1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 break; 407 } 408 case ISD::BasicBlock: 409 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 410 break; 411 case ISD::Register: 412 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 413 break; 414 case ISD::RegisterMask: 415 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 416 break; 417 case ISD::SRCVALUE: 418 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 419 break; 420 case ISD::FrameIndex: 421 case ISD::TargetFrameIndex: 422 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 423 break; 424 case ISD::JumpTable: 425 case ISD::TargetJumpTable: 426 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 428 break; 429 case ISD::ConstantPool: 430 case ISD::TargetConstantPool: { 431 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 432 ID.AddInteger(CP->getAlignment()); 433 ID.AddInteger(CP->getOffset()); 434 if (CP->isMachineConstantPoolEntry()) 435 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 436 else 437 ID.AddPointer(CP->getConstVal()); 438 ID.AddInteger(CP->getTargetFlags()); 439 break; 440 } 441 case ISD::TargetIndex: { 442 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 443 ID.AddInteger(TI->getIndex()); 444 ID.AddInteger(TI->getOffset()); 445 ID.AddInteger(TI->getTargetFlags()); 446 break; 447 } 448 case ISD::LOAD: { 449 const LoadSDNode *LD = cast<LoadSDNode>(N); 450 ID.AddInteger(LD->getMemoryVT().getRawBits()); 451 ID.AddInteger(LD->getRawSubclassData()); 452 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 453 break; 454 } 455 case ISD::STORE: { 456 const StoreSDNode *ST = cast<StoreSDNode>(N); 457 ID.AddInteger(ST->getMemoryVT().getRawBits()); 458 ID.AddInteger(ST->getRawSubclassData()); 459 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 460 break; 461 } 462 case ISD::ATOMIC_CMP_SWAP: 463 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 464 case ISD::ATOMIC_SWAP: 465 case ISD::ATOMIC_LOAD_ADD: 466 case ISD::ATOMIC_LOAD_SUB: 467 case ISD::ATOMIC_LOAD_AND: 468 case ISD::ATOMIC_LOAD_OR: 469 case ISD::ATOMIC_LOAD_XOR: 470 case ISD::ATOMIC_LOAD_NAND: 471 case ISD::ATOMIC_LOAD_MIN: 472 case ISD::ATOMIC_LOAD_MAX: 473 case ISD::ATOMIC_LOAD_UMIN: 474 case ISD::ATOMIC_LOAD_UMAX: 475 case ISD::ATOMIC_LOAD: 476 case ISD::ATOMIC_STORE: { 477 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 478 ID.AddInteger(AT->getMemoryVT().getRawBits()); 479 ID.AddInteger(AT->getRawSubclassData()); 480 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::PREFETCH: { 484 const MemSDNode *PF = cast<MemSDNode>(N); 485 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 486 break; 487 } 488 case ISD::VECTOR_SHUFFLE: { 489 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 490 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 491 i != e; ++i) 492 ID.AddInteger(SVN->getMaskElt(i)); 493 break; 494 } 495 case ISD::TargetBlockAddress: 496 case ISD::BlockAddress: { 497 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 498 ID.AddPointer(BA->getBlockAddress()); 499 ID.AddInteger(BA->getOffset()); 500 ID.AddInteger(BA->getTargetFlags()); 501 break; 502 } 503 } // end switch (N->getOpcode()) 504 505 // Target specific memory nodes could also have address spaces to check. 506 if (N->isTargetMemoryOpcode()) 507 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 508 } 509 510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 511 /// data. 512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 513 AddNodeIDOpcode(ID, N->getOpcode()); 514 // Add the return value info. 515 AddNodeIDValueTypes(ID, N->getVTList()); 516 // Add the operand info. 517 AddNodeIDOperands(ID, N->ops()); 518 519 // Handle SDNode leafs with special info. 520 AddNodeIDCustom(ID, N); 521 } 522 523 //===----------------------------------------------------------------------===// 524 // SelectionDAG Class 525 //===----------------------------------------------------------------------===// 526 527 /// doNotCSE - Return true if CSE should not be performed for this node. 528 static bool doNotCSE(SDNode *N) { 529 if (N->getValueType(0) == MVT::Glue) 530 return true; // Never CSE anything that produces a flag. 531 532 switch (N->getOpcode()) { 533 default: break; 534 case ISD::HANDLENODE: 535 case ISD::EH_LABEL: 536 return true; // Never CSE these nodes. 537 } 538 539 // Check that remaining values produced are not flags. 540 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 541 if (N->getValueType(i) == MVT::Glue) 542 return true; // Never CSE anything that produces a flag. 543 544 return false; 545 } 546 547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 548 /// SelectionDAG. 549 void SelectionDAG::RemoveDeadNodes() { 550 // Create a dummy node (which is not added to allnodes), that adds a reference 551 // to the root node, preventing it from being deleted. 552 HandleSDNode Dummy(getRoot()); 553 554 SmallVector<SDNode*, 128> DeadNodes; 555 556 // Add all obviously-dead nodes to the DeadNodes worklist. 557 for (SDNode &Node : allnodes()) 558 if (Node.use_empty()) 559 DeadNodes.push_back(&Node); 560 561 RemoveDeadNodes(DeadNodes); 562 563 // If the root changed (e.g. it was a dead load, update the root). 564 setRoot(Dummy.getValue()); 565 } 566 567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 568 /// given list, and any nodes that become unreachable as a result. 569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 570 571 // Process the worklist, deleting the nodes and adding their uses to the 572 // worklist. 573 while (!DeadNodes.empty()) { 574 SDNode *N = DeadNodes.pop_back_val(); 575 576 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 577 DUL->NodeDeleted(N, nullptr); 578 579 // Take the node out of the appropriate CSE map. 580 RemoveNodeFromCSEMaps(N); 581 582 // Next, brutally remove the operand list. This is safe to do, as there are 583 // no cycles in the graph. 584 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 585 SDUse &Use = *I++; 586 SDNode *Operand = Use.getNode(); 587 Use.set(SDValue()); 588 589 // Now that we removed this operand, see if there are no uses of it left. 590 if (Operand->use_empty()) 591 DeadNodes.push_back(Operand); 592 } 593 594 DeallocateNode(N); 595 } 596 } 597 598 void SelectionDAG::RemoveDeadNode(SDNode *N){ 599 SmallVector<SDNode*, 16> DeadNodes(1, N); 600 601 // Create a dummy node that adds a reference to the root node, preventing 602 // it from being deleted. (This matters if the root is an operand of the 603 // dead node.) 604 HandleSDNode Dummy(getRoot()); 605 606 RemoveDeadNodes(DeadNodes); 607 } 608 609 void SelectionDAG::DeleteNode(SDNode *N) { 610 // First take this out of the appropriate CSE map. 611 RemoveNodeFromCSEMaps(N); 612 613 // Finally, remove uses due to operands of this node, remove from the 614 // AllNodes list, and delete the node. 615 DeleteNodeNotInCSEMaps(N); 616 } 617 618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 619 assert(N->getIterator() != AllNodes.begin() && 620 "Cannot delete the entry node!"); 621 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 622 623 // Drop all of the operands and decrement used node's use counts. 624 N->DropOperands(); 625 626 DeallocateNode(N); 627 } 628 629 void SDDbgInfo::erase(const SDNode *Node) { 630 DbgValMapType::iterator I = DbgValMap.find(Node); 631 if (I == DbgValMap.end()) 632 return; 633 for (auto &Val: I->second) 634 Val->setIsInvalidated(); 635 DbgValMap.erase(I); 636 } 637 638 void SelectionDAG::DeallocateNode(SDNode *N) { 639 // If we have operands, deallocate them. 640 removeOperands(N); 641 642 // Set the opcode to DELETED_NODE to help catch bugs when node 643 // memory is reallocated. 644 N->NodeType = ISD::DELETED_NODE; 645 646 NodeAllocator.Deallocate(AllNodes.remove(N)); 647 648 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 649 // them and forget about that node. 650 DbgInfo->erase(N); 651 } 652 653 #ifndef NDEBUG 654 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 655 static void VerifySDNode(SDNode *N) { 656 switch (N->getOpcode()) { 657 default: 658 break; 659 case ISD::BUILD_PAIR: { 660 EVT VT = N->getValueType(0); 661 assert(N->getNumValues() == 1 && "Too many results!"); 662 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 663 "Wrong return type!"); 664 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 665 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 666 "Mismatched operand types!"); 667 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 668 "Wrong operand type!"); 669 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 670 "Wrong return type size"); 671 break; 672 } 673 case ISD::BUILD_VECTOR: { 674 assert(N->getNumValues() == 1 && "Too many results!"); 675 assert(N->getValueType(0).isVector() && "Wrong return type!"); 676 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 677 "Wrong number of operands!"); 678 EVT EltVT = N->getValueType(0).getVectorElementType(); 679 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 680 assert((I->getValueType() == EltVT || 681 (EltVT.isInteger() && I->getValueType().isInteger() && 682 EltVT.bitsLE(I->getValueType()))) && 683 "Wrong operand type!"); 684 assert(I->getValueType() == N->getOperand(0).getValueType() && 685 "Operands must all have the same type"); 686 } 687 break; 688 } 689 } 690 } 691 #endif // NDEBUG 692 693 /// \brief Insert a newly allocated node into the DAG. 694 /// 695 /// Handles insertion into the all nodes list and CSE map, as well as 696 /// verification and other common operations when a new node is allocated. 697 void SelectionDAG::InsertNode(SDNode *N) { 698 AllNodes.push_back(N); 699 #ifndef NDEBUG 700 N->PersistentId = NextPersistentId++; 701 VerifySDNode(N); 702 #endif 703 } 704 705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 706 /// correspond to it. This is useful when we're about to delete or repurpose 707 /// the node. We don't want future request for structurally identical nodes 708 /// to return N anymore. 709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 710 bool Erased = false; 711 switch (N->getOpcode()) { 712 case ISD::HANDLENODE: return false; // noop. 713 case ISD::CONDCODE: 714 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 715 "Cond code doesn't exist!"); 716 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 717 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 718 break; 719 case ISD::ExternalSymbol: 720 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 721 break; 722 case ISD::TargetExternalSymbol: { 723 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 724 Erased = TargetExternalSymbols.erase( 725 std::pair<std::string,unsigned char>(ESN->getSymbol(), 726 ESN->getTargetFlags())); 727 break; 728 } 729 case ISD::MCSymbol: { 730 auto *MCSN = cast<MCSymbolSDNode>(N); 731 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 732 break; 733 } 734 case ISD::VALUETYPE: { 735 EVT VT = cast<VTSDNode>(N)->getVT(); 736 if (VT.isExtended()) { 737 Erased = ExtendedValueTypeNodes.erase(VT); 738 } else { 739 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 740 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 741 } 742 break; 743 } 744 default: 745 // Remove it from the CSE Map. 746 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 747 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 748 Erased = CSEMap.RemoveNode(N); 749 break; 750 } 751 #ifndef NDEBUG 752 // Verify that the node was actually in one of the CSE maps, unless it has a 753 // flag result (which cannot be CSE'd) or is one of the special cases that are 754 // not subject to CSE. 755 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 756 !N->isMachineOpcode() && !doNotCSE(N)) { 757 N->dump(this); 758 dbgs() << "\n"; 759 llvm_unreachable("Node is not in map!"); 760 } 761 #endif 762 return Erased; 763 } 764 765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 766 /// maps and modified in place. Add it back to the CSE maps, unless an identical 767 /// node already exists, in which case transfer all its users to the existing 768 /// node. This transfer can potentially trigger recursive merging. 769 /// 770 void 771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 772 // For node types that aren't CSE'd, just act as if no identical node 773 // already exists. 774 if (!doNotCSE(N)) { 775 SDNode *Existing = CSEMap.GetOrInsertNode(N); 776 if (Existing != N) { 777 // If there was already an existing matching node, use ReplaceAllUsesWith 778 // to replace the dead one with the existing one. This can cause 779 // recursive merging of other unrelated nodes down the line. 780 ReplaceAllUsesWith(N, Existing); 781 782 // N is now dead. Inform the listeners and delete it. 783 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 784 DUL->NodeDeleted(N, Existing); 785 DeleteNodeNotInCSEMaps(N); 786 return; 787 } 788 } 789 790 // If the node doesn't already exist, we updated it. Inform listeners. 791 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 792 DUL->NodeUpdated(N); 793 } 794 795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 796 /// were replaced with those specified. If this node is never memoized, 797 /// return null, otherwise return a pointer to the slot it would take. If a 798 /// node already exists with these operands, the slot will be non-null. 799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 800 void *&InsertPos) { 801 if (doNotCSE(N)) 802 return nullptr; 803 804 SDValue Ops[] = { Op }; 805 FoldingSetNodeID ID; 806 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 807 AddNodeIDCustom(ID, N); 808 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 809 if (Node) 810 if (const SDNodeFlags *Flags = N->getFlags()) 811 Node->intersectFlagsWith(Flags); 812 return Node; 813 } 814 815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 816 /// were replaced with those specified. If this node is never memoized, 817 /// return null, otherwise return a pointer to the slot it would take. If a 818 /// node already exists with these operands, the slot will be non-null. 819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 820 SDValue Op1, SDValue Op2, 821 void *&InsertPos) { 822 if (doNotCSE(N)) 823 return nullptr; 824 825 SDValue Ops[] = { Op1, Op2 }; 826 FoldingSetNodeID ID; 827 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 828 AddNodeIDCustom(ID, N); 829 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 830 if (Node) 831 if (const SDNodeFlags *Flags = N->getFlags()) 832 Node->intersectFlagsWith(Flags); 833 return Node; 834 } 835 836 837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 838 /// were replaced with those specified. If this node is never memoized, 839 /// return null, otherwise return a pointer to the slot it would take. If a 840 /// node already exists with these operands, the slot will be non-null. 841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 842 void *&InsertPos) { 843 if (doNotCSE(N)) 844 return nullptr; 845 846 FoldingSetNodeID ID; 847 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 848 AddNodeIDCustom(ID, N); 849 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 850 if (Node) 851 if (const SDNodeFlags *Flags = N->getFlags()) 852 Node->intersectFlagsWith(Flags); 853 return Node; 854 } 855 856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 857 Type *Ty = VT == MVT::iPTR ? 858 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 859 VT.getTypeForEVT(*getContext()); 860 861 return getDataLayout().getABITypeAlignment(Ty); 862 } 863 864 // EntryNode could meaningfully have debug info if we can find it... 865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 866 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 867 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 868 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 869 UpdateListeners(nullptr) { 870 InsertNode(&EntryNode); 871 DbgInfo = new SDDbgInfo(); 872 } 873 874 void SelectionDAG::init(MachineFunction &mf) { 875 MF = &mf; 876 TLI = getSubtarget().getTargetLowering(); 877 TSI = getSubtarget().getSelectionDAGInfo(); 878 Context = &mf.getFunction()->getContext(); 879 } 880 881 SelectionDAG::~SelectionDAG() { 882 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 883 allnodes_clear(); 884 OperandRecycler.clear(OperandAllocator); 885 delete DbgInfo; 886 } 887 888 void SelectionDAG::allnodes_clear() { 889 assert(&*AllNodes.begin() == &EntryNode); 890 AllNodes.remove(AllNodes.begin()); 891 while (!AllNodes.empty()) 892 DeallocateNode(&AllNodes.front()); 893 #ifndef NDEBUG 894 NextPersistentId = 0; 895 #endif 896 } 897 898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 899 SDVTList VTs, SDValue N1, SDValue N2, 900 const SDNodeFlags *Flags) { 901 SDValue Ops[] = {N1, N2}; 902 903 if (isBinOpWithFlags(Opcode)) { 904 // If no flags were passed in, use a default flags object. 905 SDNodeFlags F; 906 if (Flags == nullptr) 907 Flags = &F; 908 909 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 910 DL.getDebugLoc(), VTs, *Flags); 911 createOperands(FN, Ops); 912 913 return FN; 914 } 915 916 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 917 createOperands(N, Ops); 918 return N; 919 } 920 921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 922 void *&InsertPos) { 923 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 924 if (N) { 925 switch (N->getOpcode()) { 926 default: break; 927 case ISD::Constant: 928 case ISD::ConstantFP: 929 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 930 "debug location. Use another overload."); 931 } 932 } 933 return N; 934 } 935 936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 937 const SDLoc &DL, void *&InsertPos) { 938 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 939 if (N) { 940 switch (N->getOpcode()) { 941 case ISD::Constant: 942 case ISD::ConstantFP: 943 // Erase debug location from the node if the node is used at several 944 // different places. Do not propagate one location to all uses as it 945 // will cause a worse single stepping debugging experience. 946 if (N->getDebugLoc() != DL.getDebugLoc()) 947 N->setDebugLoc(DebugLoc()); 948 break; 949 default: 950 // When the node's point of use is located earlier in the instruction 951 // sequence than its prior point of use, update its debug info to the 952 // earlier location. 953 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 954 N->setDebugLoc(DL.getDebugLoc()); 955 break; 956 } 957 } 958 return N; 959 } 960 961 void SelectionDAG::clear() { 962 allnodes_clear(); 963 OperandRecycler.clear(OperandAllocator); 964 OperandAllocator.Reset(); 965 CSEMap.clear(); 966 967 ExtendedValueTypeNodes.clear(); 968 ExternalSymbols.clear(); 969 TargetExternalSymbols.clear(); 970 MCSymbols.clear(); 971 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 972 static_cast<CondCodeSDNode*>(nullptr)); 973 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 974 static_cast<SDNode*>(nullptr)); 975 976 EntryNode.UseList = nullptr; 977 InsertNode(&EntryNode); 978 Root = getEntryNode(); 979 DbgInfo->clear(); 980 } 981 982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 983 return VT.bitsGT(Op.getValueType()) ? 984 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 985 getNode(ISD::TRUNCATE, DL, VT, Op); 986 } 987 988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 989 return VT.bitsGT(Op.getValueType()) ? 990 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 991 getNode(ISD::TRUNCATE, DL, VT, Op); 992 } 993 994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) ? 996 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 997 getNode(ISD::TRUNCATE, DL, VT, Op); 998 } 999 1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1001 EVT OpVT) { 1002 if (VT.bitsLE(Op.getValueType())) 1003 return getNode(ISD::TRUNCATE, SL, VT, Op); 1004 1005 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1006 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1007 } 1008 1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1010 assert(!VT.isVector() && 1011 "getZeroExtendInReg should use the vector element type instead of " 1012 "the vector type!"); 1013 if (Op.getValueType() == VT) return Op; 1014 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1015 APInt Imm = APInt::getLowBitsSet(BitWidth, 1016 VT.getSizeInBits()); 1017 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1018 getConstant(Imm, DL, Op.getValueType())); 1019 } 1020 1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1022 EVT VT) { 1023 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1024 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1025 "The sizes of the input and result must match in order to perform the " 1026 "extend in-register."); 1027 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1028 "The destination vector type must have fewer lanes than the input."); 1029 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1030 } 1031 1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1033 EVT VT) { 1034 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1035 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1036 "The sizes of the input and result must match in order to perform the " 1037 "extend in-register."); 1038 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1039 "The destination vector type must have fewer lanes than the input."); 1040 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1041 } 1042 1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1044 EVT VT) { 1045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1046 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1047 "The sizes of the input and result must match in order to perform the " 1048 "extend in-register."); 1049 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1050 "The destination vector type must have fewer lanes than the input."); 1051 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1052 } 1053 1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1055 /// 1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1057 EVT EltVT = VT.getScalarType(); 1058 SDValue NegOne = 1059 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1060 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1061 } 1062 1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1064 EVT EltVT = VT.getScalarType(); 1065 SDValue TrueValue; 1066 switch (TLI->getBooleanContents(VT)) { 1067 case TargetLowering::ZeroOrOneBooleanContent: 1068 case TargetLowering::UndefinedBooleanContent: 1069 TrueValue = getConstant(1, DL, VT); 1070 break; 1071 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1072 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1073 VT); 1074 break; 1075 } 1076 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1077 } 1078 1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1080 bool isT, bool isO) { 1081 EVT EltVT = VT.getScalarType(); 1082 assert((EltVT.getSizeInBits() >= 64 || 1083 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1084 "getConstant with a uint64_t value that doesn't fit in the type!"); 1085 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1086 } 1087 1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1089 bool isT, bool isO) { 1090 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1091 } 1092 1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1094 EVT VT, bool isT, bool isO) { 1095 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1096 1097 EVT EltVT = VT.getScalarType(); 1098 const ConstantInt *Elt = &Val; 1099 1100 // In some cases the vector type is legal but the element type is illegal and 1101 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1102 // inserted value (the type does not need to match the vector element type). 1103 // Any extra bits introduced will be truncated away. 1104 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1105 TargetLowering::TypePromoteInteger) { 1106 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1107 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1108 Elt = ConstantInt::get(*getContext(), NewVal); 1109 } 1110 // In other cases the element type is illegal and needs to be expanded, for 1111 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1112 // the value into n parts and use a vector type with n-times the elements. 1113 // Then bitcast to the type requested. 1114 // Legalizing constants too early makes the DAGCombiner's job harder so we 1115 // only legalize if the DAG tells us we must produce legal types. 1116 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1117 TLI->getTypeAction(*getContext(), EltVT) == 1118 TargetLowering::TypeExpandInteger) { 1119 const APInt &NewVal = Elt->getValue(); 1120 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1121 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1122 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1123 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1124 1125 // Check the temporary vector is the correct size. If this fails then 1126 // getTypeToTransformTo() probably returned a type whose size (in bits) 1127 // isn't a power-of-2 factor of the requested type size. 1128 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1129 1130 SmallVector<SDValue, 2> EltParts; 1131 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1132 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1133 .zextOrTrunc(ViaEltSizeInBits), DL, 1134 ViaEltVT, isT, isO)); 1135 } 1136 1137 // EltParts is currently in little endian order. If we actually want 1138 // big-endian order then reverse it now. 1139 if (getDataLayout().isBigEndian()) 1140 std::reverse(EltParts.begin(), EltParts.end()); 1141 1142 // The elements must be reversed when the element order is different 1143 // to the endianness of the elements (because the BITCAST is itself a 1144 // vector shuffle in this situation). However, we do not need any code to 1145 // perform this reversal because getConstant() is producing a vector 1146 // splat. 1147 // This situation occurs in MIPS MSA. 1148 1149 SmallVector<SDValue, 8> Ops; 1150 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1151 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1152 return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1153 } 1154 1155 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1156 "APInt size does not match type size!"); 1157 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1158 FoldingSetNodeID ID; 1159 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1160 ID.AddPointer(Elt); 1161 ID.AddBoolean(isO); 1162 void *IP = nullptr; 1163 SDNode *N = nullptr; 1164 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1165 if (!VT.isVector()) 1166 return SDValue(N, 0); 1167 1168 if (!N) { 1169 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1170 CSEMap.InsertNode(N, IP); 1171 InsertNode(N); 1172 } 1173 1174 SDValue Result(N, 0); 1175 if (VT.isVector()) 1176 Result = getSplatBuildVector(VT, DL, Result); 1177 return Result; 1178 } 1179 1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1181 bool isTarget) { 1182 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1183 } 1184 1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1186 bool isTarget) { 1187 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1188 } 1189 1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1191 EVT VT, bool isTarget) { 1192 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1193 1194 EVT EltVT = VT.getScalarType(); 1195 1196 // Do the map lookup using the actual bit pattern for the floating point 1197 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1198 // we don't have issues with SNANs. 1199 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1200 FoldingSetNodeID ID; 1201 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1202 ID.AddPointer(&V); 1203 void *IP = nullptr; 1204 SDNode *N = nullptr; 1205 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1206 if (!VT.isVector()) 1207 return SDValue(N, 0); 1208 1209 if (!N) { 1210 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1211 CSEMap.InsertNode(N, IP); 1212 InsertNode(N); 1213 } 1214 1215 SDValue Result(N, 0); 1216 if (VT.isVector()) 1217 Result = getSplatBuildVector(VT, DL, Result); 1218 return Result; 1219 } 1220 1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1222 bool isTarget) { 1223 EVT EltVT = VT.getScalarType(); 1224 if (EltVT == MVT::f32) 1225 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1226 else if (EltVT == MVT::f64) 1227 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1228 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1229 EltVT == MVT::f16) { 1230 bool Ignored; 1231 APFloat APF = APFloat(Val); 1232 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1233 &Ignored); 1234 return getConstantFP(APF, DL, VT, isTarget); 1235 } else 1236 llvm_unreachable("Unsupported type in getConstantFP"); 1237 } 1238 1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1240 EVT VT, int64_t Offset, bool isTargetGA, 1241 unsigned char TargetFlags) { 1242 assert((TargetFlags == 0 || isTargetGA) && 1243 "Cannot set target flags on target-independent globals"); 1244 1245 // Truncate (with sign-extension) the offset value to the pointer size. 1246 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1247 if (BitWidth < 64) 1248 Offset = SignExtend64(Offset, BitWidth); 1249 1250 unsigned Opc; 1251 if (GV->isThreadLocal()) 1252 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1253 else 1254 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1255 1256 FoldingSetNodeID ID; 1257 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1258 ID.AddPointer(GV); 1259 ID.AddInteger(Offset); 1260 ID.AddInteger(TargetFlags); 1261 void *IP = nullptr; 1262 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1263 return SDValue(E, 0); 1264 1265 auto *N = newSDNode<GlobalAddressSDNode>( 1266 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1267 CSEMap.InsertNode(N, IP); 1268 InsertNode(N); 1269 return SDValue(N, 0); 1270 } 1271 1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1273 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1274 FoldingSetNodeID ID; 1275 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1276 ID.AddInteger(FI); 1277 void *IP = nullptr; 1278 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1279 return SDValue(E, 0); 1280 1281 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1282 CSEMap.InsertNode(N, IP); 1283 InsertNode(N); 1284 return SDValue(N, 0); 1285 } 1286 1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1288 unsigned char TargetFlags) { 1289 assert((TargetFlags == 0 || isTarget) && 1290 "Cannot set target flags on target-independent jump tables"); 1291 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1292 FoldingSetNodeID ID; 1293 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1294 ID.AddInteger(JTI); 1295 ID.AddInteger(TargetFlags); 1296 void *IP = nullptr; 1297 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1298 return SDValue(E, 0); 1299 1300 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1301 CSEMap.InsertNode(N, IP); 1302 InsertNode(N); 1303 return SDValue(N, 0); 1304 } 1305 1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1307 unsigned Alignment, int Offset, 1308 bool isTarget, 1309 unsigned char TargetFlags) { 1310 assert((TargetFlags == 0 || isTarget) && 1311 "Cannot set target flags on target-independent globals"); 1312 if (Alignment == 0) 1313 Alignment = MF->getFunction()->optForSize() 1314 ? getDataLayout().getABITypeAlignment(C->getType()) 1315 : getDataLayout().getPrefTypeAlignment(C->getType()); 1316 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1317 FoldingSetNodeID ID; 1318 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1319 ID.AddInteger(Alignment); 1320 ID.AddInteger(Offset); 1321 ID.AddPointer(C); 1322 ID.AddInteger(TargetFlags); 1323 void *IP = nullptr; 1324 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1325 return SDValue(E, 0); 1326 1327 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1328 TargetFlags); 1329 CSEMap.InsertNode(N, IP); 1330 InsertNode(N); 1331 return SDValue(N, 0); 1332 } 1333 1334 1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1336 unsigned Alignment, int Offset, 1337 bool isTarget, 1338 unsigned char TargetFlags) { 1339 assert((TargetFlags == 0 || isTarget) && 1340 "Cannot set target flags on target-independent globals"); 1341 if (Alignment == 0) 1342 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1343 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1344 FoldingSetNodeID ID; 1345 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1346 ID.AddInteger(Alignment); 1347 ID.AddInteger(Offset); 1348 C->addSelectionDAGCSEId(ID); 1349 ID.AddInteger(TargetFlags); 1350 void *IP = nullptr; 1351 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1352 return SDValue(E, 0); 1353 1354 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1355 TargetFlags); 1356 CSEMap.InsertNode(N, IP); 1357 InsertNode(N); 1358 return SDValue(N, 0); 1359 } 1360 1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1362 unsigned char TargetFlags) { 1363 FoldingSetNodeID ID; 1364 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1365 ID.AddInteger(Index); 1366 ID.AddInteger(Offset); 1367 ID.AddInteger(TargetFlags); 1368 void *IP = nullptr; 1369 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1370 return SDValue(E, 0); 1371 1372 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1373 CSEMap.InsertNode(N, IP); 1374 InsertNode(N); 1375 return SDValue(N, 0); 1376 } 1377 1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1379 FoldingSetNodeID ID; 1380 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1381 ID.AddPointer(MBB); 1382 void *IP = nullptr; 1383 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1384 return SDValue(E, 0); 1385 1386 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1387 CSEMap.InsertNode(N, IP); 1388 InsertNode(N); 1389 return SDValue(N, 0); 1390 } 1391 1392 SDValue SelectionDAG::getValueType(EVT VT) { 1393 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1394 ValueTypeNodes.size()) 1395 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1396 1397 SDNode *&N = VT.isExtended() ? 1398 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1399 1400 if (N) return SDValue(N, 0); 1401 N = newSDNode<VTSDNode>(VT); 1402 InsertNode(N); 1403 return SDValue(N, 0); 1404 } 1405 1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1407 SDNode *&N = ExternalSymbols[Sym]; 1408 if (N) return SDValue(N, 0); 1409 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1410 InsertNode(N); 1411 return SDValue(N, 0); 1412 } 1413 1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1415 SDNode *&N = MCSymbols[Sym]; 1416 if (N) 1417 return SDValue(N, 0); 1418 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1419 InsertNode(N); 1420 return SDValue(N, 0); 1421 } 1422 1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1424 unsigned char TargetFlags) { 1425 SDNode *&N = 1426 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1427 TargetFlags)]; 1428 if (N) return SDValue(N, 0); 1429 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1430 InsertNode(N); 1431 return SDValue(N, 0); 1432 } 1433 1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1435 if ((unsigned)Cond >= CondCodeNodes.size()) 1436 CondCodeNodes.resize(Cond+1); 1437 1438 if (!CondCodeNodes[Cond]) { 1439 auto *N = newSDNode<CondCodeSDNode>(Cond); 1440 CondCodeNodes[Cond] = N; 1441 InsertNode(N); 1442 } 1443 1444 return SDValue(CondCodeNodes[Cond], 0); 1445 } 1446 1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1450 std::swap(N1, N2); 1451 ShuffleVectorSDNode::commuteMask(M); 1452 } 1453 1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1455 SDValue N2, ArrayRef<int> Mask) { 1456 assert(VT.getVectorNumElements() == Mask.size() && 1457 "Must have the same number of vector elements as mask elements!"); 1458 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1459 "Invalid VECTOR_SHUFFLE"); 1460 1461 // Canonicalize shuffle undef, undef -> undef 1462 if (N1.isUndef() && N2.isUndef()) 1463 return getUNDEF(VT); 1464 1465 // Validate that all indices in Mask are within the range of the elements 1466 // input to the shuffle. 1467 int NElts = Mask.size(); 1468 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1469 "Index out of range"); 1470 1471 // Copy the mask so we can do any needed cleanup. 1472 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1473 1474 // Canonicalize shuffle v, v -> v, undef 1475 if (N1 == N2) { 1476 N2 = getUNDEF(VT); 1477 for (int i = 0; i != NElts; ++i) 1478 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1479 } 1480 1481 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1482 if (N1.isUndef()) 1483 commuteShuffle(N1, N2, MaskVec); 1484 1485 // If shuffling a splat, try to blend the splat instead. We do this here so 1486 // that even when this arises during lowering we don't have to re-handle it. 1487 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1488 BitVector UndefElements; 1489 SDValue Splat = BV->getSplatValue(&UndefElements); 1490 if (!Splat) 1491 return; 1492 1493 for (int i = 0; i < NElts; ++i) { 1494 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1495 continue; 1496 1497 // If this input comes from undef, mark it as such. 1498 if (UndefElements[MaskVec[i] - Offset]) { 1499 MaskVec[i] = -1; 1500 continue; 1501 } 1502 1503 // If we can blend a non-undef lane, use that instead. 1504 if (!UndefElements[i]) 1505 MaskVec[i] = i + Offset; 1506 } 1507 }; 1508 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1509 BlendSplat(N1BV, 0); 1510 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1511 BlendSplat(N2BV, NElts); 1512 1513 // Canonicalize all index into lhs, -> shuffle lhs, undef 1514 // Canonicalize all index into rhs, -> shuffle rhs, undef 1515 bool AllLHS = true, AllRHS = true; 1516 bool N2Undef = N2.isUndef(); 1517 for (int i = 0; i != NElts; ++i) { 1518 if (MaskVec[i] >= NElts) { 1519 if (N2Undef) 1520 MaskVec[i] = -1; 1521 else 1522 AllLHS = false; 1523 } else if (MaskVec[i] >= 0) { 1524 AllRHS = false; 1525 } 1526 } 1527 if (AllLHS && AllRHS) 1528 return getUNDEF(VT); 1529 if (AllLHS && !N2Undef) 1530 N2 = getUNDEF(VT); 1531 if (AllRHS) { 1532 N1 = getUNDEF(VT); 1533 commuteShuffle(N1, N2, MaskVec); 1534 } 1535 // Reset our undef status after accounting for the mask. 1536 N2Undef = N2.isUndef(); 1537 // Re-check whether both sides ended up undef. 1538 if (N1.isUndef() && N2Undef) 1539 return getUNDEF(VT); 1540 1541 // If Identity shuffle return that node. 1542 bool Identity = true, AllSame = true; 1543 for (int i = 0; i != NElts; ++i) { 1544 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1545 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1546 } 1547 if (Identity && NElts) 1548 return N1; 1549 1550 // Shuffling a constant splat doesn't change the result. 1551 if (N2Undef) { 1552 SDValue V = N1; 1553 1554 // Look through any bitcasts. We check that these don't change the number 1555 // (and size) of elements and just changes their types. 1556 while (V.getOpcode() == ISD::BITCAST) 1557 V = V->getOperand(0); 1558 1559 // A splat should always show up as a build vector node. 1560 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1561 BitVector UndefElements; 1562 SDValue Splat = BV->getSplatValue(&UndefElements); 1563 // If this is a splat of an undef, shuffling it is also undef. 1564 if (Splat && Splat.isUndef()) 1565 return getUNDEF(VT); 1566 1567 bool SameNumElts = 1568 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1569 1570 // We only have a splat which can skip shuffles if there is a splatted 1571 // value and no undef lanes rearranged by the shuffle. 1572 if (Splat && UndefElements.none()) { 1573 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1574 // number of elements match or the value splatted is a zero constant. 1575 if (SameNumElts) 1576 return N1; 1577 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1578 if (C->isNullValue()) 1579 return N1; 1580 } 1581 1582 // If the shuffle itself creates a splat, build the vector directly. 1583 if (AllSame && SameNumElts) { 1584 EVT BuildVT = BV->getValueType(0); 1585 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1586 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1587 1588 // We may have jumped through bitcasts, so the type of the 1589 // BUILD_VECTOR may not match the type of the shuffle. 1590 if (BuildVT != VT) 1591 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1592 return NewBV; 1593 } 1594 } 1595 } 1596 1597 FoldingSetNodeID ID; 1598 SDValue Ops[2] = { N1, N2 }; 1599 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1600 for (int i = 0; i != NElts; ++i) 1601 ID.AddInteger(MaskVec[i]); 1602 1603 void* IP = nullptr; 1604 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1605 return SDValue(E, 0); 1606 1607 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1608 // SDNode doesn't have access to it. This memory will be "leaked" when 1609 // the node is deallocated, but recovered when the NodeAllocator is released. 1610 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1611 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1612 1613 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1614 dl.getDebugLoc(), MaskAlloc); 1615 createOperands(N, Ops); 1616 1617 CSEMap.InsertNode(N, IP); 1618 InsertNode(N); 1619 return SDValue(N, 0); 1620 } 1621 1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1623 MVT VT = SV.getSimpleValueType(0); 1624 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1625 ShuffleVectorSDNode::commuteMask(MaskVec); 1626 1627 SDValue Op0 = SV.getOperand(0); 1628 SDValue Op1 = SV.getOperand(1); 1629 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1630 } 1631 1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1633 FoldingSetNodeID ID; 1634 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1635 ID.AddInteger(RegNo); 1636 void *IP = nullptr; 1637 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1638 return SDValue(E, 0); 1639 1640 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1641 CSEMap.InsertNode(N, IP); 1642 InsertNode(N); 1643 return SDValue(N, 0); 1644 } 1645 1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1647 FoldingSetNodeID ID; 1648 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1649 ID.AddPointer(RegMask); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1661 MCSymbol *Label) { 1662 FoldingSetNodeID ID; 1663 SDValue Ops[] = { Root }; 1664 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1665 ID.AddPointer(Label); 1666 void *IP = nullptr; 1667 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1668 return SDValue(E, 0); 1669 1670 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1671 createOperands(N, Ops); 1672 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1679 int64_t Offset, 1680 bool isTarget, 1681 unsigned char TargetFlags) { 1682 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1683 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1686 ID.AddPointer(BA); 1687 ID.AddInteger(Offset); 1688 ID.AddInteger(TargetFlags); 1689 void *IP = nullptr; 1690 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1691 return SDValue(E, 0); 1692 1693 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1694 CSEMap.InsertNode(N, IP); 1695 InsertNode(N); 1696 return SDValue(N, 0); 1697 } 1698 1699 SDValue SelectionDAG::getSrcValue(const Value *V) { 1700 assert((!V || V->getType()->isPointerTy()) && 1701 "SrcValue is not a pointer?"); 1702 1703 FoldingSetNodeID ID; 1704 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1705 ID.AddPointer(V); 1706 1707 void *IP = nullptr; 1708 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1709 return SDValue(E, 0); 1710 1711 auto *N = newSDNode<SrcValueSDNode>(V); 1712 CSEMap.InsertNode(N, IP); 1713 InsertNode(N); 1714 return SDValue(N, 0); 1715 } 1716 1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1720 ID.AddPointer(MD); 1721 1722 void *IP = nullptr; 1723 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1724 return SDValue(E, 0); 1725 1726 auto *N = newSDNode<MDNodeSDNode>(MD); 1727 CSEMap.InsertNode(N, IP); 1728 InsertNode(N); 1729 return SDValue(N, 0); 1730 } 1731 1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1733 if (VT == V.getValueType()) 1734 return V; 1735 1736 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1737 } 1738 1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1740 unsigned SrcAS, unsigned DestAS) { 1741 SDValue Ops[] = {Ptr}; 1742 FoldingSetNodeID ID; 1743 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1744 ID.AddInteger(SrcAS); 1745 ID.AddInteger(DestAS); 1746 1747 void *IP = nullptr; 1748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1749 return SDValue(E, 0); 1750 1751 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1752 VT, SrcAS, DestAS); 1753 createOperands(N, Ops); 1754 1755 CSEMap.InsertNode(N, IP); 1756 InsertNode(N); 1757 return SDValue(N, 0); 1758 } 1759 1760 /// getShiftAmountOperand - Return the specified value casted to 1761 /// the target's desired shift amount type. 1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1763 EVT OpTy = Op.getValueType(); 1764 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1765 if (OpTy == ShTy || OpTy.isVector()) return Op; 1766 1767 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1768 } 1769 1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1771 SDLoc dl(Node); 1772 const TargetLowering &TLI = getTargetLoweringInfo(); 1773 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1774 EVT VT = Node->getValueType(0); 1775 SDValue Tmp1 = Node->getOperand(0); 1776 SDValue Tmp2 = Node->getOperand(1); 1777 unsigned Align = Node->getConstantOperandVal(3); 1778 1779 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1780 Tmp2, MachinePointerInfo(V)); 1781 SDValue VAList = VAListLoad; 1782 1783 if (Align > TLI.getMinStackArgumentAlignment()) { 1784 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1785 1786 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1787 getConstant(Align - 1, dl, VAList.getValueType())); 1788 1789 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1790 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1791 } 1792 1793 // Increment the pointer, VAList, to the next vaarg 1794 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1795 getConstant(getDataLayout().getTypeAllocSize( 1796 VT.getTypeForEVT(*getContext())), 1797 dl, VAList.getValueType())); 1798 // Store the incremented VAList to the legalized pointer 1799 Tmp1 = 1800 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1801 // Load the actual argument out of the pointer VAList 1802 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1803 } 1804 1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1806 SDLoc dl(Node); 1807 const TargetLowering &TLI = getTargetLoweringInfo(); 1808 // This defaults to loading a pointer from the input and storing it to the 1809 // output, returning the chain. 1810 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1811 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1812 SDValue Tmp1 = 1813 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1814 Node->getOperand(2), MachinePointerInfo(VS)); 1815 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1816 MachinePointerInfo(VD)); 1817 } 1818 1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1820 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1821 unsigned ByteSize = VT.getStoreSize(); 1822 Type *Ty = VT.getTypeForEVT(*getContext()); 1823 unsigned StackAlign = 1824 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1825 1826 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1827 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1828 } 1829 1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1831 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1832 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1833 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1834 const DataLayout &DL = getDataLayout(); 1835 unsigned Align = 1836 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1837 1838 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1839 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1840 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1841 } 1842 1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1844 ISD::CondCode Cond, const SDLoc &dl) { 1845 // These setcc operations always fold. 1846 switch (Cond) { 1847 default: break; 1848 case ISD::SETFALSE: 1849 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1850 case ISD::SETTRUE: 1851 case ISD::SETTRUE2: { 1852 TargetLowering::BooleanContent Cnt = 1853 TLI->getBooleanContents(N1->getValueType(0)); 1854 return getConstant( 1855 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1856 VT); 1857 } 1858 1859 case ISD::SETOEQ: 1860 case ISD::SETOGT: 1861 case ISD::SETOGE: 1862 case ISD::SETOLT: 1863 case ISD::SETOLE: 1864 case ISD::SETONE: 1865 case ISD::SETO: 1866 case ISD::SETUO: 1867 case ISD::SETUEQ: 1868 case ISD::SETUNE: 1869 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1870 break; 1871 } 1872 1873 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1874 const APInt &C2 = N2C->getAPIntValue(); 1875 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1876 const APInt &C1 = N1C->getAPIntValue(); 1877 1878 switch (Cond) { 1879 default: llvm_unreachable("Unknown integer setcc!"); 1880 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1881 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1882 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1883 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1884 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1885 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1886 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1887 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1888 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1889 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1890 } 1891 } 1892 } 1893 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1894 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1895 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1896 switch (Cond) { 1897 default: break; 1898 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1899 return getUNDEF(VT); 1900 LLVM_FALLTHROUGH; 1901 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1902 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1903 return getUNDEF(VT); 1904 LLVM_FALLTHROUGH; 1905 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1906 R==APFloat::cmpLessThan, dl, VT); 1907 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1908 return getUNDEF(VT); 1909 LLVM_FALLTHROUGH; 1910 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1911 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1912 return getUNDEF(VT); 1913 LLVM_FALLTHROUGH; 1914 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1915 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1916 return getUNDEF(VT); 1917 LLVM_FALLTHROUGH; 1918 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1919 R==APFloat::cmpEqual, dl, VT); 1920 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1921 return getUNDEF(VT); 1922 LLVM_FALLTHROUGH; 1923 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1924 R==APFloat::cmpEqual, dl, VT); 1925 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1926 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1927 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1928 R==APFloat::cmpEqual, dl, VT); 1929 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1930 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1931 R==APFloat::cmpLessThan, dl, VT); 1932 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1933 R==APFloat::cmpUnordered, dl, VT); 1934 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1935 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1936 } 1937 } else { 1938 // Ensure that the constant occurs on the RHS. 1939 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1940 MVT CompVT = N1.getValueType().getSimpleVT(); 1941 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1942 return SDValue(); 1943 1944 return getSetCC(dl, VT, N2, N1, SwappedCond); 1945 } 1946 } 1947 1948 // Could not fold it. 1949 return SDValue(); 1950 } 1951 1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1953 /// use this predicate to simplify operations downstream. 1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1955 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1956 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1957 } 1958 1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1960 /// this predicate to simplify operations downstream. Mask is known to be zero 1961 /// for bits that V cannot have. 1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1963 unsigned Depth) const { 1964 APInt KnownZero, KnownOne; 1965 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1966 return (KnownZero & Mask) == Mask; 1967 } 1968 1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 1970 /// is less than the element bit-width of the shift node, return it. 1971 static const APInt *getValidShiftAmountConstant(SDValue V) { 1972 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 1973 // Shifting more than the bitwidth is not valid. 1974 const APInt &ShAmt = SA->getAPIntValue(); 1975 if (ShAmt.ult(V.getScalarValueSizeInBits())) 1976 return &ShAmt; 1977 } 1978 return nullptr; 1979 } 1980 1981 /// Determine which bits of Op are known to be either zero or one and return 1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are 1983 /// those that are shared by every vector element. 1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 1985 APInt &KnownOne, unsigned Depth) const { 1986 EVT VT = Op.getValueType(); 1987 APInt DemandedElts = VT.isVector() 1988 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 1989 : APInt(1, 1); 1990 computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); 1991 } 1992 1993 /// Determine which bits of Op are known to be either zero or one and return 1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows 1995 /// us to only collect the known bits that are shared by the requested vector 1996 /// elements. 1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder 1998 /// should be added when they become necessary. 1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2000 APInt &KnownOne, const APInt &DemandedElts, 2001 unsigned Depth) const { 2002 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2003 2004 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2005 if (Depth == 6) 2006 return; // Limit search depth. 2007 2008 APInt KnownZero2, KnownOne2; 2009 unsigned NumElts = DemandedElts.getBitWidth(); 2010 2011 if (!DemandedElts) 2012 return; // No demanded elts, better to assume we don't know anything. 2013 2014 unsigned Opcode = Op.getOpcode(); 2015 switch (Opcode) { 2016 case ISD::Constant: 2017 // We know all of the bits for a constant! 2018 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2019 KnownZero = ~KnownOne; 2020 break; 2021 case ISD::BUILD_VECTOR: 2022 // Collect the known bits that are shared by every demanded vector element. 2023 assert(NumElts == Op.getValueType().getVectorNumElements() && 2024 "Unexpected vector size"); 2025 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2026 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2027 if (!DemandedElts[i]) 2028 continue; 2029 2030 SDValue SrcOp = Op.getOperand(i); 2031 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2032 2033 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2034 if (SrcOp.getValueSizeInBits() != BitWidth) { 2035 assert(SrcOp.getValueSizeInBits() > BitWidth && 2036 "Expected BUILD_VECTOR implicit truncation"); 2037 KnownOne2 = KnownOne2.trunc(BitWidth); 2038 KnownZero2 = KnownZero2.trunc(BitWidth); 2039 } 2040 2041 // Known bits are the values that are shared by every demanded element. 2042 KnownOne &= KnownOne2; 2043 KnownZero &= KnownZero2; 2044 2045 // If we don't know any bits, early out. 2046 if (!KnownOne && !KnownZero) 2047 break; 2048 } 2049 break; 2050 case ISD::VECTOR_SHUFFLE: { 2051 // Collect the known bits that are shared by every vector element referenced 2052 // by the shuffle. 2053 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2054 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2055 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2056 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2057 for (unsigned i = 0; i != NumElts; ++i) { 2058 if (!DemandedElts[i]) 2059 continue; 2060 2061 int M = SVN->getMaskElt(i); 2062 if (M < 0) { 2063 // For UNDEF elements, we don't know anything about the common state of 2064 // the shuffle result. 2065 KnownOne.clearAllBits(); 2066 KnownZero.clearAllBits(); 2067 DemandedLHS.clearAllBits(); 2068 DemandedRHS.clearAllBits(); 2069 break; 2070 } 2071 2072 if ((unsigned)M < NumElts) 2073 DemandedLHS.setBit((unsigned)M % NumElts); 2074 else 2075 DemandedRHS.setBit((unsigned)M % NumElts); 2076 } 2077 // Known bits are the values that are shared by every demanded element. 2078 if (!!DemandedLHS) { 2079 SDValue LHS = Op.getOperand(0); 2080 computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1); 2081 KnownOne &= KnownOne2; 2082 KnownZero &= KnownZero2; 2083 } 2084 // If we don't know any bits, early out. 2085 if (!KnownOne && !KnownZero) 2086 break; 2087 if (!!DemandedRHS) { 2088 SDValue RHS = Op.getOperand(1); 2089 computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1); 2090 KnownOne &= KnownOne2; 2091 KnownZero &= KnownZero2; 2092 } 2093 break; 2094 } 2095 case ISD::CONCAT_VECTORS: { 2096 // Split DemandedElts and test each of the demanded subvectors. 2097 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2098 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2099 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2100 unsigned NumSubVectors = Op.getNumOperands(); 2101 for (unsigned i = 0; i != NumSubVectors; ++i) { 2102 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2103 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2104 if (!!DemandedSub) { 2105 SDValue Sub = Op.getOperand(i); 2106 computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1); 2107 KnownOne &= KnownOne2; 2108 KnownZero &= KnownZero2; 2109 } 2110 // If we don't know any bits, early out. 2111 if (!KnownOne && !KnownZero) 2112 break; 2113 } 2114 break; 2115 } 2116 case ISD::EXTRACT_SUBVECTOR: { 2117 // If we know the element index, just demand that subvector elements, 2118 // otherwise demand them all. 2119 SDValue Src = Op.getOperand(0); 2120 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2121 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2122 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2123 // Offset the demanded elts by the subvector index. 2124 uint64_t Idx = SubIdx->getZExtValue(); 2125 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2126 computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1); 2127 } else { 2128 computeKnownBits(Src, KnownZero, KnownOne, Depth + 1); 2129 } 2130 break; 2131 } 2132 case ISD::BITCAST: { 2133 SDValue N0 = Op.getOperand(0); 2134 unsigned SubBitWidth = N0.getScalarValueSizeInBits(); 2135 2136 // Ignore bitcasts from floating point. 2137 if (!N0.getValueType().isInteger()) 2138 break; 2139 2140 // Fast handling of 'identity' bitcasts. 2141 if (BitWidth == SubBitWidth) { 2142 computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1); 2143 break; 2144 } 2145 2146 // Support big-endian targets when it becomes useful. 2147 bool IsLE = getDataLayout().isLittleEndian(); 2148 if (!IsLE) 2149 break; 2150 2151 // Bitcast 'small element' vector to 'large element' scalar/vector. 2152 if ((BitWidth % SubBitWidth) == 0) { 2153 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2154 2155 // Collect known bits for the (larger) output by collecting the known 2156 // bits from each set of sub elements and shift these into place. 2157 // We need to separately call computeKnownBits for each set of 2158 // sub elements as the knownbits for each is likely to be different. 2159 unsigned SubScale = BitWidth / SubBitWidth; 2160 APInt SubDemandedElts(NumElts * SubScale, 0); 2161 for (unsigned i = 0; i != NumElts; ++i) 2162 if (DemandedElts[i]) 2163 SubDemandedElts.setBit(i * SubScale); 2164 2165 for (unsigned i = 0; i != SubScale; ++i) { 2166 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i), 2167 Depth + 1); 2168 KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i); 2169 KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i); 2170 } 2171 } 2172 2173 // Bitcast 'large element' scalar/vector to 'small element' vector. 2174 if ((SubBitWidth % BitWidth) == 0) { 2175 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2176 2177 // Collect known bits for the (smaller) output by collecting the known 2178 // bits from the overlapping larger input elements and extracting the 2179 // sub sections we actually care about. 2180 unsigned SubScale = SubBitWidth / BitWidth; 2181 APInt SubDemandedElts(NumElts / SubScale, 0); 2182 for (unsigned i = 0; i != NumElts; ++i) 2183 if (DemandedElts[i]) 2184 SubDemandedElts.setBit(i / SubScale); 2185 2186 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1); 2187 2188 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2189 for (unsigned i = 0; i != NumElts; ++i) 2190 if (DemandedElts[i]) { 2191 unsigned Offset = (i % SubScale) * BitWidth; 2192 KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth); 2193 KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth); 2194 // If we don't know any bits, early out. 2195 if (!KnownOne && !KnownZero) 2196 break; 2197 } 2198 } 2199 break; 2200 } 2201 case ISD::AND: 2202 // If either the LHS or the RHS are Zero, the result is zero. 2203 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2204 Depth + 1); 2205 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2206 Depth + 1); 2207 2208 // Output known-1 bits are only known if set in both the LHS & RHS. 2209 KnownOne &= KnownOne2; 2210 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2211 KnownZero |= KnownZero2; 2212 break; 2213 case ISD::OR: 2214 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2215 Depth + 1); 2216 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2217 Depth + 1); 2218 2219 // Output known-0 bits are only known if clear in both the LHS & RHS. 2220 KnownZero &= KnownZero2; 2221 // Output known-1 are known to be set if set in either the LHS | RHS. 2222 KnownOne |= KnownOne2; 2223 break; 2224 case ISD::XOR: { 2225 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2226 Depth + 1); 2227 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2228 Depth + 1); 2229 2230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2231 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2232 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2233 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2234 KnownZero = KnownZeroOut; 2235 break; 2236 } 2237 case ISD::MUL: { 2238 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2239 Depth + 1); 2240 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2241 Depth + 1); 2242 2243 // If low bits are zero in either operand, output low known-0 bits. 2244 // Also compute a conservative estimate for high known-0 bits. 2245 // More trickiness is possible, but this is sufficient for the 2246 // interesting case of alignment computation. 2247 KnownOne.clearAllBits(); 2248 unsigned TrailZ = KnownZero.countTrailingOnes() + 2249 KnownZero2.countTrailingOnes(); 2250 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2251 KnownZero2.countLeadingOnes(), 2252 BitWidth) - BitWidth; 2253 2254 TrailZ = std::min(TrailZ, BitWidth); 2255 LeadZ = std::min(LeadZ, BitWidth); 2256 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2257 APInt::getHighBitsSet(BitWidth, LeadZ); 2258 break; 2259 } 2260 case ISD::UDIV: { 2261 // For the purposes of computing leading zeros we can conservatively 2262 // treat a udiv as a logical right shift by the power of 2 known to 2263 // be less than the denominator. 2264 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2265 Depth + 1); 2266 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2267 2268 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2269 Depth + 1); 2270 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2271 if (RHSUnknownLeadingOnes != BitWidth) 2272 LeadZ = std::min(BitWidth, 2273 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2274 2275 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2276 break; 2277 } 2278 case ISD::SELECT: 2279 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2280 // If we don't know any bits, early out. 2281 if (!KnownOne && !KnownZero) 2282 break; 2283 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2284 2285 // Only known if known in both the LHS and RHS. 2286 KnownOne &= KnownOne2; 2287 KnownZero &= KnownZero2; 2288 break; 2289 case ISD::SELECT_CC: 2290 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2291 // If we don't know any bits, early out. 2292 if (!KnownOne && !KnownZero) 2293 break; 2294 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2295 2296 // Only known if known in both the LHS and RHS. 2297 KnownOne &= KnownOne2; 2298 KnownZero &= KnownZero2; 2299 break; 2300 case ISD::SADDO: 2301 case ISD::UADDO: 2302 case ISD::SSUBO: 2303 case ISD::USUBO: 2304 case ISD::SMULO: 2305 case ISD::UMULO: 2306 if (Op.getResNo() != 1) 2307 break; 2308 // The boolean result conforms to getBooleanContents. 2309 // If we know the result of a setcc has the top bits zero, use this info. 2310 // We know that we have an integer-based boolean since these operations 2311 // are only available for integer. 2312 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2313 TargetLowering::ZeroOrOneBooleanContent && 2314 BitWidth > 1) 2315 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2316 break; 2317 case ISD::SETCC: 2318 // If we know the result of a setcc has the top bits zero, use this info. 2319 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2320 TargetLowering::ZeroOrOneBooleanContent && 2321 BitWidth > 1) 2322 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2323 break; 2324 case ISD::SHL: 2325 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2326 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2327 Depth + 1); 2328 KnownZero = KnownZero << *ShAmt; 2329 KnownOne = KnownOne << *ShAmt; 2330 // Low bits are known zero. 2331 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue()); 2332 } 2333 break; 2334 case ISD::SRL: 2335 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2336 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2337 Depth + 1); 2338 KnownZero = KnownZero.lshr(*ShAmt); 2339 KnownOne = KnownOne.lshr(*ShAmt); 2340 // High bits are known zero. 2341 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2342 KnownZero |= HighBits; 2343 } 2344 break; 2345 case ISD::SRA: 2346 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2347 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2348 Depth + 1); 2349 KnownZero = KnownZero.lshr(*ShAmt); 2350 KnownOne = KnownOne.lshr(*ShAmt); 2351 // If we know the value of the sign bit, then we know it is copied across 2352 // the high bits by the shift amount. 2353 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2354 APInt SignBit = APInt::getSignBit(BitWidth); 2355 SignBit = SignBit.lshr(*ShAmt); // Adjust to where it is now in the mask. 2356 if (KnownZero.intersects(SignBit)) { 2357 KnownZero |= HighBits; // New bits are known zero. 2358 } else if (KnownOne.intersects(SignBit)) { 2359 KnownOne |= HighBits; // New bits are known one. 2360 } 2361 } 2362 break; 2363 case ISD::SIGN_EXTEND_INREG: { 2364 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2365 unsigned EBits = EVT.getScalarSizeInBits(); 2366 2367 // Sign extension. Compute the demanded bits in the result that are not 2368 // present in the input. 2369 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2370 2371 APInt InSignBit = APInt::getSignBit(EBits); 2372 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2373 2374 // If the sign extended bits are demanded, we know that the sign 2375 // bit is demanded. 2376 InSignBit = InSignBit.zext(BitWidth); 2377 if (NewBits.getBoolValue()) 2378 InputDemandedBits |= InSignBit; 2379 2380 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2381 Depth + 1); 2382 KnownOne &= InputDemandedBits; 2383 KnownZero &= InputDemandedBits; 2384 2385 // If the sign bit of the input is known set or clear, then we know the 2386 // top bits of the result. 2387 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2388 KnownZero |= NewBits; 2389 KnownOne &= ~NewBits; 2390 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2391 KnownOne |= NewBits; 2392 KnownZero &= ~NewBits; 2393 } else { // Input sign bit unknown 2394 KnownZero &= ~NewBits; 2395 KnownOne &= ~NewBits; 2396 } 2397 break; 2398 } 2399 case ISD::CTTZ: 2400 case ISD::CTTZ_ZERO_UNDEF: 2401 case ISD::CTLZ: 2402 case ISD::CTLZ_ZERO_UNDEF: 2403 case ISD::CTPOP: { 2404 unsigned LowBits = Log2_32(BitWidth)+1; 2405 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2406 KnownOne.clearAllBits(); 2407 break; 2408 } 2409 case ISD::LOAD: { 2410 LoadSDNode *LD = cast<LoadSDNode>(Op); 2411 // If this is a ZEXTLoad and we are looking at the loaded value. 2412 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2413 EVT VT = LD->getMemoryVT(); 2414 unsigned MemBits = VT.getScalarSizeInBits(); 2415 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2416 } else if (const MDNode *Ranges = LD->getRanges()) { 2417 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2418 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2419 } 2420 break; 2421 } 2422 case ISD::ZERO_EXTEND: { 2423 EVT InVT = Op.getOperand(0).getValueType(); 2424 unsigned InBits = InVT.getScalarSizeInBits(); 2425 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2426 KnownZero = KnownZero.trunc(InBits); 2427 KnownOne = KnownOne.trunc(InBits); 2428 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2429 Depth + 1); 2430 KnownZero = KnownZero.zext(BitWidth); 2431 KnownOne = KnownOne.zext(BitWidth); 2432 KnownZero |= NewBits; 2433 break; 2434 } 2435 case ISD::SIGN_EXTEND: { 2436 EVT InVT = Op.getOperand(0).getValueType(); 2437 unsigned InBits = InVT.getScalarSizeInBits(); 2438 2439 KnownZero = KnownZero.trunc(InBits); 2440 KnownOne = KnownOne.trunc(InBits); 2441 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2442 Depth + 1); 2443 2444 // If the sign bit is known to be zero or one, then sext will extend 2445 // it to the top bits, else it will just zext. 2446 KnownZero = KnownZero.sext(BitWidth); 2447 KnownOne = KnownOne.sext(BitWidth); 2448 break; 2449 } 2450 case ISD::ANY_EXTEND: { 2451 EVT InVT = Op.getOperand(0).getValueType(); 2452 unsigned InBits = InVT.getScalarSizeInBits(); 2453 KnownZero = KnownZero.trunc(InBits); 2454 KnownOne = KnownOne.trunc(InBits); 2455 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2456 KnownZero = KnownZero.zext(BitWidth); 2457 KnownOne = KnownOne.zext(BitWidth); 2458 break; 2459 } 2460 case ISD::TRUNCATE: { 2461 EVT InVT = Op.getOperand(0).getValueType(); 2462 unsigned InBits = InVT.getScalarSizeInBits(); 2463 KnownZero = KnownZero.zext(InBits); 2464 KnownOne = KnownOne.zext(InBits); 2465 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2466 Depth + 1); 2467 KnownZero = KnownZero.trunc(BitWidth); 2468 KnownOne = KnownOne.trunc(BitWidth); 2469 break; 2470 } 2471 case ISD::AssertZext: { 2472 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2473 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2474 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2475 KnownZero |= (~InMask); 2476 KnownOne &= (~KnownZero); 2477 break; 2478 } 2479 case ISD::FGETSIGN: 2480 // All bits are zero except the low bit. 2481 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2482 break; 2483 2484 case ISD::SUB: { 2485 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2486 // We know that the top bits of C-X are clear if X contains less bits 2487 // than C (i.e. no wrap-around can happen). For example, 20-X is 2488 // positive if we can prove that X is >= 0 and < 16. 2489 if (CLHS->getAPIntValue().isNonNegative()) { 2490 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2491 // NLZ can't be BitWidth with no sign bit 2492 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2493 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2494 Depth + 1); 2495 2496 // If all of the MaskV bits are known to be zero, then we know the 2497 // output top bits are zero, because we now know that the output is 2498 // from [0-C]. 2499 if ((KnownZero2 & MaskV) == MaskV) { 2500 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2501 // Top bits known zero. 2502 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2503 } 2504 } 2505 } 2506 LLVM_FALLTHROUGH; 2507 } 2508 case ISD::ADD: 2509 case ISD::ADDE: { 2510 // Output known-0 bits are known if clear or set in both the low clear bits 2511 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2512 // low 3 bits clear. 2513 // Output known-0 bits are also known if the top bits of each input are 2514 // known to be clear. For example, if one input has the top 10 bits clear 2515 // and the other has the top 8 bits clear, we know the top 7 bits of the 2516 // output must be clear. 2517 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2518 Depth + 1); 2519 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2520 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2521 2522 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2523 Depth + 1); 2524 KnownZeroHigh = std::min(KnownZeroHigh, 2525 KnownZero2.countLeadingOnes()); 2526 KnownZeroLow = std::min(KnownZeroLow, 2527 KnownZero2.countTrailingOnes()); 2528 2529 if (Opcode == ISD::ADD) { 2530 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2531 if (KnownZeroHigh > 1) 2532 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2533 break; 2534 } 2535 2536 // With ADDE, a carry bit may be added in, so we can only use this 2537 // information if we know (at least) that the low two bits are clear. We 2538 // then return to the caller that the low bit is unknown but that other bits 2539 // are known zero. 2540 if (KnownZeroLow >= 2) // ADDE 2541 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2542 break; 2543 } 2544 case ISD::SREM: 2545 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2546 const APInt &RA = Rem->getAPIntValue().abs(); 2547 if (RA.isPowerOf2()) { 2548 APInt LowBits = RA - 1; 2549 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2550 Depth + 1); 2551 2552 // The low bits of the first operand are unchanged by the srem. 2553 KnownZero = KnownZero2 & LowBits; 2554 KnownOne = KnownOne2 & LowBits; 2555 2556 // If the first operand is non-negative or has all low bits zero, then 2557 // the upper bits are all zero. 2558 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2559 KnownZero |= ~LowBits; 2560 2561 // If the first operand is negative and not all low bits are zero, then 2562 // the upper bits are all one. 2563 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2564 KnownOne |= ~LowBits; 2565 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2566 } 2567 } 2568 break; 2569 case ISD::UREM: { 2570 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2571 const APInt &RA = Rem->getAPIntValue(); 2572 if (RA.isPowerOf2()) { 2573 APInt LowBits = (RA - 1); 2574 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2575 Depth + 1); 2576 2577 // The upper bits are all zero, the lower ones are unchanged. 2578 KnownZero = KnownZero2 | ~LowBits; 2579 KnownOne = KnownOne2 & LowBits; 2580 break; 2581 } 2582 } 2583 2584 // Since the result is less than or equal to either operand, any leading 2585 // zero bits in either operand must also exist in the result. 2586 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2587 Depth + 1); 2588 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2589 Depth + 1); 2590 2591 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2592 KnownZero2.countLeadingOnes()); 2593 KnownOne.clearAllBits(); 2594 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2595 break; 2596 } 2597 case ISD::EXTRACT_ELEMENT: { 2598 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2599 const unsigned Index = Op.getConstantOperandVal(1); 2600 const unsigned BitWidth = Op.getValueSizeInBits(); 2601 2602 // Remove low part of known bits mask 2603 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2604 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2605 2606 // Remove high part of known bit mask 2607 KnownZero = KnownZero.trunc(BitWidth); 2608 KnownOne = KnownOne.trunc(BitWidth); 2609 break; 2610 } 2611 case ISD::EXTRACT_VECTOR_ELT: { 2612 SDValue InVec = Op.getOperand(0); 2613 SDValue EltNo = Op.getOperand(1); 2614 EVT VecVT = InVec.getValueType(); 2615 const unsigned BitWidth = Op.getValueSizeInBits(); 2616 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2617 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2618 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2619 // anything about the extended bits. 2620 if (BitWidth > EltBitWidth) { 2621 KnownZero = KnownZero.trunc(EltBitWidth); 2622 KnownOne = KnownOne.trunc(EltBitWidth); 2623 } 2624 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2625 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2626 // If we know the element index, just demand that vector element. 2627 unsigned Idx = ConstEltNo->getZExtValue(); 2628 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2629 computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1); 2630 } else { 2631 // Unknown element index, so ignore DemandedElts and demand them all. 2632 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2633 } 2634 if (BitWidth > EltBitWidth) { 2635 KnownZero = KnownZero.zext(BitWidth); 2636 KnownOne = KnownOne.zext(BitWidth); 2637 } 2638 break; 2639 } 2640 case ISD::INSERT_VECTOR_ELT: { 2641 SDValue InVec = Op.getOperand(0); 2642 SDValue InVal = Op.getOperand(1); 2643 SDValue EltNo = Op.getOperand(2); 2644 2645 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2646 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2647 // If we know the element index, split the demand between the 2648 // source vector and the inserted element. 2649 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2650 unsigned EltIdx = CEltNo->getZExtValue(); 2651 2652 // If we demand the inserted element then add its common known bits. 2653 if (DemandedElts[EltIdx]) { 2654 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2655 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2656 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2657 } 2658 2659 // If we demand the source vector then add its common known bits, ensuring 2660 // that we don't demand the inserted element. 2661 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2662 if (!!VectorElts) { 2663 computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1); 2664 KnownOne &= KnownOne2; 2665 KnownZero &= KnownZero2; 2666 } 2667 } else { 2668 // Unknown element index, so ignore DemandedElts and demand them all. 2669 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2670 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2671 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2672 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2673 } 2674 break; 2675 } 2676 case ISD::BSWAP: { 2677 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2678 Depth + 1); 2679 KnownZero = KnownZero2.byteSwap(); 2680 KnownOne = KnownOne2.byteSwap(); 2681 break; 2682 } 2683 case ISD::SMIN: 2684 case ISD::SMAX: 2685 case ISD::UMIN: 2686 case ISD::UMAX: { 2687 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2688 Depth + 1); 2689 // If we don't know any bits, early out. 2690 if (!KnownOne && !KnownZero) 2691 break; 2692 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2693 Depth + 1); 2694 KnownZero &= KnownZero2; 2695 KnownOne &= KnownOne2; 2696 break; 2697 } 2698 case ISD::FrameIndex: 2699 case ISD::TargetFrameIndex: 2700 if (unsigned Align = InferPtrAlignment(Op)) { 2701 // The low bits are known zero if the pointer is aligned. 2702 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2703 break; 2704 } 2705 break; 2706 2707 default: 2708 if (Opcode < ISD::BUILTIN_OP_END) 2709 break; 2710 LLVM_FALLTHROUGH; 2711 case ISD::INTRINSIC_WO_CHAIN: 2712 case ISD::INTRINSIC_W_CHAIN: 2713 case ISD::INTRINSIC_VOID: 2714 // Allow the target to implement this method for its nodes. 2715 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2716 break; 2717 } 2718 2719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2720 } 2721 2722 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2723 EVT OpVT = Val.getValueType(); 2724 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2725 2726 // Is the constant a known power of 2? 2727 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2728 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2729 2730 // A left-shift of a constant one will have exactly one bit set because 2731 // shifting the bit off the end is undefined. 2732 if (Val.getOpcode() == ISD::SHL) { 2733 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2734 if (C && C->getAPIntValue() == 1) 2735 return true; 2736 } 2737 2738 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2739 // one bit set. 2740 if (Val.getOpcode() == ISD::SRL) { 2741 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2742 if (C && C->getAPIntValue().isSignBit()) 2743 return true; 2744 } 2745 2746 // Are all operands of a build vector constant powers of two? 2747 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2748 if (llvm::all_of(Val->ops(), [this, BitWidth](SDValue E) { 2749 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2750 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2751 return false; 2752 })) 2753 return true; 2754 2755 // More could be done here, though the above checks are enough 2756 // to handle some common cases. 2757 2758 // Fall back to computeKnownBits to catch other known cases. 2759 APInt KnownZero, KnownOne; 2760 computeKnownBits(Val, KnownZero, KnownOne); 2761 return (KnownZero.countPopulation() == BitWidth - 1) && 2762 (KnownOne.countPopulation() == 1); 2763 } 2764 2765 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2766 EVT VT = Op.getValueType(); 2767 assert(VT.isInteger() && "Invalid VT!"); 2768 unsigned VTBits = VT.getScalarSizeInBits(); 2769 unsigned Tmp, Tmp2; 2770 unsigned FirstAnswer = 1; 2771 2772 if (Depth == 6) 2773 return 1; // Limit search depth. 2774 2775 switch (Op.getOpcode()) { 2776 default: break; 2777 case ISD::AssertSext: 2778 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2779 return VTBits-Tmp+1; 2780 case ISD::AssertZext: 2781 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2782 return VTBits-Tmp; 2783 2784 case ISD::Constant: { 2785 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2786 return Val.getNumSignBits(); 2787 } 2788 2789 case ISD::SIGN_EXTEND: 2790 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2791 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2792 2793 case ISD::SIGN_EXTEND_INREG: 2794 // Max of the input and what this extends. 2795 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2796 Tmp = VTBits-Tmp+1; 2797 2798 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2799 return std::max(Tmp, Tmp2); 2800 2801 case ISD::SRA: 2802 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2803 // SRA X, C -> adds C sign bits. 2804 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2805 APInt ShiftVal = C->getAPIntValue(); 2806 ShiftVal += Tmp; 2807 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 2808 } 2809 return Tmp; 2810 case ISD::SHL: 2811 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2812 // shl destroys sign bits. 2813 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2814 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 2815 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 2816 return Tmp - C->getZExtValue(); 2817 } 2818 break; 2819 case ISD::AND: 2820 case ISD::OR: 2821 case ISD::XOR: // NOT is handled here. 2822 // Logical binary ops preserve the number of sign bits at the worst. 2823 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2824 if (Tmp != 1) { 2825 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2826 FirstAnswer = std::min(Tmp, Tmp2); 2827 // We computed what we know about the sign bits as our first 2828 // answer. Now proceed to the generic code that uses 2829 // computeKnownBits, and pick whichever answer is better. 2830 } 2831 break; 2832 2833 case ISD::SELECT: 2834 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2835 if (Tmp == 1) return 1; // Early out. 2836 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2837 return std::min(Tmp, Tmp2); 2838 case ISD::SELECT_CC: 2839 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2840 if (Tmp == 1) return 1; // Early out. 2841 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2842 return std::min(Tmp, Tmp2); 2843 case ISD::SMIN: 2844 case ISD::SMAX: 2845 case ISD::UMIN: 2846 case ISD::UMAX: 2847 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2848 if (Tmp == 1) 2849 return 1; // Early out. 2850 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2851 return std::min(Tmp, Tmp2); 2852 case ISD::SADDO: 2853 case ISD::UADDO: 2854 case ISD::SSUBO: 2855 case ISD::USUBO: 2856 case ISD::SMULO: 2857 case ISD::UMULO: 2858 if (Op.getResNo() != 1) 2859 break; 2860 // The boolean result conforms to getBooleanContents. Fall through. 2861 // If setcc returns 0/-1, all bits are sign bits. 2862 // We know that we have an integer-based boolean since these operations 2863 // are only available for integer. 2864 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2865 TargetLowering::ZeroOrNegativeOneBooleanContent) 2866 return VTBits; 2867 break; 2868 case ISD::SETCC: 2869 // If setcc returns 0/-1, all bits are sign bits. 2870 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2871 TargetLowering::ZeroOrNegativeOneBooleanContent) 2872 return VTBits; 2873 break; 2874 case ISD::ROTL: 2875 case ISD::ROTR: 2876 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2877 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2878 2879 // Handle rotate right by N like a rotate left by 32-N. 2880 if (Op.getOpcode() == ISD::ROTR) 2881 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2882 2883 // If we aren't rotating out all of the known-in sign bits, return the 2884 // number that are left. This handles rotl(sext(x), 1) for example. 2885 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2886 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2887 } 2888 break; 2889 case ISD::ADD: 2890 // Add can have at most one carry bit. Thus we know that the output 2891 // is, at worst, one more bit than the inputs. 2892 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2893 if (Tmp == 1) return 1; // Early out. 2894 2895 // Special case decrementing a value (ADD X, -1): 2896 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2897 if (CRHS->isAllOnesValue()) { 2898 APInt KnownZero, KnownOne; 2899 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2900 2901 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2902 // sign bits set. 2903 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2904 return VTBits; 2905 2906 // If we are subtracting one from a positive number, there is no carry 2907 // out of the result. 2908 if (KnownZero.isNegative()) 2909 return Tmp; 2910 } 2911 2912 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2913 if (Tmp2 == 1) return 1; 2914 return std::min(Tmp, Tmp2)-1; 2915 2916 case ISD::SUB: 2917 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2918 if (Tmp2 == 1) return 1; 2919 2920 // Handle NEG. 2921 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 2922 if (CLHS->isNullValue()) { 2923 APInt KnownZero, KnownOne; 2924 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2925 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2926 // sign bits set. 2927 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2928 return VTBits; 2929 2930 // If the input is known to be positive (the sign bit is known clear), 2931 // the output of the NEG has the same number of sign bits as the input. 2932 if (KnownZero.isNegative()) 2933 return Tmp2; 2934 2935 // Otherwise, we treat this like a SUB. 2936 } 2937 2938 // Sub can have at most one carry bit. Thus we know that the output 2939 // is, at worst, one more bit than the inputs. 2940 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2941 if (Tmp == 1) return 1; // Early out. 2942 return std::min(Tmp, Tmp2)-1; 2943 case ISD::TRUNCATE: { 2944 // Check if the sign bits of source go down as far as the truncated value. 2945 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 2946 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2947 if (NumSrcSignBits > (NumSrcBits - VTBits)) 2948 return NumSrcSignBits - (NumSrcBits - VTBits); 2949 break; 2950 } 2951 case ISD::EXTRACT_ELEMENT: { 2952 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2953 const int BitWidth = Op.getValueSizeInBits(); 2954 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 2955 2956 // Get reverse index (starting from 1), Op1 value indexes elements from 2957 // little end. Sign starts at big end. 2958 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 2959 2960 // If the sign portion ends in our element the subtraction gives correct 2961 // result. Otherwise it gives either negative or > bitwidth result 2962 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 2963 } 2964 case ISD::EXTRACT_VECTOR_ELT: { 2965 // At the moment we keep this simple and skip tracking the specific 2966 // element. This way we get the lowest common denominator for all elements 2967 // of the vector. 2968 // TODO: get information for given vector element 2969 const unsigned BitWidth = Op.getValueSizeInBits(); 2970 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 2971 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 2972 // anything about sign bits. But if the sizes match we can derive knowledge 2973 // about sign bits from the vector operand. 2974 if (BitWidth == EltBitWidth) 2975 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 2976 break; 2977 } 2978 case ISD::EXTRACT_SUBVECTOR: 2979 return ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2980 case ISD::CONCAT_VECTORS: 2981 // Determine the minimum number of sign bits across all input vectors. 2982 // Early out if the result is already 1. 2983 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2984 for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) 2985 Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1)); 2986 return Tmp; 2987 } 2988 2989 // If we are looking at the loaded value of the SDNode. 2990 if (Op.getResNo() == 0) { 2991 // Handle LOADX separately here. EXTLOAD case will fallthrough. 2992 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 2993 unsigned ExtType = LD->getExtensionType(); 2994 switch (ExtType) { 2995 default: break; 2996 case ISD::SEXTLOAD: // '17' bits known 2997 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2998 return VTBits-Tmp+1; 2999 case ISD::ZEXTLOAD: // '16' bits known 3000 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3001 return VTBits-Tmp; 3002 } 3003 } 3004 } 3005 3006 // Allow the target to implement this method for its nodes. 3007 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3008 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3009 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3010 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3011 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 3012 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 3013 } 3014 3015 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3016 // use this information. 3017 APInt KnownZero, KnownOne; 3018 computeKnownBits(Op, KnownZero, KnownOne, Depth); 3019 3020 APInt Mask; 3021 if (KnownZero.isNegative()) { // sign bit is 0 3022 Mask = KnownZero; 3023 } else if (KnownOne.isNegative()) { // sign bit is 1; 3024 Mask = KnownOne; 3025 } else { 3026 // Nothing known. 3027 return FirstAnswer; 3028 } 3029 3030 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3031 // the number of identical bits in the top of the input value. 3032 Mask = ~Mask; 3033 Mask <<= Mask.getBitWidth()-VTBits; 3034 // Return # leading zeros. We use 'min' here in case Val was zero before 3035 // shifting. We don't want to return '64' as for an i32 "0". 3036 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3037 } 3038 3039 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3040 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3041 !isa<ConstantSDNode>(Op.getOperand(1))) 3042 return false; 3043 3044 if (Op.getOpcode() == ISD::OR && 3045 !MaskedValueIsZero(Op.getOperand(0), 3046 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3047 return false; 3048 3049 return true; 3050 } 3051 3052 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3053 // If we're told that NaNs won't happen, assume they won't. 3054 if (getTarget().Options.NoNaNsFPMath) 3055 return true; 3056 3057 // If the value is a constant, we can obviously see if it is a NaN or not. 3058 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3059 return !C->getValueAPF().isNaN(); 3060 3061 // TODO: Recognize more cases here. 3062 3063 return false; 3064 } 3065 3066 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3067 // If the value is a constant, we can obviously see if it is a zero or not. 3068 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3069 return !C->isZero(); 3070 3071 // TODO: Recognize more cases here. 3072 switch (Op.getOpcode()) { 3073 default: break; 3074 case ISD::OR: 3075 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3076 return !C->isNullValue(); 3077 break; 3078 } 3079 3080 return false; 3081 } 3082 3083 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3084 // Check the obvious case. 3085 if (A == B) return true; 3086 3087 // For for negative and positive zero. 3088 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3089 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3090 if (CA->isZero() && CB->isZero()) return true; 3091 3092 // Otherwise they may not be equal. 3093 return false; 3094 } 3095 3096 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3097 assert(A.getValueType() == B.getValueType() && 3098 "Values must have the same type"); 3099 APInt AZero, AOne; 3100 APInt BZero, BOne; 3101 computeKnownBits(A, AZero, AOne); 3102 computeKnownBits(B, BZero, BOne); 3103 return (AZero | BZero).isAllOnesValue(); 3104 } 3105 3106 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3107 ArrayRef<SDValue> Ops, 3108 llvm::SelectionDAG &DAG) { 3109 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3110 assert(llvm::all_of(Ops, 3111 [Ops](SDValue Op) { 3112 return Ops[0].getValueType() == Op.getValueType(); 3113 }) && 3114 "Concatenation of vectors with inconsistent value types!"); 3115 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3116 VT.getVectorNumElements() && 3117 "Incorrect element count in vector concatenation!"); 3118 3119 if (Ops.size() == 1) 3120 return Ops[0]; 3121 3122 // Concat of UNDEFs is UNDEF. 3123 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3124 return DAG.getUNDEF(VT); 3125 3126 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3127 // simplified to one big BUILD_VECTOR. 3128 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3129 EVT SVT = VT.getScalarType(); 3130 SmallVector<SDValue, 16> Elts; 3131 for (SDValue Op : Ops) { 3132 EVT OpVT = Op.getValueType(); 3133 if (Op.isUndef()) 3134 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3135 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3136 Elts.append(Op->op_begin(), Op->op_end()); 3137 else 3138 return SDValue(); 3139 } 3140 3141 // BUILD_VECTOR requires all inputs to be of the same type, find the 3142 // maximum type and extend them all. 3143 for (SDValue Op : Elts) 3144 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3145 3146 if (SVT.bitsGT(VT.getScalarType())) 3147 for (SDValue &Op : Elts) 3148 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3149 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3150 : DAG.getSExtOrTrunc(Op, DL, SVT); 3151 3152 return DAG.getBuildVector(VT, DL, Elts); 3153 } 3154 3155 /// Gets or creates the specified node. 3156 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3157 FoldingSetNodeID ID; 3158 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3159 void *IP = nullptr; 3160 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3161 return SDValue(E, 0); 3162 3163 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3164 getVTList(VT)); 3165 CSEMap.InsertNode(N, IP); 3166 3167 InsertNode(N); 3168 return SDValue(N, 0); 3169 } 3170 3171 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3172 SDValue Operand) { 3173 // Constant fold unary operations with an integer constant operand. Even 3174 // opaque constant will be folded, because the folding of unary operations 3175 // doesn't create new constants with different values. Nevertheless, the 3176 // opaque flag is preserved during folding to prevent future folding with 3177 // other constants. 3178 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3179 const APInt &Val = C->getAPIntValue(); 3180 switch (Opcode) { 3181 default: break; 3182 case ISD::SIGN_EXTEND: 3183 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3184 C->isTargetOpcode(), C->isOpaque()); 3185 case ISD::ANY_EXTEND: 3186 case ISD::ZERO_EXTEND: 3187 case ISD::TRUNCATE: 3188 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3189 C->isTargetOpcode(), C->isOpaque()); 3190 case ISD::UINT_TO_FP: 3191 case ISD::SINT_TO_FP: { 3192 APFloat apf(EVTToAPFloatSemantics(VT), 3193 APInt::getNullValue(VT.getSizeInBits())); 3194 (void)apf.convertFromAPInt(Val, 3195 Opcode==ISD::SINT_TO_FP, 3196 APFloat::rmNearestTiesToEven); 3197 return getConstantFP(apf, DL, VT); 3198 } 3199 case ISD::BITCAST: 3200 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3201 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3202 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3203 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3204 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3205 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3206 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3207 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3208 break; 3209 case ISD::BSWAP: 3210 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3211 C->isOpaque()); 3212 case ISD::CTPOP: 3213 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3214 C->isOpaque()); 3215 case ISD::CTLZ: 3216 case ISD::CTLZ_ZERO_UNDEF: 3217 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3218 C->isOpaque()); 3219 case ISD::CTTZ: 3220 case ISD::CTTZ_ZERO_UNDEF: 3221 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3222 C->isOpaque()); 3223 } 3224 } 3225 3226 // Constant fold unary operations with a floating point constant operand. 3227 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3228 APFloat V = C->getValueAPF(); // make copy 3229 switch (Opcode) { 3230 case ISD::FNEG: 3231 V.changeSign(); 3232 return getConstantFP(V, DL, VT); 3233 case ISD::FABS: 3234 V.clearSign(); 3235 return getConstantFP(V, DL, VT); 3236 case ISD::FCEIL: { 3237 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3238 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3239 return getConstantFP(V, DL, VT); 3240 break; 3241 } 3242 case ISD::FTRUNC: { 3243 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3244 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3245 return getConstantFP(V, DL, VT); 3246 break; 3247 } 3248 case ISD::FFLOOR: { 3249 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3250 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3251 return getConstantFP(V, DL, VT); 3252 break; 3253 } 3254 case ISD::FP_EXTEND: { 3255 bool ignored; 3256 // This can return overflow, underflow, or inexact; we don't care. 3257 // FIXME need to be more flexible about rounding mode. 3258 (void)V.convert(EVTToAPFloatSemantics(VT), 3259 APFloat::rmNearestTiesToEven, &ignored); 3260 return getConstantFP(V, DL, VT); 3261 } 3262 case ISD::FP_TO_SINT: 3263 case ISD::FP_TO_UINT: { 3264 integerPart x[2]; 3265 bool ignored; 3266 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3267 // FIXME need to be more flexible about rounding mode. 3268 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3269 Opcode==ISD::FP_TO_SINT, 3270 APFloat::rmTowardZero, &ignored); 3271 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3272 break; 3273 APInt api(VT.getSizeInBits(), x); 3274 return getConstant(api, DL, VT); 3275 } 3276 case ISD::BITCAST: 3277 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3278 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3279 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3280 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3281 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3282 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3283 break; 3284 } 3285 } 3286 3287 // Constant fold unary operations with a vector integer or float operand. 3288 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3289 if (BV->isConstant()) { 3290 switch (Opcode) { 3291 default: 3292 // FIXME: Entirely reasonable to perform folding of other unary 3293 // operations here as the need arises. 3294 break; 3295 case ISD::FNEG: 3296 case ISD::FABS: 3297 case ISD::FCEIL: 3298 case ISD::FTRUNC: 3299 case ISD::FFLOOR: 3300 case ISD::FP_EXTEND: 3301 case ISD::FP_TO_SINT: 3302 case ISD::FP_TO_UINT: 3303 case ISD::TRUNCATE: 3304 case ISD::UINT_TO_FP: 3305 case ISD::SINT_TO_FP: 3306 case ISD::BSWAP: 3307 case ISD::CTLZ: 3308 case ISD::CTLZ_ZERO_UNDEF: 3309 case ISD::CTTZ: 3310 case ISD::CTTZ_ZERO_UNDEF: 3311 case ISD::CTPOP: { 3312 SDValue Ops = { Operand }; 3313 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3314 return Fold; 3315 } 3316 } 3317 } 3318 } 3319 3320 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3321 switch (Opcode) { 3322 case ISD::TokenFactor: 3323 case ISD::MERGE_VALUES: 3324 case ISD::CONCAT_VECTORS: 3325 return Operand; // Factor, merge or concat of one node? No need. 3326 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3327 case ISD::FP_EXTEND: 3328 assert(VT.isFloatingPoint() && 3329 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3330 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3331 assert((!VT.isVector() || 3332 VT.getVectorNumElements() == 3333 Operand.getValueType().getVectorNumElements()) && 3334 "Vector element count mismatch!"); 3335 assert(Operand.getValueType().bitsLT(VT) && 3336 "Invalid fpext node, dst < src!"); 3337 if (Operand.isUndef()) 3338 return getUNDEF(VT); 3339 break; 3340 case ISD::SIGN_EXTEND: 3341 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3342 "Invalid SIGN_EXTEND!"); 3343 if (Operand.getValueType() == VT) return Operand; // noop extension 3344 assert((!VT.isVector() || 3345 VT.getVectorNumElements() == 3346 Operand.getValueType().getVectorNumElements()) && 3347 "Vector element count mismatch!"); 3348 assert(Operand.getValueType().bitsLT(VT) && 3349 "Invalid sext node, dst < src!"); 3350 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3351 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3352 else if (OpOpcode == ISD::UNDEF) 3353 // sext(undef) = 0, because the top bits will all be the same. 3354 return getConstant(0, DL, VT); 3355 break; 3356 case ISD::ZERO_EXTEND: 3357 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3358 "Invalid ZERO_EXTEND!"); 3359 if (Operand.getValueType() == VT) return Operand; // noop extension 3360 assert((!VT.isVector() || 3361 VT.getVectorNumElements() == 3362 Operand.getValueType().getVectorNumElements()) && 3363 "Vector element count mismatch!"); 3364 assert(Operand.getValueType().bitsLT(VT) && 3365 "Invalid zext node, dst < src!"); 3366 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3367 return getNode(ISD::ZERO_EXTEND, DL, VT, 3368 Operand.getNode()->getOperand(0)); 3369 else if (OpOpcode == ISD::UNDEF) 3370 // zext(undef) = 0, because the top bits will be zero. 3371 return getConstant(0, DL, VT); 3372 break; 3373 case ISD::ANY_EXTEND: 3374 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3375 "Invalid ANY_EXTEND!"); 3376 if (Operand.getValueType() == VT) return Operand; // noop extension 3377 assert((!VT.isVector() || 3378 VT.getVectorNumElements() == 3379 Operand.getValueType().getVectorNumElements()) && 3380 "Vector element count mismatch!"); 3381 assert(Operand.getValueType().bitsLT(VT) && 3382 "Invalid anyext node, dst < src!"); 3383 3384 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3385 OpOpcode == ISD::ANY_EXTEND) 3386 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3387 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3388 else if (OpOpcode == ISD::UNDEF) 3389 return getUNDEF(VT); 3390 3391 // (ext (trunx x)) -> x 3392 if (OpOpcode == ISD::TRUNCATE) { 3393 SDValue OpOp = Operand.getNode()->getOperand(0); 3394 if (OpOp.getValueType() == VT) 3395 return OpOp; 3396 } 3397 break; 3398 case ISD::TRUNCATE: 3399 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3400 "Invalid TRUNCATE!"); 3401 if (Operand.getValueType() == VT) return Operand; // noop truncate 3402 assert((!VT.isVector() || 3403 VT.getVectorNumElements() == 3404 Operand.getValueType().getVectorNumElements()) && 3405 "Vector element count mismatch!"); 3406 assert(Operand.getValueType().bitsGT(VT) && 3407 "Invalid truncate node, src < dst!"); 3408 if (OpOpcode == ISD::TRUNCATE) 3409 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3410 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3411 OpOpcode == ISD::ANY_EXTEND) { 3412 // If the source is smaller than the dest, we still need an extend. 3413 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3414 .bitsLT(VT.getScalarType())) 3415 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3416 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3417 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3418 return Operand.getNode()->getOperand(0); 3419 } 3420 if (OpOpcode == ISD::UNDEF) 3421 return getUNDEF(VT); 3422 break; 3423 case ISD::BSWAP: 3424 assert(VT.isInteger() && VT == Operand.getValueType() && 3425 "Invalid BSWAP!"); 3426 assert((VT.getScalarSizeInBits() % 16 == 0) && 3427 "BSWAP types must be a multiple of 16 bits!"); 3428 if (OpOpcode == ISD::UNDEF) 3429 return getUNDEF(VT); 3430 break; 3431 case ISD::BITREVERSE: 3432 assert(VT.isInteger() && VT == Operand.getValueType() && 3433 "Invalid BITREVERSE!"); 3434 if (OpOpcode == ISD::UNDEF) 3435 return getUNDEF(VT); 3436 break; 3437 case ISD::BITCAST: 3438 // Basic sanity checking. 3439 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3440 "Cannot BITCAST between types of different sizes!"); 3441 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3442 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3443 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3444 if (OpOpcode == ISD::UNDEF) 3445 return getUNDEF(VT); 3446 break; 3447 case ISD::SCALAR_TO_VECTOR: 3448 assert(VT.isVector() && !Operand.getValueType().isVector() && 3449 (VT.getVectorElementType() == Operand.getValueType() || 3450 (VT.getVectorElementType().isInteger() && 3451 Operand.getValueType().isInteger() && 3452 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3453 "Illegal SCALAR_TO_VECTOR node!"); 3454 if (OpOpcode == ISD::UNDEF) 3455 return getUNDEF(VT); 3456 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3457 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3458 isa<ConstantSDNode>(Operand.getOperand(1)) && 3459 Operand.getConstantOperandVal(1) == 0 && 3460 Operand.getOperand(0).getValueType() == VT) 3461 return Operand.getOperand(0); 3462 break; 3463 case ISD::FNEG: 3464 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3465 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3466 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3467 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3468 Operand.getNode()->getOperand(0), 3469 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3470 if (OpOpcode == ISD::FNEG) // --X -> X 3471 return Operand.getNode()->getOperand(0); 3472 break; 3473 case ISD::FABS: 3474 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3475 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3476 break; 3477 } 3478 3479 SDNode *N; 3480 SDVTList VTs = getVTList(VT); 3481 SDValue Ops[] = {Operand}; 3482 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3483 FoldingSetNodeID ID; 3484 AddNodeIDNode(ID, Opcode, VTs, Ops); 3485 void *IP = nullptr; 3486 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3487 return SDValue(E, 0); 3488 3489 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3490 createOperands(N, Ops); 3491 CSEMap.InsertNode(N, IP); 3492 } else { 3493 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3494 createOperands(N, Ops); 3495 } 3496 3497 InsertNode(N); 3498 return SDValue(N, 0); 3499 } 3500 3501 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3502 const APInt &C2) { 3503 switch (Opcode) { 3504 case ISD::ADD: return std::make_pair(C1 + C2, true); 3505 case ISD::SUB: return std::make_pair(C1 - C2, true); 3506 case ISD::MUL: return std::make_pair(C1 * C2, true); 3507 case ISD::AND: return std::make_pair(C1 & C2, true); 3508 case ISD::OR: return std::make_pair(C1 | C2, true); 3509 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3510 case ISD::SHL: return std::make_pair(C1 << C2, true); 3511 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3512 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3513 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3514 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3515 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3516 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3517 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3518 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3519 case ISD::UDIV: 3520 if (!C2.getBoolValue()) 3521 break; 3522 return std::make_pair(C1.udiv(C2), true); 3523 case ISD::UREM: 3524 if (!C2.getBoolValue()) 3525 break; 3526 return std::make_pair(C1.urem(C2), true); 3527 case ISD::SDIV: 3528 if (!C2.getBoolValue()) 3529 break; 3530 return std::make_pair(C1.sdiv(C2), true); 3531 case ISD::SREM: 3532 if (!C2.getBoolValue()) 3533 break; 3534 return std::make_pair(C1.srem(C2), true); 3535 } 3536 return std::make_pair(APInt(1, 0), false); 3537 } 3538 3539 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3540 EVT VT, const ConstantSDNode *Cst1, 3541 const ConstantSDNode *Cst2) { 3542 if (Cst1->isOpaque() || Cst2->isOpaque()) 3543 return SDValue(); 3544 3545 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3546 Cst2->getAPIntValue()); 3547 if (!Folded.second) 3548 return SDValue(); 3549 return getConstant(Folded.first, DL, VT); 3550 } 3551 3552 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3553 const GlobalAddressSDNode *GA, 3554 const SDNode *N2) { 3555 if (GA->getOpcode() != ISD::GlobalAddress) 3556 return SDValue(); 3557 if (!TLI->isOffsetFoldingLegal(GA)) 3558 return SDValue(); 3559 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3560 if (!Cst2) 3561 return SDValue(); 3562 int64_t Offset = Cst2->getSExtValue(); 3563 switch (Opcode) { 3564 case ISD::ADD: break; 3565 case ISD::SUB: Offset = -uint64_t(Offset); break; 3566 default: return SDValue(); 3567 } 3568 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3569 GA->getOffset() + uint64_t(Offset)); 3570 } 3571 3572 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3573 EVT VT, SDNode *Cst1, 3574 SDNode *Cst2) { 3575 // If the opcode is a target-specific ISD node, there's nothing we can 3576 // do here and the operand rules may not line up with the below, so 3577 // bail early. 3578 if (Opcode >= ISD::BUILTIN_OP_END) 3579 return SDValue(); 3580 3581 // Handle the case of two scalars. 3582 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3583 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3584 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3585 assert((!Folded || !VT.isVector()) && 3586 "Can't fold vectors ops with scalar operands"); 3587 return Folded; 3588 } 3589 } 3590 3591 // fold (add Sym, c) -> Sym+c 3592 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3593 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3594 if (isCommutativeBinOp(Opcode)) 3595 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3596 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3597 3598 // For vectors extract each constant element into Inputs so we can constant 3599 // fold them individually. 3600 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3601 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3602 if (!BV1 || !BV2) 3603 return SDValue(); 3604 3605 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3606 3607 EVT SVT = VT.getScalarType(); 3608 SmallVector<SDValue, 4> Outputs; 3609 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3610 SDValue V1 = BV1->getOperand(I); 3611 SDValue V2 = BV2->getOperand(I); 3612 3613 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3614 // FIXME: This is valid and could be handled by truncation. 3615 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3616 return SDValue(); 3617 3618 // Fold one vector element. 3619 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 3620 3621 // Scalar folding only succeeded if the result is a constant or UNDEF. 3622 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3623 ScalarResult.getOpcode() != ISD::ConstantFP) 3624 return SDValue(); 3625 Outputs.push_back(ScalarResult); 3626 } 3627 3628 assert(VT.getVectorNumElements() == Outputs.size() && 3629 "Vector size mismatch!"); 3630 3631 // We may have a vector type but a scalar result. Create a splat. 3632 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3633 3634 // Build a big vector out of the scalar elements we generated. 3635 return getBuildVector(VT, SDLoc(), Outputs); 3636 } 3637 3638 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3639 const SDLoc &DL, EVT VT, 3640 ArrayRef<SDValue> Ops, 3641 const SDNodeFlags *Flags) { 3642 // If the opcode is a target-specific ISD node, there's nothing we can 3643 // do here and the operand rules may not line up with the below, so 3644 // bail early. 3645 if (Opcode >= ISD::BUILTIN_OP_END) 3646 return SDValue(); 3647 3648 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3649 if (!VT.isVector()) 3650 return SDValue(); 3651 3652 unsigned NumElts = VT.getVectorNumElements(); 3653 3654 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3655 return !Op.getValueType().isVector() || 3656 Op.getValueType().getVectorNumElements() == NumElts; 3657 }; 3658 3659 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3660 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3661 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3662 (BV && BV->isConstant()); 3663 }; 3664 3665 // All operands must be vector types with the same number of elements as 3666 // the result type and must be either UNDEF or a build vector of constant 3667 // or UNDEF scalars. 3668 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3669 !all_of(Ops, IsScalarOrSameVectorSize)) 3670 return SDValue(); 3671 3672 // If we are comparing vectors, then the result needs to be a i1 boolean 3673 // that is then sign-extended back to the legal result type. 3674 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3675 3676 // Find legal integer scalar type for constant promotion and 3677 // ensure that its scalar size is at least as large as source. 3678 EVT LegalSVT = VT.getScalarType(); 3679 if (LegalSVT.isInteger()) { 3680 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3681 if (LegalSVT.bitsLT(VT.getScalarType())) 3682 return SDValue(); 3683 } 3684 3685 // Constant fold each scalar lane separately. 3686 SmallVector<SDValue, 4> ScalarResults; 3687 for (unsigned i = 0; i != NumElts; i++) { 3688 SmallVector<SDValue, 4> ScalarOps; 3689 for (SDValue Op : Ops) { 3690 EVT InSVT = Op.getValueType().getScalarType(); 3691 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3692 if (!InBV) { 3693 // We've checked that this is UNDEF or a constant of some kind. 3694 if (Op.isUndef()) 3695 ScalarOps.push_back(getUNDEF(InSVT)); 3696 else 3697 ScalarOps.push_back(Op); 3698 continue; 3699 } 3700 3701 SDValue ScalarOp = InBV->getOperand(i); 3702 EVT ScalarVT = ScalarOp.getValueType(); 3703 3704 // Build vector (integer) scalar operands may need implicit 3705 // truncation - do this before constant folding. 3706 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3707 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3708 3709 ScalarOps.push_back(ScalarOp); 3710 } 3711 3712 // Constant fold the scalar operands. 3713 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3714 3715 // Legalize the (integer) scalar constant if necessary. 3716 if (LegalSVT != SVT) 3717 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3718 3719 // Scalar folding only succeeded if the result is a constant or UNDEF. 3720 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3721 ScalarResult.getOpcode() != ISD::ConstantFP) 3722 return SDValue(); 3723 ScalarResults.push_back(ScalarResult); 3724 } 3725 3726 return getBuildVector(VT, DL, ScalarResults); 3727 } 3728 3729 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3730 SDValue N1, SDValue N2, 3731 const SDNodeFlags *Flags) { 3732 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3733 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3734 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3735 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3736 3737 // Canonicalize constant to RHS if commutative. 3738 if (isCommutativeBinOp(Opcode)) { 3739 if (N1C && !N2C) { 3740 std::swap(N1C, N2C); 3741 std::swap(N1, N2); 3742 } else if (N1CFP && !N2CFP) { 3743 std::swap(N1CFP, N2CFP); 3744 std::swap(N1, N2); 3745 } 3746 } 3747 3748 switch (Opcode) { 3749 default: break; 3750 case ISD::TokenFactor: 3751 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3752 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3753 // Fold trivial token factors. 3754 if (N1.getOpcode() == ISD::EntryToken) return N2; 3755 if (N2.getOpcode() == ISD::EntryToken) return N1; 3756 if (N1 == N2) return N1; 3757 break; 3758 case ISD::CONCAT_VECTORS: { 3759 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3760 SDValue Ops[] = {N1, N2}; 3761 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3762 return V; 3763 break; 3764 } 3765 case ISD::AND: 3766 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3767 assert(N1.getValueType() == N2.getValueType() && 3768 N1.getValueType() == VT && "Binary operator types must match!"); 3769 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3770 // worth handling here. 3771 if (N2C && N2C->isNullValue()) 3772 return N2; 3773 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3774 return N1; 3775 break; 3776 case ISD::OR: 3777 case ISD::XOR: 3778 case ISD::ADD: 3779 case ISD::SUB: 3780 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3781 assert(N1.getValueType() == N2.getValueType() && 3782 N1.getValueType() == VT && "Binary operator types must match!"); 3783 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3784 // it's worth handling here. 3785 if (N2C && N2C->isNullValue()) 3786 return N1; 3787 break; 3788 case ISD::UDIV: 3789 case ISD::UREM: 3790 case ISD::MULHU: 3791 case ISD::MULHS: 3792 case ISD::MUL: 3793 case ISD::SDIV: 3794 case ISD::SREM: 3795 case ISD::SMIN: 3796 case ISD::SMAX: 3797 case ISD::UMIN: 3798 case ISD::UMAX: 3799 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3800 assert(N1.getValueType() == N2.getValueType() && 3801 N1.getValueType() == VT && "Binary operator types must match!"); 3802 break; 3803 case ISD::FADD: 3804 case ISD::FSUB: 3805 case ISD::FMUL: 3806 case ISD::FDIV: 3807 case ISD::FREM: 3808 if (getTarget().Options.UnsafeFPMath) { 3809 if (Opcode == ISD::FADD) { 3810 // x+0 --> x 3811 if (N2CFP && N2CFP->getValueAPF().isZero()) 3812 return N1; 3813 } else if (Opcode == ISD::FSUB) { 3814 // x-0 --> x 3815 if (N2CFP && N2CFP->getValueAPF().isZero()) 3816 return N1; 3817 } else if (Opcode == ISD::FMUL) { 3818 // x*0 --> 0 3819 if (N2CFP && N2CFP->isZero()) 3820 return N2; 3821 // x*1 --> x 3822 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3823 return N1; 3824 } 3825 } 3826 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3827 assert(N1.getValueType() == N2.getValueType() && 3828 N1.getValueType() == VT && "Binary operator types must match!"); 3829 break; 3830 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3831 assert(N1.getValueType() == VT && 3832 N1.getValueType().isFloatingPoint() && 3833 N2.getValueType().isFloatingPoint() && 3834 "Invalid FCOPYSIGN!"); 3835 break; 3836 case ISD::SHL: 3837 case ISD::SRA: 3838 case ISD::SRL: 3839 case ISD::ROTL: 3840 case ISD::ROTR: 3841 assert(VT == N1.getValueType() && 3842 "Shift operators return type must be the same as their first arg"); 3843 assert(VT.isInteger() && N2.getValueType().isInteger() && 3844 "Shifts only work on integers"); 3845 assert((!VT.isVector() || VT == N2.getValueType()) && 3846 "Vector shift amounts must be in the same as their first arg"); 3847 // Verify that the shift amount VT is bit enough to hold valid shift 3848 // amounts. This catches things like trying to shift an i1024 value by an 3849 // i8, which is easy to fall into in generic code that uses 3850 // TLI.getShiftAmount(). 3851 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 3852 "Invalid use of small shift amount with oversized value!"); 3853 3854 // Always fold shifts of i1 values so the code generator doesn't need to 3855 // handle them. Since we know the size of the shift has to be less than the 3856 // size of the value, the shift/rotate count is guaranteed to be zero. 3857 if (VT == MVT::i1) 3858 return N1; 3859 if (N2C && N2C->isNullValue()) 3860 return N1; 3861 break; 3862 case ISD::FP_ROUND_INREG: { 3863 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3864 assert(VT == N1.getValueType() && "Not an inreg round!"); 3865 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3866 "Cannot FP_ROUND_INREG integer types"); 3867 assert(EVT.isVector() == VT.isVector() && 3868 "FP_ROUND_INREG type should be vector iff the operand " 3869 "type is vector!"); 3870 assert((!EVT.isVector() || 3871 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3872 "Vector element counts must match in FP_ROUND_INREG"); 3873 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3874 (void)EVT; 3875 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3876 break; 3877 } 3878 case ISD::FP_ROUND: 3879 assert(VT.isFloatingPoint() && 3880 N1.getValueType().isFloatingPoint() && 3881 VT.bitsLE(N1.getValueType()) && 3882 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 3883 "Invalid FP_ROUND!"); 3884 if (N1.getValueType() == VT) return N1; // noop conversion. 3885 break; 3886 case ISD::AssertSext: 3887 case ISD::AssertZext: { 3888 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3889 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3890 assert(VT.isInteger() && EVT.isInteger() && 3891 "Cannot *_EXTEND_INREG FP types"); 3892 assert(!EVT.isVector() && 3893 "AssertSExt/AssertZExt type should be the vector element type " 3894 "rather than the vector type!"); 3895 assert(EVT.bitsLE(VT) && "Not extending!"); 3896 if (VT == EVT) return N1; // noop assertion. 3897 break; 3898 } 3899 case ISD::SIGN_EXTEND_INREG: { 3900 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3901 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3902 assert(VT.isInteger() && EVT.isInteger() && 3903 "Cannot *_EXTEND_INREG FP types"); 3904 assert(EVT.isVector() == VT.isVector() && 3905 "SIGN_EXTEND_INREG type should be vector iff the operand " 3906 "type is vector!"); 3907 assert((!EVT.isVector() || 3908 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3909 "Vector element counts must match in SIGN_EXTEND_INREG"); 3910 assert(EVT.bitsLE(VT) && "Not extending!"); 3911 if (EVT == VT) return N1; // Not actually extending 3912 3913 auto SignExtendInReg = [&](APInt Val) { 3914 unsigned FromBits = EVT.getScalarSizeInBits(); 3915 Val <<= Val.getBitWidth() - FromBits; 3916 Val = Val.ashr(Val.getBitWidth() - FromBits); 3917 return getConstant(Val, DL, VT.getScalarType()); 3918 }; 3919 3920 if (N1C) { 3921 const APInt &Val = N1C->getAPIntValue(); 3922 return SignExtendInReg(Val); 3923 } 3924 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3925 SmallVector<SDValue, 8> Ops; 3926 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3927 SDValue Op = N1.getOperand(i); 3928 if (Op.isUndef()) { 3929 Ops.push_back(getUNDEF(VT.getScalarType())); 3930 continue; 3931 } 3932 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3933 APInt Val = C->getAPIntValue(); 3934 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3935 Ops.push_back(SignExtendInReg(Val)); 3936 continue; 3937 } 3938 break; 3939 } 3940 if (Ops.size() == VT.getVectorNumElements()) 3941 return getBuildVector(VT, DL, Ops); 3942 } 3943 break; 3944 } 3945 case ISD::EXTRACT_VECTOR_ELT: 3946 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 3947 if (N1.isUndef()) 3948 return getUNDEF(VT); 3949 3950 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 3951 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 3952 return getUNDEF(VT); 3953 3954 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 3955 // expanding copies of large vectors from registers. 3956 if (N2C && 3957 N1.getOpcode() == ISD::CONCAT_VECTORS && 3958 N1.getNumOperands() > 0) { 3959 unsigned Factor = 3960 N1.getOperand(0).getValueType().getVectorNumElements(); 3961 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 3962 N1.getOperand(N2C->getZExtValue() / Factor), 3963 getConstant(N2C->getZExtValue() % Factor, DL, 3964 N2.getValueType())); 3965 } 3966 3967 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 3968 // expanding large vector constants. 3969 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 3970 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 3971 3972 if (VT != Elt.getValueType()) 3973 // If the vector element type is not legal, the BUILD_VECTOR operands 3974 // are promoted and implicitly truncated, and the result implicitly 3975 // extended. Make that explicit here. 3976 Elt = getAnyExtOrTrunc(Elt, DL, VT); 3977 3978 return Elt; 3979 } 3980 3981 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 3982 // operations are lowered to scalars. 3983 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 3984 // If the indices are the same, return the inserted element else 3985 // if the indices are known different, extract the element from 3986 // the original vector. 3987 SDValue N1Op2 = N1.getOperand(2); 3988 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 3989 3990 if (N1Op2C && N2C) { 3991 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 3992 if (VT == N1.getOperand(1).getValueType()) 3993 return N1.getOperand(1); 3994 else 3995 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 3996 } 3997 3998 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 3999 } 4000 } 4001 break; 4002 case ISD::EXTRACT_ELEMENT: 4003 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4004 assert(!N1.getValueType().isVector() && !VT.isVector() && 4005 (N1.getValueType().isInteger() == VT.isInteger()) && 4006 N1.getValueType() != VT && 4007 "Wrong types for EXTRACT_ELEMENT!"); 4008 4009 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4010 // 64-bit integers into 32-bit parts. Instead of building the extract of 4011 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4012 if (N1.getOpcode() == ISD::BUILD_PAIR) 4013 return N1.getOperand(N2C->getZExtValue()); 4014 4015 // EXTRACT_ELEMENT of a constant int is also very common. 4016 if (N1C) { 4017 unsigned ElementSize = VT.getSizeInBits(); 4018 unsigned Shift = ElementSize * N2C->getZExtValue(); 4019 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4020 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4021 } 4022 break; 4023 case ISD::EXTRACT_SUBVECTOR: 4024 if (VT.isSimple() && N1.getValueType().isSimple()) { 4025 assert(VT.isVector() && N1.getValueType().isVector() && 4026 "Extract subvector VTs must be a vectors!"); 4027 assert(VT.getVectorElementType() == 4028 N1.getValueType().getVectorElementType() && 4029 "Extract subvector VTs must have the same element type!"); 4030 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4031 "Extract subvector must be from larger vector to smaller vector!"); 4032 4033 if (N2C) { 4034 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4035 <= N1.getValueType().getVectorNumElements()) 4036 && "Extract subvector overflow!"); 4037 } 4038 4039 // Trivial extraction. 4040 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4041 return N1; 4042 4043 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4044 // during shuffle legalization. 4045 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4046 VT == N1.getOperand(1).getValueType()) 4047 return N1.getOperand(1); 4048 } 4049 break; 4050 } 4051 4052 // Perform trivial constant folding. 4053 if (SDValue SV = 4054 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4055 return SV; 4056 4057 // Constant fold FP operations. 4058 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4059 if (N1CFP) { 4060 if (N2CFP) { 4061 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4062 APFloat::opStatus s; 4063 switch (Opcode) { 4064 case ISD::FADD: 4065 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4066 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4067 return getConstantFP(V1, DL, VT); 4068 break; 4069 case ISD::FSUB: 4070 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4071 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4072 return getConstantFP(V1, DL, VT); 4073 break; 4074 case ISD::FMUL: 4075 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4076 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4077 return getConstantFP(V1, DL, VT); 4078 break; 4079 case ISD::FDIV: 4080 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4081 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4082 s!=APFloat::opDivByZero)) { 4083 return getConstantFP(V1, DL, VT); 4084 } 4085 break; 4086 case ISD::FREM : 4087 s = V1.mod(V2); 4088 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4089 s!=APFloat::opDivByZero)) { 4090 return getConstantFP(V1, DL, VT); 4091 } 4092 break; 4093 case ISD::FCOPYSIGN: 4094 V1.copySign(V2); 4095 return getConstantFP(V1, DL, VT); 4096 default: break; 4097 } 4098 } 4099 4100 if (Opcode == ISD::FP_ROUND) { 4101 APFloat V = N1CFP->getValueAPF(); // make copy 4102 bool ignored; 4103 // This can return overflow, underflow, or inexact; we don't care. 4104 // FIXME need to be more flexible about rounding mode. 4105 (void)V.convert(EVTToAPFloatSemantics(VT), 4106 APFloat::rmNearestTiesToEven, &ignored); 4107 return getConstantFP(V, DL, VT); 4108 } 4109 } 4110 4111 // Canonicalize an UNDEF to the RHS, even over a constant. 4112 if (N1.isUndef()) { 4113 if (isCommutativeBinOp(Opcode)) { 4114 std::swap(N1, N2); 4115 } else { 4116 switch (Opcode) { 4117 case ISD::FP_ROUND_INREG: 4118 case ISD::SIGN_EXTEND_INREG: 4119 case ISD::SUB: 4120 case ISD::FSUB: 4121 case ISD::FDIV: 4122 case ISD::FREM: 4123 case ISD::SRA: 4124 return N1; // fold op(undef, arg2) -> undef 4125 case ISD::UDIV: 4126 case ISD::SDIV: 4127 case ISD::UREM: 4128 case ISD::SREM: 4129 case ISD::SRL: 4130 case ISD::SHL: 4131 if (!VT.isVector()) 4132 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4133 // For vectors, we can't easily build an all zero vector, just return 4134 // the LHS. 4135 return N2; 4136 } 4137 } 4138 } 4139 4140 // Fold a bunch of operators when the RHS is undef. 4141 if (N2.isUndef()) { 4142 switch (Opcode) { 4143 case ISD::XOR: 4144 if (N1.isUndef()) 4145 // Handle undef ^ undef -> 0 special case. This is a common 4146 // idiom (misuse). 4147 return getConstant(0, DL, VT); 4148 LLVM_FALLTHROUGH; 4149 case ISD::ADD: 4150 case ISD::ADDC: 4151 case ISD::ADDE: 4152 case ISD::SUB: 4153 case ISD::UDIV: 4154 case ISD::SDIV: 4155 case ISD::UREM: 4156 case ISD::SREM: 4157 return N2; // fold op(arg1, undef) -> undef 4158 case ISD::FADD: 4159 case ISD::FSUB: 4160 case ISD::FMUL: 4161 case ISD::FDIV: 4162 case ISD::FREM: 4163 if (getTarget().Options.UnsafeFPMath) 4164 return N2; 4165 break; 4166 case ISD::MUL: 4167 case ISD::AND: 4168 case ISD::SRL: 4169 case ISD::SHL: 4170 if (!VT.isVector()) 4171 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4172 // For vectors, we can't easily build an all zero vector, just return 4173 // the LHS. 4174 return N1; 4175 case ISD::OR: 4176 if (!VT.isVector()) 4177 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4178 // For vectors, we can't easily build an all one vector, just return 4179 // the LHS. 4180 return N1; 4181 case ISD::SRA: 4182 return N1; 4183 } 4184 } 4185 4186 // Memoize this node if possible. 4187 SDNode *N; 4188 SDVTList VTs = getVTList(VT); 4189 if (VT != MVT::Glue) { 4190 SDValue Ops[] = {N1, N2}; 4191 FoldingSetNodeID ID; 4192 AddNodeIDNode(ID, Opcode, VTs, Ops); 4193 void *IP = nullptr; 4194 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4195 if (Flags) 4196 E->intersectFlagsWith(Flags); 4197 return SDValue(E, 0); 4198 } 4199 4200 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4201 CSEMap.InsertNode(N, IP); 4202 } else { 4203 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4204 } 4205 4206 InsertNode(N); 4207 return SDValue(N, 0); 4208 } 4209 4210 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4211 SDValue N1, SDValue N2, SDValue N3) { 4212 // Perform various simplifications. 4213 switch (Opcode) { 4214 case ISD::FMA: { 4215 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4216 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4217 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4218 if (N1CFP && N2CFP && N3CFP) { 4219 APFloat V1 = N1CFP->getValueAPF(); 4220 const APFloat &V2 = N2CFP->getValueAPF(); 4221 const APFloat &V3 = N3CFP->getValueAPF(); 4222 APFloat::opStatus s = 4223 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4224 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4225 return getConstantFP(V1, DL, VT); 4226 } 4227 break; 4228 } 4229 case ISD::CONCAT_VECTORS: { 4230 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4231 SDValue Ops[] = {N1, N2, N3}; 4232 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4233 return V; 4234 break; 4235 } 4236 case ISD::SETCC: { 4237 // Use FoldSetCC to simplify SETCC's. 4238 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4239 return V; 4240 // Vector constant folding. 4241 SDValue Ops[] = {N1, N2, N3}; 4242 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4243 return V; 4244 break; 4245 } 4246 case ISD::SELECT: 4247 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4248 if (N1C->getZExtValue()) 4249 return N2; // select true, X, Y -> X 4250 return N3; // select false, X, Y -> Y 4251 } 4252 4253 if (N2 == N3) return N2; // select C, X, X -> X 4254 break; 4255 case ISD::VECTOR_SHUFFLE: 4256 llvm_unreachable("should use getVectorShuffle constructor!"); 4257 case ISD::INSERT_VECTOR_ELT: { 4258 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4259 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4260 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4261 return getUNDEF(VT); 4262 break; 4263 } 4264 case ISD::INSERT_SUBVECTOR: { 4265 SDValue Index = N3; 4266 if (VT.isSimple() && N1.getValueType().isSimple() 4267 && N2.getValueType().isSimple()) { 4268 assert(VT.isVector() && N1.getValueType().isVector() && 4269 N2.getValueType().isVector() && 4270 "Insert subvector VTs must be a vectors"); 4271 assert(VT == N1.getValueType() && 4272 "Dest and insert subvector source types must match!"); 4273 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4274 "Insert subvector must be from smaller vector to larger vector!"); 4275 if (isa<ConstantSDNode>(Index)) { 4276 assert((N2.getValueType().getVectorNumElements() + 4277 cast<ConstantSDNode>(Index)->getZExtValue() 4278 <= VT.getVectorNumElements()) 4279 && "Insert subvector overflow!"); 4280 } 4281 4282 // Trivial insertion. 4283 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4284 return N2; 4285 } 4286 break; 4287 } 4288 case ISD::BITCAST: 4289 // Fold bit_convert nodes from a type to themselves. 4290 if (N1.getValueType() == VT) 4291 return N1; 4292 break; 4293 } 4294 4295 // Memoize node if it doesn't produce a flag. 4296 SDNode *N; 4297 SDVTList VTs = getVTList(VT); 4298 SDValue Ops[] = {N1, N2, N3}; 4299 if (VT != MVT::Glue) { 4300 FoldingSetNodeID ID; 4301 AddNodeIDNode(ID, Opcode, VTs, Ops); 4302 void *IP = nullptr; 4303 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4304 return SDValue(E, 0); 4305 4306 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4307 createOperands(N, Ops); 4308 CSEMap.InsertNode(N, IP); 4309 } else { 4310 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4311 createOperands(N, Ops); 4312 } 4313 4314 InsertNode(N); 4315 return SDValue(N, 0); 4316 } 4317 4318 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4319 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4320 SDValue Ops[] = { N1, N2, N3, N4 }; 4321 return getNode(Opcode, DL, VT, Ops); 4322 } 4323 4324 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4325 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4326 SDValue N5) { 4327 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4328 return getNode(Opcode, DL, VT, Ops); 4329 } 4330 4331 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4332 /// the incoming stack arguments to be loaded from the stack. 4333 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4334 SmallVector<SDValue, 8> ArgChains; 4335 4336 // Include the original chain at the beginning of the list. When this is 4337 // used by target LowerCall hooks, this helps legalize find the 4338 // CALLSEQ_BEGIN node. 4339 ArgChains.push_back(Chain); 4340 4341 // Add a chain value for each stack argument. 4342 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4343 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4344 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4345 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4346 if (FI->getIndex() < 0) 4347 ArgChains.push_back(SDValue(L, 1)); 4348 4349 // Build a tokenfactor for all the chains. 4350 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4351 } 4352 4353 /// getMemsetValue - Vectorized representation of the memset value 4354 /// operand. 4355 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4356 const SDLoc &dl) { 4357 assert(!Value.isUndef()); 4358 4359 unsigned NumBits = VT.getScalarSizeInBits(); 4360 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4361 assert(C->getAPIntValue().getBitWidth() == 8); 4362 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4363 if (VT.isInteger()) 4364 return DAG.getConstant(Val, dl, VT); 4365 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4366 VT); 4367 } 4368 4369 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4370 EVT IntVT = VT.getScalarType(); 4371 if (!IntVT.isInteger()) 4372 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4373 4374 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4375 if (NumBits > 8) { 4376 // Use a multiplication with 0x010101... to extend the input to the 4377 // required length. 4378 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4379 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4380 DAG.getConstant(Magic, dl, IntVT)); 4381 } 4382 4383 if (VT != Value.getValueType() && !VT.isInteger()) 4384 Value = DAG.getBitcast(VT.getScalarType(), Value); 4385 if (VT != Value.getValueType()) 4386 Value = DAG.getSplatBuildVector(VT, dl, Value); 4387 4388 return Value; 4389 } 4390 4391 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4392 /// used when a memcpy is turned into a memset when the source is a constant 4393 /// string ptr. 4394 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4395 const TargetLowering &TLI, StringRef Str) { 4396 // Handle vector with all elements zero. 4397 if (Str.empty()) { 4398 if (VT.isInteger()) 4399 return DAG.getConstant(0, dl, VT); 4400 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4401 return DAG.getConstantFP(0.0, dl, VT); 4402 else if (VT.isVector()) { 4403 unsigned NumElts = VT.getVectorNumElements(); 4404 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4405 return DAG.getNode(ISD::BITCAST, dl, VT, 4406 DAG.getConstant(0, dl, 4407 EVT::getVectorVT(*DAG.getContext(), 4408 EltVT, NumElts))); 4409 } else 4410 llvm_unreachable("Expected type!"); 4411 } 4412 4413 assert(!VT.isVector() && "Can't handle vector type here!"); 4414 unsigned NumVTBits = VT.getSizeInBits(); 4415 unsigned NumVTBytes = NumVTBits / 8; 4416 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4417 4418 APInt Val(NumVTBits, 0); 4419 if (DAG.getDataLayout().isLittleEndian()) { 4420 for (unsigned i = 0; i != NumBytes; ++i) 4421 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4422 } else { 4423 for (unsigned i = 0; i != NumBytes; ++i) 4424 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4425 } 4426 4427 // If the "cost" of materializing the integer immediate is less than the cost 4428 // of a load, then it is cost effective to turn the load into the immediate. 4429 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4430 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4431 return DAG.getConstant(Val, dl, VT); 4432 return SDValue(nullptr, 0); 4433 } 4434 4435 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4436 const SDLoc &DL) { 4437 EVT VT = Base.getValueType(); 4438 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4439 } 4440 4441 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4442 /// 4443 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4444 uint64_t SrcDelta = 0; 4445 GlobalAddressSDNode *G = nullptr; 4446 if (Src.getOpcode() == ISD::GlobalAddress) 4447 G = cast<GlobalAddressSDNode>(Src); 4448 else if (Src.getOpcode() == ISD::ADD && 4449 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4450 Src.getOperand(1).getOpcode() == ISD::Constant) { 4451 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4452 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4453 } 4454 if (!G) 4455 return false; 4456 4457 return getConstantStringInfo(G->getGlobal(), Str, 4458 SrcDelta + G->getOffset(), false); 4459 } 4460 4461 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4462 /// Return true if the number of memory ops is below the threshold (Limit). 4463 /// It returns the types of the sequence of memory ops to perform 4464 /// memset / memcpy by reference. 4465 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4466 unsigned Limit, uint64_t Size, 4467 unsigned DstAlign, unsigned SrcAlign, 4468 bool IsMemset, 4469 bool ZeroMemset, 4470 bool MemcpyStrSrc, 4471 bool AllowOverlap, 4472 unsigned DstAS, unsigned SrcAS, 4473 SelectionDAG &DAG, 4474 const TargetLowering &TLI) { 4475 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4476 "Expecting memcpy / memset source to meet alignment requirement!"); 4477 // If 'SrcAlign' is zero, that means the memory operation does not need to 4478 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4479 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4480 // is the specified alignment of the memory operation. If it is zero, that 4481 // means it's possible to change the alignment of the destination. 4482 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4483 // not need to be loaded. 4484 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4485 IsMemset, ZeroMemset, MemcpyStrSrc, 4486 DAG.getMachineFunction()); 4487 4488 if (VT == MVT::Other) { 4489 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4490 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4491 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4492 } else { 4493 switch (DstAlign & 7) { 4494 case 0: VT = MVT::i64; break; 4495 case 4: VT = MVT::i32; break; 4496 case 2: VT = MVT::i16; break; 4497 default: VT = MVT::i8; break; 4498 } 4499 } 4500 4501 MVT LVT = MVT::i64; 4502 while (!TLI.isTypeLegal(LVT)) 4503 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4504 assert(LVT.isInteger()); 4505 4506 if (VT.bitsGT(LVT)) 4507 VT = LVT; 4508 } 4509 4510 unsigned NumMemOps = 0; 4511 while (Size != 0) { 4512 unsigned VTSize = VT.getSizeInBits() / 8; 4513 while (VTSize > Size) { 4514 // For now, only use non-vector load / store's for the left-over pieces. 4515 EVT NewVT = VT; 4516 unsigned NewVTSize; 4517 4518 bool Found = false; 4519 if (VT.isVector() || VT.isFloatingPoint()) { 4520 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4521 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4522 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4523 Found = true; 4524 else if (NewVT == MVT::i64 && 4525 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4526 TLI.isSafeMemOpType(MVT::f64)) { 4527 // i64 is usually not legal on 32-bit targets, but f64 may be. 4528 NewVT = MVT::f64; 4529 Found = true; 4530 } 4531 } 4532 4533 if (!Found) { 4534 do { 4535 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4536 if (NewVT == MVT::i8) 4537 break; 4538 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4539 } 4540 NewVTSize = NewVT.getSizeInBits() / 8; 4541 4542 // If the new VT cannot cover all of the remaining bits, then consider 4543 // issuing a (or a pair of) unaligned and overlapping load / store. 4544 // FIXME: Only does this for 64-bit or more since we don't have proper 4545 // cost model for unaligned load / store. 4546 bool Fast; 4547 if (NumMemOps && AllowOverlap && 4548 VTSize >= 8 && NewVTSize < Size && 4549 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4550 VTSize = Size; 4551 else { 4552 VT = NewVT; 4553 VTSize = NewVTSize; 4554 } 4555 } 4556 4557 if (++NumMemOps > Limit) 4558 return false; 4559 4560 MemOps.push_back(VT); 4561 Size -= VTSize; 4562 } 4563 4564 return true; 4565 } 4566 4567 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4568 // On Darwin, -Os means optimize for size without hurting performance, so 4569 // only really optimize for size when -Oz (MinSize) is used. 4570 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4571 return MF.getFunction()->optForMinSize(); 4572 return MF.getFunction()->optForSize(); 4573 } 4574 4575 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4576 SDValue Chain, SDValue Dst, SDValue Src, 4577 uint64_t Size, unsigned Align, 4578 bool isVol, bool AlwaysInline, 4579 MachinePointerInfo DstPtrInfo, 4580 MachinePointerInfo SrcPtrInfo) { 4581 // Turn a memcpy of undef to nop. 4582 if (Src.isUndef()) 4583 return Chain; 4584 4585 // Expand memcpy to a series of load and store ops if the size operand falls 4586 // below a certain threshold. 4587 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4588 // rather than maybe a humongous number of loads and stores. 4589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4590 std::vector<EVT> MemOps; 4591 bool DstAlignCanChange = false; 4592 MachineFunction &MF = DAG.getMachineFunction(); 4593 MachineFrameInfo &MFI = MF.getFrameInfo(); 4594 bool OptSize = shouldLowerMemFuncForSize(MF); 4595 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4596 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4597 DstAlignCanChange = true; 4598 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4599 if (Align > SrcAlign) 4600 SrcAlign = Align; 4601 StringRef Str; 4602 bool CopyFromStr = isMemSrcFromString(Src, Str); 4603 bool isZeroStr = CopyFromStr && Str.empty(); 4604 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4605 4606 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4607 (DstAlignCanChange ? 0 : Align), 4608 (isZeroStr ? 0 : SrcAlign), 4609 false, false, CopyFromStr, true, 4610 DstPtrInfo.getAddrSpace(), 4611 SrcPtrInfo.getAddrSpace(), 4612 DAG, TLI)) 4613 return SDValue(); 4614 4615 if (DstAlignCanChange) { 4616 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4617 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4618 4619 // Don't promote to an alignment that would require dynamic stack 4620 // realignment. 4621 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4622 if (!TRI->needsStackRealignment(MF)) 4623 while (NewAlign > Align && 4624 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4625 NewAlign /= 2; 4626 4627 if (NewAlign > Align) { 4628 // Give the stack frame object a larger alignment if needed. 4629 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4630 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4631 Align = NewAlign; 4632 } 4633 } 4634 4635 MachineMemOperand::Flags MMOFlags = 4636 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4637 SmallVector<SDValue, 8> OutChains; 4638 unsigned NumMemOps = MemOps.size(); 4639 uint64_t SrcOff = 0, DstOff = 0; 4640 for (unsigned i = 0; i != NumMemOps; ++i) { 4641 EVT VT = MemOps[i]; 4642 unsigned VTSize = VT.getSizeInBits() / 8; 4643 SDValue Value, Store; 4644 4645 if (VTSize > Size) { 4646 // Issuing an unaligned load / store pair that overlaps with the previous 4647 // pair. Adjust the offset accordingly. 4648 assert(i == NumMemOps-1 && i != 0); 4649 SrcOff -= VTSize - Size; 4650 DstOff -= VTSize - Size; 4651 } 4652 4653 if (CopyFromStr && 4654 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4655 // It's unlikely a store of a vector immediate can be done in a single 4656 // instruction. It would require a load from a constantpool first. 4657 // We only handle zero vectors here. 4658 // FIXME: Handle other cases where store of vector immediate is done in 4659 // a single instruction. 4660 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4661 if (Value.getNode()) 4662 Store = DAG.getStore(Chain, dl, Value, 4663 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4664 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4665 } 4666 4667 if (!Store.getNode()) { 4668 // The type might not be legal for the target. This should only happen 4669 // if the type is smaller than a legal type, as on PPC, so the right 4670 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4671 // to Load/Store if NVT==VT. 4672 // FIXME does the case above also need this? 4673 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4674 assert(NVT.bitsGE(VT)); 4675 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4676 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4677 SrcPtrInfo.getWithOffset(SrcOff), VT, 4678 MinAlign(SrcAlign, SrcOff), MMOFlags); 4679 OutChains.push_back(Value.getValue(1)); 4680 Store = DAG.getTruncStore( 4681 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4682 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4683 } 4684 OutChains.push_back(Store); 4685 SrcOff += VTSize; 4686 DstOff += VTSize; 4687 Size -= VTSize; 4688 } 4689 4690 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4691 } 4692 4693 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4694 SDValue Chain, SDValue Dst, SDValue Src, 4695 uint64_t Size, unsigned Align, 4696 bool isVol, bool AlwaysInline, 4697 MachinePointerInfo DstPtrInfo, 4698 MachinePointerInfo SrcPtrInfo) { 4699 // Turn a memmove of undef to nop. 4700 if (Src.isUndef()) 4701 return Chain; 4702 4703 // Expand memmove to a series of load and store ops if the size operand falls 4704 // below a certain threshold. 4705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4706 std::vector<EVT> MemOps; 4707 bool DstAlignCanChange = false; 4708 MachineFunction &MF = DAG.getMachineFunction(); 4709 MachineFrameInfo &MFI = MF.getFrameInfo(); 4710 bool OptSize = shouldLowerMemFuncForSize(MF); 4711 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4712 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4713 DstAlignCanChange = true; 4714 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4715 if (Align > SrcAlign) 4716 SrcAlign = Align; 4717 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4718 4719 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4720 (DstAlignCanChange ? 0 : Align), SrcAlign, 4721 false, false, false, false, 4722 DstPtrInfo.getAddrSpace(), 4723 SrcPtrInfo.getAddrSpace(), 4724 DAG, TLI)) 4725 return SDValue(); 4726 4727 if (DstAlignCanChange) { 4728 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4729 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4730 if (NewAlign > Align) { 4731 // Give the stack frame object a larger alignment if needed. 4732 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4733 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4734 Align = NewAlign; 4735 } 4736 } 4737 4738 MachineMemOperand::Flags MMOFlags = 4739 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4740 uint64_t SrcOff = 0, DstOff = 0; 4741 SmallVector<SDValue, 8> LoadValues; 4742 SmallVector<SDValue, 8> LoadChains; 4743 SmallVector<SDValue, 8> OutChains; 4744 unsigned NumMemOps = MemOps.size(); 4745 for (unsigned i = 0; i < NumMemOps; i++) { 4746 EVT VT = MemOps[i]; 4747 unsigned VTSize = VT.getSizeInBits() / 8; 4748 SDValue Value; 4749 4750 Value = 4751 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4752 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4753 LoadValues.push_back(Value); 4754 LoadChains.push_back(Value.getValue(1)); 4755 SrcOff += VTSize; 4756 } 4757 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4758 OutChains.clear(); 4759 for (unsigned i = 0; i < NumMemOps; i++) { 4760 EVT VT = MemOps[i]; 4761 unsigned VTSize = VT.getSizeInBits() / 8; 4762 SDValue Store; 4763 4764 Store = DAG.getStore(Chain, dl, LoadValues[i], 4765 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4766 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4767 OutChains.push_back(Store); 4768 DstOff += VTSize; 4769 } 4770 4771 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4772 } 4773 4774 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4775 /// operations. 4776 /// 4777 /// \param DAG Selection DAG where lowered code is placed. 4778 /// \param dl Link to corresponding IR location. 4779 /// \param Chain Control flow dependency. 4780 /// \param Dst Pointer to destination memory location. 4781 /// \param Src Value of byte to write into the memory. 4782 /// \param Size Number of bytes to write. 4783 /// \param Align Alignment of the destination in bytes. 4784 /// \param isVol True if destination is volatile. 4785 /// \param DstPtrInfo IR information on the memory pointer. 4786 /// \returns New head in the control flow, if lowering was successful, empty 4787 /// SDValue otherwise. 4788 /// 4789 /// The function tries to replace 'llvm.memset' intrinsic with several store 4790 /// operations and value calculation code. This is usually profitable for small 4791 /// memory size. 4792 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4793 SDValue Chain, SDValue Dst, SDValue Src, 4794 uint64_t Size, unsigned Align, bool isVol, 4795 MachinePointerInfo DstPtrInfo) { 4796 // Turn a memset of undef to nop. 4797 if (Src.isUndef()) 4798 return Chain; 4799 4800 // Expand memset to a series of load/store ops if the size operand 4801 // falls below a certain threshold. 4802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4803 std::vector<EVT> MemOps; 4804 bool DstAlignCanChange = false; 4805 MachineFunction &MF = DAG.getMachineFunction(); 4806 MachineFrameInfo &MFI = MF.getFrameInfo(); 4807 bool OptSize = shouldLowerMemFuncForSize(MF); 4808 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4809 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4810 DstAlignCanChange = true; 4811 bool IsZeroVal = 4812 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4813 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4814 Size, (DstAlignCanChange ? 0 : Align), 0, 4815 true, IsZeroVal, false, true, 4816 DstPtrInfo.getAddrSpace(), ~0u, 4817 DAG, TLI)) 4818 return SDValue(); 4819 4820 if (DstAlignCanChange) { 4821 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4822 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4823 if (NewAlign > Align) { 4824 // Give the stack frame object a larger alignment if needed. 4825 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4826 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4827 Align = NewAlign; 4828 } 4829 } 4830 4831 SmallVector<SDValue, 8> OutChains; 4832 uint64_t DstOff = 0; 4833 unsigned NumMemOps = MemOps.size(); 4834 4835 // Find the largest store and generate the bit pattern for it. 4836 EVT LargestVT = MemOps[0]; 4837 for (unsigned i = 1; i < NumMemOps; i++) 4838 if (MemOps[i].bitsGT(LargestVT)) 4839 LargestVT = MemOps[i]; 4840 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4841 4842 for (unsigned i = 0; i < NumMemOps; i++) { 4843 EVT VT = MemOps[i]; 4844 unsigned VTSize = VT.getSizeInBits() / 8; 4845 if (VTSize > Size) { 4846 // Issuing an unaligned load / store pair that overlaps with the previous 4847 // pair. Adjust the offset accordingly. 4848 assert(i == NumMemOps-1 && i != 0); 4849 DstOff -= VTSize - Size; 4850 } 4851 4852 // If this store is smaller than the largest store see whether we can get 4853 // the smaller value for free with a truncate. 4854 SDValue Value = MemSetValue; 4855 if (VT.bitsLT(LargestVT)) { 4856 if (!LargestVT.isVector() && !VT.isVector() && 4857 TLI.isTruncateFree(LargestVT, VT)) 4858 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4859 else 4860 Value = getMemsetValue(Src, VT, DAG, dl); 4861 } 4862 assert(Value.getValueType() == VT && "Value with wrong type."); 4863 SDValue Store = DAG.getStore( 4864 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4865 DstPtrInfo.getWithOffset(DstOff), Align, 4866 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 4867 OutChains.push_back(Store); 4868 DstOff += VT.getSizeInBits() / 8; 4869 Size -= VTSize; 4870 } 4871 4872 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4873 } 4874 4875 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4876 unsigned AS) { 4877 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4878 // pointer operands can be losslessly bitcasted to pointers of address space 0 4879 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4880 report_fatal_error("cannot lower memory intrinsic in address space " + 4881 Twine(AS)); 4882 } 4883 } 4884 4885 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4886 SDValue Src, SDValue Size, unsigned Align, 4887 bool isVol, bool AlwaysInline, bool isTailCall, 4888 MachinePointerInfo DstPtrInfo, 4889 MachinePointerInfo SrcPtrInfo) { 4890 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4891 4892 // Check to see if we should lower the memcpy to loads and stores first. 4893 // For cases within the target-specified limits, this is the best choice. 4894 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4895 if (ConstantSize) { 4896 // Memcpy with size zero? Just return the original chain. 4897 if (ConstantSize->isNullValue()) 4898 return Chain; 4899 4900 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4901 ConstantSize->getZExtValue(),Align, 4902 isVol, false, DstPtrInfo, SrcPtrInfo); 4903 if (Result.getNode()) 4904 return Result; 4905 } 4906 4907 // Then check to see if we should lower the memcpy with target-specific 4908 // code. If the target chooses to do this, this is the next best. 4909 if (TSI) { 4910 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4911 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4912 DstPtrInfo, SrcPtrInfo); 4913 if (Result.getNode()) 4914 return Result; 4915 } 4916 4917 // If we really need inline code and the target declined to provide it, 4918 // use a (potentially long) sequence of loads and stores. 4919 if (AlwaysInline) { 4920 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4921 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4922 ConstantSize->getZExtValue(), Align, isVol, 4923 true, DstPtrInfo, SrcPtrInfo); 4924 } 4925 4926 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4927 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4928 4929 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 4930 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 4931 // respect volatile, so they may do things like read or write memory 4932 // beyond the given memory regions. But fixing this isn't easy, and most 4933 // people don't care. 4934 4935 // Emit a library call. 4936 TargetLowering::ArgListTy Args; 4937 TargetLowering::ArgListEntry Entry; 4938 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4939 Entry.Node = Dst; Args.push_back(Entry); 4940 Entry.Node = Src; Args.push_back(Entry); 4941 Entry.Node = Size; Args.push_back(Entry); 4942 // FIXME: pass in SDLoc 4943 TargetLowering::CallLoweringInfo CLI(*this); 4944 CLI.setDebugLoc(dl) 4945 .setChain(Chain) 4946 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 4947 Dst.getValueType().getTypeForEVT(*getContext()), 4948 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 4949 TLI->getPointerTy(getDataLayout())), 4950 std::move(Args)) 4951 .setDiscardResult() 4952 .setTailCall(isTailCall); 4953 4954 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4955 return CallResult.second; 4956 } 4957 4958 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 4959 SDValue Src, SDValue Size, unsigned Align, 4960 bool isVol, bool isTailCall, 4961 MachinePointerInfo DstPtrInfo, 4962 MachinePointerInfo SrcPtrInfo) { 4963 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4964 4965 // Check to see if we should lower the memmove to loads and stores first. 4966 // For cases within the target-specified limits, this is the best choice. 4967 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4968 if (ConstantSize) { 4969 // Memmove with size zero? Just return the original chain. 4970 if (ConstantSize->isNullValue()) 4971 return Chain; 4972 4973 SDValue Result = 4974 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 4975 ConstantSize->getZExtValue(), Align, isVol, 4976 false, DstPtrInfo, SrcPtrInfo); 4977 if (Result.getNode()) 4978 return Result; 4979 } 4980 4981 // Then check to see if we should lower the memmove with target-specific 4982 // code. If the target chooses to do this, this is the next best. 4983 if (TSI) { 4984 SDValue Result = TSI->EmitTargetCodeForMemmove( 4985 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 4986 if (Result.getNode()) 4987 return Result; 4988 } 4989 4990 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4991 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4992 4993 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 4994 // not be safe. See memcpy above for more details. 4995 4996 // Emit a library call. 4997 TargetLowering::ArgListTy Args; 4998 TargetLowering::ArgListEntry Entry; 4999 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5000 Entry.Node = Dst; Args.push_back(Entry); 5001 Entry.Node = Src; Args.push_back(Entry); 5002 Entry.Node = Size; Args.push_back(Entry); 5003 // FIXME: pass in SDLoc 5004 TargetLowering::CallLoweringInfo CLI(*this); 5005 CLI.setDebugLoc(dl) 5006 .setChain(Chain) 5007 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5008 Dst.getValueType().getTypeForEVT(*getContext()), 5009 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5010 TLI->getPointerTy(getDataLayout())), 5011 std::move(Args)) 5012 .setDiscardResult() 5013 .setTailCall(isTailCall); 5014 5015 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5016 return CallResult.second; 5017 } 5018 5019 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5020 SDValue Src, SDValue Size, unsigned Align, 5021 bool isVol, bool isTailCall, 5022 MachinePointerInfo DstPtrInfo) { 5023 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5024 5025 // Check to see if we should lower the memset to stores first. 5026 // For cases within the target-specified limits, this is the best choice. 5027 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5028 if (ConstantSize) { 5029 // Memset with size zero? Just return the original chain. 5030 if (ConstantSize->isNullValue()) 5031 return Chain; 5032 5033 SDValue Result = 5034 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5035 Align, isVol, DstPtrInfo); 5036 5037 if (Result.getNode()) 5038 return Result; 5039 } 5040 5041 // Then check to see if we should lower the memset with target-specific 5042 // code. If the target chooses to do this, this is the next best. 5043 if (TSI) { 5044 SDValue Result = TSI->EmitTargetCodeForMemset( 5045 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5046 if (Result.getNode()) 5047 return Result; 5048 } 5049 5050 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5051 5052 // Emit a library call. 5053 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5054 TargetLowering::ArgListTy Args; 5055 TargetLowering::ArgListEntry Entry; 5056 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5057 Args.push_back(Entry); 5058 Entry.Node = Src; 5059 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5060 Args.push_back(Entry); 5061 Entry.Node = Size; 5062 Entry.Ty = IntPtrTy; 5063 Args.push_back(Entry); 5064 5065 // FIXME: pass in SDLoc 5066 TargetLowering::CallLoweringInfo CLI(*this); 5067 CLI.setDebugLoc(dl) 5068 .setChain(Chain) 5069 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5070 Dst.getValueType().getTypeForEVT(*getContext()), 5071 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5072 TLI->getPointerTy(getDataLayout())), 5073 std::move(Args)) 5074 .setDiscardResult() 5075 .setTailCall(isTailCall); 5076 5077 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5078 return CallResult.second; 5079 } 5080 5081 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5082 SDVTList VTList, ArrayRef<SDValue> Ops, 5083 MachineMemOperand *MMO) { 5084 FoldingSetNodeID ID; 5085 ID.AddInteger(MemVT.getRawBits()); 5086 AddNodeIDNode(ID, Opcode, VTList, Ops); 5087 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5088 void* IP = nullptr; 5089 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5090 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5091 return SDValue(E, 0); 5092 } 5093 5094 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5095 VTList, MemVT, MMO); 5096 createOperands(N, Ops); 5097 5098 CSEMap.InsertNode(N, IP); 5099 InsertNode(N); 5100 return SDValue(N, 0); 5101 } 5102 5103 SDValue SelectionDAG::getAtomicCmpSwap( 5104 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5105 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5106 unsigned Alignment, AtomicOrdering SuccessOrdering, 5107 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 5108 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5109 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5110 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5111 5112 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5113 Alignment = getEVTAlignment(MemVT); 5114 5115 MachineFunction &MF = getMachineFunction(); 5116 5117 // FIXME: Volatile isn't really correct; we should keep track of atomic 5118 // orderings in the memoperand. 5119 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5120 MachineMemOperand::MOStore; 5121 MachineMemOperand *MMO = 5122 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5123 AAMDNodes(), nullptr, SynchScope, SuccessOrdering, 5124 FailureOrdering); 5125 5126 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5127 } 5128 5129 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5130 EVT MemVT, SDVTList VTs, SDValue Chain, 5131 SDValue Ptr, SDValue Cmp, SDValue Swp, 5132 MachineMemOperand *MMO) { 5133 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5134 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5135 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5136 5137 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5138 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5139 } 5140 5141 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5142 SDValue Chain, SDValue Ptr, SDValue Val, 5143 const Value *PtrVal, unsigned Alignment, 5144 AtomicOrdering Ordering, 5145 SynchronizationScope SynchScope) { 5146 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5147 Alignment = getEVTAlignment(MemVT); 5148 5149 MachineFunction &MF = getMachineFunction(); 5150 // An atomic store does not load. An atomic load does not store. 5151 // (An atomicrmw obviously both loads and stores.) 5152 // For now, atomics are considered to be volatile always, and they are 5153 // chained as such. 5154 // FIXME: Volatile isn't really correct; we should keep track of atomic 5155 // orderings in the memoperand. 5156 auto Flags = MachineMemOperand::MOVolatile; 5157 if (Opcode != ISD::ATOMIC_STORE) 5158 Flags |= MachineMemOperand::MOLoad; 5159 if (Opcode != ISD::ATOMIC_LOAD) 5160 Flags |= MachineMemOperand::MOStore; 5161 5162 MachineMemOperand *MMO = 5163 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5164 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5165 nullptr, SynchScope, Ordering); 5166 5167 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5168 } 5169 5170 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5171 SDValue Chain, SDValue Ptr, SDValue Val, 5172 MachineMemOperand *MMO) { 5173 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5174 Opcode == ISD::ATOMIC_LOAD_SUB || 5175 Opcode == ISD::ATOMIC_LOAD_AND || 5176 Opcode == ISD::ATOMIC_LOAD_OR || 5177 Opcode == ISD::ATOMIC_LOAD_XOR || 5178 Opcode == ISD::ATOMIC_LOAD_NAND || 5179 Opcode == ISD::ATOMIC_LOAD_MIN || 5180 Opcode == ISD::ATOMIC_LOAD_MAX || 5181 Opcode == ISD::ATOMIC_LOAD_UMIN || 5182 Opcode == ISD::ATOMIC_LOAD_UMAX || 5183 Opcode == ISD::ATOMIC_SWAP || 5184 Opcode == ISD::ATOMIC_STORE) && 5185 "Invalid Atomic Op"); 5186 5187 EVT VT = Val.getValueType(); 5188 5189 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5190 getVTList(VT, MVT::Other); 5191 SDValue Ops[] = {Chain, Ptr, Val}; 5192 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5193 } 5194 5195 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5196 EVT VT, SDValue Chain, SDValue Ptr, 5197 MachineMemOperand *MMO) { 5198 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5199 5200 SDVTList VTs = getVTList(VT, MVT::Other); 5201 SDValue Ops[] = {Chain, Ptr}; 5202 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5203 } 5204 5205 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5206 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5207 if (Ops.size() == 1) 5208 return Ops[0]; 5209 5210 SmallVector<EVT, 4> VTs; 5211 VTs.reserve(Ops.size()); 5212 for (unsigned i = 0; i < Ops.size(); ++i) 5213 VTs.push_back(Ops[i].getValueType()); 5214 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5215 } 5216 5217 SDValue SelectionDAG::getMemIntrinsicNode( 5218 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5219 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5220 bool ReadMem, bool WriteMem, unsigned Size) { 5221 if (Align == 0) // Ensure that codegen never sees alignment 0 5222 Align = getEVTAlignment(MemVT); 5223 5224 MachineFunction &MF = getMachineFunction(); 5225 auto Flags = MachineMemOperand::MONone; 5226 if (WriteMem) 5227 Flags |= MachineMemOperand::MOStore; 5228 if (ReadMem) 5229 Flags |= MachineMemOperand::MOLoad; 5230 if (Vol) 5231 Flags |= MachineMemOperand::MOVolatile; 5232 if (!Size) 5233 Size = MemVT.getStoreSize(); 5234 MachineMemOperand *MMO = 5235 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5236 5237 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5238 } 5239 5240 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5241 SDVTList VTList, 5242 ArrayRef<SDValue> Ops, EVT MemVT, 5243 MachineMemOperand *MMO) { 5244 assert((Opcode == ISD::INTRINSIC_VOID || 5245 Opcode == ISD::INTRINSIC_W_CHAIN || 5246 Opcode == ISD::PREFETCH || 5247 Opcode == ISD::LIFETIME_START || 5248 Opcode == ISD::LIFETIME_END || 5249 (Opcode <= INT_MAX && 5250 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5251 "Opcode is not a memory-accessing opcode!"); 5252 5253 // Memoize the node unless it returns a flag. 5254 MemIntrinsicSDNode *N; 5255 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5256 FoldingSetNodeID ID; 5257 AddNodeIDNode(ID, Opcode, VTList, Ops); 5258 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5259 void *IP = nullptr; 5260 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5261 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5262 return SDValue(E, 0); 5263 } 5264 5265 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5266 VTList, MemVT, MMO); 5267 createOperands(N, Ops); 5268 5269 CSEMap.InsertNode(N, IP); 5270 } else { 5271 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5272 VTList, MemVT, MMO); 5273 createOperands(N, Ops); 5274 } 5275 InsertNode(N); 5276 return SDValue(N, 0); 5277 } 5278 5279 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5280 /// MachinePointerInfo record from it. This is particularly useful because the 5281 /// code generator has many cases where it doesn't bother passing in a 5282 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5283 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5284 int64_t Offset = 0) { 5285 // If this is FI+Offset, we can model it. 5286 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5287 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5288 FI->getIndex(), Offset); 5289 5290 // If this is (FI+Offset1)+Offset2, we can model it. 5291 if (Ptr.getOpcode() != ISD::ADD || 5292 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5293 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5294 return MachinePointerInfo(); 5295 5296 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5297 return MachinePointerInfo::getFixedStack( 5298 DAG.getMachineFunction(), FI, 5299 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5300 } 5301 5302 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5303 /// MachinePointerInfo record from it. This is particularly useful because the 5304 /// code generator has many cases where it doesn't bother passing in a 5305 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5306 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5307 SDValue OffsetOp) { 5308 // If the 'Offset' value isn't a constant, we can't handle this. 5309 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5310 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5311 if (OffsetOp.isUndef()) 5312 return InferPointerInfo(DAG, Ptr); 5313 return MachinePointerInfo(); 5314 } 5315 5316 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5317 EVT VT, const SDLoc &dl, SDValue Chain, 5318 SDValue Ptr, SDValue Offset, 5319 MachinePointerInfo PtrInfo, EVT MemVT, 5320 unsigned Alignment, 5321 MachineMemOperand::Flags MMOFlags, 5322 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5323 assert(Chain.getValueType() == MVT::Other && 5324 "Invalid chain type"); 5325 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5326 Alignment = getEVTAlignment(MemVT); 5327 5328 MMOFlags |= MachineMemOperand::MOLoad; 5329 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5330 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5331 // clients. 5332 if (PtrInfo.V.isNull()) 5333 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5334 5335 MachineFunction &MF = getMachineFunction(); 5336 MachineMemOperand *MMO = MF.getMachineMemOperand( 5337 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5338 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5339 } 5340 5341 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5342 EVT VT, const SDLoc &dl, SDValue Chain, 5343 SDValue Ptr, SDValue Offset, EVT MemVT, 5344 MachineMemOperand *MMO) { 5345 if (VT == MemVT) { 5346 ExtType = ISD::NON_EXTLOAD; 5347 } else if (ExtType == ISD::NON_EXTLOAD) { 5348 assert(VT == MemVT && "Non-extending load from different memory type!"); 5349 } else { 5350 // Extending load. 5351 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5352 "Should only be an extending load, not truncating!"); 5353 assert(VT.isInteger() == MemVT.isInteger() && 5354 "Cannot convert from FP to Int or Int -> FP!"); 5355 assert(VT.isVector() == MemVT.isVector() && 5356 "Cannot use an ext load to convert to or from a vector!"); 5357 assert((!VT.isVector() || 5358 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5359 "Cannot use an ext load to change the number of vector elements!"); 5360 } 5361 5362 bool Indexed = AM != ISD::UNINDEXED; 5363 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5364 5365 SDVTList VTs = Indexed ? 5366 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5367 SDValue Ops[] = { Chain, Ptr, Offset }; 5368 FoldingSetNodeID ID; 5369 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5370 ID.AddInteger(MemVT.getRawBits()); 5371 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5372 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5373 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5374 void *IP = nullptr; 5375 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5376 cast<LoadSDNode>(E)->refineAlignment(MMO); 5377 return SDValue(E, 0); 5378 } 5379 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5380 ExtType, MemVT, MMO); 5381 createOperands(N, Ops); 5382 5383 CSEMap.InsertNode(N, IP); 5384 InsertNode(N); 5385 return SDValue(N, 0); 5386 } 5387 5388 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5389 SDValue Ptr, MachinePointerInfo PtrInfo, 5390 unsigned Alignment, 5391 MachineMemOperand::Flags MMOFlags, 5392 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5393 SDValue Undef = getUNDEF(Ptr.getValueType()); 5394 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5395 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5396 } 5397 5398 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5399 SDValue Ptr, MachineMemOperand *MMO) { 5400 SDValue Undef = getUNDEF(Ptr.getValueType()); 5401 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5402 VT, MMO); 5403 } 5404 5405 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5406 EVT VT, SDValue Chain, SDValue Ptr, 5407 MachinePointerInfo PtrInfo, EVT MemVT, 5408 unsigned Alignment, 5409 MachineMemOperand::Flags MMOFlags, 5410 const AAMDNodes &AAInfo) { 5411 SDValue Undef = getUNDEF(Ptr.getValueType()); 5412 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5413 MemVT, Alignment, MMOFlags, AAInfo); 5414 } 5415 5416 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5417 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5418 MachineMemOperand *MMO) { 5419 SDValue Undef = getUNDEF(Ptr.getValueType()); 5420 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5421 MemVT, MMO); 5422 } 5423 5424 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5425 SDValue Base, SDValue Offset, 5426 ISD::MemIndexedMode AM) { 5427 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5428 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5429 // Don't propagate the invariant or dereferenceable flags. 5430 auto MMOFlags = 5431 LD->getMemOperand()->getFlags() & 5432 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5433 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5434 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5435 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5436 LD->getAAInfo()); 5437 } 5438 5439 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5440 SDValue Ptr, MachinePointerInfo PtrInfo, 5441 unsigned Alignment, 5442 MachineMemOperand::Flags MMOFlags, 5443 const AAMDNodes &AAInfo) { 5444 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5445 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5446 Alignment = getEVTAlignment(Val.getValueType()); 5447 5448 MMOFlags |= MachineMemOperand::MOStore; 5449 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5450 5451 if (PtrInfo.V.isNull()) 5452 PtrInfo = InferPointerInfo(*this, Ptr); 5453 5454 MachineFunction &MF = getMachineFunction(); 5455 MachineMemOperand *MMO = MF.getMachineMemOperand( 5456 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5457 return getStore(Chain, dl, Val, Ptr, MMO); 5458 } 5459 5460 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5461 SDValue Ptr, MachineMemOperand *MMO) { 5462 assert(Chain.getValueType() == MVT::Other && 5463 "Invalid chain type"); 5464 EVT VT = Val.getValueType(); 5465 SDVTList VTs = getVTList(MVT::Other); 5466 SDValue Undef = getUNDEF(Ptr.getValueType()); 5467 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5468 FoldingSetNodeID ID; 5469 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5470 ID.AddInteger(VT.getRawBits()); 5471 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5472 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5473 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5474 void *IP = nullptr; 5475 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5476 cast<StoreSDNode>(E)->refineAlignment(MMO); 5477 return SDValue(E, 0); 5478 } 5479 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5480 ISD::UNINDEXED, false, VT, MMO); 5481 createOperands(N, Ops); 5482 5483 CSEMap.InsertNode(N, IP); 5484 InsertNode(N); 5485 return SDValue(N, 0); 5486 } 5487 5488 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5489 SDValue Ptr, MachinePointerInfo PtrInfo, 5490 EVT SVT, unsigned Alignment, 5491 MachineMemOperand::Flags MMOFlags, 5492 const AAMDNodes &AAInfo) { 5493 assert(Chain.getValueType() == MVT::Other && 5494 "Invalid chain type"); 5495 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5496 Alignment = getEVTAlignment(SVT); 5497 5498 MMOFlags |= MachineMemOperand::MOStore; 5499 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5500 5501 if (PtrInfo.V.isNull()) 5502 PtrInfo = InferPointerInfo(*this, Ptr); 5503 5504 MachineFunction &MF = getMachineFunction(); 5505 MachineMemOperand *MMO = MF.getMachineMemOperand( 5506 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5507 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5508 } 5509 5510 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5511 SDValue Ptr, EVT SVT, 5512 MachineMemOperand *MMO) { 5513 EVT VT = Val.getValueType(); 5514 5515 assert(Chain.getValueType() == MVT::Other && 5516 "Invalid chain type"); 5517 if (VT == SVT) 5518 return getStore(Chain, dl, Val, Ptr, MMO); 5519 5520 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5521 "Should only be a truncating store, not extending!"); 5522 assert(VT.isInteger() == SVT.isInteger() && 5523 "Can't do FP-INT conversion!"); 5524 assert(VT.isVector() == SVT.isVector() && 5525 "Cannot use trunc store to convert to or from a vector!"); 5526 assert((!VT.isVector() || 5527 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5528 "Cannot use trunc store to change the number of vector elements!"); 5529 5530 SDVTList VTs = getVTList(MVT::Other); 5531 SDValue Undef = getUNDEF(Ptr.getValueType()); 5532 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5533 FoldingSetNodeID ID; 5534 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5535 ID.AddInteger(SVT.getRawBits()); 5536 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5537 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5538 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5539 void *IP = nullptr; 5540 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5541 cast<StoreSDNode>(E)->refineAlignment(MMO); 5542 return SDValue(E, 0); 5543 } 5544 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5545 ISD::UNINDEXED, true, SVT, MMO); 5546 createOperands(N, Ops); 5547 5548 CSEMap.InsertNode(N, IP); 5549 InsertNode(N); 5550 return SDValue(N, 0); 5551 } 5552 5553 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5554 SDValue Base, SDValue Offset, 5555 ISD::MemIndexedMode AM) { 5556 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5557 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5558 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5559 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5560 FoldingSetNodeID ID; 5561 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5562 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5563 ID.AddInteger(ST->getRawSubclassData()); 5564 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5565 void *IP = nullptr; 5566 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5567 return SDValue(E, 0); 5568 5569 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5570 ST->isTruncatingStore(), ST->getMemoryVT(), 5571 ST->getMemOperand()); 5572 createOperands(N, Ops); 5573 5574 CSEMap.InsertNode(N, IP); 5575 InsertNode(N); 5576 return SDValue(N, 0); 5577 } 5578 5579 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5580 SDValue Ptr, SDValue Mask, SDValue Src0, 5581 EVT MemVT, MachineMemOperand *MMO, 5582 ISD::LoadExtType ExtTy, bool isExpanding) { 5583 5584 SDVTList VTs = getVTList(VT, MVT::Other); 5585 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5586 FoldingSetNodeID ID; 5587 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5588 ID.AddInteger(VT.getRawBits()); 5589 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5590 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5591 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5592 void *IP = nullptr; 5593 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5594 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5595 return SDValue(E, 0); 5596 } 5597 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5598 ExtTy, isExpanding, MemVT, MMO); 5599 createOperands(N, Ops); 5600 5601 CSEMap.InsertNode(N, IP); 5602 InsertNode(N); 5603 return SDValue(N, 0); 5604 } 5605 5606 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5607 SDValue Val, SDValue Ptr, SDValue Mask, 5608 EVT MemVT, MachineMemOperand *MMO, 5609 bool IsTruncating, bool IsCompressing) { 5610 assert(Chain.getValueType() == MVT::Other && 5611 "Invalid chain type"); 5612 EVT VT = Val.getValueType(); 5613 SDVTList VTs = getVTList(MVT::Other); 5614 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5615 FoldingSetNodeID ID; 5616 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5617 ID.AddInteger(VT.getRawBits()); 5618 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5619 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5620 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5621 void *IP = nullptr; 5622 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5623 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5624 return SDValue(E, 0); 5625 } 5626 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5627 IsTruncating, IsCompressing, MemVT, MMO); 5628 createOperands(N, Ops); 5629 5630 CSEMap.InsertNode(N, IP); 5631 InsertNode(N); 5632 return SDValue(N, 0); 5633 } 5634 5635 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5636 ArrayRef<SDValue> Ops, 5637 MachineMemOperand *MMO) { 5638 assert(Ops.size() == 5 && "Incompatible number of operands"); 5639 5640 FoldingSetNodeID ID; 5641 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5642 ID.AddInteger(VT.getRawBits()); 5643 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5644 dl.getIROrder(), VTs, VT, MMO)); 5645 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5646 void *IP = nullptr; 5647 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5648 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5649 return SDValue(E, 0); 5650 } 5651 5652 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5653 VTs, VT, MMO); 5654 createOperands(N, Ops); 5655 5656 assert(N->getValue().getValueType() == N->getValueType(0) && 5657 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5658 assert(N->getMask().getValueType().getVectorNumElements() == 5659 N->getValueType(0).getVectorNumElements() && 5660 "Vector width mismatch between mask and data"); 5661 assert(N->getIndex().getValueType().getVectorNumElements() == 5662 N->getValueType(0).getVectorNumElements() && 5663 "Vector width mismatch between index and data"); 5664 5665 CSEMap.InsertNode(N, IP); 5666 InsertNode(N); 5667 return SDValue(N, 0); 5668 } 5669 5670 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5671 ArrayRef<SDValue> Ops, 5672 MachineMemOperand *MMO) { 5673 assert(Ops.size() == 5 && "Incompatible number of operands"); 5674 5675 FoldingSetNodeID ID; 5676 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5677 ID.AddInteger(VT.getRawBits()); 5678 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5679 dl.getIROrder(), VTs, VT, MMO)); 5680 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5681 void *IP = nullptr; 5682 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5683 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5684 return SDValue(E, 0); 5685 } 5686 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5687 VTs, VT, MMO); 5688 createOperands(N, Ops); 5689 5690 assert(N->getMask().getValueType().getVectorNumElements() == 5691 N->getValue().getValueType().getVectorNumElements() && 5692 "Vector width mismatch between mask and data"); 5693 assert(N->getIndex().getValueType().getVectorNumElements() == 5694 N->getValue().getValueType().getVectorNumElements() && 5695 "Vector width mismatch between index and data"); 5696 5697 CSEMap.InsertNode(N, IP); 5698 InsertNode(N); 5699 return SDValue(N, 0); 5700 } 5701 5702 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5703 SDValue Ptr, SDValue SV, unsigned Align) { 5704 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5705 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5706 } 5707 5708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5709 ArrayRef<SDUse> Ops) { 5710 switch (Ops.size()) { 5711 case 0: return getNode(Opcode, DL, VT); 5712 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5713 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5714 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5715 default: break; 5716 } 5717 5718 // Copy from an SDUse array into an SDValue array for use with 5719 // the regular getNode logic. 5720 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5721 return getNode(Opcode, DL, VT, NewOps); 5722 } 5723 5724 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5725 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5726 unsigned NumOps = Ops.size(); 5727 switch (NumOps) { 5728 case 0: return getNode(Opcode, DL, VT); 5729 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5730 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5731 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5732 default: break; 5733 } 5734 5735 switch (Opcode) { 5736 default: break; 5737 case ISD::CONCAT_VECTORS: { 5738 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5739 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5740 return V; 5741 break; 5742 } 5743 case ISD::SELECT_CC: { 5744 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5745 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5746 "LHS and RHS of condition must have same type!"); 5747 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5748 "True and False arms of SelectCC must have same type!"); 5749 assert(Ops[2].getValueType() == VT && 5750 "select_cc node must be of same type as true and false value!"); 5751 break; 5752 } 5753 case ISD::BR_CC: { 5754 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5755 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5756 "LHS/RHS of comparison should match types!"); 5757 break; 5758 } 5759 } 5760 5761 // Memoize nodes. 5762 SDNode *N; 5763 SDVTList VTs = getVTList(VT); 5764 5765 if (VT != MVT::Glue) { 5766 FoldingSetNodeID ID; 5767 AddNodeIDNode(ID, Opcode, VTs, Ops); 5768 void *IP = nullptr; 5769 5770 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5771 return SDValue(E, 0); 5772 5773 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5774 createOperands(N, Ops); 5775 5776 CSEMap.InsertNode(N, IP); 5777 } else { 5778 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5779 createOperands(N, Ops); 5780 } 5781 5782 InsertNode(N); 5783 return SDValue(N, 0); 5784 } 5785 5786 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5787 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5788 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5789 } 5790 5791 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5792 ArrayRef<SDValue> Ops) { 5793 if (VTList.NumVTs == 1) 5794 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5795 5796 #if 0 5797 switch (Opcode) { 5798 // FIXME: figure out how to safely handle things like 5799 // int foo(int x) { return 1 << (x & 255); } 5800 // int bar() { return foo(256); } 5801 case ISD::SRA_PARTS: 5802 case ISD::SRL_PARTS: 5803 case ISD::SHL_PARTS: 5804 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5805 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5806 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5807 else if (N3.getOpcode() == ISD::AND) 5808 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5809 // If the and is only masking out bits that cannot effect the shift, 5810 // eliminate the and. 5811 unsigned NumBits = VT.getScalarSizeInBits()*2; 5812 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5813 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5814 } 5815 break; 5816 } 5817 #endif 5818 5819 // Memoize the node unless it returns a flag. 5820 SDNode *N; 5821 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5822 FoldingSetNodeID ID; 5823 AddNodeIDNode(ID, Opcode, VTList, Ops); 5824 void *IP = nullptr; 5825 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5826 return SDValue(E, 0); 5827 5828 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5829 createOperands(N, Ops); 5830 CSEMap.InsertNode(N, IP); 5831 } else { 5832 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5833 createOperands(N, Ops); 5834 } 5835 InsertNode(N); 5836 return SDValue(N, 0); 5837 } 5838 5839 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5840 SDVTList VTList) { 5841 return getNode(Opcode, DL, VTList, None); 5842 } 5843 5844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5845 SDValue N1) { 5846 SDValue Ops[] = { N1 }; 5847 return getNode(Opcode, DL, VTList, Ops); 5848 } 5849 5850 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5851 SDValue N1, SDValue N2) { 5852 SDValue Ops[] = { N1, N2 }; 5853 return getNode(Opcode, DL, VTList, Ops); 5854 } 5855 5856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5857 SDValue N1, SDValue N2, SDValue N3) { 5858 SDValue Ops[] = { N1, N2, N3 }; 5859 return getNode(Opcode, DL, VTList, Ops); 5860 } 5861 5862 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5863 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5864 SDValue Ops[] = { N1, N2, N3, N4 }; 5865 return getNode(Opcode, DL, VTList, Ops); 5866 } 5867 5868 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5869 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5870 SDValue N5) { 5871 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5872 return getNode(Opcode, DL, VTList, Ops); 5873 } 5874 5875 SDVTList SelectionDAG::getVTList(EVT VT) { 5876 return makeVTList(SDNode::getValueTypeList(VT), 1); 5877 } 5878 5879 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5880 FoldingSetNodeID ID; 5881 ID.AddInteger(2U); 5882 ID.AddInteger(VT1.getRawBits()); 5883 ID.AddInteger(VT2.getRawBits()); 5884 5885 void *IP = nullptr; 5886 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5887 if (!Result) { 5888 EVT *Array = Allocator.Allocate<EVT>(2); 5889 Array[0] = VT1; 5890 Array[1] = VT2; 5891 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5892 VTListMap.InsertNode(Result, IP); 5893 } 5894 return Result->getSDVTList(); 5895 } 5896 5897 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5898 FoldingSetNodeID ID; 5899 ID.AddInteger(3U); 5900 ID.AddInteger(VT1.getRawBits()); 5901 ID.AddInteger(VT2.getRawBits()); 5902 ID.AddInteger(VT3.getRawBits()); 5903 5904 void *IP = nullptr; 5905 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5906 if (!Result) { 5907 EVT *Array = Allocator.Allocate<EVT>(3); 5908 Array[0] = VT1; 5909 Array[1] = VT2; 5910 Array[2] = VT3; 5911 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5912 VTListMap.InsertNode(Result, IP); 5913 } 5914 return Result->getSDVTList(); 5915 } 5916 5917 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5918 FoldingSetNodeID ID; 5919 ID.AddInteger(4U); 5920 ID.AddInteger(VT1.getRawBits()); 5921 ID.AddInteger(VT2.getRawBits()); 5922 ID.AddInteger(VT3.getRawBits()); 5923 ID.AddInteger(VT4.getRawBits()); 5924 5925 void *IP = nullptr; 5926 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5927 if (!Result) { 5928 EVT *Array = Allocator.Allocate<EVT>(4); 5929 Array[0] = VT1; 5930 Array[1] = VT2; 5931 Array[2] = VT3; 5932 Array[3] = VT4; 5933 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 5934 VTListMap.InsertNode(Result, IP); 5935 } 5936 return Result->getSDVTList(); 5937 } 5938 5939 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 5940 unsigned NumVTs = VTs.size(); 5941 FoldingSetNodeID ID; 5942 ID.AddInteger(NumVTs); 5943 for (unsigned index = 0; index < NumVTs; index++) { 5944 ID.AddInteger(VTs[index].getRawBits()); 5945 } 5946 5947 void *IP = nullptr; 5948 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5949 if (!Result) { 5950 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 5951 std::copy(VTs.begin(), VTs.end(), Array); 5952 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 5953 VTListMap.InsertNode(Result, IP); 5954 } 5955 return Result->getSDVTList(); 5956 } 5957 5958 5959 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 5960 /// specified operands. If the resultant node already exists in the DAG, 5961 /// this does not modify the specified node, instead it returns the node that 5962 /// already exists. If the resultant node does not exist in the DAG, the 5963 /// input node is returned. As a degenerate case, if you specify the same 5964 /// input operands as the node already has, the input node is returned. 5965 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 5966 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 5967 5968 // Check to see if there is no change. 5969 if (Op == N->getOperand(0)) return N; 5970 5971 // See if the modified node already exists. 5972 void *InsertPos = nullptr; 5973 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 5974 return Existing; 5975 5976 // Nope it doesn't. Remove the node from its current place in the maps. 5977 if (InsertPos) 5978 if (!RemoveNodeFromCSEMaps(N)) 5979 InsertPos = nullptr; 5980 5981 // Now we update the operands. 5982 N->OperandList[0].set(Op); 5983 5984 // If this gets put into a CSE map, add it. 5985 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5986 return N; 5987 } 5988 5989 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 5990 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 5991 5992 // Check to see if there is no change. 5993 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 5994 return N; // No operands changed, just return the input node. 5995 5996 // See if the modified node already exists. 5997 void *InsertPos = nullptr; 5998 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 5999 return Existing; 6000 6001 // Nope it doesn't. Remove the node from its current place in the maps. 6002 if (InsertPos) 6003 if (!RemoveNodeFromCSEMaps(N)) 6004 InsertPos = nullptr; 6005 6006 // Now we update the operands. 6007 if (N->OperandList[0] != Op1) 6008 N->OperandList[0].set(Op1); 6009 if (N->OperandList[1] != Op2) 6010 N->OperandList[1].set(Op2); 6011 6012 // If this gets put into a CSE map, add it. 6013 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6014 return N; 6015 } 6016 6017 SDNode *SelectionDAG:: 6018 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6019 SDValue Ops[] = { Op1, Op2, Op3 }; 6020 return UpdateNodeOperands(N, Ops); 6021 } 6022 6023 SDNode *SelectionDAG:: 6024 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6025 SDValue Op3, SDValue Op4) { 6026 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6027 return UpdateNodeOperands(N, Ops); 6028 } 6029 6030 SDNode *SelectionDAG:: 6031 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6032 SDValue Op3, SDValue Op4, SDValue Op5) { 6033 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6034 return UpdateNodeOperands(N, Ops); 6035 } 6036 6037 SDNode *SelectionDAG:: 6038 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6039 unsigned NumOps = Ops.size(); 6040 assert(N->getNumOperands() == NumOps && 6041 "Update with wrong number of operands"); 6042 6043 // If no operands changed just return the input node. 6044 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6045 return N; 6046 6047 // See if the modified node already exists. 6048 void *InsertPos = nullptr; 6049 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6050 return Existing; 6051 6052 // Nope it doesn't. Remove the node from its current place in the maps. 6053 if (InsertPos) 6054 if (!RemoveNodeFromCSEMaps(N)) 6055 InsertPos = nullptr; 6056 6057 // Now we update the operands. 6058 for (unsigned i = 0; i != NumOps; ++i) 6059 if (N->OperandList[i] != Ops[i]) 6060 N->OperandList[i].set(Ops[i]); 6061 6062 // If this gets put into a CSE map, add it. 6063 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6064 return N; 6065 } 6066 6067 /// DropOperands - Release the operands and set this node to have 6068 /// zero operands. 6069 void SDNode::DropOperands() { 6070 // Unlike the code in MorphNodeTo that does this, we don't need to 6071 // watch for dead nodes here. 6072 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6073 SDUse &Use = *I++; 6074 Use.set(SDValue()); 6075 } 6076 } 6077 6078 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6079 /// machine opcode. 6080 /// 6081 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6082 EVT VT) { 6083 SDVTList VTs = getVTList(VT); 6084 return SelectNodeTo(N, MachineOpc, VTs, None); 6085 } 6086 6087 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6088 EVT VT, SDValue Op1) { 6089 SDVTList VTs = getVTList(VT); 6090 SDValue Ops[] = { Op1 }; 6091 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6092 } 6093 6094 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6095 EVT VT, SDValue Op1, 6096 SDValue Op2) { 6097 SDVTList VTs = getVTList(VT); 6098 SDValue Ops[] = { Op1, Op2 }; 6099 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6100 } 6101 6102 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6103 EVT VT, SDValue Op1, 6104 SDValue Op2, SDValue Op3) { 6105 SDVTList VTs = getVTList(VT); 6106 SDValue Ops[] = { Op1, Op2, Op3 }; 6107 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6108 } 6109 6110 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6111 EVT VT, ArrayRef<SDValue> Ops) { 6112 SDVTList VTs = getVTList(VT); 6113 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6114 } 6115 6116 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6117 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6118 SDVTList VTs = getVTList(VT1, VT2); 6119 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6120 } 6121 6122 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6123 EVT VT1, EVT VT2) { 6124 SDVTList VTs = getVTList(VT1, VT2); 6125 return SelectNodeTo(N, MachineOpc, VTs, None); 6126 } 6127 6128 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6129 EVT VT1, EVT VT2, EVT VT3, 6130 ArrayRef<SDValue> Ops) { 6131 SDVTList VTs = getVTList(VT1, VT2, VT3); 6132 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6133 } 6134 6135 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6136 EVT VT1, EVT VT2, 6137 SDValue Op1, SDValue Op2) { 6138 SDVTList VTs = getVTList(VT1, VT2); 6139 SDValue Ops[] = { Op1, Op2 }; 6140 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6141 } 6142 6143 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6144 SDVTList VTs,ArrayRef<SDValue> Ops) { 6145 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6146 // Reset the NodeID to -1. 6147 New->setNodeId(-1); 6148 if (New != N) { 6149 ReplaceAllUsesWith(N, New); 6150 RemoveDeadNode(N); 6151 } 6152 return New; 6153 } 6154 6155 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6156 /// the line number information on the merged node since it is not possible to 6157 /// preserve the information that operation is associated with multiple lines. 6158 /// This will make the debugger working better at -O0, were there is a higher 6159 /// probability having other instructions associated with that line. 6160 /// 6161 /// For IROrder, we keep the smaller of the two 6162 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6163 DebugLoc NLoc = N->getDebugLoc(); 6164 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6165 N->setDebugLoc(DebugLoc()); 6166 } 6167 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6168 N->setIROrder(Order); 6169 return N; 6170 } 6171 6172 /// MorphNodeTo - This *mutates* the specified node to have the specified 6173 /// return type, opcode, and operands. 6174 /// 6175 /// Note that MorphNodeTo returns the resultant node. If there is already a 6176 /// node of the specified opcode and operands, it returns that node instead of 6177 /// the current one. Note that the SDLoc need not be the same. 6178 /// 6179 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6180 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6181 /// node, and because it doesn't require CSE recalculation for any of 6182 /// the node's users. 6183 /// 6184 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6185 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6186 /// the legalizer which maintain worklists that would need to be updated when 6187 /// deleting things. 6188 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6189 SDVTList VTs, ArrayRef<SDValue> Ops) { 6190 // If an identical node already exists, use it. 6191 void *IP = nullptr; 6192 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6193 FoldingSetNodeID ID; 6194 AddNodeIDNode(ID, Opc, VTs, Ops); 6195 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6196 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6197 } 6198 6199 if (!RemoveNodeFromCSEMaps(N)) 6200 IP = nullptr; 6201 6202 // Start the morphing. 6203 N->NodeType = Opc; 6204 N->ValueList = VTs.VTs; 6205 N->NumValues = VTs.NumVTs; 6206 6207 // Clear the operands list, updating used nodes to remove this from their 6208 // use list. Keep track of any operands that become dead as a result. 6209 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6210 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6211 SDUse &Use = *I++; 6212 SDNode *Used = Use.getNode(); 6213 Use.set(SDValue()); 6214 if (Used->use_empty()) 6215 DeadNodeSet.insert(Used); 6216 } 6217 6218 // For MachineNode, initialize the memory references information. 6219 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6220 MN->setMemRefs(nullptr, nullptr); 6221 6222 // Swap for an appropriately sized array from the recycler. 6223 removeOperands(N); 6224 createOperands(N, Ops); 6225 6226 // Delete any nodes that are still dead after adding the uses for the 6227 // new operands. 6228 if (!DeadNodeSet.empty()) { 6229 SmallVector<SDNode *, 16> DeadNodes; 6230 for (SDNode *N : DeadNodeSet) 6231 if (N->use_empty()) 6232 DeadNodes.push_back(N); 6233 RemoveDeadNodes(DeadNodes); 6234 } 6235 6236 if (IP) 6237 CSEMap.InsertNode(N, IP); // Memoize the new node. 6238 return N; 6239 } 6240 6241 6242 /// getMachineNode - These are used for target selectors to create a new node 6243 /// with specified return type(s), MachineInstr opcode, and operands. 6244 /// 6245 /// Note that getMachineNode returns the resultant node. If there is already a 6246 /// node of the specified opcode and operands, it returns that node instead of 6247 /// the current one. 6248 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6249 EVT VT) { 6250 SDVTList VTs = getVTList(VT); 6251 return getMachineNode(Opcode, dl, VTs, None); 6252 } 6253 6254 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6255 EVT VT, SDValue Op1) { 6256 SDVTList VTs = getVTList(VT); 6257 SDValue Ops[] = { Op1 }; 6258 return getMachineNode(Opcode, dl, VTs, Ops); 6259 } 6260 6261 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6262 EVT VT, SDValue Op1, SDValue Op2) { 6263 SDVTList VTs = getVTList(VT); 6264 SDValue Ops[] = { Op1, Op2 }; 6265 return getMachineNode(Opcode, dl, VTs, Ops); 6266 } 6267 6268 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6269 EVT VT, SDValue Op1, SDValue Op2, 6270 SDValue Op3) { 6271 SDVTList VTs = getVTList(VT); 6272 SDValue Ops[] = { Op1, Op2, Op3 }; 6273 return getMachineNode(Opcode, dl, VTs, Ops); 6274 } 6275 6276 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6277 EVT VT, ArrayRef<SDValue> Ops) { 6278 SDVTList VTs = getVTList(VT); 6279 return getMachineNode(Opcode, dl, VTs, Ops); 6280 } 6281 6282 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6283 EVT VT1, EVT VT2, SDValue Op1, 6284 SDValue Op2) { 6285 SDVTList VTs = getVTList(VT1, VT2); 6286 SDValue Ops[] = { Op1, Op2 }; 6287 return getMachineNode(Opcode, dl, VTs, Ops); 6288 } 6289 6290 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6291 EVT VT1, EVT VT2, SDValue Op1, 6292 SDValue Op2, SDValue Op3) { 6293 SDVTList VTs = getVTList(VT1, VT2); 6294 SDValue Ops[] = { Op1, Op2, Op3 }; 6295 return getMachineNode(Opcode, dl, VTs, Ops); 6296 } 6297 6298 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6299 EVT VT1, EVT VT2, 6300 ArrayRef<SDValue> Ops) { 6301 SDVTList VTs = getVTList(VT1, VT2); 6302 return getMachineNode(Opcode, dl, VTs, Ops); 6303 } 6304 6305 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6306 EVT VT1, EVT VT2, EVT VT3, 6307 SDValue Op1, SDValue Op2) { 6308 SDVTList VTs = getVTList(VT1, VT2, VT3); 6309 SDValue Ops[] = { Op1, Op2 }; 6310 return getMachineNode(Opcode, dl, VTs, Ops); 6311 } 6312 6313 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6314 EVT VT1, EVT VT2, EVT VT3, 6315 SDValue Op1, SDValue Op2, 6316 SDValue Op3) { 6317 SDVTList VTs = getVTList(VT1, VT2, VT3); 6318 SDValue Ops[] = { Op1, Op2, Op3 }; 6319 return getMachineNode(Opcode, dl, VTs, Ops); 6320 } 6321 6322 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6323 EVT VT1, EVT VT2, EVT VT3, 6324 ArrayRef<SDValue> Ops) { 6325 SDVTList VTs = getVTList(VT1, VT2, VT3); 6326 return getMachineNode(Opcode, dl, VTs, Ops); 6327 } 6328 6329 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6330 ArrayRef<EVT> ResultTys, 6331 ArrayRef<SDValue> Ops) { 6332 SDVTList VTs = getVTList(ResultTys); 6333 return getMachineNode(Opcode, dl, VTs, Ops); 6334 } 6335 6336 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6337 SDVTList VTs, 6338 ArrayRef<SDValue> Ops) { 6339 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6340 MachineSDNode *N; 6341 void *IP = nullptr; 6342 6343 if (DoCSE) { 6344 FoldingSetNodeID ID; 6345 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6346 IP = nullptr; 6347 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6348 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6349 } 6350 } 6351 6352 // Allocate a new MachineSDNode. 6353 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6354 createOperands(N, Ops); 6355 6356 if (DoCSE) 6357 CSEMap.InsertNode(N, IP); 6358 6359 InsertNode(N); 6360 return N; 6361 } 6362 6363 /// getTargetExtractSubreg - A convenience function for creating 6364 /// TargetOpcode::EXTRACT_SUBREG nodes. 6365 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6366 SDValue Operand) { 6367 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6368 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6369 VT, Operand, SRIdxVal); 6370 return SDValue(Subreg, 0); 6371 } 6372 6373 /// getTargetInsertSubreg - A convenience function for creating 6374 /// TargetOpcode::INSERT_SUBREG nodes. 6375 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6376 SDValue Operand, SDValue Subreg) { 6377 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6378 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6379 VT, Operand, Subreg, SRIdxVal); 6380 return SDValue(Result, 0); 6381 } 6382 6383 /// getNodeIfExists - Get the specified node if it's already available, or 6384 /// else return NULL. 6385 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6386 ArrayRef<SDValue> Ops, 6387 const SDNodeFlags *Flags) { 6388 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6389 FoldingSetNodeID ID; 6390 AddNodeIDNode(ID, Opcode, VTList, Ops); 6391 void *IP = nullptr; 6392 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6393 if (Flags) 6394 E->intersectFlagsWith(Flags); 6395 return E; 6396 } 6397 } 6398 return nullptr; 6399 } 6400 6401 /// getDbgValue - Creates a SDDbgValue node. 6402 /// 6403 /// SDNode 6404 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6405 unsigned R, bool IsIndirect, uint64_t Off, 6406 const DebugLoc &DL, unsigned O) { 6407 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6408 "Expected inlined-at fields to agree"); 6409 return new (DbgInfo->getAlloc()) 6410 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6411 } 6412 6413 /// Constant 6414 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6415 const Value *C, uint64_t Off, 6416 const DebugLoc &DL, unsigned O) { 6417 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6418 "Expected inlined-at fields to agree"); 6419 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6420 } 6421 6422 /// FrameIndex 6423 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6424 unsigned FI, uint64_t Off, 6425 const DebugLoc &DL, 6426 unsigned O) { 6427 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6428 "Expected inlined-at fields to agree"); 6429 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6430 } 6431 6432 namespace { 6433 6434 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6435 /// pointed to by a use iterator is deleted, increment the use iterator 6436 /// so that it doesn't dangle. 6437 /// 6438 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6439 SDNode::use_iterator &UI; 6440 SDNode::use_iterator &UE; 6441 6442 void NodeDeleted(SDNode *N, SDNode *E) override { 6443 // Increment the iterator as needed. 6444 while (UI != UE && N == *UI) 6445 ++UI; 6446 } 6447 6448 public: 6449 RAUWUpdateListener(SelectionDAG &d, 6450 SDNode::use_iterator &ui, 6451 SDNode::use_iterator &ue) 6452 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6453 }; 6454 6455 } 6456 6457 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6458 /// This can cause recursive merging of nodes in the DAG. 6459 /// 6460 /// This version assumes From has a single result value. 6461 /// 6462 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6463 SDNode *From = FromN.getNode(); 6464 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6465 "Cannot replace with this method!"); 6466 assert(From != To.getNode() && "Cannot replace uses of with self"); 6467 6468 // Preserve Debug Values 6469 TransferDbgValues(FromN, To); 6470 6471 // Iterate over all the existing uses of From. New uses will be added 6472 // to the beginning of the use list, which we avoid visiting. 6473 // This specifically avoids visiting uses of From that arise while the 6474 // replacement is happening, because any such uses would be the result 6475 // of CSE: If an existing node looks like From after one of its operands 6476 // is replaced by To, we don't want to replace of all its users with To 6477 // too. See PR3018 for more info. 6478 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6479 RAUWUpdateListener Listener(*this, UI, UE); 6480 while (UI != UE) { 6481 SDNode *User = *UI; 6482 6483 // This node is about to morph, remove its old self from the CSE maps. 6484 RemoveNodeFromCSEMaps(User); 6485 6486 // A user can appear in a use list multiple times, and when this 6487 // happens the uses are usually next to each other in the list. 6488 // To help reduce the number of CSE recomputations, process all 6489 // the uses of this user that we can find this way. 6490 do { 6491 SDUse &Use = UI.getUse(); 6492 ++UI; 6493 Use.set(To); 6494 } while (UI != UE && *UI == User); 6495 6496 // Now that we have modified User, add it back to the CSE maps. If it 6497 // already exists there, recursively merge the results together. 6498 AddModifiedNodeToCSEMaps(User); 6499 } 6500 6501 6502 // If we just RAUW'd the root, take note. 6503 if (FromN == getRoot()) 6504 setRoot(To); 6505 } 6506 6507 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6508 /// This can cause recursive merging of nodes in the DAG. 6509 /// 6510 /// This version assumes that for each value of From, there is a 6511 /// corresponding value in To in the same position with the same type. 6512 /// 6513 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6514 #ifndef NDEBUG 6515 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6516 assert((!From->hasAnyUseOfValue(i) || 6517 From->getValueType(i) == To->getValueType(i)) && 6518 "Cannot use this version of ReplaceAllUsesWith!"); 6519 #endif 6520 6521 // Handle the trivial case. 6522 if (From == To) 6523 return; 6524 6525 // Preserve Debug Info. Only do this if there's a use. 6526 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6527 if (From->hasAnyUseOfValue(i)) { 6528 assert((i < To->getNumValues()) && "Invalid To location"); 6529 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6530 } 6531 6532 // Iterate over just the existing users of From. See the comments in 6533 // the ReplaceAllUsesWith above. 6534 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6535 RAUWUpdateListener Listener(*this, UI, UE); 6536 while (UI != UE) { 6537 SDNode *User = *UI; 6538 6539 // This node is about to morph, remove its old self from the CSE maps. 6540 RemoveNodeFromCSEMaps(User); 6541 6542 // A user can appear in a use list multiple times, and when this 6543 // happens the uses are usually next to each other in the list. 6544 // To help reduce the number of CSE recomputations, process all 6545 // the uses of this user that we can find this way. 6546 do { 6547 SDUse &Use = UI.getUse(); 6548 ++UI; 6549 Use.setNode(To); 6550 } while (UI != UE && *UI == User); 6551 6552 // Now that we have modified User, add it back to the CSE maps. If it 6553 // already exists there, recursively merge the results together. 6554 AddModifiedNodeToCSEMaps(User); 6555 } 6556 6557 // If we just RAUW'd the root, take note. 6558 if (From == getRoot().getNode()) 6559 setRoot(SDValue(To, getRoot().getResNo())); 6560 } 6561 6562 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6563 /// This can cause recursive merging of nodes in the DAG. 6564 /// 6565 /// This version can replace From with any result values. To must match the 6566 /// number and types of values returned by From. 6567 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6568 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6569 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6570 6571 // Preserve Debug Info. 6572 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6573 TransferDbgValues(SDValue(From, i), *To); 6574 6575 // Iterate over just the existing users of From. See the comments in 6576 // the ReplaceAllUsesWith above. 6577 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6578 RAUWUpdateListener Listener(*this, UI, UE); 6579 while (UI != UE) { 6580 SDNode *User = *UI; 6581 6582 // This node is about to morph, remove its old self from the CSE maps. 6583 RemoveNodeFromCSEMaps(User); 6584 6585 // A user can appear in a use list multiple times, and when this 6586 // happens the uses are usually next to each other in the list. 6587 // To help reduce the number of CSE recomputations, process all 6588 // the uses of this user that we can find this way. 6589 do { 6590 SDUse &Use = UI.getUse(); 6591 const SDValue &ToOp = To[Use.getResNo()]; 6592 ++UI; 6593 Use.set(ToOp); 6594 } while (UI != UE && *UI == User); 6595 6596 // Now that we have modified User, add it back to the CSE maps. If it 6597 // already exists there, recursively merge the results together. 6598 AddModifiedNodeToCSEMaps(User); 6599 } 6600 6601 // If we just RAUW'd the root, take note. 6602 if (From == getRoot().getNode()) 6603 setRoot(SDValue(To[getRoot().getResNo()])); 6604 } 6605 6606 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6607 /// uses of other values produced by From.getNode() alone. The Deleted 6608 /// vector is handled the same way as for ReplaceAllUsesWith. 6609 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6610 // Handle the really simple, really trivial case efficiently. 6611 if (From == To) return; 6612 6613 // Handle the simple, trivial, case efficiently. 6614 if (From.getNode()->getNumValues() == 1) { 6615 ReplaceAllUsesWith(From, To); 6616 return; 6617 } 6618 6619 // Preserve Debug Info. 6620 TransferDbgValues(From, To); 6621 6622 // Iterate over just the existing users of From. See the comments in 6623 // the ReplaceAllUsesWith above. 6624 SDNode::use_iterator UI = From.getNode()->use_begin(), 6625 UE = From.getNode()->use_end(); 6626 RAUWUpdateListener Listener(*this, UI, UE); 6627 while (UI != UE) { 6628 SDNode *User = *UI; 6629 bool UserRemovedFromCSEMaps = false; 6630 6631 // A user can appear in a use list multiple times, and when this 6632 // happens the uses are usually next to each other in the list. 6633 // To help reduce the number of CSE recomputations, process all 6634 // the uses of this user that we can find this way. 6635 do { 6636 SDUse &Use = UI.getUse(); 6637 6638 // Skip uses of different values from the same node. 6639 if (Use.getResNo() != From.getResNo()) { 6640 ++UI; 6641 continue; 6642 } 6643 6644 // If this node hasn't been modified yet, it's still in the CSE maps, 6645 // so remove its old self from the CSE maps. 6646 if (!UserRemovedFromCSEMaps) { 6647 RemoveNodeFromCSEMaps(User); 6648 UserRemovedFromCSEMaps = true; 6649 } 6650 6651 ++UI; 6652 Use.set(To); 6653 } while (UI != UE && *UI == User); 6654 6655 // We are iterating over all uses of the From node, so if a use 6656 // doesn't use the specific value, no changes are made. 6657 if (!UserRemovedFromCSEMaps) 6658 continue; 6659 6660 // Now that we have modified User, add it back to the CSE maps. If it 6661 // already exists there, recursively merge the results together. 6662 AddModifiedNodeToCSEMaps(User); 6663 } 6664 6665 // If we just RAUW'd the root, take note. 6666 if (From == getRoot()) 6667 setRoot(To); 6668 } 6669 6670 namespace { 6671 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6672 /// to record information about a use. 6673 struct UseMemo { 6674 SDNode *User; 6675 unsigned Index; 6676 SDUse *Use; 6677 }; 6678 6679 /// operator< - Sort Memos by User. 6680 bool operator<(const UseMemo &L, const UseMemo &R) { 6681 return (intptr_t)L.User < (intptr_t)R.User; 6682 } 6683 } 6684 6685 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6686 /// uses of other values produced by From.getNode() alone. The same value 6687 /// may appear in both the From and To list. The Deleted vector is 6688 /// handled the same way as for ReplaceAllUsesWith. 6689 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6690 const SDValue *To, 6691 unsigned Num){ 6692 // Handle the simple, trivial case efficiently. 6693 if (Num == 1) 6694 return ReplaceAllUsesOfValueWith(*From, *To); 6695 6696 TransferDbgValues(*From, *To); 6697 6698 // Read up all the uses and make records of them. This helps 6699 // processing new uses that are introduced during the 6700 // replacement process. 6701 SmallVector<UseMemo, 4> Uses; 6702 for (unsigned i = 0; i != Num; ++i) { 6703 unsigned FromResNo = From[i].getResNo(); 6704 SDNode *FromNode = From[i].getNode(); 6705 for (SDNode::use_iterator UI = FromNode->use_begin(), 6706 E = FromNode->use_end(); UI != E; ++UI) { 6707 SDUse &Use = UI.getUse(); 6708 if (Use.getResNo() == FromResNo) { 6709 UseMemo Memo = { *UI, i, &Use }; 6710 Uses.push_back(Memo); 6711 } 6712 } 6713 } 6714 6715 // Sort the uses, so that all the uses from a given User are together. 6716 std::sort(Uses.begin(), Uses.end()); 6717 6718 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6719 UseIndex != UseIndexEnd; ) { 6720 // We know that this user uses some value of From. If it is the right 6721 // value, update it. 6722 SDNode *User = Uses[UseIndex].User; 6723 6724 // This node is about to morph, remove its old self from the CSE maps. 6725 RemoveNodeFromCSEMaps(User); 6726 6727 // The Uses array is sorted, so all the uses for a given User 6728 // are next to each other in the list. 6729 // To help reduce the number of CSE recomputations, process all 6730 // the uses of this user that we can find this way. 6731 do { 6732 unsigned i = Uses[UseIndex].Index; 6733 SDUse &Use = *Uses[UseIndex].Use; 6734 ++UseIndex; 6735 6736 Use.set(To[i]); 6737 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6738 6739 // Now that we have modified User, add it back to the CSE maps. If it 6740 // already exists there, recursively merge the results together. 6741 AddModifiedNodeToCSEMaps(User); 6742 } 6743 } 6744 6745 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6746 /// based on their topological order. It returns the maximum id and a vector 6747 /// of the SDNodes* in assigned order by reference. 6748 unsigned SelectionDAG::AssignTopologicalOrder() { 6749 6750 unsigned DAGSize = 0; 6751 6752 // SortedPos tracks the progress of the algorithm. Nodes before it are 6753 // sorted, nodes after it are unsorted. When the algorithm completes 6754 // it is at the end of the list. 6755 allnodes_iterator SortedPos = allnodes_begin(); 6756 6757 // Visit all the nodes. Move nodes with no operands to the front of 6758 // the list immediately. Annotate nodes that do have operands with their 6759 // operand count. Before we do this, the Node Id fields of the nodes 6760 // may contain arbitrary values. After, the Node Id fields for nodes 6761 // before SortedPos will contain the topological sort index, and the 6762 // Node Id fields for nodes At SortedPos and after will contain the 6763 // count of outstanding operands. 6764 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6765 SDNode *N = &*I++; 6766 checkForCycles(N, this); 6767 unsigned Degree = N->getNumOperands(); 6768 if (Degree == 0) { 6769 // A node with no uses, add it to the result array immediately. 6770 N->setNodeId(DAGSize++); 6771 allnodes_iterator Q(N); 6772 if (Q != SortedPos) 6773 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6774 assert(SortedPos != AllNodes.end() && "Overran node list"); 6775 ++SortedPos; 6776 } else { 6777 // Temporarily use the Node Id as scratch space for the degree count. 6778 N->setNodeId(Degree); 6779 } 6780 } 6781 6782 // Visit all the nodes. As we iterate, move nodes into sorted order, 6783 // such that by the time the end is reached all nodes will be sorted. 6784 for (SDNode &Node : allnodes()) { 6785 SDNode *N = &Node; 6786 checkForCycles(N, this); 6787 // N is in sorted position, so all its uses have one less operand 6788 // that needs to be sorted. 6789 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6790 UI != UE; ++UI) { 6791 SDNode *P = *UI; 6792 unsigned Degree = P->getNodeId(); 6793 assert(Degree != 0 && "Invalid node degree"); 6794 --Degree; 6795 if (Degree == 0) { 6796 // All of P's operands are sorted, so P may sorted now. 6797 P->setNodeId(DAGSize++); 6798 if (P->getIterator() != SortedPos) 6799 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6800 assert(SortedPos != AllNodes.end() && "Overran node list"); 6801 ++SortedPos; 6802 } else { 6803 // Update P's outstanding operand count. 6804 P->setNodeId(Degree); 6805 } 6806 } 6807 if (Node.getIterator() == SortedPos) { 6808 #ifndef NDEBUG 6809 allnodes_iterator I(N); 6810 SDNode *S = &*++I; 6811 dbgs() << "Overran sorted position:\n"; 6812 S->dumprFull(this); dbgs() << "\n"; 6813 dbgs() << "Checking if this is due to cycles\n"; 6814 checkForCycles(this, true); 6815 #endif 6816 llvm_unreachable(nullptr); 6817 } 6818 } 6819 6820 assert(SortedPos == AllNodes.end() && 6821 "Topological sort incomplete!"); 6822 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6823 "First node in topological sort is not the entry token!"); 6824 assert(AllNodes.front().getNodeId() == 0 && 6825 "First node in topological sort has non-zero id!"); 6826 assert(AllNodes.front().getNumOperands() == 0 && 6827 "First node in topological sort has operands!"); 6828 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6829 "Last node in topologic sort has unexpected id!"); 6830 assert(AllNodes.back().use_empty() && 6831 "Last node in topologic sort has users!"); 6832 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6833 return DAGSize; 6834 } 6835 6836 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6837 /// value is produced by SD. 6838 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6839 if (SD) { 6840 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6841 SD->setHasDebugValue(true); 6842 } 6843 DbgInfo->add(DB, SD, isParameter); 6844 } 6845 6846 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 6847 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6848 if (From == To || !From.getNode()->getHasDebugValue()) 6849 return; 6850 SDNode *FromNode = From.getNode(); 6851 SDNode *ToNode = To.getNode(); 6852 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6853 SmallVector<SDDbgValue *, 2> ClonedDVs; 6854 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6855 I != E; ++I) { 6856 SDDbgValue *Dbg = *I; 6857 // Only add Dbgvalues attached to same ResNo. 6858 if (Dbg->getKind() == SDDbgValue::SDNODE && 6859 Dbg->getSDNode() == From.getNode() && 6860 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 6861 assert(FromNode != ToNode && 6862 "Should not transfer Debug Values intranode"); 6863 SDDbgValue *Clone = 6864 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6865 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6866 Dbg->getDebugLoc(), Dbg->getOrder()); 6867 ClonedDVs.push_back(Clone); 6868 Dbg->setIsInvalidated(); 6869 } 6870 } 6871 for (SDDbgValue *I : ClonedDVs) 6872 AddDbgValue(I, ToNode, false); 6873 } 6874 6875 //===----------------------------------------------------------------------===// 6876 // SDNode Class 6877 //===----------------------------------------------------------------------===// 6878 6879 bool llvm::isNullConstant(SDValue V) { 6880 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6881 return Const != nullptr && Const->isNullValue(); 6882 } 6883 6884 bool llvm::isNullFPConstant(SDValue V) { 6885 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6886 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6887 } 6888 6889 bool llvm::isAllOnesConstant(SDValue V) { 6890 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6891 return Const != nullptr && Const->isAllOnesValue(); 6892 } 6893 6894 bool llvm::isOneConstant(SDValue V) { 6895 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6896 return Const != nullptr && Const->isOne(); 6897 } 6898 6899 bool llvm::isBitwiseNot(SDValue V) { 6900 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6901 } 6902 6903 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 6904 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 6905 return CN; 6906 6907 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6908 BitVector UndefElements; 6909 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 6910 6911 // BuildVectors can truncate their operands. Ignore that case here. 6912 // FIXME: We blindly ignore splats which include undef which is overly 6913 // pessimistic. 6914 if (CN && UndefElements.none() && 6915 CN->getValueType(0) == N.getValueType().getScalarType()) 6916 return CN; 6917 } 6918 6919 return nullptr; 6920 } 6921 6922 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 6923 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 6924 return CN; 6925 6926 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6927 BitVector UndefElements; 6928 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 6929 6930 if (CN && UndefElements.none()) 6931 return CN; 6932 } 6933 6934 return nullptr; 6935 } 6936 6937 HandleSDNode::~HandleSDNode() { 6938 DropOperands(); 6939 } 6940 6941 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 6942 const DebugLoc &DL, 6943 const GlobalValue *GA, EVT VT, 6944 int64_t o, unsigned char TF) 6945 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 6946 TheGlobal = GA; 6947 } 6948 6949 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 6950 EVT VT, unsigned SrcAS, 6951 unsigned DestAS) 6952 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 6953 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 6954 6955 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 6956 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 6957 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 6958 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 6959 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 6960 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 6961 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 6962 6963 // We check here that the size of the memory operand fits within the size of 6964 // the MMO. This is because the MMO might indicate only a possible address 6965 // range instead of specifying the affected memory addresses precisely. 6966 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 6967 } 6968 6969 /// Profile - Gather unique data for the node. 6970 /// 6971 void SDNode::Profile(FoldingSetNodeID &ID) const { 6972 AddNodeIDNode(ID, this); 6973 } 6974 6975 namespace { 6976 struct EVTArray { 6977 std::vector<EVT> VTs; 6978 6979 EVTArray() { 6980 VTs.reserve(MVT::LAST_VALUETYPE); 6981 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 6982 VTs.push_back(MVT((MVT::SimpleValueType)i)); 6983 } 6984 }; 6985 } 6986 6987 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 6988 static ManagedStatic<EVTArray> SimpleVTArray; 6989 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 6990 6991 /// getValueTypeList - Return a pointer to the specified value type. 6992 /// 6993 const EVT *SDNode::getValueTypeList(EVT VT) { 6994 if (VT.isExtended()) { 6995 sys::SmartScopedLock<true> Lock(*VTMutex); 6996 return &(*EVTs->insert(VT).first); 6997 } else { 6998 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 6999 "Value type out of range!"); 7000 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7001 } 7002 } 7003 7004 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7005 /// indicated value. This method ignores uses of other values defined by this 7006 /// operation. 7007 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7008 assert(Value < getNumValues() && "Bad value!"); 7009 7010 // TODO: Only iterate over uses of a given value of the node 7011 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7012 if (UI.getUse().getResNo() == Value) { 7013 if (NUses == 0) 7014 return false; 7015 --NUses; 7016 } 7017 } 7018 7019 // Found exactly the right number of uses? 7020 return NUses == 0; 7021 } 7022 7023 7024 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7025 /// value. This method ignores uses of other values defined by this operation. 7026 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7027 assert(Value < getNumValues() && "Bad value!"); 7028 7029 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7030 if (UI.getUse().getResNo() == Value) 7031 return true; 7032 7033 return false; 7034 } 7035 7036 7037 /// isOnlyUserOf - Return true if this node is the only use of N. 7038 /// 7039 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7040 bool Seen = false; 7041 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7042 SDNode *User = *I; 7043 if (User == this) 7044 Seen = true; 7045 else 7046 return false; 7047 } 7048 7049 return Seen; 7050 } 7051 7052 /// isOperand - Return true if this node is an operand of N. 7053 /// 7054 bool SDValue::isOperandOf(const SDNode *N) const { 7055 for (const SDValue &Op : N->op_values()) 7056 if (*this == Op) 7057 return true; 7058 return false; 7059 } 7060 7061 bool SDNode::isOperandOf(const SDNode *N) const { 7062 for (const SDValue &Op : N->op_values()) 7063 if (this == Op.getNode()) 7064 return true; 7065 return false; 7066 } 7067 7068 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7069 /// be a chain) reaches the specified operand without crossing any 7070 /// side-effecting instructions on any chain path. In practice, this looks 7071 /// through token factors and non-volatile loads. In order to remain efficient, 7072 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7073 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7074 unsigned Depth) const { 7075 if (*this == Dest) return true; 7076 7077 // Don't search too deeply, we just want to be able to see through 7078 // TokenFactor's etc. 7079 if (Depth == 0) return false; 7080 7081 // If this is a token factor, all inputs to the TF happen in parallel. If any 7082 // of the operands of the TF does not reach dest, then we cannot do the xform. 7083 if (getOpcode() == ISD::TokenFactor) { 7084 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7085 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 7086 return false; 7087 return true; 7088 } 7089 7090 // Loads don't have side effects, look through them. 7091 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7092 if (!Ld->isVolatile()) 7093 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7094 } 7095 return false; 7096 } 7097 7098 bool SDNode::hasPredecessor(const SDNode *N) const { 7099 SmallPtrSet<const SDNode *, 32> Visited; 7100 SmallVector<const SDNode *, 16> Worklist; 7101 Worklist.push_back(this); 7102 return hasPredecessorHelper(N, Visited, Worklist); 7103 } 7104 7105 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 7106 assert(Num < NumOperands && "Invalid child # of SDNode!"); 7107 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); 7108 } 7109 7110 const SDNodeFlags *SDNode::getFlags() const { 7111 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7112 return &FlagsNode->Flags; 7113 return nullptr; 7114 } 7115 7116 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 7117 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7118 FlagsNode->Flags.intersectWith(Flags); 7119 } 7120 7121 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7122 assert(N->getNumValues() == 1 && 7123 "Can't unroll a vector with multiple results!"); 7124 7125 EVT VT = N->getValueType(0); 7126 unsigned NE = VT.getVectorNumElements(); 7127 EVT EltVT = VT.getVectorElementType(); 7128 SDLoc dl(N); 7129 7130 SmallVector<SDValue, 8> Scalars; 7131 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7132 7133 // If ResNE is 0, fully unroll the vector op. 7134 if (ResNE == 0) 7135 ResNE = NE; 7136 else if (NE > ResNE) 7137 NE = ResNE; 7138 7139 unsigned i; 7140 for (i= 0; i != NE; ++i) { 7141 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7142 SDValue Operand = N->getOperand(j); 7143 EVT OperandVT = Operand.getValueType(); 7144 if (OperandVT.isVector()) { 7145 // A vector operand; extract a single element. 7146 EVT OperandEltVT = OperandVT.getVectorElementType(); 7147 Operands[j] = 7148 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7149 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7150 } else { 7151 // A scalar operand; just use it as is. 7152 Operands[j] = Operand; 7153 } 7154 } 7155 7156 switch (N->getOpcode()) { 7157 default: { 7158 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7159 N->getFlags())); 7160 break; 7161 } 7162 case ISD::VSELECT: 7163 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7164 break; 7165 case ISD::SHL: 7166 case ISD::SRA: 7167 case ISD::SRL: 7168 case ISD::ROTL: 7169 case ISD::ROTR: 7170 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7171 getShiftAmountOperand(Operands[0].getValueType(), 7172 Operands[1]))); 7173 break; 7174 case ISD::SIGN_EXTEND_INREG: 7175 case ISD::FP_ROUND_INREG: { 7176 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7177 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7178 Operands[0], 7179 getValueType(ExtVT))); 7180 } 7181 } 7182 } 7183 7184 for (; i < ResNE; ++i) 7185 Scalars.push_back(getUNDEF(EltVT)); 7186 7187 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7188 return getBuildVector(VecVT, dl, Scalars); 7189 } 7190 7191 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7192 LoadSDNode *Base, 7193 unsigned Bytes, 7194 int Dist) const { 7195 if (LD->isVolatile() || Base->isVolatile()) 7196 return false; 7197 if (LD->isIndexed() || Base->isIndexed()) 7198 return false; 7199 if (LD->getChain() != Base->getChain()) 7200 return false; 7201 EVT VT = LD->getValueType(0); 7202 if (VT.getSizeInBits() / 8 != Bytes) 7203 return false; 7204 7205 SDValue Loc = LD->getOperand(1); 7206 SDValue BaseLoc = Base->getOperand(1); 7207 if (Loc.getOpcode() == ISD::FrameIndex) { 7208 if (BaseLoc.getOpcode() != ISD::FrameIndex) 7209 return false; 7210 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7211 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 7212 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 7213 int FS = MFI.getObjectSize(FI); 7214 int BFS = MFI.getObjectSize(BFI); 7215 if (FS != BFS || FS != (int)Bytes) return false; 7216 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 7217 } 7218 7219 // Handle X + C. 7220 if (isBaseWithConstantOffset(Loc)) { 7221 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 7222 if (Loc.getOperand(0) == BaseLoc) { 7223 // If the base location is a simple address with no offset itself, then 7224 // the second load's first add operand should be the base address. 7225 if (LocOffset == Dist * (int)Bytes) 7226 return true; 7227 } else if (isBaseWithConstantOffset(BaseLoc)) { 7228 // The base location itself has an offset, so subtract that value from the 7229 // second load's offset before comparing to distance * size. 7230 int64_t BOffset = 7231 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7232 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7233 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7234 return true; 7235 } 7236 } 7237 } 7238 const GlobalValue *GV1 = nullptr; 7239 const GlobalValue *GV2 = nullptr; 7240 int64_t Offset1 = 0; 7241 int64_t Offset2 = 0; 7242 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7243 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7244 if (isGA1 && isGA2 && GV1 == GV2) 7245 return Offset1 == (Offset2 + Dist*Bytes); 7246 return false; 7247 } 7248 7249 7250 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7251 /// it cannot be inferred. 7252 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7253 // If this is a GlobalAddress + cst, return the alignment. 7254 const GlobalValue *GV; 7255 int64_t GVOffset = 0; 7256 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7257 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7258 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7259 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7260 getDataLayout()); 7261 unsigned AlignBits = KnownZero.countTrailingOnes(); 7262 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7263 if (Align) 7264 return MinAlign(Align, GVOffset); 7265 } 7266 7267 // If this is a direct reference to a stack slot, use information about the 7268 // stack slot's alignment. 7269 int FrameIdx = 1 << 31; 7270 int64_t FrameOffset = 0; 7271 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7272 FrameIdx = FI->getIndex(); 7273 } else if (isBaseWithConstantOffset(Ptr) && 7274 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7275 // Handle FI+Cst 7276 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7277 FrameOffset = Ptr.getConstantOperandVal(1); 7278 } 7279 7280 if (FrameIdx != (1 << 31)) { 7281 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7282 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7283 FrameOffset); 7284 return FIInfoAlign; 7285 } 7286 7287 return 0; 7288 } 7289 7290 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7291 /// which is split (or expanded) into two not necessarily identical pieces. 7292 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7293 // Currently all types are split in half. 7294 EVT LoVT, HiVT; 7295 if (!VT.isVector()) { 7296 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7297 } else { 7298 unsigned NumElements = VT.getVectorNumElements(); 7299 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7300 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7301 NumElements/2); 7302 } 7303 return std::make_pair(LoVT, HiVT); 7304 } 7305 7306 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7307 /// low/high part. 7308 std::pair<SDValue, SDValue> 7309 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7310 const EVT &HiVT) { 7311 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7312 N.getValueType().getVectorNumElements() && 7313 "More vector elements requested than available!"); 7314 SDValue Lo, Hi; 7315 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7316 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7317 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7318 getConstant(LoVT.getVectorNumElements(), DL, 7319 TLI->getVectorIdxTy(getDataLayout()))); 7320 return std::make_pair(Lo, Hi); 7321 } 7322 7323 void SelectionDAG::ExtractVectorElements(SDValue Op, 7324 SmallVectorImpl<SDValue> &Args, 7325 unsigned Start, unsigned Count) { 7326 EVT VT = Op.getValueType(); 7327 if (Count == 0) 7328 Count = VT.getVectorNumElements(); 7329 7330 EVT EltVT = VT.getVectorElementType(); 7331 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7332 SDLoc SL(Op); 7333 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7334 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7335 Op, getConstant(i, SL, IdxTy))); 7336 } 7337 } 7338 7339 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7340 unsigned GlobalAddressSDNode::getAddressSpace() const { 7341 return getGlobal()->getType()->getAddressSpace(); 7342 } 7343 7344 7345 Type *ConstantPoolSDNode::getType() const { 7346 if (isMachineConstantPoolEntry()) 7347 return Val.MachineCPVal->getType(); 7348 return Val.ConstVal->getType(); 7349 } 7350 7351 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7352 APInt &SplatUndef, 7353 unsigned &SplatBitSize, 7354 bool &HasAnyUndefs, 7355 unsigned MinSplatBits, 7356 bool isBigEndian) const { 7357 EVT VT = getValueType(0); 7358 assert(VT.isVector() && "Expected a vector type"); 7359 unsigned sz = VT.getSizeInBits(); 7360 if (MinSplatBits > sz) 7361 return false; 7362 7363 SplatValue = APInt(sz, 0); 7364 SplatUndef = APInt(sz, 0); 7365 7366 // Get the bits. Bits with undefined values (when the corresponding element 7367 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7368 // in SplatValue. If any of the values are not constant, give up and return 7369 // false. 7370 unsigned int nOps = getNumOperands(); 7371 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7372 unsigned EltBitSize = VT.getScalarSizeInBits(); 7373 7374 for (unsigned j = 0; j < nOps; ++j) { 7375 unsigned i = isBigEndian ? nOps-1-j : j; 7376 SDValue OpVal = getOperand(i); 7377 unsigned BitPos = j * EltBitSize; 7378 7379 if (OpVal.isUndef()) 7380 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7381 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7382 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7383 zextOrTrunc(sz) << BitPos; 7384 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7385 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7386 else 7387 return false; 7388 } 7389 7390 // The build_vector is all constants or undefs. Find the smallest element 7391 // size that splats the vector. 7392 7393 HasAnyUndefs = (SplatUndef != 0); 7394 while (sz > 8) { 7395 7396 unsigned HalfSize = sz / 2; 7397 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7398 APInt LowValue = SplatValue.trunc(HalfSize); 7399 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7400 APInt LowUndef = SplatUndef.trunc(HalfSize); 7401 7402 // If the two halves do not match (ignoring undef bits), stop here. 7403 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7404 MinSplatBits > HalfSize) 7405 break; 7406 7407 SplatValue = HighValue | LowValue; 7408 SplatUndef = HighUndef & LowUndef; 7409 7410 sz = HalfSize; 7411 } 7412 7413 SplatBitSize = sz; 7414 return true; 7415 } 7416 7417 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7418 if (UndefElements) { 7419 UndefElements->clear(); 7420 UndefElements->resize(getNumOperands()); 7421 } 7422 SDValue Splatted; 7423 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7424 SDValue Op = getOperand(i); 7425 if (Op.isUndef()) { 7426 if (UndefElements) 7427 (*UndefElements)[i] = true; 7428 } else if (!Splatted) { 7429 Splatted = Op; 7430 } else if (Splatted != Op) { 7431 return SDValue(); 7432 } 7433 } 7434 7435 if (!Splatted) { 7436 assert(getOperand(0).isUndef() && 7437 "Can only have a splat without a constant for all undefs."); 7438 return getOperand(0); 7439 } 7440 7441 return Splatted; 7442 } 7443 7444 ConstantSDNode * 7445 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7446 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7447 } 7448 7449 ConstantFPSDNode * 7450 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7451 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7452 } 7453 7454 int32_t 7455 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7456 uint32_t BitWidth) const { 7457 if (ConstantFPSDNode *CN = 7458 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7459 bool IsExact; 7460 APSInt IntVal(BitWidth); 7461 const APFloat &APF = CN->getValueAPF(); 7462 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7463 APFloat::opOK || 7464 !IsExact) 7465 return -1; 7466 7467 return IntVal.exactLogBase2(); 7468 } 7469 return -1; 7470 } 7471 7472 bool BuildVectorSDNode::isConstant() const { 7473 for (const SDValue &Op : op_values()) { 7474 unsigned Opc = Op.getOpcode(); 7475 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7476 return false; 7477 } 7478 return true; 7479 } 7480 7481 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7482 // Find the first non-undef value in the shuffle mask. 7483 unsigned i, e; 7484 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7485 /* search */; 7486 7487 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7488 7489 // Make sure all remaining elements are either undef or the same as the first 7490 // non-undef value. 7491 for (int Idx = Mask[i]; i != e; ++i) 7492 if (Mask[i] >= 0 && Mask[i] != Idx) 7493 return false; 7494 return true; 7495 } 7496 7497 // \brief Returns the SDNode if it is a constant integer BuildVector 7498 // or constant integer. 7499 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7500 if (isa<ConstantSDNode>(N)) 7501 return N.getNode(); 7502 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7503 return N.getNode(); 7504 // Treat a GlobalAddress supporting constant offset folding as a 7505 // constant integer. 7506 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7507 if (GA->getOpcode() == ISD::GlobalAddress && 7508 TLI->isOffsetFoldingLegal(GA)) 7509 return GA; 7510 return nullptr; 7511 } 7512 7513 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 7514 if (isa<ConstantFPSDNode>(N)) 7515 return N.getNode(); 7516 7517 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 7518 return N.getNode(); 7519 7520 return nullptr; 7521 } 7522 7523 #ifndef NDEBUG 7524 static void checkForCyclesHelper(const SDNode *N, 7525 SmallPtrSetImpl<const SDNode*> &Visited, 7526 SmallPtrSetImpl<const SDNode*> &Checked, 7527 const llvm::SelectionDAG *DAG) { 7528 // If this node has already been checked, don't check it again. 7529 if (Checked.count(N)) 7530 return; 7531 7532 // If a node has already been visited on this depth-first walk, reject it as 7533 // a cycle. 7534 if (!Visited.insert(N).second) { 7535 errs() << "Detected cycle in SelectionDAG\n"; 7536 dbgs() << "Offending node:\n"; 7537 N->dumprFull(DAG); dbgs() << "\n"; 7538 abort(); 7539 } 7540 7541 for (const SDValue &Op : N->op_values()) 7542 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7543 7544 Checked.insert(N); 7545 Visited.erase(N); 7546 } 7547 #endif 7548 7549 void llvm::checkForCycles(const llvm::SDNode *N, 7550 const llvm::SelectionDAG *DAG, 7551 bool force) { 7552 #ifndef NDEBUG 7553 bool check = force; 7554 #ifdef EXPENSIVE_CHECKS 7555 check = true; 7556 #endif // EXPENSIVE_CHECKS 7557 if (check) { 7558 assert(N && "Checking nonexistent SDNode"); 7559 SmallPtrSet<const SDNode*, 32> visited; 7560 SmallPtrSet<const SDNode*, 32> checked; 7561 checkForCyclesHelper(N, visited, checked, DAG); 7562 } 7563 #endif // !NDEBUG 7564 } 7565 7566 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7567 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7568 } 7569