1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 410 case ISD::SDOPC: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return false; 420 #define PROPERTY_VP_BINARYOP_SDNODE(SDOPC) \ 421 case ISD::SDOPC: \ 422 return true; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 bool ISD::isVPReduction(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 return false; 431 #define PROPERTY_VP_REDUCTION_SDNODE(SDOPC) \ 432 case ISD::SDOPC: \ 433 return true; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 } 437 438 /// The operand position of the vector mask. 439 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 440 switch (Opcode) { 441 default: 442 return None; 443 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 444 case ISD::SDOPC: \ 445 return MASKPOS; 446 #include "llvm/IR/VPIntrinsics.def" 447 } 448 } 449 450 /// The operand position of the explicit vector length parameter. 451 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 452 switch (Opcode) { 453 default: 454 return None; 455 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 456 case ISD::SDOPC: \ 457 return EVLPOS; 458 #include "llvm/IR/VPIntrinsics.def" 459 } 460 } 461 462 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 463 switch (ExtType) { 464 case ISD::EXTLOAD: 465 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 466 case ISD::SEXTLOAD: 467 return ISD::SIGN_EXTEND; 468 case ISD::ZEXTLOAD: 469 return ISD::ZERO_EXTEND; 470 default: 471 break; 472 } 473 474 llvm_unreachable("Invalid LoadExtType"); 475 } 476 477 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 478 // To perform this operation, we just need to swap the L and G bits of the 479 // operation. 480 unsigned OldL = (Operation >> 2) & 1; 481 unsigned OldG = (Operation >> 1) & 1; 482 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 483 (OldL << 1) | // New G bit 484 (OldG << 2)); // New L bit. 485 } 486 487 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 488 unsigned Operation = Op; 489 if (isIntegerLike) 490 Operation ^= 7; // Flip L, G, E bits, but not U. 491 else 492 Operation ^= 15; // Flip all of the condition bits. 493 494 if (Operation > ISD::SETTRUE2) 495 Operation &= ~8; // Don't let N and U bits get set. 496 497 return ISD::CondCode(Operation); 498 } 499 500 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 501 return getSetCCInverseImpl(Op, Type.isInteger()); 502 } 503 504 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 505 bool isIntegerLike) { 506 return getSetCCInverseImpl(Op, isIntegerLike); 507 } 508 509 /// For an integer comparison, return 1 if the comparison is a signed operation 510 /// and 2 if the result is an unsigned comparison. Return zero if the operation 511 /// does not depend on the sign of the input (setne and seteq). 512 static int isSignedOp(ISD::CondCode Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Illegal integer setcc operation!"); 515 case ISD::SETEQ: 516 case ISD::SETNE: return 0; 517 case ISD::SETLT: 518 case ISD::SETLE: 519 case ISD::SETGT: 520 case ISD::SETGE: return 1; 521 case ISD::SETULT: 522 case ISD::SETULE: 523 case ISD::SETUGT: 524 case ISD::SETUGE: return 2; 525 } 526 } 527 528 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 529 EVT Type) { 530 bool IsInteger = Type.isInteger(); 531 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 532 // Cannot fold a signed integer setcc with an unsigned integer setcc. 533 return ISD::SETCC_INVALID; 534 535 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 536 537 // If the N and U bits get set, then the resultant comparison DOES suddenly 538 // care about orderedness, and it is true when ordered. 539 if (Op > ISD::SETTRUE2) 540 Op &= ~16; // Clear the U bit if the N bit is set. 541 542 // Canonicalize illegal integer setcc's. 543 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 544 Op = ISD::SETNE; 545 546 return ISD::CondCode(Op); 547 } 548 549 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 550 EVT Type) { 551 bool IsInteger = Type.isInteger(); 552 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 553 // Cannot fold a signed setcc with an unsigned setcc. 554 return ISD::SETCC_INVALID; 555 556 // Combine all of the condition bits. 557 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger) { 561 switch (Result) { 562 default: break; 563 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 564 case ISD::SETOEQ: // SETEQ & SETU[LG]E 565 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 566 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 567 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 568 } 569 } 570 571 return Result; 572 } 573 574 //===----------------------------------------------------------------------===// 575 // SDNode Profile Support 576 //===----------------------------------------------------------------------===// 577 578 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 579 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 580 ID.AddInteger(OpC); 581 } 582 583 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 584 /// solely with their pointer. 585 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 586 ID.AddPointer(VTList.VTs); 587 } 588 589 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 590 static void AddNodeIDOperands(FoldingSetNodeID &ID, 591 ArrayRef<SDValue> Ops) { 592 for (auto& Op : Ops) { 593 ID.AddPointer(Op.getNode()); 594 ID.AddInteger(Op.getResNo()); 595 } 596 } 597 598 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 599 static void AddNodeIDOperands(FoldingSetNodeID &ID, 600 ArrayRef<SDUse> Ops) { 601 for (auto& Op : Ops) { 602 ID.AddPointer(Op.getNode()); 603 ID.AddInteger(Op.getResNo()); 604 } 605 } 606 607 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 608 SDVTList VTList, ArrayRef<SDValue> OpList) { 609 AddNodeIDOpcode(ID, OpC); 610 AddNodeIDValueTypes(ID, VTList); 611 AddNodeIDOperands(ID, OpList); 612 } 613 614 /// If this is an SDNode with special info, add this info to the NodeID data. 615 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 616 switch (N->getOpcode()) { 617 case ISD::TargetExternalSymbol: 618 case ISD::ExternalSymbol: 619 case ISD::MCSymbol: 620 llvm_unreachable("Should only be used on nodes with operands"); 621 default: break; // Normal nodes don't need extra info. 622 case ISD::TargetConstant: 623 case ISD::Constant: { 624 const ConstantSDNode *C = cast<ConstantSDNode>(N); 625 ID.AddPointer(C->getConstantIntValue()); 626 ID.AddBoolean(C->isOpaque()); 627 break; 628 } 629 case ISD::TargetConstantFP: 630 case ISD::ConstantFP: 631 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 632 break; 633 case ISD::TargetGlobalAddress: 634 case ISD::GlobalAddress: 635 case ISD::TargetGlobalTLSAddress: 636 case ISD::GlobalTLSAddress: { 637 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 638 ID.AddPointer(GA->getGlobal()); 639 ID.AddInteger(GA->getOffset()); 640 ID.AddInteger(GA->getTargetFlags()); 641 break; 642 } 643 case ISD::BasicBlock: 644 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 645 break; 646 case ISD::Register: 647 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 648 break; 649 case ISD::RegisterMask: 650 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 651 break; 652 case ISD::SRCVALUE: 653 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 654 break; 655 case ISD::FrameIndex: 656 case ISD::TargetFrameIndex: 657 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 658 break; 659 case ISD::LIFETIME_START: 660 case ISD::LIFETIME_END: 661 if (cast<LifetimeSDNode>(N)->hasOffset()) { 662 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 663 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 664 } 665 break; 666 case ISD::PSEUDO_PROBE: 667 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 668 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 670 break; 671 case ISD::JumpTable: 672 case ISD::TargetJumpTable: 673 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 674 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 675 break; 676 case ISD::ConstantPool: 677 case ISD::TargetConstantPool: { 678 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 679 ID.AddInteger(CP->getAlign().value()); 680 ID.AddInteger(CP->getOffset()); 681 if (CP->isMachineConstantPoolEntry()) 682 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 683 else 684 ID.AddPointer(CP->getConstVal()); 685 ID.AddInteger(CP->getTargetFlags()); 686 break; 687 } 688 case ISD::TargetIndex: { 689 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 690 ID.AddInteger(TI->getIndex()); 691 ID.AddInteger(TI->getOffset()); 692 ID.AddInteger(TI->getTargetFlags()); 693 break; 694 } 695 case ISD::LOAD: { 696 const LoadSDNode *LD = cast<LoadSDNode>(N); 697 ID.AddInteger(LD->getMemoryVT().getRawBits()); 698 ID.AddInteger(LD->getRawSubclassData()); 699 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::STORE: { 703 const StoreSDNode *ST = cast<StoreSDNode>(N); 704 ID.AddInteger(ST->getMemoryVT().getRawBits()); 705 ID.AddInteger(ST->getRawSubclassData()); 706 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::VP_LOAD: { 710 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 711 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 712 ID.AddInteger(ELD->getRawSubclassData()); 713 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 714 break; 715 } 716 case ISD::VP_STORE: { 717 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 718 ID.AddInteger(EST->getMemoryVT().getRawBits()); 719 ID.AddInteger(EST->getRawSubclassData()); 720 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 721 break; 722 } 723 case ISD::VP_GATHER: { 724 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 725 ID.AddInteger(EG->getMemoryVT().getRawBits()); 726 ID.AddInteger(EG->getRawSubclassData()); 727 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 728 break; 729 } 730 case ISD::VP_SCATTER: { 731 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 732 ID.AddInteger(ES->getMemoryVT().getRawBits()); 733 ID.AddInteger(ES->getRawSubclassData()); 734 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 735 break; 736 } 737 case ISD::MLOAD: { 738 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 739 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 740 ID.AddInteger(MLD->getRawSubclassData()); 741 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 742 break; 743 } 744 case ISD::MSTORE: { 745 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 746 ID.AddInteger(MST->getMemoryVT().getRawBits()); 747 ID.AddInteger(MST->getRawSubclassData()); 748 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 749 break; 750 } 751 case ISD::MGATHER: { 752 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 753 ID.AddInteger(MG->getMemoryVT().getRawBits()); 754 ID.AddInteger(MG->getRawSubclassData()); 755 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 756 break; 757 } 758 case ISD::MSCATTER: { 759 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 760 ID.AddInteger(MS->getMemoryVT().getRawBits()); 761 ID.AddInteger(MS->getRawSubclassData()); 762 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 763 break; 764 } 765 case ISD::ATOMIC_CMP_SWAP: 766 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 767 case ISD::ATOMIC_SWAP: 768 case ISD::ATOMIC_LOAD_ADD: 769 case ISD::ATOMIC_LOAD_SUB: 770 case ISD::ATOMIC_LOAD_AND: 771 case ISD::ATOMIC_LOAD_CLR: 772 case ISD::ATOMIC_LOAD_OR: 773 case ISD::ATOMIC_LOAD_XOR: 774 case ISD::ATOMIC_LOAD_NAND: 775 case ISD::ATOMIC_LOAD_MIN: 776 case ISD::ATOMIC_LOAD_MAX: 777 case ISD::ATOMIC_LOAD_UMIN: 778 case ISD::ATOMIC_LOAD_UMAX: 779 case ISD::ATOMIC_LOAD: 780 case ISD::ATOMIC_STORE: { 781 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 782 ID.AddInteger(AT->getMemoryVT().getRawBits()); 783 ID.AddInteger(AT->getRawSubclassData()); 784 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 785 break; 786 } 787 case ISD::PREFETCH: { 788 const MemSDNode *PF = cast<MemSDNode>(N); 789 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 790 break; 791 } 792 case ISD::VECTOR_SHUFFLE: { 793 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 794 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 795 i != e; ++i) 796 ID.AddInteger(SVN->getMaskElt(i)); 797 break; 798 } 799 case ISD::TargetBlockAddress: 800 case ISD::BlockAddress: { 801 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 802 ID.AddPointer(BA->getBlockAddress()); 803 ID.AddInteger(BA->getOffset()); 804 ID.AddInteger(BA->getTargetFlags()); 805 break; 806 } 807 } // end switch (N->getOpcode()) 808 809 // Target specific memory nodes could also have address spaces to check. 810 if (N->isTargetMemoryOpcode()) 811 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 812 } 813 814 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 815 /// data. 816 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 817 AddNodeIDOpcode(ID, N->getOpcode()); 818 // Add the return value info. 819 AddNodeIDValueTypes(ID, N->getVTList()); 820 // Add the operand info. 821 AddNodeIDOperands(ID, N->ops()); 822 823 // Handle SDNode leafs with special info. 824 AddNodeIDCustom(ID, N); 825 } 826 827 //===----------------------------------------------------------------------===// 828 // SelectionDAG Class 829 //===----------------------------------------------------------------------===// 830 831 /// doNotCSE - Return true if CSE should not be performed for this node. 832 static bool doNotCSE(SDNode *N) { 833 if (N->getValueType(0) == MVT::Glue) 834 return true; // Never CSE anything that produces a flag. 835 836 switch (N->getOpcode()) { 837 default: break; 838 case ISD::HANDLENODE: 839 case ISD::EH_LABEL: 840 return true; // Never CSE these nodes. 841 } 842 843 // Check that remaining values produced are not flags. 844 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 845 if (N->getValueType(i) == MVT::Glue) 846 return true; // Never CSE anything that produces a flag. 847 848 return false; 849 } 850 851 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 852 /// SelectionDAG. 853 void SelectionDAG::RemoveDeadNodes() { 854 // Create a dummy node (which is not added to allnodes), that adds a reference 855 // to the root node, preventing it from being deleted. 856 HandleSDNode Dummy(getRoot()); 857 858 SmallVector<SDNode*, 128> DeadNodes; 859 860 // Add all obviously-dead nodes to the DeadNodes worklist. 861 for (SDNode &Node : allnodes()) 862 if (Node.use_empty()) 863 DeadNodes.push_back(&Node); 864 865 RemoveDeadNodes(DeadNodes); 866 867 // If the root changed (e.g. it was a dead load, update the root). 868 setRoot(Dummy.getValue()); 869 } 870 871 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 872 /// given list, and any nodes that become unreachable as a result. 873 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 874 875 // Process the worklist, deleting the nodes and adding their uses to the 876 // worklist. 877 while (!DeadNodes.empty()) { 878 SDNode *N = DeadNodes.pop_back_val(); 879 // Skip to next node if we've already managed to delete the node. This could 880 // happen if replacing a node causes a node previously added to the node to 881 // be deleted. 882 if (N->getOpcode() == ISD::DELETED_NODE) 883 continue; 884 885 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 886 DUL->NodeDeleted(N, nullptr); 887 888 // Take the node out of the appropriate CSE map. 889 RemoveNodeFromCSEMaps(N); 890 891 // Next, brutally remove the operand list. This is safe to do, as there are 892 // no cycles in the graph. 893 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 894 SDUse &Use = *I++; 895 SDNode *Operand = Use.getNode(); 896 Use.set(SDValue()); 897 898 // Now that we removed this operand, see if there are no uses of it left. 899 if (Operand->use_empty()) 900 DeadNodes.push_back(Operand); 901 } 902 903 DeallocateNode(N); 904 } 905 } 906 907 void SelectionDAG::RemoveDeadNode(SDNode *N){ 908 SmallVector<SDNode*, 16> DeadNodes(1, N); 909 910 // Create a dummy node that adds a reference to the root node, preventing 911 // it from being deleted. (This matters if the root is an operand of the 912 // dead node.) 913 HandleSDNode Dummy(getRoot()); 914 915 RemoveDeadNodes(DeadNodes); 916 } 917 918 void SelectionDAG::DeleteNode(SDNode *N) { 919 // First take this out of the appropriate CSE map. 920 RemoveNodeFromCSEMaps(N); 921 922 // Finally, remove uses due to operands of this node, remove from the 923 // AllNodes list, and delete the node. 924 DeleteNodeNotInCSEMaps(N); 925 } 926 927 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 928 assert(N->getIterator() != AllNodes.begin() && 929 "Cannot delete the entry node!"); 930 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 931 932 // Drop all of the operands and decrement used node's use counts. 933 N->DropOperands(); 934 935 DeallocateNode(N); 936 } 937 938 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 939 assert(!(V->isVariadic() && isParameter)); 940 if (isParameter) 941 ByvalParmDbgValues.push_back(V); 942 else 943 DbgValues.push_back(V); 944 for (const SDNode *Node : V->getSDNodes()) 945 if (Node) 946 DbgValMap[Node].push_back(V); 947 } 948 949 void SDDbgInfo::erase(const SDNode *Node) { 950 DbgValMapType::iterator I = DbgValMap.find(Node); 951 if (I == DbgValMap.end()) 952 return; 953 for (auto &Val: I->second) 954 Val->setIsInvalidated(); 955 DbgValMap.erase(I); 956 } 957 958 void SelectionDAG::DeallocateNode(SDNode *N) { 959 // If we have operands, deallocate them. 960 removeOperands(N); 961 962 NodeAllocator.Deallocate(AllNodes.remove(N)); 963 964 // Set the opcode to DELETED_NODE to help catch bugs when node 965 // memory is reallocated. 966 // FIXME: There are places in SDag that have grown a dependency on the opcode 967 // value in the released node. 968 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 969 N->NodeType = ISD::DELETED_NODE; 970 971 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 972 // them and forget about that node. 973 DbgInfo->erase(N); 974 } 975 976 #ifndef NDEBUG 977 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 978 static void VerifySDNode(SDNode *N) { 979 switch (N->getOpcode()) { 980 default: 981 break; 982 case ISD::BUILD_PAIR: { 983 EVT VT = N->getValueType(0); 984 assert(N->getNumValues() == 1 && "Too many results!"); 985 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 986 "Wrong return type!"); 987 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 988 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 989 "Mismatched operand types!"); 990 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 991 "Wrong operand type!"); 992 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 993 "Wrong return type size"); 994 break; 995 } 996 case ISD::BUILD_VECTOR: { 997 assert(N->getNumValues() == 1 && "Too many results!"); 998 assert(N->getValueType(0).isVector() && "Wrong return type!"); 999 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1000 "Wrong number of operands!"); 1001 EVT EltVT = N->getValueType(0).getVectorElementType(); 1002 for (const SDUse &Op : N->ops()) { 1003 assert((Op.getValueType() == EltVT || 1004 (EltVT.isInteger() && Op.getValueType().isInteger() && 1005 EltVT.bitsLE(Op.getValueType()))) && 1006 "Wrong operand type!"); 1007 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1008 "Operands must all have the same type"); 1009 } 1010 break; 1011 } 1012 } 1013 } 1014 #endif // NDEBUG 1015 1016 /// Insert a newly allocated node into the DAG. 1017 /// 1018 /// Handles insertion into the all nodes list and CSE map, as well as 1019 /// verification and other common operations when a new node is allocated. 1020 void SelectionDAG::InsertNode(SDNode *N) { 1021 AllNodes.push_back(N); 1022 #ifndef NDEBUG 1023 N->PersistentId = NextPersistentId++; 1024 VerifySDNode(N); 1025 #endif 1026 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1027 DUL->NodeInserted(N); 1028 } 1029 1030 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1031 /// correspond to it. This is useful when we're about to delete or repurpose 1032 /// the node. We don't want future request for structurally identical nodes 1033 /// to return N anymore. 1034 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1035 bool Erased = false; 1036 switch (N->getOpcode()) { 1037 case ISD::HANDLENODE: return false; // noop. 1038 case ISD::CONDCODE: 1039 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1040 "Cond code doesn't exist!"); 1041 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1042 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1043 break; 1044 case ISD::ExternalSymbol: 1045 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1046 break; 1047 case ISD::TargetExternalSymbol: { 1048 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1049 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1050 ESN->getSymbol(), ESN->getTargetFlags())); 1051 break; 1052 } 1053 case ISD::MCSymbol: { 1054 auto *MCSN = cast<MCSymbolSDNode>(N); 1055 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1056 break; 1057 } 1058 case ISD::VALUETYPE: { 1059 EVT VT = cast<VTSDNode>(N)->getVT(); 1060 if (VT.isExtended()) { 1061 Erased = ExtendedValueTypeNodes.erase(VT); 1062 } else { 1063 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1064 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1065 } 1066 break; 1067 } 1068 default: 1069 // Remove it from the CSE Map. 1070 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1071 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1072 Erased = CSEMap.RemoveNode(N); 1073 break; 1074 } 1075 #ifndef NDEBUG 1076 // Verify that the node was actually in one of the CSE maps, unless it has a 1077 // flag result (which cannot be CSE'd) or is one of the special cases that are 1078 // not subject to CSE. 1079 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1080 !N->isMachineOpcode() && !doNotCSE(N)) { 1081 N->dump(this); 1082 dbgs() << "\n"; 1083 llvm_unreachable("Node is not in map!"); 1084 } 1085 #endif 1086 return Erased; 1087 } 1088 1089 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1090 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1091 /// node already exists, in which case transfer all its users to the existing 1092 /// node. This transfer can potentially trigger recursive merging. 1093 void 1094 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1095 // For node types that aren't CSE'd, just act as if no identical node 1096 // already exists. 1097 if (!doNotCSE(N)) { 1098 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1099 if (Existing != N) { 1100 // If there was already an existing matching node, use ReplaceAllUsesWith 1101 // to replace the dead one with the existing one. This can cause 1102 // recursive merging of other unrelated nodes down the line. 1103 ReplaceAllUsesWith(N, Existing); 1104 1105 // N is now dead. Inform the listeners and delete it. 1106 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1107 DUL->NodeDeleted(N, Existing); 1108 DeleteNodeNotInCSEMaps(N); 1109 return; 1110 } 1111 } 1112 1113 // If the node doesn't already exist, we updated it. Inform listeners. 1114 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1115 DUL->NodeUpdated(N); 1116 } 1117 1118 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1119 /// were replaced with those specified. If this node is never memoized, 1120 /// return null, otherwise return a pointer to the slot it would take. If a 1121 /// node already exists with these operands, the slot will be non-null. 1122 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1123 void *&InsertPos) { 1124 if (doNotCSE(N)) 1125 return nullptr; 1126 1127 SDValue Ops[] = { Op }; 1128 FoldingSetNodeID ID; 1129 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1130 AddNodeIDCustom(ID, N); 1131 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1132 if (Node) 1133 Node->intersectFlagsWith(N->getFlags()); 1134 return Node; 1135 } 1136 1137 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1138 /// were replaced with those specified. If this node is never memoized, 1139 /// return null, otherwise return a pointer to the slot it would take. If a 1140 /// node already exists with these operands, the slot will be non-null. 1141 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1142 SDValue Op1, SDValue Op2, 1143 void *&InsertPos) { 1144 if (doNotCSE(N)) 1145 return nullptr; 1146 1147 SDValue Ops[] = { Op1, Op2 }; 1148 FoldingSetNodeID ID; 1149 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1150 AddNodeIDCustom(ID, N); 1151 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1152 if (Node) 1153 Node->intersectFlagsWith(N->getFlags()); 1154 return Node; 1155 } 1156 1157 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1158 /// were replaced with those specified. If this node is never memoized, 1159 /// return null, otherwise return a pointer to the slot it would take. If a 1160 /// node already exists with these operands, the slot will be non-null. 1161 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1162 void *&InsertPos) { 1163 if (doNotCSE(N)) 1164 return nullptr; 1165 1166 FoldingSetNodeID ID; 1167 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1168 AddNodeIDCustom(ID, N); 1169 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1170 if (Node) 1171 Node->intersectFlagsWith(N->getFlags()); 1172 return Node; 1173 } 1174 1175 Align SelectionDAG::getEVTAlign(EVT VT) const { 1176 Type *Ty = VT == MVT::iPTR ? 1177 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1178 VT.getTypeForEVT(*getContext()); 1179 1180 return getDataLayout().getABITypeAlign(Ty); 1181 } 1182 1183 // EntryNode could meaningfully have debug info if we can find it... 1184 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1185 : TM(tm), OptLevel(OL), 1186 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1187 Root(getEntryNode()) { 1188 InsertNode(&EntryNode); 1189 DbgInfo = new SDDbgInfo(); 1190 } 1191 1192 void SelectionDAG::init(MachineFunction &NewMF, 1193 OptimizationRemarkEmitter &NewORE, 1194 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1195 LegacyDivergenceAnalysis * Divergence, 1196 ProfileSummaryInfo *PSIin, 1197 BlockFrequencyInfo *BFIin) { 1198 MF = &NewMF; 1199 SDAGISelPass = PassPtr; 1200 ORE = &NewORE; 1201 TLI = getSubtarget().getTargetLowering(); 1202 TSI = getSubtarget().getSelectionDAGInfo(); 1203 LibInfo = LibraryInfo; 1204 Context = &MF->getFunction().getContext(); 1205 DA = Divergence; 1206 PSI = PSIin; 1207 BFI = BFIin; 1208 } 1209 1210 SelectionDAG::~SelectionDAG() { 1211 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1212 allnodes_clear(); 1213 OperandRecycler.clear(OperandAllocator); 1214 delete DbgInfo; 1215 } 1216 1217 bool SelectionDAG::shouldOptForSize() const { 1218 return MF->getFunction().hasOptSize() || 1219 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1220 } 1221 1222 void SelectionDAG::allnodes_clear() { 1223 assert(&*AllNodes.begin() == &EntryNode); 1224 AllNodes.remove(AllNodes.begin()); 1225 while (!AllNodes.empty()) 1226 DeallocateNode(&AllNodes.front()); 1227 #ifndef NDEBUG 1228 NextPersistentId = 0; 1229 #endif 1230 } 1231 1232 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1233 void *&InsertPos) { 1234 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1235 if (N) { 1236 switch (N->getOpcode()) { 1237 default: break; 1238 case ISD::Constant: 1239 case ISD::ConstantFP: 1240 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1241 "debug location. Use another overload."); 1242 } 1243 } 1244 return N; 1245 } 1246 1247 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1248 const SDLoc &DL, void *&InsertPos) { 1249 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1250 if (N) { 1251 switch (N->getOpcode()) { 1252 case ISD::Constant: 1253 case ISD::ConstantFP: 1254 // Erase debug location from the node if the node is used at several 1255 // different places. Do not propagate one location to all uses as it 1256 // will cause a worse single stepping debugging experience. 1257 if (N->getDebugLoc() != DL.getDebugLoc()) 1258 N->setDebugLoc(DebugLoc()); 1259 break; 1260 default: 1261 // When the node's point of use is located earlier in the instruction 1262 // sequence than its prior point of use, update its debug info to the 1263 // earlier location. 1264 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1265 N->setDebugLoc(DL.getDebugLoc()); 1266 break; 1267 } 1268 } 1269 return N; 1270 } 1271 1272 void SelectionDAG::clear() { 1273 allnodes_clear(); 1274 OperandRecycler.clear(OperandAllocator); 1275 OperandAllocator.Reset(); 1276 CSEMap.clear(); 1277 1278 ExtendedValueTypeNodes.clear(); 1279 ExternalSymbols.clear(); 1280 TargetExternalSymbols.clear(); 1281 MCSymbols.clear(); 1282 SDCallSiteDbgInfo.clear(); 1283 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1284 static_cast<CondCodeSDNode*>(nullptr)); 1285 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1286 static_cast<SDNode*>(nullptr)); 1287 1288 EntryNode.UseList = nullptr; 1289 InsertNode(&EntryNode); 1290 Root = getEntryNode(); 1291 DbgInfo->clear(); 1292 } 1293 1294 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1295 return VT.bitsGT(Op.getValueType()) 1296 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1297 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1298 } 1299 1300 std::pair<SDValue, SDValue> 1301 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1302 const SDLoc &DL, EVT VT) { 1303 assert(!VT.bitsEq(Op.getValueType()) && 1304 "Strict no-op FP extend/round not allowed."); 1305 SDValue Res = 1306 VT.bitsGT(Op.getValueType()) 1307 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1308 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1309 {Chain, Op, getIntPtrConstant(0, DL)}); 1310 1311 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1312 } 1313 1314 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1315 return VT.bitsGT(Op.getValueType()) ? 1316 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1317 getNode(ISD::TRUNCATE, DL, VT, Op); 1318 } 1319 1320 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1321 return VT.bitsGT(Op.getValueType()) ? 1322 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1323 getNode(ISD::TRUNCATE, DL, VT, Op); 1324 } 1325 1326 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1327 return VT.bitsGT(Op.getValueType()) ? 1328 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1329 getNode(ISD::TRUNCATE, DL, VT, Op); 1330 } 1331 1332 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1333 EVT OpVT) { 1334 if (VT.bitsLE(Op.getValueType())) 1335 return getNode(ISD::TRUNCATE, SL, VT, Op); 1336 1337 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1338 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1339 } 1340 1341 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1342 EVT OpVT = Op.getValueType(); 1343 assert(VT.isInteger() && OpVT.isInteger() && 1344 "Cannot getZeroExtendInReg FP types"); 1345 assert(VT.isVector() == OpVT.isVector() && 1346 "getZeroExtendInReg type should be vector iff the operand " 1347 "type is vector!"); 1348 assert((!VT.isVector() || 1349 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1350 "Vector element counts must match in getZeroExtendInReg"); 1351 assert(VT.bitsLE(OpVT) && "Not extending!"); 1352 if (OpVT == VT) 1353 return Op; 1354 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1355 VT.getScalarSizeInBits()); 1356 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1357 } 1358 1359 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1360 // Only unsigned pointer semantics are supported right now. In the future this 1361 // might delegate to TLI to check pointer signedness. 1362 return getZExtOrTrunc(Op, DL, VT); 1363 } 1364 1365 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1366 // Only unsigned pointer semantics are supported right now. In the future this 1367 // might delegate to TLI to check pointer signedness. 1368 return getZeroExtendInReg(Op, DL, VT); 1369 } 1370 1371 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1372 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1373 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1374 } 1375 1376 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1377 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1378 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1379 } 1380 1381 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1382 EVT OpVT) { 1383 if (!V) 1384 return getConstant(0, DL, VT); 1385 1386 switch (TLI->getBooleanContents(OpVT)) { 1387 case TargetLowering::ZeroOrOneBooleanContent: 1388 case TargetLowering::UndefinedBooleanContent: 1389 return getConstant(1, DL, VT); 1390 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1391 return getAllOnesConstant(DL, VT); 1392 } 1393 llvm_unreachable("Unexpected boolean content enum!"); 1394 } 1395 1396 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1397 bool isT, bool isO) { 1398 EVT EltVT = VT.getScalarType(); 1399 assert((EltVT.getSizeInBits() >= 64 || 1400 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1401 "getConstant with a uint64_t value that doesn't fit in the type!"); 1402 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1403 } 1404 1405 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1406 bool isT, bool isO) { 1407 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1408 } 1409 1410 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1411 EVT VT, bool isT, bool isO) { 1412 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1413 1414 EVT EltVT = VT.getScalarType(); 1415 const ConstantInt *Elt = &Val; 1416 1417 // In some cases the vector type is legal but the element type is illegal and 1418 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1419 // inserted value (the type does not need to match the vector element type). 1420 // Any extra bits introduced will be truncated away. 1421 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1422 TargetLowering::TypePromoteInteger) { 1423 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1424 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1425 Elt = ConstantInt::get(*getContext(), NewVal); 1426 } 1427 // In other cases the element type is illegal and needs to be expanded, for 1428 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1429 // the value into n parts and use a vector type with n-times the elements. 1430 // Then bitcast to the type requested. 1431 // Legalizing constants too early makes the DAGCombiner's job harder so we 1432 // only legalize if the DAG tells us we must produce legal types. 1433 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1434 TLI->getTypeAction(*getContext(), EltVT) == 1435 TargetLowering::TypeExpandInteger) { 1436 const APInt &NewVal = Elt->getValue(); 1437 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1438 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1439 1440 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1441 if (VT.isScalableVector()) { 1442 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1443 "Can only handle an even split!"); 1444 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1445 1446 SmallVector<SDValue, 2> ScalarParts; 1447 for (unsigned i = 0; i != Parts; ++i) 1448 ScalarParts.push_back(getConstant( 1449 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1450 ViaEltVT, isT, isO)); 1451 1452 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1453 } 1454 1455 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1456 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1457 1458 // Check the temporary vector is the correct size. If this fails then 1459 // getTypeToTransformTo() probably returned a type whose size (in bits) 1460 // isn't a power-of-2 factor of the requested type size. 1461 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1462 1463 SmallVector<SDValue, 2> EltParts; 1464 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1465 EltParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 // EltParts is currently in little endian order. If we actually want 1470 // big-endian order then reverse it now. 1471 if (getDataLayout().isBigEndian()) 1472 std::reverse(EltParts.begin(), EltParts.end()); 1473 1474 // The elements must be reversed when the element order is different 1475 // to the endianness of the elements (because the BITCAST is itself a 1476 // vector shuffle in this situation). However, we do not need any code to 1477 // perform this reversal because getConstant() is producing a vector 1478 // splat. 1479 // This situation occurs in MIPS MSA. 1480 1481 SmallVector<SDValue, 8> Ops; 1482 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1483 llvm::append_range(Ops, EltParts); 1484 1485 SDValue V = 1486 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1487 return V; 1488 } 1489 1490 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1491 "APInt size does not match type size!"); 1492 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1495 ID.AddPointer(Elt); 1496 ID.AddBoolean(isO); 1497 void *IP = nullptr; 1498 SDNode *N = nullptr; 1499 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1500 if (!VT.isVector()) 1501 return SDValue(N, 0); 1502 1503 if (!N) { 1504 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1505 CSEMap.InsertNode(N, IP); 1506 InsertNode(N); 1507 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1508 } 1509 1510 SDValue Result(N, 0); 1511 if (VT.isScalableVector()) 1512 Result = getSplatVector(VT, DL, Result); 1513 else if (VT.isVector()) 1514 Result = getSplatBuildVector(VT, DL, Result); 1515 1516 return Result; 1517 } 1518 1519 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1520 bool isTarget) { 1521 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1522 } 1523 1524 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1525 const SDLoc &DL, bool LegalTypes) { 1526 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1527 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1528 return getConstant(Val, DL, ShiftVT); 1529 } 1530 1531 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1532 bool isTarget) { 1533 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1534 } 1535 1536 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1537 bool isTarget) { 1538 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1542 EVT VT, bool isTarget) { 1543 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1544 1545 EVT EltVT = VT.getScalarType(); 1546 1547 // Do the map lookup using the actual bit pattern for the floating point 1548 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1549 // we don't have issues with SNANs. 1550 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1551 FoldingSetNodeID ID; 1552 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1553 ID.AddPointer(&V); 1554 void *IP = nullptr; 1555 SDNode *N = nullptr; 1556 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1557 if (!VT.isVector()) 1558 return SDValue(N, 0); 1559 1560 if (!N) { 1561 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1562 CSEMap.InsertNode(N, IP); 1563 InsertNode(N); 1564 } 1565 1566 SDValue Result(N, 0); 1567 if (VT.isScalableVector()) 1568 Result = getSplatVector(VT, DL, Result); 1569 else if (VT.isVector()) 1570 Result = getSplatBuildVector(VT, DL, Result); 1571 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1572 return Result; 1573 } 1574 1575 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1576 bool isTarget) { 1577 EVT EltVT = VT.getScalarType(); 1578 if (EltVT == MVT::f32) 1579 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1580 if (EltVT == MVT::f64) 1581 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1583 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1584 bool Ignored; 1585 APFloat APF = APFloat(Val); 1586 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1587 &Ignored); 1588 return getConstantFP(APF, DL, VT, isTarget); 1589 } 1590 llvm_unreachable("Unsupported type in getConstantFP"); 1591 } 1592 1593 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1594 EVT VT, int64_t Offset, bool isTargetGA, 1595 unsigned TargetFlags) { 1596 assert((TargetFlags == 0 || isTargetGA) && 1597 "Cannot set target flags on target-independent globals"); 1598 1599 // Truncate (with sign-extension) the offset value to the pointer size. 1600 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1601 if (BitWidth < 64) 1602 Offset = SignExtend64(Offset, BitWidth); 1603 1604 unsigned Opc; 1605 if (GV->isThreadLocal()) 1606 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1607 else 1608 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1609 1610 FoldingSetNodeID ID; 1611 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1612 ID.AddPointer(GV); 1613 ID.AddInteger(Offset); 1614 ID.AddInteger(TargetFlags); 1615 void *IP = nullptr; 1616 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1617 return SDValue(E, 0); 1618 1619 auto *N = newSDNode<GlobalAddressSDNode>( 1620 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1621 CSEMap.InsertNode(N, IP); 1622 InsertNode(N); 1623 return SDValue(N, 0); 1624 } 1625 1626 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1627 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1628 FoldingSetNodeID ID; 1629 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1630 ID.AddInteger(FI); 1631 void *IP = nullptr; 1632 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1633 return SDValue(E, 0); 1634 1635 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1636 CSEMap.InsertNode(N, IP); 1637 InsertNode(N); 1638 return SDValue(N, 0); 1639 } 1640 1641 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1642 unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent jump tables"); 1645 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1646 FoldingSetNodeID ID; 1647 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1648 ID.AddInteger(JTI); 1649 ID.AddInteger(TargetFlags); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1661 MaybeAlign Alignment, int Offset, 1662 bool isTarget, unsigned TargetFlags) { 1663 assert((TargetFlags == 0 || isTarget) && 1664 "Cannot set target flags on target-independent globals"); 1665 if (!Alignment) 1666 Alignment = shouldOptForSize() 1667 ? getDataLayout().getABITypeAlign(C->getType()) 1668 : getDataLayout().getPrefTypeAlign(C->getType()); 1669 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1670 FoldingSetNodeID ID; 1671 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1672 ID.AddInteger(Alignment->value()); 1673 ID.AddInteger(Offset); 1674 ID.AddPointer(C); 1675 ID.AddInteger(TargetFlags); 1676 void *IP = nullptr; 1677 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1678 return SDValue(E, 0); 1679 1680 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1681 TargetFlags); 1682 CSEMap.InsertNode(N, IP); 1683 InsertNode(N); 1684 SDValue V = SDValue(N, 0); 1685 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1686 return V; 1687 } 1688 1689 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1690 MaybeAlign Alignment, int Offset, 1691 bool isTarget, unsigned TargetFlags) { 1692 assert((TargetFlags == 0 || isTarget) && 1693 "Cannot set target flags on target-independent globals"); 1694 if (!Alignment) 1695 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1696 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1697 FoldingSetNodeID ID; 1698 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1699 ID.AddInteger(Alignment->value()); 1700 ID.AddInteger(Offset); 1701 C->addSelectionDAGCSEId(ID); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1708 TargetFlags); 1709 CSEMap.InsertNode(N, IP); 1710 InsertNode(N); 1711 return SDValue(N, 0); 1712 } 1713 1714 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1715 unsigned TargetFlags) { 1716 FoldingSetNodeID ID; 1717 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1718 ID.AddInteger(Index); 1719 ID.AddInteger(Offset); 1720 ID.AddInteger(TargetFlags); 1721 void *IP = nullptr; 1722 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1723 return SDValue(E, 0); 1724 1725 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1732 FoldingSetNodeID ID; 1733 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1734 ID.AddPointer(MBB); 1735 void *IP = nullptr; 1736 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1737 return SDValue(E, 0); 1738 1739 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1740 CSEMap.InsertNode(N, IP); 1741 InsertNode(N); 1742 return SDValue(N, 0); 1743 } 1744 1745 SDValue SelectionDAG::getValueType(EVT VT) { 1746 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1747 ValueTypeNodes.size()) 1748 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1749 1750 SDNode *&N = VT.isExtended() ? 1751 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1752 1753 if (N) return SDValue(N, 0); 1754 N = newSDNode<VTSDNode>(VT); 1755 InsertNode(N); 1756 return SDValue(N, 0); 1757 } 1758 1759 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1760 SDNode *&N = ExternalSymbols[Sym]; 1761 if (N) return SDValue(N, 0); 1762 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1768 SDNode *&N = MCSymbols[Sym]; 1769 if (N) 1770 return SDValue(N, 0); 1771 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1777 unsigned TargetFlags) { 1778 SDNode *&N = 1779 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1780 if (N) return SDValue(N, 0); 1781 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1782 InsertNode(N); 1783 return SDValue(N, 0); 1784 } 1785 1786 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1787 if ((unsigned)Cond >= CondCodeNodes.size()) 1788 CondCodeNodes.resize(Cond+1); 1789 1790 if (!CondCodeNodes[Cond]) { 1791 auto *N = newSDNode<CondCodeSDNode>(Cond); 1792 CondCodeNodes[Cond] = N; 1793 InsertNode(N); 1794 } 1795 1796 return SDValue(CondCodeNodes[Cond], 0); 1797 } 1798 1799 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1800 APInt One(ResVT.getScalarSizeInBits(), 1); 1801 return getStepVector(DL, ResVT, One); 1802 } 1803 1804 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1805 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1806 if (ResVT.isScalableVector()) 1807 return getNode( 1808 ISD::STEP_VECTOR, DL, ResVT, 1809 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1810 1811 SmallVector<SDValue, 16> OpsStepConstants; 1812 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1813 OpsStepConstants.push_back( 1814 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1815 return getBuildVector(ResVT, DL, OpsStepConstants); 1816 } 1817 1818 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1819 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1820 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1821 std::swap(N1, N2); 1822 ShuffleVectorSDNode::commuteMask(M); 1823 } 1824 1825 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1826 SDValue N2, ArrayRef<int> Mask) { 1827 assert(VT.getVectorNumElements() == Mask.size() && 1828 "Must have the same number of vector elements as mask elements!"); 1829 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1830 "Invalid VECTOR_SHUFFLE"); 1831 1832 // Canonicalize shuffle undef, undef -> undef 1833 if (N1.isUndef() && N2.isUndef()) 1834 return getUNDEF(VT); 1835 1836 // Validate that all indices in Mask are within the range of the elements 1837 // input to the shuffle. 1838 int NElts = Mask.size(); 1839 assert(llvm::all_of(Mask, 1840 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1841 "Index out of range"); 1842 1843 // Copy the mask so we can do any needed cleanup. 1844 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1845 1846 // Canonicalize shuffle v, v -> v, undef 1847 if (N1 == N2) { 1848 N2 = getUNDEF(VT); 1849 for (int i = 0; i != NElts; ++i) 1850 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1851 } 1852 1853 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1854 if (N1.isUndef()) 1855 commuteShuffle(N1, N2, MaskVec); 1856 1857 if (TLI->hasVectorBlend()) { 1858 // If shuffling a splat, try to blend the splat instead. We do this here so 1859 // that even when this arises during lowering we don't have to re-handle it. 1860 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1861 BitVector UndefElements; 1862 SDValue Splat = BV->getSplatValue(&UndefElements); 1863 if (!Splat) 1864 return; 1865 1866 for (int i = 0; i < NElts; ++i) { 1867 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1868 continue; 1869 1870 // If this input comes from undef, mark it as such. 1871 if (UndefElements[MaskVec[i] - Offset]) { 1872 MaskVec[i] = -1; 1873 continue; 1874 } 1875 1876 // If we can blend a non-undef lane, use that instead. 1877 if (!UndefElements[i]) 1878 MaskVec[i] = i + Offset; 1879 } 1880 }; 1881 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1882 BlendSplat(N1BV, 0); 1883 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1884 BlendSplat(N2BV, NElts); 1885 } 1886 1887 // Canonicalize all index into lhs, -> shuffle lhs, undef 1888 // Canonicalize all index into rhs, -> shuffle rhs, undef 1889 bool AllLHS = true, AllRHS = true; 1890 bool N2Undef = N2.isUndef(); 1891 for (int i = 0; i != NElts; ++i) { 1892 if (MaskVec[i] >= NElts) { 1893 if (N2Undef) 1894 MaskVec[i] = -1; 1895 else 1896 AllLHS = false; 1897 } else if (MaskVec[i] >= 0) { 1898 AllRHS = false; 1899 } 1900 } 1901 if (AllLHS && AllRHS) 1902 return getUNDEF(VT); 1903 if (AllLHS && !N2Undef) 1904 N2 = getUNDEF(VT); 1905 if (AllRHS) { 1906 N1 = getUNDEF(VT); 1907 commuteShuffle(N1, N2, MaskVec); 1908 } 1909 // Reset our undef status after accounting for the mask. 1910 N2Undef = N2.isUndef(); 1911 // Re-check whether both sides ended up undef. 1912 if (N1.isUndef() && N2Undef) 1913 return getUNDEF(VT); 1914 1915 // If Identity shuffle return that node. 1916 bool Identity = true, AllSame = true; 1917 for (int i = 0; i != NElts; ++i) { 1918 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1919 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1920 } 1921 if (Identity && NElts) 1922 return N1; 1923 1924 // Shuffling a constant splat doesn't change the result. 1925 if (N2Undef) { 1926 SDValue V = N1; 1927 1928 // Look through any bitcasts. We check that these don't change the number 1929 // (and size) of elements and just changes their types. 1930 while (V.getOpcode() == ISD::BITCAST) 1931 V = V->getOperand(0); 1932 1933 // A splat should always show up as a build vector node. 1934 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1935 BitVector UndefElements; 1936 SDValue Splat = BV->getSplatValue(&UndefElements); 1937 // If this is a splat of an undef, shuffling it is also undef. 1938 if (Splat && Splat.isUndef()) 1939 return getUNDEF(VT); 1940 1941 bool SameNumElts = 1942 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1943 1944 // We only have a splat which can skip shuffles if there is a splatted 1945 // value and no undef lanes rearranged by the shuffle. 1946 if (Splat && UndefElements.none()) { 1947 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1948 // number of elements match or the value splatted is a zero constant. 1949 if (SameNumElts) 1950 return N1; 1951 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1952 if (C->isZero()) 1953 return N1; 1954 } 1955 1956 // If the shuffle itself creates a splat, build the vector directly. 1957 if (AllSame && SameNumElts) { 1958 EVT BuildVT = BV->getValueType(0); 1959 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1960 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1961 1962 // We may have jumped through bitcasts, so the type of the 1963 // BUILD_VECTOR may not match the type of the shuffle. 1964 if (BuildVT != VT) 1965 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1966 return NewBV; 1967 } 1968 } 1969 } 1970 1971 FoldingSetNodeID ID; 1972 SDValue Ops[2] = { N1, N2 }; 1973 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1974 for (int i = 0; i != NElts; ++i) 1975 ID.AddInteger(MaskVec[i]); 1976 1977 void* IP = nullptr; 1978 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1979 return SDValue(E, 0); 1980 1981 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1982 // SDNode doesn't have access to it. This memory will be "leaked" when 1983 // the node is deallocated, but recovered when the NodeAllocator is released. 1984 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1985 llvm::copy(MaskVec, MaskAlloc); 1986 1987 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1988 dl.getDebugLoc(), MaskAlloc); 1989 createOperands(N, Ops); 1990 1991 CSEMap.InsertNode(N, IP); 1992 InsertNode(N); 1993 SDValue V = SDValue(N, 0); 1994 NewSDValueDbgMsg(V, "Creating new node: ", this); 1995 return V; 1996 } 1997 1998 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1999 EVT VT = SV.getValueType(0); 2000 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2001 ShuffleVectorSDNode::commuteMask(MaskVec); 2002 2003 SDValue Op0 = SV.getOperand(0); 2004 SDValue Op1 = SV.getOperand(1); 2005 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2006 } 2007 2008 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2009 FoldingSetNodeID ID; 2010 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2011 ID.AddInteger(RegNo); 2012 void *IP = nullptr; 2013 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2014 return SDValue(E, 0); 2015 2016 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2017 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2018 CSEMap.InsertNode(N, IP); 2019 InsertNode(N); 2020 return SDValue(N, 0); 2021 } 2022 2023 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2024 FoldingSetNodeID ID; 2025 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2026 ID.AddPointer(RegMask); 2027 void *IP = nullptr; 2028 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2029 return SDValue(E, 0); 2030 2031 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2032 CSEMap.InsertNode(N, IP); 2033 InsertNode(N); 2034 return SDValue(N, 0); 2035 } 2036 2037 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2038 MCSymbol *Label) { 2039 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2040 } 2041 2042 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2043 SDValue Root, MCSymbol *Label) { 2044 FoldingSetNodeID ID; 2045 SDValue Ops[] = { Root }; 2046 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2047 ID.AddPointer(Label); 2048 void *IP = nullptr; 2049 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2050 return SDValue(E, 0); 2051 2052 auto *N = 2053 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2054 createOperands(N, Ops); 2055 2056 CSEMap.InsertNode(N, IP); 2057 InsertNode(N); 2058 return SDValue(N, 0); 2059 } 2060 2061 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2062 int64_t Offset, bool isTarget, 2063 unsigned TargetFlags) { 2064 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2065 2066 FoldingSetNodeID ID; 2067 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2068 ID.AddPointer(BA); 2069 ID.AddInteger(Offset); 2070 ID.AddInteger(TargetFlags); 2071 void *IP = nullptr; 2072 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2073 return SDValue(E, 0); 2074 2075 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2076 CSEMap.InsertNode(N, IP); 2077 InsertNode(N); 2078 return SDValue(N, 0); 2079 } 2080 2081 SDValue SelectionDAG::getSrcValue(const Value *V) { 2082 FoldingSetNodeID ID; 2083 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2084 ID.AddPointer(V); 2085 2086 void *IP = nullptr; 2087 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2088 return SDValue(E, 0); 2089 2090 auto *N = newSDNode<SrcValueSDNode>(V); 2091 CSEMap.InsertNode(N, IP); 2092 InsertNode(N); 2093 return SDValue(N, 0); 2094 } 2095 2096 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2097 FoldingSetNodeID ID; 2098 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2099 ID.AddPointer(MD); 2100 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = newSDNode<MDNodeSDNode>(MD); 2106 CSEMap.InsertNode(N, IP); 2107 InsertNode(N); 2108 return SDValue(N, 0); 2109 } 2110 2111 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2112 if (VT == V.getValueType()) 2113 return V; 2114 2115 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2116 } 2117 2118 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2119 unsigned SrcAS, unsigned DestAS) { 2120 SDValue Ops[] = {Ptr}; 2121 FoldingSetNodeID ID; 2122 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2123 ID.AddInteger(SrcAS); 2124 ID.AddInteger(DestAS); 2125 2126 void *IP = nullptr; 2127 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2128 return SDValue(E, 0); 2129 2130 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2131 VT, SrcAS, DestAS); 2132 createOperands(N, Ops); 2133 2134 CSEMap.InsertNode(N, IP); 2135 InsertNode(N); 2136 return SDValue(N, 0); 2137 } 2138 2139 SDValue SelectionDAG::getFreeze(SDValue V) { 2140 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2141 } 2142 2143 /// getShiftAmountOperand - Return the specified value casted to 2144 /// the target's desired shift amount type. 2145 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2146 EVT OpTy = Op.getValueType(); 2147 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2148 if (OpTy == ShTy || OpTy.isVector()) return Op; 2149 2150 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2151 } 2152 2153 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2154 SDLoc dl(Node); 2155 const TargetLowering &TLI = getTargetLoweringInfo(); 2156 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2157 EVT VT = Node->getValueType(0); 2158 SDValue Tmp1 = Node->getOperand(0); 2159 SDValue Tmp2 = Node->getOperand(1); 2160 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2161 2162 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2163 Tmp2, MachinePointerInfo(V)); 2164 SDValue VAList = VAListLoad; 2165 2166 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2167 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2168 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2169 2170 VAList = 2171 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2172 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2173 } 2174 2175 // Increment the pointer, VAList, to the next vaarg 2176 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2177 getConstant(getDataLayout().getTypeAllocSize( 2178 VT.getTypeForEVT(*getContext())), 2179 dl, VAList.getValueType())); 2180 // Store the incremented VAList to the legalized pointer 2181 Tmp1 = 2182 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2183 // Load the actual argument out of the pointer VAList 2184 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2185 } 2186 2187 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2188 SDLoc dl(Node); 2189 const TargetLowering &TLI = getTargetLoweringInfo(); 2190 // This defaults to loading a pointer from the input and storing it to the 2191 // output, returning the chain. 2192 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2193 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2194 SDValue Tmp1 = 2195 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2196 Node->getOperand(2), MachinePointerInfo(VS)); 2197 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2198 MachinePointerInfo(VD)); 2199 } 2200 2201 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2202 const DataLayout &DL = getDataLayout(); 2203 Type *Ty = VT.getTypeForEVT(*getContext()); 2204 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2205 2206 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2207 return RedAlign; 2208 2209 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2210 const Align StackAlign = TFI->getStackAlign(); 2211 2212 // See if we can choose a smaller ABI alignment in cases where it's an 2213 // illegal vector type that will get broken down. 2214 if (RedAlign > StackAlign) { 2215 EVT IntermediateVT; 2216 MVT RegisterVT; 2217 unsigned NumIntermediates; 2218 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2219 NumIntermediates, RegisterVT); 2220 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2221 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 if (RedAlign2 < RedAlign) 2223 RedAlign = RedAlign2; 2224 } 2225 2226 return RedAlign; 2227 } 2228 2229 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2230 MachineFrameInfo &MFI = MF->getFrameInfo(); 2231 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2232 int StackID = 0; 2233 if (Bytes.isScalable()) 2234 StackID = TFI->getStackIDForScalableVectors(); 2235 // The stack id gives an indication of whether the object is scalable or 2236 // not, so it's safe to pass in the minimum size here. 2237 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2238 false, nullptr, StackID); 2239 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2240 } 2241 2242 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2243 Type *Ty = VT.getTypeForEVT(*getContext()); 2244 Align StackAlign = 2245 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2246 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2247 } 2248 2249 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2250 TypeSize VT1Size = VT1.getStoreSize(); 2251 TypeSize VT2Size = VT2.getStoreSize(); 2252 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2253 "Don't know how to choose the maximum size when creating a stack " 2254 "temporary"); 2255 TypeSize Bytes = 2256 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2257 2258 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2259 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2260 const DataLayout &DL = getDataLayout(); 2261 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2262 return CreateStackTemporary(Bytes, Align); 2263 } 2264 2265 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2266 ISD::CondCode Cond, const SDLoc &dl) { 2267 EVT OpVT = N1.getValueType(); 2268 2269 // These setcc operations always fold. 2270 switch (Cond) { 2271 default: break; 2272 case ISD::SETFALSE: 2273 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2274 case ISD::SETTRUE: 2275 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2276 2277 case ISD::SETOEQ: 2278 case ISD::SETOGT: 2279 case ISD::SETOGE: 2280 case ISD::SETOLT: 2281 case ISD::SETOLE: 2282 case ISD::SETONE: 2283 case ISD::SETO: 2284 case ISD::SETUO: 2285 case ISD::SETUEQ: 2286 case ISD::SETUNE: 2287 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2288 break; 2289 } 2290 2291 if (OpVT.isInteger()) { 2292 // For EQ and NE, we can always pick a value for the undef to make the 2293 // predicate pass or fail, so we can return undef. 2294 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2295 // icmp eq/ne X, undef -> undef. 2296 if ((N1.isUndef() || N2.isUndef()) && 2297 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2298 return getUNDEF(VT); 2299 2300 // If both operands are undef, we can return undef for int comparison. 2301 // icmp undef, undef -> undef. 2302 if (N1.isUndef() && N2.isUndef()) 2303 return getUNDEF(VT); 2304 2305 // icmp X, X -> true/false 2306 // icmp X, undef -> true/false because undef could be X. 2307 if (N1 == N2) 2308 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2309 } 2310 2311 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2312 const APInt &C2 = N2C->getAPIntValue(); 2313 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2314 const APInt &C1 = N1C->getAPIntValue(); 2315 2316 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2317 dl, VT, OpVT); 2318 } 2319 } 2320 2321 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2322 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2323 2324 if (N1CFP && N2CFP) { 2325 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2326 switch (Cond) { 2327 default: break; 2328 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2329 return getUNDEF(VT); 2330 LLVM_FALLTHROUGH; 2331 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2332 OpVT); 2333 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2334 return getUNDEF(VT); 2335 LLVM_FALLTHROUGH; 2336 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2337 R==APFloat::cmpLessThan, dl, VT, 2338 OpVT); 2339 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2340 return getUNDEF(VT); 2341 LLVM_FALLTHROUGH; 2342 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2343 OpVT); 2344 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2345 return getUNDEF(VT); 2346 LLVM_FALLTHROUGH; 2347 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2348 VT, OpVT); 2349 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2350 return getUNDEF(VT); 2351 LLVM_FALLTHROUGH; 2352 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2353 R==APFloat::cmpEqual, dl, VT, 2354 OpVT); 2355 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2356 return getUNDEF(VT); 2357 LLVM_FALLTHROUGH; 2358 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2359 R==APFloat::cmpEqual, dl, VT, OpVT); 2360 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2361 OpVT); 2362 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2365 R==APFloat::cmpEqual, dl, VT, 2366 OpVT); 2367 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2370 R==APFloat::cmpLessThan, dl, VT, 2371 OpVT); 2372 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2373 R==APFloat::cmpUnordered, dl, VT, 2374 OpVT); 2375 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2376 VT, OpVT); 2377 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2378 OpVT); 2379 } 2380 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2381 // Ensure that the constant occurs on the RHS. 2382 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2383 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2384 return SDValue(); 2385 return getSetCC(dl, VT, N2, N1, SwappedCond); 2386 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2387 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2388 // If an operand is known to be a nan (or undef that could be a nan), we can 2389 // fold it. 2390 // Choosing NaN for the undef will always make unordered comparison succeed 2391 // and ordered comparison fails. 2392 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2393 switch (ISD::getUnorderedFlavor(Cond)) { 2394 default: 2395 llvm_unreachable("Unknown flavor!"); 2396 case 0: // Known false. 2397 return getBoolConstant(false, dl, VT, OpVT); 2398 case 1: // Known true. 2399 return getBoolConstant(true, dl, VT, OpVT); 2400 case 2: // Undefined. 2401 return getUNDEF(VT); 2402 } 2403 } 2404 2405 // Could not fold it. 2406 return SDValue(); 2407 } 2408 2409 /// See if the specified operand can be simplified with the knowledge that only 2410 /// the bits specified by DemandedBits are used. 2411 /// TODO: really we should be making this into the DAG equivalent of 2412 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2413 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2414 EVT VT = V.getValueType(); 2415 2416 if (VT.isScalableVector()) 2417 return SDValue(); 2418 2419 APInt DemandedElts = VT.isVector() 2420 ? APInt::getAllOnes(VT.getVectorNumElements()) 2421 : APInt(1, 1); 2422 return GetDemandedBits(V, DemandedBits, DemandedElts); 2423 } 2424 2425 /// See if the specified operand can be simplified with the knowledge that only 2426 /// the bits specified by DemandedBits are used in the elements specified by 2427 /// DemandedElts. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2431 const APInt &DemandedElts) { 2432 switch (V.getOpcode()) { 2433 default: 2434 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2435 *this, 0); 2436 case ISD::Constant: { 2437 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2438 APInt NewVal = CVal & DemandedBits; 2439 if (NewVal != CVal) 2440 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2441 break; 2442 } 2443 case ISD::SRL: 2444 // Only look at single-use SRLs. 2445 if (!V.getNode()->hasOneUse()) 2446 break; 2447 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2448 // See if we can recursively simplify the LHS. 2449 unsigned Amt = RHSC->getZExtValue(); 2450 2451 // Watch out for shift count overflow though. 2452 if (Amt >= DemandedBits.getBitWidth()) 2453 break; 2454 APInt SrcDemandedBits = DemandedBits << Amt; 2455 if (SDValue SimplifyLHS = 2456 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2457 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2458 V.getOperand(1)); 2459 } 2460 break; 2461 } 2462 return SDValue(); 2463 } 2464 2465 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2466 /// use this predicate to simplify operations downstream. 2467 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2468 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2469 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2470 } 2471 2472 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2473 /// this predicate to simplify operations downstream. Mask is known to be zero 2474 /// for bits that V cannot have. 2475 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2476 unsigned Depth) const { 2477 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2478 } 2479 2480 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2481 /// DemandedElts. We use this predicate to simplify operations downstream. 2482 /// Mask is known to be zero for bits that V cannot have. 2483 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2484 const APInt &DemandedElts, 2485 unsigned Depth) const { 2486 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2487 } 2488 2489 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2490 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2491 unsigned Depth) const { 2492 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2493 } 2494 2495 /// isSplatValue - Return true if the vector V has the same value 2496 /// across all DemandedElts. For scalable vectors it does not make 2497 /// sense to specify which elements are demanded or undefined, therefore 2498 /// they are simply ignored. 2499 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2500 APInt &UndefElts, unsigned Depth) { 2501 EVT VT = V.getValueType(); 2502 assert(VT.isVector() && "Vector type expected"); 2503 2504 if (!VT.isScalableVector() && !DemandedElts) 2505 return false; // No demanded elts, better to assume we don't know anything. 2506 2507 if (Depth >= MaxRecursionDepth) 2508 return false; // Limit search depth. 2509 2510 // Deal with some common cases here that work for both fixed and scalable 2511 // vector types. 2512 switch (V.getOpcode()) { 2513 case ISD::SPLAT_VECTOR: 2514 UndefElts = V.getOperand(0).isUndef() 2515 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2516 : APInt(DemandedElts.getBitWidth(), 0); 2517 return true; 2518 case ISD::ADD: 2519 case ISD::SUB: 2520 case ISD::AND: 2521 case ISD::XOR: 2522 case ISD::OR: { 2523 APInt UndefLHS, UndefRHS; 2524 SDValue LHS = V.getOperand(0); 2525 SDValue RHS = V.getOperand(1); 2526 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2527 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2528 UndefElts = UndefLHS | UndefRHS; 2529 return true; 2530 } 2531 return false; 2532 } 2533 case ISD::ABS: 2534 case ISD::TRUNCATE: 2535 case ISD::SIGN_EXTEND: 2536 case ISD::ZERO_EXTEND: 2537 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2538 } 2539 2540 // We don't support other cases than those above for scalable vectors at 2541 // the moment. 2542 if (VT.isScalableVector()) 2543 return false; 2544 2545 unsigned NumElts = VT.getVectorNumElements(); 2546 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2547 UndefElts = APInt::getZero(NumElts); 2548 2549 switch (V.getOpcode()) { 2550 case ISD::BUILD_VECTOR: { 2551 SDValue Scl; 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 SDValue Op = V.getOperand(i); 2554 if (Op.isUndef()) { 2555 UndefElts.setBit(i); 2556 continue; 2557 } 2558 if (!DemandedElts[i]) 2559 continue; 2560 if (Scl && Scl != Op) 2561 return false; 2562 Scl = Op; 2563 } 2564 return true; 2565 } 2566 case ISD::VECTOR_SHUFFLE: { 2567 // Check if this is a shuffle node doing a splat. 2568 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2569 int SplatIndex = -1; 2570 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2571 for (int i = 0; i != (int)NumElts; ++i) { 2572 int M = Mask[i]; 2573 if (M < 0) { 2574 UndefElts.setBit(i); 2575 continue; 2576 } 2577 if (!DemandedElts[i]) 2578 continue; 2579 if (0 <= SplatIndex && SplatIndex != M) 2580 return false; 2581 SplatIndex = M; 2582 } 2583 return true; 2584 } 2585 case ISD::EXTRACT_SUBVECTOR: { 2586 // Offset the demanded elts by the subvector index. 2587 SDValue Src = V.getOperand(0); 2588 // We don't support scalable vectors at the moment. 2589 if (Src.getValueType().isScalableVector()) 2590 return false; 2591 uint64_t Idx = V.getConstantOperandVal(1); 2592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2593 APInt UndefSrcElts; 2594 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2595 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2596 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2597 return true; 2598 } 2599 break; 2600 } 2601 } 2602 2603 return false; 2604 } 2605 2606 /// Helper wrapper to main isSplatValue function. 2607 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2608 EVT VT = V.getValueType(); 2609 assert(VT.isVector() && "Vector type expected"); 2610 2611 APInt UndefElts; 2612 APInt DemandedElts; 2613 2614 // For now we don't support this with scalable vectors. 2615 if (!VT.isScalableVector()) 2616 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2617 return isSplatValue(V, DemandedElts, UndefElts) && 2618 (AllowUndefs || !UndefElts); 2619 } 2620 2621 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2622 V = peekThroughExtractSubvectors(V); 2623 2624 EVT VT = V.getValueType(); 2625 unsigned Opcode = V.getOpcode(); 2626 switch (Opcode) { 2627 default: { 2628 APInt UndefElts; 2629 APInt DemandedElts; 2630 2631 if (!VT.isScalableVector()) 2632 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2633 2634 if (isSplatValue(V, DemandedElts, UndefElts)) { 2635 if (VT.isScalableVector()) { 2636 // DemandedElts and UndefElts are ignored for scalable vectors, since 2637 // the only supported cases are SPLAT_VECTOR nodes. 2638 SplatIdx = 0; 2639 } else { 2640 // Handle case where all demanded elements are UNDEF. 2641 if (DemandedElts.isSubsetOf(UndefElts)) { 2642 SplatIdx = 0; 2643 return getUNDEF(VT); 2644 } 2645 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2646 } 2647 return V; 2648 } 2649 break; 2650 } 2651 case ISD::SPLAT_VECTOR: 2652 SplatIdx = 0; 2653 return V; 2654 case ISD::VECTOR_SHUFFLE: { 2655 if (VT.isScalableVector()) 2656 return SDValue(); 2657 2658 // Check if this is a shuffle node doing a splat. 2659 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2660 // getTargetVShiftNode currently struggles without the splat source. 2661 auto *SVN = cast<ShuffleVectorSDNode>(V); 2662 if (!SVN->isSplat()) 2663 break; 2664 int Idx = SVN->getSplatIndex(); 2665 int NumElts = V.getValueType().getVectorNumElements(); 2666 SplatIdx = Idx % NumElts; 2667 return V.getOperand(Idx / NumElts); 2668 } 2669 } 2670 2671 return SDValue(); 2672 } 2673 2674 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2675 int SplatIdx; 2676 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2677 EVT SVT = SrcVector.getValueType().getScalarType(); 2678 EVT LegalSVT = SVT; 2679 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2680 if (!SVT.isInteger()) 2681 return SDValue(); 2682 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2683 if (LegalSVT.bitsLT(SVT)) 2684 return SDValue(); 2685 } 2686 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2687 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2688 } 2689 return SDValue(); 2690 } 2691 2692 const APInt * 2693 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2694 const APInt &DemandedElts) const { 2695 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2696 V.getOpcode() == ISD::SRA) && 2697 "Unknown shift node"); 2698 unsigned BitWidth = V.getScalarValueSizeInBits(); 2699 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2700 // Shifting more than the bitwidth is not valid. 2701 const APInt &ShAmt = SA->getAPIntValue(); 2702 if (ShAmt.ult(BitWidth)) 2703 return &ShAmt; 2704 } 2705 return nullptr; 2706 } 2707 2708 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2709 SDValue V, const APInt &DemandedElts) const { 2710 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2711 V.getOpcode() == ISD::SRA) && 2712 "Unknown shift node"); 2713 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2714 return ValidAmt; 2715 unsigned BitWidth = V.getScalarValueSizeInBits(); 2716 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2717 if (!BV) 2718 return nullptr; 2719 const APInt *MinShAmt = nullptr; 2720 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2721 if (!DemandedElts[i]) 2722 continue; 2723 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2724 if (!SA) 2725 return nullptr; 2726 // Shifting more than the bitwidth is not valid. 2727 const APInt &ShAmt = SA->getAPIntValue(); 2728 if (ShAmt.uge(BitWidth)) 2729 return nullptr; 2730 if (MinShAmt && MinShAmt->ule(ShAmt)) 2731 continue; 2732 MinShAmt = &ShAmt; 2733 } 2734 return MinShAmt; 2735 } 2736 2737 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2738 SDValue V, const APInt &DemandedElts) const { 2739 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2740 V.getOpcode() == ISD::SRA) && 2741 "Unknown shift node"); 2742 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2743 return ValidAmt; 2744 unsigned BitWidth = V.getScalarValueSizeInBits(); 2745 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2746 if (!BV) 2747 return nullptr; 2748 const APInt *MaxShAmt = nullptr; 2749 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2750 if (!DemandedElts[i]) 2751 continue; 2752 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2753 if (!SA) 2754 return nullptr; 2755 // Shifting more than the bitwidth is not valid. 2756 const APInt &ShAmt = SA->getAPIntValue(); 2757 if (ShAmt.uge(BitWidth)) 2758 return nullptr; 2759 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2760 continue; 2761 MaxShAmt = &ShAmt; 2762 } 2763 return MaxShAmt; 2764 } 2765 2766 /// Determine which bits of Op are known to be either zero or one and return 2767 /// them in Known. For vectors, the known bits are those that are shared by 2768 /// every vector element. 2769 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2770 EVT VT = Op.getValueType(); 2771 2772 // TOOD: Until we have a plan for how to represent demanded elements for 2773 // scalable vectors, we can just bail out for now. 2774 if (Op.getValueType().isScalableVector()) { 2775 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2776 return KnownBits(BitWidth); 2777 } 2778 2779 APInt DemandedElts = VT.isVector() 2780 ? APInt::getAllOnes(VT.getVectorNumElements()) 2781 : APInt(1, 1); 2782 return computeKnownBits(Op, DemandedElts, Depth); 2783 } 2784 2785 /// Determine which bits of Op are known to be either zero or one and return 2786 /// them in Known. The DemandedElts argument allows us to only collect the known 2787 /// bits that are shared by the requested vector elements. 2788 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2789 unsigned Depth) const { 2790 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2791 2792 KnownBits Known(BitWidth); // Don't know anything. 2793 2794 // TOOD: Until we have a plan for how to represent demanded elements for 2795 // scalable vectors, we can just bail out for now. 2796 if (Op.getValueType().isScalableVector()) 2797 return Known; 2798 2799 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2800 // We know all of the bits for a constant! 2801 return KnownBits::makeConstant(C->getAPIntValue()); 2802 } 2803 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2804 // We know all of the bits for a constant fp! 2805 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2806 } 2807 2808 if (Depth >= MaxRecursionDepth) 2809 return Known; // Limit search depth. 2810 2811 KnownBits Known2; 2812 unsigned NumElts = DemandedElts.getBitWidth(); 2813 assert((!Op.getValueType().isVector() || 2814 NumElts == Op.getValueType().getVectorNumElements()) && 2815 "Unexpected vector size"); 2816 2817 if (!DemandedElts) 2818 return Known; // No demanded elts, better to assume we don't know anything. 2819 2820 unsigned Opcode = Op.getOpcode(); 2821 switch (Opcode) { 2822 case ISD::BUILD_VECTOR: 2823 // Collect the known bits that are shared by every demanded vector element. 2824 Known.Zero.setAllBits(); Known.One.setAllBits(); 2825 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2826 if (!DemandedElts[i]) 2827 continue; 2828 2829 SDValue SrcOp = Op.getOperand(i); 2830 Known2 = computeKnownBits(SrcOp, Depth + 1); 2831 2832 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2833 if (SrcOp.getValueSizeInBits() != BitWidth) { 2834 assert(SrcOp.getValueSizeInBits() > BitWidth && 2835 "Expected BUILD_VECTOR implicit truncation"); 2836 Known2 = Known2.trunc(BitWidth); 2837 } 2838 2839 // Known bits are the values that are shared by every demanded element. 2840 Known = KnownBits::commonBits(Known, Known2); 2841 2842 // If we don't know any bits, early out. 2843 if (Known.isUnknown()) 2844 break; 2845 } 2846 break; 2847 case ISD::VECTOR_SHUFFLE: { 2848 // Collect the known bits that are shared by every vector element referenced 2849 // by the shuffle. 2850 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2851 Known.Zero.setAllBits(); Known.One.setAllBits(); 2852 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2853 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2854 for (unsigned i = 0; i != NumElts; ++i) { 2855 if (!DemandedElts[i]) 2856 continue; 2857 2858 int M = SVN->getMaskElt(i); 2859 if (M < 0) { 2860 // For UNDEF elements, we don't know anything about the common state of 2861 // the shuffle result. 2862 Known.resetAll(); 2863 DemandedLHS.clearAllBits(); 2864 DemandedRHS.clearAllBits(); 2865 break; 2866 } 2867 2868 if ((unsigned)M < NumElts) 2869 DemandedLHS.setBit((unsigned)M % NumElts); 2870 else 2871 DemandedRHS.setBit((unsigned)M % NumElts); 2872 } 2873 // Known bits are the values that are shared by every demanded element. 2874 if (!!DemandedLHS) { 2875 SDValue LHS = Op.getOperand(0); 2876 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2877 Known = KnownBits::commonBits(Known, Known2); 2878 } 2879 // If we don't know any bits, early out. 2880 if (Known.isUnknown()) 2881 break; 2882 if (!!DemandedRHS) { 2883 SDValue RHS = Op.getOperand(1); 2884 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2885 Known = KnownBits::commonBits(Known, Known2); 2886 } 2887 break; 2888 } 2889 case ISD::CONCAT_VECTORS: { 2890 // Split DemandedElts and test each of the demanded subvectors. 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2893 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2894 unsigned NumSubVectors = Op.getNumOperands(); 2895 for (unsigned i = 0; i != NumSubVectors; ++i) { 2896 APInt DemandedSub = 2897 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2898 if (!!DemandedSub) { 2899 SDValue Sub = Op.getOperand(i); 2900 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2901 Known = KnownBits::commonBits(Known, Known2); 2902 } 2903 // If we don't know any bits, early out. 2904 if (Known.isUnknown()) 2905 break; 2906 } 2907 break; 2908 } 2909 case ISD::INSERT_SUBVECTOR: { 2910 // Demand any elements from the subvector and the remainder from the src its 2911 // inserted into. 2912 SDValue Src = Op.getOperand(0); 2913 SDValue Sub = Op.getOperand(1); 2914 uint64_t Idx = Op.getConstantOperandVal(2); 2915 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2916 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2917 APInt DemandedSrcElts = DemandedElts; 2918 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2919 2920 Known.One.setAllBits(); 2921 Known.Zero.setAllBits(); 2922 if (!!DemandedSubElts) { 2923 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2924 if (Known.isUnknown()) 2925 break; // early-out. 2926 } 2927 if (!!DemandedSrcElts) { 2928 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2929 Known = KnownBits::commonBits(Known, Known2); 2930 } 2931 break; 2932 } 2933 case ISD::EXTRACT_SUBVECTOR: { 2934 // Offset the demanded elts by the subvector index. 2935 SDValue Src = Op.getOperand(0); 2936 // Bail until we can represent demanded elements for scalable vectors. 2937 if (Src.getValueType().isScalableVector()) 2938 break; 2939 uint64_t Idx = Op.getConstantOperandVal(1); 2940 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2941 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2942 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2943 break; 2944 } 2945 case ISD::SCALAR_TO_VECTOR: { 2946 // We know about scalar_to_vector as much as we know about it source, 2947 // which becomes the first element of otherwise unknown vector. 2948 if (DemandedElts != 1) 2949 break; 2950 2951 SDValue N0 = Op.getOperand(0); 2952 Known = computeKnownBits(N0, Depth + 1); 2953 if (N0.getValueSizeInBits() != BitWidth) 2954 Known = Known.trunc(BitWidth); 2955 2956 break; 2957 } 2958 case ISD::BITCAST: { 2959 SDValue N0 = Op.getOperand(0); 2960 EVT SubVT = N0.getValueType(); 2961 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2962 2963 // Ignore bitcasts from unsupported types. 2964 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2965 break; 2966 2967 // Fast handling of 'identity' bitcasts. 2968 if (BitWidth == SubBitWidth) { 2969 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 bool IsLE = getDataLayout().isLittleEndian(); 2974 2975 // Bitcast 'small element' vector to 'large element' scalar/vector. 2976 if ((BitWidth % SubBitWidth) == 0) { 2977 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2978 2979 // Collect known bits for the (larger) output by collecting the known 2980 // bits from each set of sub elements and shift these into place. 2981 // We need to separately call computeKnownBits for each set of 2982 // sub elements as the knownbits for each is likely to be different. 2983 unsigned SubScale = BitWidth / SubBitWidth; 2984 APInt SubDemandedElts(NumElts * SubScale, 0); 2985 for (unsigned i = 0; i != NumElts; ++i) 2986 if (DemandedElts[i]) 2987 SubDemandedElts.setBit(i * SubScale); 2988 2989 for (unsigned i = 0; i != SubScale; ++i) { 2990 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2991 Depth + 1); 2992 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2993 Known.insertBits(Known2, SubBitWidth * Shifts); 2994 } 2995 } 2996 2997 // Bitcast 'large element' scalar/vector to 'small element' vector. 2998 if ((SubBitWidth % BitWidth) == 0) { 2999 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3000 3001 // Collect known bits for the (smaller) output by collecting the known 3002 // bits from the overlapping larger input elements and extracting the 3003 // sub sections we actually care about. 3004 unsigned SubScale = SubBitWidth / BitWidth; 3005 APInt SubDemandedElts = 3006 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3007 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3008 3009 Known.Zero.setAllBits(); Known.One.setAllBits(); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) { 3012 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3013 unsigned Offset = (Shifts % SubScale) * BitWidth; 3014 Known = KnownBits::commonBits(Known, 3015 Known2.extractBits(BitWidth, Offset)); 3016 // If we don't know any bits, early out. 3017 if (Known.isUnknown()) 3018 break; 3019 } 3020 } 3021 break; 3022 } 3023 case ISD::AND: 3024 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3025 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3026 3027 Known &= Known2; 3028 break; 3029 case ISD::OR: 3030 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3032 3033 Known |= Known2; 3034 break; 3035 case ISD::XOR: 3036 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3037 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3038 3039 Known ^= Known2; 3040 break; 3041 case ISD::MUL: { 3042 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3043 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3044 Known = KnownBits::mul(Known, Known2); 3045 break; 3046 } 3047 case ISD::MULHU: { 3048 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3049 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3050 Known = KnownBits::mulhu(Known, Known2); 3051 break; 3052 } 3053 case ISD::MULHS: { 3054 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3055 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3056 Known = KnownBits::mulhs(Known, Known2); 3057 break; 3058 } 3059 case ISD::UMUL_LOHI: { 3060 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 if (Op.getResNo() == 0) 3064 Known = KnownBits::mul(Known, Known2); 3065 else 3066 Known = KnownBits::mulhu(Known, Known2); 3067 break; 3068 } 3069 case ISD::SMUL_LOHI: { 3070 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3071 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3072 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3073 if (Op.getResNo() == 0) 3074 Known = KnownBits::mul(Known, Known2); 3075 else 3076 Known = KnownBits::mulhs(Known, Known2); 3077 break; 3078 } 3079 case ISD::UDIV: { 3080 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3082 Known = KnownBits::udiv(Known, Known2); 3083 break; 3084 } 3085 case ISD::SELECT: 3086 case ISD::VSELECT: 3087 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3088 // If we don't know any bits, early out. 3089 if (Known.isUnknown()) 3090 break; 3091 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3092 3093 // Only known if known in both the LHS and RHS. 3094 Known = KnownBits::commonBits(Known, Known2); 3095 break; 3096 case ISD::SELECT_CC: 3097 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3098 // If we don't know any bits, early out. 3099 if (Known.isUnknown()) 3100 break; 3101 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3102 3103 // Only known if known in both the LHS and RHS. 3104 Known = KnownBits::commonBits(Known, Known2); 3105 break; 3106 case ISD::SMULO: 3107 case ISD::UMULO: 3108 if (Op.getResNo() != 1) 3109 break; 3110 // The boolean result conforms to getBooleanContents. 3111 // If we know the result of a setcc has the top bits zero, use this info. 3112 // We know that we have an integer-based boolean since these operations 3113 // are only available for integer. 3114 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3115 TargetLowering::ZeroOrOneBooleanContent && 3116 BitWidth > 1) 3117 Known.Zero.setBitsFrom(1); 3118 break; 3119 case ISD::SETCC: 3120 case ISD::STRICT_FSETCC: 3121 case ISD::STRICT_FSETCCS: { 3122 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3123 // If we know the result of a setcc has the top bits zero, use this info. 3124 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3125 TargetLowering::ZeroOrOneBooleanContent && 3126 BitWidth > 1) 3127 Known.Zero.setBitsFrom(1); 3128 break; 3129 } 3130 case ISD::SHL: 3131 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3132 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3133 Known = KnownBits::shl(Known, Known2); 3134 3135 // Minimum shift low bits are known zero. 3136 if (const APInt *ShMinAmt = 3137 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3138 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3139 break; 3140 case ISD::SRL: 3141 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3142 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3143 Known = KnownBits::lshr(Known, Known2); 3144 3145 // Minimum shift high bits are known zero. 3146 if (const APInt *ShMinAmt = 3147 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3148 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3149 break; 3150 case ISD::SRA: 3151 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known = KnownBits::ashr(Known, Known2); 3154 // TODO: Add minimum shift high known sign bits. 3155 break; 3156 case ISD::FSHL: 3157 case ISD::FSHR: 3158 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3159 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3160 3161 // For fshl, 0-shift returns the 1st arg. 3162 // For fshr, 0-shift returns the 2nd arg. 3163 if (Amt == 0) { 3164 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3165 DemandedElts, Depth + 1); 3166 break; 3167 } 3168 3169 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3170 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3171 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3173 if (Opcode == ISD::FSHL) { 3174 Known.One <<= Amt; 3175 Known.Zero <<= Amt; 3176 Known2.One.lshrInPlace(BitWidth - Amt); 3177 Known2.Zero.lshrInPlace(BitWidth - Amt); 3178 } else { 3179 Known.One <<= BitWidth - Amt; 3180 Known.Zero <<= BitWidth - Amt; 3181 Known2.One.lshrInPlace(Amt); 3182 Known2.Zero.lshrInPlace(Amt); 3183 } 3184 Known.One |= Known2.One; 3185 Known.Zero |= Known2.Zero; 3186 } 3187 break; 3188 case ISD::SIGN_EXTEND_INREG: { 3189 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3190 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3191 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3192 break; 3193 } 3194 case ISD::CTTZ: 3195 case ISD::CTTZ_ZERO_UNDEF: { 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 // If we have a known 1, its position is our upper bound. 3198 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3199 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3200 Known.Zero.setBitsFrom(LowBits); 3201 break; 3202 } 3203 case ISD::CTLZ: 3204 case ISD::CTLZ_ZERO_UNDEF: { 3205 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3206 // If we have a known 1, its position is our upper bound. 3207 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3208 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3209 Known.Zero.setBitsFrom(LowBits); 3210 break; 3211 } 3212 case ISD::CTPOP: { 3213 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3214 // If we know some of the bits are zero, they can't be one. 3215 unsigned PossibleOnes = Known2.countMaxPopulation(); 3216 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3217 break; 3218 } 3219 case ISD::PARITY: { 3220 // Parity returns 0 everywhere but the LSB. 3221 Known.Zero.setBitsFrom(1); 3222 break; 3223 } 3224 case ISD::LOAD: { 3225 LoadSDNode *LD = cast<LoadSDNode>(Op); 3226 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3227 if (ISD::isNON_EXTLoad(LD) && Cst) { 3228 // Determine any common known bits from the loaded constant pool value. 3229 Type *CstTy = Cst->getType(); 3230 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3231 // If its a vector splat, then we can (quickly) reuse the scalar path. 3232 // NOTE: We assume all elements match and none are UNDEF. 3233 if (CstTy->isVectorTy()) { 3234 if (const Constant *Splat = Cst->getSplatValue()) { 3235 Cst = Splat; 3236 CstTy = Cst->getType(); 3237 } 3238 } 3239 // TODO - do we need to handle different bitwidths? 3240 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3241 // Iterate across all vector elements finding common known bits. 3242 Known.One.setAllBits(); 3243 Known.Zero.setAllBits(); 3244 for (unsigned i = 0; i != NumElts; ++i) { 3245 if (!DemandedElts[i]) 3246 continue; 3247 if (Constant *Elt = Cst->getAggregateElement(i)) { 3248 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3249 const APInt &Value = CInt->getValue(); 3250 Known.One &= Value; 3251 Known.Zero &= ~Value; 3252 continue; 3253 } 3254 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3255 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3256 Known.One &= Value; 3257 Known.Zero &= ~Value; 3258 continue; 3259 } 3260 } 3261 Known.One.clearAllBits(); 3262 Known.Zero.clearAllBits(); 3263 break; 3264 } 3265 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3266 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3267 Known = KnownBits::makeConstant(CInt->getValue()); 3268 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3269 Known = 3270 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3271 } 3272 } 3273 } 3274 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3275 // If this is a ZEXTLoad and we are looking at the loaded value. 3276 EVT VT = LD->getMemoryVT(); 3277 unsigned MemBits = VT.getScalarSizeInBits(); 3278 Known.Zero.setBitsFrom(MemBits); 3279 } else if (const MDNode *Ranges = LD->getRanges()) { 3280 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3281 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3282 } 3283 break; 3284 } 3285 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3286 EVT InVT = Op.getOperand(0).getValueType(); 3287 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3288 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3289 Known = Known.zext(BitWidth); 3290 break; 3291 } 3292 case ISD::ZERO_EXTEND: { 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 Known = Known.zext(BitWidth); 3295 break; 3296 } 3297 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3298 EVT InVT = Op.getOperand(0).getValueType(); 3299 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3300 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3301 // If the sign bit is known to be zero or one, then sext will extend 3302 // it to the top bits, else it will just zext. 3303 Known = Known.sext(BitWidth); 3304 break; 3305 } 3306 case ISD::SIGN_EXTEND: { 3307 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3308 // If the sign bit is known to be zero or one, then sext will extend 3309 // it to the top bits, else it will just zext. 3310 Known = Known.sext(BitWidth); 3311 break; 3312 } 3313 case ISD::ANY_EXTEND_VECTOR_INREG: { 3314 EVT InVT = Op.getOperand(0).getValueType(); 3315 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3316 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3317 Known = Known.anyext(BitWidth); 3318 break; 3319 } 3320 case ISD::ANY_EXTEND: { 3321 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3322 Known = Known.anyext(BitWidth); 3323 break; 3324 } 3325 case ISD::TRUNCATE: { 3326 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 Known = Known.trunc(BitWidth); 3328 break; 3329 } 3330 case ISD::AssertZext: { 3331 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3332 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3333 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3334 Known.Zero |= (~InMask); 3335 Known.One &= (~Known.Zero); 3336 break; 3337 } 3338 case ISD::AssertAlign: { 3339 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3340 assert(LogOfAlign != 0); 3341 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3342 // well as clearing one bits. 3343 Known.Zero.setLowBits(LogOfAlign); 3344 Known.One.clearLowBits(LogOfAlign); 3345 break; 3346 } 3347 case ISD::FGETSIGN: 3348 // All bits are zero except the low bit. 3349 Known.Zero.setBitsFrom(1); 3350 break; 3351 case ISD::USUBO: 3352 case ISD::SSUBO: 3353 if (Op.getResNo() == 1) { 3354 // If we know the result of a setcc has the top bits zero, use this info. 3355 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3356 TargetLowering::ZeroOrOneBooleanContent && 3357 BitWidth > 1) 3358 Known.Zero.setBitsFrom(1); 3359 break; 3360 } 3361 LLVM_FALLTHROUGH; 3362 case ISD::SUB: 3363 case ISD::SUBC: { 3364 assert(Op.getResNo() == 0 && 3365 "We only compute knownbits for the difference here."); 3366 3367 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3369 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3370 Known, Known2); 3371 break; 3372 } 3373 case ISD::UADDO: 3374 case ISD::SADDO: 3375 case ISD::ADDCARRY: 3376 if (Op.getResNo() == 1) { 3377 // If we know the result of a setcc has the top bits zero, use this info. 3378 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3379 TargetLowering::ZeroOrOneBooleanContent && 3380 BitWidth > 1) 3381 Known.Zero.setBitsFrom(1); 3382 break; 3383 } 3384 LLVM_FALLTHROUGH; 3385 case ISD::ADD: 3386 case ISD::ADDC: 3387 case ISD::ADDE: { 3388 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3389 3390 // With ADDE and ADDCARRY, a carry bit may be added in. 3391 KnownBits Carry(1); 3392 if (Opcode == ISD::ADDE) 3393 // Can't track carry from glue, set carry to unknown. 3394 Carry.resetAll(); 3395 else if (Opcode == ISD::ADDCARRY) 3396 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3397 // the trouble (how often will we find a known carry bit). And I haven't 3398 // tested this very much yet, but something like this might work: 3399 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3400 // Carry = Carry.zextOrTrunc(1, false); 3401 Carry.resetAll(); 3402 else 3403 Carry.setAllZero(); 3404 3405 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3406 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3407 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3408 break; 3409 } 3410 case ISD::SREM: { 3411 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3412 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3413 Known = KnownBits::srem(Known, Known2); 3414 break; 3415 } 3416 case ISD::UREM: { 3417 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3418 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3419 Known = KnownBits::urem(Known, Known2); 3420 break; 3421 } 3422 case ISD::EXTRACT_ELEMENT: { 3423 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3424 const unsigned Index = Op.getConstantOperandVal(1); 3425 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3426 3427 // Remove low part of known bits mask 3428 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3429 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3430 3431 // Remove high part of known bit mask 3432 Known = Known.trunc(EltBitWidth); 3433 break; 3434 } 3435 case ISD::EXTRACT_VECTOR_ELT: { 3436 SDValue InVec = Op.getOperand(0); 3437 SDValue EltNo = Op.getOperand(1); 3438 EVT VecVT = InVec.getValueType(); 3439 // computeKnownBits not yet implemented for scalable vectors. 3440 if (VecVT.isScalableVector()) 3441 break; 3442 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3443 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3444 3445 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3446 // anything about the extended bits. 3447 if (BitWidth > EltBitWidth) 3448 Known = Known.trunc(EltBitWidth); 3449 3450 // If we know the element index, just demand that vector element, else for 3451 // an unknown element index, ignore DemandedElts and demand them all. 3452 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3453 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3454 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3455 DemandedSrcElts = 3456 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3457 3458 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3459 if (BitWidth > EltBitWidth) 3460 Known = Known.anyext(BitWidth); 3461 break; 3462 } 3463 case ISD::INSERT_VECTOR_ELT: { 3464 // If we know the element index, split the demand between the 3465 // source vector and the inserted element, otherwise assume we need 3466 // the original demanded vector elements and the value. 3467 SDValue InVec = Op.getOperand(0); 3468 SDValue InVal = Op.getOperand(1); 3469 SDValue EltNo = Op.getOperand(2); 3470 bool DemandedVal = true; 3471 APInt DemandedVecElts = DemandedElts; 3472 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3473 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3474 unsigned EltIdx = CEltNo->getZExtValue(); 3475 DemandedVal = !!DemandedElts[EltIdx]; 3476 DemandedVecElts.clearBit(EltIdx); 3477 } 3478 Known.One.setAllBits(); 3479 Known.Zero.setAllBits(); 3480 if (DemandedVal) { 3481 Known2 = computeKnownBits(InVal, Depth + 1); 3482 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3483 } 3484 if (!!DemandedVecElts) { 3485 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3486 Known = KnownBits::commonBits(Known, Known2); 3487 } 3488 break; 3489 } 3490 case ISD::BITREVERSE: { 3491 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3492 Known = Known2.reverseBits(); 3493 break; 3494 } 3495 case ISD::BSWAP: { 3496 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3497 Known = Known2.byteSwap(); 3498 break; 3499 } 3500 case ISD::ABS: { 3501 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3502 Known = Known2.abs(); 3503 break; 3504 } 3505 case ISD::USUBSAT: { 3506 // The result of usubsat will never be larger than the LHS. 3507 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3508 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3509 break; 3510 } 3511 case ISD::UMIN: { 3512 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3513 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3514 Known = KnownBits::umin(Known, Known2); 3515 break; 3516 } 3517 case ISD::UMAX: { 3518 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3519 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3520 Known = KnownBits::umax(Known, Known2); 3521 break; 3522 } 3523 case ISD::SMIN: 3524 case ISD::SMAX: { 3525 // If we have a clamp pattern, we know that the number of sign bits will be 3526 // the minimum of the clamp min/max range. 3527 bool IsMax = (Opcode == ISD::SMAX); 3528 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3529 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3530 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3531 CstHigh = 3532 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3533 if (CstLow && CstHigh) { 3534 if (!IsMax) 3535 std::swap(CstLow, CstHigh); 3536 3537 const APInt &ValueLow = CstLow->getAPIntValue(); 3538 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3539 if (ValueLow.sle(ValueHigh)) { 3540 unsigned LowSignBits = ValueLow.getNumSignBits(); 3541 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3542 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3543 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3544 Known.One.setHighBits(MinSignBits); 3545 break; 3546 } 3547 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3548 Known.Zero.setHighBits(MinSignBits); 3549 break; 3550 } 3551 } 3552 } 3553 3554 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3555 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3556 if (IsMax) 3557 Known = KnownBits::smax(Known, Known2); 3558 else 3559 Known = KnownBits::smin(Known, Known2); 3560 break; 3561 } 3562 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3563 if (Op.getResNo() == 1) { 3564 // The boolean result conforms to getBooleanContents. 3565 // If we know the result of a setcc has the top bits zero, use this info. 3566 // We know that we have an integer-based boolean since these operations 3567 // are only available for integer. 3568 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3569 TargetLowering::ZeroOrOneBooleanContent && 3570 BitWidth > 1) 3571 Known.Zero.setBitsFrom(1); 3572 break; 3573 } 3574 LLVM_FALLTHROUGH; 3575 case ISD::ATOMIC_CMP_SWAP: 3576 case ISD::ATOMIC_SWAP: 3577 case ISD::ATOMIC_LOAD_ADD: 3578 case ISD::ATOMIC_LOAD_SUB: 3579 case ISD::ATOMIC_LOAD_AND: 3580 case ISD::ATOMIC_LOAD_CLR: 3581 case ISD::ATOMIC_LOAD_OR: 3582 case ISD::ATOMIC_LOAD_XOR: 3583 case ISD::ATOMIC_LOAD_NAND: 3584 case ISD::ATOMIC_LOAD_MIN: 3585 case ISD::ATOMIC_LOAD_MAX: 3586 case ISD::ATOMIC_LOAD_UMIN: 3587 case ISD::ATOMIC_LOAD_UMAX: 3588 case ISD::ATOMIC_LOAD: { 3589 unsigned MemBits = 3590 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3591 // If we are looking at the loaded value. 3592 if (Op.getResNo() == 0) { 3593 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3594 Known.Zero.setBitsFrom(MemBits); 3595 } 3596 break; 3597 } 3598 case ISD::FrameIndex: 3599 case ISD::TargetFrameIndex: 3600 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3601 Known, getMachineFunction()); 3602 break; 3603 3604 default: 3605 if (Opcode < ISD::BUILTIN_OP_END) 3606 break; 3607 LLVM_FALLTHROUGH; 3608 case ISD::INTRINSIC_WO_CHAIN: 3609 case ISD::INTRINSIC_W_CHAIN: 3610 case ISD::INTRINSIC_VOID: 3611 // Allow the target to implement this method for its nodes. 3612 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3613 break; 3614 } 3615 3616 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3617 return Known; 3618 } 3619 3620 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3621 SDValue N1) const { 3622 // X + 0 never overflow 3623 if (isNullConstant(N1)) 3624 return OFK_Never; 3625 3626 KnownBits N1Known = computeKnownBits(N1); 3627 if (N1Known.Zero.getBoolValue()) { 3628 KnownBits N0Known = computeKnownBits(N0); 3629 3630 bool overflow; 3631 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3632 if (!overflow) 3633 return OFK_Never; 3634 } 3635 3636 // mulhi + 1 never overflow 3637 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3638 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3639 return OFK_Never; 3640 3641 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3642 KnownBits N0Known = computeKnownBits(N0); 3643 3644 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3645 return OFK_Never; 3646 } 3647 3648 return OFK_Sometime; 3649 } 3650 3651 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3652 EVT OpVT = Val.getValueType(); 3653 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3654 3655 // Is the constant a known power of 2? 3656 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3657 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3658 3659 // A left-shift of a constant one will have exactly one bit set because 3660 // shifting the bit off the end is undefined. 3661 if (Val.getOpcode() == ISD::SHL) { 3662 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3663 if (C && C->getAPIntValue() == 1) 3664 return true; 3665 } 3666 3667 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3668 // one bit set. 3669 if (Val.getOpcode() == ISD::SRL) { 3670 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3671 if (C && C->getAPIntValue().isSignMask()) 3672 return true; 3673 } 3674 3675 // Are all operands of a build vector constant powers of two? 3676 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3677 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3678 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3679 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3680 return false; 3681 })) 3682 return true; 3683 3684 // Is the operand of a splat vector a constant power of two? 3685 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3686 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3687 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3688 return true; 3689 3690 // More could be done here, though the above checks are enough 3691 // to handle some common cases. 3692 3693 // Fall back to computeKnownBits to catch other known cases. 3694 KnownBits Known = computeKnownBits(Val); 3695 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3696 } 3697 3698 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3699 EVT VT = Op.getValueType(); 3700 3701 // TODO: Assume we don't know anything for now. 3702 if (VT.isScalableVector()) 3703 return 1; 3704 3705 APInt DemandedElts = VT.isVector() 3706 ? APInt::getAllOnes(VT.getVectorNumElements()) 3707 : APInt(1, 1); 3708 return ComputeNumSignBits(Op, DemandedElts, Depth); 3709 } 3710 3711 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3712 unsigned Depth) const { 3713 EVT VT = Op.getValueType(); 3714 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3715 unsigned VTBits = VT.getScalarSizeInBits(); 3716 unsigned NumElts = DemandedElts.getBitWidth(); 3717 unsigned Tmp, Tmp2; 3718 unsigned FirstAnswer = 1; 3719 3720 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3721 const APInt &Val = C->getAPIntValue(); 3722 return Val.getNumSignBits(); 3723 } 3724 3725 if (Depth >= MaxRecursionDepth) 3726 return 1; // Limit search depth. 3727 3728 if (!DemandedElts || VT.isScalableVector()) 3729 return 1; // No demanded elts, better to assume we don't know anything. 3730 3731 unsigned Opcode = Op.getOpcode(); 3732 switch (Opcode) { 3733 default: break; 3734 case ISD::AssertSext: 3735 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3736 return VTBits-Tmp+1; 3737 case ISD::AssertZext: 3738 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3739 return VTBits-Tmp; 3740 3741 case ISD::BUILD_VECTOR: 3742 Tmp = VTBits; 3743 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3744 if (!DemandedElts[i]) 3745 continue; 3746 3747 SDValue SrcOp = Op.getOperand(i); 3748 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3749 3750 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3751 if (SrcOp.getValueSizeInBits() != VTBits) { 3752 assert(SrcOp.getValueSizeInBits() > VTBits && 3753 "Expected BUILD_VECTOR implicit truncation"); 3754 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3755 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3756 } 3757 Tmp = std::min(Tmp, Tmp2); 3758 } 3759 return Tmp; 3760 3761 case ISD::VECTOR_SHUFFLE: { 3762 // Collect the minimum number of sign bits that are shared by every vector 3763 // element referenced by the shuffle. 3764 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3765 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3766 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3767 for (unsigned i = 0; i != NumElts; ++i) { 3768 int M = SVN->getMaskElt(i); 3769 if (!DemandedElts[i]) 3770 continue; 3771 // For UNDEF elements, we don't know anything about the common state of 3772 // the shuffle result. 3773 if (M < 0) 3774 return 1; 3775 if ((unsigned)M < NumElts) 3776 DemandedLHS.setBit((unsigned)M % NumElts); 3777 else 3778 DemandedRHS.setBit((unsigned)M % NumElts); 3779 } 3780 Tmp = std::numeric_limits<unsigned>::max(); 3781 if (!!DemandedLHS) 3782 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3783 if (!!DemandedRHS) { 3784 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3785 Tmp = std::min(Tmp, Tmp2); 3786 } 3787 // If we don't know anything, early out and try computeKnownBits fall-back. 3788 if (Tmp == 1) 3789 break; 3790 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3791 return Tmp; 3792 } 3793 3794 case ISD::BITCAST: { 3795 SDValue N0 = Op.getOperand(0); 3796 EVT SrcVT = N0.getValueType(); 3797 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3798 3799 // Ignore bitcasts from unsupported types.. 3800 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3801 break; 3802 3803 // Fast handling of 'identity' bitcasts. 3804 if (VTBits == SrcBits) 3805 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3806 3807 bool IsLE = getDataLayout().isLittleEndian(); 3808 3809 // Bitcast 'large element' scalar/vector to 'small element' vector. 3810 if ((SrcBits % VTBits) == 0) { 3811 assert(VT.isVector() && "Expected bitcast to vector"); 3812 3813 unsigned Scale = SrcBits / VTBits; 3814 APInt SrcDemandedElts = 3815 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3816 3817 // Fast case - sign splat can be simply split across the small elements. 3818 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3819 if (Tmp == SrcBits) 3820 return VTBits; 3821 3822 // Slow case - determine how far the sign extends into each sub-element. 3823 Tmp2 = VTBits; 3824 for (unsigned i = 0; i != NumElts; ++i) 3825 if (DemandedElts[i]) { 3826 unsigned SubOffset = i % Scale; 3827 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3828 SubOffset = SubOffset * VTBits; 3829 if (Tmp <= SubOffset) 3830 return 1; 3831 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3832 } 3833 return Tmp2; 3834 } 3835 break; 3836 } 3837 3838 case ISD::SIGN_EXTEND: 3839 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3840 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3841 case ISD::SIGN_EXTEND_INREG: 3842 // Max of the input and what this extends. 3843 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3844 Tmp = VTBits-Tmp+1; 3845 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3846 return std::max(Tmp, Tmp2); 3847 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3848 SDValue Src = Op.getOperand(0); 3849 EVT SrcVT = Src.getValueType(); 3850 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3851 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3852 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3853 } 3854 case ISD::SRA: 3855 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3856 // SRA X, C -> adds C sign bits. 3857 if (const APInt *ShAmt = 3858 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3859 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3860 return Tmp; 3861 case ISD::SHL: 3862 if (const APInt *ShAmt = 3863 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3864 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3865 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3866 if (ShAmt->ult(Tmp)) 3867 return Tmp - ShAmt->getZExtValue(); 3868 } 3869 break; 3870 case ISD::AND: 3871 case ISD::OR: 3872 case ISD::XOR: // NOT is handled here. 3873 // Logical binary ops preserve the number of sign bits at the worst. 3874 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3875 if (Tmp != 1) { 3876 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3877 FirstAnswer = std::min(Tmp, Tmp2); 3878 // We computed what we know about the sign bits as our first 3879 // answer. Now proceed to the generic code that uses 3880 // computeKnownBits, and pick whichever answer is better. 3881 } 3882 break; 3883 3884 case ISD::SELECT: 3885 case ISD::VSELECT: 3886 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3887 if (Tmp == 1) return 1; // Early out. 3888 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3889 return std::min(Tmp, Tmp2); 3890 case ISD::SELECT_CC: 3891 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3892 if (Tmp == 1) return 1; // Early out. 3893 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3894 return std::min(Tmp, Tmp2); 3895 3896 case ISD::SMIN: 3897 case ISD::SMAX: { 3898 // If we have a clamp pattern, we know that the number of sign bits will be 3899 // the minimum of the clamp min/max range. 3900 bool IsMax = (Opcode == ISD::SMAX); 3901 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3902 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3903 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3904 CstHigh = 3905 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3906 if (CstLow && CstHigh) { 3907 if (!IsMax) 3908 std::swap(CstLow, CstHigh); 3909 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3910 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3911 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3912 return std::min(Tmp, Tmp2); 3913 } 3914 } 3915 3916 // Fallback - just get the minimum number of sign bits of the operands. 3917 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3918 if (Tmp == 1) 3919 return 1; // Early out. 3920 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3921 return std::min(Tmp, Tmp2); 3922 } 3923 case ISD::UMIN: 3924 case ISD::UMAX: 3925 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3926 if (Tmp == 1) 3927 return 1; // Early out. 3928 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3929 return std::min(Tmp, Tmp2); 3930 case ISD::SADDO: 3931 case ISD::UADDO: 3932 case ISD::SSUBO: 3933 case ISD::USUBO: 3934 case ISD::SMULO: 3935 case ISD::UMULO: 3936 if (Op.getResNo() != 1) 3937 break; 3938 // The boolean result conforms to getBooleanContents. Fall through. 3939 // If setcc returns 0/-1, all bits are sign bits. 3940 // We know that we have an integer-based boolean since these operations 3941 // are only available for integer. 3942 if (TLI->getBooleanContents(VT.isVector(), false) == 3943 TargetLowering::ZeroOrNegativeOneBooleanContent) 3944 return VTBits; 3945 break; 3946 case ISD::SETCC: 3947 case ISD::STRICT_FSETCC: 3948 case ISD::STRICT_FSETCCS: { 3949 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3950 // If setcc returns 0/-1, all bits are sign bits. 3951 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3952 TargetLowering::ZeroOrNegativeOneBooleanContent) 3953 return VTBits; 3954 break; 3955 } 3956 case ISD::ROTL: 3957 case ISD::ROTR: 3958 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3959 3960 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3961 if (Tmp == VTBits) 3962 return VTBits; 3963 3964 if (ConstantSDNode *C = 3965 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3966 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3967 3968 // Handle rotate right by N like a rotate left by 32-N. 3969 if (Opcode == ISD::ROTR) 3970 RotAmt = (VTBits - RotAmt) % VTBits; 3971 3972 // If we aren't rotating out all of the known-in sign bits, return the 3973 // number that are left. This handles rotl(sext(x), 1) for example. 3974 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3975 } 3976 break; 3977 case ISD::ADD: 3978 case ISD::ADDC: 3979 // Add can have at most one carry bit. Thus we know that the output 3980 // is, at worst, one more bit than the inputs. 3981 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3982 if (Tmp == 1) return 1; // Early out. 3983 3984 // Special case decrementing a value (ADD X, -1): 3985 if (ConstantSDNode *CRHS = 3986 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3987 if (CRHS->isAllOnes()) { 3988 KnownBits Known = 3989 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3990 3991 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3992 // sign bits set. 3993 if ((Known.Zero | 1).isAllOnes()) 3994 return VTBits; 3995 3996 // If we are subtracting one from a positive number, there is no carry 3997 // out of the result. 3998 if (Known.isNonNegative()) 3999 return Tmp; 4000 } 4001 4002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4003 if (Tmp2 == 1) return 1; // Early out. 4004 return std::min(Tmp, Tmp2) - 1; 4005 case ISD::SUB: 4006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4007 if (Tmp2 == 1) return 1; // Early out. 4008 4009 // Handle NEG. 4010 if (ConstantSDNode *CLHS = 4011 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4012 if (CLHS->isZero()) { 4013 KnownBits Known = 4014 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4015 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4016 // sign bits set. 4017 if ((Known.Zero | 1).isAllOnes()) 4018 return VTBits; 4019 4020 // If the input is known to be positive (the sign bit is known clear), 4021 // the output of the NEG has the same number of sign bits as the input. 4022 if (Known.isNonNegative()) 4023 return Tmp2; 4024 4025 // Otherwise, we treat this like a SUB. 4026 } 4027 4028 // Sub can have at most one carry bit. Thus we know that the output 4029 // is, at worst, one more bit than the inputs. 4030 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4031 if (Tmp == 1) return 1; // Early out. 4032 return std::min(Tmp, Tmp2) - 1; 4033 case ISD::MUL: { 4034 // The output of the Mul can be at most twice the valid bits in the inputs. 4035 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4036 if (SignBitsOp0 == 1) 4037 break; 4038 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4039 if (SignBitsOp1 == 1) 4040 break; 4041 unsigned OutValidBits = 4042 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4043 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4044 } 4045 case ISD::SREM: 4046 // The sign bit is the LHS's sign bit, except when the result of the 4047 // remainder is zero. The magnitude of the result should be less than or 4048 // equal to the magnitude of the LHS. Therefore, the result should have 4049 // at least as many sign bits as the left hand side. 4050 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4051 case ISD::TRUNCATE: { 4052 // Check if the sign bits of source go down as far as the truncated value. 4053 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4054 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4055 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4056 return NumSrcSignBits - (NumSrcBits - VTBits); 4057 break; 4058 } 4059 case ISD::EXTRACT_ELEMENT: { 4060 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4061 const int BitWidth = Op.getValueSizeInBits(); 4062 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4063 4064 // Get reverse index (starting from 1), Op1 value indexes elements from 4065 // little end. Sign starts at big end. 4066 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4067 4068 // If the sign portion ends in our element the subtraction gives correct 4069 // result. Otherwise it gives either negative or > bitwidth result 4070 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4071 } 4072 case ISD::INSERT_VECTOR_ELT: { 4073 // If we know the element index, split the demand between the 4074 // source vector and the inserted element, otherwise assume we need 4075 // the original demanded vector elements and the value. 4076 SDValue InVec = Op.getOperand(0); 4077 SDValue InVal = Op.getOperand(1); 4078 SDValue EltNo = Op.getOperand(2); 4079 bool DemandedVal = true; 4080 APInt DemandedVecElts = DemandedElts; 4081 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4082 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4083 unsigned EltIdx = CEltNo->getZExtValue(); 4084 DemandedVal = !!DemandedElts[EltIdx]; 4085 DemandedVecElts.clearBit(EltIdx); 4086 } 4087 Tmp = std::numeric_limits<unsigned>::max(); 4088 if (DemandedVal) { 4089 // TODO - handle implicit truncation of inserted elements. 4090 if (InVal.getScalarValueSizeInBits() != VTBits) 4091 break; 4092 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4093 Tmp = std::min(Tmp, Tmp2); 4094 } 4095 if (!!DemandedVecElts) { 4096 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4097 Tmp = std::min(Tmp, Tmp2); 4098 } 4099 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4100 return Tmp; 4101 } 4102 case ISD::EXTRACT_VECTOR_ELT: { 4103 SDValue InVec = Op.getOperand(0); 4104 SDValue EltNo = Op.getOperand(1); 4105 EVT VecVT = InVec.getValueType(); 4106 // ComputeNumSignBits not yet implemented for scalable vectors. 4107 if (VecVT.isScalableVector()) 4108 break; 4109 const unsigned BitWidth = Op.getValueSizeInBits(); 4110 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4111 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4112 4113 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4114 // anything about sign bits. But if the sizes match we can derive knowledge 4115 // about sign bits from the vector operand. 4116 if (BitWidth != EltBitWidth) 4117 break; 4118 4119 // If we know the element index, just demand that vector element, else for 4120 // an unknown element index, ignore DemandedElts and demand them all. 4121 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4122 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4123 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4124 DemandedSrcElts = 4125 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4126 4127 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4128 } 4129 case ISD::EXTRACT_SUBVECTOR: { 4130 // Offset the demanded elts by the subvector index. 4131 SDValue Src = Op.getOperand(0); 4132 // Bail until we can represent demanded elements for scalable vectors. 4133 if (Src.getValueType().isScalableVector()) 4134 break; 4135 uint64_t Idx = Op.getConstantOperandVal(1); 4136 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4137 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4138 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4139 } 4140 case ISD::CONCAT_VECTORS: { 4141 // Determine the minimum number of sign bits across all demanded 4142 // elts of the input vectors. Early out if the result is already 1. 4143 Tmp = std::numeric_limits<unsigned>::max(); 4144 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4145 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4146 unsigned NumSubVectors = Op.getNumOperands(); 4147 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4148 APInt DemandedSub = 4149 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4150 if (!DemandedSub) 4151 continue; 4152 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4153 Tmp = std::min(Tmp, Tmp2); 4154 } 4155 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4156 return Tmp; 4157 } 4158 case ISD::INSERT_SUBVECTOR: { 4159 // Demand any elements from the subvector and the remainder from the src its 4160 // inserted into. 4161 SDValue Src = Op.getOperand(0); 4162 SDValue Sub = Op.getOperand(1); 4163 uint64_t Idx = Op.getConstantOperandVal(2); 4164 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4165 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4166 APInt DemandedSrcElts = DemandedElts; 4167 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4168 4169 Tmp = std::numeric_limits<unsigned>::max(); 4170 if (!!DemandedSubElts) { 4171 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4172 if (Tmp == 1) 4173 return 1; // early-out 4174 } 4175 if (!!DemandedSrcElts) { 4176 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4177 Tmp = std::min(Tmp, Tmp2); 4178 } 4179 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4180 return Tmp; 4181 } 4182 case ISD::ATOMIC_CMP_SWAP: 4183 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4184 case ISD::ATOMIC_SWAP: 4185 case ISD::ATOMIC_LOAD_ADD: 4186 case ISD::ATOMIC_LOAD_SUB: 4187 case ISD::ATOMIC_LOAD_AND: 4188 case ISD::ATOMIC_LOAD_CLR: 4189 case ISD::ATOMIC_LOAD_OR: 4190 case ISD::ATOMIC_LOAD_XOR: 4191 case ISD::ATOMIC_LOAD_NAND: 4192 case ISD::ATOMIC_LOAD_MIN: 4193 case ISD::ATOMIC_LOAD_MAX: 4194 case ISD::ATOMIC_LOAD_UMIN: 4195 case ISD::ATOMIC_LOAD_UMAX: 4196 case ISD::ATOMIC_LOAD: { 4197 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4198 // If we are looking at the loaded value. 4199 if (Op.getResNo() == 0) { 4200 if (Tmp == VTBits) 4201 return 1; // early-out 4202 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4203 return VTBits - Tmp + 1; 4204 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4205 return VTBits - Tmp; 4206 } 4207 break; 4208 } 4209 } 4210 4211 // If we are looking at the loaded value of the SDNode. 4212 if (Op.getResNo() == 0) { 4213 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4214 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4215 unsigned ExtType = LD->getExtensionType(); 4216 switch (ExtType) { 4217 default: break; 4218 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4219 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4220 return VTBits - Tmp + 1; 4221 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4222 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4223 return VTBits - Tmp; 4224 case ISD::NON_EXTLOAD: 4225 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4226 // We only need to handle vectors - computeKnownBits should handle 4227 // scalar cases. 4228 Type *CstTy = Cst->getType(); 4229 if (CstTy->isVectorTy() && 4230 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4231 Tmp = VTBits; 4232 for (unsigned i = 0; i != NumElts; ++i) { 4233 if (!DemandedElts[i]) 4234 continue; 4235 if (Constant *Elt = Cst->getAggregateElement(i)) { 4236 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4237 const APInt &Value = CInt->getValue(); 4238 Tmp = std::min(Tmp, Value.getNumSignBits()); 4239 continue; 4240 } 4241 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4242 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4243 Tmp = std::min(Tmp, Value.getNumSignBits()); 4244 continue; 4245 } 4246 } 4247 // Unknown type. Conservatively assume no bits match sign bit. 4248 return 1; 4249 } 4250 return Tmp; 4251 } 4252 } 4253 break; 4254 } 4255 } 4256 } 4257 4258 // Allow the target to implement this method for its nodes. 4259 if (Opcode >= ISD::BUILTIN_OP_END || 4260 Opcode == ISD::INTRINSIC_WO_CHAIN || 4261 Opcode == ISD::INTRINSIC_W_CHAIN || 4262 Opcode == ISD::INTRINSIC_VOID) { 4263 unsigned NumBits = 4264 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4265 if (NumBits > 1) 4266 FirstAnswer = std::max(FirstAnswer, NumBits); 4267 } 4268 4269 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4270 // use this information. 4271 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4272 4273 APInt Mask; 4274 if (Known.isNonNegative()) { // sign bit is 0 4275 Mask = Known.Zero; 4276 } else if (Known.isNegative()) { // sign bit is 1; 4277 Mask = Known.One; 4278 } else { 4279 // Nothing known. 4280 return FirstAnswer; 4281 } 4282 4283 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4284 // the number of identical bits in the top of the input value. 4285 Mask <<= Mask.getBitWidth()-VTBits; 4286 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4287 } 4288 4289 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { 4290 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4291 return Op.getScalarValueSizeInBits() - SignBits + 1; 4292 } 4293 4294 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, 4295 const APInt &DemandedElts, 4296 unsigned Depth) const { 4297 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4298 return Op.getScalarValueSizeInBits() - SignBits + 1; 4299 } 4300 4301 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4302 unsigned Depth) const { 4303 // Early out for FREEZE. 4304 if (Op.getOpcode() == ISD::FREEZE) 4305 return true; 4306 4307 // TODO: Assume we don't know anything for now. 4308 EVT VT = Op.getValueType(); 4309 if (VT.isScalableVector()) 4310 return false; 4311 4312 APInt DemandedElts = VT.isVector() 4313 ? APInt::getAllOnes(VT.getVectorNumElements()) 4314 : APInt(1, 1); 4315 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4316 } 4317 4318 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4319 const APInt &DemandedElts, 4320 bool PoisonOnly, 4321 unsigned Depth) const { 4322 unsigned Opcode = Op.getOpcode(); 4323 4324 // Early out for FREEZE. 4325 if (Opcode == ISD::FREEZE) 4326 return true; 4327 4328 if (Depth >= MaxRecursionDepth) 4329 return false; // Limit search depth. 4330 4331 if (isIntOrFPConstant(Op)) 4332 return true; 4333 4334 switch (Opcode) { 4335 case ISD::UNDEF: 4336 return PoisonOnly; 4337 4338 case ISD::BUILD_VECTOR: 4339 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4340 // this shouldn't affect the result. 4341 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4342 if (!DemandedElts[i]) 4343 continue; 4344 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4345 Depth + 1)) 4346 return false; 4347 } 4348 return true; 4349 4350 // TODO: Search for noundef attributes from library functions. 4351 4352 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4353 4354 default: 4355 // Allow the target to implement this method for its nodes. 4356 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4357 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4358 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4359 Op, DemandedElts, *this, PoisonOnly, Depth); 4360 break; 4361 } 4362 4363 return false; 4364 } 4365 4366 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4367 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4368 !isa<ConstantSDNode>(Op.getOperand(1))) 4369 return false; 4370 4371 if (Op.getOpcode() == ISD::OR && 4372 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4373 return false; 4374 4375 return true; 4376 } 4377 4378 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4379 // If we're told that NaNs won't happen, assume they won't. 4380 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4381 return true; 4382 4383 if (Depth >= MaxRecursionDepth) 4384 return false; // Limit search depth. 4385 4386 // TODO: Handle vectors. 4387 // If the value is a constant, we can obviously see if it is a NaN or not. 4388 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4389 return !C->getValueAPF().isNaN() || 4390 (SNaN && !C->getValueAPF().isSignaling()); 4391 } 4392 4393 unsigned Opcode = Op.getOpcode(); 4394 switch (Opcode) { 4395 case ISD::FADD: 4396 case ISD::FSUB: 4397 case ISD::FMUL: 4398 case ISD::FDIV: 4399 case ISD::FREM: 4400 case ISD::FSIN: 4401 case ISD::FCOS: { 4402 if (SNaN) 4403 return true; 4404 // TODO: Need isKnownNeverInfinity 4405 return false; 4406 } 4407 case ISD::FCANONICALIZE: 4408 case ISD::FEXP: 4409 case ISD::FEXP2: 4410 case ISD::FTRUNC: 4411 case ISD::FFLOOR: 4412 case ISD::FCEIL: 4413 case ISD::FROUND: 4414 case ISD::FROUNDEVEN: 4415 case ISD::FRINT: 4416 case ISD::FNEARBYINT: { 4417 if (SNaN) 4418 return true; 4419 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4420 } 4421 case ISD::FABS: 4422 case ISD::FNEG: 4423 case ISD::FCOPYSIGN: { 4424 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4425 } 4426 case ISD::SELECT: 4427 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4428 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4429 case ISD::FP_EXTEND: 4430 case ISD::FP_ROUND: { 4431 if (SNaN) 4432 return true; 4433 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4434 } 4435 case ISD::SINT_TO_FP: 4436 case ISD::UINT_TO_FP: 4437 return true; 4438 case ISD::FMA: 4439 case ISD::FMAD: { 4440 if (SNaN) 4441 return true; 4442 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4443 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4444 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4445 } 4446 case ISD::FSQRT: // Need is known positive 4447 case ISD::FLOG: 4448 case ISD::FLOG2: 4449 case ISD::FLOG10: 4450 case ISD::FPOWI: 4451 case ISD::FPOW: { 4452 if (SNaN) 4453 return true; 4454 // TODO: Refine on operand 4455 return false; 4456 } 4457 case ISD::FMINNUM: 4458 case ISD::FMAXNUM: { 4459 // Only one needs to be known not-nan, since it will be returned if the 4460 // other ends up being one. 4461 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4462 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4463 } 4464 case ISD::FMINNUM_IEEE: 4465 case ISD::FMAXNUM_IEEE: { 4466 if (SNaN) 4467 return true; 4468 // This can return a NaN if either operand is an sNaN, or if both operands 4469 // are NaN. 4470 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4471 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4472 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4473 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4474 } 4475 case ISD::FMINIMUM: 4476 case ISD::FMAXIMUM: { 4477 // TODO: Does this quiet or return the origina NaN as-is? 4478 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4479 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4480 } 4481 case ISD::EXTRACT_VECTOR_ELT: { 4482 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4483 } 4484 default: 4485 if (Opcode >= ISD::BUILTIN_OP_END || 4486 Opcode == ISD::INTRINSIC_WO_CHAIN || 4487 Opcode == ISD::INTRINSIC_W_CHAIN || 4488 Opcode == ISD::INTRINSIC_VOID) { 4489 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4490 } 4491 4492 return false; 4493 } 4494 } 4495 4496 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4497 assert(Op.getValueType().isFloatingPoint() && 4498 "Floating point type expected"); 4499 4500 // If the value is a constant, we can obviously see if it is a zero or not. 4501 // TODO: Add BuildVector support. 4502 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4503 return !C->isZero(); 4504 return false; 4505 } 4506 4507 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4508 assert(!Op.getValueType().isFloatingPoint() && 4509 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4510 4511 // If the value is a constant, we can obviously see if it is a zero or not. 4512 if (ISD::matchUnaryPredicate(Op, 4513 [](ConstantSDNode *C) { return !C->isZero(); })) 4514 return true; 4515 4516 // TODO: Recognize more cases here. 4517 switch (Op.getOpcode()) { 4518 default: break; 4519 case ISD::OR: 4520 if (isKnownNeverZero(Op.getOperand(1)) || 4521 isKnownNeverZero(Op.getOperand(0))) 4522 return true; 4523 break; 4524 } 4525 4526 return false; 4527 } 4528 4529 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4530 // Check the obvious case. 4531 if (A == B) return true; 4532 4533 // For for negative and positive zero. 4534 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4535 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4536 if (CA->isZero() && CB->isZero()) return true; 4537 4538 // Otherwise they may not be equal. 4539 return false; 4540 } 4541 4542 // FIXME: unify with llvm::haveNoCommonBitsSet. 4543 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4544 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4545 assert(A.getValueType() == B.getValueType() && 4546 "Values must have the same type"); 4547 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4548 computeKnownBits(B)); 4549 } 4550 4551 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4552 SelectionDAG &DAG) { 4553 if (cast<ConstantSDNode>(Step)->isZero()) 4554 return DAG.getConstant(0, DL, VT); 4555 4556 return SDValue(); 4557 } 4558 4559 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4560 ArrayRef<SDValue> Ops, 4561 SelectionDAG &DAG) { 4562 int NumOps = Ops.size(); 4563 assert(NumOps != 0 && "Can't build an empty vector!"); 4564 assert(!VT.isScalableVector() && 4565 "BUILD_VECTOR cannot be used with scalable types"); 4566 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4567 "Incorrect element count in BUILD_VECTOR!"); 4568 4569 // BUILD_VECTOR of UNDEFs is UNDEF. 4570 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4571 return DAG.getUNDEF(VT); 4572 4573 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4574 SDValue IdentitySrc; 4575 bool IsIdentity = true; 4576 for (int i = 0; i != NumOps; ++i) { 4577 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4578 Ops[i].getOperand(0).getValueType() != VT || 4579 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4580 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4581 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4582 IsIdentity = false; 4583 break; 4584 } 4585 IdentitySrc = Ops[i].getOperand(0); 4586 } 4587 if (IsIdentity) 4588 return IdentitySrc; 4589 4590 return SDValue(); 4591 } 4592 4593 /// Try to simplify vector concatenation to an input value, undef, or build 4594 /// vector. 4595 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4596 ArrayRef<SDValue> Ops, 4597 SelectionDAG &DAG) { 4598 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4599 assert(llvm::all_of(Ops, 4600 [Ops](SDValue Op) { 4601 return Ops[0].getValueType() == Op.getValueType(); 4602 }) && 4603 "Concatenation of vectors with inconsistent value types!"); 4604 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4605 VT.getVectorElementCount() && 4606 "Incorrect element count in vector concatenation!"); 4607 4608 if (Ops.size() == 1) 4609 return Ops[0]; 4610 4611 // Concat of UNDEFs is UNDEF. 4612 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4613 return DAG.getUNDEF(VT); 4614 4615 // Scan the operands and look for extract operations from a single source 4616 // that correspond to insertion at the same location via this concatenation: 4617 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4618 SDValue IdentitySrc; 4619 bool IsIdentity = true; 4620 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4621 SDValue Op = Ops[i]; 4622 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4623 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4624 Op.getOperand(0).getValueType() != VT || 4625 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4626 Op.getConstantOperandVal(1) != IdentityIndex) { 4627 IsIdentity = false; 4628 break; 4629 } 4630 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4631 "Unexpected identity source vector for concat of extracts"); 4632 IdentitySrc = Op.getOperand(0); 4633 } 4634 if (IsIdentity) { 4635 assert(IdentitySrc && "Failed to set source vector of extracts"); 4636 return IdentitySrc; 4637 } 4638 4639 // The code below this point is only designed to work for fixed width 4640 // vectors, so we bail out for now. 4641 if (VT.isScalableVector()) 4642 return SDValue(); 4643 4644 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4645 // simplified to one big BUILD_VECTOR. 4646 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4647 EVT SVT = VT.getScalarType(); 4648 SmallVector<SDValue, 16> Elts; 4649 for (SDValue Op : Ops) { 4650 EVT OpVT = Op.getValueType(); 4651 if (Op.isUndef()) 4652 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4653 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4654 Elts.append(Op->op_begin(), Op->op_end()); 4655 else 4656 return SDValue(); 4657 } 4658 4659 // BUILD_VECTOR requires all inputs to be of the same type, find the 4660 // maximum type and extend them all. 4661 for (SDValue Op : Elts) 4662 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4663 4664 if (SVT.bitsGT(VT.getScalarType())) { 4665 for (SDValue &Op : Elts) { 4666 if (Op.isUndef()) 4667 Op = DAG.getUNDEF(SVT); 4668 else 4669 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4670 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4671 : DAG.getSExtOrTrunc(Op, DL, SVT); 4672 } 4673 } 4674 4675 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4676 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4677 return V; 4678 } 4679 4680 /// Gets or creates the specified node. 4681 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4682 FoldingSetNodeID ID; 4683 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4684 void *IP = nullptr; 4685 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4686 return SDValue(E, 0); 4687 4688 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4689 getVTList(VT)); 4690 CSEMap.InsertNode(N, IP); 4691 4692 InsertNode(N); 4693 SDValue V = SDValue(N, 0); 4694 NewSDValueDbgMsg(V, "Creating new node: ", this); 4695 return V; 4696 } 4697 4698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4699 SDValue Operand) { 4700 SDNodeFlags Flags; 4701 if (Inserter) 4702 Flags = Inserter->getFlags(); 4703 return getNode(Opcode, DL, VT, Operand, Flags); 4704 } 4705 4706 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4707 SDValue Operand, const SDNodeFlags Flags) { 4708 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4709 "Operand is DELETED_NODE!"); 4710 // Constant fold unary operations with an integer constant operand. Even 4711 // opaque constant will be folded, because the folding of unary operations 4712 // doesn't create new constants with different values. Nevertheless, the 4713 // opaque flag is preserved during folding to prevent future folding with 4714 // other constants. 4715 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4716 const APInt &Val = C->getAPIntValue(); 4717 switch (Opcode) { 4718 default: break; 4719 case ISD::SIGN_EXTEND: 4720 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4721 C->isTargetOpcode(), C->isOpaque()); 4722 case ISD::TRUNCATE: 4723 if (C->isOpaque()) 4724 break; 4725 LLVM_FALLTHROUGH; 4726 case ISD::ZERO_EXTEND: 4727 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4728 C->isTargetOpcode(), C->isOpaque()); 4729 case ISD::ANY_EXTEND: 4730 // Some targets like RISCV prefer to sign extend some types. 4731 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4732 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4733 C->isTargetOpcode(), C->isOpaque()); 4734 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4735 C->isTargetOpcode(), C->isOpaque()); 4736 case ISD::UINT_TO_FP: 4737 case ISD::SINT_TO_FP: { 4738 APFloat apf(EVTToAPFloatSemantics(VT), 4739 APInt::getZero(VT.getSizeInBits())); 4740 (void)apf.convertFromAPInt(Val, 4741 Opcode==ISD::SINT_TO_FP, 4742 APFloat::rmNearestTiesToEven); 4743 return getConstantFP(apf, DL, VT); 4744 } 4745 case ISD::BITCAST: 4746 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4747 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4748 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4749 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4750 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4751 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4752 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4753 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4754 break; 4755 case ISD::ABS: 4756 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4757 C->isOpaque()); 4758 case ISD::BITREVERSE: 4759 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4760 C->isOpaque()); 4761 case ISD::BSWAP: 4762 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4763 C->isOpaque()); 4764 case ISD::CTPOP: 4765 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4766 C->isOpaque()); 4767 case ISD::CTLZ: 4768 case ISD::CTLZ_ZERO_UNDEF: 4769 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4770 C->isOpaque()); 4771 case ISD::CTTZ: 4772 case ISD::CTTZ_ZERO_UNDEF: 4773 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4774 C->isOpaque()); 4775 case ISD::FP16_TO_FP: { 4776 bool Ignored; 4777 APFloat FPV(APFloat::IEEEhalf(), 4778 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4779 4780 // This can return overflow, underflow, or inexact; we don't care. 4781 // FIXME need to be more flexible about rounding mode. 4782 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4783 APFloat::rmNearestTiesToEven, &Ignored); 4784 return getConstantFP(FPV, DL, VT); 4785 } 4786 case ISD::STEP_VECTOR: { 4787 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4788 return V; 4789 break; 4790 } 4791 } 4792 } 4793 4794 // Constant fold unary operations with a floating point constant operand. 4795 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4796 APFloat V = C->getValueAPF(); // make copy 4797 switch (Opcode) { 4798 case ISD::FNEG: 4799 V.changeSign(); 4800 return getConstantFP(V, DL, VT); 4801 case ISD::FABS: 4802 V.clearSign(); 4803 return getConstantFP(V, DL, VT); 4804 case ISD::FCEIL: { 4805 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4806 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4807 return getConstantFP(V, DL, VT); 4808 break; 4809 } 4810 case ISD::FTRUNC: { 4811 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4812 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4813 return getConstantFP(V, DL, VT); 4814 break; 4815 } 4816 case ISD::FFLOOR: { 4817 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4818 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4819 return getConstantFP(V, DL, VT); 4820 break; 4821 } 4822 case ISD::FP_EXTEND: { 4823 bool ignored; 4824 // This can return overflow, underflow, or inexact; we don't care. 4825 // FIXME need to be more flexible about rounding mode. 4826 (void)V.convert(EVTToAPFloatSemantics(VT), 4827 APFloat::rmNearestTiesToEven, &ignored); 4828 return getConstantFP(V, DL, VT); 4829 } 4830 case ISD::FP_TO_SINT: 4831 case ISD::FP_TO_UINT: { 4832 bool ignored; 4833 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4834 // FIXME need to be more flexible about rounding mode. 4835 APFloat::opStatus s = 4836 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4837 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4838 break; 4839 return getConstant(IntVal, DL, VT); 4840 } 4841 case ISD::BITCAST: 4842 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4843 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4844 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4845 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4846 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4847 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4848 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4849 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4850 break; 4851 case ISD::FP_TO_FP16: { 4852 bool Ignored; 4853 // This can return overflow, underflow, or inexact; we don't care. 4854 // FIXME need to be more flexible about rounding mode. 4855 (void)V.convert(APFloat::IEEEhalf(), 4856 APFloat::rmNearestTiesToEven, &Ignored); 4857 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4858 } 4859 } 4860 } 4861 4862 // Constant fold unary operations with a vector integer or float operand. 4863 switch (Opcode) { 4864 default: 4865 // FIXME: Entirely reasonable to perform folding of other unary 4866 // operations here as the need arises. 4867 break; 4868 case ISD::FNEG: 4869 case ISD::FABS: 4870 case ISD::FCEIL: 4871 case ISD::FTRUNC: 4872 case ISD::FFLOOR: 4873 case ISD::FP_EXTEND: 4874 case ISD::FP_TO_SINT: 4875 case ISD::FP_TO_UINT: 4876 case ISD::TRUNCATE: 4877 case ISD::ANY_EXTEND: 4878 case ISD::ZERO_EXTEND: 4879 case ISD::SIGN_EXTEND: 4880 case ISD::UINT_TO_FP: 4881 case ISD::SINT_TO_FP: 4882 case ISD::ABS: 4883 case ISD::BITREVERSE: 4884 case ISD::BSWAP: 4885 case ISD::CTLZ: 4886 case ISD::CTLZ_ZERO_UNDEF: 4887 case ISD::CTTZ: 4888 case ISD::CTTZ_ZERO_UNDEF: 4889 case ISD::CTPOP: { 4890 SDValue Ops = {Operand}; 4891 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4892 return Fold; 4893 } 4894 } 4895 4896 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4897 switch (Opcode) { 4898 case ISD::STEP_VECTOR: 4899 assert(VT.isScalableVector() && 4900 "STEP_VECTOR can only be used with scalable types"); 4901 assert(OpOpcode == ISD::TargetConstant && 4902 VT.getVectorElementType() == Operand.getValueType() && 4903 "Unexpected step operand"); 4904 break; 4905 case ISD::FREEZE: 4906 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4907 break; 4908 case ISD::TokenFactor: 4909 case ISD::MERGE_VALUES: 4910 case ISD::CONCAT_VECTORS: 4911 return Operand; // Factor, merge or concat of one node? No need. 4912 case ISD::BUILD_VECTOR: { 4913 // Attempt to simplify BUILD_VECTOR. 4914 SDValue Ops[] = {Operand}; 4915 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4916 return V; 4917 break; 4918 } 4919 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4920 case ISD::FP_EXTEND: 4921 assert(VT.isFloatingPoint() && 4922 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4923 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4924 assert((!VT.isVector() || 4925 VT.getVectorElementCount() == 4926 Operand.getValueType().getVectorElementCount()) && 4927 "Vector element count mismatch!"); 4928 assert(Operand.getValueType().bitsLT(VT) && 4929 "Invalid fpext node, dst < src!"); 4930 if (Operand.isUndef()) 4931 return getUNDEF(VT); 4932 break; 4933 case ISD::FP_TO_SINT: 4934 case ISD::FP_TO_UINT: 4935 if (Operand.isUndef()) 4936 return getUNDEF(VT); 4937 break; 4938 case ISD::SINT_TO_FP: 4939 case ISD::UINT_TO_FP: 4940 // [us]itofp(undef) = 0, because the result value is bounded. 4941 if (Operand.isUndef()) 4942 return getConstantFP(0.0, DL, VT); 4943 break; 4944 case ISD::SIGN_EXTEND: 4945 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4946 "Invalid SIGN_EXTEND!"); 4947 assert(VT.isVector() == Operand.getValueType().isVector() && 4948 "SIGN_EXTEND result type type should be vector iff the operand " 4949 "type is vector!"); 4950 if (Operand.getValueType() == VT) return Operand; // noop extension 4951 assert((!VT.isVector() || 4952 VT.getVectorElementCount() == 4953 Operand.getValueType().getVectorElementCount()) && 4954 "Vector element count mismatch!"); 4955 assert(Operand.getValueType().bitsLT(VT) && 4956 "Invalid sext node, dst < src!"); 4957 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4958 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4959 if (OpOpcode == ISD::UNDEF) 4960 // sext(undef) = 0, because the top bits will all be the same. 4961 return getConstant(0, DL, VT); 4962 break; 4963 case ISD::ZERO_EXTEND: 4964 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4965 "Invalid ZERO_EXTEND!"); 4966 assert(VT.isVector() == Operand.getValueType().isVector() && 4967 "ZERO_EXTEND result type type should be vector iff the operand " 4968 "type is vector!"); 4969 if (Operand.getValueType() == VT) return Operand; // noop extension 4970 assert((!VT.isVector() || 4971 VT.getVectorElementCount() == 4972 Operand.getValueType().getVectorElementCount()) && 4973 "Vector element count mismatch!"); 4974 assert(Operand.getValueType().bitsLT(VT) && 4975 "Invalid zext node, dst < src!"); 4976 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4977 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4978 if (OpOpcode == ISD::UNDEF) 4979 // zext(undef) = 0, because the top bits will be zero. 4980 return getConstant(0, DL, VT); 4981 break; 4982 case ISD::ANY_EXTEND: 4983 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4984 "Invalid ANY_EXTEND!"); 4985 assert(VT.isVector() == Operand.getValueType().isVector() && 4986 "ANY_EXTEND result type type should be vector iff the operand " 4987 "type is vector!"); 4988 if (Operand.getValueType() == VT) return Operand; // noop extension 4989 assert((!VT.isVector() || 4990 VT.getVectorElementCount() == 4991 Operand.getValueType().getVectorElementCount()) && 4992 "Vector element count mismatch!"); 4993 assert(Operand.getValueType().bitsLT(VT) && 4994 "Invalid anyext node, dst < src!"); 4995 4996 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4997 OpOpcode == ISD::ANY_EXTEND) 4998 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4999 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5000 if (OpOpcode == ISD::UNDEF) 5001 return getUNDEF(VT); 5002 5003 // (ext (trunc x)) -> x 5004 if (OpOpcode == ISD::TRUNCATE) { 5005 SDValue OpOp = Operand.getOperand(0); 5006 if (OpOp.getValueType() == VT) { 5007 transferDbgValues(Operand, OpOp); 5008 return OpOp; 5009 } 5010 } 5011 break; 5012 case ISD::TRUNCATE: 5013 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5014 "Invalid TRUNCATE!"); 5015 assert(VT.isVector() == Operand.getValueType().isVector() && 5016 "TRUNCATE result type type should be vector iff the operand " 5017 "type is vector!"); 5018 if (Operand.getValueType() == VT) return Operand; // noop truncate 5019 assert((!VT.isVector() || 5020 VT.getVectorElementCount() == 5021 Operand.getValueType().getVectorElementCount()) && 5022 "Vector element count mismatch!"); 5023 assert(Operand.getValueType().bitsGT(VT) && 5024 "Invalid truncate node, src < dst!"); 5025 if (OpOpcode == ISD::TRUNCATE) 5026 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5027 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5028 OpOpcode == ISD::ANY_EXTEND) { 5029 // If the source is smaller than the dest, we still need an extend. 5030 if (Operand.getOperand(0).getValueType().getScalarType() 5031 .bitsLT(VT.getScalarType())) 5032 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5033 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5034 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5035 return Operand.getOperand(0); 5036 } 5037 if (OpOpcode == ISD::UNDEF) 5038 return getUNDEF(VT); 5039 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5040 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5041 break; 5042 case ISD::ANY_EXTEND_VECTOR_INREG: 5043 case ISD::ZERO_EXTEND_VECTOR_INREG: 5044 case ISD::SIGN_EXTEND_VECTOR_INREG: 5045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5046 assert(Operand.getValueType().bitsLE(VT) && 5047 "The input must be the same size or smaller than the result."); 5048 assert(VT.getVectorMinNumElements() < 5049 Operand.getValueType().getVectorMinNumElements() && 5050 "The destination vector type must have fewer lanes than the input."); 5051 break; 5052 case ISD::ABS: 5053 assert(VT.isInteger() && VT == Operand.getValueType() && 5054 "Invalid ABS!"); 5055 if (OpOpcode == ISD::UNDEF) 5056 return getUNDEF(VT); 5057 break; 5058 case ISD::BSWAP: 5059 assert(VT.isInteger() && VT == Operand.getValueType() && 5060 "Invalid BSWAP!"); 5061 assert((VT.getScalarSizeInBits() % 16 == 0) && 5062 "BSWAP types must be a multiple of 16 bits!"); 5063 if (OpOpcode == ISD::UNDEF) 5064 return getUNDEF(VT); 5065 break; 5066 case ISD::BITREVERSE: 5067 assert(VT.isInteger() && VT == Operand.getValueType() && 5068 "Invalid BITREVERSE!"); 5069 if (OpOpcode == ISD::UNDEF) 5070 return getUNDEF(VT); 5071 break; 5072 case ISD::BITCAST: 5073 // Basic sanity checking. 5074 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5075 "Cannot BITCAST between types of different sizes!"); 5076 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5077 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5078 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5079 if (OpOpcode == ISD::UNDEF) 5080 return getUNDEF(VT); 5081 break; 5082 case ISD::SCALAR_TO_VECTOR: 5083 assert(VT.isVector() && !Operand.getValueType().isVector() && 5084 (VT.getVectorElementType() == Operand.getValueType() || 5085 (VT.getVectorElementType().isInteger() && 5086 Operand.getValueType().isInteger() && 5087 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5088 "Illegal SCALAR_TO_VECTOR node!"); 5089 if (OpOpcode == ISD::UNDEF) 5090 return getUNDEF(VT); 5091 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5092 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5093 isa<ConstantSDNode>(Operand.getOperand(1)) && 5094 Operand.getConstantOperandVal(1) == 0 && 5095 Operand.getOperand(0).getValueType() == VT) 5096 return Operand.getOperand(0); 5097 break; 5098 case ISD::FNEG: 5099 // Negation of an unknown bag of bits is still completely undefined. 5100 if (OpOpcode == ISD::UNDEF) 5101 return getUNDEF(VT); 5102 5103 if (OpOpcode == ISD::FNEG) // --X -> X 5104 return Operand.getOperand(0); 5105 break; 5106 case ISD::FABS: 5107 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5108 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5109 break; 5110 case ISD::VSCALE: 5111 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5112 break; 5113 case ISD::CTPOP: 5114 if (Operand.getValueType().getScalarType() == MVT::i1) 5115 return Operand; 5116 break; 5117 case ISD::CTLZ: 5118 case ISD::CTTZ: 5119 if (Operand.getValueType().getScalarType() == MVT::i1) 5120 return getNOT(DL, Operand, Operand.getValueType()); 5121 break; 5122 case ISD::VECREDUCE_SMIN: 5123 case ISD::VECREDUCE_UMAX: 5124 if (Operand.getValueType().getScalarType() == MVT::i1) 5125 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5126 break; 5127 case ISD::VECREDUCE_SMAX: 5128 case ISD::VECREDUCE_UMIN: 5129 if (Operand.getValueType().getScalarType() == MVT::i1) 5130 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5131 break; 5132 } 5133 5134 SDNode *N; 5135 SDVTList VTs = getVTList(VT); 5136 SDValue Ops[] = {Operand}; 5137 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5138 FoldingSetNodeID ID; 5139 AddNodeIDNode(ID, Opcode, VTs, Ops); 5140 void *IP = nullptr; 5141 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5142 E->intersectFlagsWith(Flags); 5143 return SDValue(E, 0); 5144 } 5145 5146 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5147 N->setFlags(Flags); 5148 createOperands(N, Ops); 5149 CSEMap.InsertNode(N, IP); 5150 } else { 5151 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5152 createOperands(N, Ops); 5153 } 5154 5155 InsertNode(N); 5156 SDValue V = SDValue(N, 0); 5157 NewSDValueDbgMsg(V, "Creating new node: ", this); 5158 return V; 5159 } 5160 5161 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5162 const APInt &C2) { 5163 switch (Opcode) { 5164 case ISD::ADD: return C1 + C2; 5165 case ISD::SUB: return C1 - C2; 5166 case ISD::MUL: return C1 * C2; 5167 case ISD::AND: return C1 & C2; 5168 case ISD::OR: return C1 | C2; 5169 case ISD::XOR: return C1 ^ C2; 5170 case ISD::SHL: return C1 << C2; 5171 case ISD::SRL: return C1.lshr(C2); 5172 case ISD::SRA: return C1.ashr(C2); 5173 case ISD::ROTL: return C1.rotl(C2); 5174 case ISD::ROTR: return C1.rotr(C2); 5175 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5176 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5177 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5178 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5179 case ISD::SADDSAT: return C1.sadd_sat(C2); 5180 case ISD::UADDSAT: return C1.uadd_sat(C2); 5181 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5182 case ISD::USUBSAT: return C1.usub_sat(C2); 5183 case ISD::UDIV: 5184 if (!C2.getBoolValue()) 5185 break; 5186 return C1.udiv(C2); 5187 case ISD::UREM: 5188 if (!C2.getBoolValue()) 5189 break; 5190 return C1.urem(C2); 5191 case ISD::SDIV: 5192 if (!C2.getBoolValue()) 5193 break; 5194 return C1.sdiv(C2); 5195 case ISD::SREM: 5196 if (!C2.getBoolValue()) 5197 break; 5198 return C1.srem(C2); 5199 case ISD::MULHS: { 5200 unsigned FullWidth = C1.getBitWidth() * 2; 5201 APInt C1Ext = C1.sext(FullWidth); 5202 APInt C2Ext = C2.sext(FullWidth); 5203 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5204 } 5205 case ISD::MULHU: { 5206 unsigned FullWidth = C1.getBitWidth() * 2; 5207 APInt C1Ext = C1.zext(FullWidth); 5208 APInt C2Ext = C2.zext(FullWidth); 5209 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5210 } 5211 } 5212 return llvm::None; 5213 } 5214 5215 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5216 const GlobalAddressSDNode *GA, 5217 const SDNode *N2) { 5218 if (GA->getOpcode() != ISD::GlobalAddress) 5219 return SDValue(); 5220 if (!TLI->isOffsetFoldingLegal(GA)) 5221 return SDValue(); 5222 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5223 if (!C2) 5224 return SDValue(); 5225 int64_t Offset = C2->getSExtValue(); 5226 switch (Opcode) { 5227 case ISD::ADD: break; 5228 case ISD::SUB: Offset = -uint64_t(Offset); break; 5229 default: return SDValue(); 5230 } 5231 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5232 GA->getOffset() + uint64_t(Offset)); 5233 } 5234 5235 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5236 switch (Opcode) { 5237 case ISD::SDIV: 5238 case ISD::UDIV: 5239 case ISD::SREM: 5240 case ISD::UREM: { 5241 // If a divisor is zero/undef or any element of a divisor vector is 5242 // zero/undef, the whole op is undef. 5243 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5244 SDValue Divisor = Ops[1]; 5245 if (Divisor.isUndef() || isNullConstant(Divisor)) 5246 return true; 5247 5248 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5249 llvm::any_of(Divisor->op_values(), 5250 [](SDValue V) { return V.isUndef() || 5251 isNullConstant(V); }); 5252 // TODO: Handle signed overflow. 5253 } 5254 // TODO: Handle oversized shifts. 5255 default: 5256 return false; 5257 } 5258 } 5259 5260 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5261 EVT VT, ArrayRef<SDValue> Ops) { 5262 // If the opcode is a target-specific ISD node, there's nothing we can 5263 // do here and the operand rules may not line up with the below, so 5264 // bail early. 5265 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5266 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5267 // foldCONCAT_VECTORS in getNode before this is called. 5268 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5269 return SDValue(); 5270 5271 unsigned NumOps = Ops.size(); 5272 if (NumOps == 0) 5273 return SDValue(); 5274 5275 if (isUndef(Opcode, Ops)) 5276 return getUNDEF(VT); 5277 5278 // Handle the case of two scalars. 5279 if (NumOps == 2) { 5280 // TODO: Move foldConstantFPMath here? 5281 5282 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5283 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5284 if (C1->isOpaque() || C2->isOpaque()) 5285 return SDValue(); 5286 5287 Optional<APInt> FoldAttempt = 5288 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5289 if (!FoldAttempt) 5290 return SDValue(); 5291 5292 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5293 assert((!Folded || !VT.isVector()) && 5294 "Can't fold vectors ops with scalar operands"); 5295 return Folded; 5296 } 5297 } 5298 5299 // fold (add Sym, c) -> Sym+c 5300 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5301 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5302 if (TLI->isCommutativeBinOp(Opcode)) 5303 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5304 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5305 5306 // If this is a bitwise logic opcode see if we can fold bitcasted ops. 5307 // TODO: Can we generalize this and fold any bitcasted constant data? 5308 if (ISD::isBitwiseLogicOp(Opcode) && Ops[0].getOpcode() == ISD::BITCAST && 5309 Ops[1].getOpcode() == ISD::BITCAST) { 5310 SDValue InnerN1 = peekThroughBitcasts(Ops[0].getOperand(0)); 5311 SDValue InnerN2 = peekThroughBitcasts(Ops[1].getOperand(0)); 5312 EVT InnerVT = InnerN1.getValueType(); 5313 if (InnerVT == InnerN2.getValueType() && InnerVT.isInteger()) 5314 if (SDValue C = 5315 FoldConstantArithmetic(Opcode, DL, InnerVT, {InnerN1, InnerN2})) 5316 return getBitcast(VT, C); 5317 } 5318 } 5319 5320 // This is for vector folding only from here on. 5321 if (!VT.isVector()) 5322 return SDValue(); 5323 5324 ElementCount NumElts = VT.getVectorElementCount(); 5325 5326 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5327 return !Op.getValueType().isVector() || 5328 Op.getValueType().getVectorElementCount() == NumElts; 5329 }; 5330 5331 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5332 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5333 Op.getOpcode() == ISD::BUILD_VECTOR || 5334 Op.getOpcode() == ISD::SPLAT_VECTOR; 5335 }; 5336 5337 // All operands must be vector types with the same number of elements as 5338 // the result type and must be either UNDEF or a build/splat vector 5339 // or UNDEF scalars. 5340 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5341 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5342 return SDValue(); 5343 5344 // If we are comparing vectors, then the result needs to be a i1 boolean 5345 // that is then sign-extended back to the legal result type. 5346 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5347 5348 // Find legal integer scalar type for constant promotion and 5349 // ensure that its scalar size is at least as large as source. 5350 EVT LegalSVT = VT.getScalarType(); 5351 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5352 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5353 if (LegalSVT.bitsLT(VT.getScalarType())) 5354 return SDValue(); 5355 } 5356 5357 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5358 // only have one operand to check. For fixed-length vector types we may have 5359 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5360 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5361 5362 // Constant fold each scalar lane separately. 5363 SmallVector<SDValue, 4> ScalarResults; 5364 for (unsigned I = 0; I != NumVectorElts; I++) { 5365 SmallVector<SDValue, 4> ScalarOps; 5366 for (SDValue Op : Ops) { 5367 EVT InSVT = Op.getValueType().getScalarType(); 5368 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5369 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5370 if (Op.isUndef()) 5371 ScalarOps.push_back(getUNDEF(InSVT)); 5372 else 5373 ScalarOps.push_back(Op); 5374 continue; 5375 } 5376 5377 SDValue ScalarOp = 5378 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5379 EVT ScalarVT = ScalarOp.getValueType(); 5380 5381 // Build vector (integer) scalar operands may need implicit 5382 // truncation - do this before constant folding. 5383 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5384 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5385 5386 ScalarOps.push_back(ScalarOp); 5387 } 5388 5389 // Constant fold the scalar operands. 5390 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5391 5392 // Legalize the (integer) scalar constant if necessary. 5393 if (LegalSVT != SVT) 5394 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5395 5396 // Scalar folding only succeeded if the result is a constant or UNDEF. 5397 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5398 ScalarResult.getOpcode() != ISD::ConstantFP) 5399 return SDValue(); 5400 ScalarResults.push_back(ScalarResult); 5401 } 5402 5403 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5404 : getBuildVector(VT, DL, ScalarResults); 5405 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5406 return V; 5407 } 5408 5409 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5410 EVT VT, SDValue N1, SDValue N2) { 5411 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5412 // should. That will require dealing with a potentially non-default 5413 // rounding mode, checking the "opStatus" return value from the APFloat 5414 // math calculations, and possibly other variations. 5415 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5416 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5417 if (N1CFP && N2CFP) { 5418 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5419 switch (Opcode) { 5420 case ISD::FADD: 5421 C1.add(C2, APFloat::rmNearestTiesToEven); 5422 return getConstantFP(C1, DL, VT); 5423 case ISD::FSUB: 5424 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5425 return getConstantFP(C1, DL, VT); 5426 case ISD::FMUL: 5427 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5428 return getConstantFP(C1, DL, VT); 5429 case ISD::FDIV: 5430 C1.divide(C2, APFloat::rmNearestTiesToEven); 5431 return getConstantFP(C1, DL, VT); 5432 case ISD::FREM: 5433 C1.mod(C2); 5434 return getConstantFP(C1, DL, VT); 5435 case ISD::FCOPYSIGN: 5436 C1.copySign(C2); 5437 return getConstantFP(C1, DL, VT); 5438 default: break; 5439 } 5440 } 5441 if (N1CFP && Opcode == ISD::FP_ROUND) { 5442 APFloat C1 = N1CFP->getValueAPF(); // make copy 5443 bool Unused; 5444 // This can return overflow, underflow, or inexact; we don't care. 5445 // FIXME need to be more flexible about rounding mode. 5446 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5447 &Unused); 5448 return getConstantFP(C1, DL, VT); 5449 } 5450 5451 switch (Opcode) { 5452 case ISD::FSUB: 5453 // -0.0 - undef --> undef (consistent with "fneg undef") 5454 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5455 return getUNDEF(VT); 5456 LLVM_FALLTHROUGH; 5457 5458 case ISD::FADD: 5459 case ISD::FMUL: 5460 case ISD::FDIV: 5461 case ISD::FREM: 5462 // If both operands are undef, the result is undef. If 1 operand is undef, 5463 // the result is NaN. This should match the behavior of the IR optimizer. 5464 if (N1.isUndef() && N2.isUndef()) 5465 return getUNDEF(VT); 5466 if (N1.isUndef() || N2.isUndef()) 5467 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5468 } 5469 return SDValue(); 5470 } 5471 5472 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5473 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5474 5475 // There's no need to assert on a byte-aligned pointer. All pointers are at 5476 // least byte aligned. 5477 if (A == Align(1)) 5478 return Val; 5479 5480 FoldingSetNodeID ID; 5481 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5482 ID.AddInteger(A.value()); 5483 5484 void *IP = nullptr; 5485 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5486 return SDValue(E, 0); 5487 5488 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5489 Val.getValueType(), A); 5490 createOperands(N, {Val}); 5491 5492 CSEMap.InsertNode(N, IP); 5493 InsertNode(N); 5494 5495 SDValue V(N, 0); 5496 NewSDValueDbgMsg(V, "Creating new node: ", this); 5497 return V; 5498 } 5499 5500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5501 SDValue N1, SDValue N2) { 5502 SDNodeFlags Flags; 5503 if (Inserter) 5504 Flags = Inserter->getFlags(); 5505 return getNode(Opcode, DL, VT, N1, N2, Flags); 5506 } 5507 5508 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5509 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5510 assert(N1.getOpcode() != ISD::DELETED_NODE && 5511 N2.getOpcode() != ISD::DELETED_NODE && 5512 "Operand is DELETED_NODE!"); 5513 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5514 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5515 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5516 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5517 5518 // Canonicalize constant to RHS if commutative. 5519 if (TLI->isCommutativeBinOp(Opcode)) { 5520 if (N1C && !N2C) { 5521 std::swap(N1C, N2C); 5522 std::swap(N1, N2); 5523 } else if (N1CFP && !N2CFP) { 5524 std::swap(N1CFP, N2CFP); 5525 std::swap(N1, N2); 5526 } 5527 } 5528 5529 switch (Opcode) { 5530 default: break; 5531 case ISD::TokenFactor: 5532 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5533 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5534 // Fold trivial token factors. 5535 if (N1.getOpcode() == ISD::EntryToken) return N2; 5536 if (N2.getOpcode() == ISD::EntryToken) return N1; 5537 if (N1 == N2) return N1; 5538 break; 5539 case ISD::BUILD_VECTOR: { 5540 // Attempt to simplify BUILD_VECTOR. 5541 SDValue Ops[] = {N1, N2}; 5542 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5543 return V; 5544 break; 5545 } 5546 case ISD::CONCAT_VECTORS: { 5547 SDValue Ops[] = {N1, N2}; 5548 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5549 return V; 5550 break; 5551 } 5552 case ISD::AND: 5553 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5554 assert(N1.getValueType() == N2.getValueType() && 5555 N1.getValueType() == VT && "Binary operator types must match!"); 5556 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5557 // worth handling here. 5558 if (N2C && N2C->isZero()) 5559 return N2; 5560 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5561 return N1; 5562 break; 5563 case ISD::OR: 5564 case ISD::XOR: 5565 case ISD::ADD: 5566 case ISD::SUB: 5567 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5568 assert(N1.getValueType() == N2.getValueType() && 5569 N1.getValueType() == VT && "Binary operator types must match!"); 5570 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5571 // it's worth handling here. 5572 if (N2C && N2C->isZero()) 5573 return N1; 5574 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5575 VT.getVectorElementType() == MVT::i1) 5576 return getNode(ISD::XOR, DL, VT, N1, N2); 5577 break; 5578 case ISD::MUL: 5579 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5580 assert(N1.getValueType() == N2.getValueType() && 5581 N1.getValueType() == VT && "Binary operator types must match!"); 5582 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5583 return getNode(ISD::AND, DL, VT, N1, N2); 5584 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5585 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5586 const APInt &N2CImm = N2C->getAPIntValue(); 5587 return getVScale(DL, VT, MulImm * N2CImm); 5588 } 5589 break; 5590 case ISD::UDIV: 5591 case ISD::UREM: 5592 case ISD::MULHU: 5593 case ISD::MULHS: 5594 case ISD::SDIV: 5595 case ISD::SREM: 5596 case ISD::SADDSAT: 5597 case ISD::SSUBSAT: 5598 case ISD::UADDSAT: 5599 case ISD::USUBSAT: 5600 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5601 assert(N1.getValueType() == N2.getValueType() && 5602 N1.getValueType() == VT && "Binary operator types must match!"); 5603 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5604 // fold (add_sat x, y) -> (or x, y) for bool types. 5605 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5606 return getNode(ISD::OR, DL, VT, N1, N2); 5607 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5608 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5609 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5610 } 5611 break; 5612 case ISD::SMIN: 5613 case ISD::UMAX: 5614 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5615 assert(N1.getValueType() == N2.getValueType() && 5616 N1.getValueType() == VT && "Binary operator types must match!"); 5617 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5618 return getNode(ISD::OR, DL, VT, N1, N2); 5619 break; 5620 case ISD::SMAX: 5621 case ISD::UMIN: 5622 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5623 assert(N1.getValueType() == N2.getValueType() && 5624 N1.getValueType() == VT && "Binary operator types must match!"); 5625 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5626 return getNode(ISD::AND, DL, VT, N1, N2); 5627 break; 5628 case ISD::FADD: 5629 case ISD::FSUB: 5630 case ISD::FMUL: 5631 case ISD::FDIV: 5632 case ISD::FREM: 5633 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5634 assert(N1.getValueType() == N2.getValueType() && 5635 N1.getValueType() == VT && "Binary operator types must match!"); 5636 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5637 return V; 5638 break; 5639 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5640 assert(N1.getValueType() == VT && 5641 N1.getValueType().isFloatingPoint() && 5642 N2.getValueType().isFloatingPoint() && 5643 "Invalid FCOPYSIGN!"); 5644 break; 5645 case ISD::SHL: 5646 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5647 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5648 const APInt &ShiftImm = N2C->getAPIntValue(); 5649 return getVScale(DL, VT, MulImm << ShiftImm); 5650 } 5651 LLVM_FALLTHROUGH; 5652 case ISD::SRA: 5653 case ISD::SRL: 5654 if (SDValue V = simplifyShift(N1, N2)) 5655 return V; 5656 LLVM_FALLTHROUGH; 5657 case ISD::ROTL: 5658 case ISD::ROTR: 5659 assert(VT == N1.getValueType() && 5660 "Shift operators return type must be the same as their first arg"); 5661 assert(VT.isInteger() && N2.getValueType().isInteger() && 5662 "Shifts only work on integers"); 5663 assert((!VT.isVector() || VT == N2.getValueType()) && 5664 "Vector shift amounts must be in the same as their first arg"); 5665 // Verify that the shift amount VT is big enough to hold valid shift 5666 // amounts. This catches things like trying to shift an i1024 value by an 5667 // i8, which is easy to fall into in generic code that uses 5668 // TLI.getShiftAmount(). 5669 assert(N2.getValueType().getScalarSizeInBits() >= 5670 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5671 "Invalid use of small shift amount with oversized value!"); 5672 5673 // Always fold shifts of i1 values so the code generator doesn't need to 5674 // handle them. Since we know the size of the shift has to be less than the 5675 // size of the value, the shift/rotate count is guaranteed to be zero. 5676 if (VT == MVT::i1) 5677 return N1; 5678 if (N2C && N2C->isZero()) 5679 return N1; 5680 break; 5681 case ISD::FP_ROUND: 5682 assert(VT.isFloatingPoint() && 5683 N1.getValueType().isFloatingPoint() && 5684 VT.bitsLE(N1.getValueType()) && 5685 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5686 "Invalid FP_ROUND!"); 5687 if (N1.getValueType() == VT) return N1; // noop conversion. 5688 break; 5689 case ISD::AssertSext: 5690 case ISD::AssertZext: { 5691 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5692 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5693 assert(VT.isInteger() && EVT.isInteger() && 5694 "Cannot *_EXTEND_INREG FP types"); 5695 assert(!EVT.isVector() && 5696 "AssertSExt/AssertZExt type should be the vector element type " 5697 "rather than the vector type!"); 5698 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5699 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5700 break; 5701 } 5702 case ISD::SIGN_EXTEND_INREG: { 5703 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5704 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5705 assert(VT.isInteger() && EVT.isInteger() && 5706 "Cannot *_EXTEND_INREG FP types"); 5707 assert(EVT.isVector() == VT.isVector() && 5708 "SIGN_EXTEND_INREG type should be vector iff the operand " 5709 "type is vector!"); 5710 assert((!EVT.isVector() || 5711 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5712 "Vector element counts must match in SIGN_EXTEND_INREG"); 5713 assert(EVT.bitsLE(VT) && "Not extending!"); 5714 if (EVT == VT) return N1; // Not actually extending 5715 5716 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5717 unsigned FromBits = EVT.getScalarSizeInBits(); 5718 Val <<= Val.getBitWidth() - FromBits; 5719 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5720 return getConstant(Val, DL, ConstantVT); 5721 }; 5722 5723 if (N1C) { 5724 const APInt &Val = N1C->getAPIntValue(); 5725 return SignExtendInReg(Val, VT); 5726 } 5727 5728 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5729 SmallVector<SDValue, 8> Ops; 5730 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5731 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5732 SDValue Op = N1.getOperand(i); 5733 if (Op.isUndef()) { 5734 Ops.push_back(getUNDEF(OpVT)); 5735 continue; 5736 } 5737 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5738 APInt Val = C->getAPIntValue(); 5739 Ops.push_back(SignExtendInReg(Val, OpVT)); 5740 } 5741 return getBuildVector(VT, DL, Ops); 5742 } 5743 break; 5744 } 5745 case ISD::FP_TO_SINT_SAT: 5746 case ISD::FP_TO_UINT_SAT: { 5747 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5748 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5749 assert(N1.getValueType().isVector() == VT.isVector() && 5750 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5751 "vector!"); 5752 assert((!VT.isVector() || VT.getVectorNumElements() == 5753 N1.getValueType().getVectorNumElements()) && 5754 "Vector element counts must match in FP_TO_*INT_SAT"); 5755 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5756 "Type to saturate to must be a scalar."); 5757 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5758 "Not extending!"); 5759 break; 5760 } 5761 case ISD::EXTRACT_VECTOR_ELT: 5762 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5763 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5764 element type of the vector."); 5765 5766 // Extract from an undefined value or using an undefined index is undefined. 5767 if (N1.isUndef() || N2.isUndef()) 5768 return getUNDEF(VT); 5769 5770 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5771 // vectors. For scalable vectors we will provide appropriate support for 5772 // dealing with arbitrary indices. 5773 if (N2C && N1.getValueType().isFixedLengthVector() && 5774 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5775 return getUNDEF(VT); 5776 5777 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5778 // expanding copies of large vectors from registers. This only works for 5779 // fixed length vectors, since we need to know the exact number of 5780 // elements. 5781 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5782 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5783 unsigned Factor = 5784 N1.getOperand(0).getValueType().getVectorNumElements(); 5785 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5786 N1.getOperand(N2C->getZExtValue() / Factor), 5787 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5788 } 5789 5790 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5791 // lowering is expanding large vector constants. 5792 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5793 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5794 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5795 N1.getValueType().isFixedLengthVector()) && 5796 "BUILD_VECTOR used for scalable vectors"); 5797 unsigned Index = 5798 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5799 SDValue Elt = N1.getOperand(Index); 5800 5801 if (VT != Elt.getValueType()) 5802 // If the vector element type is not legal, the BUILD_VECTOR operands 5803 // are promoted and implicitly truncated, and the result implicitly 5804 // extended. Make that explicit here. 5805 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5806 5807 return Elt; 5808 } 5809 5810 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5811 // operations are lowered to scalars. 5812 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5813 // If the indices are the same, return the inserted element else 5814 // if the indices are known different, extract the element from 5815 // the original vector. 5816 SDValue N1Op2 = N1.getOperand(2); 5817 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5818 5819 if (N1Op2C && N2C) { 5820 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5821 if (VT == N1.getOperand(1).getValueType()) 5822 return N1.getOperand(1); 5823 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5824 } 5825 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5826 } 5827 } 5828 5829 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5830 // when vector types are scalarized and v1iX is legal. 5831 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5832 // Here we are completely ignoring the extract element index (N2), 5833 // which is fine for fixed width vectors, since any index other than 0 5834 // is undefined anyway. However, this cannot be ignored for scalable 5835 // vectors - in theory we could support this, but we don't want to do this 5836 // without a profitability check. 5837 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5838 N1.getValueType().isFixedLengthVector() && 5839 N1.getValueType().getVectorNumElements() == 1) { 5840 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5841 N1.getOperand(1)); 5842 } 5843 break; 5844 case ISD::EXTRACT_ELEMENT: 5845 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5846 assert(!N1.getValueType().isVector() && !VT.isVector() && 5847 (N1.getValueType().isInteger() == VT.isInteger()) && 5848 N1.getValueType() != VT && 5849 "Wrong types for EXTRACT_ELEMENT!"); 5850 5851 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5852 // 64-bit integers into 32-bit parts. Instead of building the extract of 5853 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5854 if (N1.getOpcode() == ISD::BUILD_PAIR) 5855 return N1.getOperand(N2C->getZExtValue()); 5856 5857 // EXTRACT_ELEMENT of a constant int is also very common. 5858 if (N1C) { 5859 unsigned ElementSize = VT.getSizeInBits(); 5860 unsigned Shift = ElementSize * N2C->getZExtValue(); 5861 const APInt &Val = N1C->getAPIntValue(); 5862 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5863 } 5864 break; 5865 case ISD::EXTRACT_SUBVECTOR: { 5866 EVT N1VT = N1.getValueType(); 5867 assert(VT.isVector() && N1VT.isVector() && 5868 "Extract subvector VTs must be vectors!"); 5869 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5870 "Extract subvector VTs must have the same element type!"); 5871 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5872 "Cannot extract a scalable vector from a fixed length vector!"); 5873 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5874 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5875 "Extract subvector must be from larger vector to smaller vector!"); 5876 assert(N2C && "Extract subvector index must be a constant"); 5877 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5878 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5879 N1VT.getVectorMinNumElements()) && 5880 "Extract subvector overflow!"); 5881 assert(N2C->getAPIntValue().getBitWidth() == 5882 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5883 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5884 5885 // Trivial extraction. 5886 if (VT == N1VT) 5887 return N1; 5888 5889 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5890 if (N1.isUndef()) 5891 return getUNDEF(VT); 5892 5893 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5894 // the concat have the same type as the extract. 5895 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5896 VT == N1.getOperand(0).getValueType()) { 5897 unsigned Factor = VT.getVectorMinNumElements(); 5898 return N1.getOperand(N2C->getZExtValue() / Factor); 5899 } 5900 5901 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5902 // during shuffle legalization. 5903 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5904 VT == N1.getOperand(1).getValueType()) 5905 return N1.getOperand(1); 5906 break; 5907 } 5908 } 5909 5910 // Perform trivial constant folding. 5911 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5912 return SV; 5913 5914 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5915 return V; 5916 5917 // Canonicalize an UNDEF to the RHS, even over a constant. 5918 if (N1.isUndef()) { 5919 if (TLI->isCommutativeBinOp(Opcode)) { 5920 std::swap(N1, N2); 5921 } else { 5922 switch (Opcode) { 5923 case ISD::SIGN_EXTEND_INREG: 5924 case ISD::SUB: 5925 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5926 case ISD::UDIV: 5927 case ISD::SDIV: 5928 case ISD::UREM: 5929 case ISD::SREM: 5930 case ISD::SSUBSAT: 5931 case ISD::USUBSAT: 5932 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5933 } 5934 } 5935 } 5936 5937 // Fold a bunch of operators when the RHS is undef. 5938 if (N2.isUndef()) { 5939 switch (Opcode) { 5940 case ISD::XOR: 5941 if (N1.isUndef()) 5942 // Handle undef ^ undef -> 0 special case. This is a common 5943 // idiom (misuse). 5944 return getConstant(0, DL, VT); 5945 LLVM_FALLTHROUGH; 5946 case ISD::ADD: 5947 case ISD::SUB: 5948 case ISD::UDIV: 5949 case ISD::SDIV: 5950 case ISD::UREM: 5951 case ISD::SREM: 5952 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5953 case ISD::MUL: 5954 case ISD::AND: 5955 case ISD::SSUBSAT: 5956 case ISD::USUBSAT: 5957 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5958 case ISD::OR: 5959 case ISD::SADDSAT: 5960 case ISD::UADDSAT: 5961 return getAllOnesConstant(DL, VT); 5962 } 5963 } 5964 5965 // Memoize this node if possible. 5966 SDNode *N; 5967 SDVTList VTs = getVTList(VT); 5968 SDValue Ops[] = {N1, N2}; 5969 if (VT != MVT::Glue) { 5970 FoldingSetNodeID ID; 5971 AddNodeIDNode(ID, Opcode, VTs, Ops); 5972 void *IP = nullptr; 5973 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5974 E->intersectFlagsWith(Flags); 5975 return SDValue(E, 0); 5976 } 5977 5978 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5979 N->setFlags(Flags); 5980 createOperands(N, Ops); 5981 CSEMap.InsertNode(N, IP); 5982 } else { 5983 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5984 createOperands(N, Ops); 5985 } 5986 5987 InsertNode(N); 5988 SDValue V = SDValue(N, 0); 5989 NewSDValueDbgMsg(V, "Creating new node: ", this); 5990 return V; 5991 } 5992 5993 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5994 SDValue N1, SDValue N2, SDValue N3) { 5995 SDNodeFlags Flags; 5996 if (Inserter) 5997 Flags = Inserter->getFlags(); 5998 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5999 } 6000 6001 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6002 SDValue N1, SDValue N2, SDValue N3, 6003 const SDNodeFlags Flags) { 6004 assert(N1.getOpcode() != ISD::DELETED_NODE && 6005 N2.getOpcode() != ISD::DELETED_NODE && 6006 N3.getOpcode() != ISD::DELETED_NODE && 6007 "Operand is DELETED_NODE!"); 6008 // Perform various simplifications. 6009 switch (Opcode) { 6010 case ISD::FMA: { 6011 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6012 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6013 N3.getValueType() == VT && "FMA types must match!"); 6014 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6015 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6016 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6017 if (N1CFP && N2CFP && N3CFP) { 6018 APFloat V1 = N1CFP->getValueAPF(); 6019 const APFloat &V2 = N2CFP->getValueAPF(); 6020 const APFloat &V3 = N3CFP->getValueAPF(); 6021 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6022 return getConstantFP(V1, DL, VT); 6023 } 6024 break; 6025 } 6026 case ISD::BUILD_VECTOR: { 6027 // Attempt to simplify BUILD_VECTOR. 6028 SDValue Ops[] = {N1, N2, N3}; 6029 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6030 return V; 6031 break; 6032 } 6033 case ISD::CONCAT_VECTORS: { 6034 SDValue Ops[] = {N1, N2, N3}; 6035 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6036 return V; 6037 break; 6038 } 6039 case ISD::SETCC: { 6040 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6041 assert(N1.getValueType() == N2.getValueType() && 6042 "SETCC operands must have the same type!"); 6043 assert(VT.isVector() == N1.getValueType().isVector() && 6044 "SETCC type should be vector iff the operand type is vector!"); 6045 assert((!VT.isVector() || VT.getVectorElementCount() == 6046 N1.getValueType().getVectorElementCount()) && 6047 "SETCC vector element counts must match!"); 6048 // Use FoldSetCC to simplify SETCC's. 6049 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6050 return V; 6051 // Vector constant folding. 6052 SDValue Ops[] = {N1, N2, N3}; 6053 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6054 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6055 return V; 6056 } 6057 break; 6058 } 6059 case ISD::SELECT: 6060 case ISD::VSELECT: 6061 if (SDValue V = simplifySelect(N1, N2, N3)) 6062 return V; 6063 break; 6064 case ISD::VECTOR_SHUFFLE: 6065 llvm_unreachable("should use getVectorShuffle constructor!"); 6066 case ISD::VECTOR_SPLICE: { 6067 if (cast<ConstantSDNode>(N3)->isNullValue()) 6068 return N1; 6069 break; 6070 } 6071 case ISD::INSERT_VECTOR_ELT: { 6072 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6073 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6074 // for scalable vectors where we will generate appropriate code to 6075 // deal with out-of-bounds cases correctly. 6076 if (N3C && N1.getValueType().isFixedLengthVector() && 6077 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6078 return getUNDEF(VT); 6079 6080 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6081 if (N3.isUndef()) 6082 return getUNDEF(VT); 6083 6084 // If the inserted element is an UNDEF, just use the input vector. 6085 if (N2.isUndef()) 6086 return N1; 6087 6088 break; 6089 } 6090 case ISD::INSERT_SUBVECTOR: { 6091 // Inserting undef into undef is still undef. 6092 if (N1.isUndef() && N2.isUndef()) 6093 return getUNDEF(VT); 6094 6095 EVT N2VT = N2.getValueType(); 6096 assert(VT == N1.getValueType() && 6097 "Dest and insert subvector source types must match!"); 6098 assert(VT.isVector() && N2VT.isVector() && 6099 "Insert subvector VTs must be vectors!"); 6100 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6101 "Cannot insert a scalable vector into a fixed length vector!"); 6102 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6103 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6104 "Insert subvector must be from smaller vector to larger vector!"); 6105 assert(isa<ConstantSDNode>(N3) && 6106 "Insert subvector index must be constant"); 6107 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6108 (N2VT.getVectorMinNumElements() + 6109 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6110 VT.getVectorMinNumElements()) && 6111 "Insert subvector overflow!"); 6112 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6113 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6114 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6115 6116 // Trivial insertion. 6117 if (VT == N2VT) 6118 return N2; 6119 6120 // If this is an insert of an extracted vector into an undef vector, we 6121 // can just use the input to the extract. 6122 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6123 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6124 return N2.getOperand(0); 6125 break; 6126 } 6127 case ISD::BITCAST: 6128 // Fold bit_convert nodes from a type to themselves. 6129 if (N1.getValueType() == VT) 6130 return N1; 6131 break; 6132 } 6133 6134 // Memoize node if it doesn't produce a flag. 6135 SDNode *N; 6136 SDVTList VTs = getVTList(VT); 6137 SDValue Ops[] = {N1, N2, N3}; 6138 if (VT != MVT::Glue) { 6139 FoldingSetNodeID ID; 6140 AddNodeIDNode(ID, Opcode, VTs, Ops); 6141 void *IP = nullptr; 6142 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6143 E->intersectFlagsWith(Flags); 6144 return SDValue(E, 0); 6145 } 6146 6147 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6148 N->setFlags(Flags); 6149 createOperands(N, Ops); 6150 CSEMap.InsertNode(N, IP); 6151 } else { 6152 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6153 createOperands(N, Ops); 6154 } 6155 6156 InsertNode(N); 6157 SDValue V = SDValue(N, 0); 6158 NewSDValueDbgMsg(V, "Creating new node: ", this); 6159 return V; 6160 } 6161 6162 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6163 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6164 SDValue Ops[] = { N1, N2, N3, N4 }; 6165 return getNode(Opcode, DL, VT, Ops); 6166 } 6167 6168 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6169 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6170 SDValue N5) { 6171 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6172 return getNode(Opcode, DL, VT, Ops); 6173 } 6174 6175 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6176 /// the incoming stack arguments to be loaded from the stack. 6177 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6178 SmallVector<SDValue, 8> ArgChains; 6179 6180 // Include the original chain at the beginning of the list. When this is 6181 // used by target LowerCall hooks, this helps legalize find the 6182 // CALLSEQ_BEGIN node. 6183 ArgChains.push_back(Chain); 6184 6185 // Add a chain value for each stack argument. 6186 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6187 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6188 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6189 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6190 if (FI->getIndex() < 0) 6191 ArgChains.push_back(SDValue(L, 1)); 6192 6193 // Build a tokenfactor for all the chains. 6194 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6195 } 6196 6197 /// getMemsetValue - Vectorized representation of the memset value 6198 /// operand. 6199 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6200 const SDLoc &dl) { 6201 assert(!Value.isUndef()); 6202 6203 unsigned NumBits = VT.getScalarSizeInBits(); 6204 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6205 assert(C->getAPIntValue().getBitWidth() == 8); 6206 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6207 if (VT.isInteger()) { 6208 bool IsOpaque = VT.getSizeInBits() > 64 || 6209 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6210 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6211 } 6212 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6213 VT); 6214 } 6215 6216 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6217 EVT IntVT = VT.getScalarType(); 6218 if (!IntVT.isInteger()) 6219 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6220 6221 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6222 if (NumBits > 8) { 6223 // Use a multiplication with 0x010101... to extend the input to the 6224 // required length. 6225 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6226 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6227 DAG.getConstant(Magic, dl, IntVT)); 6228 } 6229 6230 if (VT != Value.getValueType() && !VT.isInteger()) 6231 Value = DAG.getBitcast(VT.getScalarType(), Value); 6232 if (VT != Value.getValueType()) 6233 Value = DAG.getSplatBuildVector(VT, dl, Value); 6234 6235 return Value; 6236 } 6237 6238 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6239 /// used when a memcpy is turned into a memset when the source is a constant 6240 /// string ptr. 6241 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6242 const TargetLowering &TLI, 6243 const ConstantDataArraySlice &Slice) { 6244 // Handle vector with all elements zero. 6245 if (Slice.Array == nullptr) { 6246 if (VT.isInteger()) 6247 return DAG.getConstant(0, dl, VT); 6248 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6249 return DAG.getConstantFP(0.0, dl, VT); 6250 if (VT.isVector()) { 6251 unsigned NumElts = VT.getVectorNumElements(); 6252 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6253 return DAG.getNode(ISD::BITCAST, dl, VT, 6254 DAG.getConstant(0, dl, 6255 EVT::getVectorVT(*DAG.getContext(), 6256 EltVT, NumElts))); 6257 } 6258 llvm_unreachable("Expected type!"); 6259 } 6260 6261 assert(!VT.isVector() && "Can't handle vector type here!"); 6262 unsigned NumVTBits = VT.getSizeInBits(); 6263 unsigned NumVTBytes = NumVTBits / 8; 6264 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6265 6266 APInt Val(NumVTBits, 0); 6267 if (DAG.getDataLayout().isLittleEndian()) { 6268 for (unsigned i = 0; i != NumBytes; ++i) 6269 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6270 } else { 6271 for (unsigned i = 0; i != NumBytes; ++i) 6272 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6273 } 6274 6275 // If the "cost" of materializing the integer immediate is less than the cost 6276 // of a load, then it is cost effective to turn the load into the immediate. 6277 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6278 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6279 return DAG.getConstant(Val, dl, VT); 6280 return SDValue(nullptr, 0); 6281 } 6282 6283 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6284 const SDLoc &DL, 6285 const SDNodeFlags Flags) { 6286 EVT VT = Base.getValueType(); 6287 SDValue Index; 6288 6289 if (Offset.isScalable()) 6290 Index = getVScale(DL, Base.getValueType(), 6291 APInt(Base.getValueSizeInBits().getFixedSize(), 6292 Offset.getKnownMinSize())); 6293 else 6294 Index = getConstant(Offset.getFixedSize(), DL, VT); 6295 6296 return getMemBasePlusOffset(Base, Index, DL, Flags); 6297 } 6298 6299 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6300 const SDLoc &DL, 6301 const SDNodeFlags Flags) { 6302 assert(Offset.getValueType().isInteger()); 6303 EVT BasePtrVT = Ptr.getValueType(); 6304 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6305 } 6306 6307 /// Returns true if memcpy source is constant data. 6308 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6309 uint64_t SrcDelta = 0; 6310 GlobalAddressSDNode *G = nullptr; 6311 if (Src.getOpcode() == ISD::GlobalAddress) 6312 G = cast<GlobalAddressSDNode>(Src); 6313 else if (Src.getOpcode() == ISD::ADD && 6314 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6315 Src.getOperand(1).getOpcode() == ISD::Constant) { 6316 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6317 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6318 } 6319 if (!G) 6320 return false; 6321 6322 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6323 SrcDelta + G->getOffset()); 6324 } 6325 6326 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6327 SelectionDAG &DAG) { 6328 // On Darwin, -Os means optimize for size without hurting performance, so 6329 // only really optimize for size when -Oz (MinSize) is used. 6330 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6331 return MF.getFunction().hasMinSize(); 6332 return DAG.shouldOptForSize(); 6333 } 6334 6335 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6336 SmallVector<SDValue, 32> &OutChains, unsigned From, 6337 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6338 SmallVector<SDValue, 16> &OutStoreChains) { 6339 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6340 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6341 SmallVector<SDValue, 16> GluedLoadChains; 6342 for (unsigned i = From; i < To; ++i) { 6343 OutChains.push_back(OutLoadChains[i]); 6344 GluedLoadChains.push_back(OutLoadChains[i]); 6345 } 6346 6347 // Chain for all loads. 6348 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6349 GluedLoadChains); 6350 6351 for (unsigned i = From; i < To; ++i) { 6352 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6353 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6354 ST->getBasePtr(), ST->getMemoryVT(), 6355 ST->getMemOperand()); 6356 OutChains.push_back(NewStore); 6357 } 6358 } 6359 6360 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6361 SDValue Chain, SDValue Dst, SDValue Src, 6362 uint64_t Size, Align Alignment, 6363 bool isVol, bool AlwaysInline, 6364 MachinePointerInfo DstPtrInfo, 6365 MachinePointerInfo SrcPtrInfo, 6366 const AAMDNodes &AAInfo) { 6367 // Turn a memcpy of undef to nop. 6368 // FIXME: We need to honor volatile even is Src is undef. 6369 if (Src.isUndef()) 6370 return Chain; 6371 6372 // Expand memcpy to a series of load and store ops if the size operand falls 6373 // below a certain threshold. 6374 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6375 // rather than maybe a humongous number of loads and stores. 6376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6377 const DataLayout &DL = DAG.getDataLayout(); 6378 LLVMContext &C = *DAG.getContext(); 6379 std::vector<EVT> MemOps; 6380 bool DstAlignCanChange = false; 6381 MachineFunction &MF = DAG.getMachineFunction(); 6382 MachineFrameInfo &MFI = MF.getFrameInfo(); 6383 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6384 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6385 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6386 DstAlignCanChange = true; 6387 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6388 if (!SrcAlign || Alignment > *SrcAlign) 6389 SrcAlign = Alignment; 6390 assert(SrcAlign && "SrcAlign must be set"); 6391 ConstantDataArraySlice Slice; 6392 // If marked as volatile, perform a copy even when marked as constant. 6393 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6394 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6395 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6396 const MemOp Op = isZeroConstant 6397 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6398 /*IsZeroMemset*/ true, isVol) 6399 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6400 *SrcAlign, isVol, CopyFromConstant); 6401 if (!TLI.findOptimalMemOpLowering( 6402 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6403 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6404 return SDValue(); 6405 6406 if (DstAlignCanChange) { 6407 Type *Ty = MemOps[0].getTypeForEVT(C); 6408 Align NewAlign = DL.getABITypeAlign(Ty); 6409 6410 // Don't promote to an alignment that would require dynamic stack 6411 // realignment. 6412 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6413 if (!TRI->hasStackRealignment(MF)) 6414 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6415 NewAlign = NewAlign / 2; 6416 6417 if (NewAlign > Alignment) { 6418 // Give the stack frame object a larger alignment if needed. 6419 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6420 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6421 Alignment = NewAlign; 6422 } 6423 } 6424 6425 // Prepare AAInfo for loads/stores after lowering this memcpy. 6426 AAMDNodes NewAAInfo = AAInfo; 6427 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6428 6429 MachineMemOperand::Flags MMOFlags = 6430 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6431 SmallVector<SDValue, 16> OutLoadChains; 6432 SmallVector<SDValue, 16> OutStoreChains; 6433 SmallVector<SDValue, 32> OutChains; 6434 unsigned NumMemOps = MemOps.size(); 6435 uint64_t SrcOff = 0, DstOff = 0; 6436 for (unsigned i = 0; i != NumMemOps; ++i) { 6437 EVT VT = MemOps[i]; 6438 unsigned VTSize = VT.getSizeInBits() / 8; 6439 SDValue Value, Store; 6440 6441 if (VTSize > Size) { 6442 // Issuing an unaligned load / store pair that overlaps with the previous 6443 // pair. Adjust the offset accordingly. 6444 assert(i == NumMemOps-1 && i != 0); 6445 SrcOff -= VTSize - Size; 6446 DstOff -= VTSize - Size; 6447 } 6448 6449 if (CopyFromConstant && 6450 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6451 // It's unlikely a store of a vector immediate can be done in a single 6452 // instruction. It would require a load from a constantpool first. 6453 // We only handle zero vectors here. 6454 // FIXME: Handle other cases where store of vector immediate is done in 6455 // a single instruction. 6456 ConstantDataArraySlice SubSlice; 6457 if (SrcOff < Slice.Length) { 6458 SubSlice = Slice; 6459 SubSlice.move(SrcOff); 6460 } else { 6461 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6462 SubSlice.Array = nullptr; 6463 SubSlice.Offset = 0; 6464 SubSlice.Length = VTSize; 6465 } 6466 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6467 if (Value.getNode()) { 6468 Store = DAG.getStore( 6469 Chain, dl, Value, 6470 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6471 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6472 OutChains.push_back(Store); 6473 } 6474 } 6475 6476 if (!Store.getNode()) { 6477 // The type might not be legal for the target. This should only happen 6478 // if the type is smaller than a legal type, as on PPC, so the right 6479 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6480 // to Load/Store if NVT==VT. 6481 // FIXME does the case above also need this? 6482 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6483 assert(NVT.bitsGE(VT)); 6484 6485 bool isDereferenceable = 6486 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6487 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6488 if (isDereferenceable) 6489 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6490 6491 Value = DAG.getExtLoad( 6492 ISD::EXTLOAD, dl, NVT, Chain, 6493 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6494 SrcPtrInfo.getWithOffset(SrcOff), VT, 6495 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6496 OutLoadChains.push_back(Value.getValue(1)); 6497 6498 Store = DAG.getTruncStore( 6499 Chain, dl, Value, 6500 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6501 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6502 OutStoreChains.push_back(Store); 6503 } 6504 SrcOff += VTSize; 6505 DstOff += VTSize; 6506 Size -= VTSize; 6507 } 6508 6509 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6510 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6511 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6512 6513 if (NumLdStInMemcpy) { 6514 // It may be that memcpy might be converted to memset if it's memcpy 6515 // of constants. In such a case, we won't have loads and stores, but 6516 // just stores. In the absence of loads, there is nothing to gang up. 6517 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6518 // If target does not care, just leave as it. 6519 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6520 OutChains.push_back(OutLoadChains[i]); 6521 OutChains.push_back(OutStoreChains[i]); 6522 } 6523 } else { 6524 // Ld/St less than/equal limit set by target. 6525 if (NumLdStInMemcpy <= GluedLdStLimit) { 6526 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6527 NumLdStInMemcpy, OutLoadChains, 6528 OutStoreChains); 6529 } else { 6530 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6531 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6532 unsigned GlueIter = 0; 6533 6534 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6535 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6536 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6537 6538 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6539 OutLoadChains, OutStoreChains); 6540 GlueIter += GluedLdStLimit; 6541 } 6542 6543 // Residual ld/st. 6544 if (RemainingLdStInMemcpy) { 6545 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6546 RemainingLdStInMemcpy, OutLoadChains, 6547 OutStoreChains); 6548 } 6549 } 6550 } 6551 } 6552 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6553 } 6554 6555 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6556 SDValue Chain, SDValue Dst, SDValue Src, 6557 uint64_t Size, Align Alignment, 6558 bool isVol, bool AlwaysInline, 6559 MachinePointerInfo DstPtrInfo, 6560 MachinePointerInfo SrcPtrInfo, 6561 const AAMDNodes &AAInfo) { 6562 // Turn a memmove of undef to nop. 6563 // FIXME: We need to honor volatile even is Src is undef. 6564 if (Src.isUndef()) 6565 return Chain; 6566 6567 // Expand memmove to a series of load and store ops if the size operand falls 6568 // below a certain threshold. 6569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6570 const DataLayout &DL = DAG.getDataLayout(); 6571 LLVMContext &C = *DAG.getContext(); 6572 std::vector<EVT> MemOps; 6573 bool DstAlignCanChange = false; 6574 MachineFunction &MF = DAG.getMachineFunction(); 6575 MachineFrameInfo &MFI = MF.getFrameInfo(); 6576 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6577 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6578 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6579 DstAlignCanChange = true; 6580 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6581 if (!SrcAlign || Alignment > *SrcAlign) 6582 SrcAlign = Alignment; 6583 assert(SrcAlign && "SrcAlign must be set"); 6584 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6585 if (!TLI.findOptimalMemOpLowering( 6586 MemOps, Limit, 6587 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6588 /*IsVolatile*/ true), 6589 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6590 MF.getFunction().getAttributes())) 6591 return SDValue(); 6592 6593 if (DstAlignCanChange) { 6594 Type *Ty = MemOps[0].getTypeForEVT(C); 6595 Align NewAlign = DL.getABITypeAlign(Ty); 6596 if (NewAlign > Alignment) { 6597 // Give the stack frame object a larger alignment if needed. 6598 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6599 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6600 Alignment = NewAlign; 6601 } 6602 } 6603 6604 // Prepare AAInfo for loads/stores after lowering this memmove. 6605 AAMDNodes NewAAInfo = AAInfo; 6606 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6607 6608 MachineMemOperand::Flags MMOFlags = 6609 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6610 uint64_t SrcOff = 0, DstOff = 0; 6611 SmallVector<SDValue, 8> LoadValues; 6612 SmallVector<SDValue, 8> LoadChains; 6613 SmallVector<SDValue, 8> OutChains; 6614 unsigned NumMemOps = MemOps.size(); 6615 for (unsigned i = 0; i < NumMemOps; i++) { 6616 EVT VT = MemOps[i]; 6617 unsigned VTSize = VT.getSizeInBits() / 8; 6618 SDValue Value; 6619 6620 bool isDereferenceable = 6621 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6622 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6623 if (isDereferenceable) 6624 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6625 6626 Value = DAG.getLoad( 6627 VT, dl, Chain, 6628 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6629 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6630 LoadValues.push_back(Value); 6631 LoadChains.push_back(Value.getValue(1)); 6632 SrcOff += VTSize; 6633 } 6634 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6635 OutChains.clear(); 6636 for (unsigned i = 0; i < NumMemOps; i++) { 6637 EVT VT = MemOps[i]; 6638 unsigned VTSize = VT.getSizeInBits() / 8; 6639 SDValue Store; 6640 6641 Store = DAG.getStore( 6642 Chain, dl, LoadValues[i], 6643 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6644 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6645 OutChains.push_back(Store); 6646 DstOff += VTSize; 6647 } 6648 6649 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6650 } 6651 6652 /// Lower the call to 'memset' intrinsic function into a series of store 6653 /// operations. 6654 /// 6655 /// \param DAG Selection DAG where lowered code is placed. 6656 /// \param dl Link to corresponding IR location. 6657 /// \param Chain Control flow dependency. 6658 /// \param Dst Pointer to destination memory location. 6659 /// \param Src Value of byte to write into the memory. 6660 /// \param Size Number of bytes to write. 6661 /// \param Alignment Alignment of the destination in bytes. 6662 /// \param isVol True if destination is volatile. 6663 /// \param DstPtrInfo IR information on the memory pointer. 6664 /// \returns New head in the control flow, if lowering was successful, empty 6665 /// SDValue otherwise. 6666 /// 6667 /// The function tries to replace 'llvm.memset' intrinsic with several store 6668 /// operations and value calculation code. This is usually profitable for small 6669 /// memory size. 6670 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6671 SDValue Chain, SDValue Dst, SDValue Src, 6672 uint64_t Size, Align Alignment, bool isVol, 6673 MachinePointerInfo DstPtrInfo, 6674 const AAMDNodes &AAInfo) { 6675 // Turn a memset of undef to nop. 6676 // FIXME: We need to honor volatile even is Src is undef. 6677 if (Src.isUndef()) 6678 return Chain; 6679 6680 // Expand memset to a series of load/store ops if the size operand 6681 // falls below a certain threshold. 6682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6683 std::vector<EVT> MemOps; 6684 bool DstAlignCanChange = false; 6685 MachineFunction &MF = DAG.getMachineFunction(); 6686 MachineFrameInfo &MFI = MF.getFrameInfo(); 6687 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6688 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6689 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6690 DstAlignCanChange = true; 6691 bool IsZeroVal = 6692 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6693 if (!TLI.findOptimalMemOpLowering( 6694 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6695 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6696 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6697 return SDValue(); 6698 6699 if (DstAlignCanChange) { 6700 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6701 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6702 if (NewAlign > Alignment) { 6703 // Give the stack frame object a larger alignment if needed. 6704 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6705 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6706 Alignment = NewAlign; 6707 } 6708 } 6709 6710 SmallVector<SDValue, 8> OutChains; 6711 uint64_t DstOff = 0; 6712 unsigned NumMemOps = MemOps.size(); 6713 6714 // Find the largest store and generate the bit pattern for it. 6715 EVT LargestVT = MemOps[0]; 6716 for (unsigned i = 1; i < NumMemOps; i++) 6717 if (MemOps[i].bitsGT(LargestVT)) 6718 LargestVT = MemOps[i]; 6719 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6720 6721 // Prepare AAInfo for loads/stores after lowering this memset. 6722 AAMDNodes NewAAInfo = AAInfo; 6723 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6724 6725 for (unsigned i = 0; i < NumMemOps; i++) { 6726 EVT VT = MemOps[i]; 6727 unsigned VTSize = VT.getSizeInBits() / 8; 6728 if (VTSize > Size) { 6729 // Issuing an unaligned load / store pair that overlaps with the previous 6730 // pair. Adjust the offset accordingly. 6731 assert(i == NumMemOps-1 && i != 0); 6732 DstOff -= VTSize - Size; 6733 } 6734 6735 // If this store is smaller than the largest store see whether we can get 6736 // the smaller value for free with a truncate. 6737 SDValue Value = MemSetValue; 6738 if (VT.bitsLT(LargestVT)) { 6739 if (!LargestVT.isVector() && !VT.isVector() && 6740 TLI.isTruncateFree(LargestVT, VT)) 6741 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6742 else 6743 Value = getMemsetValue(Src, VT, DAG, dl); 6744 } 6745 assert(Value.getValueType() == VT && "Value with wrong type."); 6746 SDValue Store = DAG.getStore( 6747 Chain, dl, Value, 6748 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6749 DstPtrInfo.getWithOffset(DstOff), Alignment, 6750 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6751 NewAAInfo); 6752 OutChains.push_back(Store); 6753 DstOff += VT.getSizeInBits() / 8; 6754 Size -= VTSize; 6755 } 6756 6757 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6758 } 6759 6760 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6761 unsigned AS) { 6762 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6763 // pointer operands can be losslessly bitcasted to pointers of address space 0 6764 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6765 report_fatal_error("cannot lower memory intrinsic in address space " + 6766 Twine(AS)); 6767 } 6768 } 6769 6770 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6771 SDValue Src, SDValue Size, Align Alignment, 6772 bool isVol, bool AlwaysInline, bool isTailCall, 6773 MachinePointerInfo DstPtrInfo, 6774 MachinePointerInfo SrcPtrInfo, 6775 const AAMDNodes &AAInfo) { 6776 // Check to see if we should lower the memcpy to loads and stores first. 6777 // For cases within the target-specified limits, this is the best choice. 6778 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6779 if (ConstantSize) { 6780 // Memcpy with size zero? Just return the original chain. 6781 if (ConstantSize->isZero()) 6782 return Chain; 6783 6784 SDValue Result = getMemcpyLoadsAndStores( 6785 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6786 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6787 if (Result.getNode()) 6788 return Result; 6789 } 6790 6791 // Then check to see if we should lower the memcpy with target-specific 6792 // code. If the target chooses to do this, this is the next best. 6793 if (TSI) { 6794 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6795 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6796 DstPtrInfo, SrcPtrInfo); 6797 if (Result.getNode()) 6798 return Result; 6799 } 6800 6801 // If we really need inline code and the target declined to provide it, 6802 // use a (potentially long) sequence of loads and stores. 6803 if (AlwaysInline) { 6804 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6805 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6806 ConstantSize->getZExtValue(), Alignment, 6807 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6808 } 6809 6810 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6811 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6812 6813 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6814 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6815 // respect volatile, so they may do things like read or write memory 6816 // beyond the given memory regions. But fixing this isn't easy, and most 6817 // people don't care. 6818 6819 // Emit a library call. 6820 TargetLowering::ArgListTy Args; 6821 TargetLowering::ArgListEntry Entry; 6822 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6823 Entry.Node = Dst; Args.push_back(Entry); 6824 Entry.Node = Src; Args.push_back(Entry); 6825 6826 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6827 Entry.Node = Size; Args.push_back(Entry); 6828 // FIXME: pass in SDLoc 6829 TargetLowering::CallLoweringInfo CLI(*this); 6830 CLI.setDebugLoc(dl) 6831 .setChain(Chain) 6832 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6833 Dst.getValueType().getTypeForEVT(*getContext()), 6834 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6835 TLI->getPointerTy(getDataLayout())), 6836 std::move(Args)) 6837 .setDiscardResult() 6838 .setTailCall(isTailCall); 6839 6840 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6841 return CallResult.second; 6842 } 6843 6844 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6845 SDValue Dst, unsigned DstAlign, 6846 SDValue Src, unsigned SrcAlign, 6847 SDValue Size, Type *SizeTy, 6848 unsigned ElemSz, bool isTailCall, 6849 MachinePointerInfo DstPtrInfo, 6850 MachinePointerInfo SrcPtrInfo) { 6851 // Emit a library call. 6852 TargetLowering::ArgListTy Args; 6853 TargetLowering::ArgListEntry Entry; 6854 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6855 Entry.Node = Dst; 6856 Args.push_back(Entry); 6857 6858 Entry.Node = Src; 6859 Args.push_back(Entry); 6860 6861 Entry.Ty = SizeTy; 6862 Entry.Node = Size; 6863 Args.push_back(Entry); 6864 6865 RTLIB::Libcall LibraryCall = 6866 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6867 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6868 report_fatal_error("Unsupported element size"); 6869 6870 TargetLowering::CallLoweringInfo CLI(*this); 6871 CLI.setDebugLoc(dl) 6872 .setChain(Chain) 6873 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6874 Type::getVoidTy(*getContext()), 6875 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6876 TLI->getPointerTy(getDataLayout())), 6877 std::move(Args)) 6878 .setDiscardResult() 6879 .setTailCall(isTailCall); 6880 6881 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6882 return CallResult.second; 6883 } 6884 6885 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6886 SDValue Src, SDValue Size, Align Alignment, 6887 bool isVol, bool isTailCall, 6888 MachinePointerInfo DstPtrInfo, 6889 MachinePointerInfo SrcPtrInfo, 6890 const AAMDNodes &AAInfo) { 6891 // Check to see if we should lower the memmove to loads and stores first. 6892 // For cases within the target-specified limits, this is the best choice. 6893 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6894 if (ConstantSize) { 6895 // Memmove with size zero? Just return the original chain. 6896 if (ConstantSize->isZero()) 6897 return Chain; 6898 6899 SDValue Result = getMemmoveLoadsAndStores( 6900 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6901 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6902 if (Result.getNode()) 6903 return Result; 6904 } 6905 6906 // Then check to see if we should lower the memmove with target-specific 6907 // code. If the target chooses to do this, this is the next best. 6908 if (TSI) { 6909 SDValue Result = 6910 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6911 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6912 if (Result.getNode()) 6913 return Result; 6914 } 6915 6916 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6917 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6918 6919 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6920 // not be safe. See memcpy above for more details. 6921 6922 // Emit a library call. 6923 TargetLowering::ArgListTy Args; 6924 TargetLowering::ArgListEntry Entry; 6925 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6926 Entry.Node = Dst; Args.push_back(Entry); 6927 Entry.Node = Src; Args.push_back(Entry); 6928 6929 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6930 Entry.Node = Size; Args.push_back(Entry); 6931 // FIXME: pass in SDLoc 6932 TargetLowering::CallLoweringInfo CLI(*this); 6933 CLI.setDebugLoc(dl) 6934 .setChain(Chain) 6935 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6936 Dst.getValueType().getTypeForEVT(*getContext()), 6937 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6938 TLI->getPointerTy(getDataLayout())), 6939 std::move(Args)) 6940 .setDiscardResult() 6941 .setTailCall(isTailCall); 6942 6943 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6944 return CallResult.second; 6945 } 6946 6947 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6948 SDValue Dst, unsigned DstAlign, 6949 SDValue Src, unsigned SrcAlign, 6950 SDValue Size, Type *SizeTy, 6951 unsigned ElemSz, bool isTailCall, 6952 MachinePointerInfo DstPtrInfo, 6953 MachinePointerInfo SrcPtrInfo) { 6954 // Emit a library call. 6955 TargetLowering::ArgListTy Args; 6956 TargetLowering::ArgListEntry Entry; 6957 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6958 Entry.Node = Dst; 6959 Args.push_back(Entry); 6960 6961 Entry.Node = Src; 6962 Args.push_back(Entry); 6963 6964 Entry.Ty = SizeTy; 6965 Entry.Node = Size; 6966 Args.push_back(Entry); 6967 6968 RTLIB::Libcall LibraryCall = 6969 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6970 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6971 report_fatal_error("Unsupported element size"); 6972 6973 TargetLowering::CallLoweringInfo CLI(*this); 6974 CLI.setDebugLoc(dl) 6975 .setChain(Chain) 6976 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6977 Type::getVoidTy(*getContext()), 6978 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6979 TLI->getPointerTy(getDataLayout())), 6980 std::move(Args)) 6981 .setDiscardResult() 6982 .setTailCall(isTailCall); 6983 6984 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6985 return CallResult.second; 6986 } 6987 6988 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6989 SDValue Src, SDValue Size, Align Alignment, 6990 bool isVol, bool isTailCall, 6991 MachinePointerInfo DstPtrInfo, 6992 const AAMDNodes &AAInfo) { 6993 // Check to see if we should lower the memset to stores first. 6994 // For cases within the target-specified limits, this is the best choice. 6995 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6996 if (ConstantSize) { 6997 // Memset with size zero? Just return the original chain. 6998 if (ConstantSize->isZero()) 6999 return Chain; 7000 7001 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7002 ConstantSize->getZExtValue(), Alignment, 7003 isVol, DstPtrInfo, AAInfo); 7004 7005 if (Result.getNode()) 7006 return Result; 7007 } 7008 7009 // Then check to see if we should lower the memset with target-specific 7010 // code. If the target chooses to do this, this is the next best. 7011 if (TSI) { 7012 SDValue Result = TSI->EmitTargetCodeForMemset( 7013 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7014 if (Result.getNode()) 7015 return Result; 7016 } 7017 7018 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7019 7020 // Emit a library call. 7021 TargetLowering::ArgListTy Args; 7022 TargetLowering::ArgListEntry Entry; 7023 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7024 Args.push_back(Entry); 7025 Entry.Node = Src; 7026 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7027 Args.push_back(Entry); 7028 Entry.Node = Size; 7029 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7030 Args.push_back(Entry); 7031 7032 // FIXME: pass in SDLoc 7033 TargetLowering::CallLoweringInfo CLI(*this); 7034 CLI.setDebugLoc(dl) 7035 .setChain(Chain) 7036 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7037 Dst.getValueType().getTypeForEVT(*getContext()), 7038 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7039 TLI->getPointerTy(getDataLayout())), 7040 std::move(Args)) 7041 .setDiscardResult() 7042 .setTailCall(isTailCall); 7043 7044 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7045 return CallResult.second; 7046 } 7047 7048 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7049 SDValue Dst, unsigned DstAlign, 7050 SDValue Value, SDValue Size, Type *SizeTy, 7051 unsigned ElemSz, bool isTailCall, 7052 MachinePointerInfo DstPtrInfo) { 7053 // Emit a library call. 7054 TargetLowering::ArgListTy Args; 7055 TargetLowering::ArgListEntry Entry; 7056 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7057 Entry.Node = Dst; 7058 Args.push_back(Entry); 7059 7060 Entry.Ty = Type::getInt8Ty(*getContext()); 7061 Entry.Node = Value; 7062 Args.push_back(Entry); 7063 7064 Entry.Ty = SizeTy; 7065 Entry.Node = Size; 7066 Args.push_back(Entry); 7067 7068 RTLIB::Libcall LibraryCall = 7069 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7070 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7071 report_fatal_error("Unsupported element size"); 7072 7073 TargetLowering::CallLoweringInfo CLI(*this); 7074 CLI.setDebugLoc(dl) 7075 .setChain(Chain) 7076 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7077 Type::getVoidTy(*getContext()), 7078 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7079 TLI->getPointerTy(getDataLayout())), 7080 std::move(Args)) 7081 .setDiscardResult() 7082 .setTailCall(isTailCall); 7083 7084 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7085 return CallResult.second; 7086 } 7087 7088 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7089 SDVTList VTList, ArrayRef<SDValue> Ops, 7090 MachineMemOperand *MMO) { 7091 FoldingSetNodeID ID; 7092 ID.AddInteger(MemVT.getRawBits()); 7093 AddNodeIDNode(ID, Opcode, VTList, Ops); 7094 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7095 void* IP = nullptr; 7096 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7097 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7098 return SDValue(E, 0); 7099 } 7100 7101 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7102 VTList, MemVT, MMO); 7103 createOperands(N, Ops); 7104 7105 CSEMap.InsertNode(N, IP); 7106 InsertNode(N); 7107 return SDValue(N, 0); 7108 } 7109 7110 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7111 EVT MemVT, SDVTList VTs, SDValue Chain, 7112 SDValue Ptr, SDValue Cmp, SDValue Swp, 7113 MachineMemOperand *MMO) { 7114 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7115 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7116 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7117 7118 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7119 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7120 } 7121 7122 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7123 SDValue Chain, SDValue Ptr, SDValue Val, 7124 MachineMemOperand *MMO) { 7125 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7126 Opcode == ISD::ATOMIC_LOAD_SUB || 7127 Opcode == ISD::ATOMIC_LOAD_AND || 7128 Opcode == ISD::ATOMIC_LOAD_CLR || 7129 Opcode == ISD::ATOMIC_LOAD_OR || 7130 Opcode == ISD::ATOMIC_LOAD_XOR || 7131 Opcode == ISD::ATOMIC_LOAD_NAND || 7132 Opcode == ISD::ATOMIC_LOAD_MIN || 7133 Opcode == ISD::ATOMIC_LOAD_MAX || 7134 Opcode == ISD::ATOMIC_LOAD_UMIN || 7135 Opcode == ISD::ATOMIC_LOAD_UMAX || 7136 Opcode == ISD::ATOMIC_LOAD_FADD || 7137 Opcode == ISD::ATOMIC_LOAD_FSUB || 7138 Opcode == ISD::ATOMIC_SWAP || 7139 Opcode == ISD::ATOMIC_STORE) && 7140 "Invalid Atomic Op"); 7141 7142 EVT VT = Val.getValueType(); 7143 7144 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7145 getVTList(VT, MVT::Other); 7146 SDValue Ops[] = {Chain, Ptr, Val}; 7147 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7148 } 7149 7150 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7151 EVT VT, SDValue Chain, SDValue Ptr, 7152 MachineMemOperand *MMO) { 7153 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7154 7155 SDVTList VTs = getVTList(VT, MVT::Other); 7156 SDValue Ops[] = {Chain, Ptr}; 7157 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7158 } 7159 7160 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7161 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7162 if (Ops.size() == 1) 7163 return Ops[0]; 7164 7165 SmallVector<EVT, 4> VTs; 7166 VTs.reserve(Ops.size()); 7167 for (const SDValue &Op : Ops) 7168 VTs.push_back(Op.getValueType()); 7169 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7170 } 7171 7172 SDValue SelectionDAG::getMemIntrinsicNode( 7173 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7174 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7175 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7176 if (!Size && MemVT.isScalableVector()) 7177 Size = MemoryLocation::UnknownSize; 7178 else if (!Size) 7179 Size = MemVT.getStoreSize(); 7180 7181 MachineFunction &MF = getMachineFunction(); 7182 MachineMemOperand *MMO = 7183 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7184 7185 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7186 } 7187 7188 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7189 SDVTList VTList, 7190 ArrayRef<SDValue> Ops, EVT MemVT, 7191 MachineMemOperand *MMO) { 7192 assert((Opcode == ISD::INTRINSIC_VOID || 7193 Opcode == ISD::INTRINSIC_W_CHAIN || 7194 Opcode == ISD::PREFETCH || 7195 ((int)Opcode <= std::numeric_limits<int>::max() && 7196 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7197 "Opcode is not a memory-accessing opcode!"); 7198 7199 // Memoize the node unless it returns a flag. 7200 MemIntrinsicSDNode *N; 7201 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7202 FoldingSetNodeID ID; 7203 AddNodeIDNode(ID, Opcode, VTList, Ops); 7204 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7205 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7206 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7207 void *IP = nullptr; 7208 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7209 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7210 return SDValue(E, 0); 7211 } 7212 7213 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7214 VTList, MemVT, MMO); 7215 createOperands(N, Ops); 7216 7217 CSEMap.InsertNode(N, IP); 7218 } else { 7219 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7220 VTList, MemVT, MMO); 7221 createOperands(N, Ops); 7222 } 7223 InsertNode(N); 7224 SDValue V(N, 0); 7225 NewSDValueDbgMsg(V, "Creating new node: ", this); 7226 return V; 7227 } 7228 7229 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7230 SDValue Chain, int FrameIndex, 7231 int64_t Size, int64_t Offset) { 7232 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7233 const auto VTs = getVTList(MVT::Other); 7234 SDValue Ops[2] = { 7235 Chain, 7236 getFrameIndex(FrameIndex, 7237 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7238 true)}; 7239 7240 FoldingSetNodeID ID; 7241 AddNodeIDNode(ID, Opcode, VTs, Ops); 7242 ID.AddInteger(FrameIndex); 7243 ID.AddInteger(Size); 7244 ID.AddInteger(Offset); 7245 void *IP = nullptr; 7246 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7247 return SDValue(E, 0); 7248 7249 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7250 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7251 createOperands(N, Ops); 7252 CSEMap.InsertNode(N, IP); 7253 InsertNode(N); 7254 SDValue V(N, 0); 7255 NewSDValueDbgMsg(V, "Creating new node: ", this); 7256 return V; 7257 } 7258 7259 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7260 uint64_t Guid, uint64_t Index, 7261 uint32_t Attr) { 7262 const unsigned Opcode = ISD::PSEUDO_PROBE; 7263 const auto VTs = getVTList(MVT::Other); 7264 SDValue Ops[] = {Chain}; 7265 FoldingSetNodeID ID; 7266 AddNodeIDNode(ID, Opcode, VTs, Ops); 7267 ID.AddInteger(Guid); 7268 ID.AddInteger(Index); 7269 void *IP = nullptr; 7270 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7271 return SDValue(E, 0); 7272 7273 auto *N = newSDNode<PseudoProbeSDNode>( 7274 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7275 createOperands(N, Ops); 7276 CSEMap.InsertNode(N, IP); 7277 InsertNode(N); 7278 SDValue V(N, 0); 7279 NewSDValueDbgMsg(V, "Creating new node: ", this); 7280 return V; 7281 } 7282 7283 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7284 /// MachinePointerInfo record from it. This is particularly useful because the 7285 /// code generator has many cases where it doesn't bother passing in a 7286 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7287 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7288 SelectionDAG &DAG, SDValue Ptr, 7289 int64_t Offset = 0) { 7290 // If this is FI+Offset, we can model it. 7291 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7292 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7293 FI->getIndex(), Offset); 7294 7295 // If this is (FI+Offset1)+Offset2, we can model it. 7296 if (Ptr.getOpcode() != ISD::ADD || 7297 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7298 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7299 return Info; 7300 7301 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7302 return MachinePointerInfo::getFixedStack( 7303 DAG.getMachineFunction(), FI, 7304 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7305 } 7306 7307 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7308 /// MachinePointerInfo record from it. This is particularly useful because the 7309 /// code generator has many cases where it doesn't bother passing in a 7310 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7311 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7312 SelectionDAG &DAG, SDValue Ptr, 7313 SDValue OffsetOp) { 7314 // If the 'Offset' value isn't a constant, we can't handle this. 7315 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7316 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7317 if (OffsetOp.isUndef()) 7318 return InferPointerInfo(Info, DAG, Ptr); 7319 return Info; 7320 } 7321 7322 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7323 EVT VT, const SDLoc &dl, SDValue Chain, 7324 SDValue Ptr, SDValue Offset, 7325 MachinePointerInfo PtrInfo, EVT MemVT, 7326 Align Alignment, 7327 MachineMemOperand::Flags MMOFlags, 7328 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7329 assert(Chain.getValueType() == MVT::Other && 7330 "Invalid chain type"); 7331 7332 MMOFlags |= MachineMemOperand::MOLoad; 7333 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7334 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7335 // clients. 7336 if (PtrInfo.V.isNull()) 7337 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7338 7339 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7340 MachineFunction &MF = getMachineFunction(); 7341 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7342 Alignment, AAInfo, Ranges); 7343 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7344 } 7345 7346 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7347 EVT VT, const SDLoc &dl, SDValue Chain, 7348 SDValue Ptr, SDValue Offset, EVT MemVT, 7349 MachineMemOperand *MMO) { 7350 if (VT == MemVT) { 7351 ExtType = ISD::NON_EXTLOAD; 7352 } else if (ExtType == ISD::NON_EXTLOAD) { 7353 assert(VT == MemVT && "Non-extending load from different memory type!"); 7354 } else { 7355 // Extending load. 7356 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7357 "Should only be an extending load, not truncating!"); 7358 assert(VT.isInteger() == MemVT.isInteger() && 7359 "Cannot convert from FP to Int or Int -> FP!"); 7360 assert(VT.isVector() == MemVT.isVector() && 7361 "Cannot use an ext load to convert to or from a vector!"); 7362 assert((!VT.isVector() || 7363 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7364 "Cannot use an ext load to change the number of vector elements!"); 7365 } 7366 7367 bool Indexed = AM != ISD::UNINDEXED; 7368 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7369 7370 SDVTList VTs = Indexed ? 7371 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7372 SDValue Ops[] = { Chain, Ptr, Offset }; 7373 FoldingSetNodeID ID; 7374 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7375 ID.AddInteger(MemVT.getRawBits()); 7376 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7377 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7378 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7379 void *IP = nullptr; 7380 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7381 cast<LoadSDNode>(E)->refineAlignment(MMO); 7382 return SDValue(E, 0); 7383 } 7384 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7385 ExtType, MemVT, MMO); 7386 createOperands(N, Ops); 7387 7388 CSEMap.InsertNode(N, IP); 7389 InsertNode(N); 7390 SDValue V(N, 0); 7391 NewSDValueDbgMsg(V, "Creating new node: ", this); 7392 return V; 7393 } 7394 7395 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7396 SDValue Ptr, MachinePointerInfo PtrInfo, 7397 MaybeAlign Alignment, 7398 MachineMemOperand::Flags MMOFlags, 7399 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7400 SDValue Undef = getUNDEF(Ptr.getValueType()); 7401 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7402 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7403 } 7404 7405 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7406 SDValue Ptr, MachineMemOperand *MMO) { 7407 SDValue Undef = getUNDEF(Ptr.getValueType()); 7408 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7409 VT, MMO); 7410 } 7411 7412 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7413 EVT VT, SDValue Chain, SDValue Ptr, 7414 MachinePointerInfo PtrInfo, EVT MemVT, 7415 MaybeAlign Alignment, 7416 MachineMemOperand::Flags MMOFlags, 7417 const AAMDNodes &AAInfo) { 7418 SDValue Undef = getUNDEF(Ptr.getValueType()); 7419 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7420 MemVT, Alignment, MMOFlags, AAInfo); 7421 } 7422 7423 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7424 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7425 MachineMemOperand *MMO) { 7426 SDValue Undef = getUNDEF(Ptr.getValueType()); 7427 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7428 MemVT, MMO); 7429 } 7430 7431 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7432 SDValue Base, SDValue Offset, 7433 ISD::MemIndexedMode AM) { 7434 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7435 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7436 // Don't propagate the invariant or dereferenceable flags. 7437 auto MMOFlags = 7438 LD->getMemOperand()->getFlags() & 7439 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7440 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7441 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7442 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7443 } 7444 7445 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7446 SDValue Ptr, MachinePointerInfo PtrInfo, 7447 Align Alignment, 7448 MachineMemOperand::Flags MMOFlags, 7449 const AAMDNodes &AAInfo) { 7450 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7451 7452 MMOFlags |= MachineMemOperand::MOStore; 7453 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7454 7455 if (PtrInfo.V.isNull()) 7456 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7457 7458 MachineFunction &MF = getMachineFunction(); 7459 uint64_t Size = 7460 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7461 MachineMemOperand *MMO = 7462 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7463 return getStore(Chain, dl, Val, Ptr, MMO); 7464 } 7465 7466 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7467 SDValue Ptr, MachineMemOperand *MMO) { 7468 assert(Chain.getValueType() == MVT::Other && 7469 "Invalid chain type"); 7470 EVT VT = Val.getValueType(); 7471 SDVTList VTs = getVTList(MVT::Other); 7472 SDValue Undef = getUNDEF(Ptr.getValueType()); 7473 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7474 FoldingSetNodeID ID; 7475 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7476 ID.AddInteger(VT.getRawBits()); 7477 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7478 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7479 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7480 void *IP = nullptr; 7481 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7482 cast<StoreSDNode>(E)->refineAlignment(MMO); 7483 return SDValue(E, 0); 7484 } 7485 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7486 ISD::UNINDEXED, false, VT, MMO); 7487 createOperands(N, Ops); 7488 7489 CSEMap.InsertNode(N, IP); 7490 InsertNode(N); 7491 SDValue V(N, 0); 7492 NewSDValueDbgMsg(V, "Creating new node: ", this); 7493 return V; 7494 } 7495 7496 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7497 SDValue Ptr, MachinePointerInfo PtrInfo, 7498 EVT SVT, Align Alignment, 7499 MachineMemOperand::Flags MMOFlags, 7500 const AAMDNodes &AAInfo) { 7501 assert(Chain.getValueType() == MVT::Other && 7502 "Invalid chain type"); 7503 7504 MMOFlags |= MachineMemOperand::MOStore; 7505 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7506 7507 if (PtrInfo.V.isNull()) 7508 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7509 7510 MachineFunction &MF = getMachineFunction(); 7511 MachineMemOperand *MMO = MF.getMachineMemOperand( 7512 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7513 Alignment, AAInfo); 7514 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7515 } 7516 7517 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7518 SDValue Ptr, EVT SVT, 7519 MachineMemOperand *MMO) { 7520 EVT VT = Val.getValueType(); 7521 7522 assert(Chain.getValueType() == MVT::Other && 7523 "Invalid chain type"); 7524 if (VT == SVT) 7525 return getStore(Chain, dl, Val, Ptr, MMO); 7526 7527 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7528 "Should only be a truncating store, not extending!"); 7529 assert(VT.isInteger() == SVT.isInteger() && 7530 "Can't do FP-INT conversion!"); 7531 assert(VT.isVector() == SVT.isVector() && 7532 "Cannot use trunc store to convert to or from a vector!"); 7533 assert((!VT.isVector() || 7534 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7535 "Cannot use trunc store to change the number of vector elements!"); 7536 7537 SDVTList VTs = getVTList(MVT::Other); 7538 SDValue Undef = getUNDEF(Ptr.getValueType()); 7539 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7540 FoldingSetNodeID ID; 7541 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7542 ID.AddInteger(SVT.getRawBits()); 7543 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7544 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7545 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7546 void *IP = nullptr; 7547 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7548 cast<StoreSDNode>(E)->refineAlignment(MMO); 7549 return SDValue(E, 0); 7550 } 7551 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7552 ISD::UNINDEXED, true, SVT, MMO); 7553 createOperands(N, Ops); 7554 7555 CSEMap.InsertNode(N, IP); 7556 InsertNode(N); 7557 SDValue V(N, 0); 7558 NewSDValueDbgMsg(V, "Creating new node: ", this); 7559 return V; 7560 } 7561 7562 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7563 SDValue Base, SDValue Offset, 7564 ISD::MemIndexedMode AM) { 7565 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7566 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7567 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7568 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7569 FoldingSetNodeID ID; 7570 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7572 ID.AddInteger(ST->getRawSubclassData()); 7573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7574 void *IP = nullptr; 7575 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7576 return SDValue(E, 0); 7577 7578 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7579 ST->isTruncatingStore(), ST->getMemoryVT(), 7580 ST->getMemOperand()); 7581 createOperands(N, Ops); 7582 7583 CSEMap.InsertNode(N, IP); 7584 InsertNode(N); 7585 SDValue V(N, 0); 7586 NewSDValueDbgMsg(V, "Creating new node: ", this); 7587 return V; 7588 } 7589 7590 SDValue SelectionDAG::getLoadVP( 7591 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7592 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7593 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7594 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7595 const MDNode *Ranges, bool IsExpanding) { 7596 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7597 7598 MMOFlags |= MachineMemOperand::MOLoad; 7599 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7600 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7601 // clients. 7602 if (PtrInfo.V.isNull()) 7603 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7604 7605 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7606 MachineFunction &MF = getMachineFunction(); 7607 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7608 Alignment, AAInfo, Ranges); 7609 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7610 MMO, IsExpanding); 7611 } 7612 7613 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7614 ISD::LoadExtType ExtType, EVT VT, 7615 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7616 SDValue Offset, SDValue Mask, SDValue EVL, 7617 EVT MemVT, MachineMemOperand *MMO, 7618 bool IsExpanding) { 7619 if (VT == MemVT) { 7620 ExtType = ISD::NON_EXTLOAD; 7621 } else if (ExtType == ISD::NON_EXTLOAD) { 7622 assert(VT == MemVT && "Non-extending load from different memory type!"); 7623 } else { 7624 // Extending load. 7625 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7626 "Should only be an extending load, not truncating!"); 7627 assert(VT.isInteger() == MemVT.isInteger() && 7628 "Cannot convert from FP to Int or Int -> FP!"); 7629 assert(VT.isVector() == MemVT.isVector() && 7630 "Cannot use an ext load to convert to or from a vector!"); 7631 assert((!VT.isVector() || 7632 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7633 "Cannot use an ext load to change the number of vector elements!"); 7634 } 7635 7636 bool Indexed = AM != ISD::UNINDEXED; 7637 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7638 7639 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7640 : getVTList(VT, MVT::Other); 7641 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7642 FoldingSetNodeID ID; 7643 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7644 ID.AddInteger(VT.getRawBits()); 7645 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7646 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7647 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7648 void *IP = nullptr; 7649 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7650 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7651 return SDValue(E, 0); 7652 } 7653 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7654 ExtType, IsExpanding, MemVT, MMO); 7655 createOperands(N, Ops); 7656 7657 CSEMap.InsertNode(N, IP); 7658 InsertNode(N); 7659 SDValue V(N, 0); 7660 NewSDValueDbgMsg(V, "Creating new node: ", this); 7661 return V; 7662 } 7663 7664 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7665 SDValue Ptr, SDValue Mask, SDValue EVL, 7666 MachinePointerInfo PtrInfo, 7667 MaybeAlign Alignment, 7668 MachineMemOperand::Flags MMOFlags, 7669 const AAMDNodes &AAInfo, const MDNode *Ranges, 7670 bool IsExpanding) { 7671 SDValue Undef = getUNDEF(Ptr.getValueType()); 7672 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7673 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7674 IsExpanding); 7675 } 7676 7677 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7678 SDValue Ptr, SDValue Mask, SDValue EVL, 7679 MachineMemOperand *MMO, bool IsExpanding) { 7680 SDValue Undef = getUNDEF(Ptr.getValueType()); 7681 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7682 Mask, EVL, VT, MMO, IsExpanding); 7683 } 7684 7685 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7686 EVT VT, SDValue Chain, SDValue Ptr, 7687 SDValue Mask, SDValue EVL, 7688 MachinePointerInfo PtrInfo, EVT MemVT, 7689 MaybeAlign Alignment, 7690 MachineMemOperand::Flags MMOFlags, 7691 const AAMDNodes &AAInfo, bool IsExpanding) { 7692 SDValue Undef = getUNDEF(Ptr.getValueType()); 7693 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7694 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7695 IsExpanding); 7696 } 7697 7698 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7699 EVT VT, SDValue Chain, SDValue Ptr, 7700 SDValue Mask, SDValue EVL, EVT MemVT, 7701 MachineMemOperand *MMO, bool IsExpanding) { 7702 SDValue Undef = getUNDEF(Ptr.getValueType()); 7703 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7704 EVL, MemVT, MMO, IsExpanding); 7705 } 7706 7707 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7708 SDValue Base, SDValue Offset, 7709 ISD::MemIndexedMode AM) { 7710 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7711 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7712 // Don't propagate the invariant or dereferenceable flags. 7713 auto MMOFlags = 7714 LD->getMemOperand()->getFlags() & 7715 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7716 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7717 LD->getChain(), Base, Offset, LD->getMask(), 7718 LD->getVectorLength(), LD->getPointerInfo(), 7719 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7720 nullptr, LD->isExpandingLoad()); 7721 } 7722 7723 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7724 SDValue Ptr, SDValue Mask, SDValue EVL, 7725 MachinePointerInfo PtrInfo, Align Alignment, 7726 MachineMemOperand::Flags MMOFlags, 7727 const AAMDNodes &AAInfo, bool IsCompressing) { 7728 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7729 7730 MMOFlags |= MachineMemOperand::MOStore; 7731 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7732 7733 if (PtrInfo.V.isNull()) 7734 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7735 7736 MachineFunction &MF = getMachineFunction(); 7737 uint64_t Size = 7738 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7739 MachineMemOperand *MMO = 7740 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7741 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7742 } 7743 7744 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7745 SDValue Ptr, SDValue Mask, SDValue EVL, 7746 MachineMemOperand *MMO, bool IsCompressing) { 7747 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7748 EVT VT = Val.getValueType(); 7749 SDVTList VTs = getVTList(MVT::Other); 7750 SDValue Undef = getUNDEF(Ptr.getValueType()); 7751 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7752 FoldingSetNodeID ID; 7753 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7754 ID.AddInteger(VT.getRawBits()); 7755 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7756 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7757 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7758 void *IP = nullptr; 7759 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7760 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7761 return SDValue(E, 0); 7762 } 7763 auto *N = 7764 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7765 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7766 createOperands(N, Ops); 7767 7768 CSEMap.InsertNode(N, IP); 7769 InsertNode(N); 7770 SDValue V(N, 0); 7771 NewSDValueDbgMsg(V, "Creating new node: ", this); 7772 return V; 7773 } 7774 7775 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7776 SDValue Val, SDValue Ptr, SDValue Mask, 7777 SDValue EVL, MachinePointerInfo PtrInfo, 7778 EVT SVT, Align Alignment, 7779 MachineMemOperand::Flags MMOFlags, 7780 const AAMDNodes &AAInfo, 7781 bool IsCompressing) { 7782 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7783 7784 MMOFlags |= MachineMemOperand::MOStore; 7785 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7786 7787 if (PtrInfo.V.isNull()) 7788 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7789 7790 MachineFunction &MF = getMachineFunction(); 7791 MachineMemOperand *MMO = MF.getMachineMemOperand( 7792 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7793 Alignment, AAInfo); 7794 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7795 IsCompressing); 7796 } 7797 7798 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7799 SDValue Val, SDValue Ptr, SDValue Mask, 7800 SDValue EVL, EVT SVT, 7801 MachineMemOperand *MMO, 7802 bool IsCompressing) { 7803 EVT VT = Val.getValueType(); 7804 7805 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7806 if (VT == SVT) 7807 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7808 7809 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7810 "Should only be a truncating store, not extending!"); 7811 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7812 assert(VT.isVector() == SVT.isVector() && 7813 "Cannot use trunc store to convert to or from a vector!"); 7814 assert((!VT.isVector() || 7815 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7816 "Cannot use trunc store to change the number of vector elements!"); 7817 7818 SDVTList VTs = getVTList(MVT::Other); 7819 SDValue Undef = getUNDEF(Ptr.getValueType()); 7820 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7821 FoldingSetNodeID ID; 7822 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7823 ID.AddInteger(SVT.getRawBits()); 7824 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7825 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7826 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7827 void *IP = nullptr; 7828 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7829 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7830 return SDValue(E, 0); 7831 } 7832 auto *N = 7833 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7834 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7835 createOperands(N, Ops); 7836 7837 CSEMap.InsertNode(N, IP); 7838 InsertNode(N); 7839 SDValue V(N, 0); 7840 NewSDValueDbgMsg(V, "Creating new node: ", this); 7841 return V; 7842 } 7843 7844 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7845 SDValue Base, SDValue Offset, 7846 ISD::MemIndexedMode AM) { 7847 auto *ST = cast<VPStoreSDNode>(OrigStore); 7848 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7849 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7850 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7851 Offset, ST->getMask(), ST->getVectorLength()}; 7852 FoldingSetNodeID ID; 7853 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7854 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7855 ID.AddInteger(ST->getRawSubclassData()); 7856 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7857 void *IP = nullptr; 7858 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7859 return SDValue(E, 0); 7860 7861 auto *N = newSDNode<VPStoreSDNode>( 7862 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7863 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7864 createOperands(N, Ops); 7865 7866 CSEMap.InsertNode(N, IP); 7867 InsertNode(N); 7868 SDValue V(N, 0); 7869 NewSDValueDbgMsg(V, "Creating new node: ", this); 7870 return V; 7871 } 7872 7873 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7874 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7875 ISD::MemIndexType IndexType) { 7876 assert(Ops.size() == 6 && "Incompatible number of operands"); 7877 7878 FoldingSetNodeID ID; 7879 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7880 ID.AddInteger(VT.getRawBits()); 7881 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7882 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7883 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7884 void *IP = nullptr; 7885 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7886 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7887 return SDValue(E, 0); 7888 } 7889 7890 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7891 VT, MMO, IndexType); 7892 createOperands(N, Ops); 7893 7894 assert(N->getMask().getValueType().getVectorElementCount() == 7895 N->getValueType(0).getVectorElementCount() && 7896 "Vector width mismatch between mask and data"); 7897 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7898 N->getValueType(0).getVectorElementCount().isScalable() && 7899 "Scalable flags of index and data do not match"); 7900 assert(ElementCount::isKnownGE( 7901 N->getIndex().getValueType().getVectorElementCount(), 7902 N->getValueType(0).getVectorElementCount()) && 7903 "Vector width mismatch between index and data"); 7904 assert(isa<ConstantSDNode>(N->getScale()) && 7905 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7906 "Scale should be a constant power of 2"); 7907 7908 CSEMap.InsertNode(N, IP); 7909 InsertNode(N); 7910 SDValue V(N, 0); 7911 NewSDValueDbgMsg(V, "Creating new node: ", this); 7912 return V; 7913 } 7914 7915 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7916 ArrayRef<SDValue> Ops, 7917 MachineMemOperand *MMO, 7918 ISD::MemIndexType IndexType) { 7919 assert(Ops.size() == 7 && "Incompatible number of operands"); 7920 7921 FoldingSetNodeID ID; 7922 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7923 ID.AddInteger(VT.getRawBits()); 7924 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7925 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7926 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7927 void *IP = nullptr; 7928 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7929 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7930 return SDValue(E, 0); 7931 } 7932 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7933 VT, MMO, IndexType); 7934 createOperands(N, Ops); 7935 7936 assert(N->getMask().getValueType().getVectorElementCount() == 7937 N->getValue().getValueType().getVectorElementCount() && 7938 "Vector width mismatch between mask and data"); 7939 assert( 7940 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7941 N->getValue().getValueType().getVectorElementCount().isScalable() && 7942 "Scalable flags of index and data do not match"); 7943 assert(ElementCount::isKnownGE( 7944 N->getIndex().getValueType().getVectorElementCount(), 7945 N->getValue().getValueType().getVectorElementCount()) && 7946 "Vector width mismatch between index and data"); 7947 assert(isa<ConstantSDNode>(N->getScale()) && 7948 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7949 "Scale should be a constant power of 2"); 7950 7951 CSEMap.InsertNode(N, IP); 7952 InsertNode(N); 7953 SDValue V(N, 0); 7954 NewSDValueDbgMsg(V, "Creating new node: ", this); 7955 return V; 7956 } 7957 7958 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7959 SDValue Base, SDValue Offset, SDValue Mask, 7960 SDValue PassThru, EVT MemVT, 7961 MachineMemOperand *MMO, 7962 ISD::MemIndexedMode AM, 7963 ISD::LoadExtType ExtTy, bool isExpanding) { 7964 bool Indexed = AM != ISD::UNINDEXED; 7965 assert((Indexed || Offset.isUndef()) && 7966 "Unindexed masked load with an offset!"); 7967 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7968 : getVTList(VT, MVT::Other); 7969 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7970 FoldingSetNodeID ID; 7971 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7972 ID.AddInteger(MemVT.getRawBits()); 7973 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7974 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7975 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7976 void *IP = nullptr; 7977 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7978 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7979 return SDValue(E, 0); 7980 } 7981 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7982 AM, ExtTy, isExpanding, MemVT, MMO); 7983 createOperands(N, Ops); 7984 7985 CSEMap.InsertNode(N, IP); 7986 InsertNode(N); 7987 SDValue V(N, 0); 7988 NewSDValueDbgMsg(V, "Creating new node: ", this); 7989 return V; 7990 } 7991 7992 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7993 SDValue Base, SDValue Offset, 7994 ISD::MemIndexedMode AM) { 7995 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7996 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7997 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7998 Offset, LD->getMask(), LD->getPassThru(), 7999 LD->getMemoryVT(), LD->getMemOperand(), AM, 8000 LD->getExtensionType(), LD->isExpandingLoad()); 8001 } 8002 8003 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8004 SDValue Val, SDValue Base, SDValue Offset, 8005 SDValue Mask, EVT MemVT, 8006 MachineMemOperand *MMO, 8007 ISD::MemIndexedMode AM, bool IsTruncating, 8008 bool IsCompressing) { 8009 assert(Chain.getValueType() == MVT::Other && 8010 "Invalid chain type"); 8011 bool Indexed = AM != ISD::UNINDEXED; 8012 assert((Indexed || Offset.isUndef()) && 8013 "Unindexed masked store with an offset!"); 8014 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8015 : getVTList(MVT::Other); 8016 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8017 FoldingSetNodeID ID; 8018 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8019 ID.AddInteger(MemVT.getRawBits()); 8020 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8021 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8022 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8023 void *IP = nullptr; 8024 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8025 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8026 return SDValue(E, 0); 8027 } 8028 auto *N = 8029 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8030 IsTruncating, IsCompressing, MemVT, MMO); 8031 createOperands(N, Ops); 8032 8033 CSEMap.InsertNode(N, IP); 8034 InsertNode(N); 8035 SDValue V(N, 0); 8036 NewSDValueDbgMsg(V, "Creating new node: ", this); 8037 return V; 8038 } 8039 8040 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8041 SDValue Base, SDValue Offset, 8042 ISD::MemIndexedMode AM) { 8043 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8044 assert(ST->getOffset().isUndef() && 8045 "Masked store is already a indexed store!"); 8046 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8047 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8048 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8049 } 8050 8051 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8052 ArrayRef<SDValue> Ops, 8053 MachineMemOperand *MMO, 8054 ISD::MemIndexType IndexType, 8055 ISD::LoadExtType ExtTy) { 8056 assert(Ops.size() == 6 && "Incompatible number of operands"); 8057 8058 FoldingSetNodeID ID; 8059 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8060 ID.AddInteger(MemVT.getRawBits()); 8061 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8062 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8063 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8064 void *IP = nullptr; 8065 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8066 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8067 return SDValue(E, 0); 8068 } 8069 8070 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8071 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8072 VTs, MemVT, MMO, IndexType, ExtTy); 8073 createOperands(N, Ops); 8074 8075 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8076 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8077 assert(N->getMask().getValueType().getVectorElementCount() == 8078 N->getValueType(0).getVectorElementCount() && 8079 "Vector width mismatch between mask and data"); 8080 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8081 N->getValueType(0).getVectorElementCount().isScalable() && 8082 "Scalable flags of index and data do not match"); 8083 assert(ElementCount::isKnownGE( 8084 N->getIndex().getValueType().getVectorElementCount(), 8085 N->getValueType(0).getVectorElementCount()) && 8086 "Vector width mismatch between index and data"); 8087 assert(isa<ConstantSDNode>(N->getScale()) && 8088 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8089 "Scale should be a constant power of 2"); 8090 8091 CSEMap.InsertNode(N, IP); 8092 InsertNode(N); 8093 SDValue V(N, 0); 8094 NewSDValueDbgMsg(V, "Creating new node: ", this); 8095 return V; 8096 } 8097 8098 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8099 ArrayRef<SDValue> Ops, 8100 MachineMemOperand *MMO, 8101 ISD::MemIndexType IndexType, 8102 bool IsTrunc) { 8103 assert(Ops.size() == 6 && "Incompatible number of operands"); 8104 8105 FoldingSetNodeID ID; 8106 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8107 ID.AddInteger(MemVT.getRawBits()); 8108 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8109 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8110 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8111 void *IP = nullptr; 8112 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8113 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8114 return SDValue(E, 0); 8115 } 8116 8117 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8118 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8119 VTs, MemVT, MMO, IndexType, IsTrunc); 8120 createOperands(N, Ops); 8121 8122 assert(N->getMask().getValueType().getVectorElementCount() == 8123 N->getValue().getValueType().getVectorElementCount() && 8124 "Vector width mismatch between mask and data"); 8125 assert( 8126 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8127 N->getValue().getValueType().getVectorElementCount().isScalable() && 8128 "Scalable flags of index and data do not match"); 8129 assert(ElementCount::isKnownGE( 8130 N->getIndex().getValueType().getVectorElementCount(), 8131 N->getValue().getValueType().getVectorElementCount()) && 8132 "Vector width mismatch between index and data"); 8133 assert(isa<ConstantSDNode>(N->getScale()) && 8134 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8135 "Scale should be a constant power of 2"); 8136 8137 CSEMap.InsertNode(N, IP); 8138 InsertNode(N); 8139 SDValue V(N, 0); 8140 NewSDValueDbgMsg(V, "Creating new node: ", this); 8141 return V; 8142 } 8143 8144 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8145 // select undef, T, F --> T (if T is a constant), otherwise F 8146 // select, ?, undef, F --> F 8147 // select, ?, T, undef --> T 8148 if (Cond.isUndef()) 8149 return isConstantValueOfAnyType(T) ? T : F; 8150 if (T.isUndef()) 8151 return F; 8152 if (F.isUndef()) 8153 return T; 8154 8155 // select true, T, F --> T 8156 // select false, T, F --> F 8157 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8158 return CondC->isZero() ? F : T; 8159 8160 // TODO: This should simplify VSELECT with constant condition using something 8161 // like this (but check boolean contents to be complete?): 8162 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8163 // return T; 8164 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8165 // return F; 8166 8167 // select ?, T, T --> T 8168 if (T == F) 8169 return T; 8170 8171 return SDValue(); 8172 } 8173 8174 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8175 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8176 if (X.isUndef()) 8177 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8178 // shift X, undef --> undef (because it may shift by the bitwidth) 8179 if (Y.isUndef()) 8180 return getUNDEF(X.getValueType()); 8181 8182 // shift 0, Y --> 0 8183 // shift X, 0 --> X 8184 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8185 return X; 8186 8187 // shift X, C >= bitwidth(X) --> undef 8188 // All vector elements must be too big (or undef) to avoid partial undefs. 8189 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8190 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8191 }; 8192 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8193 return getUNDEF(X.getValueType()); 8194 8195 return SDValue(); 8196 } 8197 8198 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8199 SDNodeFlags Flags) { 8200 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8201 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8202 // operation is poison. That result can be relaxed to undef. 8203 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8204 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8205 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8206 (YC && YC->getValueAPF().isNaN()); 8207 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8208 (YC && YC->getValueAPF().isInfinity()); 8209 8210 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8211 return getUNDEF(X.getValueType()); 8212 8213 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8214 return getUNDEF(X.getValueType()); 8215 8216 if (!YC) 8217 return SDValue(); 8218 8219 // X + -0.0 --> X 8220 if (Opcode == ISD::FADD) 8221 if (YC->getValueAPF().isNegZero()) 8222 return X; 8223 8224 // X - +0.0 --> X 8225 if (Opcode == ISD::FSUB) 8226 if (YC->getValueAPF().isPosZero()) 8227 return X; 8228 8229 // X * 1.0 --> X 8230 // X / 1.0 --> X 8231 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8232 if (YC->getValueAPF().isExactlyValue(1.0)) 8233 return X; 8234 8235 // X * 0.0 --> 0.0 8236 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8237 if (YC->getValueAPF().isZero()) 8238 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8239 8240 return SDValue(); 8241 } 8242 8243 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8244 SDValue Ptr, SDValue SV, unsigned Align) { 8245 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8246 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8247 } 8248 8249 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8250 ArrayRef<SDUse> Ops) { 8251 switch (Ops.size()) { 8252 case 0: return getNode(Opcode, DL, VT); 8253 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8254 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8255 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8256 default: break; 8257 } 8258 8259 // Copy from an SDUse array into an SDValue array for use with 8260 // the regular getNode logic. 8261 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8262 return getNode(Opcode, DL, VT, NewOps); 8263 } 8264 8265 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8266 ArrayRef<SDValue> Ops) { 8267 SDNodeFlags Flags; 8268 if (Inserter) 8269 Flags = Inserter->getFlags(); 8270 return getNode(Opcode, DL, VT, Ops, Flags); 8271 } 8272 8273 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8274 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8275 unsigned NumOps = Ops.size(); 8276 switch (NumOps) { 8277 case 0: return getNode(Opcode, DL, VT); 8278 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8279 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8280 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8281 default: break; 8282 } 8283 8284 #ifndef NDEBUG 8285 for (auto &Op : Ops) 8286 assert(Op.getOpcode() != ISD::DELETED_NODE && 8287 "Operand is DELETED_NODE!"); 8288 #endif 8289 8290 switch (Opcode) { 8291 default: break; 8292 case ISD::BUILD_VECTOR: 8293 // Attempt to simplify BUILD_VECTOR. 8294 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8295 return V; 8296 break; 8297 case ISD::CONCAT_VECTORS: 8298 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8299 return V; 8300 break; 8301 case ISD::SELECT_CC: 8302 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8303 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8304 "LHS and RHS of condition must have same type!"); 8305 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8306 "True and False arms of SelectCC must have same type!"); 8307 assert(Ops[2].getValueType() == VT && 8308 "select_cc node must be of same type as true and false value!"); 8309 break; 8310 case ISD::BR_CC: 8311 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8312 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8313 "LHS/RHS of comparison should match types!"); 8314 break; 8315 } 8316 8317 // Memoize nodes. 8318 SDNode *N; 8319 SDVTList VTs = getVTList(VT); 8320 8321 if (VT != MVT::Glue) { 8322 FoldingSetNodeID ID; 8323 AddNodeIDNode(ID, Opcode, VTs, Ops); 8324 void *IP = nullptr; 8325 8326 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8327 return SDValue(E, 0); 8328 8329 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8330 createOperands(N, Ops); 8331 8332 CSEMap.InsertNode(N, IP); 8333 } else { 8334 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8335 createOperands(N, Ops); 8336 } 8337 8338 N->setFlags(Flags); 8339 InsertNode(N); 8340 SDValue V(N, 0); 8341 NewSDValueDbgMsg(V, "Creating new node: ", this); 8342 return V; 8343 } 8344 8345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8346 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8347 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8348 } 8349 8350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8351 ArrayRef<SDValue> Ops) { 8352 SDNodeFlags Flags; 8353 if (Inserter) 8354 Flags = Inserter->getFlags(); 8355 return getNode(Opcode, DL, VTList, Ops, Flags); 8356 } 8357 8358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8359 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8360 if (VTList.NumVTs == 1) 8361 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8362 8363 #ifndef NDEBUG 8364 for (auto &Op : Ops) 8365 assert(Op.getOpcode() != ISD::DELETED_NODE && 8366 "Operand is DELETED_NODE!"); 8367 #endif 8368 8369 switch (Opcode) { 8370 case ISD::STRICT_FP_EXTEND: 8371 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8372 "Invalid STRICT_FP_EXTEND!"); 8373 assert(VTList.VTs[0].isFloatingPoint() && 8374 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8375 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8376 "STRICT_FP_EXTEND result type should be vector iff the operand " 8377 "type is vector!"); 8378 assert((!VTList.VTs[0].isVector() || 8379 VTList.VTs[0].getVectorNumElements() == 8380 Ops[1].getValueType().getVectorNumElements()) && 8381 "Vector element count mismatch!"); 8382 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8383 "Invalid fpext node, dst <= src!"); 8384 break; 8385 case ISD::STRICT_FP_ROUND: 8386 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8387 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8388 "STRICT_FP_ROUND result type should be vector iff the operand " 8389 "type is vector!"); 8390 assert((!VTList.VTs[0].isVector() || 8391 VTList.VTs[0].getVectorNumElements() == 8392 Ops[1].getValueType().getVectorNumElements()) && 8393 "Vector element count mismatch!"); 8394 assert(VTList.VTs[0].isFloatingPoint() && 8395 Ops[1].getValueType().isFloatingPoint() && 8396 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8397 isa<ConstantSDNode>(Ops[2]) && 8398 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8399 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8400 "Invalid STRICT_FP_ROUND!"); 8401 break; 8402 #if 0 8403 // FIXME: figure out how to safely handle things like 8404 // int foo(int x) { return 1 << (x & 255); } 8405 // int bar() { return foo(256); } 8406 case ISD::SRA_PARTS: 8407 case ISD::SRL_PARTS: 8408 case ISD::SHL_PARTS: 8409 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8410 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8411 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8412 else if (N3.getOpcode() == ISD::AND) 8413 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8414 // If the and is only masking out bits that cannot effect the shift, 8415 // eliminate the and. 8416 unsigned NumBits = VT.getScalarSizeInBits()*2; 8417 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8418 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8419 } 8420 break; 8421 #endif 8422 } 8423 8424 // Memoize the node unless it returns a flag. 8425 SDNode *N; 8426 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8427 FoldingSetNodeID ID; 8428 AddNodeIDNode(ID, Opcode, VTList, Ops); 8429 void *IP = nullptr; 8430 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8431 return SDValue(E, 0); 8432 8433 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8434 createOperands(N, Ops); 8435 CSEMap.InsertNode(N, IP); 8436 } else { 8437 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8438 createOperands(N, Ops); 8439 } 8440 8441 N->setFlags(Flags); 8442 InsertNode(N); 8443 SDValue V(N, 0); 8444 NewSDValueDbgMsg(V, "Creating new node: ", this); 8445 return V; 8446 } 8447 8448 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8449 SDVTList VTList) { 8450 return getNode(Opcode, DL, VTList, None); 8451 } 8452 8453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8454 SDValue N1) { 8455 SDValue Ops[] = { N1 }; 8456 return getNode(Opcode, DL, VTList, Ops); 8457 } 8458 8459 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8460 SDValue N1, SDValue N2) { 8461 SDValue Ops[] = { N1, N2 }; 8462 return getNode(Opcode, DL, VTList, Ops); 8463 } 8464 8465 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8466 SDValue N1, SDValue N2, SDValue N3) { 8467 SDValue Ops[] = { N1, N2, N3 }; 8468 return getNode(Opcode, DL, VTList, Ops); 8469 } 8470 8471 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8472 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8473 SDValue Ops[] = { N1, N2, N3, N4 }; 8474 return getNode(Opcode, DL, VTList, Ops); 8475 } 8476 8477 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8478 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8479 SDValue N5) { 8480 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8481 return getNode(Opcode, DL, VTList, Ops); 8482 } 8483 8484 SDVTList SelectionDAG::getVTList(EVT VT) { 8485 return makeVTList(SDNode::getValueTypeList(VT), 1); 8486 } 8487 8488 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8489 FoldingSetNodeID ID; 8490 ID.AddInteger(2U); 8491 ID.AddInteger(VT1.getRawBits()); 8492 ID.AddInteger(VT2.getRawBits()); 8493 8494 void *IP = nullptr; 8495 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8496 if (!Result) { 8497 EVT *Array = Allocator.Allocate<EVT>(2); 8498 Array[0] = VT1; 8499 Array[1] = VT2; 8500 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8501 VTListMap.InsertNode(Result, IP); 8502 } 8503 return Result->getSDVTList(); 8504 } 8505 8506 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8507 FoldingSetNodeID ID; 8508 ID.AddInteger(3U); 8509 ID.AddInteger(VT1.getRawBits()); 8510 ID.AddInteger(VT2.getRawBits()); 8511 ID.AddInteger(VT3.getRawBits()); 8512 8513 void *IP = nullptr; 8514 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8515 if (!Result) { 8516 EVT *Array = Allocator.Allocate<EVT>(3); 8517 Array[0] = VT1; 8518 Array[1] = VT2; 8519 Array[2] = VT3; 8520 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8521 VTListMap.InsertNode(Result, IP); 8522 } 8523 return Result->getSDVTList(); 8524 } 8525 8526 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8527 FoldingSetNodeID ID; 8528 ID.AddInteger(4U); 8529 ID.AddInteger(VT1.getRawBits()); 8530 ID.AddInteger(VT2.getRawBits()); 8531 ID.AddInteger(VT3.getRawBits()); 8532 ID.AddInteger(VT4.getRawBits()); 8533 8534 void *IP = nullptr; 8535 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8536 if (!Result) { 8537 EVT *Array = Allocator.Allocate<EVT>(4); 8538 Array[0] = VT1; 8539 Array[1] = VT2; 8540 Array[2] = VT3; 8541 Array[3] = VT4; 8542 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8543 VTListMap.InsertNode(Result, IP); 8544 } 8545 return Result->getSDVTList(); 8546 } 8547 8548 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8549 unsigned NumVTs = VTs.size(); 8550 FoldingSetNodeID ID; 8551 ID.AddInteger(NumVTs); 8552 for (unsigned index = 0; index < NumVTs; index++) { 8553 ID.AddInteger(VTs[index].getRawBits()); 8554 } 8555 8556 void *IP = nullptr; 8557 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8558 if (!Result) { 8559 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8560 llvm::copy(VTs, Array); 8561 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8562 VTListMap.InsertNode(Result, IP); 8563 } 8564 return Result->getSDVTList(); 8565 } 8566 8567 8568 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8569 /// specified operands. If the resultant node already exists in the DAG, 8570 /// this does not modify the specified node, instead it returns the node that 8571 /// already exists. If the resultant node does not exist in the DAG, the 8572 /// input node is returned. As a degenerate case, if you specify the same 8573 /// input operands as the node already has, the input node is returned. 8574 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8575 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8576 8577 // Check to see if there is no change. 8578 if (Op == N->getOperand(0)) return N; 8579 8580 // See if the modified node already exists. 8581 void *InsertPos = nullptr; 8582 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8583 return Existing; 8584 8585 // Nope it doesn't. Remove the node from its current place in the maps. 8586 if (InsertPos) 8587 if (!RemoveNodeFromCSEMaps(N)) 8588 InsertPos = nullptr; 8589 8590 // Now we update the operands. 8591 N->OperandList[0].set(Op); 8592 8593 updateDivergence(N); 8594 // If this gets put into a CSE map, add it. 8595 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8596 return N; 8597 } 8598 8599 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8600 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8601 8602 // Check to see if there is no change. 8603 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8604 return N; // No operands changed, just return the input node. 8605 8606 // See if the modified node already exists. 8607 void *InsertPos = nullptr; 8608 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8609 return Existing; 8610 8611 // Nope it doesn't. Remove the node from its current place in the maps. 8612 if (InsertPos) 8613 if (!RemoveNodeFromCSEMaps(N)) 8614 InsertPos = nullptr; 8615 8616 // Now we update the operands. 8617 if (N->OperandList[0] != Op1) 8618 N->OperandList[0].set(Op1); 8619 if (N->OperandList[1] != Op2) 8620 N->OperandList[1].set(Op2); 8621 8622 updateDivergence(N); 8623 // If this gets put into a CSE map, add it. 8624 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8625 return N; 8626 } 8627 8628 SDNode *SelectionDAG:: 8629 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8630 SDValue Ops[] = { Op1, Op2, Op3 }; 8631 return UpdateNodeOperands(N, Ops); 8632 } 8633 8634 SDNode *SelectionDAG:: 8635 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8636 SDValue Op3, SDValue Op4) { 8637 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8638 return UpdateNodeOperands(N, Ops); 8639 } 8640 8641 SDNode *SelectionDAG:: 8642 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8643 SDValue Op3, SDValue Op4, SDValue Op5) { 8644 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8645 return UpdateNodeOperands(N, Ops); 8646 } 8647 8648 SDNode *SelectionDAG:: 8649 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8650 unsigned NumOps = Ops.size(); 8651 assert(N->getNumOperands() == NumOps && 8652 "Update with wrong number of operands"); 8653 8654 // If no operands changed just return the input node. 8655 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8656 return N; 8657 8658 // See if the modified node already exists. 8659 void *InsertPos = nullptr; 8660 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8661 return Existing; 8662 8663 // Nope it doesn't. Remove the node from its current place in the maps. 8664 if (InsertPos) 8665 if (!RemoveNodeFromCSEMaps(N)) 8666 InsertPos = nullptr; 8667 8668 // Now we update the operands. 8669 for (unsigned i = 0; i != NumOps; ++i) 8670 if (N->OperandList[i] != Ops[i]) 8671 N->OperandList[i].set(Ops[i]); 8672 8673 updateDivergence(N); 8674 // If this gets put into a CSE map, add it. 8675 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8676 return N; 8677 } 8678 8679 /// DropOperands - Release the operands and set this node to have 8680 /// zero operands. 8681 void SDNode::DropOperands() { 8682 // Unlike the code in MorphNodeTo that does this, we don't need to 8683 // watch for dead nodes here. 8684 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8685 SDUse &Use = *I++; 8686 Use.set(SDValue()); 8687 } 8688 } 8689 8690 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8691 ArrayRef<MachineMemOperand *> NewMemRefs) { 8692 if (NewMemRefs.empty()) { 8693 N->clearMemRefs(); 8694 return; 8695 } 8696 8697 // Check if we can avoid allocating by storing a single reference directly. 8698 if (NewMemRefs.size() == 1) { 8699 N->MemRefs = NewMemRefs[0]; 8700 N->NumMemRefs = 1; 8701 return; 8702 } 8703 8704 MachineMemOperand **MemRefsBuffer = 8705 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8706 llvm::copy(NewMemRefs, MemRefsBuffer); 8707 N->MemRefs = MemRefsBuffer; 8708 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8709 } 8710 8711 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8712 /// machine opcode. 8713 /// 8714 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8715 EVT VT) { 8716 SDVTList VTs = getVTList(VT); 8717 return SelectNodeTo(N, MachineOpc, VTs, None); 8718 } 8719 8720 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8721 EVT VT, SDValue Op1) { 8722 SDVTList VTs = getVTList(VT); 8723 SDValue Ops[] = { Op1 }; 8724 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8725 } 8726 8727 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8728 EVT VT, SDValue Op1, 8729 SDValue Op2) { 8730 SDVTList VTs = getVTList(VT); 8731 SDValue Ops[] = { Op1, Op2 }; 8732 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8733 } 8734 8735 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8736 EVT VT, SDValue Op1, 8737 SDValue Op2, SDValue Op3) { 8738 SDVTList VTs = getVTList(VT); 8739 SDValue Ops[] = { Op1, Op2, Op3 }; 8740 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8741 } 8742 8743 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8744 EVT VT, ArrayRef<SDValue> Ops) { 8745 SDVTList VTs = getVTList(VT); 8746 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8747 } 8748 8749 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8750 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8751 SDVTList VTs = getVTList(VT1, VT2); 8752 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8753 } 8754 8755 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8756 EVT VT1, EVT VT2) { 8757 SDVTList VTs = getVTList(VT1, VT2); 8758 return SelectNodeTo(N, MachineOpc, VTs, None); 8759 } 8760 8761 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8762 EVT VT1, EVT VT2, EVT VT3, 8763 ArrayRef<SDValue> Ops) { 8764 SDVTList VTs = getVTList(VT1, VT2, VT3); 8765 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8766 } 8767 8768 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8769 EVT VT1, EVT VT2, 8770 SDValue Op1, SDValue Op2) { 8771 SDVTList VTs = getVTList(VT1, VT2); 8772 SDValue Ops[] = { Op1, Op2 }; 8773 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8774 } 8775 8776 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8777 SDVTList VTs,ArrayRef<SDValue> Ops) { 8778 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8779 // Reset the NodeID to -1. 8780 New->setNodeId(-1); 8781 if (New != N) { 8782 ReplaceAllUsesWith(N, New); 8783 RemoveDeadNode(N); 8784 } 8785 return New; 8786 } 8787 8788 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8789 /// the line number information on the merged node since it is not possible to 8790 /// preserve the information that operation is associated with multiple lines. 8791 /// This will make the debugger working better at -O0, were there is a higher 8792 /// probability having other instructions associated with that line. 8793 /// 8794 /// For IROrder, we keep the smaller of the two 8795 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8796 DebugLoc NLoc = N->getDebugLoc(); 8797 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8798 N->setDebugLoc(DebugLoc()); 8799 } 8800 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8801 N->setIROrder(Order); 8802 return N; 8803 } 8804 8805 /// MorphNodeTo - This *mutates* the specified node to have the specified 8806 /// return type, opcode, and operands. 8807 /// 8808 /// Note that MorphNodeTo returns the resultant node. If there is already a 8809 /// node of the specified opcode and operands, it returns that node instead of 8810 /// the current one. Note that the SDLoc need not be the same. 8811 /// 8812 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8813 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8814 /// node, and because it doesn't require CSE recalculation for any of 8815 /// the node's users. 8816 /// 8817 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8818 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8819 /// the legalizer which maintain worklists that would need to be updated when 8820 /// deleting things. 8821 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8822 SDVTList VTs, ArrayRef<SDValue> Ops) { 8823 // If an identical node already exists, use it. 8824 void *IP = nullptr; 8825 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8826 FoldingSetNodeID ID; 8827 AddNodeIDNode(ID, Opc, VTs, Ops); 8828 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8829 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8830 } 8831 8832 if (!RemoveNodeFromCSEMaps(N)) 8833 IP = nullptr; 8834 8835 // Start the morphing. 8836 N->NodeType = Opc; 8837 N->ValueList = VTs.VTs; 8838 N->NumValues = VTs.NumVTs; 8839 8840 // Clear the operands list, updating used nodes to remove this from their 8841 // use list. Keep track of any operands that become dead as a result. 8842 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8843 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8844 SDUse &Use = *I++; 8845 SDNode *Used = Use.getNode(); 8846 Use.set(SDValue()); 8847 if (Used->use_empty()) 8848 DeadNodeSet.insert(Used); 8849 } 8850 8851 // For MachineNode, initialize the memory references information. 8852 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8853 MN->clearMemRefs(); 8854 8855 // Swap for an appropriately sized array from the recycler. 8856 removeOperands(N); 8857 createOperands(N, Ops); 8858 8859 // Delete any nodes that are still dead after adding the uses for the 8860 // new operands. 8861 if (!DeadNodeSet.empty()) { 8862 SmallVector<SDNode *, 16> DeadNodes; 8863 for (SDNode *N : DeadNodeSet) 8864 if (N->use_empty()) 8865 DeadNodes.push_back(N); 8866 RemoveDeadNodes(DeadNodes); 8867 } 8868 8869 if (IP) 8870 CSEMap.InsertNode(N, IP); // Memoize the new node. 8871 return N; 8872 } 8873 8874 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8875 unsigned OrigOpc = Node->getOpcode(); 8876 unsigned NewOpc; 8877 switch (OrigOpc) { 8878 default: 8879 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8880 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8881 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8882 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8883 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8884 #include "llvm/IR/ConstrainedOps.def" 8885 } 8886 8887 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8888 8889 // We're taking this node out of the chain, so we need to re-link things. 8890 SDValue InputChain = Node->getOperand(0); 8891 SDValue OutputChain = SDValue(Node, 1); 8892 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8893 8894 SmallVector<SDValue, 3> Ops; 8895 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8896 Ops.push_back(Node->getOperand(i)); 8897 8898 SDVTList VTs = getVTList(Node->getValueType(0)); 8899 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8900 8901 // MorphNodeTo can operate in two ways: if an existing node with the 8902 // specified operands exists, it can just return it. Otherwise, it 8903 // updates the node in place to have the requested operands. 8904 if (Res == Node) { 8905 // If we updated the node in place, reset the node ID. To the isel, 8906 // this should be just like a newly allocated machine node. 8907 Res->setNodeId(-1); 8908 } else { 8909 ReplaceAllUsesWith(Node, Res); 8910 RemoveDeadNode(Node); 8911 } 8912 8913 return Res; 8914 } 8915 8916 /// getMachineNode - These are used for target selectors to create a new node 8917 /// with specified return type(s), MachineInstr opcode, and operands. 8918 /// 8919 /// Note that getMachineNode returns the resultant node. If there is already a 8920 /// node of the specified opcode and operands, it returns that node instead of 8921 /// the current one. 8922 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8923 EVT VT) { 8924 SDVTList VTs = getVTList(VT); 8925 return getMachineNode(Opcode, dl, VTs, None); 8926 } 8927 8928 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8929 EVT VT, SDValue Op1) { 8930 SDVTList VTs = getVTList(VT); 8931 SDValue Ops[] = { Op1 }; 8932 return getMachineNode(Opcode, dl, VTs, Ops); 8933 } 8934 8935 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8936 EVT VT, SDValue Op1, SDValue Op2) { 8937 SDVTList VTs = getVTList(VT); 8938 SDValue Ops[] = { Op1, Op2 }; 8939 return getMachineNode(Opcode, dl, VTs, Ops); 8940 } 8941 8942 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8943 EVT VT, SDValue Op1, SDValue Op2, 8944 SDValue Op3) { 8945 SDVTList VTs = getVTList(VT); 8946 SDValue Ops[] = { Op1, Op2, Op3 }; 8947 return getMachineNode(Opcode, dl, VTs, Ops); 8948 } 8949 8950 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8951 EVT VT, ArrayRef<SDValue> Ops) { 8952 SDVTList VTs = getVTList(VT); 8953 return getMachineNode(Opcode, dl, VTs, Ops); 8954 } 8955 8956 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8957 EVT VT1, EVT VT2, SDValue Op1, 8958 SDValue Op2) { 8959 SDVTList VTs = getVTList(VT1, VT2); 8960 SDValue Ops[] = { Op1, Op2 }; 8961 return getMachineNode(Opcode, dl, VTs, Ops); 8962 } 8963 8964 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8965 EVT VT1, EVT VT2, SDValue Op1, 8966 SDValue Op2, SDValue Op3) { 8967 SDVTList VTs = getVTList(VT1, VT2); 8968 SDValue Ops[] = { Op1, Op2, Op3 }; 8969 return getMachineNode(Opcode, dl, VTs, Ops); 8970 } 8971 8972 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8973 EVT VT1, EVT VT2, 8974 ArrayRef<SDValue> Ops) { 8975 SDVTList VTs = getVTList(VT1, VT2); 8976 return getMachineNode(Opcode, dl, VTs, Ops); 8977 } 8978 8979 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8980 EVT VT1, EVT VT2, EVT VT3, 8981 SDValue Op1, SDValue Op2) { 8982 SDVTList VTs = getVTList(VT1, VT2, VT3); 8983 SDValue Ops[] = { Op1, Op2 }; 8984 return getMachineNode(Opcode, dl, VTs, Ops); 8985 } 8986 8987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8988 EVT VT1, EVT VT2, EVT VT3, 8989 SDValue Op1, SDValue Op2, 8990 SDValue Op3) { 8991 SDVTList VTs = getVTList(VT1, VT2, VT3); 8992 SDValue Ops[] = { Op1, Op2, Op3 }; 8993 return getMachineNode(Opcode, dl, VTs, Ops); 8994 } 8995 8996 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8997 EVT VT1, EVT VT2, EVT VT3, 8998 ArrayRef<SDValue> Ops) { 8999 SDVTList VTs = getVTList(VT1, VT2, VT3); 9000 return getMachineNode(Opcode, dl, VTs, Ops); 9001 } 9002 9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9004 ArrayRef<EVT> ResultTys, 9005 ArrayRef<SDValue> Ops) { 9006 SDVTList VTs = getVTList(ResultTys); 9007 return getMachineNode(Opcode, dl, VTs, Ops); 9008 } 9009 9010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9011 SDVTList VTs, 9012 ArrayRef<SDValue> Ops) { 9013 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9014 MachineSDNode *N; 9015 void *IP = nullptr; 9016 9017 if (DoCSE) { 9018 FoldingSetNodeID ID; 9019 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9020 IP = nullptr; 9021 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9022 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9023 } 9024 } 9025 9026 // Allocate a new MachineSDNode. 9027 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9028 createOperands(N, Ops); 9029 9030 if (DoCSE) 9031 CSEMap.InsertNode(N, IP); 9032 9033 InsertNode(N); 9034 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9035 return N; 9036 } 9037 9038 /// getTargetExtractSubreg - A convenience function for creating 9039 /// TargetOpcode::EXTRACT_SUBREG nodes. 9040 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9041 SDValue Operand) { 9042 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9043 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9044 VT, Operand, SRIdxVal); 9045 return SDValue(Subreg, 0); 9046 } 9047 9048 /// getTargetInsertSubreg - A convenience function for creating 9049 /// TargetOpcode::INSERT_SUBREG nodes. 9050 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9051 SDValue Operand, SDValue Subreg) { 9052 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9053 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9054 VT, Operand, Subreg, SRIdxVal); 9055 return SDValue(Result, 0); 9056 } 9057 9058 /// getNodeIfExists - Get the specified node if it's already available, or 9059 /// else return NULL. 9060 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9061 ArrayRef<SDValue> Ops) { 9062 SDNodeFlags Flags; 9063 if (Inserter) 9064 Flags = Inserter->getFlags(); 9065 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9066 } 9067 9068 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9069 ArrayRef<SDValue> Ops, 9070 const SDNodeFlags Flags) { 9071 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9072 FoldingSetNodeID ID; 9073 AddNodeIDNode(ID, Opcode, VTList, Ops); 9074 void *IP = nullptr; 9075 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9076 E->intersectFlagsWith(Flags); 9077 return E; 9078 } 9079 } 9080 return nullptr; 9081 } 9082 9083 /// doesNodeExist - Check if a node exists without modifying its flags. 9084 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9085 ArrayRef<SDValue> Ops) { 9086 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9087 FoldingSetNodeID ID; 9088 AddNodeIDNode(ID, Opcode, VTList, Ops); 9089 void *IP = nullptr; 9090 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9091 return true; 9092 } 9093 return false; 9094 } 9095 9096 /// getDbgValue - Creates a SDDbgValue node. 9097 /// 9098 /// SDNode 9099 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9100 SDNode *N, unsigned R, bool IsIndirect, 9101 const DebugLoc &DL, unsigned O) { 9102 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9103 "Expected inlined-at fields to agree"); 9104 return new (DbgInfo->getAlloc()) 9105 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9106 {}, IsIndirect, DL, O, 9107 /*IsVariadic=*/false); 9108 } 9109 9110 /// Constant 9111 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9112 DIExpression *Expr, 9113 const Value *C, 9114 const DebugLoc &DL, unsigned O) { 9115 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9116 "Expected inlined-at fields to agree"); 9117 return new (DbgInfo->getAlloc()) 9118 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9119 /*IsIndirect=*/false, DL, O, 9120 /*IsVariadic=*/false); 9121 } 9122 9123 /// FrameIndex 9124 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9125 DIExpression *Expr, unsigned FI, 9126 bool IsIndirect, 9127 const DebugLoc &DL, 9128 unsigned O) { 9129 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9130 "Expected inlined-at fields to agree"); 9131 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9132 } 9133 9134 /// FrameIndex with dependencies 9135 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9136 DIExpression *Expr, unsigned FI, 9137 ArrayRef<SDNode *> Dependencies, 9138 bool IsIndirect, 9139 const DebugLoc &DL, 9140 unsigned O) { 9141 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9142 "Expected inlined-at fields to agree"); 9143 return new (DbgInfo->getAlloc()) 9144 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9145 Dependencies, IsIndirect, DL, O, 9146 /*IsVariadic=*/false); 9147 } 9148 9149 /// VReg 9150 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9151 unsigned VReg, bool IsIndirect, 9152 const DebugLoc &DL, unsigned O) { 9153 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9154 "Expected inlined-at fields to agree"); 9155 return new (DbgInfo->getAlloc()) 9156 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9157 {}, IsIndirect, DL, O, 9158 /*IsVariadic=*/false); 9159 } 9160 9161 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9162 ArrayRef<SDDbgOperand> Locs, 9163 ArrayRef<SDNode *> Dependencies, 9164 bool IsIndirect, const DebugLoc &DL, 9165 unsigned O, bool IsVariadic) { 9166 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9167 "Expected inlined-at fields to agree"); 9168 return new (DbgInfo->getAlloc()) 9169 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9170 DL, O, IsVariadic); 9171 } 9172 9173 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9174 unsigned OffsetInBits, unsigned SizeInBits, 9175 bool InvalidateDbg) { 9176 SDNode *FromNode = From.getNode(); 9177 SDNode *ToNode = To.getNode(); 9178 assert(FromNode && ToNode && "Can't modify dbg values"); 9179 9180 // PR35338 9181 // TODO: assert(From != To && "Redundant dbg value transfer"); 9182 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9183 if (From == To || FromNode == ToNode) 9184 return; 9185 9186 if (!FromNode->getHasDebugValue()) 9187 return; 9188 9189 SDDbgOperand FromLocOp = 9190 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9191 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9192 9193 SmallVector<SDDbgValue *, 2> ClonedDVs; 9194 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9195 if (Dbg->isInvalidated()) 9196 continue; 9197 9198 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9199 9200 // Create a new location ops vector that is equal to the old vector, but 9201 // with each instance of FromLocOp replaced with ToLocOp. 9202 bool Changed = false; 9203 auto NewLocOps = Dbg->copyLocationOps(); 9204 std::replace_if( 9205 NewLocOps.begin(), NewLocOps.end(), 9206 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9207 bool Match = Op == FromLocOp; 9208 Changed |= Match; 9209 return Match; 9210 }, 9211 ToLocOp); 9212 // Ignore this SDDbgValue if we didn't find a matching location. 9213 if (!Changed) 9214 continue; 9215 9216 DIVariable *Var = Dbg->getVariable(); 9217 auto *Expr = Dbg->getExpression(); 9218 // If a fragment is requested, update the expression. 9219 if (SizeInBits) { 9220 // When splitting a larger (e.g., sign-extended) value whose 9221 // lower bits are described with an SDDbgValue, do not attempt 9222 // to transfer the SDDbgValue to the upper bits. 9223 if (auto FI = Expr->getFragmentInfo()) 9224 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9225 continue; 9226 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9227 SizeInBits); 9228 if (!Fragment) 9229 continue; 9230 Expr = *Fragment; 9231 } 9232 9233 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9234 // Clone the SDDbgValue and move it to To. 9235 SDDbgValue *Clone = getDbgValueList( 9236 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9237 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9238 Dbg->isVariadic()); 9239 ClonedDVs.push_back(Clone); 9240 9241 if (InvalidateDbg) { 9242 // Invalidate value and indicate the SDDbgValue should not be emitted. 9243 Dbg->setIsInvalidated(); 9244 Dbg->setIsEmitted(); 9245 } 9246 } 9247 9248 for (SDDbgValue *Dbg : ClonedDVs) { 9249 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9250 "Transferred DbgValues should depend on the new SDNode"); 9251 AddDbgValue(Dbg, false); 9252 } 9253 } 9254 9255 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9256 if (!N.getHasDebugValue()) 9257 return; 9258 9259 SmallVector<SDDbgValue *, 2> ClonedDVs; 9260 for (auto DV : GetDbgValues(&N)) { 9261 if (DV->isInvalidated()) 9262 continue; 9263 switch (N.getOpcode()) { 9264 default: 9265 break; 9266 case ISD::ADD: 9267 SDValue N0 = N.getOperand(0); 9268 SDValue N1 = N.getOperand(1); 9269 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9270 isConstantIntBuildVectorOrConstantInt(N1)) { 9271 uint64_t Offset = N.getConstantOperandVal(1); 9272 9273 // Rewrite an ADD constant node into a DIExpression. Since we are 9274 // performing arithmetic to compute the variable's *value* in the 9275 // DIExpression, we need to mark the expression with a 9276 // DW_OP_stack_value. 9277 auto *DIExpr = DV->getExpression(); 9278 auto NewLocOps = DV->copyLocationOps(); 9279 bool Changed = false; 9280 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9281 // We're not given a ResNo to compare against because the whole 9282 // node is going away. We know that any ISD::ADD only has one 9283 // result, so we can assume any node match is using the result. 9284 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9285 NewLocOps[i].getSDNode() != &N) 9286 continue; 9287 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9288 SmallVector<uint64_t, 3> ExprOps; 9289 DIExpression::appendOffset(ExprOps, Offset); 9290 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9291 Changed = true; 9292 } 9293 (void)Changed; 9294 assert(Changed && "Salvage target doesn't use N"); 9295 9296 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9297 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9298 NewLocOps, AdditionalDependencies, 9299 DV->isIndirect(), DV->getDebugLoc(), 9300 DV->getOrder(), DV->isVariadic()); 9301 ClonedDVs.push_back(Clone); 9302 DV->setIsInvalidated(); 9303 DV->setIsEmitted(); 9304 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9305 N0.getNode()->dumprFull(this); 9306 dbgs() << " into " << *DIExpr << '\n'); 9307 } 9308 } 9309 } 9310 9311 for (SDDbgValue *Dbg : ClonedDVs) { 9312 assert(!Dbg->getSDNodes().empty() && 9313 "Salvaged DbgValue should depend on a new SDNode"); 9314 AddDbgValue(Dbg, false); 9315 } 9316 } 9317 9318 /// Creates a SDDbgLabel node. 9319 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9320 const DebugLoc &DL, unsigned O) { 9321 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9322 "Expected inlined-at fields to agree"); 9323 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9324 } 9325 9326 namespace { 9327 9328 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9329 /// pointed to by a use iterator is deleted, increment the use iterator 9330 /// so that it doesn't dangle. 9331 /// 9332 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9333 SDNode::use_iterator &UI; 9334 SDNode::use_iterator &UE; 9335 9336 void NodeDeleted(SDNode *N, SDNode *E) override { 9337 // Increment the iterator as needed. 9338 while (UI != UE && N == *UI) 9339 ++UI; 9340 } 9341 9342 public: 9343 RAUWUpdateListener(SelectionDAG &d, 9344 SDNode::use_iterator &ui, 9345 SDNode::use_iterator &ue) 9346 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9347 }; 9348 9349 } // end anonymous namespace 9350 9351 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9352 /// This can cause recursive merging of nodes in the DAG. 9353 /// 9354 /// This version assumes From has a single result value. 9355 /// 9356 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9357 SDNode *From = FromN.getNode(); 9358 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9359 "Cannot replace with this method!"); 9360 assert(From != To.getNode() && "Cannot replace uses of with self"); 9361 9362 // Preserve Debug Values 9363 transferDbgValues(FromN, To); 9364 9365 // Iterate over all the existing uses of From. New uses will be added 9366 // to the beginning of the use list, which we avoid visiting. 9367 // This specifically avoids visiting uses of From that arise while the 9368 // replacement is happening, because any such uses would be the result 9369 // of CSE: If an existing node looks like From after one of its operands 9370 // is replaced by To, we don't want to replace of all its users with To 9371 // too. See PR3018 for more info. 9372 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9373 RAUWUpdateListener Listener(*this, UI, UE); 9374 while (UI != UE) { 9375 SDNode *User = *UI; 9376 9377 // This node is about to morph, remove its old self from the CSE maps. 9378 RemoveNodeFromCSEMaps(User); 9379 9380 // A user can appear in a use list multiple times, and when this 9381 // happens the uses are usually next to each other in the list. 9382 // To help reduce the number of CSE recomputations, process all 9383 // the uses of this user that we can find this way. 9384 do { 9385 SDUse &Use = UI.getUse(); 9386 ++UI; 9387 Use.set(To); 9388 if (To->isDivergent() != From->isDivergent()) 9389 updateDivergence(User); 9390 } while (UI != UE && *UI == User); 9391 // Now that we have modified User, add it back to the CSE maps. If it 9392 // already exists there, recursively merge the results together. 9393 AddModifiedNodeToCSEMaps(User); 9394 } 9395 9396 // If we just RAUW'd the root, take note. 9397 if (FromN == getRoot()) 9398 setRoot(To); 9399 } 9400 9401 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9402 /// This can cause recursive merging of nodes in the DAG. 9403 /// 9404 /// This version assumes that for each value of From, there is a 9405 /// corresponding value in To in the same position with the same type. 9406 /// 9407 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9408 #ifndef NDEBUG 9409 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9410 assert((!From->hasAnyUseOfValue(i) || 9411 From->getValueType(i) == To->getValueType(i)) && 9412 "Cannot use this version of ReplaceAllUsesWith!"); 9413 #endif 9414 9415 // Handle the trivial case. 9416 if (From == To) 9417 return; 9418 9419 // Preserve Debug Info. Only do this if there's a use. 9420 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9421 if (From->hasAnyUseOfValue(i)) { 9422 assert((i < To->getNumValues()) && "Invalid To location"); 9423 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9424 } 9425 9426 // Iterate over just the existing users of From. See the comments in 9427 // the ReplaceAllUsesWith above. 9428 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9429 RAUWUpdateListener Listener(*this, UI, UE); 9430 while (UI != UE) { 9431 SDNode *User = *UI; 9432 9433 // This node is about to morph, remove its old self from the CSE maps. 9434 RemoveNodeFromCSEMaps(User); 9435 9436 // A user can appear in a use list multiple times, and when this 9437 // happens the uses are usually next to each other in the list. 9438 // To help reduce the number of CSE recomputations, process all 9439 // the uses of this user that we can find this way. 9440 do { 9441 SDUse &Use = UI.getUse(); 9442 ++UI; 9443 Use.setNode(To); 9444 if (To->isDivergent() != From->isDivergent()) 9445 updateDivergence(User); 9446 } while (UI != UE && *UI == User); 9447 9448 // Now that we have modified User, add it back to the CSE maps. If it 9449 // already exists there, recursively merge the results together. 9450 AddModifiedNodeToCSEMaps(User); 9451 } 9452 9453 // If we just RAUW'd the root, take note. 9454 if (From == getRoot().getNode()) 9455 setRoot(SDValue(To, getRoot().getResNo())); 9456 } 9457 9458 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9459 /// This can cause recursive merging of nodes in the DAG. 9460 /// 9461 /// This version can replace From with any result values. To must match the 9462 /// number and types of values returned by From. 9463 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9464 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9465 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9466 9467 // Preserve Debug Info. 9468 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9469 transferDbgValues(SDValue(From, i), To[i]); 9470 9471 // Iterate over just the existing users of From. See the comments in 9472 // the ReplaceAllUsesWith above. 9473 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9474 RAUWUpdateListener Listener(*this, UI, UE); 9475 while (UI != UE) { 9476 SDNode *User = *UI; 9477 9478 // This node is about to morph, remove its old self from the CSE maps. 9479 RemoveNodeFromCSEMaps(User); 9480 9481 // A user can appear in a use list multiple times, and when this happens the 9482 // uses are usually next to each other in the list. To help reduce the 9483 // number of CSE and divergence recomputations, process all the uses of this 9484 // user that we can find this way. 9485 bool To_IsDivergent = false; 9486 do { 9487 SDUse &Use = UI.getUse(); 9488 const SDValue &ToOp = To[Use.getResNo()]; 9489 ++UI; 9490 Use.set(ToOp); 9491 To_IsDivergent |= ToOp->isDivergent(); 9492 } while (UI != UE && *UI == User); 9493 9494 if (To_IsDivergent != From->isDivergent()) 9495 updateDivergence(User); 9496 9497 // Now that we have modified User, add it back to the CSE maps. If it 9498 // already exists there, recursively merge the results together. 9499 AddModifiedNodeToCSEMaps(User); 9500 } 9501 9502 // If we just RAUW'd the root, take note. 9503 if (From == getRoot().getNode()) 9504 setRoot(SDValue(To[getRoot().getResNo()])); 9505 } 9506 9507 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9508 /// uses of other values produced by From.getNode() alone. The Deleted 9509 /// vector is handled the same way as for ReplaceAllUsesWith. 9510 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9511 // Handle the really simple, really trivial case efficiently. 9512 if (From == To) return; 9513 9514 // Handle the simple, trivial, case efficiently. 9515 if (From.getNode()->getNumValues() == 1) { 9516 ReplaceAllUsesWith(From, To); 9517 return; 9518 } 9519 9520 // Preserve Debug Info. 9521 transferDbgValues(From, To); 9522 9523 // Iterate over just the existing users of From. See the comments in 9524 // the ReplaceAllUsesWith above. 9525 SDNode::use_iterator UI = From.getNode()->use_begin(), 9526 UE = From.getNode()->use_end(); 9527 RAUWUpdateListener Listener(*this, UI, UE); 9528 while (UI != UE) { 9529 SDNode *User = *UI; 9530 bool UserRemovedFromCSEMaps = false; 9531 9532 // A user can appear in a use list multiple times, and when this 9533 // happens the uses are usually next to each other in the list. 9534 // To help reduce the number of CSE recomputations, process all 9535 // the uses of this user that we can find this way. 9536 do { 9537 SDUse &Use = UI.getUse(); 9538 9539 // Skip uses of different values from the same node. 9540 if (Use.getResNo() != From.getResNo()) { 9541 ++UI; 9542 continue; 9543 } 9544 9545 // If this node hasn't been modified yet, it's still in the CSE maps, 9546 // so remove its old self from the CSE maps. 9547 if (!UserRemovedFromCSEMaps) { 9548 RemoveNodeFromCSEMaps(User); 9549 UserRemovedFromCSEMaps = true; 9550 } 9551 9552 ++UI; 9553 Use.set(To); 9554 if (To->isDivergent() != From->isDivergent()) 9555 updateDivergence(User); 9556 } while (UI != UE && *UI == User); 9557 // We are iterating over all uses of the From node, so if a use 9558 // doesn't use the specific value, no changes are made. 9559 if (!UserRemovedFromCSEMaps) 9560 continue; 9561 9562 // Now that we have modified User, add it back to the CSE maps. If it 9563 // already exists there, recursively merge the results together. 9564 AddModifiedNodeToCSEMaps(User); 9565 } 9566 9567 // If we just RAUW'd the root, take note. 9568 if (From == getRoot()) 9569 setRoot(To); 9570 } 9571 9572 namespace { 9573 9574 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9575 /// to record information about a use. 9576 struct UseMemo { 9577 SDNode *User; 9578 unsigned Index; 9579 SDUse *Use; 9580 }; 9581 9582 /// operator< - Sort Memos by User. 9583 bool operator<(const UseMemo &L, const UseMemo &R) { 9584 return (intptr_t)L.User < (intptr_t)R.User; 9585 } 9586 9587 } // end anonymous namespace 9588 9589 bool SelectionDAG::calculateDivergence(SDNode *N) { 9590 if (TLI->isSDNodeAlwaysUniform(N)) { 9591 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9592 "Conflicting divergence information!"); 9593 return false; 9594 } 9595 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9596 return true; 9597 for (auto &Op : N->ops()) { 9598 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9599 return true; 9600 } 9601 return false; 9602 } 9603 9604 void SelectionDAG::updateDivergence(SDNode *N) { 9605 SmallVector<SDNode *, 16> Worklist(1, N); 9606 do { 9607 N = Worklist.pop_back_val(); 9608 bool IsDivergent = calculateDivergence(N); 9609 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9610 N->SDNodeBits.IsDivergent = IsDivergent; 9611 llvm::append_range(Worklist, N->uses()); 9612 } 9613 } while (!Worklist.empty()); 9614 } 9615 9616 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9617 DenseMap<SDNode *, unsigned> Degree; 9618 Order.reserve(AllNodes.size()); 9619 for (auto &N : allnodes()) { 9620 unsigned NOps = N.getNumOperands(); 9621 Degree[&N] = NOps; 9622 if (0 == NOps) 9623 Order.push_back(&N); 9624 } 9625 for (size_t I = 0; I != Order.size(); ++I) { 9626 SDNode *N = Order[I]; 9627 for (auto U : N->uses()) { 9628 unsigned &UnsortedOps = Degree[U]; 9629 if (0 == --UnsortedOps) 9630 Order.push_back(U); 9631 } 9632 } 9633 } 9634 9635 #ifndef NDEBUG 9636 void SelectionDAG::VerifyDAGDivergence() { 9637 std::vector<SDNode *> TopoOrder; 9638 CreateTopologicalOrder(TopoOrder); 9639 for (auto *N : TopoOrder) { 9640 assert(calculateDivergence(N) == N->isDivergent() && 9641 "Divergence bit inconsistency detected"); 9642 } 9643 } 9644 #endif 9645 9646 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9647 /// uses of other values produced by From.getNode() alone. The same value 9648 /// may appear in both the From and To list. The Deleted vector is 9649 /// handled the same way as for ReplaceAllUsesWith. 9650 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9651 const SDValue *To, 9652 unsigned Num){ 9653 // Handle the simple, trivial case efficiently. 9654 if (Num == 1) 9655 return ReplaceAllUsesOfValueWith(*From, *To); 9656 9657 transferDbgValues(*From, *To); 9658 9659 // Read up all the uses and make records of them. This helps 9660 // processing new uses that are introduced during the 9661 // replacement process. 9662 SmallVector<UseMemo, 4> Uses; 9663 for (unsigned i = 0; i != Num; ++i) { 9664 unsigned FromResNo = From[i].getResNo(); 9665 SDNode *FromNode = From[i].getNode(); 9666 for (SDNode::use_iterator UI = FromNode->use_begin(), 9667 E = FromNode->use_end(); UI != E; ++UI) { 9668 SDUse &Use = UI.getUse(); 9669 if (Use.getResNo() == FromResNo) { 9670 UseMemo Memo = { *UI, i, &Use }; 9671 Uses.push_back(Memo); 9672 } 9673 } 9674 } 9675 9676 // Sort the uses, so that all the uses from a given User are together. 9677 llvm::sort(Uses); 9678 9679 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9680 UseIndex != UseIndexEnd; ) { 9681 // We know that this user uses some value of From. If it is the right 9682 // value, update it. 9683 SDNode *User = Uses[UseIndex].User; 9684 9685 // This node is about to morph, remove its old self from the CSE maps. 9686 RemoveNodeFromCSEMaps(User); 9687 9688 // The Uses array is sorted, so all the uses for a given User 9689 // are next to each other in the list. 9690 // To help reduce the number of CSE recomputations, process all 9691 // the uses of this user that we can find this way. 9692 do { 9693 unsigned i = Uses[UseIndex].Index; 9694 SDUse &Use = *Uses[UseIndex].Use; 9695 ++UseIndex; 9696 9697 Use.set(To[i]); 9698 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9699 9700 // Now that we have modified User, add it back to the CSE maps. If it 9701 // already exists there, recursively merge the results together. 9702 AddModifiedNodeToCSEMaps(User); 9703 } 9704 } 9705 9706 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9707 /// based on their topological order. It returns the maximum id and a vector 9708 /// of the SDNodes* in assigned order by reference. 9709 unsigned SelectionDAG::AssignTopologicalOrder() { 9710 unsigned DAGSize = 0; 9711 9712 // SortedPos tracks the progress of the algorithm. Nodes before it are 9713 // sorted, nodes after it are unsorted. When the algorithm completes 9714 // it is at the end of the list. 9715 allnodes_iterator SortedPos = allnodes_begin(); 9716 9717 // Visit all the nodes. Move nodes with no operands to the front of 9718 // the list immediately. Annotate nodes that do have operands with their 9719 // operand count. Before we do this, the Node Id fields of the nodes 9720 // may contain arbitrary values. After, the Node Id fields for nodes 9721 // before SortedPos will contain the topological sort index, and the 9722 // Node Id fields for nodes At SortedPos and after will contain the 9723 // count of outstanding operands. 9724 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9725 checkForCycles(&N, this); 9726 unsigned Degree = N.getNumOperands(); 9727 if (Degree == 0) { 9728 // A node with no uses, add it to the result array immediately. 9729 N.setNodeId(DAGSize++); 9730 allnodes_iterator Q(&N); 9731 if (Q != SortedPos) 9732 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9733 assert(SortedPos != AllNodes.end() && "Overran node list"); 9734 ++SortedPos; 9735 } else { 9736 // Temporarily use the Node Id as scratch space for the degree count. 9737 N.setNodeId(Degree); 9738 } 9739 } 9740 9741 // Visit all the nodes. As we iterate, move nodes into sorted order, 9742 // such that by the time the end is reached all nodes will be sorted. 9743 for (SDNode &Node : allnodes()) { 9744 SDNode *N = &Node; 9745 checkForCycles(N, this); 9746 // N is in sorted position, so all its uses have one less operand 9747 // that needs to be sorted. 9748 for (SDNode *P : N->uses()) { 9749 unsigned Degree = P->getNodeId(); 9750 assert(Degree != 0 && "Invalid node degree"); 9751 --Degree; 9752 if (Degree == 0) { 9753 // All of P's operands are sorted, so P may sorted now. 9754 P->setNodeId(DAGSize++); 9755 if (P->getIterator() != SortedPos) 9756 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9757 assert(SortedPos != AllNodes.end() && "Overran node list"); 9758 ++SortedPos; 9759 } else { 9760 // Update P's outstanding operand count. 9761 P->setNodeId(Degree); 9762 } 9763 } 9764 if (Node.getIterator() == SortedPos) { 9765 #ifndef NDEBUG 9766 allnodes_iterator I(N); 9767 SDNode *S = &*++I; 9768 dbgs() << "Overran sorted position:\n"; 9769 S->dumprFull(this); dbgs() << "\n"; 9770 dbgs() << "Checking if this is due to cycles\n"; 9771 checkForCycles(this, true); 9772 #endif 9773 llvm_unreachable(nullptr); 9774 } 9775 } 9776 9777 assert(SortedPos == AllNodes.end() && 9778 "Topological sort incomplete!"); 9779 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9780 "First node in topological sort is not the entry token!"); 9781 assert(AllNodes.front().getNodeId() == 0 && 9782 "First node in topological sort has non-zero id!"); 9783 assert(AllNodes.front().getNumOperands() == 0 && 9784 "First node in topological sort has operands!"); 9785 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9786 "Last node in topologic sort has unexpected id!"); 9787 assert(AllNodes.back().use_empty() && 9788 "Last node in topologic sort has users!"); 9789 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9790 return DAGSize; 9791 } 9792 9793 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9794 /// value is produced by SD. 9795 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9796 for (SDNode *SD : DB->getSDNodes()) { 9797 if (!SD) 9798 continue; 9799 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9800 SD->setHasDebugValue(true); 9801 } 9802 DbgInfo->add(DB, isParameter); 9803 } 9804 9805 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9806 9807 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9808 SDValue NewMemOpChain) { 9809 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9810 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9811 // The new memory operation must have the same position as the old load in 9812 // terms of memory dependency. Create a TokenFactor for the old load and new 9813 // memory operation and update uses of the old load's output chain to use that 9814 // TokenFactor. 9815 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9816 return NewMemOpChain; 9817 9818 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9819 OldChain, NewMemOpChain); 9820 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9821 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9822 return TokenFactor; 9823 } 9824 9825 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9826 SDValue NewMemOp) { 9827 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9828 SDValue OldChain = SDValue(OldLoad, 1); 9829 SDValue NewMemOpChain = NewMemOp.getValue(1); 9830 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9831 } 9832 9833 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9834 Function **OutFunction) { 9835 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9836 9837 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9838 auto *Module = MF->getFunction().getParent(); 9839 auto *Function = Module->getFunction(Symbol); 9840 9841 if (OutFunction != nullptr) 9842 *OutFunction = Function; 9843 9844 if (Function != nullptr) { 9845 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9846 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9847 } 9848 9849 std::string ErrorStr; 9850 raw_string_ostream ErrorFormatter(ErrorStr); 9851 ErrorFormatter << "Undefined external symbol "; 9852 ErrorFormatter << '"' << Symbol << '"'; 9853 report_fatal_error(Twine(ErrorFormatter.str())); 9854 } 9855 9856 //===----------------------------------------------------------------------===// 9857 // SDNode Class 9858 //===----------------------------------------------------------------------===// 9859 9860 bool llvm::isNullConstant(SDValue V) { 9861 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9862 return Const != nullptr && Const->isZero(); 9863 } 9864 9865 bool llvm::isNullFPConstant(SDValue V) { 9866 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9867 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9868 } 9869 9870 bool llvm::isAllOnesConstant(SDValue V) { 9871 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9872 return Const != nullptr && Const->isAllOnes(); 9873 } 9874 9875 bool llvm::isOneConstant(SDValue V) { 9876 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9877 return Const != nullptr && Const->isOne(); 9878 } 9879 9880 SDValue llvm::peekThroughBitcasts(SDValue V) { 9881 while (V.getOpcode() == ISD::BITCAST) 9882 V = V.getOperand(0); 9883 return V; 9884 } 9885 9886 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9887 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9888 V = V.getOperand(0); 9889 return V; 9890 } 9891 9892 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9893 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9894 V = V.getOperand(0); 9895 return V; 9896 } 9897 9898 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9899 if (V.getOpcode() != ISD::XOR) 9900 return false; 9901 V = peekThroughBitcasts(V.getOperand(1)); 9902 unsigned NumBits = V.getScalarValueSizeInBits(); 9903 ConstantSDNode *C = 9904 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9905 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9906 } 9907 9908 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9909 bool AllowTruncation) { 9910 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9911 return CN; 9912 9913 // SplatVectors can truncate their operands. Ignore that case here unless 9914 // AllowTruncation is set. 9915 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9916 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9917 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9918 EVT CVT = CN->getValueType(0); 9919 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9920 if (AllowTruncation || CVT == VecEltVT) 9921 return CN; 9922 } 9923 } 9924 9925 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9926 BitVector UndefElements; 9927 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9928 9929 // BuildVectors can truncate their operands. Ignore that case here unless 9930 // AllowTruncation is set. 9931 if (CN && (UndefElements.none() || AllowUndefs)) { 9932 EVT CVT = CN->getValueType(0); 9933 EVT NSVT = N.getValueType().getScalarType(); 9934 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9935 if (AllowTruncation || (CVT == NSVT)) 9936 return CN; 9937 } 9938 } 9939 9940 return nullptr; 9941 } 9942 9943 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9944 bool AllowUndefs, 9945 bool AllowTruncation) { 9946 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9947 return CN; 9948 9949 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9950 BitVector UndefElements; 9951 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9952 9953 // BuildVectors can truncate their operands. Ignore that case here unless 9954 // AllowTruncation is set. 9955 if (CN && (UndefElements.none() || AllowUndefs)) { 9956 EVT CVT = CN->getValueType(0); 9957 EVT NSVT = N.getValueType().getScalarType(); 9958 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9959 if (AllowTruncation || (CVT == NSVT)) 9960 return CN; 9961 } 9962 } 9963 9964 return nullptr; 9965 } 9966 9967 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9968 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9969 return CN; 9970 9971 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9972 BitVector UndefElements; 9973 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9974 if (CN && (UndefElements.none() || AllowUndefs)) 9975 return CN; 9976 } 9977 9978 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9979 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9980 return CN; 9981 9982 return nullptr; 9983 } 9984 9985 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9986 const APInt &DemandedElts, 9987 bool AllowUndefs) { 9988 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9989 return CN; 9990 9991 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9992 BitVector UndefElements; 9993 ConstantFPSDNode *CN = 9994 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9995 if (CN && (UndefElements.none() || AllowUndefs)) 9996 return CN; 9997 } 9998 9999 return nullptr; 10000 } 10001 10002 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10003 // TODO: may want to use peekThroughBitcast() here. 10004 ConstantSDNode *C = 10005 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10006 return C && C->isZero(); 10007 } 10008 10009 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10010 // TODO: may want to use peekThroughBitcast() here. 10011 unsigned BitWidth = N.getScalarValueSizeInBits(); 10012 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10013 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10014 } 10015 10016 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10017 N = peekThroughBitcasts(N); 10018 unsigned BitWidth = N.getScalarValueSizeInBits(); 10019 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10020 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10021 } 10022 10023 HandleSDNode::~HandleSDNode() { 10024 DropOperands(); 10025 } 10026 10027 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10028 const DebugLoc &DL, 10029 const GlobalValue *GA, EVT VT, 10030 int64_t o, unsigned TF) 10031 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10032 TheGlobal = GA; 10033 } 10034 10035 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10036 EVT VT, unsigned SrcAS, 10037 unsigned DestAS) 10038 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10039 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10040 10041 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10042 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10043 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10044 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10045 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10046 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10047 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10048 10049 // We check here that the size of the memory operand fits within the size of 10050 // the MMO. This is because the MMO might indicate only a possible address 10051 // range instead of specifying the affected memory addresses precisely. 10052 // TODO: Make MachineMemOperands aware of scalable vectors. 10053 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10054 "Size mismatch!"); 10055 } 10056 10057 /// Profile - Gather unique data for the node. 10058 /// 10059 void SDNode::Profile(FoldingSetNodeID &ID) const { 10060 AddNodeIDNode(ID, this); 10061 } 10062 10063 namespace { 10064 10065 struct EVTArray { 10066 std::vector<EVT> VTs; 10067 10068 EVTArray() { 10069 VTs.reserve(MVT::VALUETYPE_SIZE); 10070 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10071 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10072 } 10073 }; 10074 10075 } // end anonymous namespace 10076 10077 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10078 static ManagedStatic<EVTArray> SimpleVTArray; 10079 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10080 10081 /// getValueTypeList - Return a pointer to the specified value type. 10082 /// 10083 const EVT *SDNode::getValueTypeList(EVT VT) { 10084 if (VT.isExtended()) { 10085 sys::SmartScopedLock<true> Lock(*VTMutex); 10086 return &(*EVTs->insert(VT).first); 10087 } 10088 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10089 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10090 } 10091 10092 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10093 /// indicated value. This method ignores uses of other values defined by this 10094 /// operation. 10095 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10096 assert(Value < getNumValues() && "Bad value!"); 10097 10098 // TODO: Only iterate over uses of a given value of the node 10099 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10100 if (UI.getUse().getResNo() == Value) { 10101 if (NUses == 0) 10102 return false; 10103 --NUses; 10104 } 10105 } 10106 10107 // Found exactly the right number of uses? 10108 return NUses == 0; 10109 } 10110 10111 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10112 /// value. This method ignores uses of other values defined by this operation. 10113 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10114 assert(Value < getNumValues() && "Bad value!"); 10115 10116 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10117 if (UI.getUse().getResNo() == Value) 10118 return true; 10119 10120 return false; 10121 } 10122 10123 /// isOnlyUserOf - Return true if this node is the only use of N. 10124 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10125 bool Seen = false; 10126 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10127 SDNode *User = *I; 10128 if (User == this) 10129 Seen = true; 10130 else 10131 return false; 10132 } 10133 10134 return Seen; 10135 } 10136 10137 /// Return true if the only users of N are contained in Nodes. 10138 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10139 bool Seen = false; 10140 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10141 SDNode *User = *I; 10142 if (llvm::is_contained(Nodes, User)) 10143 Seen = true; 10144 else 10145 return false; 10146 } 10147 10148 return Seen; 10149 } 10150 10151 /// isOperand - Return true if this node is an operand of N. 10152 bool SDValue::isOperandOf(const SDNode *N) const { 10153 return is_contained(N->op_values(), *this); 10154 } 10155 10156 bool SDNode::isOperandOf(const SDNode *N) const { 10157 return any_of(N->op_values(), 10158 [this](SDValue Op) { return this == Op.getNode(); }); 10159 } 10160 10161 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10162 /// be a chain) reaches the specified operand without crossing any 10163 /// side-effecting instructions on any chain path. In practice, this looks 10164 /// through token factors and non-volatile loads. In order to remain efficient, 10165 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10166 /// 10167 /// Note that we only need to examine chains when we're searching for 10168 /// side-effects; SelectionDAG requires that all side-effects are represented 10169 /// by chains, even if another operand would force a specific ordering. This 10170 /// constraint is necessary to allow transformations like splitting loads. 10171 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10172 unsigned Depth) const { 10173 if (*this == Dest) return true; 10174 10175 // Don't search too deeply, we just want to be able to see through 10176 // TokenFactor's etc. 10177 if (Depth == 0) return false; 10178 10179 // If this is a token factor, all inputs to the TF happen in parallel. 10180 if (getOpcode() == ISD::TokenFactor) { 10181 // First, try a shallow search. 10182 if (is_contained((*this)->ops(), Dest)) { 10183 // We found the chain we want as an operand of this TokenFactor. 10184 // Essentially, we reach the chain without side-effects if we could 10185 // serialize the TokenFactor into a simple chain of operations with 10186 // Dest as the last operation. This is automatically true if the 10187 // chain has one use: there are no other ordering constraints. 10188 // If the chain has more than one use, we give up: some other 10189 // use of Dest might force a side-effect between Dest and the current 10190 // node. 10191 if (Dest.hasOneUse()) 10192 return true; 10193 } 10194 // Next, try a deep search: check whether every operand of the TokenFactor 10195 // reaches Dest. 10196 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10197 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10198 }); 10199 } 10200 10201 // Loads don't have side effects, look through them. 10202 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10203 if (Ld->isUnordered()) 10204 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10205 } 10206 return false; 10207 } 10208 10209 bool SDNode::hasPredecessor(const SDNode *N) const { 10210 SmallPtrSet<const SDNode *, 32> Visited; 10211 SmallVector<const SDNode *, 16> Worklist; 10212 Worklist.push_back(this); 10213 return hasPredecessorHelper(N, Visited, Worklist); 10214 } 10215 10216 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10217 this->Flags.intersectWith(Flags); 10218 } 10219 10220 SDValue 10221 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10222 ArrayRef<ISD::NodeType> CandidateBinOps, 10223 bool AllowPartials) { 10224 // The pattern must end in an extract from index 0. 10225 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10226 !isNullConstant(Extract->getOperand(1))) 10227 return SDValue(); 10228 10229 // Match against one of the candidate binary ops. 10230 SDValue Op = Extract->getOperand(0); 10231 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10232 return Op.getOpcode() == unsigned(BinOp); 10233 })) 10234 return SDValue(); 10235 10236 // Floating-point reductions may require relaxed constraints on the final step 10237 // of the reduction because they may reorder intermediate operations. 10238 unsigned CandidateBinOp = Op.getOpcode(); 10239 if (Op.getValueType().isFloatingPoint()) { 10240 SDNodeFlags Flags = Op->getFlags(); 10241 switch (CandidateBinOp) { 10242 case ISD::FADD: 10243 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10244 return SDValue(); 10245 break; 10246 default: 10247 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10248 } 10249 } 10250 10251 // Matching failed - attempt to see if we did enough stages that a partial 10252 // reduction from a subvector is possible. 10253 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10254 if (!AllowPartials || !Op) 10255 return SDValue(); 10256 EVT OpVT = Op.getValueType(); 10257 EVT OpSVT = OpVT.getScalarType(); 10258 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10259 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10260 return SDValue(); 10261 BinOp = (ISD::NodeType)CandidateBinOp; 10262 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10263 getVectorIdxConstant(0, SDLoc(Op))); 10264 }; 10265 10266 // At each stage, we're looking for something that looks like: 10267 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10268 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10269 // i32 undef, i32 undef, i32 undef, i32 undef> 10270 // %a = binop <8 x i32> %op, %s 10271 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10272 // we expect something like: 10273 // <4,5,6,7,u,u,u,u> 10274 // <2,3,u,u,u,u,u,u> 10275 // <1,u,u,u,u,u,u,u> 10276 // While a partial reduction match would be: 10277 // <2,3,u,u,u,u,u,u> 10278 // <1,u,u,u,u,u,u,u> 10279 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10280 SDValue PrevOp; 10281 for (unsigned i = 0; i < Stages; ++i) { 10282 unsigned MaskEnd = (1 << i); 10283 10284 if (Op.getOpcode() != CandidateBinOp) 10285 return PartialReduction(PrevOp, MaskEnd); 10286 10287 SDValue Op0 = Op.getOperand(0); 10288 SDValue Op1 = Op.getOperand(1); 10289 10290 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10291 if (Shuffle) { 10292 Op = Op1; 10293 } else { 10294 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10295 Op = Op0; 10296 } 10297 10298 // The first operand of the shuffle should be the same as the other operand 10299 // of the binop. 10300 if (!Shuffle || Shuffle->getOperand(0) != Op) 10301 return PartialReduction(PrevOp, MaskEnd); 10302 10303 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10304 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10305 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10306 return PartialReduction(PrevOp, MaskEnd); 10307 10308 PrevOp = Op; 10309 } 10310 10311 // Handle subvector reductions, which tend to appear after the shuffle 10312 // reduction stages. 10313 while (Op.getOpcode() == CandidateBinOp) { 10314 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10315 SDValue Op0 = Op.getOperand(0); 10316 SDValue Op1 = Op.getOperand(1); 10317 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10318 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10319 Op0.getOperand(0) != Op1.getOperand(0)) 10320 break; 10321 SDValue Src = Op0.getOperand(0); 10322 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10323 if (NumSrcElts != (2 * NumElts)) 10324 break; 10325 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10326 Op1.getConstantOperandAPInt(1) == NumElts) && 10327 !(Op1.getConstantOperandAPInt(1) == 0 && 10328 Op0.getConstantOperandAPInt(1) == NumElts)) 10329 break; 10330 Op = Src; 10331 } 10332 10333 BinOp = (ISD::NodeType)CandidateBinOp; 10334 return Op; 10335 } 10336 10337 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10338 assert(N->getNumValues() == 1 && 10339 "Can't unroll a vector with multiple results!"); 10340 10341 EVT VT = N->getValueType(0); 10342 unsigned NE = VT.getVectorNumElements(); 10343 EVT EltVT = VT.getVectorElementType(); 10344 SDLoc dl(N); 10345 10346 SmallVector<SDValue, 8> Scalars; 10347 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10348 10349 // If ResNE is 0, fully unroll the vector op. 10350 if (ResNE == 0) 10351 ResNE = NE; 10352 else if (NE > ResNE) 10353 NE = ResNE; 10354 10355 unsigned i; 10356 for (i= 0; i != NE; ++i) { 10357 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10358 SDValue Operand = N->getOperand(j); 10359 EVT OperandVT = Operand.getValueType(); 10360 if (OperandVT.isVector()) { 10361 // A vector operand; extract a single element. 10362 EVT OperandEltVT = OperandVT.getVectorElementType(); 10363 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10364 Operand, getVectorIdxConstant(i, dl)); 10365 } else { 10366 // A scalar operand; just use it as is. 10367 Operands[j] = Operand; 10368 } 10369 } 10370 10371 switch (N->getOpcode()) { 10372 default: { 10373 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10374 N->getFlags())); 10375 break; 10376 } 10377 case ISD::VSELECT: 10378 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10379 break; 10380 case ISD::SHL: 10381 case ISD::SRA: 10382 case ISD::SRL: 10383 case ISD::ROTL: 10384 case ISD::ROTR: 10385 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10386 getShiftAmountOperand(Operands[0].getValueType(), 10387 Operands[1]))); 10388 break; 10389 case ISD::SIGN_EXTEND_INREG: { 10390 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10391 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10392 Operands[0], 10393 getValueType(ExtVT))); 10394 } 10395 } 10396 } 10397 10398 for (; i < ResNE; ++i) 10399 Scalars.push_back(getUNDEF(EltVT)); 10400 10401 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10402 return getBuildVector(VecVT, dl, Scalars); 10403 } 10404 10405 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10406 SDNode *N, unsigned ResNE) { 10407 unsigned Opcode = N->getOpcode(); 10408 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10409 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10410 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10411 "Expected an overflow opcode"); 10412 10413 EVT ResVT = N->getValueType(0); 10414 EVT OvVT = N->getValueType(1); 10415 EVT ResEltVT = ResVT.getVectorElementType(); 10416 EVT OvEltVT = OvVT.getVectorElementType(); 10417 SDLoc dl(N); 10418 10419 // If ResNE is 0, fully unroll the vector op. 10420 unsigned NE = ResVT.getVectorNumElements(); 10421 if (ResNE == 0) 10422 ResNE = NE; 10423 else if (NE > ResNE) 10424 NE = ResNE; 10425 10426 SmallVector<SDValue, 8> LHSScalars; 10427 SmallVector<SDValue, 8> RHSScalars; 10428 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10429 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10430 10431 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10432 SDVTList VTs = getVTList(ResEltVT, SVT); 10433 SmallVector<SDValue, 8> ResScalars; 10434 SmallVector<SDValue, 8> OvScalars; 10435 for (unsigned i = 0; i < NE; ++i) { 10436 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10437 SDValue Ov = 10438 getSelect(dl, OvEltVT, Res.getValue(1), 10439 getBoolConstant(true, dl, OvEltVT, ResVT), 10440 getConstant(0, dl, OvEltVT)); 10441 10442 ResScalars.push_back(Res); 10443 OvScalars.push_back(Ov); 10444 } 10445 10446 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10447 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10448 10449 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10450 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10451 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10452 getBuildVector(NewOvVT, dl, OvScalars)); 10453 } 10454 10455 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10456 LoadSDNode *Base, 10457 unsigned Bytes, 10458 int Dist) const { 10459 if (LD->isVolatile() || Base->isVolatile()) 10460 return false; 10461 // TODO: probably too restrictive for atomics, revisit 10462 if (!LD->isSimple()) 10463 return false; 10464 if (LD->isIndexed() || Base->isIndexed()) 10465 return false; 10466 if (LD->getChain() != Base->getChain()) 10467 return false; 10468 EVT VT = LD->getValueType(0); 10469 if (VT.getSizeInBits() / 8 != Bytes) 10470 return false; 10471 10472 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10473 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10474 10475 int64_t Offset = 0; 10476 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10477 return (Dist * Bytes == Offset); 10478 return false; 10479 } 10480 10481 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10482 /// if it cannot be inferred. 10483 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10484 // If this is a GlobalAddress + cst, return the alignment. 10485 const GlobalValue *GV = nullptr; 10486 int64_t GVOffset = 0; 10487 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10488 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10489 KnownBits Known(PtrWidth); 10490 llvm::computeKnownBits(GV, Known, getDataLayout()); 10491 unsigned AlignBits = Known.countMinTrailingZeros(); 10492 if (AlignBits) 10493 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10494 } 10495 10496 // If this is a direct reference to a stack slot, use information about the 10497 // stack slot's alignment. 10498 int FrameIdx = INT_MIN; 10499 int64_t FrameOffset = 0; 10500 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10501 FrameIdx = FI->getIndex(); 10502 } else if (isBaseWithConstantOffset(Ptr) && 10503 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10504 // Handle FI+Cst 10505 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10506 FrameOffset = Ptr.getConstantOperandVal(1); 10507 } 10508 10509 if (FrameIdx != INT_MIN) { 10510 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10511 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10512 } 10513 10514 return None; 10515 } 10516 10517 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10518 /// which is split (or expanded) into two not necessarily identical pieces. 10519 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10520 // Currently all types are split in half. 10521 EVT LoVT, HiVT; 10522 if (!VT.isVector()) 10523 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10524 else 10525 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10526 10527 return std::make_pair(LoVT, HiVT); 10528 } 10529 10530 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10531 /// type, dependent on an enveloping VT that has been split into two identical 10532 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10533 std::pair<EVT, EVT> 10534 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10535 bool *HiIsEmpty) const { 10536 EVT EltTp = VT.getVectorElementType(); 10537 // Examples: 10538 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10539 // custom VL=9 with enveloping VL=8/8 yields 8/1 10540 // custom VL=10 with enveloping VL=8/8 yields 8/2 10541 // etc. 10542 ElementCount VTNumElts = VT.getVectorElementCount(); 10543 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10544 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10545 "Mixing fixed width and scalable vectors when enveloping a type"); 10546 EVT LoVT, HiVT; 10547 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10548 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10549 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10550 *HiIsEmpty = false; 10551 } else { 10552 // Flag that hi type has zero storage size, but return split envelop type 10553 // (this would be easier if vector types with zero elements were allowed). 10554 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10555 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10556 *HiIsEmpty = true; 10557 } 10558 return std::make_pair(LoVT, HiVT); 10559 } 10560 10561 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10562 /// low/high part. 10563 std::pair<SDValue, SDValue> 10564 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10565 const EVT &HiVT) { 10566 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10567 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10568 "Splitting vector with an invalid mixture of fixed and scalable " 10569 "vector types"); 10570 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10571 N.getValueType().getVectorMinNumElements() && 10572 "More vector elements requested than available!"); 10573 SDValue Lo, Hi; 10574 Lo = 10575 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10576 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10577 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10578 // IDX with the runtime scaling factor of the result vector type. For 10579 // fixed-width result vectors, that runtime scaling factor is 1. 10580 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10581 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10582 return std::make_pair(Lo, Hi); 10583 } 10584 10585 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10586 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10587 EVT VT = N.getValueType(); 10588 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10589 NextPowerOf2(VT.getVectorNumElements())); 10590 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10591 getVectorIdxConstant(0, DL)); 10592 } 10593 10594 void SelectionDAG::ExtractVectorElements(SDValue Op, 10595 SmallVectorImpl<SDValue> &Args, 10596 unsigned Start, unsigned Count, 10597 EVT EltVT) { 10598 EVT VT = Op.getValueType(); 10599 if (Count == 0) 10600 Count = VT.getVectorNumElements(); 10601 if (EltVT == EVT()) 10602 EltVT = VT.getVectorElementType(); 10603 SDLoc SL(Op); 10604 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10605 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10606 getVectorIdxConstant(i, SL))); 10607 } 10608 } 10609 10610 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10611 unsigned GlobalAddressSDNode::getAddressSpace() const { 10612 return getGlobal()->getType()->getAddressSpace(); 10613 } 10614 10615 Type *ConstantPoolSDNode::getType() const { 10616 if (isMachineConstantPoolEntry()) 10617 return Val.MachineCPVal->getType(); 10618 return Val.ConstVal->getType(); 10619 } 10620 10621 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10622 unsigned &SplatBitSize, 10623 bool &HasAnyUndefs, 10624 unsigned MinSplatBits, 10625 bool IsBigEndian) const { 10626 EVT VT = getValueType(0); 10627 assert(VT.isVector() && "Expected a vector type"); 10628 unsigned VecWidth = VT.getSizeInBits(); 10629 if (MinSplatBits > VecWidth) 10630 return false; 10631 10632 // FIXME: The widths are based on this node's type, but build vectors can 10633 // truncate their operands. 10634 SplatValue = APInt(VecWidth, 0); 10635 SplatUndef = APInt(VecWidth, 0); 10636 10637 // Get the bits. Bits with undefined values (when the corresponding element 10638 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10639 // in SplatValue. If any of the values are not constant, give up and return 10640 // false. 10641 unsigned int NumOps = getNumOperands(); 10642 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10643 unsigned EltWidth = VT.getScalarSizeInBits(); 10644 10645 for (unsigned j = 0; j < NumOps; ++j) { 10646 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10647 SDValue OpVal = getOperand(i); 10648 unsigned BitPos = j * EltWidth; 10649 10650 if (OpVal.isUndef()) 10651 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10652 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10653 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10654 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10655 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10656 else 10657 return false; 10658 } 10659 10660 // The build_vector is all constants or undefs. Find the smallest element 10661 // size that splats the vector. 10662 HasAnyUndefs = (SplatUndef != 0); 10663 10664 // FIXME: This does not work for vectors with elements less than 8 bits. 10665 while (VecWidth > 8) { 10666 unsigned HalfSize = VecWidth / 2; 10667 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10668 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10669 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10670 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10671 10672 // If the two halves do not match (ignoring undef bits), stop here. 10673 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10674 MinSplatBits > HalfSize) 10675 break; 10676 10677 SplatValue = HighValue | LowValue; 10678 SplatUndef = HighUndef & LowUndef; 10679 10680 VecWidth = HalfSize; 10681 } 10682 10683 SplatBitSize = VecWidth; 10684 return true; 10685 } 10686 10687 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10688 BitVector *UndefElements) const { 10689 unsigned NumOps = getNumOperands(); 10690 if (UndefElements) { 10691 UndefElements->clear(); 10692 UndefElements->resize(NumOps); 10693 } 10694 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10695 if (!DemandedElts) 10696 return SDValue(); 10697 SDValue Splatted; 10698 for (unsigned i = 0; i != NumOps; ++i) { 10699 if (!DemandedElts[i]) 10700 continue; 10701 SDValue Op = getOperand(i); 10702 if (Op.isUndef()) { 10703 if (UndefElements) 10704 (*UndefElements)[i] = true; 10705 } else if (!Splatted) { 10706 Splatted = Op; 10707 } else if (Splatted != Op) { 10708 return SDValue(); 10709 } 10710 } 10711 10712 if (!Splatted) { 10713 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10714 assert(getOperand(FirstDemandedIdx).isUndef() && 10715 "Can only have a splat without a constant for all undefs."); 10716 return getOperand(FirstDemandedIdx); 10717 } 10718 10719 return Splatted; 10720 } 10721 10722 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10723 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10724 return getSplatValue(DemandedElts, UndefElements); 10725 } 10726 10727 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10728 SmallVectorImpl<SDValue> &Sequence, 10729 BitVector *UndefElements) const { 10730 unsigned NumOps = getNumOperands(); 10731 Sequence.clear(); 10732 if (UndefElements) { 10733 UndefElements->clear(); 10734 UndefElements->resize(NumOps); 10735 } 10736 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10737 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10738 return false; 10739 10740 // Set the undefs even if we don't find a sequence (like getSplatValue). 10741 if (UndefElements) 10742 for (unsigned I = 0; I != NumOps; ++I) 10743 if (DemandedElts[I] && getOperand(I).isUndef()) 10744 (*UndefElements)[I] = true; 10745 10746 // Iteratively widen the sequence length looking for repetitions. 10747 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10748 Sequence.append(SeqLen, SDValue()); 10749 for (unsigned I = 0; I != NumOps; ++I) { 10750 if (!DemandedElts[I]) 10751 continue; 10752 SDValue &SeqOp = Sequence[I % SeqLen]; 10753 SDValue Op = getOperand(I); 10754 if (Op.isUndef()) { 10755 if (!SeqOp) 10756 SeqOp = Op; 10757 continue; 10758 } 10759 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10760 Sequence.clear(); 10761 break; 10762 } 10763 SeqOp = Op; 10764 } 10765 if (!Sequence.empty()) 10766 return true; 10767 } 10768 10769 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10770 return false; 10771 } 10772 10773 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10774 BitVector *UndefElements) const { 10775 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10776 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10777 } 10778 10779 ConstantSDNode * 10780 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10781 BitVector *UndefElements) const { 10782 return dyn_cast_or_null<ConstantSDNode>( 10783 getSplatValue(DemandedElts, UndefElements)); 10784 } 10785 10786 ConstantSDNode * 10787 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10788 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10789 } 10790 10791 ConstantFPSDNode * 10792 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10793 BitVector *UndefElements) const { 10794 return dyn_cast_or_null<ConstantFPSDNode>( 10795 getSplatValue(DemandedElts, UndefElements)); 10796 } 10797 10798 ConstantFPSDNode * 10799 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10800 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10801 } 10802 10803 int32_t 10804 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10805 uint32_t BitWidth) const { 10806 if (ConstantFPSDNode *CN = 10807 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10808 bool IsExact; 10809 APSInt IntVal(BitWidth); 10810 const APFloat &APF = CN->getValueAPF(); 10811 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10812 APFloat::opOK || 10813 !IsExact) 10814 return -1; 10815 10816 return IntVal.exactLogBase2(); 10817 } 10818 return -1; 10819 } 10820 10821 bool BuildVectorSDNode::getConstantRawBits( 10822 bool IsLittleEndian, unsigned DstEltSizeInBits, 10823 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10824 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10825 if (!isConstant()) 10826 return false; 10827 10828 unsigned NumSrcOps = getNumOperands(); 10829 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10830 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10831 "Invalid bitcast scale"); 10832 10833 // Extract raw src bits. 10834 SmallVector<APInt> SrcBitElements(NumSrcOps, 10835 APInt::getNullValue(SrcEltSizeInBits)); 10836 BitVector SrcUndeElements(NumSrcOps, false); 10837 10838 for (unsigned I = 0; I != NumSrcOps; ++I) { 10839 SDValue Op = getOperand(I); 10840 if (Op.isUndef()) { 10841 SrcUndeElements.set(I); 10842 continue; 10843 } 10844 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10845 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10846 assert((CInt || CFP) && "Unknown constant"); 10847 SrcBitElements[I] = 10848 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10849 : CFP->getValueAPF().bitcastToAPInt(); 10850 } 10851 10852 // Recast to dst width. 10853 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10854 SrcBitElements, UndefElements, SrcUndeElements); 10855 return true; 10856 } 10857 10858 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10859 unsigned DstEltSizeInBits, 10860 SmallVectorImpl<APInt> &DstBitElements, 10861 ArrayRef<APInt> SrcBitElements, 10862 BitVector &DstUndefElements, 10863 const BitVector &SrcUndefElements) { 10864 unsigned NumSrcOps = SrcBitElements.size(); 10865 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10866 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10867 "Invalid bitcast scale"); 10868 assert(NumSrcOps == SrcUndefElements.size() && 10869 "Vector size mismatch"); 10870 10871 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10872 DstUndefElements.clear(); 10873 DstUndefElements.resize(NumDstOps, false); 10874 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10875 10876 // Concatenate src elements constant bits together into dst element. 10877 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10878 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10879 for (unsigned I = 0; I != NumDstOps; ++I) { 10880 DstUndefElements.set(I); 10881 APInt &DstBits = DstBitElements[I]; 10882 for (unsigned J = 0; J != Scale; ++J) { 10883 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10884 if (SrcUndefElements[Idx]) 10885 continue; 10886 DstUndefElements.reset(I); 10887 const APInt &SrcBits = SrcBitElements[Idx]; 10888 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10889 "Illegal constant bitwidths"); 10890 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10891 } 10892 } 10893 return; 10894 } 10895 10896 // Split src element constant bits into dst elements. 10897 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10898 for (unsigned I = 0; I != NumSrcOps; ++I) { 10899 if (SrcUndefElements[I]) { 10900 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10901 continue; 10902 } 10903 const APInt &SrcBits = SrcBitElements[I]; 10904 for (unsigned J = 0; J != Scale; ++J) { 10905 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10906 APInt &DstBits = DstBitElements[Idx]; 10907 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10908 } 10909 } 10910 } 10911 10912 bool BuildVectorSDNode::isConstant() const { 10913 for (const SDValue &Op : op_values()) { 10914 unsigned Opc = Op.getOpcode(); 10915 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10916 return false; 10917 } 10918 return true; 10919 } 10920 10921 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10922 // Find the first non-undef value in the shuffle mask. 10923 unsigned i, e; 10924 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10925 /* search */; 10926 10927 // If all elements are undefined, this shuffle can be considered a splat 10928 // (although it should eventually get simplified away completely). 10929 if (i == e) 10930 return true; 10931 10932 // Make sure all remaining elements are either undef or the same as the first 10933 // non-undef value. 10934 for (int Idx = Mask[i]; i != e; ++i) 10935 if (Mask[i] >= 0 && Mask[i] != Idx) 10936 return false; 10937 return true; 10938 } 10939 10940 // Returns the SDNode if it is a constant integer BuildVector 10941 // or constant integer. 10942 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10943 if (isa<ConstantSDNode>(N)) 10944 return N.getNode(); 10945 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10946 return N.getNode(); 10947 // Treat a GlobalAddress supporting constant offset folding as a 10948 // constant integer. 10949 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10950 if (GA->getOpcode() == ISD::GlobalAddress && 10951 TLI->isOffsetFoldingLegal(GA)) 10952 return GA; 10953 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10954 isa<ConstantSDNode>(N.getOperand(0))) 10955 return N.getNode(); 10956 return nullptr; 10957 } 10958 10959 // Returns the SDNode if it is a constant float BuildVector 10960 // or constant float. 10961 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10962 if (isa<ConstantFPSDNode>(N)) 10963 return N.getNode(); 10964 10965 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10966 return N.getNode(); 10967 10968 return nullptr; 10969 } 10970 10971 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10972 assert(!Node->OperandList && "Node already has operands"); 10973 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10974 "too many operands to fit into SDNode"); 10975 SDUse *Ops = OperandRecycler.allocate( 10976 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10977 10978 bool IsDivergent = false; 10979 for (unsigned I = 0; I != Vals.size(); ++I) { 10980 Ops[I].setUser(Node); 10981 Ops[I].setInitial(Vals[I]); 10982 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10983 IsDivergent |= Ops[I].getNode()->isDivergent(); 10984 } 10985 Node->NumOperands = Vals.size(); 10986 Node->OperandList = Ops; 10987 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10988 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10989 Node->SDNodeBits.IsDivergent = IsDivergent; 10990 } 10991 checkForCycles(Node); 10992 } 10993 10994 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10995 SmallVectorImpl<SDValue> &Vals) { 10996 size_t Limit = SDNode::getMaxNumOperands(); 10997 while (Vals.size() > Limit) { 10998 unsigned SliceIdx = Vals.size() - Limit; 10999 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11000 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11001 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11002 Vals.emplace_back(NewTF); 11003 } 11004 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11005 } 11006 11007 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11008 EVT VT, SDNodeFlags Flags) { 11009 switch (Opcode) { 11010 default: 11011 return SDValue(); 11012 case ISD::ADD: 11013 case ISD::OR: 11014 case ISD::XOR: 11015 case ISD::UMAX: 11016 return getConstant(0, DL, VT); 11017 case ISD::MUL: 11018 return getConstant(1, DL, VT); 11019 case ISD::AND: 11020 case ISD::UMIN: 11021 return getAllOnesConstant(DL, VT); 11022 case ISD::SMAX: 11023 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11024 case ISD::SMIN: 11025 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11026 case ISD::FADD: 11027 return getConstantFP(-0.0, DL, VT); 11028 case ISD::FMUL: 11029 return getConstantFP(1.0, DL, VT); 11030 case ISD::FMINNUM: 11031 case ISD::FMAXNUM: { 11032 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11033 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11034 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11035 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11036 APFloat::getLargest(Semantics); 11037 if (Opcode == ISD::FMAXNUM) 11038 NeutralAF.changeSign(); 11039 11040 return getConstantFP(NeutralAF, DL, VT); 11041 } 11042 } 11043 } 11044 11045 #ifndef NDEBUG 11046 static void checkForCyclesHelper(const SDNode *N, 11047 SmallPtrSetImpl<const SDNode*> &Visited, 11048 SmallPtrSetImpl<const SDNode*> &Checked, 11049 const llvm::SelectionDAG *DAG) { 11050 // If this node has already been checked, don't check it again. 11051 if (Checked.count(N)) 11052 return; 11053 11054 // If a node has already been visited on this depth-first walk, reject it as 11055 // a cycle. 11056 if (!Visited.insert(N).second) { 11057 errs() << "Detected cycle in SelectionDAG\n"; 11058 dbgs() << "Offending node:\n"; 11059 N->dumprFull(DAG); dbgs() << "\n"; 11060 abort(); 11061 } 11062 11063 for (const SDValue &Op : N->op_values()) 11064 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11065 11066 Checked.insert(N); 11067 Visited.erase(N); 11068 } 11069 #endif 11070 11071 void llvm::checkForCycles(const llvm::SDNode *N, 11072 const llvm::SelectionDAG *DAG, 11073 bool force) { 11074 #ifndef NDEBUG 11075 bool check = force; 11076 #ifdef EXPENSIVE_CHECKS 11077 check = true; 11078 #endif // EXPENSIVE_CHECKS 11079 if (check) { 11080 assert(N && "Checking nonexistent SDNode"); 11081 SmallPtrSet<const SDNode*, 32> visited; 11082 SmallPtrSet<const SDNode*, 32> checked; 11083 checkForCyclesHelper(N, visited, checked, DAG); 11084 } 11085 #endif // !NDEBUG 11086 } 11087 11088 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11089 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11090 } 11091