; 4348 } 4349 case ISD::EXTRACT_VECTOR_ELT: 4350 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4351 if (N1.isUndef()) 4352 return getUNDEF(VT); 4353 4354 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4355 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4356 return getUNDEF(VT); 4357 4358 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4359 // expanding copies of large vectors from registers. 4360 if (N2C && 4361 N1.getOpcode() == ISD::CONCAT_VECTORS && 4362 N1.getNumOperands() > 0) { 4363 unsigned Factor = 4364 N1.getOperand(0).getValueType().getVectorNumElements(); 4365 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4366 N1.getOperand(N2C->getZExtValue() / Factor), 4367 getConstant(N2C->getZExtValue() % Factor, DL, 4368 N2.getValueType())); 4369 } 4370 4371 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4372 // expanding large vector constants. 4373 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4374 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4375 4376 if (VT != Elt.getValueType()) 4377 // If the vector element type is not legal, the BUILD_VECTOR operands 4378 // are promoted and implicitly truncated, and the result implicitly 4379 // extended. Make that explicit here. 4380 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4381 4382 return Elt; 4383 } 4384 4385 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4386 // operations are lowered to scalars. 4387 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4388 // If the indices are the same, return the inserted element else 4389 // if the indices are known different, extract the element from 4390 // the original vector. 4391 SDValue N1Op2 = N1.getOperand(2); 4392 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4393 4394 if (N1Op2C && N2C) { 4395 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4396 if (VT == N1.getOperand(1).getValueType()) 4397 return N1.getOperand(1); 4398 else 4399 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4400 } 4401 4402 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4403 } 4404 } 4405 4406 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4407 // when vector types are scalarized and v1iX is legal. 4408 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4409 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4410 N1.getValueType().getVectorNumElements() == 1) { 4411 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4412 N1.getOperand(1)); 4413 } 4414 break; 4415 case ISD::EXTRACT_ELEMENT: 4416 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4417 assert(!N1.getValueType().isVector() && !VT.isVector() && 4418 (N1.getValueType().isInteger() == VT.isInteger()) && 4419 N1.getValueType() != VT && 4420 "Wrong types for EXTRACT_ELEMENT!"); 4421 4422 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4423 // 64-bit integers into 32-bit parts. Instead of building the extract of 4424 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4425 if (N1.getOpcode() == ISD::BUILD_PAIR) 4426 return N1.getOperand(N2C->getZExtValue()); 4427 4428 // EXTRACT_ELEMENT of a constant int is also very common. 4429 if (N1C) { 4430 unsigned ElementSize = VT.getSizeInBits(); 4431 unsigned Shift = ElementSize * N2C->getZExtValue(); 4432 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4433 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4434 } 4435 break; 4436 case ISD::EXTRACT_SUBVECTOR: 4437 if (VT.isSimple() && N1.getValueType().isSimple()) { 4438 assert(VT.isVector() && N1.getValueType().isVector() && 4439 "Extract subvector VTs must be a vectors!"); 4440 assert(VT.getVectorElementType() == 4441 N1.getValueType().getVectorElementType() && 4442 "Extract subvector VTs must have the same element type!"); 4443 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4444 "Extract subvector must be from larger vector to smaller vector!"); 4445 4446 if (N2C) { 4447 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4448 <= N1.getValueType().getVectorNumElements()) 4449 && "Extract subvector overflow!"); 4450 } 4451 4452 // Trivial extraction. 4453 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4454 return N1; 4455 4456 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4457 if (N1.isUndef()) 4458 return getUNDEF(VT); 4459 4460 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4461 // the concat have the same type as the extract. 4462 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4463 N1.getNumOperands() > 0 && 4464 VT == N1.getOperand(0).getValueType()) { 4465 unsigned Factor = VT.getVectorNumElements(); 4466 return N1.getOperand(N2C->getZExtValue() / Factor); 4467 } 4468 4469 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4470 // during shuffle legalization. 4471 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4472 VT == N1.getOperand(1).getValueType()) 4473 return N1.getOperand(1); 4474 } 4475 break; 4476 } 4477 4478 // Perform trivial constant folding. 4479 if (SDValue SV = 4480 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4481 return SV; 4482 4483 // Constant fold FP operations. 4484 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4485 if (N1CFP) { 4486 if (N2CFP) { 4487 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4488 APFloat::opStatus s; 4489 switch (Opcode) { 4490 case ISD::FADD: 4491 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4492 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4493 return getConstantFP(V1, DL, VT); 4494 break; 4495 case ISD::FSUB: 4496 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4497 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4498 return getConstantFP(V1, DL, VT); 4499 break; 4500 case ISD::FMUL: 4501 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4502 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4503 return getConstantFP(V1, DL, VT); 4504 break; 4505 case ISD::FDIV: 4506 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4507 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4508 s!=APFloat::opDivByZero)) { 4509 return getConstantFP(V1, DL, VT); 4510 } 4511 break; 4512 case ISD::FREM : 4513 s = V1.mod(V2); 4514 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4515 s!=APFloat::opDivByZero)) { 4516 return getConstantFP(V1, DL, VT); 4517 } 4518 break; 4519 case ISD::FCOPYSIGN: 4520 V1.copySign(V2); 4521 return getConstantFP(V1, DL, VT); 4522 default: break; 4523 } 4524 } 4525 4526 if (Opcode == ISD::FP_ROUND) { 4527 APFloat V = N1CFP->getValueAPF(); // make copy 4528 bool ignored; 4529 // This can return overflow, underflow, or inexact; we don't care. 4530 // FIXME need to be more flexible about rounding mode. 4531 (void)V.convert(EVTToAPFloatSemantics(VT), 4532 APFloat::rmNearestTiesToEven, &ignored); 4533 return getConstantFP(V, DL, VT); 4534 } 4535 } 4536 4537 // Canonicalize an UNDEF to the RHS, even over a constant. 4538 if (N1.isUndef()) { 4539 if (TLI->isCommutativeBinOp(Opcode)) { 4540 std::swap(N1, N2); 4541 } else { 4542 switch (Opcode) { 4543 case ISD::FP_ROUND_INREG: 4544 case ISD::SIGN_EXTEND_INREG: 4545 case ISD::SUB: 4546 case ISD::FSUB: 4547 case ISD::FDIV: 4548 case ISD::FREM: 4549 case ISD::SRA: 4550 return N1; // fold op(undef, arg2) -> undef 4551 case ISD::UDIV: 4552 case ISD::SDIV: 4553 case ISD::UREM: 4554 case ISD::SREM: 4555 case ISD::SRL: 4556 case ISD::SHL: 4557 if (!VT.isVector()) 4558 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4559 // For vectors, we can't easily build an all zero vector, just return 4560 // the LHS. 4561 return N2; 4562 } 4563 } 4564 } 4565 4566 // Fold a bunch of operators when the RHS is undef. 4567 if (N2.isUndef()) { 4568 switch (Opcode) { 4569 case ISD::XOR: 4570 if (N1.isUndef()) 4571 // Handle undef ^ undef -> 0 special case. This is a common 4572 // idiom (misuse). 4573 return getConstant(0, DL, VT); 4574 LLVM_FALLTHROUGH; 4575 case ISD::ADD: 4576 case ISD::ADDC: 4577 case ISD::ADDE: 4578 case ISD::SUB: 4579 case ISD::UDIV: 4580 case ISD::SDIV: 4581 case ISD::UREM: 4582 case ISD::SREM: 4583 return N2; // fold op(arg1, undef) -> undef 4584 case ISD::FADD: 4585 case ISD::FSUB: 4586 case ISD::FMUL: 4587 case ISD::FDIV: 4588 case ISD::FREM: 4589 if (getTarget().Options.UnsafeFPMath) 4590 return N2; 4591 break; 4592 case ISD::MUL: 4593 case ISD::AND: 4594 case ISD::SRL: 4595 case ISD::SHL: 4596 if (!VT.isVector()) 4597 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4598 // For vectors, we can't easily build an all zero vector, just return 4599 // the LHS. 4600 return N1; 4601 case ISD::OR: 4602 if (!VT.isVector()) 4603 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4604 // For vectors, we can't easily build an all one vector, just return 4605 // the LHS. 4606 return N1; 4607 case ISD::SRA: 4608 return N1; 4609 } 4610 } 4611 4612 // Memoize this node if possible. 4613 SDNode *N; 4614 SDVTList VTs = getVTList(VT); 4615 SDValue Ops[] = {N1, N2}; 4616 if (VT != MVT::Glue) { 4617 FoldingSetNodeID ID; 4618 AddNodeIDNode(ID, Opcode, VTs, Ops); 4619 void *IP = nullptr; 4620 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4621 E->intersectFlagsWith(Flags); 4622 return SDValue(E, 0); 4623 } 4624 4625 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4626 N->setFlags(Flags); 4627 createOperands(N, Ops); 4628 CSEMap.InsertNode(N, IP); 4629 } else { 4630 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4631 createOperands(N, Ops); 4632 } 4633 4634 InsertNode(N); 4635 SDValue V = SDValue(N, 0); 4636 NewSDValueDbgMsg(V, "Creating new node: "); 4637 return V; 4638 } 4639 4640 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4641 SDValue N1, SDValue N2, SDValue N3) { 4642 // Perform various simplifications. 4643 switch (Opcode) { 4644 case ISD::FMA: { 4645 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4646 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4647 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4648 if (N1CFP && N2CFP && N3CFP) { 4649 APFloat V1 = N1CFP->getValueAPF(); 4650 const APFloat &V2 = N2CFP->getValueAPF(); 4651 const APFloat &V3 = N3CFP->getValueAPF(); 4652 APFloat::opStatus s = 4653 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4654 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4655 return getConstantFP(V1, DL, VT); 4656 } 4657 break; 4658 } 4659 case ISD::CONCAT_VECTORS: { 4660 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4661 SDValue Ops[] = {N1, N2, N3}; 4662 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4663 return V; 4664 break; 4665 } 4666 case ISD::SETCC: { 4667 // Use FoldSetCC to simplify SETCC's. 4668 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4669 return V; 4670 // Vector constant folding. 4671 SDValue Ops[] = {N1, N2, N3}; 4672 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 4673 NewSDValueDbgMsg(V, "New node vector constant folding: "); 4674 return V; 4675 } 4676 break; 4677 } 4678 case ISD::SELECT: 4679 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4680 if (N1C->getZExtValue()) 4681 return N2; // select true, X, Y -> X 4682 return N3; // select false, X, Y -> Y 4683 } 4684 4685 if (N2 == N3) return N2; // select C, X, X -> X 4686 break; 4687 case ISD::VECTOR_SHUFFLE: 4688 llvm_unreachable("should use getVectorShuffle constructor!"); 4689 case ISD::INSERT_VECTOR_ELT: { 4690 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4691 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4692 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4693 return getUNDEF(VT); 4694 break; 4695 } 4696 case ISD::INSERT_SUBVECTOR: { 4697 SDValue Index = N3; 4698 if (VT.isSimple() && N1.getValueType().isSimple() 4699 && N2.getValueType().isSimple()) { 4700 assert(VT.isVector() && N1.getValueType().isVector() && 4701 N2.getValueType().isVector() && 4702 "Insert subvector VTs must be a vectors"); 4703 assert(VT == N1.getValueType() && 4704 "Dest and insert subvector source types must match!"); 4705 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4706 "Insert subvector must be from smaller vector to larger vector!"); 4707 if (isa<ConstantSDNode>(Index)) { 4708 assert((N2.getValueType().getVectorNumElements() + 4709 cast<ConstantSDNode>(Index)->getZExtValue() 4710 <= VT.getVectorNumElements()) 4711 && "Insert subvector overflow!"); 4712 } 4713 4714 // Trivial insertion. 4715 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4716 return N2; 4717 } 4718 break; 4719 } 4720 case ISD::BITCAST: 4721 // Fold bit_convert nodes from a type to themselves. 4722 if (N1.getValueType() == VT) 4723 return N1; 4724 break; 4725 } 4726 4727 // Memoize node if it doesn't produce a flag. 4728 SDNode *N; 4729 SDVTList VTs = getVTList(VT); 4730 SDValue Ops[] = {N1, N2, N3}; 4731 if (VT != MVT::Glue) { 4732 FoldingSetNodeID ID; 4733 AddNodeIDNode(ID, Opcode, VTs, Ops); 4734 void *IP = nullptr; 4735 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4736 return SDValue(E, 0); 4737 4738 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4739 createOperands(N, Ops); 4740 CSEMap.InsertNode(N, IP); 4741 } else { 4742 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4743 createOperands(N, Ops); 4744 } 4745 4746 InsertNode(N); 4747 SDValue V = SDValue(N, 0); 4748 NewSDValueDbgMsg(V, "Creating new node: "); 4749 return V; 4750 } 4751 4752 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4753 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4754 SDValue Ops[] = { N1, N2, N3, N4 }; 4755 return getNode(Opcode, DL, VT, Ops); 4756 } 4757 4758 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4759 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4760 SDValue N5) { 4761 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4762 return getNode(Opcode, DL, VT, Ops); 4763 } 4764 4765 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4766 /// the incoming stack arguments to be loaded from the stack. 4767 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4768 SmallVector<SDValue, 8> ArgChains; 4769 4770 // Include the original chain at the beginning of the list. When this is 4771 // used by target LowerCall hooks, this helps legalize find the 4772 // CALLSEQ_BEGIN node. 4773 ArgChains.push_back(Chain); 4774 4775 // Add a chain value for each stack argument. 4776 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4777 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4778 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4779 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4780 if (FI->getIndex() < 0) 4781 ArgChains.push_back(SDValue(L, 1)); 4782 4783 // Build a tokenfactor for all the chains. 4784 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4785 } 4786 4787 /// getMemsetValue - Vectorized representation of the memset value 4788 /// operand. 4789 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4790 const SDLoc &dl) { 4791 assert(!Value.isUndef()); 4792 4793 unsigned NumBits = VT.getScalarSizeInBits(); 4794 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4795 assert(C->getAPIntValue().getBitWidth() == 8); 4796 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4797 if (VT.isInteger()) 4798 return DAG.getConstant(Val, dl, VT); 4799 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4800 VT); 4801 } 4802 4803 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4804 EVT IntVT = VT.getScalarType(); 4805 if (!IntVT.isInteger()) 4806 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4807 4808 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4809 if (NumBits > 8) { 4810 // Use a multiplication with 0x010101... to extend the input to the 4811 // required length. 4812 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4813 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4814 DAG.getConstant(Magic, dl, IntVT)); 4815 } 4816 4817 if (VT != Value.getValueType() && !VT.isInteger()) 4818 Value = DAG.getBitcast(VT.getScalarType(), Value); 4819 if (VT != Value.getValueType()) 4820 Value = DAG.getSplatBuildVector(VT, dl, Value); 4821 4822 return Value; 4823 } 4824 4825 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4826 /// used when a memcpy is turned into a memset when the source is a constant 4827 /// string ptr. 4828 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4829 const TargetLowering &TLI, 4830 const ConstantDataArraySlice &Slice) { 4831 // Handle vector with all elements zero. 4832 if (Slice.Array == nullptr) { 4833 if (VT.isInteger()) 4834 return DAG.getConstant(0, dl, VT); 4835 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4836 return DAG.getConstantFP(0.0, dl, VT); 4837 else if (VT.isVector()) { 4838 unsigned NumElts = VT.getVectorNumElements(); 4839 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4840 return DAG.getNode(ISD::BITCAST, dl, VT, 4841 DAG.getConstant(0, dl, 4842 EVT::getVectorVT(*DAG.getContext(), 4843 EltVT, NumElts))); 4844 } else 4845 llvm_unreachable("Expected type!"); 4846 } 4847 4848 assert(!VT.isVector() && "Can't handle vector type here!"); 4849 unsigned NumVTBits = VT.getSizeInBits(); 4850 unsigned NumVTBytes = NumVTBits / 8; 4851 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 4852 4853 APInt Val(NumVTBits, 0); 4854 if (DAG.getDataLayout().isLittleEndian()) { 4855 for (unsigned i = 0; i != NumBytes; ++i) 4856 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 4857 } else { 4858 for (unsigned i = 0; i != NumBytes; ++i) 4859 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 4860 } 4861 4862 // If the "cost" of materializing the integer immediate is less than the cost 4863 // of a load, then it is cost effective to turn the load into the immediate. 4864 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4865 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4866 return DAG.getConstant(Val, dl, VT); 4867 return SDValue(nullptr, 0); 4868 } 4869 4870 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4871 const SDLoc &DL) { 4872 EVT VT = Base.getValueType(); 4873 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4874 } 4875 4876 /// Returns true if memcpy source is constant data. 4877 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 4878 uint64_t SrcDelta = 0; 4879 GlobalAddressSDNode *G = nullptr; 4880 if (Src.getOpcode() == ISD::GlobalAddress) 4881 G = cast<GlobalAddressSDNode>(Src); 4882 else if (Src.getOpcode() == ISD::ADD && 4883 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4884 Src.getOperand(1).getOpcode() == ISD::Constant) { 4885 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4886 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4887 } 4888 if (!G) 4889 return false; 4890 4891 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 4892 SrcDelta + G->getOffset()); 4893 } 4894 4895 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4896 /// Return true if the number of memory ops is below the threshold (Limit). 4897 /// It returns the types of the sequence of memory ops to perform 4898 /// memset / memcpy by reference. 4899 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4900 unsigned Limit, uint64_t Size, 4901 unsigned DstAlign, unsigned SrcAlign, 4902 bool IsMemset, 4903 bool ZeroMemset, 4904 bool MemcpyStrSrc, 4905 bool AllowOverlap, 4906 unsigned DstAS, unsigned SrcAS, 4907 SelectionDAG &DAG, 4908 const TargetLowering &TLI) { 4909 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4910 "Expecting memcpy / memset source to meet alignment requirement!"); 4911 // If 'SrcAlign' is zero, that means the memory operation does not need to 4912 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4913 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4914 // is the specified alignment of the memory operation. If it is zero, that 4915 // means it's possible to change the alignment of the destination. 4916 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4917 // not need to be loaded. 4918 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4919 IsMemset, ZeroMemset, MemcpyStrSrc, 4920 DAG.getMachineFunction()); 4921 4922 if (VT == MVT::Other) { 4923 // Use the largest integer type whose alignment constraints are satisfied. 4924 // We only need to check DstAlign here as SrcAlign is always greater or 4925 // equal to DstAlign (or zero). 4926 VT = MVT::i64; 4927 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 4928 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 4929 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 4930 assert(VT.isInteger()); 4931 4932 // Find the largest legal integer type. 4933 MVT LVT = MVT::i64; 4934 while (!TLI.isTypeLegal(LVT)) 4935 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4936 assert(LVT.isInteger()); 4937 4938 // If the type we've chosen is larger than the largest legal integer type 4939 // then use that instead. 4940 if (VT.bitsGT(LVT)) 4941 VT = LVT; 4942 } 4943 4944 unsigned NumMemOps = 0; 4945 while (Size != 0) { 4946 unsigned VTSize = VT.getSizeInBits() / 8; 4947 while (VTSize > Size) { 4948 // For now, only use non-vector load / store's for the left-over pieces. 4949 EVT NewVT = VT; 4950 unsigned NewVTSize; 4951 4952 bool Found = false; 4953 if (VT.isVector() || VT.isFloatingPoint()) { 4954 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4955 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4956 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4957 Found = true; 4958 else if (NewVT == MVT::i64 && 4959 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4960 TLI.isSafeMemOpType(MVT::f64)) { 4961 // i64 is usually not legal on 32-bit targets, but f64 may be. 4962 NewVT = MVT::f64; 4963 Found = true; 4964 } 4965 } 4966 4967 if (!Found) { 4968 do { 4969 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4970 if (NewVT == MVT::i8) 4971 break; 4972 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4973 } 4974 NewVTSize = NewVT.getSizeInBits() / 8; 4975 4976 // If the new VT cannot cover all of the remaining bits, then consider 4977 // issuing a (or a pair of) unaligned and overlapping load / store. 4978 // FIXME: Only does this for 64-bit or more since we don't have proper 4979 // cost model for unaligned load / store. 4980 bool Fast; 4981 if (NumMemOps && AllowOverlap && 4982 VTSize >= 8 && NewVTSize < Size && 4983 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4984 VTSize = Size; 4985 else { 4986 VT = NewVT; 4987 VTSize = NewVTSize; 4988 } 4989 } 4990 4991 if (++NumMemOps > Limit) 4992 return false; 4993 4994 MemOps.push_back(VT); 4995 Size -= VTSize; 4996 } 4997 4998 return true; 4999 } 5000 5001 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5002 // On Darwin, -Os means optimize for size without hurting performance, so 5003 // only really optimize for size when -Oz (MinSize) is used. 5004 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5005 return MF.getFunction()->optForMinSize(); 5006 return MF.getFunction()->optForSize(); 5007 } 5008 5009 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5010 SDValue Chain, SDValue Dst, SDValue Src, 5011 uint64_t Size, unsigned Align, 5012 bool isVol, bool AlwaysInline, 5013 MachinePointerInfo DstPtrInfo, 5014 MachinePointerInfo SrcPtrInfo) { 5015 // Turn a memcpy of undef to nop. 5016 if (Src.isUndef()) 5017 return Chain; 5018 5019 // Expand memcpy to a series of load and store ops if the size operand falls 5020 // below a certain threshold. 5021 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5022 // rather than maybe a humongous number of loads and stores. 5023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5024 const DataLayout &DL = DAG.getDataLayout(); 5025 LLVMContext &C = *DAG.getContext(); 5026 std::vector<EVT> MemOps; 5027 bool DstAlignCanChange = false; 5028 MachineFunction &MF = DAG.getMachineFunction(); 5029 MachineFrameInfo &MFI = MF.getFrameInfo(); 5030 bool OptSize = shouldLowerMemFuncForSize(MF); 5031 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5032 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5033 DstAlignCanChange = true; 5034 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5035 if (Align > SrcAlign) 5036 SrcAlign = Align; 5037 ConstantDataArraySlice Slice; 5038 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5039 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5040 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5041 5042 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5043 (DstAlignCanChange ? 0 : Align), 5044 (isZeroConstant ? 0 : SrcAlign), 5045 false, false, CopyFromConstant, true, 5046 DstPtrInfo.getAddrSpace(), 5047 SrcPtrInfo.getAddrSpace(), 5048 DAG, TLI)) 5049 return SDValue(); 5050 5051 if (DstAlignCanChange) { 5052 Type *Ty = MemOps[0].getTypeForEVT(C); 5053 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5054 5055 // Don't promote to an alignment that would require dynamic stack 5056 // realignment. 5057 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5058 if (!TRI->needsStackRealignment(MF)) 5059 while (NewAlign > Align && 5060 DL.exceedsNaturalStackAlignment(NewAlign)) 5061 NewAlign /= 2; 5062 5063 if (NewAlign > Align) { 5064 // Give the stack frame object a larger alignment if needed. 5065 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5066 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5067 Align = NewAlign; 5068 } 5069 } 5070 5071 MachineMemOperand::Flags MMOFlags = 5072 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5073 SmallVector<SDValue, 8> OutChains; 5074 unsigned NumMemOps = MemOps.size(); 5075 uint64_t SrcOff = 0, DstOff = 0; 5076 for (unsigned i = 0; i != NumMemOps; ++i) { 5077 EVT VT = MemOps[i]; 5078 unsigned VTSize = VT.getSizeInBits() / 8; 5079 SDValue Value, Store; 5080 5081 if (VTSize > Size) { 5082 // Issuing an unaligned load / store pair that overlaps with the previous 5083 // pair. Adjust the offset accordingly. 5084 assert(i == NumMemOps-1 && i != 0); 5085 SrcOff -= VTSize - Size; 5086 DstOff -= VTSize - Size; 5087 } 5088 5089 if (CopyFromConstant && 5090 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5091 // It's unlikely a store of a vector immediate can be done in a single 5092 // instruction. It would require a load from a constantpool first. 5093 // We only handle zero vectors here. 5094 // FIXME: Handle other cases where store of vector immediate is done in 5095 // a single instruction. 5096 ConstantDataArraySlice SubSlice; 5097 if (SrcOff < Slice.Length) { 5098 SubSlice = Slice; 5099 SubSlice.move(SrcOff); 5100 } else { 5101 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5102 SubSlice.Array = nullptr; 5103 SubSlice.Offset = 0; 5104 SubSlice.Length = VTSize; 5105 } 5106 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5107 if (Value.getNode()) 5108 Store = DAG.getStore(Chain, dl, Value, 5109 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5110 DstPtrInfo.getWithOffset(DstOff), Align, 5111 MMOFlags); 5112 } 5113 5114 if (!Store.getNode()) { 5115 // The type might not be legal for the target. This should only happen 5116 // if the type is smaller than a legal type, as on PPC, so the right 5117 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5118 // to Load/Store if NVT==VT. 5119 // FIXME does the case above also need this? 5120 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5121 assert(NVT.bitsGE(VT)); 5122 5123 bool isDereferenceable = 5124 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5125 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5126 if (isDereferenceable) 5127 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5128 5129 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5130 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5131 SrcPtrInfo.getWithOffset(SrcOff), VT, 5132 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5133 OutChains.push_back(Value.getValue(1)); 5134 Store = DAG.getTruncStore( 5135 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5136 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5137 } 5138 OutChains.push_back(Store); 5139 SrcOff += VTSize; 5140 DstOff += VTSize; 5141 Size -= VTSize; 5142 } 5143 5144 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5145 } 5146 5147 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5148 SDValue Chain, SDValue Dst, SDValue Src, 5149 uint64_t Size, unsigned Align, 5150 bool isVol, bool AlwaysInline, 5151 MachinePointerInfo DstPtrInfo, 5152 MachinePointerInfo SrcPtrInfo) { 5153 // Turn a memmove of undef to nop. 5154 if (Src.isUndef()) 5155 return Chain; 5156 5157 // Expand memmove to a series of load and store ops if the size operand falls 5158 // below a certain threshold. 5159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5160 const DataLayout &DL = DAG.getDataLayout(); 5161 LLVMContext &C = *DAG.getContext(); 5162 std::vector<EVT> MemOps; 5163 bool DstAlignCanChange = false; 5164 MachineFunction &MF = DAG.getMachineFunction(); 5165 MachineFrameInfo &MFI = MF.getFrameInfo(); 5166 bool OptSize = shouldLowerMemFuncForSize(MF); 5167 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5168 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5169 DstAlignCanChange = true; 5170 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5171 if (Align > SrcAlign) 5172 SrcAlign = Align; 5173 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5174 5175 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5176 (DstAlignCanChange ? 0 : Align), SrcAlign, 5177 false, false, false, false, 5178 DstPtrInfo.getAddrSpace(), 5179 SrcPtrInfo.getAddrSpace(), 5180 DAG, TLI)) 5181 return SDValue(); 5182 5183 if (DstAlignCanChange) { 5184 Type *Ty = MemOps[0].getTypeForEVT(C); 5185 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5186 if (NewAlign > Align) { 5187 // Give the stack frame object a larger alignment if needed. 5188 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5189 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5190 Align = NewAlign; 5191 } 5192 } 5193 5194 MachineMemOperand::Flags MMOFlags = 5195 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5196 uint64_t SrcOff = 0, DstOff = 0; 5197 SmallVector<SDValue, 8> LoadValues; 5198 SmallVector<SDValue, 8> LoadChains; 5199 SmallVector<SDValue, 8> OutChains; 5200 unsigned NumMemOps = MemOps.size(); 5201 for (unsigned i = 0; i < NumMemOps; i++) { 5202 EVT VT = MemOps[i]; 5203 unsigned VTSize = VT.getSizeInBits() / 8; 5204 SDValue Value; 5205 5206 bool isDereferenceable = 5207 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5208 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5209 if (isDereferenceable) 5210 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5211 5212 Value = 5213 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5214 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5215 LoadValues.push_back(Value); 5216 LoadChains.push_back(Value.getValue(1)); 5217 SrcOff += VTSize; 5218 } 5219 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5220 OutChains.clear(); 5221 for (unsigned i = 0; i < NumMemOps; i++) { 5222 EVT VT = MemOps[i]; 5223 unsigned VTSize = VT.getSizeInBits() / 8; 5224 SDValue Store; 5225 5226 Store = DAG.getStore(Chain, dl, LoadValues[i], 5227 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5228 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5229 OutChains.push_back(Store); 5230 DstOff += VTSize; 5231 } 5232 5233 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5234 } 5235 5236 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5237 /// operations. 5238 /// 5239 /// \param DAG Selection DAG where lowered code is placed. 5240 /// \param dl Link to corresponding IR location. 5241 /// \param Chain Control flow dependency. 5242 /// \param Dst Pointer to destination memory location. 5243 /// \param Src Value of byte to write into the memory. 5244 /// \param Size Number of bytes to write. 5245 /// \param Align Alignment of the destination in bytes. 5246 /// \param isVol True if destination is volatile. 5247 /// \param DstPtrInfo IR information on the memory pointer. 5248 /// \returns New head in the control flow, if lowering was successful, empty 5249 /// SDValue otherwise. 5250 /// 5251 /// The function tries to replace 'llvm.memset' intrinsic with several store 5252 /// operations and value calculation code. This is usually profitable for small 5253 /// memory size. 5254 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5255 SDValue Chain, SDValue Dst, SDValue Src, 5256 uint64_t Size, unsigned Align, bool isVol, 5257 MachinePointerInfo DstPtrInfo) { 5258 // Turn a memset of undef to nop. 5259 if (Src.isUndef()) 5260 return Chain; 5261 5262 // Expand memset to a series of load/store ops if the size operand 5263 // falls below a certain threshold. 5264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5265 std::vector<EVT> MemOps; 5266 bool DstAlignCanChange = false; 5267 MachineFunction &MF = DAG.getMachineFunction(); 5268 MachineFrameInfo &MFI = MF.getFrameInfo(); 5269 bool OptSize = shouldLowerMemFuncForSize(MF); 5270 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5271 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5272 DstAlignCanChange = true; 5273 bool IsZeroVal = 5274 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5275 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5276 Size, (DstAlignCanChange ? 0 : Align), 0, 5277 true, IsZeroVal, false, true, 5278 DstPtrInfo.getAddrSpace(), ~0u, 5279 DAG, TLI)) 5280 return SDValue(); 5281 5282 if (DstAlignCanChange) { 5283 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5284 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5285 if (NewAlign > Align) { 5286 // Give the stack frame object a larger alignment if needed. 5287 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5288 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5289 Align = NewAlign; 5290 } 5291 } 5292 5293 SmallVector<SDValue, 8> OutChains; 5294 uint64_t DstOff = 0; 5295 unsigned NumMemOps = MemOps.size(); 5296 5297 // Find the largest store and generate the bit pattern for it. 5298 EVT LargestVT = MemOps[0]; 5299 for (unsigned i = 1; i < NumMemOps; i++) 5300 if (MemOps[i].bitsGT(LargestVT)) 5301 LargestVT = MemOps[i]; 5302 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5303 5304 for (unsigned i = 0; i < NumMemOps; i++) { 5305 EVT VT = MemOps[i]; 5306 unsigned VTSize = VT.getSizeInBits() / 8; 5307 if (VTSize > Size) { 5308 // Issuing an unaligned load / store pair that overlaps with the previous 5309 // pair. Adjust the offset accordingly. 5310 assert(i == NumMemOps-1 && i != 0); 5311 DstOff -= VTSize - Size; 5312 } 5313 5314 // If this store is smaller than the largest store see whether we can get 5315 // the smaller value for free with a truncate. 5316 SDValue Value = MemSetValue; 5317 if (VT.bitsLT(LargestVT)) { 5318 if (!LargestVT.isVector() && !VT.isVector() && 5319 TLI.isTruncateFree(LargestVT, VT)) 5320 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5321 else 5322 Value = getMemsetValue(Src, VT, DAG, dl); 5323 } 5324 assert(Value.getValueType() == VT && "Value with wrong type."); 5325 SDValue Store = DAG.getStore( 5326 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5327 DstPtrInfo.getWithOffset(DstOff), Align, 5328 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5329 OutChains.push_back(Store); 5330 DstOff += VT.getSizeInBits() / 8; 5331 Size -= VTSize; 5332 } 5333 5334 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5335 } 5336 5337 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5338 unsigned AS) { 5339 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5340 // pointer operands can be losslessly bitcasted to pointers of address space 0 5341 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5342 report_fatal_error("cannot lower memory intrinsic in address space " + 5343 Twine(AS)); 5344 } 5345 } 5346 5347 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5348 SDValue Src, SDValue Size, unsigned Align, 5349 bool isVol, bool AlwaysInline, bool isTailCall, 5350 MachinePointerInfo DstPtrInfo, 5351 MachinePointerInfo SrcPtrInfo) { 5352 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5353 5354 // Check to see if we should lower the memcpy to loads and stores first. 5355 // For cases within the target-specified limits, this is the best choice. 5356 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5357 if (ConstantSize) { 5358 // Memcpy with size zero? Just return the original chain. 5359 if (ConstantSize->isNullValue()) 5360 return Chain; 5361 5362 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5363 ConstantSize->getZExtValue(),Align, 5364 isVol, false, DstPtrInfo, SrcPtrInfo); 5365 if (Result.getNode()) 5366 return Result; 5367 } 5368 5369 // Then check to see if we should lower the memcpy with target-specific 5370 // code. If the target chooses to do this, this is the next best. 5371 if (TSI) { 5372 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5373 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5374 DstPtrInfo, SrcPtrInfo); 5375 if (Result.getNode()) 5376 return Result; 5377 } 5378 5379 // If we really need inline code and the target declined to provide it, 5380 // use a (potentially long) sequence of loads and stores. 5381 if (AlwaysInline) { 5382 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5383 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5384 ConstantSize->getZExtValue(), Align, isVol, 5385 true, DstPtrInfo, SrcPtrInfo); 5386 } 5387 5388 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5389 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5390 5391 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5392 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5393 // respect volatile, so they may do things like read or write memory 5394 // beyond the given memory regions. But fixing this isn't easy, and most 5395 // people don't care. 5396 5397 // Emit a library call. 5398 TargetLowering::ArgListTy Args; 5399 TargetLowering::ArgListEntry Entry; 5400 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5401 Entry.Node = Dst; Args.push_back(Entry); 5402 Entry.Node = Src; Args.push_back(Entry); 5403 Entry.Node = Size; Args.push_back(Entry); 5404 // FIXME: pass in SDLoc 5405 TargetLowering::CallLoweringInfo CLI(*this); 5406 CLI.setDebugLoc(dl) 5407 .setChain(Chain) 5408 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5409 Dst.getValueType().getTypeForEVT(*getContext()), 5410 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5411 TLI->getPointerTy(getDataLayout())), 5412 std::move(Args)) 5413 .setDiscardResult() 5414 .setTailCall(isTailCall); 5415 5416 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5417 return CallResult.second; 5418 } 5419 5420 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5421 SDValue Src, SDValue Size, unsigned Align, 5422 bool isVol, bool isTailCall, 5423 MachinePointerInfo DstPtrInfo, 5424 MachinePointerInfo SrcPtrInfo) { 5425 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5426 5427 // Check to see if we should lower the memmove to loads and stores first. 5428 // For cases within the target-specified limits, this is the best choice. 5429 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5430 if (ConstantSize) { 5431 // Memmove with size zero? Just return the original chain. 5432 if (ConstantSize->isNullValue()) 5433 return Chain; 5434 5435 SDValue Result = 5436 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5437 ConstantSize->getZExtValue(), Align, isVol, 5438 false, DstPtrInfo, SrcPtrInfo); 5439 if (Result.getNode()) 5440 return Result; 5441 } 5442 5443 // Then check to see if we should lower the memmove with target-specific 5444 // code. If the target chooses to do this, this is the next best. 5445 if (TSI) { 5446 SDValue Result = TSI->EmitTargetCodeForMemmove( 5447 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5448 if (Result.getNode()) 5449 return Result; 5450 } 5451 5452 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5453 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5454 5455 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5456 // not be safe. See memcpy above for more details. 5457 5458 // Emit a library call. 5459 TargetLowering::ArgListTy Args; 5460 TargetLowering::ArgListEntry Entry; 5461 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5462 Entry.Node = Dst; Args.push_back(Entry); 5463 Entry.Node = Src; Args.push_back(Entry); 5464 Entry.Node = Size; Args.push_back(Entry); 5465 // FIXME: pass in SDLoc 5466 TargetLowering::CallLoweringInfo CLI(*this); 5467 CLI.setDebugLoc(dl) 5468 .setChain(Chain) 5469 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5470 Dst.getValueType().getTypeForEVT(*getContext()), 5471 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5472 TLI->getPointerTy(getDataLayout())), 5473 std::move(Args)) 5474 .setDiscardResult() 5475 .setTailCall(isTailCall); 5476 5477 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5478 return CallResult.second; 5479 } 5480 5481 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5482 SDValue Src, SDValue Size, unsigned Align, 5483 bool isVol, bool isTailCall, 5484 MachinePointerInfo DstPtrInfo) { 5485 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5486 5487 // Check to see if we should lower the memset to stores first. 5488 // For cases within the target-specified limits, this is the best choice. 5489 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5490 if (ConstantSize) { 5491 // Memset with size zero? Just return the original chain. 5492 if (ConstantSize->isNullValue()) 5493 return Chain; 5494 5495 SDValue Result = 5496 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5497 Align, isVol, DstPtrInfo); 5498 5499 if (Result.getNode()) 5500 return Result; 5501 } 5502 5503 // Then check to see if we should lower the memset with target-specific 5504 // code. If the target chooses to do this, this is the next best. 5505 if (TSI) { 5506 SDValue Result = TSI->EmitTargetCodeForMemset( 5507 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5508 if (Result.getNode()) 5509 return Result; 5510 } 5511 5512 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5513 5514 // Emit a library call. 5515 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5516 TargetLowering::ArgListTy Args; 5517 TargetLowering::ArgListEntry Entry; 5518 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5519 Args.push_back(Entry); 5520 Entry.Node = Src; 5521 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5522 Args.push_back(Entry); 5523 Entry.Node = Size; 5524 Entry.Ty = IntPtrTy; 5525 Args.push_back(Entry); 5526 5527 // FIXME: pass in SDLoc 5528 TargetLowering::CallLoweringInfo CLI(*this); 5529 CLI.setDebugLoc(dl) 5530 .setChain(Chain) 5531 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5532 Dst.getValueType().getTypeForEVT(*getContext()), 5533 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5534 TLI->getPointerTy(getDataLayout())), 5535 std::move(Args)) 5536 .setDiscardResult() 5537 .setTailCall(isTailCall); 5538 5539 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5540 return CallResult.second; 5541 } 5542 5543 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5544 SDVTList VTList, ArrayRef<SDValue> Ops, 5545 MachineMemOperand *MMO) { 5546 FoldingSetNodeID ID; 5547 ID.AddInteger(MemVT.getRawBits()); 5548 AddNodeIDNode(ID, Opcode, VTList, Ops); 5549 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5550 void* IP = nullptr; 5551 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5552 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5553 return SDValue(E, 0); 5554 } 5555 5556 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5557 VTList, MemVT, MMO); 5558 createOperands(N, Ops); 5559 5560 CSEMap.InsertNode(N, IP); 5561 InsertNode(N); 5562 return SDValue(N, 0); 5563 } 5564 5565 SDValue SelectionDAG::getAtomicCmpSwap( 5566 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5567 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5568 unsigned Alignment, AtomicOrdering SuccessOrdering, 5569 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5570 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5571 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5572 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5573 5574 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5575 Alignment = getEVTAlignment(MemVT); 5576 5577 MachineFunction &MF = getMachineFunction(); 5578 5579 // FIXME: Volatile isn't really correct; we should keep track of atomic 5580 // orderings in the memoperand. 5581 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5582 MachineMemOperand::MOStore; 5583 MachineMemOperand *MMO = 5584 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5585 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5586 FailureOrdering); 5587 5588 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5589 } 5590 5591 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5592 EVT MemVT, SDVTList VTs, SDValue Chain, 5593 SDValue Ptr, SDValue Cmp, SDValue Swp, 5594 MachineMemOperand *MMO) { 5595 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5596 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5597 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5598 5599 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5600 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5601 } 5602 5603 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5604 SDValue Chain, SDValue Ptr, SDValue Val, 5605 const Value *PtrVal, unsigned Alignment, 5606 AtomicOrdering Ordering, 5607 SyncScope::ID SSID) { 5608 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5609 Alignment = getEVTAlignment(MemVT); 5610 5611 MachineFunction &MF = getMachineFunction(); 5612 // An atomic store does not load. An atomic load does not store. 5613 // (An atomicrmw obviously both loads and stores.) 5614 // For now, atomics are considered to be volatile always, and they are 5615 // chained as such. 5616 // FIXME: Volatile isn't really correct; we should keep track of atomic 5617 // orderings in the memoperand. 5618 auto Flags = MachineMemOperand::MOVolatile; 5619 if (Opcode != ISD::ATOMIC_STORE) 5620 Flags |= MachineMemOperand::MOLoad; 5621 if (Opcode != ISD::ATOMIC_LOAD) 5622 Flags |= MachineMemOperand::MOStore; 5623 5624 MachineMemOperand *MMO = 5625 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5626 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5627 nullptr, SSID, Ordering); 5628 5629 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5630 } 5631 5632 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5633 SDValue Chain, SDValue Ptr, SDValue Val, 5634 MachineMemOperand *MMO) { 5635 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5636 Opcode == ISD::ATOMIC_LOAD_SUB || 5637 Opcode == ISD::ATOMIC_LOAD_AND || 5638 Opcode == ISD::ATOMIC_LOAD_OR || 5639 Opcode == ISD::ATOMIC_LOAD_XOR || 5640 Opcode == ISD::ATOMIC_LOAD_NAND || 5641 Opcode == ISD::ATOMIC_LOAD_MIN || 5642 Opcode == ISD::ATOMIC_LOAD_MAX || 5643 Opcode == ISD::ATOMIC_LOAD_UMIN || 5644 Opcode == ISD::ATOMIC_LOAD_UMAX || 5645 Opcode == ISD::ATOMIC_SWAP || 5646 Opcode == ISD::ATOMIC_STORE) && 5647 "Invalid Atomic Op"); 5648 5649 EVT VT = Val.getValueType(); 5650 5651 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5652 getVTList(VT, MVT::Other); 5653 SDValue Ops[] = {Chain, Ptr, Val}; 5654 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5655 } 5656 5657 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5658 EVT VT, SDValue Chain, SDValue Ptr, 5659 MachineMemOperand *MMO) { 5660 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5661 5662 SDVTList VTs = getVTList(VT, MVT::Other); 5663 SDValue Ops[] = {Chain, Ptr}; 5664 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5665 } 5666 5667 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5668 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5669 if (Ops.size() == 1) 5670 return Ops[0]; 5671 5672 SmallVector<EVT, 4> VTs; 5673 VTs.reserve(Ops.size()); 5674 for (unsigned i = 0; i < Ops.size(); ++i) 5675 VTs.push_back(Ops[i].getValueType()); 5676 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5677 } 5678 5679 SDValue SelectionDAG::getMemIntrinsicNode( 5680 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5681 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5682 bool ReadMem, bool WriteMem, unsigned Size) { 5683 if (Align == 0) // Ensure that codegen never sees alignment 0 5684 Align = getEVTAlignment(MemVT); 5685 5686 MachineFunction &MF = getMachineFunction(); 5687 auto Flags = MachineMemOperand::MONone; 5688 if (WriteMem) 5689 Flags |= MachineMemOperand::MOStore; 5690 if (ReadMem) 5691 Flags |= MachineMemOperand::MOLoad; 5692 if (Vol) 5693 Flags |= MachineMemOperand::MOVolatile; 5694 if (!Size) 5695 Size = MemVT.getStoreSize(); 5696 MachineMemOperand *MMO = 5697 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5698 5699 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5700 } 5701 5702 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5703 SDVTList VTList, 5704 ArrayRef<SDValue> Ops, EVT MemVT, 5705 MachineMemOperand *MMO) { 5706 assert((Opcode == ISD::INTRINSIC_VOID || 5707 Opcode == ISD::INTRINSIC_W_CHAIN || 5708 Opcode == ISD::PREFETCH || 5709 Opcode == ISD::LIFETIME_START || 5710 Opcode == ISD::LIFETIME_END || 5711 ((int)Opcode <= std::numeric_limits<int>::max() && 5712 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5713 "Opcode is not a memory-accessing opcode!"); 5714 5715 // Memoize the node unless it returns a flag. 5716 MemIntrinsicSDNode *N; 5717 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5718 FoldingSetNodeID ID; 5719 AddNodeIDNode(ID, Opcode, VTList, Ops); 5720 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5721 void *IP = nullptr; 5722 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5723 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5724 return SDValue(E, 0); 5725 } 5726 5727 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5728 VTList, MemVT, MMO); 5729 createOperands(N, Ops); 5730 5731 CSEMap.InsertNode(N, IP); 5732 } else { 5733 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5734 VTList, MemVT, MMO); 5735 createOperands(N, Ops); 5736 } 5737 InsertNode(N); 5738 return SDValue(N, 0); 5739 } 5740 5741 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5742 /// MachinePointerInfo record from it. This is particularly useful because the 5743 /// code generator has many cases where it doesn't bother passing in a 5744 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5745 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5746 int64_t Offset = 0) { 5747 // If this is FI+Offset, we can model it. 5748 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5749 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5750 FI->getIndex(), Offset); 5751 5752 // If this is (FI+Offset1)+Offset2, we can model it. 5753 if (Ptr.getOpcode() != ISD::ADD || 5754 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5755 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5756 return MachinePointerInfo(); 5757 5758 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5759 return MachinePointerInfo::getFixedStack( 5760 DAG.getMachineFunction(), FI, 5761 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5762 } 5763 5764 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5765 /// MachinePointerInfo record from it. This is particularly useful because the 5766 /// code generator has many cases where it doesn't bother passing in a 5767 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5768 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5769 SDValue OffsetOp) { 5770 // If the 'Offset' value isn't a constant, we can't handle this. 5771 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5772 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5773 if (OffsetOp.isUndef()) 5774 return InferPointerInfo(DAG, Ptr); 5775 return MachinePointerInfo(); 5776 } 5777 5778 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5779 EVT VT, const SDLoc &dl, SDValue Chain, 5780 SDValue Ptr, SDValue Offset, 5781 MachinePointerInfo PtrInfo, EVT MemVT, 5782 unsigned Alignment, 5783 MachineMemOperand::Flags MMOFlags, 5784 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5785 assert(Chain.getValueType() == MVT::Other && 5786 "Invalid chain type"); 5787 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5788 Alignment = getEVTAlignment(MemVT); 5789 5790 MMOFlags |= MachineMemOperand::MOLoad; 5791 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5792 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5793 // clients. 5794 if (PtrInfo.V.isNull()) 5795 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5796 5797 MachineFunction &MF = getMachineFunction(); 5798 MachineMemOperand *MMO = MF.getMachineMemOperand( 5799 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5800 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5801 } 5802 5803 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5804 EVT VT, const SDLoc &dl, SDValue Chain, 5805 SDValue Ptr, SDValue Offset, EVT MemVT, 5806 MachineMemOperand *MMO) { 5807 if (VT == MemVT) { 5808 ExtType = ISD::NON_EXTLOAD; 5809 } else if (ExtType == ISD::NON_EXTLOAD) { 5810 assert(VT == MemVT && "Non-extending load from different memory type!"); 5811 } else { 5812 // Extending load. 5813 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5814 "Should only be an extending load, not truncating!"); 5815 assert(VT.isInteger() == MemVT.isInteger() && 5816 "Cannot convert from FP to Int or Int -> FP!"); 5817 assert(VT.isVector() == MemVT.isVector() && 5818 "Cannot use an ext load to convert to or from a vector!"); 5819 assert((!VT.isVector() || 5820 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5821 "Cannot use an ext load to change the number of vector elements!"); 5822 } 5823 5824 bool Indexed = AM != ISD::UNINDEXED; 5825 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5826 5827 SDVTList VTs = Indexed ? 5828 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5829 SDValue Ops[] = { Chain, Ptr, Offset }; 5830 FoldingSetNodeID ID; 5831 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5832 ID.AddInteger(MemVT.getRawBits()); 5833 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5834 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5835 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5836 void *IP = nullptr; 5837 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5838 cast<LoadSDNode>(E)->refineAlignment(MMO); 5839 return SDValue(E, 0); 5840 } 5841 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5842 ExtType, MemVT, MMO); 5843 createOperands(N, Ops); 5844 5845 CSEMap.InsertNode(N, IP); 5846 InsertNode(N); 5847 return SDValue(N, 0); 5848 } 5849 5850 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5851 SDValue Ptr, MachinePointerInfo PtrInfo, 5852 unsigned Alignment, 5853 MachineMemOperand::Flags MMOFlags, 5854 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5855 SDValue Undef = getUNDEF(Ptr.getValueType()); 5856 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5857 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5858 } 5859 5860 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5861 SDValue Ptr, MachineMemOperand *MMO) { 5862 SDValue Undef = getUNDEF(Ptr.getValueType()); 5863 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5864 VT, MMO); 5865 } 5866 5867 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5868 EVT VT, SDValue Chain, SDValue Ptr, 5869 MachinePointerInfo PtrInfo, EVT MemVT, 5870 unsigned Alignment, 5871 MachineMemOperand::Flags MMOFlags, 5872 const AAMDNodes &AAInfo) { 5873 SDValue Undef = getUNDEF(Ptr.getValueType()); 5874 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5875 MemVT, Alignment, MMOFlags, AAInfo); 5876 } 5877 5878 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5879 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5880 MachineMemOperand *MMO) { 5881 SDValue Undef = getUNDEF(Ptr.getValueType()); 5882 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5883 MemVT, MMO); 5884 } 5885 5886 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5887 SDValue Base, SDValue Offset, 5888 ISD::MemIndexedMode AM) { 5889 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5890 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5891 // Don't propagate the invariant or dereferenceable flags. 5892 auto MMOFlags = 5893 LD->getMemOperand()->getFlags() & 5894 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5895 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5896 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5897 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5898 LD->getAAInfo()); 5899 } 5900 5901 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5902 SDValue Ptr, MachinePointerInfo PtrInfo, 5903 unsigned Alignment, 5904 MachineMemOperand::Flags MMOFlags, 5905 const AAMDNodes &AAInfo) { 5906 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5907 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5908 Alignment = getEVTAlignment(Val.getValueType()); 5909 5910 MMOFlags |= MachineMemOperand::MOStore; 5911 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5912 5913 if (PtrInfo.V.isNull()) 5914 PtrInfo = InferPointerInfo(*this, Ptr); 5915 5916 MachineFunction &MF = getMachineFunction(); 5917 MachineMemOperand *MMO = MF.getMachineMemOperand( 5918 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5919 return getStore(Chain, dl, Val, Ptr, MMO); 5920 } 5921 5922 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5923 SDValue Ptr, MachineMemOperand *MMO) { 5924 assert(Chain.getValueType() == MVT::Other && 5925 "Invalid chain type"); 5926 EVT VT = Val.getValueType(); 5927 SDVTList VTs = getVTList(MVT::Other); 5928 SDValue Undef = getUNDEF(Ptr.getValueType()); 5929 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5930 FoldingSetNodeID ID; 5931 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5932 ID.AddInteger(VT.getRawBits()); 5933 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5934 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5935 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5936 void *IP = nullptr; 5937 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5938 cast<StoreSDNode>(E)->refineAlignment(MMO); 5939 return SDValue(E, 0); 5940 } 5941 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5942 ISD::UNINDEXED, false, VT, MMO); 5943 createOperands(N, Ops); 5944 5945 CSEMap.InsertNode(N, IP); 5946 InsertNode(N); 5947 return SDValue(N, 0); 5948 } 5949 5950 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5951 SDValue Ptr, MachinePointerInfo PtrInfo, 5952 EVT SVT, unsigned Alignment, 5953 MachineMemOperand::Flags MMOFlags, 5954 const AAMDNodes &AAInfo) { 5955 assert(Chain.getValueType() == MVT::Other && 5956 "Invalid chain type"); 5957 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5958 Alignment = getEVTAlignment(SVT); 5959 5960 MMOFlags |= MachineMemOperand::MOStore; 5961 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5962 5963 if (PtrInfo.V.isNull()) 5964 PtrInfo = InferPointerInfo(*this, Ptr); 5965 5966 MachineFunction &MF = getMachineFunction(); 5967 MachineMemOperand *MMO = MF.getMachineMemOperand( 5968 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5969 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5970 } 5971 5972 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5973 SDValue Ptr, EVT SVT, 5974 MachineMemOperand *MMO) { 5975 EVT VT = Val.getValueType(); 5976 5977 assert(Chain.getValueType() == MVT::Other && 5978 "Invalid chain type"); 5979 if (VT == SVT) 5980 return getStore(Chain, dl, Val, Ptr, MMO); 5981 5982 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5983 "Should only be a truncating store, not extending!"); 5984 assert(VT.isInteger() == SVT.isInteger() && 5985 "Can't do FP-INT conversion!"); 5986 assert(VT.isVector() == SVT.isVector() && 5987 "Cannot use trunc store to convert to or from a vector!"); 5988 assert((!VT.isVector() || 5989 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5990 "Cannot use trunc store to change the number of vector elements!"); 5991 5992 SDVTList VTs = getVTList(MVT::Other); 5993 SDValue Undef = getUNDEF(Ptr.getValueType()); 5994 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5995 FoldingSetNodeID ID; 5996 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5997 ID.AddInteger(SVT.getRawBits()); 5998 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5999 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6000 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6001 void *IP = nullptr; 6002 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6003 cast<StoreSDNode>(E)->refineAlignment(MMO); 6004 return SDValue(E, 0); 6005 } 6006 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6007 ISD::UNINDEXED, true, SVT, MMO); 6008 createOperands(N, Ops); 6009 6010 CSEMap.InsertNode(N, IP); 6011 InsertNode(N); 6012 return SDValue(N, 0); 6013 } 6014 6015 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6016 SDValue Base, SDValue Offset, 6017 ISD::MemIndexedMode AM) { 6018 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6019 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6020 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6021 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6022 FoldingSetNodeID ID; 6023 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6024 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6025 ID.AddInteger(ST->getRawSubclassData()); 6026 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6027 void *IP = nullptr; 6028 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6029 return SDValue(E, 0); 6030 6031 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6032 ST->isTruncatingStore(), ST->getMemoryVT(), 6033 ST->getMemOperand()); 6034 createOperands(N, Ops); 6035 6036 CSEMap.InsertNode(N, IP); 6037 InsertNode(N); 6038 return SDValue(N, 0); 6039 } 6040 6041 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6042 SDValue Ptr, SDValue Mask, SDValue Src0, 6043 EVT MemVT, MachineMemOperand *MMO, 6044 ISD::LoadExtType ExtTy, bool isExpanding) { 6045 SDVTList VTs = getVTList(VT, MVT::Other); 6046 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 6047 FoldingSetNodeID ID; 6048 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6049 ID.AddInteger(VT.getRawBits()); 6050 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6051 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6052 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6053 void *IP = nullptr; 6054 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6055 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6056 return SDValue(E, 0); 6057 } 6058 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6059 ExtTy, isExpanding, MemVT, MMO); 6060 createOperands(N, Ops); 6061 6062 CSEMap.InsertNode(N, IP); 6063 InsertNode(N); 6064 return SDValue(N, 0); 6065 } 6066 6067 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6068 SDValue Val, SDValue Ptr, SDValue Mask, 6069 EVT MemVT, MachineMemOperand *MMO, 6070 bool IsTruncating, bool IsCompressing) { 6071 assert(Chain.getValueType() == MVT::Other && 6072 "Invalid chain type"); 6073 EVT VT = Val.getValueType(); 6074 SDVTList VTs = getVTList(MVT::Other); 6075 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6076 FoldingSetNodeID ID; 6077 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6078 ID.AddInteger(VT.getRawBits()); 6079 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6080 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6081 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6082 void *IP = nullptr; 6083 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6084 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6085 return SDValue(E, 0); 6086 } 6087 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6088 IsTruncating, IsCompressing, MemVT, MMO); 6089 createOperands(N, Ops); 6090 6091 CSEMap.InsertNode(N, IP); 6092 InsertNode(N); 6093 return SDValue(N, 0); 6094 } 6095 6096 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6097 ArrayRef<SDValue> Ops, 6098 MachineMemOperand *MMO) { 6099 assert(Ops.size() == 5 && "Incompatible number of operands"); 6100 6101 FoldingSetNodeID ID; 6102 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6103 ID.AddInteger(VT.getRawBits()); 6104 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6105 dl.getIROrder(), VTs, VT, MMO)); 6106 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6107 void *IP = nullptr; 6108 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6109 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6110 return SDValue(E, 0); 6111 } 6112 6113 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6114 VTs, VT, MMO); 6115 createOperands(N, Ops); 6116 6117 assert(N->getValue().getValueType() == N->getValueType(0) && 6118 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6119 assert(N->getMask().getValueType().getVectorNumElements() == 6120 N->getValueType(0).getVectorNumElements() && 6121 "Vector width mismatch between mask and data"); 6122 assert(N->getIndex().getValueType().getVectorNumElements() == 6123 N->getValueType(0).getVectorNumElements() && 6124 "Vector width mismatch between index and data"); 6125 6126 CSEMap.InsertNode(N, IP); 6127 InsertNode(N); 6128 return SDValue(N, 0); 6129 } 6130 6131 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6132 ArrayRef<SDValue> Ops, 6133 MachineMemOperand *MMO) { 6134 assert(Ops.size() == 5 && "Incompatible number of operands"); 6135 6136 FoldingSetNodeID ID; 6137 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6138 ID.AddInteger(VT.getRawBits()); 6139 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6140 dl.getIROrder(), VTs, VT, MMO)); 6141 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6142 void *IP = nullptr; 6143 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6144 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6145 return SDValue(E, 0); 6146 } 6147 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6148 VTs, VT, MMO); 6149 createOperands(N, Ops); 6150 6151 assert(N->getMask().getValueType().getVectorNumElements() == 6152 N->getValue().getValueType().getVectorNumElements() && 6153 "Vector width mismatch between mask and data"); 6154 assert(N->getIndex().getValueType().getVectorNumElements() == 6155 N->getValue().getValueType().getVectorNumElements() && 6156 "Vector width mismatch between index and data"); 6157 6158 CSEMap.InsertNode(N, IP); 6159 InsertNode(N); 6160 return SDValue(N, 0); 6161 } 6162 6163 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6164 SDValue Ptr, SDValue SV, unsigned Align) { 6165 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6166 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6167 } 6168 6169 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6170 ArrayRef<SDUse> Ops) { 6171 switch (Ops.size()) { 6172 case 0: return getNode(Opcode, DL, VT); 6173 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6174 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6175 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6176 default: break; 6177 } 6178 6179 // Copy from an SDUse array into an SDValue array for use with 6180 // the regular getNode logic. 6181 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6182 return getNode(Opcode, DL, VT, NewOps); 6183 } 6184 6185 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6186 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6187 unsigned NumOps = Ops.size(); 6188 switch (NumOps) { 6189 case 0: return getNode(Opcode, DL, VT); 6190 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6191 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6192 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6193 default: break; 6194 } 6195 6196 switch (Opcode) { 6197 default: break; 6198 case ISD::CONCAT_VECTORS: 6199 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6200 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6201 return V; 6202 break; 6203 case ISD::SELECT_CC: 6204 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6205 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6206 "LHS and RHS of condition must have same type!"); 6207 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6208 "True and False arms of SelectCC must have same type!"); 6209 assert(Ops[2].getValueType() == VT && 6210 "select_cc node must be of same type as true and false value!"); 6211 break; 6212 case ISD::BR_CC: 6213 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6214 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6215 "LHS/RHS of comparison should match types!"); 6216 break; 6217 } 6218 6219 // Memoize nodes. 6220 SDNode *N; 6221 SDVTList VTs = getVTList(VT); 6222 6223 if (VT != MVT::Glue) { 6224 FoldingSetNodeID ID; 6225 AddNodeIDNode(ID, Opcode, VTs, Ops); 6226 void *IP = nullptr; 6227 6228 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6229 return SDValue(E, 0); 6230 6231 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6232 createOperands(N, Ops); 6233 6234 CSEMap.InsertNode(N, IP); 6235 } else { 6236 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6237 createOperands(N, Ops); 6238 } 6239 6240 InsertNode(N); 6241 return SDValue(N, 0); 6242 } 6243 6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6245 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6246 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6247 } 6248 6249 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6250 ArrayRef<SDValue> Ops) { 6251 if (VTList.NumVTs == 1) 6252 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6253 6254 #if 0 6255 switch (Opcode) { 6256 // FIXME: figure out how to safely handle things like 6257 // int foo(int x) { return 1 << (x & 255); } 6258 // int bar() { return foo(256); } 6259 case ISD::SRA_PARTS: 6260 case ISD::SRL_PARTS: 6261 case ISD::SHL_PARTS: 6262 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6263 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6264 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6265 else if (N3.getOpcode() == ISD::AND) 6266 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6267 // If the and is only masking out bits that cannot effect the shift, 6268 // eliminate the and. 6269 unsigned NumBits = VT.getScalarSizeInBits()*2; 6270 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6271 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6272 } 6273 break; 6274 } 6275 #endif 6276 6277 // Memoize the node unless it returns a flag. 6278 SDNode *N; 6279 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6280 FoldingSetNodeID ID; 6281 AddNodeIDNode(ID, Opcode, VTList, Ops); 6282 void *IP = nullptr; 6283 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6284 return SDValue(E, 0); 6285 6286 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6287 createOperands(N, Ops); 6288 CSEMap.InsertNode(N, IP); 6289 } else { 6290 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6291 createOperands(N, Ops); 6292 } 6293 InsertNode(N); 6294 return SDValue(N, 0); 6295 } 6296 6297 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6298 SDVTList VTList) { 6299 return getNode(Opcode, DL, VTList, None); 6300 } 6301 6302 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6303 SDValue N1) { 6304 SDValue Ops[] = { N1 }; 6305 return getNode(Opcode, DL, VTList, Ops); 6306 } 6307 6308 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6309 SDValue N1, SDValue N2) { 6310 SDValue Ops[] = { N1, N2 }; 6311 return getNode(Opcode, DL, VTList, Ops); 6312 } 6313 6314 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6315 SDValue N1, SDValue N2, SDValue N3) { 6316 SDValue Ops[] = { N1, N2, N3 }; 6317 return getNode(Opcode, DL, VTList, Ops); 6318 } 6319 6320 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6321 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6322 SDValue Ops[] = { N1, N2, N3, N4 }; 6323 return getNode(Opcode, DL, VTList, Ops); 6324 } 6325 6326 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6327 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6328 SDValue N5) { 6329 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6330 return getNode(Opcode, DL, VTList, Ops); 6331 } 6332 6333 SDVTList SelectionDAG::getVTList(EVT VT) { 6334 return makeVTList(SDNode::getValueTypeList(VT), 1); 6335 } 6336 6337 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6338 FoldingSetNodeID ID; 6339 ID.AddInteger(2U); 6340 ID.AddInteger(VT1.getRawBits()); 6341 ID.AddInteger(VT2.getRawBits()); 6342 6343 void *IP = nullptr; 6344 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6345 if (!Result) { 6346 EVT *Array = Allocator.Allocate<EVT>(2); 6347 Array[0] = VT1; 6348 Array[1] = VT2; 6349 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6350 VTListMap.InsertNode(Result, IP); 6351 } 6352 return Result->getSDVTList(); 6353 } 6354 6355 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6356 FoldingSetNodeID ID; 6357 ID.AddInteger(3U); 6358 ID.AddInteger(VT1.getRawBits()); 6359 ID.AddInteger(VT2.getRawBits()); 6360 ID.AddInteger(VT3.getRawBits()); 6361 6362 void *IP = nullptr; 6363 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6364 if (!Result) { 6365 EVT *Array = Allocator.Allocate<EVT>(3); 6366 Array[0] = VT1; 6367 Array[1] = VT2; 6368 Array[2] = VT3; 6369 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6370 VTListMap.InsertNode(Result, IP); 6371 } 6372 return Result->getSDVTList(); 6373 } 6374 6375 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6376 FoldingSetNodeID ID; 6377 ID.AddInteger(4U); 6378 ID.AddInteger(VT1.getRawBits()); 6379 ID.AddInteger(VT2.getRawBits()); 6380 ID.AddInteger(VT3.getRawBits()); 6381 ID.AddInteger(VT4.getRawBits()); 6382 6383 void *IP = nullptr; 6384 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6385 if (!Result) { 6386 EVT *Array = Allocator.Allocate<EVT>(4); 6387 Array[0] = VT1; 6388 Array[1] = VT2; 6389 Array[2] = VT3; 6390 Array[3] = VT4; 6391 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6392 VTListMap.InsertNode(Result, IP); 6393 } 6394 return Result->getSDVTList(); 6395 } 6396 6397 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6398 unsigned NumVTs = VTs.size(); 6399 FoldingSetNodeID ID; 6400 ID.AddInteger(NumVTs); 6401 for (unsigned index = 0; index < NumVTs; index++) { 6402 ID.AddInteger(VTs[index].getRawBits()); 6403 } 6404 6405 void *IP = nullptr; 6406 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6407 if (!Result) { 6408 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6409 std::copy(VTs.begin(), VTs.end(), Array); 6410 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6411 VTListMap.InsertNode(Result, IP); 6412 } 6413 return Result->getSDVTList(); 6414 } 6415 6416 6417 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6418 /// specified operands. If the resultant node already exists in the DAG, 6419 /// this does not modify the specified node, instead it returns the node that 6420 /// already exists. If the resultant node does not exist in the DAG, the 6421 /// input node is returned. As a degenerate case, if you specify the same 6422 /// input operands as the node already has, the input node is returned. 6423 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6424 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6425 6426 // Check to see if there is no change. 6427 if (Op == N->getOperand(0)) return N; 6428 6429 // See if the modified node already exists. 6430 void *InsertPos = nullptr; 6431 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6432 return Existing; 6433 6434 // Nope it doesn't. Remove the node from its current place in the maps. 6435 if (InsertPos) 6436 if (!RemoveNodeFromCSEMaps(N)) 6437 InsertPos = nullptr; 6438 6439 // Now we update the operands. 6440 N->OperandList[0].set(Op); 6441 6442 // If this gets put into a CSE map, add it. 6443 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6444 return N; 6445 } 6446 6447 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6448 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6449 6450 // Check to see if there is no change. 6451 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6452 return N; // No operands changed, just return the input node. 6453 6454 // See if the modified node already exists. 6455 void *InsertPos = nullptr; 6456 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6457 return Existing; 6458 6459 // Nope it doesn't. Remove the node from its current place in the maps. 6460 if (InsertPos) 6461 if (!RemoveNodeFromCSEMaps(N)) 6462 InsertPos = nullptr; 6463 6464 // Now we update the operands. 6465 if (N->OperandList[0] != Op1) 6466 N->OperandList[0].set(Op1); 6467 if (N->OperandList[1] != Op2) 6468 N->OperandList[1].set(Op2); 6469 6470 // If this gets put into a CSE map, add it. 6471 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6472 return N; 6473 } 6474 6475 SDNode *SelectionDAG:: 6476 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6477 SDValue Ops[] = { Op1, Op2, Op3 }; 6478 return UpdateNodeOperands(N, Ops); 6479 } 6480 6481 SDNode *SelectionDAG:: 6482 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6483 SDValue Op3, SDValue Op4) { 6484 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6485 return UpdateNodeOperands(N, Ops); 6486 } 6487 6488 SDNode *SelectionDAG:: 6489 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6490 SDValue Op3, SDValue Op4, SDValue Op5) { 6491 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6492 return UpdateNodeOperands(N, Ops); 6493 } 6494 6495 SDNode *SelectionDAG:: 6496 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6497 unsigned NumOps = Ops.size(); 6498 assert(N->getNumOperands() == NumOps && 6499 "Update with wrong number of operands"); 6500 6501 // If no operands changed just return the input node. 6502 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6503 return N; 6504 6505 // See if the modified node already exists. 6506 void *InsertPos = nullptr; 6507 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6508 return Existing; 6509 6510 // Nope it doesn't. Remove the node from its current place in the maps. 6511 if (InsertPos) 6512 if (!RemoveNodeFromCSEMaps(N)) 6513 InsertPos = nullptr; 6514 6515 // Now we update the operands. 6516 for (unsigned i = 0; i != NumOps; ++i) 6517 if (N->OperandList[i] != Ops[i]) 6518 N->OperandList[i].set(Ops[i]); 6519 6520 // If this gets put into a CSE map, add it. 6521 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6522 return N; 6523 } 6524 6525 /// DropOperands - Release the operands and set this node to have 6526 /// zero operands. 6527 void SDNode::DropOperands() { 6528 // Unlike the code in MorphNodeTo that does this, we don't need to 6529 // watch for dead nodes here. 6530 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6531 SDUse &Use = *I++; 6532 Use.set(SDValue()); 6533 } 6534 } 6535 6536 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6537 /// machine opcode. 6538 /// 6539 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6540 EVT VT) { 6541 SDVTList VTs = getVTList(VT); 6542 return SelectNodeTo(N, MachineOpc, VTs, None); 6543 } 6544 6545 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6546 EVT VT, SDValue Op1) { 6547 SDVTList VTs = getVTList(VT); 6548 SDValue Ops[] = { Op1 }; 6549 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6550 } 6551 6552 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6553 EVT VT, SDValue Op1, 6554 SDValue Op2) { 6555 SDVTList VTs = getVTList(VT); 6556 SDValue Ops[] = { Op1, Op2 }; 6557 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6558 } 6559 6560 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6561 EVT VT, SDValue Op1, 6562 SDValue Op2, SDValue Op3) { 6563 SDVTList VTs = getVTList(VT); 6564 SDValue Ops[] = { Op1, Op2, Op3 }; 6565 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6566 } 6567 6568 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6569 EVT VT, ArrayRef<SDValue> Ops) { 6570 SDVTList VTs = getVTList(VT); 6571 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6572 } 6573 6574 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6575 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6576 SDVTList VTs = getVTList(VT1, VT2); 6577 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6578 } 6579 6580 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6581 EVT VT1, EVT VT2) { 6582 SDVTList VTs = getVTList(VT1, VT2); 6583 return SelectNodeTo(N, MachineOpc, VTs, None); 6584 } 6585 6586 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6587 EVT VT1, EVT VT2, EVT VT3, 6588 ArrayRef<SDValue> Ops) { 6589 SDVTList VTs = getVTList(VT1, VT2, VT3); 6590 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6591 } 6592 6593 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6594 EVT VT1, EVT VT2, 6595 SDValue Op1, SDValue Op2) { 6596 SDVTList VTs = getVTList(VT1, VT2); 6597 SDValue Ops[] = { Op1, Op2 }; 6598 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6599 } 6600 6601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6602 SDVTList VTs,ArrayRef<SDValue> Ops) { 6603 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6604 // Reset the NodeID to -1. 6605 New->setNodeId(-1); 6606 if (New != N) { 6607 ReplaceAllUsesWith(N, New); 6608 RemoveDeadNode(N); 6609 } 6610 return New; 6611 } 6612 6613 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6614 /// the line number information on the merged node since it is not possible to 6615 /// preserve the information that operation is associated with multiple lines. 6616 /// This will make the debugger working better at -O0, were there is a higher 6617 /// probability having other instructions associated with that line. 6618 /// 6619 /// For IROrder, we keep the smaller of the two 6620 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6621 DebugLoc NLoc = N->getDebugLoc(); 6622 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6623 N->setDebugLoc(DebugLoc()); 6624 } 6625 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6626 N->setIROrder(Order); 6627 return N; 6628 } 6629 6630 /// MorphNodeTo - This *mutates* the specified node to have the specified 6631 /// return type, opcode, and operands. 6632 /// 6633 /// Note that MorphNodeTo returns the resultant node. If there is already a 6634 /// node of the specified opcode and operands, it returns that node instead of 6635 /// the current one. Note that the SDLoc need not be the same. 6636 /// 6637 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6638 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6639 /// node, and because it doesn't require CSE recalculation for any of 6640 /// the node's users. 6641 /// 6642 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6643 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6644 /// the legalizer which maintain worklists that would need to be updated when 6645 /// deleting things. 6646 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6647 SDVTList VTs, ArrayRef<SDValue> Ops) { 6648 // If an identical node already exists, use it. 6649 void *IP = nullptr; 6650 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6651 FoldingSetNodeID ID; 6652 AddNodeIDNode(ID, Opc, VTs, Ops); 6653 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6654 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6655 } 6656 6657 if (!RemoveNodeFromCSEMaps(N)) 6658 IP = nullptr; 6659 6660 // Start the morphing. 6661 N->NodeType = Opc; 6662 N->ValueList = VTs.VTs; 6663 N->NumValues = VTs.NumVTs; 6664 6665 // Clear the operands list, updating used nodes to remove this from their 6666 // use list. Keep track of any operands that become dead as a result. 6667 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6668 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6669 SDUse &Use = *I++; 6670 SDNode *Used = Use.getNode(); 6671 Use.set(SDValue()); 6672 if (Used->use_empty()) 6673 DeadNodeSet.insert(Used); 6674 } 6675 6676 // For MachineNode, initialize the memory references information. 6677 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6678 MN->setMemRefs(nullptr, nullptr); 6679 6680 // Swap for an appropriately sized array from the recycler. 6681 removeOperands(N); 6682 createOperands(N, Ops); 6683 6684 // Delete any nodes that are still dead after adding the uses for the 6685 // new operands. 6686 if (!DeadNodeSet.empty()) { 6687 SmallVector<SDNode *, 16> DeadNodes; 6688 for (SDNode *N : DeadNodeSet) 6689 if (N->use_empty()) 6690 DeadNodes.push_back(N); 6691 RemoveDeadNodes(DeadNodes); 6692 } 6693 6694 if (IP) 6695 CSEMap.InsertNode(N, IP); // Memoize the new node. 6696 return N; 6697 } 6698 6699 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6700 unsigned OrigOpc = Node->getOpcode(); 6701 unsigned NewOpc; 6702 bool IsUnary = false; 6703 bool IsTernary = false; 6704 switch (OrigOpc) { 6705 default: 6706 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6707 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6708 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6709 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6710 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6711 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6712 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 6713 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6714 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6715 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6716 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6717 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6718 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6719 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6720 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6721 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6722 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6723 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6724 case ISD::STRICT_FNEARBYINT: 6725 NewOpc = ISD::FNEARBYINT; 6726 IsUnary = true; 6727 break; 6728 } 6729 6730 // We're taking this node out of the chain, so we need to re-link things. 6731 SDValue InputChain = Node->getOperand(0); 6732 SDValue OutputChain = SDValue(Node, 1); 6733 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6734 6735 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6736 SDNode *Res = nullptr; 6737 if (IsUnary) 6738 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6739 else if (IsTernary) 6740 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6741 Node->getOperand(2), 6742 Node->getOperand(3)}); 6743 else 6744 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6745 Node->getOperand(2) }); 6746 6747 // MorphNodeTo can operate in two ways: if an existing node with the 6748 // specified operands exists, it can just return it. Otherwise, it 6749 // updates the node in place to have the requested operands. 6750 if (Res == Node) { 6751 // If we updated the node in place, reset the node ID. To the isel, 6752 // this should be just like a newly allocated machine node. 6753 Res->setNodeId(-1); 6754 } else { 6755 ReplaceAllUsesWith(Node, Res); 6756 RemoveDeadNode(Node); 6757 } 6758 6759 return Res; 6760 } 6761 6762 /// getMachineNode - These are used for target selectors to create a new node 6763 /// with specified return type(s), MachineInstr opcode, and operands. 6764 /// 6765 /// Note that getMachineNode returns the resultant node. If there is already a 6766 /// node of the specified opcode and operands, it returns that node instead of 6767 /// the current one. 6768 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6769 EVT VT) { 6770 SDVTList VTs = getVTList(VT); 6771 return getMachineNode(Opcode, dl, VTs, None); 6772 } 6773 6774 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6775 EVT VT, SDValue Op1) { 6776 SDVTList VTs = getVTList(VT); 6777 SDValue Ops[] = { Op1 }; 6778 return getMachineNode(Opcode, dl, VTs, Ops); 6779 } 6780 6781 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6782 EVT VT, SDValue Op1, SDValue Op2) { 6783 SDVTList VTs = getVTList(VT); 6784 SDValue Ops[] = { Op1, Op2 }; 6785 return getMachineNode(Opcode, dl, VTs, Ops); 6786 } 6787 6788 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6789 EVT VT, SDValue Op1, SDValue Op2, 6790 SDValue Op3) { 6791 SDVTList VTs = getVTList(VT); 6792 SDValue Ops[] = { Op1, Op2, Op3 }; 6793 return getMachineNode(Opcode, dl, VTs, Ops); 6794 } 6795 6796 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6797 EVT VT, ArrayRef<SDValue> Ops) { 6798 SDVTList VTs = getVTList(VT); 6799 return getMachineNode(Opcode, dl, VTs, Ops); 6800 } 6801 6802 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6803 EVT VT1, EVT VT2, SDValue Op1, 6804 SDValue Op2) { 6805 SDVTList VTs = getVTList(VT1, VT2); 6806 SDValue Ops[] = { Op1, Op2 }; 6807 return getMachineNode(Opcode, dl, VTs, Ops); 6808 } 6809 6810 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6811 EVT VT1, EVT VT2, SDValue Op1, 6812 SDValue Op2, SDValue Op3) { 6813 SDVTList VTs = getVTList(VT1, VT2); 6814 SDValue Ops[] = { Op1, Op2, Op3 }; 6815 return getMachineNode(Opcode, dl, VTs, Ops); 6816 } 6817 6818 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6819 EVT VT1, EVT VT2, 6820 ArrayRef<SDValue> Ops) { 6821 SDVTList VTs = getVTList(VT1, VT2); 6822 return getMachineNode(Opcode, dl, VTs, Ops); 6823 } 6824 6825 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6826 EVT VT1, EVT VT2, EVT VT3, 6827 SDValue Op1, SDValue Op2) { 6828 SDVTList VTs = getVTList(VT1, VT2, VT3); 6829 SDValue Ops[] = { Op1, Op2 }; 6830 return getMachineNode(Opcode, dl, VTs, Ops); 6831 } 6832 6833 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6834 EVT VT1, EVT VT2, EVT VT3, 6835 SDValue Op1, SDValue Op2, 6836 SDValue Op3) { 6837 SDVTList VTs = getVTList(VT1, VT2, VT3); 6838 SDValue Ops[] = { Op1, Op2, Op3 }; 6839 return getMachineNode(Opcode, dl, VTs, Ops); 6840 } 6841 6842 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6843 EVT VT1, EVT VT2, EVT VT3, 6844 ArrayRef<SDValue> Ops) { 6845 SDVTList VTs = getVTList(VT1, VT2, VT3); 6846 return getMachineNode(Opcode, dl, VTs, Ops); 6847 } 6848 6849 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6850 ArrayRef<EVT> ResultTys, 6851 ArrayRef<SDValue> Ops) { 6852 SDVTList VTs = getVTList(ResultTys); 6853 return getMachineNode(Opcode, dl, VTs, Ops); 6854 } 6855 6856 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6857 SDVTList VTs, 6858 ArrayRef<SDValue> Ops) { 6859 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6860 MachineSDNode *N; 6861 void *IP = nullptr; 6862 6863 if (DoCSE) { 6864 FoldingSetNodeID ID; 6865 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6866 IP = nullptr; 6867 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6868 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6869 } 6870 } 6871 6872 // Allocate a new MachineSDNode. 6873 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6874 createOperands(N, Ops); 6875 6876 if (DoCSE) 6877 CSEMap.InsertNode(N, IP); 6878 6879 InsertNode(N); 6880 return N; 6881 } 6882 6883 /// getTargetExtractSubreg - A convenience function for creating 6884 /// TargetOpcode::EXTRACT_SUBREG nodes. 6885 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6886 SDValue Operand) { 6887 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6888 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6889 VT, Operand, SRIdxVal); 6890 return SDValue(Subreg, 0); 6891 } 6892 6893 /// getTargetInsertSubreg - A convenience function for creating 6894 /// TargetOpcode::INSERT_SUBREG nodes. 6895 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6896 SDValue Operand, SDValue Subreg) { 6897 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6898 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6899 VT, Operand, Subreg, SRIdxVal); 6900 return SDValue(Result, 0); 6901 } 6902 6903 /// getNodeIfExists - Get the specified node if it's already available, or 6904 /// else return NULL. 6905 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6906 ArrayRef<SDValue> Ops, 6907 const SDNodeFlags Flags) { 6908 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6909 FoldingSetNodeID ID; 6910 AddNodeIDNode(ID, Opcode, VTList, Ops); 6911 void *IP = nullptr; 6912 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6913 E->intersectFlagsWith(Flags); 6914 return E; 6915 } 6916 } 6917 return nullptr; 6918 } 6919 6920 /// getDbgValue - Creates a SDDbgValue node. 6921 /// 6922 /// SDNode 6923 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 6924 SDNode *N, unsigned R, bool IsIndirect, 6925 const DebugLoc &DL, unsigned O) { 6926 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6927 "Expected inlined-at fields to agree"); 6928 return new (DbgInfo->getAlloc()) 6929 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 6930 } 6931 6932 /// Constant 6933 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 6934 DIExpression *Expr, 6935 const Value *C, 6936 const DebugLoc &DL, unsigned O) { 6937 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6938 "Expected inlined-at fields to agree"); 6939 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 6940 } 6941 6942 /// FrameIndex 6943 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 6944 DIExpression *Expr, unsigned FI, 6945 const DebugLoc &DL, 6946 unsigned O) { 6947 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6948 "Expected inlined-at fields to agree"); 6949 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 6950 } 6951 6952 namespace { 6953 6954 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6955 /// pointed to by a use iterator is deleted, increment the use iterator 6956 /// so that it doesn't dangle. 6957 /// 6958 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6959 SDNode::use_iterator &UI; 6960 SDNode::use_iterator &UE; 6961 6962 void NodeDeleted(SDNode *N, SDNode *E) override { 6963 // Increment the iterator as needed. 6964 while (UI != UE && N == *UI) 6965 ++UI; 6966 } 6967 6968 public: 6969 RAUWUpdateListener(SelectionDAG &d, 6970 SDNode::use_iterator &ui, 6971 SDNode::use_iterator &ue) 6972 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6973 }; 6974 6975 } // end anonymous namespace 6976 6977 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6978 /// This can cause recursive merging of nodes in the DAG. 6979 /// 6980 /// This version assumes From has a single result value. 6981 /// 6982 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6983 SDNode *From = FromN.getNode(); 6984 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6985 "Cannot replace with this method!"); 6986 assert(From != To.getNode() && "Cannot replace uses of with self"); 6987 6988 // Preserve Debug Values 6989 TransferDbgValues(FromN, To); 6990 6991 // Iterate over all the existing uses of From. New uses will be added 6992 // to the beginning of the use list, which we avoid visiting. 6993 // This specifically avoids visiting uses of From that arise while the 6994 // replacement is happening, because any such uses would be the result 6995 // of CSE: If an existing node looks like From after one of its operands 6996 // is replaced by To, we don't want to replace of all its users with To 6997 // too. See PR3018 for more info. 6998 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6999 RAUWUpdateListener Listener(*this, UI, UE); 7000 while (UI != UE) { 7001 SDNode *User = *UI; 7002 7003 // This node is about to morph, remove its old self from the CSE maps. 7004 RemoveNodeFromCSEMaps(User); 7005 7006 // A user can appear in a use list multiple times, and when this 7007 // happens the uses are usually next to each other in the list. 7008 // To help reduce the number of CSE recomputations, process all 7009 // the uses of this user that we can find this way. 7010 do { 7011 SDUse &Use = UI.getUse(); 7012 ++UI; 7013 Use.set(To); 7014 } while (UI != UE && *UI == User); 7015 7016 // Now that we have modified User, add it back to the CSE maps. If it 7017 // already exists there, recursively merge the results together. 7018 AddModifiedNodeToCSEMaps(User); 7019 } 7020 7021 // If we just RAUW'd the root, take note. 7022 if (FromN == getRoot()) 7023 setRoot(To); 7024 } 7025 7026 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7027 /// This can cause recursive merging of nodes in the DAG. 7028 /// 7029 /// This version assumes that for each value of From, there is a 7030 /// corresponding value in To in the same position with the same type. 7031 /// 7032 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7033 #ifndef NDEBUG 7034 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7035 assert((!From->hasAnyUseOfValue(i) || 7036 From->getValueType(i) == To->getValueType(i)) && 7037 "Cannot use this version of ReplaceAllUsesWith!"); 7038 #endif 7039 7040 // Handle the trivial case. 7041 if (From == To) 7042 return; 7043 7044 // Preserve Debug Info. Only do this if there's a use. 7045 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7046 if (From->hasAnyUseOfValue(i)) { 7047 assert((i < To->getNumValues()) && "Invalid To location"); 7048 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 7049 } 7050 7051 // Iterate over just the existing users of From. See the comments in 7052 // the ReplaceAllUsesWith above. 7053 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7054 RAUWUpdateListener Listener(*this, UI, UE); 7055 while (UI != UE) { 7056 SDNode *User = *UI; 7057 7058 // This node is about to morph, remove its old self from the CSE maps. 7059 RemoveNodeFromCSEMaps(User); 7060 7061 // A user can appear in a use list multiple times, and when this 7062 // happens the uses are usually next to each other in the list. 7063 // To help reduce the number of CSE recomputations, process all 7064 // the uses of this user that we can find this way. 7065 do { 7066 SDUse &Use = UI.getUse(); 7067 ++UI; 7068 Use.setNode(To); 7069 } while (UI != UE && *UI == User); 7070 7071 // Now that we have modified User, add it back to the CSE maps. If it 7072 // already exists there, recursively merge the results together. 7073 AddModifiedNodeToCSEMaps(User); 7074 } 7075 7076 // If we just RAUW'd the root, take note. 7077 if (From == getRoot().getNode()) 7078 setRoot(SDValue(To, getRoot().getResNo())); 7079 } 7080 7081 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7082 /// This can cause recursive merging of nodes in the DAG. 7083 /// 7084 /// This version can replace From with any result values. To must match the 7085 /// number and types of values returned by From. 7086 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7087 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7088 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7089 7090 // Preserve Debug Info. 7091 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7092 TransferDbgValues(SDValue(From, i), *To); 7093 7094 // Iterate over just the existing users of From. See the comments in 7095 // the ReplaceAllUsesWith above. 7096 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7097 RAUWUpdateListener Listener(*this, UI, UE); 7098 while (UI != UE) { 7099 SDNode *User = *UI; 7100 7101 // This node is about to morph, remove its old self from the CSE maps. 7102 RemoveNodeFromCSEMaps(User); 7103 7104 // A user can appear in a use list multiple times, and when this 7105 // happens the uses are usually next to each other in the list. 7106 // To help reduce the number of CSE recomputations, process all 7107 // the uses of this user that we can find this way. 7108 do { 7109 SDUse &Use = UI.getUse(); 7110 const SDValue &ToOp = To[Use.getResNo()]; 7111 ++UI; 7112 Use.set(ToOp); 7113 } while (UI != UE && *UI == User); 7114 7115 // Now that we have modified User, add it back to the CSE maps. If it 7116 // already exists there, recursively merge the results together. 7117 AddModifiedNodeToCSEMaps(User); 7118 } 7119 7120 // If we just RAUW'd the root, take note. 7121 if (From == getRoot().getNode()) 7122 setRoot(SDValue(To[getRoot().getResNo()])); 7123 } 7124 7125 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7126 /// uses of other values produced by From.getNode() alone. The Deleted 7127 /// vector is handled the same way as for ReplaceAllUsesWith. 7128 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7129 // Handle the really simple, really trivial case efficiently. 7130 if (From == To) return; 7131 7132 // Handle the simple, trivial, case efficiently. 7133 if (From.getNode()->getNumValues() == 1) { 7134 ReplaceAllUsesWith(From, To); 7135 return; 7136 } 7137 7138 // Preserve Debug Info. 7139 TransferDbgValues(From, To); 7140 7141 // Iterate over just the existing users of From. See the comments in 7142 // the ReplaceAllUsesWith above. 7143 SDNode::use_iterator UI = From.getNode()->use_begin(), 7144 UE = From.getNode()->use_end(); 7145 RAUWUpdateListener Listener(*this, UI, UE); 7146 while (UI != UE) { 7147 SDNode *User = *UI; 7148 bool UserRemovedFromCSEMaps = false; 7149 7150 // A user can appear in a use list multiple times, and when this 7151 // happens the uses are usually next to each other in the list. 7152 // To help reduce the number of CSE recomputations, process all 7153 // the uses of this user that we can find this way. 7154 do { 7155 SDUse &Use = UI.getUse(); 7156 7157 // Skip uses of different values from the same node. 7158 if (Use.getResNo() != From.getResNo()) { 7159 ++UI; 7160 continue; 7161 } 7162 7163 // If this node hasn't been modified yet, it's still in the CSE maps, 7164 // so remove its old self from the CSE maps. 7165 if (!UserRemovedFromCSEMaps) { 7166 RemoveNodeFromCSEMaps(User); 7167 UserRemovedFromCSEMaps = true; 7168 } 7169 7170 ++UI; 7171 Use.set(To); 7172 } while (UI != UE && *UI == User); 7173 7174 // We are iterating over all uses of the From node, so if a use 7175 // doesn't use the specific value, no changes are made. 7176 if (!UserRemovedFromCSEMaps) 7177 continue; 7178 7179 // Now that we have modified User, add it back to the CSE maps. If it 7180 // already exists there, recursively merge the results together. 7181 AddModifiedNodeToCSEMaps(User); 7182 } 7183 7184 // If we just RAUW'd the root, take note. 7185 if (From == getRoot()) 7186 setRoot(To); 7187 } 7188 7189 namespace { 7190 7191 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7192 /// to record information about a use. 7193 struct UseMemo { 7194 SDNode *User; 7195 unsigned Index; 7196 SDUse *Use; 7197 }; 7198 7199 /// operator< - Sort Memos by User. 7200 bool operator<(const UseMemo &L, const UseMemo &R) { 7201 return (intptr_t)L.User < (intptr_t)R.User; 7202 } 7203 7204 } // end anonymous namespace 7205 7206 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7207 /// uses of other values produced by From.getNode() alone. The same value 7208 /// may appear in both the From and To list. The Deleted vector is 7209 /// handled the same way as for ReplaceAllUsesWith. 7210 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7211 const SDValue *To, 7212 unsigned Num){ 7213 // Handle the simple, trivial case efficiently. 7214 if (Num == 1) 7215 return ReplaceAllUsesOfValueWith(*From, *To); 7216 7217 TransferDbgValues(*From, *To); 7218 7219 // Read up all the uses and make records of them. This helps 7220 // processing new uses that are introduced during the 7221 // replacement process. 7222 SmallVector<UseMemo, 4> Uses; 7223 for (unsigned i = 0; i != Num; ++i) { 7224 unsigned FromResNo = From[i].getResNo(); 7225 SDNode *FromNode = From[i].getNode(); 7226 for (SDNode::use_iterator UI = FromNode->use_begin(), 7227 E = FromNode->use_end(); UI != E; ++UI) { 7228 SDUse &Use = UI.getUse(); 7229 if (Use.getResNo() == FromResNo) { 7230 UseMemo Memo = { *UI, i, &Use }; 7231 Uses.push_back(Memo); 7232 } 7233 } 7234 } 7235 7236 // Sort the uses, so that all the uses from a given User are together. 7237 std::sort(Uses.begin(), Uses.end()); 7238 7239 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7240 UseIndex != UseIndexEnd; ) { 7241 // We know that this user uses some value of From. If it is the right 7242 // value, update it. 7243 SDNode *User = Uses[UseIndex].User; 7244 7245 // This node is about to morph, remove its old self from the CSE maps. 7246 RemoveNodeFromCSEMaps(User); 7247 7248 // The Uses array is sorted, so all the uses for a given User 7249 // are next to each other in the list. 7250 // To help reduce the number of CSE recomputations, process all 7251 // the uses of this user that we can find this way. 7252 do { 7253 unsigned i = Uses[UseIndex].Index; 7254 SDUse &Use = *Uses[UseIndex].Use; 7255 ++UseIndex; 7256 7257 Use.set(To[i]); 7258 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7259 7260 // Now that we have modified User, add it back to the CSE maps. If it 7261 // already exists there, recursively merge the results together. 7262 AddModifiedNodeToCSEMaps(User); 7263 } 7264 } 7265 7266 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7267 /// based on their topological order. It returns the maximum id and a vector 7268 /// of the SDNodes* in assigned order by reference. 7269 unsigned SelectionDAG::AssignTopologicalOrder() { 7270 unsigned DAGSize = 0; 7271 7272 // SortedPos tracks the progress of the algorithm. Nodes before it are 7273 // sorted, nodes after it are unsorted. When the algorithm completes 7274 // it is at the end of the list. 7275 allnodes_iterator SortedPos = allnodes_begin(); 7276 7277 // Visit all the nodes. Move nodes with no operands to the front of 7278 // the list immediately. Annotate nodes that do have operands with their 7279 // operand count. Before we do this, the Node Id fields of the nodes 7280 // may contain arbitrary values. After, the Node Id fields for nodes 7281 // before SortedPos will contain the topological sort index, and the 7282 // Node Id fields for nodes At SortedPos and after will contain the 7283 // count of outstanding operands. 7284 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7285 SDNode *N = &*I++; 7286 checkForCycles(N, this); 7287 unsigned Degree = N->getNumOperands(); 7288 if (Degree == 0) { 7289 // A node with no uses, add it to the result array immediately. 7290 N->setNodeId(DAGSize++); 7291 allnodes_iterator Q(N); 7292 if (Q != SortedPos) 7293 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7294 assert(SortedPos != AllNodes.end() && "Overran node list"); 7295 ++SortedPos; 7296 } else { 7297 // Temporarily use the Node Id as scratch space for the degree count. 7298 N->setNodeId(Degree); 7299 } 7300 } 7301 7302 // Visit all the nodes. As we iterate, move nodes into sorted order, 7303 // such that by the time the end is reached all nodes will be sorted. 7304 for (SDNode &Node : allnodes()) { 7305 SDNode *N = &Node; 7306 checkForCycles(N, this); 7307 // N is in sorted position, so all its uses have one less operand 7308 // that needs to be sorted. 7309 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7310 UI != UE; ++UI) { 7311 SDNode *P = *UI; 7312 unsigned Degree = P->getNodeId(); 7313 assert(Degree != 0 && "Invalid node degree"); 7314 --Degree; 7315 if (Degree == 0) { 7316 // All of P's operands are sorted, so P may sorted now. 7317 P->setNodeId(DAGSize++); 7318 if (P->getIterator() != SortedPos) 7319 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7320 assert(SortedPos != AllNodes.end() && "Overran node list"); 7321 ++SortedPos; 7322 } else { 7323 // Update P's outstanding operand count. 7324 P->setNodeId(Degree); 7325 } 7326 } 7327 if (Node.getIterator() == SortedPos) { 7328 #ifndef NDEBUG 7329 allnodes_iterator I(N); 7330 SDNode *S = &*++I; 7331 dbgs() << "Overran sorted position:\n"; 7332 S->dumprFull(this); dbgs() << "\n"; 7333 dbgs() << "Checking if this is due to cycles\n"; 7334 checkForCycles(this, true); 7335 #endif 7336 llvm_unreachable(nullptr); 7337 } 7338 } 7339 7340 assert(SortedPos == AllNodes.end() && 7341 "Topological sort incomplete!"); 7342 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7343 "First node in topological sort is not the entry token!"); 7344 assert(AllNodes.front().getNodeId() == 0 && 7345 "First node in topological sort has non-zero id!"); 7346 assert(AllNodes.front().getNumOperands() == 0 && 7347 "First node in topological sort has operands!"); 7348 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7349 "Last node in topologic sort has unexpected id!"); 7350 assert(AllNodes.back().use_empty() && 7351 "Last node in topologic sort has users!"); 7352 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7353 return DAGSize; 7354 } 7355 7356 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7357 /// value is produced by SD. 7358 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7359 if (SD) { 7360 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7361 SD->setHasDebugValue(true); 7362 } 7363 DbgInfo->add(DB, SD, isParameter); 7364 } 7365 7366 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 7367 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 7368 if (From == To || !From.getNode()->getHasDebugValue()) 7369 return; 7370 SDNode *FromNode = From.getNode(); 7371 SDNode *ToNode = To.getNode(); 7372 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 7373 SmallVector<SDDbgValue *, 2> ClonedDVs; 7374 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 7375 I != E; ++I) { 7376 SDDbgValue *Dbg = *I; 7377 // Only add Dbgvalues attached to same ResNo. 7378 if (Dbg->getKind() == SDDbgValue::SDNODE && 7379 Dbg->getSDNode() == From.getNode() && 7380 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 7381 assert(FromNode != ToNode && 7382 "Should not transfer Debug Values intranode"); 7383 SDDbgValue *Clone = getDbgValue(Dbg->getVariable(), Dbg->getExpression(), 7384 ToNode, To.getResNo(), Dbg->isIndirect(), 7385 Dbg->getDebugLoc(), Dbg->getOrder()); 7386 ClonedDVs.push_back(Clone); 7387 Dbg->setIsInvalidated(); 7388 } 7389 } 7390 for (SDDbgValue *I : ClonedDVs) 7391 AddDbgValue(I, ToNode, false); 7392 } 7393 7394 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7395 SDValue NewMemOp) { 7396 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7397 // The new memory operation must have the same position as the old load in 7398 // terms of memory dependency. Create a TokenFactor for the old load and new 7399 // memory operation and update uses of the old load's output chain to use that 7400 // TokenFactor. 7401 SDValue OldChain = SDValue(OldLoad, 1); 7402 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7403 if (!OldLoad->hasAnyUseOfValue(1)) 7404 return NewChain; 7405 7406 SDValue TokenFactor = 7407 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7408 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7409 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7410 return TokenFactor; 7411 } 7412 7413 //===----------------------------------------------------------------------===// 7414 // SDNode Class 7415 //===----------------------------------------------------------------------===// 7416 7417 bool llvm::isNullConstant(SDValue V) { 7418 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7419 return Const != nullptr && Const->isNullValue(); 7420 } 7421 7422 bool llvm::isNullFPConstant(SDValue V) { 7423 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7424 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7425 } 7426 7427 bool llvm::isAllOnesConstant(SDValue V) { 7428 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7429 return Const != nullptr && Const->isAllOnesValue(); 7430 } 7431 7432 bool llvm::isOneConstant(SDValue V) { 7433 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7434 return Const != nullptr && Const->isOne(); 7435 } 7436 7437 bool llvm::isBitwiseNot(SDValue V) { 7438 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7439 } 7440 7441 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7442 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7443 return CN; 7444 7445 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7446 BitVector UndefElements; 7447 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7448 7449 // BuildVectors can truncate their operands. Ignore that case here. 7450 // FIXME: We blindly ignore splats which include undef which is overly 7451 // pessimistic. 7452 if (CN && UndefElements.none() && 7453 CN->getValueType(0) == N.getValueType().getScalarType()) 7454 return CN; 7455 } 7456 7457 return nullptr; 7458 } 7459 7460 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7461 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7462 return CN; 7463 7464 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7465 BitVector UndefElements; 7466 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7467 7468 if (CN && UndefElements.none()) 7469 return CN; 7470 } 7471 7472 return nullptr; 7473 } 7474 7475 HandleSDNode::~HandleSDNode() { 7476 DropOperands(); 7477 } 7478 7479 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7480 const DebugLoc &DL, 7481 const GlobalValue *GA, EVT VT, 7482 int64_t o, unsigned char TF) 7483 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7484 TheGlobal = GA; 7485 } 7486 7487 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7488 EVT VT, unsigned SrcAS, 7489 unsigned DestAS) 7490 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7491 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7492 7493 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7494 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7495 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7496 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7497 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7498 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7499 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7500 7501 // We check here that the size of the memory operand fits within the size of 7502 // the MMO. This is because the MMO might indicate only a possible address 7503 // range instead of specifying the affected memory addresses precisely. 7504 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7505 } 7506 7507 /// Profile - Gather unique data for the node. 7508 /// 7509 void SDNode::Profile(FoldingSetNodeID &ID) const { 7510 AddNodeIDNode(ID, this); 7511 } 7512 7513 namespace { 7514 7515 struct EVTArray { 7516 std::vector<EVT> VTs; 7517 7518 EVTArray() { 7519 VTs.reserve(MVT::LAST_VALUETYPE); 7520 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7521 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7522 } 7523 }; 7524 7525 } // end anonymous namespace 7526 7527 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7528 static ManagedStatic<EVTArray> SimpleVTArray; 7529 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7530 7531 /// getValueTypeList - Return a pointer to the specified value type. 7532 /// 7533 const EVT *SDNode::getValueTypeList(EVT VT) { 7534 if (VT.isExtended()) { 7535 sys::SmartScopedLock<true> Lock(*VTMutex); 7536 return &(*EVTs->insert(VT).first); 7537 } else { 7538 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7539 "Value type out of range!"); 7540 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7541 } 7542 } 7543 7544 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7545 /// indicated value. This method ignores uses of other values defined by this 7546 /// operation. 7547 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7548 assert(Value < getNumValues() && "Bad value!"); 7549 7550 // TODO: Only iterate over uses of a given value of the node 7551 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7552 if (UI.getUse().getResNo() == Value) { 7553 if (NUses == 0) 7554 return false; 7555 --NUses; 7556 } 7557 } 7558 7559 // Found exactly the right number of uses? 7560 return NUses == 0; 7561 } 7562 7563 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7564 /// value. This method ignores uses of other values defined by this operation. 7565 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7566 assert(Value < getNumValues() && "Bad value!"); 7567 7568 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7569 if (UI.getUse().getResNo() == Value) 7570 return true; 7571 7572 return false; 7573 } 7574 7575 /// isOnlyUserOf - Return true if this node is the only use of N. 7576 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7577 bool Seen = false; 7578 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7579 SDNode *User = *I; 7580 if (User == this) 7581 Seen = true; 7582 else 7583 return false; 7584 } 7585 7586 return Seen; 7587 } 7588 7589 /// Return true if the only users of N are contained in Nodes. 7590 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7591 bool Seen = false; 7592 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7593 SDNode *User = *I; 7594 if (llvm::any_of(Nodes, 7595 [&User](const SDNode *Node) { return User == Node; })) 7596 Seen = true; 7597 else 7598 return false; 7599 } 7600 7601 return Seen; 7602 } 7603 7604 /// isOperand - Return true if this node is an operand of N. 7605 bool SDValue::isOperandOf(const SDNode *N) const { 7606 for (const SDValue &Op : N->op_values()) 7607 if (*this == Op) 7608 return true; 7609 return false; 7610 } 7611 7612 bool SDNode::isOperandOf(const SDNode *N) const { 7613 for (const SDValue &Op : N->op_values()) 7614 if (this == Op.getNode()) 7615 return true; 7616 return false; 7617 } 7618 7619 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7620 /// be a chain) reaches the specified operand without crossing any 7621 /// side-effecting instructions on any chain path. In practice, this looks 7622 /// through token factors and non-volatile loads. In order to remain efficient, 7623 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7624 /// 7625 /// Note that we only need to examine chains when we're searching for 7626 /// side-effects; SelectionDAG requires that all side-effects are represented 7627 /// by chains, even if another operand would force a specific ordering. This 7628 /// constraint is necessary to allow transformations like splitting loads. 7629 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7630 unsigned Depth) const { 7631 if (*this == Dest) return true; 7632 7633 // Don't search too deeply, we just want to be able to see through 7634 // TokenFactor's etc. 7635 if (Depth == 0) return false; 7636 7637 // If this is a token factor, all inputs to the TF happen in parallel. 7638 if (getOpcode() == ISD::TokenFactor) { 7639 // First, try a shallow search. 7640 if (is_contained((*this)->ops(), Dest)) { 7641 // We found the chain we want as an operand of this TokenFactor. 7642 // Essentially, we reach the chain without side-effects if we could 7643 // serialize the TokenFactor into a simple chain of operations with 7644 // Dest as the last operation. This is automatically true if the 7645 // chain has one use: there are no other ordering constraints. 7646 // If the chain has more than one use, we give up: some other 7647 // use of Dest might force a side-effect between Dest and the current 7648 // node. 7649 if (Dest.hasOneUse()) 7650 return true; 7651 } 7652 // Next, try a deep search: check whether every operand of the TokenFactor 7653 // reaches Dest. 7654 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 7655 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7656 }); 7657 } 7658 7659 // Loads don't have side effects, look through them. 7660 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7661 if (!Ld->isVolatile()) 7662 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7663 } 7664 return false; 7665 } 7666 7667 bool SDNode::hasPredecessor(const SDNode *N) const { 7668 SmallPtrSet<const SDNode *, 32> Visited; 7669 SmallVector<const SDNode *, 16> Worklist; 7670 Worklist.push_back(this); 7671 return hasPredecessorHelper(N, Visited, Worklist); 7672 } 7673 7674 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 7675 this->Flags.intersectWith(Flags); 7676 } 7677 7678 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7679 assert(N->getNumValues() == 1 && 7680 "Can't unroll a vector with multiple results!"); 7681 7682 EVT VT = N->getValueType(0); 7683 unsigned NE = VT.getVectorNumElements(); 7684 EVT EltVT = VT.getVectorElementType(); 7685 SDLoc dl(N); 7686 7687 SmallVector<SDValue, 8> Scalars; 7688 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7689 7690 // If ResNE is 0, fully unroll the vector op. 7691 if (ResNE == 0) 7692 ResNE = NE; 7693 else if (NE > ResNE) 7694 NE = ResNE; 7695 7696 unsigned i; 7697 for (i= 0; i != NE; ++i) { 7698 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7699 SDValue Operand = N->getOperand(j); 7700 EVT OperandVT = Operand.getValueType(); 7701 if (OperandVT.isVector()) { 7702 // A vector operand; extract a single element. 7703 EVT OperandEltVT = OperandVT.getVectorElementType(); 7704 Operands[j] = 7705 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7706 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7707 } else { 7708 // A scalar operand; just use it as is. 7709 Operands[j] = Operand; 7710 } 7711 } 7712 7713 switch (N->getOpcode()) { 7714 default: { 7715 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7716 N->getFlags())); 7717 break; 7718 } 7719 case ISD::VSELECT: 7720 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7721 break; 7722 case ISD::SHL: 7723 case ISD::SRA: 7724 case ISD::SRL: 7725 case ISD::ROTL: 7726 case ISD::ROTR: 7727 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7728 getShiftAmountOperand(Operands[0].getValueType(), 7729 Operands[1]))); 7730 break; 7731 case ISD::SIGN_EXTEND_INREG: 7732 case ISD::FP_ROUND_INREG: { 7733 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7734 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7735 Operands[0], 7736 getValueType(ExtVT))); 7737 } 7738 } 7739 } 7740 7741 for (; i < ResNE; ++i) 7742 Scalars.push_back(getUNDEF(EltVT)); 7743 7744 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7745 return getBuildVector(VecVT, dl, Scalars); 7746 } 7747 7748 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7749 LoadSDNode *Base, 7750 unsigned Bytes, 7751 int Dist) const { 7752 if (LD->isVolatile() || Base->isVolatile()) 7753 return false; 7754 if (LD->isIndexed() || Base->isIndexed()) 7755 return false; 7756 if (LD->getChain() != Base->getChain()) 7757 return false; 7758 EVT VT = LD->getValueType(0); 7759 if (VT.getSizeInBits() / 8 != Bytes) 7760 return false; 7761 7762 SDValue Loc = LD->getOperand(1); 7763 SDValue BaseLoc = Base->getOperand(1); 7764 7765 auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this); 7766 auto LocDecomp = BaseIndexOffset::match(Loc, *this); 7767 7768 int64_t Offset = 0; 7769 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 7770 return (Dist * Bytes == Offset); 7771 return false; 7772 } 7773 7774 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7775 /// it cannot be inferred. 7776 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7777 // If this is a GlobalAddress + cst, return the alignment. 7778 const GlobalValue *GV; 7779 int64_t GVOffset = 0; 7780 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7781 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7782 KnownBits Known(PtrWidth); 7783 llvm::computeKnownBits(GV, Known, getDataLayout()); 7784 unsigned AlignBits = Known.countMinTrailingZeros(); 7785 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7786 if (Align) 7787 return MinAlign(Align, GVOffset); 7788 } 7789 7790 // If this is a direct reference to a stack slot, use information about the 7791 // stack slot's alignment. 7792 int FrameIdx = 1 << 31; 7793 int64_t FrameOffset = 0; 7794 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7795 FrameIdx = FI->getIndex(); 7796 } else if (isBaseWithConstantOffset(Ptr) && 7797 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7798 // Handle FI+Cst 7799 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7800 FrameOffset = Ptr.getConstantOperandVal(1); 7801 } 7802 7803 if (FrameIdx != (1 << 31)) { 7804 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7805 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7806 FrameOffset); 7807 return FIInfoAlign; 7808 } 7809 7810 return 0; 7811 } 7812 7813 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7814 /// which is split (or expanded) into two not necessarily identical pieces. 7815 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7816 // Currently all types are split in half. 7817 EVT LoVT, HiVT; 7818 if (!VT.isVector()) 7819 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7820 else 7821 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 7822 7823 return std::make_pair(LoVT, HiVT); 7824 } 7825 7826 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7827 /// low/high part. 7828 std::pair<SDValue, SDValue> 7829 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7830 const EVT &HiVT) { 7831 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7832 N.getValueType().getVectorNumElements() && 7833 "More vector elements requested than available!"); 7834 SDValue Lo, Hi; 7835 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7836 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7837 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7838 getConstant(LoVT.getVectorNumElements(), DL, 7839 TLI->getVectorIdxTy(getDataLayout()))); 7840 return std::make_pair(Lo, Hi); 7841 } 7842 7843 void SelectionDAG::ExtractVectorElements(SDValue Op, 7844 SmallVectorImpl<SDValue> &Args, 7845 unsigned Start, unsigned Count) { 7846 EVT VT = Op.getValueType(); 7847 if (Count == 0) 7848 Count = VT.getVectorNumElements(); 7849 7850 EVT EltVT = VT.getVectorElementType(); 7851 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7852 SDLoc SL(Op); 7853 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7854 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7855 Op, getConstant(i, SL, IdxTy))); 7856 } 7857 } 7858 7859 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7860 unsigned GlobalAddressSDNode::getAddressSpace() const { 7861 return getGlobal()->getType()->getAddressSpace(); 7862 } 7863 7864 Type *ConstantPoolSDNode::getType() const { 7865 if (isMachineConstantPoolEntry()) 7866 return Val.MachineCPVal->getType(); 7867 return Val.ConstVal->getType(); 7868 } 7869 7870 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 7871 unsigned &SplatBitSize, 7872 bool &HasAnyUndefs, 7873 unsigned MinSplatBits, 7874 bool IsBigEndian) const { 7875 EVT VT = getValueType(0); 7876 assert(VT.isVector() && "Expected a vector type"); 7877 unsigned VecWidth = VT.getSizeInBits(); 7878 if (MinSplatBits > VecWidth) 7879 return false; 7880 7881 // FIXME: The widths are based on this node's type, but build vectors can 7882 // truncate their operands. 7883 SplatValue = APInt(VecWidth, 0); 7884 SplatUndef = APInt(VecWidth, 0); 7885 7886 // Get the bits. Bits with undefined values (when the corresponding element 7887 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7888 // in SplatValue. If any of the values are not constant, give up and return 7889 // false. 7890 unsigned int NumOps = getNumOperands(); 7891 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 7892 unsigned EltWidth = VT.getScalarSizeInBits(); 7893 7894 for (unsigned j = 0; j < NumOps; ++j) { 7895 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 7896 SDValue OpVal = getOperand(i); 7897 unsigned BitPos = j * EltWidth; 7898 7899 if (OpVal.isUndef()) 7900 SplatUndef.setBits(BitPos, BitPos + EltWidth); 7901 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 7902 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 7903 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7904 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 7905 else 7906 return false; 7907 } 7908 7909 // The build_vector is all constants or undefs. Find the smallest element 7910 // size that splats the vector. 7911 HasAnyUndefs = (SplatUndef != 0); 7912 7913 // FIXME: This does not work for vectors with elements less than 8 bits. 7914 while (VecWidth > 8) { 7915 unsigned HalfSize = VecWidth / 2; 7916 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7917 APInt LowValue = SplatValue.trunc(HalfSize); 7918 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7919 APInt LowUndef = SplatUndef.trunc(HalfSize); 7920 7921 // If the two halves do not match (ignoring undef bits), stop here. 7922 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7923 MinSplatBits > HalfSize) 7924 break; 7925 7926 SplatValue = HighValue | LowValue; 7927 SplatUndef = HighUndef & LowUndef; 7928 7929 VecWidth = HalfSize; 7930 } 7931 7932 SplatBitSize = VecWidth; 7933 return true; 7934 } 7935 7936 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7937 if (UndefElements) { 7938 UndefElements->clear(); 7939 UndefElements->resize(getNumOperands()); 7940 } 7941 SDValue Splatted; 7942 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7943 SDValue Op = getOperand(i); 7944 if (Op.isUndef()) { 7945 if (UndefElements) 7946 (*UndefElements)[i] = true; 7947 } else if (!Splatted) { 7948 Splatted = Op; 7949 } else if (Splatted != Op) { 7950 return SDValue(); 7951 } 7952 } 7953 7954 if (!Splatted) { 7955 assert(getOperand(0).isUndef() && 7956 "Can only have a splat without a constant for all undefs."); 7957 return getOperand(0); 7958 } 7959 7960 return Splatted; 7961 } 7962 7963 ConstantSDNode * 7964 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7965 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7966 } 7967 7968 ConstantFPSDNode * 7969 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7970 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7971 } 7972 7973 int32_t 7974 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7975 uint32_t BitWidth) const { 7976 if (ConstantFPSDNode *CN = 7977 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7978 bool IsExact; 7979 APSInt IntVal(BitWidth); 7980 const APFloat &APF = CN->getValueAPF(); 7981 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7982 APFloat::opOK || 7983 !IsExact) 7984 return -1; 7985 7986 return IntVal.exactLogBase2(); 7987 } 7988 return -1; 7989 } 7990 7991 bool BuildVectorSDNode::isConstant() const { 7992 for (const SDValue &Op : op_values()) { 7993 unsigned Opc = Op.getOpcode(); 7994 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7995 return false; 7996 } 7997 return true; 7998 } 7999 8000 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8001 // Find the first non-undef value in the shuffle mask. 8002 unsigned i, e; 8003 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8004 /* search */; 8005 8006 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8007 8008 // Make sure all remaining elements are either undef or the same as the first 8009 // non-undef value. 8010 for (int Idx = Mask[i]; i != e; ++i) 8011 if (Mask[i] >= 0 && Mask[i] != Idx) 8012 return false; 8013 return true; 8014 } 8015 8016 // \brief Returns the SDNode if it is a constant integer BuildVector 8017 // or constant integer. 8018 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8019 if (isa<ConstantSDNode>(N)) 8020 return N.getNode(); 8021 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8022 return N.getNode(); 8023 // Treat a GlobalAddress supporting constant offset folding as a 8024 // constant integer. 8025 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8026 if (GA->getOpcode() == ISD::GlobalAddress && 8027 TLI->isOffsetFoldingLegal(GA)) 8028 return GA; 8029 return nullptr; 8030 } 8031 8032 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8033 if (isa<ConstantFPSDNode>(N)) 8034 return N.getNode(); 8035 8036 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8037 return N.getNode(); 8038 8039 return nullptr; 8040 } 8041 8042 #ifndef NDEBUG 8043 static void checkForCyclesHelper(const SDNode *N, 8044 SmallPtrSetImpl<const SDNode*> &Visited, 8045 SmallPtrSetImpl<const SDNode*> &Checked, 8046 const llvm::SelectionDAG *DAG) { 8047 // If this node has already been checked, don't check it again. 8048 if (Checked.count(N)) 8049 return; 8050 8051 // If a node has already been visited on this depth-first walk, reject it as 8052 // a cycle. 8053 if (!Visited.insert(N).second) { 8054 errs() << "Detected cycle in SelectionDAG\n"; 8055 dbgs() << "Offending node:\n"; 8056 N->dumprFull(DAG); dbgs() << "\n"; 8057 abort(); 8058 } 8059 8060 for (const SDValue &Op : N->op_values()) 8061 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8062 8063 Checked.insert(N); 8064 Visited.erase(N); 8065 } 8066 #endif 8067 8068 void llvm::checkForCycles(const llvm::SDNode *N, 8069 const llvm::SelectionDAG *DAG, 8070 bool force) { 8071 #ifndef NDEBUG 8072 bool check = force; 8073 #ifdef EXPENSIVE_CHECKS 8074 check = true; 8075 #endif // EXPENSIVE_CHECKS 8076 if (check) { 8077 assert(N && "Checking nonexistent SDNode"); 8078 SmallPtrSet<const SDNode*, 32> visited; 8079 SmallPtrSet<const SDNode*, 32> checked; 8080 checkForCyclesHelper(N, visited, checked, DAG); 8081 } 8082 #endif // !NDEBUG 8083 } 8084 8085 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8086 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8087 } 8088